
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

Smoking Gesture Detection in Natural Settings
Anthony A. Romeo
Worcester Polytechnic Institute

Steven Patrick Ireland
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Romeo, A. A., & Ireland, S. P. (2016). Smoking Gesture Detection in Natural Settings. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/1776

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1776?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1776?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Smoking Gesture Detection in Natural Settings

 A Major Qualifying Project

Submitted to the Faculty of

 WORCESTER POLYTECHNIC INSTITUTE

 In partial fulfillment of the requirements for the

Degree in Bachelor Science

in

 Computer Science

 By

Anthony Romeo

Steven Ireland

 This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

Date: April, 2016

Project Advisor:

 Prof. Emmanuel Agu, Advisor

 ii

Abstract

 Since 1964, more than 20 million Americans have died as a result of smoking. Being able

to reflect on smoking habits gives smokers a greater chance to quit. A worn smartwatch can

record accelerometer and gyroscope data from a smoker’s wrist, allowing the extraction of

features significant to the identification of smoking gestures. This project explores techniques for

identifying these gestures which would enable the implementation of passive reflective tools

later. Our smoking gesture detection approach used machine learning to detect patterns from

various features including max speed, median speed, mean speed, variance of speed, and net,

median, and max roll velocity. The machine learning algorithm then classified which gesture was

being performed based on training data of 30 people performing four distinct gestures (smoking,

drinking, phone call and crossing arms) 30 times each. The WEKA data mining library tested

multiple classification algorithms including Naive Bayesian Network, J48 Decision Tree, and the

most accurate Random Forest. Successful detection of these smoking gestures can help smokers

quit smoking by providing real time interventions.

 iii

Table of Contents

Abstract..ii

Table of Figures…...v

Table of Tables ..vi

Table of Equations...vii

1. Introduction..1

1.1. Harms of Smoking...1

1.2. Who Smokes ...1

1.3 Effects on non-Smokers...2

1.3.1. General Population...2

 1.3.2. Babies...3

 1.3.3. Children..4

1.4 Wanting to Quit..4

 1.4.1 Quitting Techniques...5

1.5 Detection and Smartphones...5

1.6 The Goal of this MQP..6

2. Related Work...7

2.1 RISQ..7

 2.1.1 How RISQ Tackles the Problem..8

 2.1.2 Comparison to RISQ..8

2.2 Automated Detection of Puffing and Smoking with Wrist Accelerometers............8

2.2.1 How Automated Detection of Puffing and Smoking with Wrist

Accelerometers Tackles the Problem...9

 2.2.2 Comparison to Automated Detection of Puffing and Smoking with Wrist

Accelerometers..9

3. Methodology..10

 3.1 Watch Selection...10

 3.2 Considerations..11

 3.2.1 Confounding Effects..12

 3.2.1.1 Drinking Beverage...12

 3.2.1.2 Eating a Meal...13

 iv

 3.2.1.3 Talking...13

 3.2.1.4 Using a Phone..14

 3.2.2 Multiple Resting Positions...14

 3.2.3 Pauses...14

 3.2.4 Opposite Hand...15

 3.3 Participant Selection..15

 3.4 Data Gathering Study...15

4. Implementation..21

 4.1 Data Collection..22

4.2 Feature Extraction..23

4.3 Classification..26

5. Results..28

6. Discussion..30

 6.1 Lessons Learned…...30

6.2 Limitations of Wrist Watch Sensing..30

6.3 Implications of Smoking Gesture Recognition..31

7. Conclusion ..32

 7.1 Future Work...32

References..35

Appendix..36

 v

Table of Figures

Figure 1 – System Diagram...10

Figure 2 – Watch comparison..11

Figure 3 - Cigarette Simulation (Resting)..16

Figure 4 - Cigarette Simulation (Active)...17

Figure 5 - Drinking Simulation (Resting)..17

Figure 6 - Drinking Simulation (Active)...18

Figure 7 - Phone Simulation (Resting)..18

Figure 8 - Phone Simulation (Active)..19

Figure 9 - Arms Cross Simulation (Resting)...19

Figure 10 - Arms Cross Simulation (Active)...20

Figure 11 - Android app interface..21

Figure 12 - Basic Watch Screen...21

Figure 13 - Initialization of Sensors on Watch..22

Figure 14 - Code to Detect the Start of a Gesture..23

Figure 15 - Accelerometer Data of Hands at Rest...24

Figure 16 - Accelerometer Data of Start of Smoking Gesture...24

Figure 17 - Accelerometer Data of Start of Drinking Gesture...24

Figure 18 - Accelerometer Data of Start of Drinking Gesture...26

Figure 19 - Code to Create a WEKA-Compatible Data Instance..26

Figure 20 - WEKA Random Forest Classification..27

Figure 21 – Smoking Tracker..34

 vi

Table of Tables

Table 1 - Percent of Smokers in 2014..2

Table 2 - Quitting Statistics...5

Table 3 – Participant Selection..15

Table 4 - Features extracted...25

Table 5 - Confusion Matrix..28

Table 6 - Experimental Results..28

Table 7 - Other Classifiers...29

 vii

Table of Equations

Equation 1- Quaternion..7

Equation 2- Rotation..7

Equation 3- Quaternion Rotation...7

 1

1. Introduction

1.1 Harms of Smoking

 Tobacco use is prevalent in modern culture and commonly used around the world and in

the United States. Tobacco is currently the leading cause of preventable death and illness in the

United States [1]. Tobacco has been known to cause emphysema, bronchitis, heart disease,

erectile dysfunction, as well as multiple different cancers [1]. These cancers can occur in the

throat, mouth, nasal cavity, esophagus, stomach, pancreas, kidney, bladder, and cervix [1].

Almost 90% of lung cancer cases are caused by smoking [1]. Lung cancer is the leading cause of

cancer- related deaths [1]. Men who smoke with prostate cancer are more likely to die from this

disease [1]. About 80% of Chronic Obstructive Pulmonary Disease deaths are a result of

smoking. Women who smoke are up to 40 times more likely to develop COPD compared to

women who have never smoked [1]. Smoking increases the likelihood of developing as asthma

as a youth, increases a person's risk of getting tuberculosis, and slows down lung growth in

children and teens [1]. Smokers are 30% to 40% more likely to develop type two diabetes than

non-smokers [1]. The average life expectancy for a smoker is 13-14 years lower than non

smokers [1]. It is clear to see that there are a lot of diseases and conditions that can be caused as

a result of smoking. When one chooses to smoke one undergoes a very large risk yet so many

people still smoke.

1.2 Who Smokes

 In 2014 16.8% of all adults in the united states smoked cigarettes, 18.8% of males and

14.8% of females [2]. Each day more than 3,200 people younger than 18 smoke a cigarette for

the first time [2]. In addition to this about 2,100 youths who have been occasional smokers

transition to become daily cigarette smokers [2]. These huge numbers result in huge death tolls.

More than 16 million people already have at least one disease from smoking [1]. Since 1964,

more than 20 million Americans have died as a result of smoking [1]. There are still 8.6 million

 2

people still alive, living with a serious illness caused by smoking [1]. Table 1 shows the

breakdown of smokers by ethnicity.

Ethnicity Percent of Smokers

non-Hispanic American Indians/Alaska Natives 29.2%

non-Hispanic multiple race individuals 27.9%

non-Hispanic Whites 18.2%

non-Hispanic Blacks 17.5%

Hispanics 11.2%

non-Hispanic Asians 9.5%
Table 1 - Percent of Smokers in 2014 [1]

1.3 Effects of Smoking on non-Smokers

 Not only does smoking have a huge effect on people who chose to smoke, but also has an

enormous effect on those who are in the presence of smokers. Secondhand smoke is a term for

inhaling smoke that somebody has recently exhaled. Secondhand smoke contains thousands of

chemicals, where hundreds are toxic and roughly seventy are known to cause various types of

cancer [4]. The effects of secondhand smoke can be as serious as the smoke from the initial puffs

and even result in death. When a person breathes secondhand smoke the smoke starts to interfere

with the functionality of the heart, blood, and vascular systems, all resulting in a higher risk of

having a heart attack [4]. The lining of blood vessels can be damaged and cause blood platelets

to become stickier as a result of second hand smoke [4].

1.3.1 General Population

 Many people are exposed to secondhand smoke every day. 88 million nonsmoking

Americans are exposed to secondhand smoke [1]. The Surgeon General’s report that since 1964,

2.5 million nonsmoking adults have died as a result of inhaling secondhand smoke [4]. Each year

 3

about 7,300 nonsmoking Americans die of lung cancer as a result of inhaling secondhand smoke

[4]. It is terribly unfortunate that so many Americans that don’t smoke die as a result of those

who make the choice to smoke. The exposure to secondhand smoke can increase one’s risk of

getting lung cancer by 20-30% [1]. In addition to this , the risk heart disease increases by 25-

30% [1]. As a consequence of others choosing to smoking in a public area one can drastically

increase others chance of obtaining a horribly life threatening disease. In the United States alone,

over than 33,000 nonsmokers die every year from coronary heart disease that was caused by

some form of exposure to secondhand smoke [1].

1.3.2 Babies

Babies undergo a huge risk to the exposure of secondhand smoke. Their bodies are less

developed than adults and they don’t have the ability to leave an area if they somebody is

smoking let alone the knowledge that inhaling secondhand smoke can be lethal. SIDS, Sudden

Infant Death Syndrome, is a sudden, unexplained, unexpected death of an infant within its first

year of life [4]. It is currently the number one cause of death in seemingly healthy infants [4].

Over 100,000 babies have died over the last 50 years from SIDS as a result of being exposed to

secondhand smoke [1]. This is because secondhand smoke increase the risk of SIDS [4]. Infants

who die of SIDS have high concentrations of nicotine in their lungs and a higher level of cotinine

than infants who die from other causes [4]. The chemicals in secondhand smoke seem to affect

the brain in a way that interferes with the breathing regulation of infants [4]. With secondhand

smoking being so harmful to babies one would think that mothers would be aware of the danger

and not smoke. However each year over 400,000 babies born in the United States are exposed to

chemicals in cigarette smoke before birth because their mothers smoke [1]. Mothers who smoke

during pregnancy also increase the risk of the baby having SIDS [4]. Despite second hand smoke

being so harmful to the babies, mothers still do it. In the United States, babies that are 18 months

or younger and exposed to secondhand smoke results in 150,000-300,00 cases of bronchitis and

pneumonia each year [1]. Secondhand smoke also leads to 7,500-15,000 hospitalizations each

year from babies under 18 months old [1]. This is an outrageous amount of babies that have no

choice to avoid the second hand smoke that have to go to the hospital. Babies are also more

 4

likely to get ear infections as a result of secondhand smoke [1]. Secondhand smoke is far more

harmful to babies who have a less developed immune systems than fully grown adults and they

have no way to avoid the smoke.

1.3.3 Children

 In addition to babies, younger children also have an increased risk of secondhand smoke

exposure. In 2007-2008 53.6% of children ages 3-11 years old were exposed to secondhand

smoke [1]. They are also more likely to live with nonsmokers than adults are. While adults have

the choice to pick roommates that will not smoke, children are at the mercy of their guardians. In

the United States only 5.4% of adult nonsmokers lived with somebody who smoked inside their

home from 2007-2008 [1]. Compare that to 18.2% of nonsmoking children who lived with

somebody who smoking inside their home [1]. These children that are exposed to secondhand

smoke are more likely to get afflicted by certain diseases. They are more susceptible to ear

infections, respiratory issues, including coughing, sneezing, and having less air per breath [1].

They are also more likely to have more frequent and more severe asthma attacks [1]. Just like

babies they are at an increased risk of SIDS [1]. They can also contract respiratory infections

including bronchitis and pneumonia, just like the babies [1]. In addition to all of these diseases

their lungs grow less than normal children who do not breathe secondhand smoke [4].

1.4 Wanting to Quit Smoking

 There are many smokers who want to try to quit but cannot overcome the addictive

chemicals within tobacco. It is not easy to quit and it is more difficult for people who are older to

quit. Table 2 shows that many people of all ages attempt to quit and fail, with younger smokers

trying to quit more often and older smokers slowly giving up.

 5

 Age of Smoker Percent who stopped for a day to quit

All Adult Smokers 42.7%

18-24 year olds 48.5%

25-44 year olds 46.8%

45-64 year olds 38.8%

65+ 34.6%

Highschool smokers 48.0%
Table 2 - Quitting Statistics

1.4.1 Quitting Techniques

 There are several techniques that can be used to quit smoking. Nicotine patches or other

nicotine substitutions stop smokers from committing the act of smoking but still encourage

smokers to take small doses of nicotine [3]. Hypnosis is another way to try to quit smoking by

having somebody tell the smoker’s subconscious mind that smoking is wrong and help them

unlock the will power [3]. Having a partner aid in the act of quitting smoking can also be helpful.

A partner can provide real time interjections. It is less likely for a smoker trying to quit to tell a

friend they need to smoke than it is for them to habitually light a cigarette without thinking about

it [3].

1.5 Detection, Smartphones, and Watches

 One tool that could be used to help smokers who want to quit, quit would be a

smartphone paired with a smartwatch. Smartphones have grown in a way that allows them to

have a lot of computing power for real time data. They have the power that some higher-end PCs

had years and years ago. Smart watches come with various sensors that can detect acceleration

and tilt. These sensors are the accelerometer and gyroscope respectively. These paired with the

GPS sensor in the smartphone can allow us to detect when somebody is smoking and where they

are when they are smoking. There has not yet been a smoking detector developed that has high

 6

sensitivity and is easy to wear on a day-to-day basis. Precise gesture detection is vital for success

of the app.

1.6 The Goal of this MQP

 The objective of this project is to provide smokers who are trying to quit smoking with

smoking event detection tools to help them quit. Detecting smoking events and associated

context (time of day, location, etc), they can reflect on their smoking patterns, and habits. Once

smokers become cognizant of their habits they can start trying to stop them. For example if a

smoker knows that they have a tendency to smoke every day on the way home from work, they

can make ensure that they don’t leave cigarettes in their car.

 In addition to providing information regarding smoking habits, the envisioned application will

be able to detect a smoking session in real time. Once a smoking session is detected the user will

be prompted if they are about to have a smoking session. If the smoker is trying to quit smoking

and have a friend, or machine, questioning if they really want to smoke, they are less likely to

smoke. It makes it less habitual and makes the smoker consciously declare that they do want to

smoke.

● Provide smokers who are trying to quit with self reflection tools to monitor when and

where they have been smoking to help them quit

● Detect when the user is making a smoking gesture based on sensor data from their smart

watch

● Test different machine learning classifiers to determine the most optimal

● Determine what gyroscope and accelerometer features are the most effective at detecting

different gestures

 7

2. Related Work

2.1 RISQ

 Parate et al [6] created a similar project where they recognized smoking gestures with

inertial sensors on a Invensense MPU-9150. They used a wristband that could measure 9-axis

inertial measurement to calculate the position relative to the elbow to predict if the user was

smoking. They represented the space that the hand was occupying using quaternions.

Quaternions are convenient mathematical entities for representing orientations and rotations of

objects in three dimensions [6]. Quaternions are very good for easy calculations for performing

various rotations of objects in 3D space.

Equation 1 - Quaternion Equation

Equation 2 - Rotation

Equation 3- Quaternion Rotation

To detect the smoking patterns they had a machine learning pipeline to process the data and

detect smoking gestures in real-time. They identified hand to mouth gestures while also

distinguishing confounding effects such as eating and drinking. They managed to have 95.7%

accuracy, 91% precision, and 81% recall. They conducted a user study that accurately depicted

the number of smoking sessions a user had during the day. They used duration, speed,

displacement in the Z axis, displacement in the XY plane, net displacement, roll velocity, roll,

and pitch as features.

 8

2.1.1 How RISQ Tackles the Problem

 RISQ uses the accelerometer and gyroscope of a smartwatch to map the position of the

user's wrist compared to the user's elbow. RISQ does this through the use of quaternions. To

detect smoking gestures they use a machine learning pipeline to process the data and provide real

time interjections to see if the user is smoking.

RISQ also acknowledges that detecting a smoking gesture could be easily done using an

instrumented lighter. Whenever the lighter was used, it could ping one’s phone to record a

smoking session.

2.1.2 Comparison of our work to RISQ

 While it was initially a goal to provide smoking gestures in real time we were not able

recognize gestures with an accuracy as high as RISQ. We did try to use the same quaternion

mapping but it proved quite challenging. We did use the same type of sensor (accelerometers and

gyroscope) on a smartwatch that was only worn on the dominant smoking hand. RISQ had

hundreds of hours to train their machine learning classifier while we had far less training. They

used displacement and time domain features to determine where the hand was and then

determine smoking gestures. This project did not derive these features.

2.2 Automated Detection of Puffing and Smoking with Wrist Accelerometers

 Quan Tang from Northeastern university also had a similar project using wrist

accelerometers for smoking detection for his Master thesis [7]. They suggest that real time

automatic detection of smoking behavior allows for “just-in-time” interventions that are very

effective at helping smokers quit. Using machine learning with multiple wrist accelerometers

allows them to pinpoint when the user is taking a puff and allows them to make that intervention.

They utilized 4 accelerometers placed across the body. They had one on the ankle, one on each

wrist, and one on the shoulder of the smoking hand. They implemented a two layer smoking

detection model that had both low level time domain features such as inhalation, exhalation and

respiration duration,, IE ratio, stretch and high level puff frequency detection such as pitch, roll

of lower, and upper arm sensors. They observed 6 individuals performing complex tasks while

smoking for 11.8 hours. It was a real-life setting and they managed to get a cross validation F1-

 9

score of .70 for puff detection and .79 for smoking detection overall. They had a mean F1-score

of .75 for puffing detection while using user-specific training data. Some of their biggest

challenges were distinguishing confounding effects such as drinking beverage, eating a meal,

talking, using computer and using phone.

2.2.1 How “Automated Detection of Puffing and Smoking with Wrist

Accelerometers” Tackles the Smoking Gesture Recognition Problem

 Northeastern used multiple sensors to detect various smoking gestures such as multiple

accelerometers placed across the body. They had one on the ankle, one on each wrist, and one on

the shoulder of the smoking hand. This allowed them to better distingue gestures that were

confounding but used two hands, for example eating a burger. It also allowed them to get

different positions that people would smoke in and allowed them to determine if they were

sitting down or standing up.

2.2.2 Comparison of our work to “Automated Detection of Puffing and

Smoking with Wrist Accelerometers”

 Our project had far less sensors than the above project. While they had multiple sensors

on each wrist, we only had a sensor for one wrist. If we had a sensor for each appendage then

users would be much less inclined to put on all of the sensors. Unfortunately this means that the

sensors may not be able to capture all relevant data, which could help identify a smoking gesture.

We also didn’t have sensors anywhere else on the body. Using all of the sensors would probably

be much more work to have them all interact together however it probably can produce better

results. That being said it is also much more cumbersome for a user to wear all of the sensors as

opposed to just wearing one Android watch.

 10

3. Methodology

 In order to begin to explore and develop the app necessary to combat the issue of

smoking, we will have 30 subjects perform smoking and non-smoking gestures while wearing an

android wristwatch. Data can be collected about these gestures using the accelerometer and

gyroscope onboard the watch and eventually used to train an algorithm to classify the gestures.

Below in figure 1 is an overview of our system’s architecture.

Figure 1 – System Diagram

3.1 Watch Selection

 When deciding which smartwatch to use there were a few factors that were taken into

account. The first factor for deciding which smartwatch to use was what sensors were available.

An elegant way to detect gestures would be to use a smart watch’s accelerometer and gyroscope.

Pebble Time, Pebble Steel, Lg G Watch R, Sony Smartwatch 3, and the Asus ZenWatch all had

the two sensors and were considered.

The cost effectiveness was weighted heavily in the consideration of the watch selection so if it

was adopted it could reach a much wider audience. The Asus ZenWatch, shown in figure 1, was

substantially cheaper than the competitors and was purchased refurbished for $80. Some

tradeoffs that were sacrificed for cost efficiency were battery power and processing power.

Another important factor in watch selection was the watch’s compatibility with Android

software.

 11

Figure 2 – Watch Comparison

3.2 Considerations

 Due to the limited number of members working on the project in addition to the limited

amount of time we had to work on the project, there were a handful of things that could not be

addressed in the scope of this project. Should there be people to continue this project moving

forward these are some challenges that they could choose to tackle to improve the accuracy of

smoking detection.

 12

3.2.1 Confounding Effects

 Confounding effects are various gestures and actions that have very similar motion to

smoking. For the scope of our project we chose to ignore most confounding effects however we

do acknowledge that they exist and that they are a big obstacle. The ability to identify

confounding effects would greatly improve the accuracy of smoking detection. When smoking

the user moves his hand to his mouth for a puff then moves the hand to a resting position before

moving it back to the mouth for another puff. This action is frequently repeated within the

smoking session but also similar to other actions which we explore such as drinking and

receiving a phone call. These confounding gestures are now discussed in some detail in the

following sections.

3.2.1.1 Drinking beverage

 If a person were to drink a beverage they would mimic a similar effect to smoking a

cigarette. They would probably uncap the bottle or place a straw in the drink before moving it to

their mouth. Once they took a sip, they would bring the cup or bottle back to a resting position

until they wanted to take another sip. They would continue this until they were finished with the

beverage. This could create false positives when detecting if the user is smoking or not.

 Some solutions that could be used to mitigate this could be detecting for some gesture of

uncapping a bottle or placing a straw in a cup. If one of these gestures was detected then the

algorithm for detecting a puff would know to not send a false positive. When a person is drinking

out of a bottle one typically need to tilt one’s head back a little bit more and one’s wrist needs to

travel a further distance to reach one’s mouth. While a person is smoking their head is in a

resting position and there is no need to tilt one’s head back. In both sipping through straws and

bottles both typically have the wrist at a further location from the mouth. In the case where one

might be holding a cup from the top while drinking through a straw, the orientation of the wrist

is very different and could be used to distinguish it from a smoking gesture.

 13

3.2.1.2 Eating a meal

 Eating also creates a very similar effect to that of smoking. Whether the user is eating

something with their hands or using some sort of utensil, confounding effects could be present.

When eating some food such a burger, since the accelerometer and gyroscope are only on one

wrist, it would be challenging to distinguish from smoking. Eating a food that required one hand

to eat such as chicken nuggets would also be very similar to smoking. While using utensils the

orientation of the wrist is a little different and there typically isn’t a resting position as one has to

bring the utensil to the food and then back to the mouth.

 Some solutions to distinguish eating from smoking could be checking the gyroscope

orientation to see if the user is using some silverware or utensils to eat. The orientation of the

wrist is typically different when using these tools. The algorithm and machine learning agent

could also take into account various resting positions. If the user is eating something like

spaghetti then they would need to be constantly moving their wrist to get the spaghetti on the

fork. Eating something like a stake would require a very interesting orientation of the wrist to

hold the steak down with the fork or cutting it with the knife. While eating food with hands such

as chicken nuggets the consumer of the food would need to bring the food to their mouth then to

a resting position followed by the position of the food before bringing it to their mouth again.

These three positions would look different then the two resting positions of smoking. There

could also be some use of a GPS feature to see if the user is in a smoke-free restaurant.

3.2.1.3 Talking

 When talking or telling a story, people tend to use hand gestures and body language to

enhance their communication. Some people may wave their hands when they are excited and if

they happened to move them from a resting position to near their mouth this could be confused

with a smoking gesture. If someone was to come from the gym and simulate a curling gesture,

this could also be confused with a confounding effect.

 Some ways to address this could be the time and frequency of the actions. Typically

while talking to somebody and using hand gestures there are many different positions and rarely

two primary positions. Smoking almost always has a resting position and the position when the

user is taking a puff. Talking has much more sporadic gestures and multiple positions.

 14

 Talking while smoking however is an even more confounding problem. It would change

what the typical smoking gesture looks like as the user may be using their hands to talk and thus

not bring them back to a resting position.

3.2.1.4 Using a Phone

 When making a phone call the wrist is often near the face as well. If somebody is

checking their phone constantly and making a series of phone calls this could confuse the

detection service and create a false positive. Typically the average length of a phone call is much

longer than the average length of a puff. This could be used to distinguish making a phone call

from a smoking gesture.

3.2.2 Multiple Resting Positions

 Currently the project has a single resting position and a position where the user is

smoking the cigarette. If the user was to have multiple resting positions this would currently

interrupt our data. It would be good in the future of this project if position could be used instead

of acceleration or velocity. In order to do this a more accurate accelerometer would be needed as

there was a lot of noise and fluctuation even at a resting position. While it is almost negligible in

terms of acceleration, after two derivations it becomes a significant number. Using position to

just locate the hand to the mouth and determine the length of a puff would be more accurate than

using acceleration and velocity.

3.2.3 Pauses

 For our test cases we are making the assumption that a gesture is either coming from a

resting point going to the mouth or another location, or coming from one of those locations to the

resting point. This is determined by using acceleration to determine when the gesture has stopped

and ended. A positive acceleration followed by a negative acceleration indicates the user started

moving and then stopped. If the user were to move their arm half way to the smoking position

 15

and then stop, only to move it all the way to the smoking position afterwards, it would trick the

system. A solution to prevent this would be to use position as opposed to acceleration and

velocity. This could be achieved with a more accurate accelerometer.

3.2.4 Opposite Hand

 Due to the fact that we only have one accelerometer and gyroscope we currently are

assuming that the user will smoke with the hand associated with the watch. If the user were to

switch hands and smoke with the other hand we currently have no way to detect that they are

smoking. To address this either data would be needed for what the off smoking hand looks like

or another sensor would be needed.

3.3 Participant Selection

 Participants were randomly selected in the WPI campus center with no incentives. We

would approach people who seemed not to be busy and ask if they would be interested in helping

us with our MQP. Table 3 shows the distribution of genders and ages that were selected for this

study. The participants were then shown and described the gestures.

 19 Years Old 20 Years Old 21 Years Old 22 Years Old
Male 2 4 12 9
Female 0 1 0 2

Table 3 - Participant Selection

3.4 Data Gathering Study

Steps:

1) Subject wears watch on right hand.

2) Subject performs 30 smoking gestures by:

a) Subject fixes right elbow on the table palm up.

b) Subject holds straw, cut to the length of a cigarette, in hand simulating holding a

cigarette.

 16

c) Subject brings straw to lips to simulate a puff then brings their arm back down to

the table.

3) Subject performs 30 drinking gestures by:

a) Subject holds a cup while keeping their arm on the table.

b) Subject raises cup so simulate the start of taking a drink.

c) Subject brings cup back to resting position.

4) Subject performs 30 phone calls by:

a) Subject holds a phone palm up on the table while keeping their arm on the table.

b) Subject brings the phone to their ear to simulate taking a phone call.

c) Subject brings the phone back to the resting position face up on the table.

5) Subject performs 30 arm cross gestures by:

a) Subject has arms on table in a natural resting position.

b) Subject crosses arms to simulate crossing arms in a natural position.

c) Subject moves arms back to resting position.

Below in figures 3-10 are images of the gestures we had participants perform for data collection.

 17

Figure 3 - Cigarette Simulation (Resting)

Figure 4 - Cigarette Simulation (Active)

Figure 5- Drinking Simulation (Resting)

 18

Figure 6 - Drinking Simulation (Active)

Figure 7 - Phone Simulation (Resting)

 19

Figure 8 - Phone Simulation (Active)

Figure 9 - Arms Cross Simulation (Resting)

 20

Figure 10 - Arms Cross Simulation (Active)

 21

4. Implementation

 Our implementation is three-fold, with a smartwatch collecting the data, an android

phone extracting features from it, and finally classification and machine learning on a computer.

We chose this design in order to keep the smartwatch app as lightweight as possible (reading

sensor data) while still allowing us the opportunity for real time gesture recognition.

Additionally, it allowed us to extract data from watches that may not have an easily accessible

file structure or USB port. Below are figure 11 and 12 showcasing the apps we built to collect

data.

 Figure 11 - Android app interface Figure 12 - Basic Watch Screen

 22

4.1 Data Collection

 Data collection was performed on the smartwatch, and sent to the smartphone using

Android’s DataAPI. We collected gyroscope data and gravity corrected accelerometer readings

in order to fuse the two into a more robust quaternion output. The data is sent in blocks of 64

readings, and data is collected as fast as the watch hardware will provide (around 100 hz). No

sugaring or filtering is performed on the data; as soon as the buffer fills it is offloaded to the

phone for feature extraction. Figure 13 shows the initialization of the Android sensor manager

and the accompanying accelerometer and gyroscope.

Figure 13 - Initialization of Sensors on Watch

 23

4.2 Feature Extraction

 Once the data is unpacked on the phone, our first step is to determine if a gesture has

begun within the given block. To do this, we use a high pass filter on the magnitude of force

applied. If the magnitude exceeded a certain threshold, we declare that block as the first chunk of

a gesture. Figure 14 shows the code that finds the start of a gesture by iterating over all

accelerometer readings and starting a gesture series when the readings exceed 1m/s.

Figure 14 – Android Code to Detect the Start of a Gesture

 We decided on the threshold based on observation of the accelerometer data. We found

that an average reading for a resting hand position was between 0 and 1 m/𝑠!, and the

accelerometer readings for a moving hand varied widely between 1 and 2m/𝑠!. Thus, we chose 1

for our gesture threshold. Below figures 15, 16, and 17 show sample accelerometer readings

from the wristwatch which justify our choice of this threshold. Figure 15 shows two instances of

the watch in a resting position, demonstrating the noise generated at rest.

 24

Figure 15 - Accelerometer Data of Hands at Rest

Figure 16 - Accelerometer Data of Start of Smoking Gesture

Figure 17 - Accelerometer Data of Start of Drinking Gesture

 The gesture lasts for about 2 seconds, the average length of a smoking puff, with each

chunk of data appended for later processing. At the conclusion of the gesture, various features

are extracted from the accelerometer and gyroscope data. We encode the gesture into ARFF

format and save it into a file for WEKA classification, as shown in figure 19. The features we

use are listed below in Table 3, with a sample of a complete gesture in figure 18.

 25

Features Equation Use

Max Speed (Accelerometer) Maximum accelerometer reading
for a given gesture

Used to detect quick changes
of acceleration such as the
start of a gesture

Median Speed (Accelerometer) The second quartile accelerometer
reading

Used in conjunction with
mean to detect gestures that
start strongly and end softly

Mean Speed (Accelerometer)

Used in conjunction with
median to detect gestures that
start strongly and end softly

Variance of Speed (Accelerometer)

Used to differentiate gestures
with a constant speed or a
variable speed

Net roll velocity (Gyroscope) 𝛴𝑣 Used to detect how much the
wrist has rotated in a given
gesture

Median roll velocity (Gyroscope) The second quartile gyroscope
reading

Used to detect gestures that
start with a quick rotation
and end with little to no
rotation

Max roll velocity (Gyroscope) Maximum gyroscope reading for a
given gesture

Used to detect gestures with
a sharp changes in rotation

Table 3 - Features extracted

 26

 Figure 18 - Accelerometer data of a complete smoking gesture

Figure 19 - Code to Create a WEKA-Compatible Data Instance

4.3 Classification

 With the features extracted from the raw data, we encode the results into an ARFF file

and then use WEKA to classify each gesture. Using a given machine-learning classifier we were

able to build a tree to predict the class recognized gestures. We compared various classifiers in

Weka for the task of classifying the gestures performed by our subject. The best we found,

random forest, constructs an ensemble of decision trees based on our features and the gesture

 27

data. This ensemble of trees assigns weights based on each feature’s effectiveness, and once

constructed performs a 10 fold cross validation to output its effectiveness. Figure 20 shows what

output WEKA gives from our data.

Figure 20 - WEKA Random Forest Classification

 28

5. Results

 Using data from all 30 of our participants, we achieved an overall accuracy of 63.7%

using a random forest classifier. This means that we are able to, given a gesture detected by our

app, classify it among drinking, crossing arms, smoking, or using a phone correctly 63.7% of the

time. Below, table 4 shows a confusion matrix illustrating the confounding gestures:

Drinking Crossing Arms Smoking Using Phone

618 45 60 39 Drinking

45 439 182 160 Crossing Arms

22 123 515 150 Smoking

44 160 152 509 Using Phone
Table 4 - Confusion Matrix

 As we can see from this, smoking is most confounded with using a phone due to the

similar arc of motion. Depending on the action, we have relatively good TP rates and relatively

low FP rates shown in table 5.

Class TP FP Precision Recall F-Measure ROC-Area

Drinking 0.811 0.044 0.848 0.811 0.829 0.955

Crossing 0.531 0.135 0.572 0.531 0.551 0.811

Smoking 0.636 0.161 0.567 0.636 0.600 0.839

Phone 0.588 0.146 0.593 0.588 0.591 0.828
Table 5 - Experimental Results

 Interestingly, with this data we can see that we have the lowest TP rate for phone use,

which could point out error in our feature selection for the gestures; perhaps rotation is the most

important feature and acceleration is weak in comparison. Crossing arms and using a phone

should be two of the least confused gestures because they operate on entirely different axes. This

shows that we need to capture additional features from our accelerometer data.

 29

 Other machine learning classifiers did not produce as impressive results. We also ran our

data through J48, JRip, SVM, and Naive Bayes classifiers to see how they fared. Table 6 below

contains the overall results of each.

 TP FP Precision Recall F-Measure ROC-Area

J48 0.579 0.143 0.580 0.579 0.579 0.745

JRip 0.558 0.154 0.599 0.558 0.557 0.769

SVM 0.599 0.134 0.591 0.599 0.585 0.765

Naive Bayes 0.558 0.146 0.565 0.558 0.539 0.778

Simple Cart 0.619 0.129 0.625 0.619 0.62 0.822
Table 6 – Comparison of Classifiers

 30

6. Discussion

6.1 Lessons Learned

 Gyroscope was most distinguishing sensor: While it may seem intuitive that crossing

arms should be very distinguishable from smoking, drinking, and taking a phone call, it was not

the case. This was a result of the fact that almost all of the gestures had a very similar

acceleration and the gyroscope provided the best readings to distinguish gestures. This was a

result of not always properly distinguishing various axes of acceleration. As a result crossing

arms often fooled the classifier.

 Random Forest was the best classifier type: We also learned that the random forest

provided the best results. This is due to the fact that many simple trees seem to perform better

than a single advanced tree. A tree that takes into account all of the features has to make a hard

choice and pick one way or another at a fork in a tree. Taking 100 simple trees that use only

some of the features and then weighing the trees on performance removes that hard fork in the

tree. Instead the results of the small trees and their corresponding weight are used to calculate the

gesture being performed.

6.2 Limitations of Wrist Watch Sensing

 Using a smartwatch for aiding smokers in the quest to quit does have its limits. Smokers

can easily fool the software by smoking in their non-dominant hand, removing the wristwatch, or

even just leaving the cigarette in their mouth and ignoring hand gestures altogether. No matter

how many sensors we would have in addition to the watch, users could always find a way around

it. We envision the type of people to use this tool would have to work ‘with’ it, so to speak.

Users would need to make a conscious effort to quit smoking and not work against the app. If

they choose to cheat the app, we are unable to intervene unlike a physical friend could in the real

world.

 Other limitations of watch technology are that of the battery life and sensor accuracy.

Collecting data from the accelerometer and gyroscope constantly is very battery intensive, and

with testing we found our app (even though it is as lightweight as possible) would deplete the

battery of the watch in around three to four hours. Even though they drained quite a bit of

 31

battery, the sensors were still not that accurate. The noise generated by the watch sensors even at

rest was up to 0.5m/𝑠!,far too much considering that most gestures took place between 1 and

2m/𝑠!.The technology would have to improve more if we want to accurately map acceleration to

position

6.3 Implications of Smoking Gesture Recognition

 Our app shows that many of the technologies for a final product are well on their way to

maturity. Though smartwatches are only in their infancy the technology onboard is enough to

extract meaningful features from the accelerometer and gyroscope and process that data in real

time. If the techniques we used for data processing were improved upon with additional

tinkering, we can see that a functional product could emerge that could provide smokers help in

the real world. A companion app utilizing this the gestures that we recognize could help smokers

make sense of their habits, and our research shows that smart wristwear technology is on the

verge of this dream becoming reality.

 32

7. Conclusion

 We successfully developed a system capable of recording users’ gestures, extracting

features, and applying a machine learning algorithm to classify the gestures. Using data from 30

subjects, we were able to train the algorithm and classify the gestures with an overall accuracy of

63%. There is still much work to do on the topic, and more features will need to be added in

order to better differentiate an increased number of gestures. We are proud of the results we were

able to get, however, and are confident that technologies like this can be built out to provide a

real difference in people’s struggle to quit smoking.

7.1 Future Work

 If there was more time or resources that could be used to further our app, we could look

at a few things to improve our effectiveness at detecting and stopping smoking: additional

features, quaternion displacement, and a fully-fledged companion app.

 Quaternion representation and pre-processing: The features extracted from our data do

not do a great job of differentiating smoking and using a phone, so more features which deal with

rotation could help lessen the confusion of the two. Quaternion displacement is a feature we were

unable to implement but is present in the RisQ paper, and would also greatly increase our

accuracy. Additionally, we process features from the raw data currently which causes noise to

introduce error. To get around this, a rolling average or other smoothing techniques could be

performed on the data in the data-pre-processing step. Perhaps with this, derived features could

also be explored to find new relationships in the data.

 Develop companion app: The companion app would also assist users in quitting, as it

could provide useful information to users such as a heat map of smoking locations. If a user can

know their habits then they are better prepared to prevent their habits. Providing a heat map

could allow users to know that they have a tendency to smoke in a car or smoke on their lunch

break. This data could be crucial in helping people quit.

 GPS Feature: Using a GPS feature on the phone could help the user know their smoking

patterns. Once a smoking gesture is registered the phone could check its location using a GPS

 33

feature that are common on most smart phones. The user may think that they smoke when they

are stressed out and try to not smoke when stressed. After some smoking sessions are recorded

the user may find that based on the GPS locations, they always smoking on their way to work.

With the knowledge of where they smoke they can take action to prevent smoking at that

location. Maybe they decide to not have a pack of cigarettes in their car. Knowledge and

cognizance of smoking locations is a great way to stop the addictive habits.

 Real time alerts: Having a real time alert system is very important to provide real time

interventions. If the phone can identify that the user is currently smoking based on the data that is

being sent from the watch, then they can provide a message to the user. If the user is actively

trying to quit smoking and they receive a message asking them if they really want to smoke, they

have to actively say they do want to smoke and admit defeat in their attempt to quit. It is a lot

tougher to say I want to smoke than just lighting up a cigarette. The real time alert could also be

used to determine if the user is in fact smoking or not. If there was a real time alert asking if the

user wanted to smoke and they were not smoking, they could let the application know that is just

produced a false positive which could help the machine learning agent to correct false positives

and better detect smoking patterns in the future. Below figure 2 shows a mock-up of what such

an app would look like.

 34

Figure 2 - Smoking Tracker

 35

References

[1] Facts About Smoking and Tobacco Use, “Tobacco Facts and Figures,” 2016. [Online].

Available: http://betobaccofree.hhs.gov/about-tobacco/facts-figures/. [Accessed 15

February 2016]

[2] Centers for Disease Control and Prevention, “Fast Facts,” 2014. [Online]. Available:

http://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/. [Accessed 15

February 2016]

[3] Smokefree.gov, “Find a Quit Method That Works For You,” 2016. [Online]. Available:

http://smokefree.gov/explore-quit-methods. [Accessed 17 February 2016]

[4] Centers for Disease Control and Prevention, “Health Effects of Secondhand Smoke.”

2014. [Online]. Available:

http://www.cdc.gov/tobacco/data_statistics/fact_sheets/secondhand_smoke/health_effects

/. [Accessed 22 February 2016]

[5] Smokefree.gov, “Quitting Is Hard,” 2016. [Online]. Available: http://smokefree.gov/why-

quitting-is-hard. [Accessed February 27 2016]

[6] Parate, Abhinav, Meng-Chieh Chiu, Chaniel Chadowitz, Deepak Ganesan, and Evangelos

Kalogerakis. "RisQ." Proceedings of the 12th Annual International Conference on Mobile

Systems, Applications, and Services, MobiSys '14, 2014.

[7] Tang, Qu. "Automated Detection of Puffing and Smoking With Wrist Accelerometers."

Northeastern University, 2016.

 36

Appendix

Project Structure

 37

SensorService.java

package com.androidweardocs.wearabledatamap;

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.Intent;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.Environment;
import android.os.IBinder;
import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;
import android.widget.Toast;

import com.google.android.gms.wearable.DataMap;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;

import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ArffSaver;
import weka.core.converters.ConverterUtils.DataSource;

public class SensorService extends Service implements SensorEventListener {

 private LocalBroadcastManager localBroadcastManager;

 private static int ACCELEROMETER_BLOCK_CAPACITY = 64;
 private static int ACCELEROMETER_BUFFER_CAPACITY = 2048;

 private static int mFeatLen = ACCELEROMETER_BLOCK_CAPACITY + 2;

 private static String CLASS_LABEL_KEY = "label";
 private static String CLASS_LABEL_SMOKING = "smoking";
 private static String CLASS_LABEL_PUFFING = "not_smoking";

 private static int SERVICE_TASK_TYPE_COLLECT = 0;
 private static int SERVICE_TASK_TYPE_CLASSIFY = 1;

 private File mFeatureFile;
 private SensorManager mSensorManager;
 private Sensor mAccelerometer;

 38

 private Sensor mGyroscope;
 private Sensor mRotationVector;

 private int mServiceTaskType;
 private String mLabel;
 private Instances mDataset;
 private Attribute mClassAttribute;
 private OnSensorChangedTask mAsyncTask;

 private static ArrayBlockingQueue<Float> mAccBufferX;
 private static ArrayBlockingQueue<Float> mAccBufferY;
 private static ArrayBlockingQueue<Float> mAccBufferZ;

 private static ArrayBlockingQueue<Float> mGyroBufferX;
 private static ArrayBlockingQueue<Float> mGyroBufferY;
 private static ArrayBlockingQueue<Float> mGyroBufferZ;

 private static ArrayBlockingQueue<Float> mRotationBufferX;
 private static ArrayBlockingQueue<Float> mRotationBufferY;
 private static ArrayBlockingQueue<Float> mRotationBufferZ;
 private static ArrayBlockingQueue<Float> mRotationBufferW;

 public static final DecimalFormat df = new DecimalFormat("#.##");

 @Override
 public void onCreate() {
 super.onCreate();

 Log.v("MQP", "Sensor Service Started");

 localBroadcastManager = LocalBroadcastManager.getInstance(this);

 mAccBufferX = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mAccBufferY = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mAccBufferZ = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);

 mGyroBufferX = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mGyroBufferY = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mGyroBufferZ = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);

 mRotationBufferX = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mRotationBufferY = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mRotationBufferZ = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);
 mRotationBufferW = new ArrayBlockingQueue<Float>(ACCELEROMETER_BUFFER_CAPACITY);

 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {

 mSensorManager = (SensorManager) getSystemService(SENSOR_SERVICE);

 List<Sensor> sensorList = mSensorManager.getSensorList(Sensor.TYPE_ALL);
 for (Sensor s : sensorList) {
 Log.v("MQP", "Sensor "+s.getName()+", "+s.getType());
 }

 39

 mAccelerometer = mSensorManager
 .getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION);

 mGyroscope = mSensorManager
 .getDefaultSensor(Sensor.TYPE_GYROSCOPE);

 mRotationVector = mSensorManager
 .getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(this, mGyroscope,
 SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(this, mRotationVector,
 SensorManager.SENSOR_DELAY_FASTEST);

 mServiceTaskType = SERVICE_TASK_TYPE_COLLECT;

 mAsyncTask = new OnSensorChangedTask();
 mAsyncTask.execute();

 return START_NOT_STICKY;
 }

 @Override
 public void onDestroy() {
 mAsyncTask.cancel(true);
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 mSensorManager.unregisterListener(this);
 super.onDestroy();

 }

 private class OnSensorChangedTask extends AsyncTask<Void, Void, Void> {
 @Override
 protected Void doInBackground(Void... arg0) {

 Instance inst = new DenseInstance(mFeatLen);
 inst.setDataset(mDataset);
 int blockSize = 0;
 float[] accBlockX = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] accBlockY = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] accBlockZ = new float[ACCELEROMETER_BLOCK_CAPACITY];

 float[] gyroBlockX = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] gyroBlockY = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] gyroBlockZ = new float[ACCELEROMETER_BLOCK_CAPACITY];

 float[] rotationVectorX = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] rotationVectorY = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] rotationVectorZ = new float[ACCELEROMETER_BLOCK_CAPACITY];
 float[] rotationVectorW = new float[ACCELEROMETER_BLOCK_CAPACITY];

 long time = System.currentTimeMillis();

 40

 while (true) {
 try {
 // need to check if the AsyncTask is cancelled or not in the while loop
 if (isCancelled () == true)
 {
 return null;
 }

 // Dumping buffer
 accBlockX[blockSize] = mAccBufferX.take().floatValue();
 accBlockY[blockSize] = mAccBufferY.take().floatValue();
 accBlockZ[blockSize] = mAccBufferZ.take().floatValue();

 gyroBlockX[blockSize] = mGyroBufferX.take().floatValue();
 gyroBlockY[blockSize] = mGyroBufferY.take().floatValue();
 gyroBlockZ[blockSize] = mGyroBufferZ.take().floatValue();

 rotationVectorX[blockSize] = mRotationBufferX.take().floatValue();
 rotationVectorY[blockSize] = mRotationBufferY.take().floatValue();
 rotationVectorZ[blockSize] = mRotationBufferZ.take().floatValue();
 rotationVectorW[blockSize++] = mRotationBufferW.take().floatValue();

 if (blockSize == ACCELEROMETER_BLOCK_CAPACITY) {
 blockSize = 0;

 Intent messageIntent = new Intent();
 messageIntent.setAction(Intent.ACTION_SENDTO);
 DataMap dataMap = new DataMap();
 dataMap.putFloatArray("x", accBlockX);
 dataMap.putFloatArray("y", accBlockY);
 dataMap.putFloatArray("z", accBlockZ);

 dataMap.putFloatArray("gx", gyroBlockX);
 dataMap.putFloatArray("gy", gyroBlockY);
 dataMap.putFloatArray("gz", gyroBlockZ);

 dataMap.putFloatArray("rx", rotationVectorX);
 dataMap.putFloatArray("ry", rotationVectorY);
 dataMap.putFloatArray("rz", rotationVectorZ);
 dataMap.putFloatArray("rw", rotationVectorW);

 dataMap.putLong("dt", System.currentTimeMillis() - time);

 dataMap.putString("type", "data");

 messageIntent.putExtra("datamap", dataMap.toBundle());
 localBroadcastManager.sendBroadcast(messageIntent);

 time = System.currentTimeMillis();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 @Override
 protected void onCancelled() {
 Log.v("MQP", "Cancelling SensorService");
 super.onCancelled();
 }

 }

 41

 public void onSensorChanged(SensorEvent event) {

 if (event.sensor.getType() == Sensor.TYPE_LINEAR_ACCELERATION) {

 try {
 mAccBufferX.add(new Float(event.values[0]));
 mAccBufferY.add(new Float(event.values[1]));
 mAccBufferZ.add(new Float(event.values[2]));
 } catch (IllegalStateException e) {

 }
 }
 else if (event.sensor.getType() == Sensor.TYPE_GYROSCOPE) {

 try {
 mGyroBufferX.add(new Float(event.values[0]));
 mGyroBufferY.add(new Float(event.values[1]));
 mGyroBufferZ.add(new Float(event.values[2]));
 } catch (IllegalStateException e) {

 }
 }
 else if (event.sensor.getType() == Sensor.TYPE_ROTATION_VECTOR) {

 try {
 mRotationBufferX.add(new Float(event.values[0]));
 mRotationBufferY.add(new Float(event.values[1]));
 mRotationBufferZ.add(new Float(event.values[2]));
 mRotationBufferW.add(new Float(event.values[3]));
 } catch (IllegalStateException e) {

 }
 }
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 }

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

}
WatchDataListener.java
package com.androidweardocs.wearabledatamap;

import android.content.Intent;
import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;

import com.google.android.gms.wearable.DataEvent;
import com.google.android.gms.wearable.DataEventBuffer;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.DataMapItem;
import com.google.android.gms.wearable.WearableListenerService;

/**
* Created by michaelHahn on 1/16/15.
* Listener service or data events on the data layer
*/
public class WatchListenerService extends
com.google.android.gms.wearable.WearableListenerService {

 42

 private static final String WEARABLE_DATA_PATH = "/wearable_data";

 @Override
 public void onCreate() {
 super.onCreate();
 Log.v("MQP", "WATCH SERVICE STARTED");
 }

 @Override
 public void onDataChanged(DataEventBuffer dataEvents) {

 DataMap dataMap;
 for (DataEvent event : dataEvents) {
 Log.v("MQP", "DataMap received on watch: " +
DataMapItem.fromDataItem(event.getDataItem()).getDataMap());
 // Check the data type
 if (event.getType() == DataEvent.TYPE_CHANGED) {
 // Check the data path
 String path = event.getDataItem().getUri().getPath();
 if (path.equals(WEARABLE_DATA_PATH)) {
 dataMap = DataMapItem.fromDataItem(event.getDataItem()).getDataMap();

 // Broadcast DataMap contents to wearable activity for display
 // The content has the golf hole number and distances to the front,
 // middle and back pin placements.

 Intent messageIntent = new Intent();
 messageIntent.setAction(Intent.ACTION_SENDTO);
 messageIntent.putExtra("datamap", dataMap.toBundle());
 LocalBroadcastManager.getInstance(this).sendBroadcast(messageIntent);
 }

 }
 }
 }
}

WatchDataMapActivity.java
package com.androidweardocs.wearabledatamap;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.support.v4.content.LocalBroadcastManager;
import android.support.wearable.activity.WearableActivity;
import android.support.wearable.view.WatchViewStub;
import android.util.Log;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.DataApi;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.PutDataMapRequest;
import com.google.android.gms.wearable.PutDataRequest;
import com.google.android.gms.wearable.Wearable;

import java.util.Date;

 43

public class WatchDataMapActivity extends WearableActivity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener {

 GoogleApiClient googleClient;

 private TextView mTextView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_data_map);
 final WatchViewStub stub = (WatchViewStub) findViewById(R.id.watch_view_stub);
 stub.setOnLayoutInflatedListener(new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });

 setAmbientEnabled();

 // Register the local broadcast receiver
 IntentFilter messageFilter = new IntentFilter(Intent.ACTION_SENDTO);
 MessageReceiver messageReceiver = new MessageReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(messageReceiver,
messageFilter);

 googleClient = new GoogleApiClient.Builder(this)
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();

 startService(new Intent(this, WatchListenerService.class));
 startService(new Intent(this, SensorService.class));
 }

 // Connect to the data layer when the Activity starts
 @Override
 protected void onStart() {
 super.onStart();
 googleClient.connect();
 }

 @Override
 public void onConnected(Bundle connectionHint) {

 }

 // Disconnect from the data layer when the Activity stops
 @Override
 protected void onStop() {
 if (null != googleClient && googleClient.isConnected()) {
 googleClient.disconnect();
 }
 super.onStop();
 }

 // Placeholders for required connection callbacks
 @Override
 public void onConnectionSuspended(int cause) { }

 44

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) {
 Log.v("MQP", connectionResult.getErrorMessage());
 }

 public void sendDataToPhone(Bundle data) {
 String MOBILE_DATA_PATH = "/mobile_data";

 new SendToDataLayerThread(MOBILE_DATA_PATH, data).start();
 }

 public class MessageReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 Bundle data = intent.getBundleExtra("datamap");

 if (data.getString("type").equals("status")) {
 final TextView tv = (TextView) findViewById(R.id.statustext);
 tv.setText(data.getString("content"));
 } else if (data.getString("type").equals("data")) {
 sendDataToPhone(data);
 }

 }
 }

 class SendToDataLayerThread extends Thread {
 String path;
 Bundle data;

 // Constructor for sending data objects to the data layer
 SendToDataLayerThread(String p, Bundle data) {
 path = p;
 this.data = data;
 }

 public void run() {

 DataMap dataMap = new DataMap();
 dataMap.putFloatArray("x", data.getFloatArray("x"));
 dataMap.putFloatArray("y", data.getFloatArray("y"));
 dataMap.putFloatArray("z", data.getFloatArray("z"));

 dataMap.putFloatArray("gx", data.getFloatArray("gx"));
 dataMap.putFloatArray("gy", data.getFloatArray("gy"));
 dataMap.putFloatArray("gz", data.getFloatArray("gz"));

 dataMap.putFloatArray("rx", data.getFloatArray("rx"));
 dataMap.putFloatArray("ry", data.getFloatArray("ry"));
 dataMap.putFloatArray("rz", data.getFloatArray("rz"));
 dataMap.putFloatArray("rw", data.getFloatArray("rw"));

 dataMap.putLong("dt", data.getLong("dt"));

 dataMap.putString("type", "data");
 dataMap.putLong("timestamp", System.currentTimeMillis());

 // Construct a DataRequest and send over the data layer

 45

 PutDataMapRequest putDMR = PutDataMapRequest.create(path);
 putDMR.getDataMap().putAll(dataMap);
 PutDataRequest request = putDMR.asPutDataRequest();
 DataApi.DataItemResult result = Wearable.DataApi.putDataItem(googleClient,
request).await();
 if (result.getStatus().isSuccess()) {
 Log.v("MQP", "DataMap: " + dataMap + " sent successfully to data layer ");
 } else {
 // Log an error
 }
 }
 }

}

MobileListenerService.java

package com.androidweardocs.wearabledatamap;

import android.Manifest;
import android.app.Activity;
import android.content.Intent;
import android.content.pm.PackageManager;
import android.hardware.SensorManager;
import android.net.Uri;
import android.os.Environment;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v4.content.LocalBroadcastManager;
import android.util.Log;

import com.google.android.gms.wearable.DataEvent;
import com.google.android.gms.wearable.DataEventBuffer;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.DataMapItem;
import com.google.android.gms.wearable.WearableListenerService;

import org.w3c.dom.Attr;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.channels.FileChannel;
import java.util.ArrayList;
import java.util.Arrays;

import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ArffSaver;
import weka.core.converters.ConverterUtils.DataSource;

/**
* Created by michaelHahn on 1/16/15.
* Listener service or data events on the data layer
*/
public class MobileListenerService extends WearableListenerService{

 private static final String MOBILE_DATA_PATH = "/mobile_data";

 Activity thisActivity;

 46

 File outputFile;
 ArrayList<Attribute> attributes;
 ArrayList<String> labelItems;

 Attribute mClassAttribute;
 Instances mDataset;

 Quaternion quaternion;
 Vector3 position;

 String mClass;

 DataMap[] gestureSeries; // 6 long for about 2s of data
 int gestureNum = 0;

 @Override
 public int onStartCommand(Intent i, int flags, int startId) {
 int result = super.onStartCommand(i, flags, startId);

 if (i.getExtras()!= null) {

 Log.v("MQP", "PHONE SERVICE STARTED");

 attributes = new ArrayList<>();
 attributes.add(new Attribute("avg_speed"));
 attributes.add(new Attribute("median_speed"));
 attributes.add(new Attribute("max_speed"));
 attributes.add(new Attribute("variance_speed"));
 attributes.add(new Attribute("net_roll_velocity"));
 attributes.add(new Attribute("median_roll_velocity"));
 attributes.add(new Attribute("max_roll_velocity"));

 labelItems = new ArrayList<>();
 labelItems.add("drinking");
 labelItems.add("crossing_arms");
 labelItems.add("sitting_smoking");
 labelItems.add("on_phone");

 mClassAttribute = new Attribute("label", labelItems);
 attributes.add(mClassAttribute);

 mDataset = new Instances("mqp_features", attributes, 1000);
 mDataset.setClassIndex(mDataset.numAttributes() - 1);

 //attributes.add(new Attribute("vertical_displacement"));

 quaternion = new Quaternion(new Vector3(0.f, 0.f, 0.f), 0.f);
 position = new Vector3(0.f, 0.f, 0.f);

 mClass = i.getExtras().getString("class");

 gestureSeries = new DataMap[6];

 outputFile = new File(getApplicationContext().getFilesDir(), "mqpdata.arff");
 if (outputFile.exists()) {
 try {
 DataSource dataSource = new DataSource(new FileInputStream(outputFile));
 Instances oldData = dataSource.getDataSet();
 mDataset.setClassIndex(mDataset.numAttributes() - 1);

 int a = 0;

 47

 for (Instance inst : oldData) {
 Log.v("MQP", "Loaded inst " + a + ": " + inst.toString());
 a++;

 mDataset.add(inst);
 }

 outputFile.delete();

 Log.v("MQP", "File loaded");
 } catch (Exception e) {
 Log.v("MQP", "Exception", e);
 }

 } else {
 Log.v("MQP", "File not Found, making new");

 try {
 outputFile.createNewFile();
 } catch (Exception e) {

 }
 }
 }

 return result;
 }

 @Override
 public void onDataChanged(DataEventBuffer dataEvents) {

 DataMap dataMap;
 for (DataEvent event : dataEvents) {
 //Log.v("MQP", "DataMap received on phone: " +
DataMapItem.fromDataItem(event.getDataItem()).getDataMap());
 // Check the data type
 if (event.getType() == DataEvent.TYPE_CHANGED) {
 // Check the data path
 String path = event.getDataItem().getUri().getPath();
 if (path.equals(MOBILE_DATA_PATH)) {
 dataMap = DataMapItem.fromDataItem(event.getDataItem()).getDataMap();

 // Broadcast DataMap contents to wearable activity for display
 // The content has the golf hole number and distances to the front,
 // middle and back pin placements.

 Intent messageIntent = new Intent();
 messageIntent.setAction(Intent.ACTION_SEND);
 messageIntent.putExtra("datamap", dataMap.toBundle());
 LocalBroadcastManager.getInstance(this).sendBroadcast(messageIntent);

 logData(dataMap);

 }

 }
 }
 }

 public void logData(DataMap dataMap) {

 if (gestureNum < 0) {

 48

 // skip this set, as the last one was just gesture end. Unlikely they take puffs
in such quick succession.
 gestureNum++;
 Log.v("MQP", "Skipping set");
 }
 else if (gestureNum == 0) {
 // check whether this segment starts a gesture

 float[] x = dataMap.getFloatArray("x");
 float[] y = dataMap.getFloatArray("y");
 float[] z = dataMap.getFloatArray("z");

 String sp = "";

 for (int i = 0; i< x.length; i++) {

 float speed = (float)
Math.sqrt(Math.pow(x[i],2)+Math.pow(y[i],2)+Math.pow(z[i],2));
 sp = sp+""+speed+",";

 if (speed > 1.f) {
 gestureSeries[0] = dataMap;
 gestureNum = 1;

 Log.v("MQP", "Gesture begin with speed" + speed);

 }

 }
 Log.v("MQP", sp);

 }
 else if (gestureNum >= 1 && gestureNum < 6) {
 // add the intermediate datamap to the list

 gestureSeries[gestureNum] = dataMap;
 gestureNum++;
 }
 else {
 // the gesture is complete. Calculate features.

 float[] max_speeds = new float[6];
 float[] median_speeds = new float[6];
 float[] mean_speeds = new float[6];
 float[] variance_speeds = new float[6];
 float[] max_roll_velocitys = new float[6];
 float[] median_roll_velocitys = new float[6];
 float[] net_roll_velocitys = new float[6];

 Log.v("MQP", "Whole gesture: ");
 String gesture = "";

 for (int i=0; i<6; i++) {
 DataMap data = gestureSeries[i];

 float[] x = data.getFloatArray("x");
 float[] y = data.getFloatArray("y");
 float[] z = data.getFloatArray("z");

 float[] speeds = new float[x.length];
 float totalSpeed = 0;

 for (int v = 0; v < x.length; v++) {

 49

 speeds[v] = (float) Math.sqrt(Math.pow(x[v],2) + Math.pow(y[v],2) +
Math.pow(z[v],2));
 totalSpeed+=speeds[v];
 gesture+=speeds[v]+", ";
 }

 Arrays.sort(speeds);

 max_speeds[i] = speeds[speeds.length-1];
 median_speeds[i] = speeds[speeds.length/2];
 mean_speeds[i] = totalSpeed / speeds.length;
 variance_speeds[i] = 0;

 for (float a : speeds) {
 variance_speeds[i] += (mean_speeds[i]-a) * (mean_speeds[i]-a);
 }
 variance_speeds[i] = variance_speeds[i] / speeds.length;

 float[] rx = data.getFloatArray("rx");
 float[] ry = data.getFloatArray("ry");
 float[] rz = data.getFloatArray("rz");
 float[] rw = data.getFloatArray("rw");

 float[] gx = data.getFloatArray("gx");
 float[] gy = data.getFloatArray("gy");
 float[] gz = data.getFloatArray("gz");

 float[] roll_velocities = new float[gx.length];
 float net_roll_velocity = 0;

 for (int v = 0; v < gx.length; v++) {
 float a = gx[v];
 float b = gy[v];
 float c = gz[v];

 roll_velocities[v] = (float) Math.sqrt(Math.pow(a,2) + Math.pow(b,2) +
Math.pow(c,2));
 net_roll_velocity+= roll_velocities[v];
 }

 Arrays.sort(roll_velocities);

 max_roll_velocitys[i] = roll_velocities[roll_velocities.length - 1];
 median_roll_velocitys[i] = roll_velocities[roll_velocities.length/2];
 net_roll_velocitys[i] = net_roll_velocity;

 quaternion = new Quaternion(new Vector3(rx[rx.length-1], ry[ry.length-1],
rz[rz.length-1]), rw[rw.length-1], true);

 }

 // calculate net stats

 float mean_speed = 0;
 float median_speed = 0;
 float max_speed = 0;
 float variance_speed = 0;

 50

 float net_roll_velocity = 0;
 float median_roll_velocity = 0;
 float max_roll_velocity = 0;

 for (int i = 0; i < 6; i++) {
 mean_speed+=mean_speeds[i];
 median_speed+=median_speeds[i];

 if (max_speed < max_speeds[i])
 max_speed = max_speeds[i];

 net_roll_velocity+=net_roll_velocitys[i];
 median_roll_velocity+=median_roll_velocitys[i];

 if (max_roll_velocity < max_roll_velocitys[i])
 max_roll_velocity = max_roll_velocitys[i];
 }

 mean_speed = mean_speed / 6;
 median_speed = median_speed / 6;
 median_roll_velocity = median_roll_velocity / 6;

 for (int i = 0; i< 6; i++) {
 variance_speed += (variance_speeds[i] + Math.pow(mean_speeds[i] - mean_speed,
2));
 }
 variance_speed = variance_speed / 6;

 Instance inst = new DenseInstance(attributes.size());
 inst.setDataset(mDataset);

 inst.setValue(mDataset.attribute("avg_speed"), mean_speed);
 inst.setValue(mDataset.attribute("median_speed"), median_speed);
 inst.setValue(mDataset.attribute("max_speed"), max_speed);
 inst.setValue(mDataset.attribute("variance_speed"), variance_speed);

 inst.setValue(mDataset.attribute("net_roll_velocity"), net_roll_velocity);
 inst.setValue(mDataset.attribute("median_roll_velocity"), median_roll_velocity);
 inst.setValue(mDataset.attribute("max_roll_velocity"), max_roll_velocity);
 inst.setValue(mClassAttribute, mClass);

 mDataset.add(inst);

 gestureNum = -2; // end gesture.

 Log.v("MQP", gesture);
 Log.v("MQP", "Gesture end");

 }

 }

 @Override
 public void onDestroy() {

 if (mDataset != null) {
 ArffSaver saver = new ArffSaver();
 saver.setInstances(mDataset);

 51

 Log.v("MQP", "FILE " + outputFile.getAbsolutePath());
 try {
 saver.setFile(outputFile);
 saver.writeBatch();

 File newFile = new
File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_DOWNLOADS),
"mqpdata" + System.currentTimeMillis()+".arff");
 copyFile(outputFile, newFile);

 Intent intent =
 new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
 intent.setData(Uri.fromFile(newFile));
 sendBroadcast(intent);
 } catch (IOException e) {
 Log.e("MQP", "error saving");
 e.printStackTrace();
 }

 } else {
 Log.v("MQP", "Dataset NULL");
 }
 }

 public static void copyFile(File src, File dst) throws IOException
 {
 FileChannel inChannel = new FileInputStream(src).getChannel();
 FileChannel outChannel = new FileOutputStream(dst).getChannel();
 try
 {
 inChannel.transferTo(0, inChannel.size(), outChannel);
 }
 finally
 {
 if (inChannel != null)
 inChannel.close();
 if (outChannel != null)
 outChannel.close();
 }
 }

}

MobileDataMapActivity.java

package com.androidweardocs.wearabledatamap;

import android.Manifest;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.pm.PackageManager;
import android.os.Bundle;
import android.support.v4.app.ActivityCompat;
import android.support.v4.content.ContextCompat;
import android.support.v4.content.LocalBroadcastManager;
import android.support.v7.app.AppCompatActivity;
import android.text.format.Time;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;

 52

import android.view.View;
import android.widget.Button;
import android.widget.RadioButton;
import android.widget.TextView;

import com.google.android.gms.common.ConnectionResult;
import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.DataApi;
import com.google.android.gms.wearable.DataMap;
import com.google.android.gms.wearable.Node;
import com.google.android.gms.wearable.NodeApi;
import com.google.android.gms.wearable.PutDataMapRequest;
import com.google.android.gms.wearable.PutDataRequest;
import com.google.android.gms.wearable.Wearable;

import org.w3c.dom.Text;

import java.io.File;
import java.text.DecimalFormat;
import java.util.Calendar;
import java.util.Date;

public class MobileDataMapActivity extends AppCompatActivity implements
 GoogleApiClient.ConnectionCallbacks,
 GoogleApiClient.OnConnectionFailedListener{

 GoogleApiClient googleClient;

 int hasPermission = 0;

 boolean serviceStarted = false;

 String mClass = "standing_smoking";

 Intent serviceIntent;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_data_map);

 // Register the local broadcast receiver
 IntentFilter messageFilter = new IntentFilter(Intent.ACTION_SEND);
 MessageReceiver messageReceiver = new MessageReceiver();
 LocalBroadcastManager.getInstance(this).registerReceiver(messageReceiver,
messageFilter);

 // Build a new GoogleApiClient for the the Wearable API
 googleClient = new GoogleApiClient.Builder(this)
 .addApi(Wearable.API)
 .addConnectionCallbacks(this)
 .addOnConnectionFailedListener(this)
 .build();

 int permissionCheck = ContextCompat.checkSelfPermission(this,
Manifest.permission.WRITE_EXTERNAL_STORAGE);

 if (permissionCheck != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,

 53

 new String[]{Manifest.permission.WRITE_EXTERNAL_STORAGE,
Manifest.permission.READ_EXTERNAL_STORAGE},
 hasPermission);
 }

 serviceIntent = new Intent(this, MobileListenerService.class);
 startService(serviceIntent);

 final Button button = (Button) findViewById(R.id.sendButton);
 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (serviceStarted) {
 stopService(serviceIntent);
 button.setText("Start Service");
 serviceStarted = false;
 } else {
 serviceIntent.putExtra("class", mClass);
 startService(serviceIntent);
 button.setText("Stop Service");
 serviceStarted = true;
 }
 }
 });

 final RadioButton r1 = (RadioButton) findViewById(R.id.radioButton);
 r1.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mClass = "drinking";
 Log.v("MQP", "Set class to "+mClass);
 }
 });

 final RadioButton r2 = (RadioButton) findViewById(R.id.radioButton2);
 r2.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mClass = "sitting_smoking";
 Log.v("MQP", "Set class to "+mClass);
 }
 });

 final RadioButton r3 = (RadioButton) findViewById(R.id.radioButton3);
 r3.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mClass = "crossing_arms";
 Log.v("MQP", "Set class to "+mClass);
 }
 });

 final RadioButton r4 = (RadioButton) findViewById(R.id.radioButton4);
 r4.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mClass = "on_phone";
 Log.v("MQP", "Set class to "+mClass);
 }
 });

 final Button deleteFile = (Button) findViewById(R.id.deleteFile);
 deleteFile.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 54

 new File(getApplicationContext().getFilesDir(), "mqpdata.arff").delete();
 }
 });

 }

 // Connect to the data layer when the Activity starts
 @Override
 protected void onStart() {
 super.onStart();
 googleClient.connect();
 }

 @Override
 public void onConnected(Bundle connectionHint) {

 }

 // Disconnect from the data layer when the Activity stops
 @Override
 protected void onStop() {
 if (null != googleClient && googleClient.isConnected()) {
 googleClient.disconnect();
 }
 super.onStop();
 }

 // Placeholders for required connection callbacks
 @Override
 public void onConnectionSuspended(int cause) { }

 @Override
 public void onConnectionFailed(ConnectionResult connectionResult) { }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.menu_data_map, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }

 return super.onOptionsItemSelected(item);
 }

 public void sendToWearable(String content) {
 String WEARABLE_DATA_PATH = "/wearable_data";

 DataMap dataMap = new DataMap();
 dataMap.putString("content", content);
 dataMap.putString("type", "status");

 55

 dataMap.putLong("timestamp", System.currentTimeMillis());
 new SendToDataLayerThread(WEARABLE_DATA_PATH, dataMap).start();
 }

 class SendToDataLayerThread extends Thread {
 String path;
 DataMap dataMap;

 // Constructor for sending data objects to the data layer
 SendToDataLayerThread(String p, DataMap data) {
 path = p;
 dataMap = data;
 }

 public void run() {
 // Construct a DataRequest and send over the data layer
 PutDataMapRequest putDMR = PutDataMapRequest.create(path);
 putDMR.getDataMap().putAll(dataMap);
 PutDataRequest request = putDMR.asPutDataRequest();
 DataApi.DataItemResult result = Wearable.DataApi.putDataItem(googleClient,
request).await();
 if (result.getStatus().isSuccess()) {
 Log.v("MQP", "DataMap: " + dataMap + " sent successfully to data layer ");
 } else {
 // Log an error
 Log.v("MQP", "ERROR: failed to send DataMap to data layer");
 }
 }
 }

 public class MessageReceiver extends BroadcastReceiver {

 public final DecimalFormat df = new DecimalFormat("#.##");

 @Override
 public void onReceive(Context context, Intent intent) {
 Bundle data = intent.getBundleExtra("datamap");
 if (data.getString("type").equals("status")) {
 //
 } else if (data.getString("type").equals("data")) {
 String output = "X: ";
 output+=df.format(data.getFloatArray("x")[0])+",";

 output+="\nY:";
 output+=df.format(data.getFloatArray("y")[0])+",";

 output+="\nZ:";
 output+=df.format(data.getFloatArray("z")[0])+",";

 output+="\nGX:";
 output+=df.format(data.getFloatArray("gx")[0])+",";

 output+="\nGY:";
 output+=df.format(data.getFloatArray("gy")[0])+",";

 output+="\nGZ:";
 output+=df.format(data.getFloatArray("gz")[0])+",";

 TextView tv = (TextView) findViewById(R.id.output);
 tv.setText(output);
 }
 }
 }
}

 56

Sample accelerometer data

Smoking Drinking Rest Rest

Entire
Smoking

0.850686 1.204557 0.137204 0.296186

0.052169

0.59856 1.120746 0.135231 0.138498

0.117795

0.76611 1.401392 0.154828 0.146715

0.138873

0.415961 1.290384 0.146218 0.193265

0.132213

0.340746 1.182716 0.178941 0.170757

0.080285

0.405751 0.168174 0.118137 0.225339

0.107539

0.510539 0.122964 0.178357 0.251267

0.194218

0.701473 0.147014 0.163858 0.216584

0.135478

0.720719 0.179834 0.142384 0.242308

0.11498

0.845056 0.158422 0.122513 0.271133

0.079001

0.5731 0.052473 0.169992 0.212189

0.068378

0.659201 0.113449 0.166637 0.193013

0.107093

0.733901 0.122326 0.224843 0.244191

0.10621

0.828133 0.170243 0.189137 0.376537

0.090681

0.846127 0.199341 0.152472 0.347676

0.062366

0.931198 0.138025 0.126026 0.323658

0.069139

0.944889 0.153667 0.130011 0.271347

0.070788

0.438324 0.113408 0.181109 0.278859

0.087164

0.398837 0.099647 0.10733 0.14234

0.058746

0.413983 0.181927 0.190676 0.145275

0.137052

0.398037 0.192413 0.146507 0.202169

0.121926

0.497355 0.211662 0.205162 0.242393

0.157047

0.604705 0.19864 0.155745 0.187879

0.118063

 57

0.355727 0.17793 0.141314 0.207417

0.147428

0.399882 0.129464 0.177829 0.194611

0.125204

0.558224 0.290245 0.283001 0.195276

0.134515

0.647876 0.334333 0.265207 0.219199

0.039222

0.890154 0.387572 0.248879 0.216124

0.079672

1.029796 0.335836 0.260906 0.257214

0.158612

1.12458 0.308039 0.244462 0.230992

0.177753

0.783566 0.236538 0.216776 0.152013

0.179725

0.806552 0.176319 0.201712 0.128054

0.137662

0.820743 0.275754 0.18344 0.125585

0.159363

0.819467 0.30076 0.167618 0.174101

0.108874

0.723091 0.278254 0.161034 0.205396

0.08038

0.677816 0.18468 0.214788 0.182998

0.08803

0.837807 0.152763 0.237862 0.170182

0.11727

0.509015 0.112846 0.334826 0.254183

0.167733

0.613812 0.069762 0.437936 0.226597

0.233544

0.705835 0.127763 0.41512 0.247635

0.244908

0.682565 0.223825 0.21366 0.193698

0.384078

0.709641 0.232096 0.214266 0.152324

0.547234

0.898711 0.155785 0.243893 0.141542

0.728073

1.107588 0.36827 0.218608 0.114617

1.159341

0.750189 0.47468 0.232228 0.165419

1.459003

0.693011 0.533159 0.271638 0.183225

1.631245

0.675405 0.638333 0.253448 0.145353

1.634065

0.7629 0.639178 0.244933 0.109674

1.399104

0.768607 0.569691 0.208191 0.232823

1.498337

 58

0.760935 0.179969 0.201176 0.195923

1.745919

0.807377 0.229886 0.218951 0.212012

1.894114

0.651482 0.337837 0.211276 0.322615

1.857711

0.783605 0.554931 0.159177 0.242509

1.981108

0.642436 0.764687 0.221042 0.237626

2.367457

0.648426 0.93664 0.179399 0.227847

2.350871

0.792998 0.838522 0.137853 0.219033

2.310313

0.992648 2.555586 0.103891 0.1596

2.440385

1.007881 2.243414 0.141847 0.150429

2.654907

0.586507 1.304025 0.157687 0.21777

2.689051

0.738383 1.316755 0.175343 0.180111

2.602295

0.807038 0.541038 0.211477 0.164541

2.513883

0.841806 1.066217 0.227708 0.171367

2.512585

0.791984 0.936439 0.175514 0.204756

2.524624

1.149514 0.145782 0.277614

0.667777

0.470628

0.600609

0.786874

0.806851

1.907791

1.679003

1.789835

1.703563

1.257534

0.914619

1.013913

 59

1.109702

1.194641

1.049836

0.9862

1.107229

1.295299

1.168453

0.805549

0.13973

0.651257

0.627156

0.498102

0.467098

0.459802

0.377147

0.507851

1.136917

1.107286

1.058548

0.987719

0.818717

0.727094

0.766631

1.013398

1.208476

1.305489

 60

1.517075

1.559677

1.490923

1.397171

1.046987

0.981175

1.235729

1.199204

1.130717

1.233099

1.486952

1.507699

1.189987

1.088734

1.173044

1.323827

1.379839

1.389164

1.2191

1.396598

1.524301

1.610931

1.81051

1.860191

1.16808

0.88966

 61

0.450546

0.444169

0.611184

0.786874

0.806851

0.498721

0.567809

0.617252

0.778946

0.911093

1.183365

1.171531

0.911162

0.967663

1.01872

1.091341

1.226483

1.188079

1.101537

0.885875

0.88545

0.831691

0.599021

0.630312

0.768387

0.770779

 62

0.472586

0.476035

0.378356

0.578474

0.650258

0.689854

0.839932

0.799305

1.181574

1.336907

1.471311

1.515655

1.557511

1.535033

0.945496

0.847897

0.977171

1.111594

1.101158

1.038936

0.954082

1.195223

1.252208

1.116766

1.03961

1.120182

 63

1.231605

0.890218

0.64391

0.616863

0.732342

0.747691

0.693106

0.656512

0.471193

0.448786

0.55708

0.608821

0.308563

0.444169

0.611184

0.451065

0.554159

0.583732

1.031887

1.048903

0.80085

0.495109

0.335597

0.380345

0.602768

0.566017

 64

0.530775

0.626063

0.653232

0.6781

0.572918

0.622185

0.806991

0.880185

0.840667

0.565885

0.497656

0.562062

0.614042

0.519245

0.29556

0.270739

0.230748

0.229543

0.223101

0.327653

0.463928

0.45993

0.460866

0.46458

0.348299

0.356562

 65

0.465201

0.653234

0.561361

0.474211

0.572785

0.57393

0.460869

0.236904

0.216688

0.232679

0.190853

0.206891

0.261408

0.424661

0.44358

0.517216

0.531656

0.45329

0.397237

0.497671

0.507667

0.503843

0.36602

0.285441

1.097356

1.118102

 66

0.996398

0.792192

0.463389

0.197608

0.238531

0.328768

0.312309

0.280778

0.2573

0.211152

0.170983

0.087188

0.120427

0.153587

0.205997

0.07996

0.132922

0.282732

0.289611

0.23675

0.239862

0.270033

0.314392

0.393603

0.508696

0.614538

 67

0.705435

0.743425

0.74591

0.602062

0.544774

0.478

0.504225

0.500616

0.52544

0.635669

0.856042

0.874867

0.82019

0.739322

0.737557

0.7739

0.932016

1.083005

1.111819

1.095461

1.037599

1.187657

1.138688

1.157027

1.133799

1.015708

 68

1.049561

0.99293

1.294254

1.376046

1.513708

1.578494

1.609956

1.582513

1.380506

1.192307

0.800922

0.930678

0.926437

0.792192

0.463389

0.47169

0.449369

0.528102

0.553956

0.657962

0.886819

0.85536

0.900189

0.800501

0.796401

0.936174

 69

1.070141

1.181374

1.107995

0.580098

0.395822

0.372823

0.721513

0.858482

0.95738

1.11743

1.027032

0.8955

1.073254

1.097392

1.317669

1.777717

2.084692

1.550948

1.24501

1.150037

1.072429

1.131762

1.186797

1.0498

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	Smoking Gesture Detection in Natural Settings
	Anthony A. Romeo
	Steven Patrick Ireland
	Repository Citation

	Microsoft Word - Smoking MQP Paper Final Draft-EOA.docx

