
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2017

Encoding and Physical Study of the CANbus
Sensor Network
Anna Celeste Hernandez
Worcester Polytechnic Institute

Klaudia Linek
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Hernandez, A. C., & Linek, K. (2017). Encoding and Physical Study of the CANbus Sensor Network. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/4165

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F4165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F4165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F4165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F4165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/4165?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F4165&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

MQP-AW1-CAN2

ENCODING AND PHYSICAL STUDY OF

THE CANBUS SENSOR NETWORK

Major Qualifying Project Submitted

 to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Klaudia Linek

Annie Hernandez

April 2017

Advisor: Professor Alexander Wyglinski

This report represents work of WPI undergraduate students submitted to the faculty as evidence of

a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer

review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

1

Abstract

Within vehicles, the need for a better performing, more secure network is increasing due to the

complexity of the sensors and the growing number of people who can compromise the system. The

objective was to improve the performance and throughput of data while also working to improve security

within the CANbus network. The approach entailed encoding the CAN frames using M-ASK, and

characterizing nodes based on their emitted signal. Results included the successful creation of base2CAN

and base4CAN nodes, implementing 4-ary ASK within the network, thusly achieving a doubled

throughput. Another achievement was the sounding of the CAN test-bed, however, this left inconclusive

results. Although the results are inconclusive, there is reason to believe that characterizing the nodes can

be implemented for increasing vehicle security. Ultimately, future research can be done to improve

integration of M-ASK onto the harness using a current amplifier and signal analysis, build a to-spec CAN

node from scratch, or design another method to characterize CAN nodes.

2

Acknowledgments

Our group would like to thank the following mentors and peers for their help and support throughout the

entirety of our project:

○ Our project advisor, Professor Alexander Wyglinski, for his timely feedback and assistance

throughout the project.

○ MITRE for granting us the use of the CANbus Harness and the access to the newly renovated

MITRE collab lab.

○ Hristos Giannopoulos for his help in setting up the CANbus Harness and for all the tips and advice

in handling the harness.

○ William Appleyard for helping to gather the necessary equipment and parts for our project.

○ Professor R. James Duckworth for help with the ADC and DAC peripherals.

3

Table of Contents

Abstract ... 1

Acknowledgments ... 2

Table of Contents .. 3

Executive Summary... 7

1. Introduction.. 8

1.1 Today’s Technological Challenges ... 8

1.2 Addressing and Filling Needs ..10

1.3 Report Organization ..11

2. The CANbus System ..12

2.0 Introduction ...12

2.1 Fundamentals of a CANbus Network ..12

2.2 History of CANbus ..14

2.3 CAN Applications ..15

2.4 Technical Understanding ..16

2.5 Layout of a CANbus System ...18

2.6 CAN with Flexible Data-rate ..21

2.7 M-ary Amplitude Shift Keying ..24

2.8 Transient Analysis ...26

2.8 Chapter Summary ...27

Chapter 3: The MQP Journey ...28

3.1 Expected Timeline ..28

3.2 The Initial Proposal ...28

3.3 The First Stumbling Stone ...29

3.4 A Second Approach ..29

3.5 The Third and Fourth Project Plans ...30

3.6 The Fifth Plan and Our Tallest Hurdle ...31

3.7 The Sixth (and Final) Method of Approach ..33

3.8 Chapter Summary ...34

4

Chapter 4: Design Implementation ...35

4.0 Introduction ...35

4.1 Hardware and Software Utilized ..35

4.2 Design Methodology: Creating base2CAN ..36

4.3 Design Module - Sounding the Bus ...40

4.4 Design Module - Transceiver Setup and Procedure to Test M-ASK Theory48

4.5 Design Methodology: M-ASK and base4CAN development ..50

4.6 Summary ..55

Chapter 5: Results ..56

5.1 Expected Results ..56

5.2 Obtained Results ..57

5.3 Hardships While Creating M-ASK Adapter and base4CAN ...58

5.4 Hardships While Sounding the Bus and Integration ..59

5.5 Summary ..60

Conclusion and Future Developments ..61

Bibliography ...63

Appendices ..67

Appendix A: Verilog Code & MATLAB Commands ...67

Appendix B: Relevant Figures and Tables ..72

5

List of Figures

6

List of Tables

Table 2.1: CAN Message Priority…………………………………………………………………............17

Table 2.2: Possible ECUs interconnected within a CAN bus Network……………………………..........20

Table 2.3: Characteristics of CAN FD and Vanilla CAN…………………………………...…..…..........22

Table 2.4: Pros and Cons of Amplitude Modulation Shift Keying...25

Table 4.1: Hardware Utilized in Sounding the Physical Bus……………………….....……….........35

Table 4.2: Software Utilized in Sounding the Physical Bus…………………………….……….......36

Table 4.3: Hardware Utilized in creation of base2CAN, MASK-ing, and base4CAN….…….….......36

Table 4.4: Benefits and Setbacks to Using Various Analytic Equipment in this Project…….…....…....45

Table B1: Length Specifications for a CANbus Network………………………………………….........72

7

Executive Summary

 The CANbus protocol provides a central bus line for each Electronic Control Unit (ECU) to

connect to. While internal safety features are in place, if a malicious attacker were to gain control of a low-

priority, easy-to-access node (such as a Tire Pressure Monitoring System (TPMS) sensor), this hacked

node could flood the bus with messages and prevent other nodes from communicating vital information.

 This MQP aims to enhance the security of the CANbus through an impedance study of the 2013

Chevy Impala bus we were given access to by MITRE. By studying the reverberations and distortions of

the original signal, we can characterize the nodes and their locations. The outcome of sounding, showed

that the measured data signals were barely distinguishable from each other. After conducting several trials,

taking measurements and doing analysis, it appeared that the sounding process would not yield results that

could be used to characterize the nodes. This characterization of the bus is still believed to be feasible,

although the process of doing so in this case lead to inconclusive results.

While initially security focused, our MQP has come to include throughput optimization of the

CANbus network. A very analog approach was taken to digital signals, implementing 4-ary ASK. A CAN

platform, base2CAN, was developed, to send, receive, and send modified CAN frames and messages. M-

ASK was implemented, using FPGAs and peripherals including DACs and ADCs. base2CAN and 4-ary

ASK were then integrated to create base4CAN, a node that could send, receive, and modify CAN

messages in four analog voltage levels. This has been shown successful in both digital and analog

operation, as detailed in the report.

8

1. Introduction

1.1 Today’s Technological Challenges

It is no surprise that with the advent and rise of autonomous vehicles, the industry finds itself faced

with new challenges. Generations are being born surrounded by computers and technology, and are as

proficient in technology as they are with their native language. This is leading to people, as young as

teenagers, finding security flaws in major systems and taking them down, whether online or not [1]. The

implication this has on vehicular security is enormous - people interested in autonomous vehicles are wary

of trusting computers wholly, afraid of internal lockups or external attacks. When dealing with a literal ton

of metal, gears, and wires at such high speeds, their reservations are completely valid.

Other issues plaguing the automotive industry center around the ever-rapidly increasing number of

Electronic Control Units (ECUs) and microcontrollers. Microcontrollers and ECUs control things as trivial

as power windows and seat adjustment and as crucial as steering and braking [2]. While the standard used

to have the steering wheel and column physically connect to the tires making turning all-manual, active

steering interjects an ECU (to modify/rectify your input), and steer-by-wire systems would no longer have

a physical connection at all. While active steering is currently available in many models, steer-by-wire is

banned until its safety and reliability can be thoroughly proven [2].

9

Figure 1.1: Hierarchy of a car with CANbus [3]

The Controller Area Network bus line (CANbus), shown in Figure 1.1, provides a hierarchy and

central bus line for each sensor to communicate on. The CAN protocol is the de-facto standard in

automation for vehicular security. With an updated version [4], CAN with Flexible Data-rate (CAN FD),

to be on the market as late as Fall 2017, many eyes are on the technology [5]. This projects looks into

researching the inner workings of the CAN and CAN FD protocols, as well as the nodes that are physically

placed on the bus. After, a study of an automotive test-bed will be completed to analyze the effect M-ary

Amplitude Shift Key (M-ASK) encoding will have on the signals within a CANbus network. Ideas will be

proposed on reduction of effects that noise, reflections and other factors have on the M-ASK encoded

transmission.

10

 CAN is a protocol that has lasted the test of time, with 2017 marking the 30 year anniversary of

the initial market release. While created, standardized, and sustained by Robert Bosch GmbH, also known

as Bosch, two protocol updates have been released to remain current and innovative [6].

 The original protocol, referred to as “CAN,” was later updated to “CAN 2.0” in order to provide

support for longer messages and more nodes on the bus at one time. While both of these are in use today,

CAN 2.0 is the vehicle bus standard and part of the mandated OBD-II standard, in the U.S. since 1996 and

worldwide since 2008 [7]. Bosch is still developing “CAN FD,” a protocol yet to be released on vehicles

today, but which is set to appear on 2018 model vehicles and predicted to be implemented in most 2020

models [8].

 While the CAN network does increases speed and improves structure, CAN does not have many

security measures. While there is error checking for correct message framing, there is currently no support

to assure node IDs are correspond to the correct nodes. That is to say, your TPMS sensor has a lower

priority than your braking system, however, an attacker has easy access to the TPMS sensor and can send a

legitimate looking message with a higher priority ID. If your system were to be flooded with messages of

the highest priority, none of the other systems would be able to communicate, leading to system failures

[9].

Because of this, further innovation is underway in many college settings. Such examples include

graduate students at Carnegie Mellon University [11], University of Washington [12], and Worcester

Polytechnic Institute [10], as well as Federally Funded Research and Development Centers, such as

MITRE. These efforts usually center around bus security with the goal to fend off malicious attacks [13].

1.2 Addressing and Filling Needs

This MQP, while initially security oriented in nature, has since come to include throughput

optimization through M-ASK encoding. While CAN FD enhanced CAN2.0’s abilities with a higher,

11

selective data-rates and and longer data fields, a further discovery could improve throughput further still.

With autonomous vehicles on the rise, and the ever-increasing complexity of sensor networks, there higher

speeds will boost reaction time and allow more information to be sent in the same period of time.

Advised by a wireless communication-based professor, the team was inspired to attempt the

unconventional. Seeing the CAN-Hi and CAN-Lo lines unique pairing, they would be best utilized by

implementing M-ary Amplitude Shift Keying. M-ASK seemed not only the most reasonable but also the

most straightforward way to go. Access to the CANbus from a 2013 Chevy Impala as well as a space to

store such a large network was graciously provided to us by MITRE, which was invaluable for our analysis

and implementation.

The project's final form includes an impedance study of the Impala’s bus, two base4CAN

communication nodes (each acting as both a sender & receiver), two ADC and DACs (one of each

per base4CAN node), and the CANbus itself. Contributions gained from this research include

higher node security, throughput doubling, and a proof of M-ASK encoding feasibility.

1.3 Report Organization

This report begins with a brief background of the CANbus System in Chapter 2 which includes

information about its history, applications and implementation, as well as discuss M-ASK modulation and

signal transient response. Chapter 3 includes the expected timeline and the progression of the MQP.

Chapter 4 analyzes the hardware options available, presents the hardware alternatives selected for the

project, presents relevant information about the physical harness. Also, in this chapter is an explanation of

the design implementation. Chapter 5 discusses the final results. Chapter 6 concludes the report and

provides suggestions for future projects.

12

2. The CANbus System

2.0 Introduction

 To begin, a brief background is provided below for those who have not been exposed to CAN or

want to review. In this chapter we study the CAN system and discuss when it was developed, what its

purpose is, why is it important, what are some of its applications, how is it implemented on a physical bus

and digitally. CAN FD will also be mentioned as it predicted to take the place of CAN in the near future.

Lastly, introduced are the concepts of MASK-ing and transient response which are used during project

execution.

2.1 Fundamentals of a CANbus Network

 Early in automation, vehicles were by-and-large analog machines. As technology progresses and

advances, so do the number of sensors, microcontrollers, and ECUs. Most functions you can think of, from

the indicator lights on a dashboard to the airbags and Anti-lock Brake System (ABS), are sensor-based and

controlled electronically.

 When sensors were fewer, communication between them was direct and hardwired. The top half of

Figure 2.1 shows a star topology, where wires cross node to node forming a web. This quickly became less

feasible as complexity increased.

13

Figure 2.1: Sensor Network Structure shifting from star to bus topology

A change of hierarchy was needed, and so the CAN protocol and architecture was designed. With

CAN, a central bus line is installed, providing a party line for all sensors to communicate on. Not only is

less wiring needed, but also the ability for every sensor to hear everyone else on the bus is gained, as

shown in the lower section of Figure 2.1. While simplified, this is not a trivial measure, and greatly

increases efficiency and safety. Figure 2.2 provides a better sense of scale, in these regards.

The CANbus is a serial bus communications protocol that provides an effective and reliable means of

communication between sensors and other nodes within a vehicle. It is the party line through which all

messages are relayed to all electronic devices in the vehicle. CANbus is the most effective and commonly

used communication network for vehicles, known for its reliability, with multiple ECUs and micro-

controlled sensors connected through it.

14

 Not only is it already being used within the majority of vehicles and other transportation systems,

but it is also being further improved to become quicker and more secure with the development of CAN

Flexible Data-rate, or CAN FD.

Figure 2.2: CAN Implementation Within Vehicles [3]

2.2 History of CANbus

The CANbus system was proposed by Robert Bosch GmbH, a German electronics company,

which revolutionized node interaction. This system was implemented in hardware by Intel, who in

1987 created a CAN controller chip. In 1991 CAN version 2.0 was internationally standardized

and a technical group of the manufacturers and users, "CAN in Automation" (CiA) was created

[14].

There are various CAN protocols. The first, Bosch's prototype of CANopen, began their

development phase in 1993 and thanks to the assistance of various college professors, was completed

15

and standardized by the CiA within two years [14]. In only five years' time, this protocol became

the most important standardized embedded network in Europe. Throughout the late 1990's and

early 2000's, new protocols were created, some of which include the 'Time-triggered

communication on CAN' (TTCAN) and the CANopen Safety Protocol. The CAN FD protocol

specifications were introduced at the 13th International CAN Conference in 2012 and are

expected to be used in next generation vehicles communication networks [14].

2.3 CAN Applications

While the CANbus protocol intended use was for communication within nodes of a passenger

vehicle, multiple other applications have emerged. The CANbus system provided the framework

for programmable systems and different device, interface, and application profiles. This made

CANopen popular in industry segments such as printing machines, maritime applications, and

medical systems.

Many have adapted the CAN protocol to further fit their needs. This can be seen in the

CANOpen [15] and CANAerospace protocols [16]. CANOpen is applied to industrial machinery,

railways, construction machinery, mining trucks, and process-optimized operating rooms [15].

CANOpen's aim was to predefine some of the higher-level protocols to make it easier for other

industries to use. CANAerospace was developed by Stock Flight Systems and has been certified

by the FAA and used by NASA. In addition to planes and unmanned helicopters, it can also be

seen in satellites currently orbiting the Earth and in SOFIA (the Stratospheric Observatory for

Infrared Astronomy) [15]. CANAerospace was designed to be used specifically in the aerospace

industry rather than most industrial adaptations. Other examples of higher level CAN protocols

16

include DeviceNet, CAN Kingdom, and SDS [17].

2.4 Technical Understanding

The CANbus is the central network that all the sensors in a vehicle are attached to. This

includes Tire Pressure Monitoring System (TPMS) sensors, dashboards, radios, and everything in-

between. It also includes vital components such as the Anti-lock Brake System and airbags [18]. For

an example of just how large these networks are, the physical CANbus line this MQP is using for testing is

shown in Figure 2.3. Do remember these run the perimeter of the car.

Figure 2.3: The CANbus from a 2003 Chevy Impala

When a node or ECU wants to send information, they use a special format that includes

their identification number. If only one node talks at a time, the ID doesn't affect transmission. In

17

fast-paced, complex systems like modern cars, however, it is much more likely that many sensors

will be trying to transmit messages simultaneously. In the CAN protocol, there is an arbitration

period which picks out the person with the lowest ID (the closest node ID to zero). This node gets

to send its message this round and everyone else can try again next round. This mechanism is

what determines that changing the radio station is less important than hitting the brakes [19].

Table 2.1 demonstrates this method of prioritizing certain nodes over others - with three

nodes, where the node with the lowest ID will be successfully received as the others drop out [19].

Table 2.1: CAN Message Priority

Node in Network Identification (decimal) Identification (binary)

Node 1 567 0 1 0 0 0 1 1 0 1 1 1

Node 2 174 0 0 0 1 0 1 0 1 1 1 0

Node 3 226 0 0 0 1 1 1 0 0 0 1 0

Received Node 174 0 0 0 1 0 1 0 1 1 1 0

In order to protect itself, CAN messages must follow a certain format. If they are not

correctly framed, they will not be successfully transmitted. All packets sent go through a "sanity"

check to ensure they do not have obvious errors. The cyclic redundancy check (CRC) at the end

of a message ensures the message generated fits a certain mathematical formula from beginning to

the end. If, when check time rolls around, the message does not abide by this formula, it means

that something happened to it during transfer and the message is not in the expected format.

This being the case, the message is ruled as erroneous and is ignored. In the case of CAN,

when an error is found by such detection systems like the CRC, it is as if the bus covers its ears

and pretends the message was never sent in the first place - since after all, this message could be a

18

malicious attack. Whether or not the error is due to natural causes or malicious intervention, the location

of this error and its impact on the intended receiver(s) is not necessarily known. This makes it

safer and easier to simply throw away any messages perceived to be corrupted with an organic

error rather than to try to fix the message.

2.5 Layout of a CANbus System

The CANbus itself is constructed of two lines and two terminators (small resistors). Due to

the noisiness of moving, operating vehicles, simply reading the voltage off of one line is not

enough. Any movement, vibration, heat, or impedances will distort the original signal. To remedy this,

CAN sends all messages over both the CAN-Low and CAN-High line, one of which is the inverse

of the other.

Figure 2.4: CAN Data Lines Dominant vs Recessive

This allows us to see a differential voltage between the two lines, greatly emphasizing the

19

difference between a 1 and 0. After all, the standard uses messages with binary bits [20].

Figure 2.5 : CAN Architecture with bus lines and nodes

The CAN system consists of the following: at least one CAN node, two data bus lines, and two bus

terminators (usually a 100 or 120 Ohm resistor on each end). The physical wires themselves can be any

form of cable that can be terminated. In practice, however, shielded twisted pair is the most popular option

due to its availability, dual-channeled nature, and low cost. Ethernet cables are also a frequent option,

although the increased amount of cable required to send both channels is undesirable. In Figure 2.5, three

ECUs are connected to the bus. In actuality, as many ECU's can be connected in a CAN system as are

deemed necessary.[21] Among many possible ECUs to connect to the bus, we have the following which

serve different functionalities, as shown in Table 2.2:

20

Table 2.2: Possible ECUs interconnected within a CANbus Network

ECUs Functionality

Engine Control Unit Ensures peak performance from internal

combustion engines via actuator control

Transmission Control Unit Controls shifting in automatic transmissions

Anti-Lock Braking Electronic Control Unit Monitors rotational speed of each wheel

Traction Control System Actively prevents loss of traction

Airbag Control Unit Evaluates crashes and triggers appropriate safety

measures based on severity.

Power Steering Electronic Control Unit Senses vehicle speed and steering torque to adjust

how much to assist driver.

Each node on the bus is capable of sending and receiving information, and in some cases, have

their own sub-branch of sensors to convey information to. Each node, by ISO standards, must contain a

CAN transceiver, CAN controller, and a CPU or microprocessor, though other additions may be made so

long as they do not interfere with the node's timing. An image of the topology can be seen in Figure 2.6.

Figure 2.6 : CAN Node Composition

21

Their jobs are broken down as follows: The transceiver takes information off the bus and converts

is to a readable format to the controller. When sending, it takes the controller's information and converts is

to bus-readable format. The CAN controller takes the large, parallel chunk of data the transceiver provides

and feeds it serially to the microcontroller. When sending, it takes the serial microcontroller's message and

compiles it into a large, parallel chunk to give the transceiver. The microcontroller/CPU is the brain who

reads messages and decided how to handle and respond to them [22].

In order for these nodes to communicate with one another in real time, and resolve who to listen to

when multiple nodes send data, CAN has a very tightly regulated timing protocol. Each node must first

become synchronized to the master clock. This allows for each node to be recognized and for arbitration to

run more smoothly.

2.6 CAN with Flexible Data-rate

As technology advances, so do vehicles in terms of how many embedded networks they contain

that need to transmit and receive messages. Instead of just the radio and TPMS, sensors have added at

pedals and wheels, back-up cameras, remote start, Bluetooth connectivity and more. This gives vehicles

greater functionality; however, it increases their complexity, which creates a need for the CANbus system

to be able to transmit more data to compensate. CAN with Flexible Data-rate, also referred to as CAN FD,

not only upgrades how large of messages can be sent but also improves the speed they can be sent at [23].

With both of these factors in play, throughput is greatly enhanced beyond classical CAN's

capabilities. Compared to other networks (such as FlexRay), CANFD appears to be the most

advantageous, as it has a similar physical layer and software to CAN [23]. The main difference in the

hardware is in the transceiver, which needs to be able to adapt to speeds of up to 1Mbps.

CANFD is different from CAN in that it can have a payload as high as 64 bytes as

22

opposed to CAN's quite small 8 bytes. This reduces the need to split messages into chunks and

also decreases the ratio of overhead to payload, making each message more efficient [23].

Table 2.3 : Characteristics of CAN FD and Vanilla CAN

Characteristics CAN FD Vanilla CAN

Max Data Payload 64 Bytes 8 Bytes

Max Data Rate 10 Mb/s 1 Mb/s

CRC Bits 17-21 15

To combat the increase in transmission time but maintain proper arbitration key to CAN's

functionality, they also employed a second improvement. Arbitration is a delicate procedure

which is heavily reliant on a small frame window, since speeding up the entire packet was

unfeasible. However, once arbitration was handled, the payload itself can be send at a much

higher rate, making the time the message as a whole shorter. The Flexible Data-Rate refers to

exactly this function, found in the packet itself. After the payload has transmitted, the footer of the

packet (containing the CRC and ACK listener) returns back to its previous 1Mpbs speed.

As visualized in Figure 2.7, each frame has a header and footer (in grey) before and after the data

itself (both shades of blue). Both lines are the same frame, but the data portion of the first is sped up,

shrinking it in time to what is shown in the second line. No data is lost, but the overall length of each frame

sent this way is reduced [17].

23

Figure 2.7 : CAN FD Data Compression

The message format in CAN FD has several differences from its CAN counterpart. The format

specifications and additions are present in the Extended Data Length (EDL), r1 and r0, Bit Rate Switch

(BRS), Error State Indicator (ESI), Data Length Code (DLC), and the Cyclic Redundancy Check (CRC).

The message frame format is displayed in Figure 2.8.

Figure 2.8: CAN FD Message Frame Format

EDL is the reserved bit after either the IDE or the RTR bit in a CAN frame, which is

24

recessive when transmitted. R1 allows protocol expansion and r0 synchronizes again before the

bit-rate switch. Both are transmitted dominant. When dominant a BRS transmission means the

bit-rate in the data phase is the same as the arbitration phase, else, this signifies a faster bit-rate for

the data phase. Furthermore, ESI when dominant signifies error active mode and when recessive

signifies error passive mode. DLC values specify the data lengths of 12, 16, 20, 24, 32, 48, and 64

bytes. Finally, the CRC length depends on the length of the DLC and EDL. The CRC is 15-bits

for CAN messages and either 17 bits or 21 bits for CAN FD [23].

2.7 M-ary Amplitude Shift Keying

When working with electricity and digital signals, there is always a waveform which sends

the data. In CAN, information is sent in binary, or a wave of 0s and 1s. Each 0 or 1 is one bit of

information, however, a stream, 100110 could be split into 6 1 bit values (0-1) or 3 2bit values (0-3,

where 0 = 00b, 1 = 01b, 2 = 10b, and 3 = 11b). The purpose of this is to transmit more data at once,

sending 212 instead of 100110.

With M-ary Amplitude Shift Keying (M-ASK), we simply tell the signal to send at one of

2^n (where for this case, n=2) levels, instead of binary's 2^1 levels. Now, rather than send 1 bit per

symbol, we're sending 2 bits per symbol, thus doubling throughput. The more bits encoded into a

single symbol, the less symbols needed to send the same data, and the more efficient each send cycle

becomes. This technique is known as multi-level (M-ary) communication [24].

 The risk incurred by utilizing this technique lies in the fact our bandwidth does not change, and

symbols will become closer together as more must fit in the same “hallway.” The ability to distinguish

between symbols is paramount, as a misinterpreted symbol represents many misinterpreted bits. The

25

retention of reliability dictates how many symbols, how many voltage levels, can be used.

Nevertheless, so long as the ability to reliably distinguish voltage levels as the intended symbols, it is

possible to decode the analog to binary, and vice versa. Some benefits that M-ASK offers are

presented in Table 2.4 [24]:

Table 2.4: Pros and Cons of Amplitude Modulation Shift Keying

Benefits of M-ASK Disadvantages of M-ASK

 Modulation and demodulation is inexpensive Sensitive to atmospheric noise, distortion

and propagation

Implementation of transmitter is relatively

simple

Requires a lot of Bandwidth

Current in transmitter is smaller than in a

Frequency Shift Keying (FSK) transmitter

Inefficient Power Use

ASK requires less bandwidth than FSK

A good visual representation of 4-ary ASK is provided in Figure 2.9. Note that time 4-ary

ASK takes half the time as the binary message to convey the same information. To double 4-ary

ASK's rate, we would have to use 8-ary ASK, and to double that once more, 16-ary ASK (where 8 and

16 are the number of levels the message could be sent at, each incorporating M=2^n bits per symbol.)

26

Figure 2.9: Visualizing Four Level Amplitude Shift Keying

2.8 Transient Analysis

 In this project, the signal impedances and other physical events within thc bus will affect the

integrity of the CAN node signals within the system, jeopardizing the M-ASK modulation process. For this

reason, transient analysis is vital to determining the impact on the signals within the physical bus, and

make predictions as well as recommendations to mitigate any issues that might occur during the

implementation phase.

In electrical engineering a transient response is defined as the response of a system to a change

from equilibrium. The transient response is not necessarily tied to "on/off" events, as induced for example

by turning a switch, but to any event that affects the equilibrium of the system. The AC signal can be

classified as one of three types of damped: UnderDamped, OverDamped and Critically Damped which are

shown in Figure 2.8. Similarly, a transient function has several properties: Rise Time, OverShoot, Settling

Time,Delay Time, Peak Time and last but not least Steady State Error. Transient analysis is the analysis of

27

AC circuit in order to determine how non behaved signals affect the circuit and how they impact the signal

and calculate that transient function’s properties. This analysis is rooted in differential equations and is

characterized by the damping ratio (is less than 1, equal to 1, or greater than 1) [25].

Figure 2.10: Transient Response Behaviors

Of course the ideal digital signal would take the form of a 0 to 1 square wave, however, in

most scenarios this signal will not be a perfect. With that being said, the question becomes, which

of the three damping types does the CANbus signal embody.

2.8 Chapter Summary

 To summarize, CANbus protocol is complex and has strict timing requirements. While CAN and

CAN FD are similar, understanding when and where the data-rate increases is key to implementing CAN

FD. M-ASK can allow us to increase throughput many fold, so long as there is enough of a voltage

bandwidth to support it, however due to sensitivity issues, 2-ary ASK is used.

28

Chapter 3: The MQP Journey

3.1 Expected Timeline

Various project topics were considered at the beginning of A term 2016. With the options

being configuring CAN nodes to work on CAN FD, and developing an algorithm that monitors

the state of car sensors. The topic was selected at the end of A term, so that after break, research

could begin. B term’s objective was to create a plan of attack as well as begin the literary review

section of the report.

In C term the development began and the group separated to do their individual parts. This

development was expected to take up most of the term (five weeks), then once development phase

ended there would be an integration of discrete parts and testing period wherein any bugs moving from

digital to analogue would be ironed out. The testing phase was anticipated to only last three weeks

and end once the term finished. Once measurements were taken the final phase of the project

would be to put final outcomes and conclusions in the report and prepare for the presentation.

3.2 The Initial Proposal

The MQP was created in the Fall 2015 when two team members decided to get the group

together to do a project that focused on vehicular security, specifically in finding and exploiting any

security holes so that a plan could be devised to close said vulnerabilities. With this interest, they found

the most suitable project advisor. Together after discussions on what the focus of the project

should be, a decision was made to concentrate on CANbus hacking. As Spring project registration

came closer, a new member joined and the project got the name “CANbus Vehicular Security.”

29

3.3 The First Stumbling Stone

With the beginning of a new school year, the group of three met, got organized, and began

research which they summarized in a shared Google Drive. This research included how to test

various attack vectors. Suddenly, one of the team members decided to change schools, and thusly

had to drop out of the MQP, leaving a team of two behind.

From the beginning, there was concern that three members would not be enough to

complete a project as complex as this. The loss of a member created an even greater concern and

amongst the panic, another member split from the group to seek an alternative MQP project.

With the team down to one member and MQP teams already solidly formed, they could

either fight to join an MQP half way through A-term or take in another ECE student who also

needed an MQP and would be able to join in B-term. The two decided to join up and remained on

the vehicular security project.

3.4 A Second Approach

Before the team changed, a colleague gave the team a possible direction for the MQP and

showed the team their base platform and how to use it. The suggestion was to stuff bits of extra

information into CAN messages between clock cycles.

This idea, dubbed "extreme bit stuffing," left the group a tad skeptical, but the colleague's

conviction led the team to consider it. Still, the project direction was not taken up by the team of

three as they much preferred the more direct aspect of attack vector analysis.

When the initial team exploded, the previous plan (which they wanted four people for) had

30

to be scrapped. This lead the remaining two members to return to the colleague who pitched the

bit-stuffing project idea, which they decide to go with. This required serious research into the

inner workings of the CANbus and CANbus FD nodes, as well as the CAN protocol as a whole,

which took the remainder of A term and majority of B-term.

With focus on catching up, the project direction was not questioned until the majority of

the research on both CAN and CAN FD was completed. As it turned out, not only was CAN's bit

stuffing method something completely different from the pitched idea, but also it turned out that

the "extreme bit stuffing" presented to us was not possible to implement in digital logic. Thusly,

this idea had to be scrapped as well.

3.5 The Third and Fourth Project Plans

Having sunk a non-negligible amount of time into research on CAN transceivers and nodes,

the group felt it needed to continue on a similar path. During the search for a topic relating with

CAN FD, the newer communication network technology that is soon to be the next automotive

standard. During this research, it was discovered that in a CANbus, FD messages are only heard by

FD nodes and plain CAN messages only by CAN 2.0 (nicknamed “vanilla”) nodes. Based on this, the

team decided to make a "translator" between CAN FD and normal CAN messages, which would

allow the nodes to hear nodes from another generation as well as their own.

Truncating CAN FD messages to original format seemed easier, since it would only require

taking out the extra framing information and running a shorter CRC. After a week looking into

that research topic, it was decided not worthy of pursuit, due to the realization that cutting the

longer message into parts, sending it as multiple messages at a time (which would occupy the bus,

31

blocking other from using it), and cherry picking what original nodes could use would be difficult.

The fourth project idea was much the same, but reversed. Vanilla nodes can be reframed to fit

the FD frame layout, sent as one short message, and given a longer CRC. This was much more

intuitive, since newer networks with FD nodes only needed to retrofit older nodes in. While both

could already coexist on a network, they would have only sent messages between nodes of their

generation, and not across generations.

This would have been a very useful endeavor since a CAN-FD system is predicted to

replace vanilla CAN to become the main communication network. When this were to occur, not all

functionalities performed by vanilla nodes may be updated to FD nodes yet. If a company were to require

an older node in a primarily FD network, this project would allow them to keep it in the network and

communicate with them anyhow, saving the company time and money. This project idea seemed the

best since the initial group split, and definitely worth looking further into.

Work and research continued for several weeks, including communication with Kvaser, a

company known for their CAN products, until research was interrupted. It was found that despite CAN

FD not being public yet, a company had already beat us to it by two months. Unfortunately, this

called for the termination of plan four and set us back to square one. This occurred approximately

three weeks before the end of B-term.

3.6 The Fifth Plan and Our Tallest Hurdle

To recap, the gears shifted from performing attacks and rating system security to infeasible

data stuffing, to translating messages in one direction, then the other. The team was under the

impression that with the colleague’s showing and tutorial of related work, and the partnership

32

between Worcester Polytechnic Institute and the company that permitted us to use the CANbus

harness, the team would be granted access to use some of the colleague's work as a foundation to

build upon. Specifically, wishing to use the working CANbus node created in a previous project.

After scrapping idea four half way through the year-long project, it was extremely difficult

to think of where else to go. With so much time dedicated to researching the CANbus it was too

late to switch platforms.

The fifth and final idea, loving dubbed "Limbo," was to take a CAN FD node and then

encode the messages sent by it with M-ary ASK. In order to accomplish this, CANbus base code

was needed, as the implementation would have to occur within the node to be effective.

There are only three ways to obtain code for CAN nodes, as the property was proprietary. You

could buy the license for the IP, which would cost six figures and be far out of the allotted MQP

budget and price range. You could also scour the Internet to find the singular open source project to

build upon or you could write it all by hand. Writing it yourself entails a full year's effort of

reverse engineering (which the colleague who guided us dutifully underwent as a graduate thesis).

While the team was given some aid by being permitted to use the CAN harness, not having

access to a base node set us back significantly. To even tackle the core of the MQP, integrating M-

ASK from the inside, we need to somehow obtain this code. With limited time remaining, the only

feasible option was to find and integrate open source code - an effort beginning approximately two

and a half weeks before winter break.

This begins the period the Verilog writer refers to as "Limbo." As we knew going in that there was

simply not enough time to start a vanilla node from scratch and then also update it to FD, we looked to the

singular piece of code we could find free of charge. Hosted on OpenCores, this project was created by Igor

Mohor in 2002 and was last updated in 2004. It promised both online and in code comments that it was a

33

fully functioning CAN node, including arbitration, error checking, error active/passive modes, and CRC

generation [26]. Unfortunately this was not the case and a significant portion of time was spent attempting

to make this code work.

From before winter break to late February, this code was added to, had sections rewritten, and

amassed over 20 local, saved copies. Not once did the testbench simulation reflect any change. Switching

from ISE Design Suite to Vivado to ModelSim did not change the simulation. Changing the testbench to

only run certain tasks did not change it, nor did completely rewriting the 2,000+ line testbench.

Completely removing it and giving it the task to idle did not even change it - something which frankly

shouldn't have been possible.

Yet, neither careful planning nor head-first charges into this brick wall of a code showed any signs

of progress. Let us restate that this is the base, the foundation, that we needed to even start work on the real

project. The MQP assumed a functioning CAN base prior to work and as of February 22nd, most the way

into C-term, arrived, the team called a meeting, sat down, and proposed a different approach.

The problem of being unable to obtain a fully functional CAN node, let alone FD node, in code

form would plague any team put on the MQP. Until someone either put in the year's effort into making a

node for WPI or purchased the code (costing 6 figures+), it would simply not be possible to work with a

node directly. Nodes bundle in their own transceiver and receiver, meaning that the M-ASK encoding

scheme would have to be placed within the node, between the microcontroller and transceiver, to properly

affect throughput.

3.7 The Sixth (and Final) Method of Approach

Since the largest obstacle in MQP iteration five was the node IP itself being out of our reach, the

sixth MQP kept the same goal of M-ASK encoding but instead made a smaller base to work on rather than

34

the full base with arbitration. While non-ideal, time was limited and reverse engineering a fully

functioning CAN node is a year-long endeavor.

Instead of focusing on fully functional CAN nodes, it was decided to cut our losses and make some

nodes which could send and receive CAN messages that were properly framed, but would not generate or

check CRCs, nor trigger errors (which would terminate transmission and possibly put the nodes into error

active or error passive states.) They were dubbed “base2CAN” nodes playing both on their function and

their binary nature

Since work was primarily involved with the messages and the physical medium they went through,

worry about arbitration or CRCs wasn’t as crucial. So long as the concept could be proven with correctly

framed CAN messages, it follows that it would hold when dealing with true CAN nodes. With the ability

to provide proof of concept as well as possibly placing it on the physical bus in time, the MQP could still

be fulfilled with only eight weeks before project presentation day. That the project took its final form so

late into the year highlights the need for this chapter. It has indeed been a mercurial beast of a project.

3.8 Chapter Summary

To summarize, the direction of the MQP has shifted many times, however, the team was able to

overcome the drawbacks associated with this. While communication issues left the final design without a

100% working base to launch from, base2CAN was created to solve this issue, allowing forward progress.

35

Chapter 4: Design Implementation

4.0 Introduction

 In the following chapter the discussion will transition to what equipment and tools were

available for this project, and which were utilized. Also there were two different modules that this

project consisted of, the MASK-ing and the Sounding, both of which were done separately and

have their own design sections dedicated to them. Finally, the integration process and results are

discussed after both modules, the MASK-ed base4can signal and the CAN nodes are put together

4.1 Hardware and Software Utilized

This project required the use of various hardware and software, some of which were necessary for

the sounding of the CAN harness, others which were necessary in creation and M-ASK modulation of a

base2CAN message. The following two tables displays all the vital components that were involved in the

execution of the MQP.

Table 4.1: Hardware Utilized in Sounding the Physical Bus

Hardware Hardware Purpose

CANbus harness A physical CANbus that can be measured and analyzed

Saleae Logic Pro 8 Digital and Analog Logic Analyzer

Function Generator Sends an impulse signal to a CAN node

2 x Raspberry Pies 3 Model B with

CAN Shields

Allow the signal to bridge through one node on the harness to another

10 x 28 Gauge Wires and a

Breadboard

Used to connect multiple CAN nodes’ high and low pins to the CAN Shield

and Function Generator

36

Table 4.2: Software Utilized in Sounding the Physical Bus

Software Software Purpose

MATLAB Acquires and analyzes the data collected by the Logic Pro 8

Logic (by Saleae) Displays digital and analog signals at various nodes

Table 4.3: Hardware Utilized in Creation of base2CAN and M-ASK modulator

Hardware Hardware Purpose Software Software Purpose

2 x Pmod ADC1,

2 x Pmod DAC1

Two simple ADC and DAC

peripherals - one for each FPGA

Verilog Used to create M-ASK &

base4CAN messages

2 x Nexys3-Spartan6

FPGAs

Implement code which allows the

sending and receiving of CAN

messages (both for “base2CAN” and

for “base4CAN” nodes.)

4.2 Design Methodology: Creating base2CAN

The development of base2CAN modules quickly was underway, three iterations deep by the end of

the first week. The base2CAN modules were to perform three functions as reasonably close to CAN as

possible. For this to be accomplished, the Register-Transfer Level of digital logic abstraction (RTL design)

was used.

Functionality was split between a datapath and controller. The datapath is the muscular structure of

the circuit - performing the tasks assigned to it. The controller uses state machine logic to determine what

steps the circuit should occur next. When both are interconnected, the controller watches for flags and

sends the appropriate signals to the datapath. The datapath then executes its operations based off of these

control signals and updates flags that tell the controller its current status. A good visual of this weaving is

in Figure 4.1.

37

Figure 4.1: Configuration of datapath and controller in RTL design

Both the datapath and controller run off of the same clock, and both can each have inputs and

outputs, though neither must. base2CAN’s controller diagram is as Figure 4.2 shows. Each circle

represents a state, and each line and transition between states.

Figure 4.2: A state diagram of the base2CAN controller

38

In Figure 4.2 you see three different types of lines, one straight, one wavy, and one jagged. This is

because base2CAN has three modes of operation: sending a predefined message (straight lines), receiving

and storing a message (jagged lines), and receiving, performing operations on, and sending a modified

message (wavy lines). Split into different diagrams, the state machine diagram is as shown in Figure 4.3.

Figure 4.3: A separated diagram of each function

39

The first function sends a predefined message where some parts are loaded with predefined

constants before the rest are calculated, the node frames up the sections into proper format, and sends it

serially on two outputs (the normal on CAN high and its inverse on CAN low). This is to make sure that,

first and foremost, it frames up information correctly and can send without issue.

The second function base2CAN performs is to read an incoming message and store it. This ensures

that when put on the bus it can successfully read incoming data and store it for processing. If this were a

more genuine node, this function would also check the message for errors as it comes in before storing it,

via frame checking and bitstuffing logic. Nonetheless, it is still imperative to confirm the message was

received correctly. This will be especially true when shifting from M-ASK and back is added in.

The third function it will be able to perform is to read in an incoming message, react to it, and send

a response. For our purposes, it will take in the initial message, edit the data payload, and send it back out

on the bus (using the new sender's ID and a new CRC.)

First the design will be designed, simulated, debugged, and refined solely virtually. This is the

advantage of Verilog and other HDLs - physical access to the bus is not required to refine the design.

Figure 4.4 shows the receiving, modifying, and sending of a message, as per function three of the

base2CAN node which here is divided into two parts due to length.

40

Figure 4.4: Read, perform operation on, and send message

The Serial_out signal is another node sending information, while D_in shows the base2CAN node

receiving said data. D_outHi and D_outLo are, as they sound the two CANbus data lines, Lo being a

reciprocal of Hi; these are the signals that would be output on the CANbus. readin and sendin are control

signals from the controller telling us (through LEDs) what the whole system is currently doing. readin is

high only when D_in has data to read and goes low when complete, the conversion happens, then sendin

goes high while sending the new message on D_outHi and D_outLo. (Note: readin and sendin are

purposely misspelled because reading and sending are both ANSI standard Verilog constructs and thus

cannot be used.)

 With this, the functionality of base2CAN has been proven a success in reverse engineering of the

CAN protocol base. Message can now be sent, received, and heard, modified, and sent in binary.

4.3 Design Module - Sounding the Bus

 In order to expect the measured base4CAN at the receiver be the same as the message at the

transmitter, the physical bus has to be assessed. The objective in sounding the CANbus was to determine

41

how much impedance exists between each node and how that affected the CAN signal. For example,

hypothetically, if there is a loss in voltage between node1 and node2 from 1.5V to 1.15V, when M-ASK

encoding some part of the message may be averaged down. Thus, impedances due to reflections within the

bus may be disruptive in that it messes with the encoding and decoding of the message, and corrupts the

data which could be detrimental with a vehicle.

Already, there are two 120 ohm terminating resistors used that were selected when standardizing

the CAN protocol to match the characteristic impedance(resistance that occurs in AC signals) and

eliminate it. This helps prevent signal distortion or uncharacteristic resonance behavior. However,

probabilistically, not all impedance can be removed with just two termination resistors. The goal in

sounding the bus is to determine the difference between the ideal and actual voltage measured, and analyze

the resonance behavior associated. Depending on the results, if the impedance turns out to have a greater

effect on the bus then acceptable for the MASK-ing protocol to work, measures would be taken to

diminish it.

To sound the bus, it was necessary to familiarize oneself with the physical CAN harness, and the

pinout of each of the nodes. The K43 connector for example, shown in Figure 4.5, is one of the smallest

connectors, containing only 10 pins.

Figure 4.5: Example CAN Node Connector [27]

42

This connector can be seen in the automotive test-bed, which is shown below. The physical

harness that contains all the connectors to which select CAN ECUs are attached is shown in Figure 4.6.

The connection are made between the connectors via unshielded twisted pair cables[28]. The connector

falls in the group of connectors that belong in node 3 shown in Figure 4.6. The K43 in a vehicle serves as

the Power Steering Module. The test-bed that was accessible for this project contained six nodes as shown

in the figure. The way the harness was was set up was that it was strapped onto a metal fence using zip ties

and clustered together into various sections. (Using a conductive fence, may not have been the best idea

due to the fact that we were applying current to the connectors). See the figures below for the entire test-

bed setup and close ups of several connectors.

Figure 4.6: CAN Harness with 6 Nodes

43

Figure 4.7: Close up of CAN Nodes available on the CAN Harness

To collect data from the harness, specific pins within each node had to be measured. To determine

which pins of the connectors were important it was necessary to look under the specific module (in this

case K38 Power Steering Control Module) and check for the pin with the desired functionality then check

what pin number corresponds to it. In some cases the connector consists of > 60 pins so finding the

particular pin on the physical connector could be time consuming. Figure 4.7 is shown an example of the

Power Steering Control Module pinout. The two pins used for sounding the node include the CAN low and

CAN high pins which are encircled in Figure 4.6 [27].

44

Figure 4.8: K43 Connector PinOut

Various attempts were taken in gathering data from the physical harness. The hardware and

software needed for this part are provided in Table 4.2. The first flawed attempt to sound the bus was to

interconnect the CAN high and CAN low signals of various CAN nodes of the harness together without

the CAN shield. This was wrong and gave inaccurate results, as there needed to be a CAN shield with

terminating resistors to serve as the starting and ending nodes on the bus.

To acquire measurements various methods were attempted and utilized. The first was to use the

oscilloscope, however, the scope provided was an old Tektronix model “TD2010” and did not have a USB

only an RS232, so for getting the data, python pyvisa library was seen as a good option. The MAC used

for collecting data only had a USB so to transfer data and RS232 to USB was purchased and the software

NI-VISA was used to troubleshoot and setup the initial connection. This software however, was not

recognizing a device at the COM and was timing out or running indefinitely (regardless of the timeout

time specified). It was concluded that the software and the library were only compatible with straight USB

or RS232 connections. Following this discovery, an alternative idea for gathering data from the bus was to

use an Arduino Mini. This would work because the measurements would be taken straight from the

Arduino to the bus, by connecting the Arduino analog pins to to the CAN node pins and running code that

45

collected and wrote this data to a serial monitor and serial plotter. The only issue with this method was that

there were a very limited number of analog pins, so there would be a limit to how many nodes can be

measured at a time. Also, in those attempts the analog data was mapped to numbers 0 to 255 which made

the results harder to interpret. That being said another option was in using the Saleae Logic Analyzer [29].

This device was a good alternative because it had software compatible with MACs, with all the parts

included, along with a high sample rate and eight leads for an increased measuring capacity.

Table 4.4: Benefits and Setbacks to Using Various Analytic Equipment in this Project

 Oscilloscope 1:

Tektronix TDS 210

Oscilloscope 2:

Tektronix TDS

2004C

Microprocessor:

Arduino Mini 05

Logic Analyzer:

Saleae Logic Pro

Pros Transient Behavior clear Has USB port, Transient

Behavior clear

Most sensitive data

collection, easy to

transfer data

Many test leads, user

friendly, simple to transfer

data

Cons Few leads, difficult to

transfer data,

Older: no USB port

Few leads, simpler to

transfer data but still not

automatic

Limited number of

analog pins, data

maps to range

No grids, signal averaged,

large data size- takes long to

transfer

The second attempt was to setup the circuit on a breadboard with the function generator connected

to one of nodes on the Raspberry PI's CAN shield. The nodes were connected in series on the breadboard

with both raspberry pi nodes, with the resistors, serving as the termination nodes. The function generator

settings were as follows : the signal amplitude was set to approximately 3.3V, the signal generated was a

square wave, the frequency selected was low, approximately 100 Hz.

Once the setup was complete, the Saleae Logic Pro 8 was connected, with each positive lead (eight

possible leads) connected to points of interest to measure ex. lead_1 to the function generator, lead_2 to K-

83 CAN High pin, etc. It turns out after Sounding the CAN node Harness that no major reflections

occurred within the bus at a slow rate.

46

Figure 4.9: Signals Generated from four different CAN H nodes

As you can see in this case the Pk to Pk between CH1 through CH4 range only by about 0.1V.

This is not a significant difference and characterizing the nodes based solely on this would likely give

inaccurate results. This, however, could be hypothetically be a way to better secure this network. The plot

below shows the same nodes and their transient behavior.

47

Figure 4.10: Transient Behavior for four CAN nodes

The transient behavior is overdamped and for various nodes, this behavior is almost

indistinguishable. Research indicated the CAN node signal transient behavior would be most affected by

interference and reflections when several conditions are not met including:

● Proper Resistors Not Used for CANbus termination

● Material For Twisted-pair Line is Not Uniform

● Material For Connectors Has Large Impedance

● Branch Length Does Not Follow Specifications [Table B1]

The main conditions that help regulate the impedance within the CANbus include the following,

which are shown above: resistors (which have to match the characteristic impedance of the bus) the

material used for connectivity between nodes and bus, the material the connectors are created with and the

48

length of the bus [30]. Out of the aforementioned, the termination was the only physical characteristic that

could be tweaked, through varying resistor sizes or varying the termination method [31].

4.4 Design Module - Transceiver Setup and Procedure to Test

M-ASK Encoding Theory

 Before the MASK modulation is implemented and combined with base2CAN, the theory can be

tested and observed using a power supply and an oscilloscope.

Process: with a CAN Transceiver given in Figure 4.8 connected to the CAN Shield nodes on the

Raspberry PI, a Power Supply input as specified, and receiver connected to the oscilloscope the voltage the

digital CAN output can be monitored as the input voltage of the signal increments.

As demonstrated from the TI DataSheet shown on the right side of Figure 4.8, the signal will be

received as 0 (Dominant) when the voltage difference is 2V between CAN L and CAN H. Also, the digital

signal will be 1 (Recessive) at approximately 2.3V [32].

Figure 4.11: Incorporating the CAN Transceiver to Drive the CAN Signal [32]

In this case, to eliminate extra complications, only CAN H will be used for our measurements.This

will mean that the signal change from recessive to dominant will happen at > 4V. While this cannot be

49

produced by the FPGA due to the voltage restrictions, it can be tested using a power supply. With the

industry transceiver in use the signal should be measured to change from recessive to dominant when the

supply voltage exceeds 4V. One can when trying to measure voltage levels using only an industry

transceiver, is that the only signal levels that are recognized are 0 and 1. Shown below is the setup done

when using the TI standard 3.3V CAN transceiver.

Figure 4.12: Sounding / Integration Setup

Thusly, even when you have a difference in voltage of around 8V, the SN65HVD23X transceiver

circuitry is custom to detect only two voltage levels. Ideally, a custom analog transceiver could be created

to detect more than two voltage levels. Once the transceiver is connected to the bus and the supply is

increased the receiver should distinctly display 0, 1 and +1 levels. Without the controller needing to be

connected, the MASK modulation could be proven to work on CAN nodes.

50

4.5 Design Methodology: M-ASK and base4CAN development

Despite working on a wired bus with binary signals, a very analog approach was taken, encoding

payload using wireless communications techniques. While a bit unconventional, encoding the binary signal

with 4-ary ASK would provide twice the throughput of the binary signal. M-ary ASK is one of the

schemes with the highest promise, especially considering the short time-frame of the project. It requires

less hardware and computation time than match filtering would have if implemented, requiring an

additional FPGA and FD receiver per symbol.

Rather than send a 0, 1, 1, and 0, in four clock cycles, you can send 01 and 10 with 4-ary ASK, as

demonstrated in Figure 4.13 below.

Figure 4.13: 2-ary ASK (binary) versus 4-ary ASK signal voltages

While 6-ary or 8-ary ASK would have tripled or quadrupled the original CAN output, this got far

too close to level blurring, or being unable to tell the difference between each step of voltage. Should two

voltage levels be confused due to closedness and/or noise, the message would be distorted and decrease

51

signal integrity. For these reasons and that our allotted voltage range was quite small, 4-ary ASK was

chosen.

To encode messages in M-ASK, it was first thought necessary to have two MSP430

microcontrollers per FPGA node. As FPGAs are logic 1 or 0 and are not capable of in-betweens, the

multiple levels of voltages required for M-ASK implementation would need to be produced elsewhere.

This led to the simple solution of turning the digital output of the base4CAN node into an analog signal

before placing it on the bus. This would send it through a microcontroller and gain the ability of adjusting

the voltage output on CAN high and CAN low. An analog to digital conversion would undo the process

via a second microcontroller before reaching the base4CAN node again.

While the MSP430 would not double the throughput as originally intended, it would offer a solid

base to incorporate into a follow-up MQP. For the throughput to be positively modified, the M-ASK

transformations would need to occur inside the node (between the microcontroller and transceiver) before

transmission. That is, instead of the node sending binary signals, it sends 4-ary out of the node’s own

transceiver. Sticking a M-ASK module onto the end means it would have to wait to get two binary outputs

from the CAN module regardless and negate the change to throughput.

However, it quickly became clear that this hurdle might be overcome if, rather than two MSP430s

per node, a ADC and DAC peripheral be used. There exist standalone, low-power ADC and DAC modules

that can plug directly into the Nexys 3 Spartan 6 FPGA, as seen in Figure 4.14. Due to their direct I/O,

rather than serial wired connection, not only would space and resources be saved, but also the

synchronization of separate boards, each with their own clock, would not have to take place and less wires

would be connected to the physical bus.

52

Figure 4.14: The Nexys 3 Spartan 6 FPGA with Pmod DA1 peripheral (AD1 not shown.)

In order to test the PMod AD1 and DA1, isolation testing was done. Before connecting M-ASK

encoding to the base2CAN system, we must first test M-ASK on its own. Figure 4.14 shows the board

setup with peripheral locations. Figure 4.15 below shows the successful operation of 4-ary ASK. To

accomplish this without connecting to a CAN message, instead uses two input switches on the FPGA. As

shown below in yellow, 4-ary ASK on its own is operational - 0V levels being hidden behind the blue

ground line.

53

Figure 4.15: MASKed Digital Waveform

When testing Verilog in simulation, the code was not calibrated to the real bus since the virtual bus

does not experience any losses. Regardless of the coding scheme, bus-specific fine tuning to the physical

bus was necessary to overcome losses within the different nodes of the bus. Due to the high quantity of

branches and sensors, impedance losses were surely a stumbling block to overcome when calibrating the

base4CAN code to work on the physical bus. To implement the finished product on the harness, it was

necessary to sound the bus, determine the losses between nodes and create filters that minimize this loss.

When it came time to integrate base2CAN with 4-ary ASK, creating base4CAN, a change or

hierarchy was needed. To give a sense of the magnitude of hardware description language involved in the

final version of base4CAN, we have Figure 4.16 below as well as the majority of appendix A. Inputs and

outputs now must each be conducted at 2 bits per clock cycle, needing a restructuring of the inner

workings.

54

Figure 4.16: CANbox2SPI is the code that drives base4CAN

That being said, the ADC conversion process integrated successfully, being able to send a full

CAN message at 0, 1.1, 2.2, and 3.3V -ASK, as shown in Figure 4.17 below. Figure 4.17 is not controlled

by external switches like Figure 4.15, but internally by a true base4CAN message.

Figure 4.17: Oscilloscope view of base4CAN in action.

55

4.6 Summary

Through hardships, we have developed, implemented, and integrated our custom base2CAN and

base4CAN nodes. M-ASK modulation proved effective at doubling throughput, as shown through Figure

4.17, though a current amplifier is needed to prove physical bus communication. Nodes on the CANbus

have been sounded and analyzed for impedance mismatches and reflection distortions.

56

Chapter 5: Results

5.1 Expected Results

The expectations were to successfully implement M-ASK modulation on existing test nodes.

Before implementing the M-ASK modulation digitally (within a Verilog environment), the idea was to

prove the concept of M-ASK modulation. If there was sufficient time a way to prove the concept was

through creating a custom made analog transceiver. Another task that would be necessary was sounding

the CAN harness and if needed, creating a filter that minimizes signal loss, so that this modulated signal

would not be wrongly encoded. The M-ASK modulation method would be tested within Verilog but would

then be implemented on the physical bus. It was expected that this would create a faster throughput when

implemented properly. Ultimately, encoding and decoding on the physical CANbus is a very useful proof

of concept.

 base4CANnodes would to be synthesized and simulated in Verilog and prove sending and

receiving capabilities. Microcontrollers would then simulate the M-ASK modulation process, and

implementation onto physical boards would begin. Once proved in discrete parts, the assembly could come

together and be placed on the physical CANbus itself.

The expectations were that if a TI transceiver was used you would not be able to see two levels. If

the custom transceiver was used, once the signal is sent through a CAN node, the received signal when

measured would have multiple signal levels (at least three for proof of concept) 0, 1 (the original) and 1+

(the extra signal level that corresponds to the dominant signal), all of which would be compatible with the

bus. The functionality depend on transceiver setup.

57

5.2 Obtained Results

 Ultimately, the individual parts of the projects were completed. These were: sounding the bus,

creating a base2CAN, transforming it into a base4CAN. The integration of the DAC digital output to the

CAN shield on the Raspberry Pi was more challenging, as the output signal with the configuration was not

exactly what was expected. The reasons seemed unclear initially. Below is the oscilloscope image of the

output measured after the integration.

Figure 5.1: Green DAC output, Yellow Rx line

The signal itself seemed very noisy despite the use of two 120 ohm termination resistors to cancel

out the characteristic resistance. This, is caused by many factors, mentioned before, including materials

used for the test-bed and length of bus lines. A solution that we came up with but were not able to

implement due to time restrictions included implementing split termination instead of the standard

58

termination. This method filters high frequency from the bus lines by acting like a low pass filter [31]. In

this case the capacitor and the resistor form an RL circuit which filtrates unwanted frequencies that can be

calculated using the formula: 𝑓 =
1

2𝜋𝑅𝐶
[33]. This would be more effective in removing noise than

linear components such as resistors.

Figure 5.2 : Split Termination -

decreases noise by removing high frequencies

with the addition of a Capacitor between termination

 resistors which serves as a low pass filter [31]

 Another issue during integration included the signal not being very distinguishable regardless of

the switch setting. The root of the problems seems to be the current produced by the DAC is minimal, and

does not drive the CAN H bus line. The solution to this, would be to boost the current, which can be done

with the addition of an amplifier stage between the DAC and the CAN H bus line.

5.3 Hardships While Creating M-ASK Adapter and base4CAN

 The base2module, although easy to create a simple message to send, was made more complex,

providing a true starting point for future teams to launch off on. Multiple registers make up the various

sections of frames, such as the DLC, control bits, and data field, each of which’ values are computed in

59

different states. Flags both internal to the datapath and tied to it from the controller take part in assigning

tasks, and while certainly not up to protocol, provides some foundation.

 The state machine logic and control signals needed to be added to and shifted around in the earlier

stages of the process. An originally four state flow was fleshed out into nine, detailing features which

changed depending on which mode the node was operating in. While simulation and debugging took a

normal amount of time and implementation to the Nexys 3 was simple, it was found a previously lent

Nexys 2 was unable to support the module fully.

 As mentioned previously, the original plan was to implement M-ASK within the standard

compatible nodes, these were not able to be attained.Most of this trial is detailed in section six of chapter 3,

ending in the base4CAN module with two microcontrollers before and after the FPGA’s inputs and

outputs. While possible, this was inefficient, clunky, and better handled by the Pmod ADC1 and DAC1

modules.

 Thereon, the integration with the Impala’s CANbus and viewing messages on the bus was the final

hurdle to clear.

5.4 Hardships While Sounding the Bus and Integration

A major problem with sounding the bus was the setup, which was very long and repetitive, as

multiple trials that came with fixing mistakes and the use of unique testing equipment. For example,

initially, measuring the nodes was done using an oscilloscope- and since there were only two channel

probes, every time a different node was measured the connections had to be changed which required

checking for specific pins.

 Another problem was that the impedance was not very high and thus, the transient response was

the not as distinct for each node as was expected. Ultimately, it turned out that the reflections at the rate

60

measured did not result in a significant loss in the bus, and for our purposes it could be considered

negligible.

 In integration between the base4CAN and the setup to the CAN shield hardship occurred in that

the measured digital wave output and that there was a lot of noise despite taking measures. After

troubleshooting, we came up with several possible solutions.

5.5 Summary

While each individual section of the project was completed and proven operational, there was not

enough time in the final stretch to iron out all issues with integration, although ideas of how to do this were

suggested. Furthermore, the impedance sounding was not as conclusive as expected. However, the base for

a true CAN node has been created, both sending one bit per cycle and two bits per cycle. M-ary ASK was

also proven operational and capable of throughput scaling when paired with base4CAN. Ultimately, we

have a basis future projects can use when conducting similar research.

61

Conclusion and Future Developments

To conclude, our group has successfully reverse engineered the CANbus protocol into a

base2CAN foundation, as well as a M-ASK implementation. These have both been integrated into the final

product, base4CAN, able to send messages at four voltage levels. Thusly messages can now be sent at the

original speed of CAN 2.0 and at a doubled throughput via base4CAN . While we were not able to

accomplish all the goals we had, the following we did accomplish:

● Accomplishment 1: Created base2CAN, base4CAN

● Accomplishment 2: Sounded CANbus harness

● Accomplishment 3: Integrated base4CAN, CANbus

This research, designs, implementations, demonstrated could be extended in future work. With the

developments we have provided, multiple projects could be birthed. Some future developments that we

propose for those continuing with this research include:

● Project Idea 1: Designing a to-spec CANnode.

● Project Idea 2: Conduct nodal analysis to identify location-specific impedances.

For our project, one big disadvantage was that we did not have a working CAN node to use to start

us off with our implementation, we had to create a basic one to work with. The first project suggestion is

that a team creates a CAN node that future projects can use for development and research purposes. This

node would mimic a node that satisfy all specifications. including arbitration and error checking. All

together, this would not be a simple task.

 Project idea two consists of finding another way to identify location specific impedances caused

by reflections within the bus and with the intention to characterize nodes. This could prove useful for

62

increasing security measures within the bus. Also, signal differentiation within the MASK-ed signal could

be improved(such as base4CAN) in a later project.

63

Bibliography

[1] P. Bigelow, "A 14-year-old hacker caught the auto industry by surprise", Autoblog, 2015.

[Online]. Available: http://www.autoblog.com/2015/02/18/14-year-old-hacker- caught-industry-

by-surprise-featured/. [Accessed: 04- Apr- 2017].

[2] "Automotive Cyber Security: An IET/KTN Thought Leadership Review of risk perspectives

for connected vehicles", The Institution of Engineering and Technology, 2016. PDF Available:

http://www.theiet.org/sectors/transport/documents/automotive -cs.cfm

[3] "Controller Area Network (CAN Bus)", ប ច្ចេក វិ ទ្យារ ថ យ ន្តទំ្យច្ន្ើប , 2017.

[Online]. Available: https://autodockhmer.net/2016/05/16/controller-area-network-can-bus/.

[Accessed: 27- Apr- 2017].

[4] B. Borowicz, "CAN FD - The Next (Big) Fast Thing", Grid Connect, 2017. [Online].

Available: http://gridconnect.com/blog/tag/canbus/. [Accessed: 22- Apr- 2017].

[5] "Everything about the CAN bus or Controller Area Network", Canbus.us, 2017. [Online].

Available: http://www.canbus.us/. [Accessed: 04- Apr- 2017].

[6] "History of CAN", Canopen.us, 2017. [Online]. Available: http://canopen.us/ home/history-

of-can. [Accessed: 04- Apr- 2017].

[7] "OBD-II Background Information", Obdii.com, 2017. [Online]. Available:

http://www.obdii.com/background.html. [Accessed: 04- Apr- 2017].

[8] O. Esparza, W. Leichtfried and F. Gonzalez, "Transitioning Applications from CAN 2.0 to

CAN FD", EEcatalog.com, 2016. [Online]. Available: http://eecatalog.com/ automotive/2016

/04/22/transitioning-applications-from-can-2-0-to-can-fd/. [Accessed: 04- Apr- 2017].

[9] A. Arnold and S. Piscitelli, TPMS Receiver Hacking, 1st ed. Worcester: WPI, 2015.

[10] J. Kluser, CAN Based Protocols in Avionics, 1st ed. Vector, 2012.

[11] Raj, "Research", Carnegie Mellon University, 2017. [Online]. Available:

https://users.ece.cmu.edu/~raj/research.html. [Accessed: 27- Apr- 2017].

64

[12] J. Gambatese and J. Louis, "Improving Safety on Highway Work-zones by Real-time

Tracking of Operation and Equipment Status", Pacific NW Transportation Consortium, 2017.

[Online]. Available: https://depts.washington.edu/pactrans/research/projects/improving-safety -

on-highway-work-zones-by-real-time-tracking-of-operation-and-equipment-status/. [Accessed:

27- Apr- 2017].

[13] A. Latcher and MITRE Corporation, "Autonomy & Transportation: Addressing Cyber-

Resiliency Challenges", NIST Information Security and Privacy Advisory Board, 2015.

//chapter2

[14] CAN in Automation, "History of the CAN technology", Can-cia.org, 2017. [Online].

Available: https://www.can-cia.org/can-knowledge/can/can-history/. [Accessed: 04- Apr- 2017].

[15] "CANopen - Applications", Canopen.us, 2017. [Online].

Available:http://www.canopen.us/applications. [Accessed: 08- Apr- 2017].

[16] "CANaerospace - Designed to fly.", Stockflightsystems.com, 2017. [Online]. Available:

http://www.stockflightsystems.com/canaerospace.html. [Accessed: 08- Apr- 2017].

[17] "Understanding SDS, DeviceNet Protocol and Can Kingdom", Kvaser, 2017. [Online].

Available: https://www.kvaser.com/sds-devicenet-can-kingdom/. [Accessed: 08- Apr- 2017].

[18] "Antilock braking systems (ABS) - Active safety features", Brainonboard.ca, 2017. [Online].

Available: http://brainonboard.ca/safety_features/active_safety_features_ abs.php. [Accessed: 08-

Apr- 2017].

[19] “Sistemas de Comunicaçaõ CAN FD Modelamento por Software e Análise Tempora”,

Teses.usp.br, 2014.[Online- Master Dissertation].Available:http://www.teses.usp.br/

teses/disponiveis/3/3140/tde-06082015-111553/pt-br.php. [Accessed: 07-Sept- 2016].

[20] Mucevski, Kiril. "Automotive CAN Bus System Explained". www.linkedin.com. 2015.

[Online]. Available:https://www.linkedin.com/pulse/automotive-can-bus-system- explained-kiril-

mucevski.[Accessed: 22-Sept-2016].

[21] “CANAuth - A Simple, Backward Compatible Broadcast Authentication Protocol for CAN

bus”, Esat.kuleuven.be, 2011.[Online- Article].

Available:https://www.esat.kuleuven.be/cosic/publications/article-2086.pdf. [Accessed: 13-Oct-

2016].

65

[22] Di Natale, Marco. "Understanding And Using The Controller Area Network". Springer.com.

2017.[Online]. Available:http://www.springer.com/us/book/9781461403135. [Accessed: 21-Nov-

2016].

[23]“Understanding CAN with Flexible Data-Rate (CAN FD)”, National Instruments, 2014.

[Online]. Available:http://www.ni.com/white-paper/52288/en/. [Accessed: 11-Nov- 2016].

[24] Chapal, Md. "Amplitude Shift Keying (ASK) Modulation".Technoeverywhere.

blogspot.com.2017.[Online].Available:http://technoeverywhere.blogspot.com/2011/05/amplitude-

shift-key-ask-modulation.html. [Accessed: 12-Oct-2016].

[25] "Transient State And Steady State Response Of Control System". Electrical4u.com. 2017.

[Online].Available:https://www.electrical4u.com/transient-state-and-steady-state-response-of-

control-system/. [Accessed:16-Jan-2017].

//chapter3

[26] I. Mohor, "CAN Protocol Controller", Opencores.org, 2002. [Online]. Available: https://open

cores.org/project,can. [Accessed: 27- Apr- 2017].

//chapter4

[27]“CANbus Connector Part Information”, Wiring Systems and Power Management Manual,

2007.[Book]. [Accessed: 19-Sept- 2016].

[28]"Canopen Network CAN Bus Cabling Guide". Copleycontrols.com.[Online].

Available:http://www.copleycontrols.com/Motion/pdf/CAN-Bus.pdf. [Accessed: 15 -Mar- 2017].

[29]"Saleae Logic. The Logic Analyzer You'll Love To Use.". Saleae.com. [Online].

Available:https://www.saleae.com/. [Accessed: 14-Feb- 2017].

[30] Wang, Dafang et al. "Research On Reflection Of CAN Signal In Transmission Line".

Ieeexplore.ieee.org. 2008. [Online]. Available:http://ieeexplore.ieee.org/document/4456406/.

[Accessed:19-Jan-2016].

[31] "Controller Area Network Physical Layer Requirements". www.ti.com. 2008. [Online].

Available:http://www.ti.com/lit/an/slla270/slla270.pdf. [Accessed: 25-Feb- 2017].

[32] "Sn65hvd23x 3.3-V CAN Bus Transceivers". www.ti.com. 2015. [Online]. Available:

http://www.ti.com/lit/ds/symlink/sn65hvd233.pdf. [Accessed: 14-Feb-2017].

66

[33] "Low-Pass Filters | Filters | Electronics Textbook". Allaboutcircuits.com. [Online].

Available: https://www.allaboutcircuits.com/textbook/alternating-current/chpt-8/low-pass-

filters/.[Accessed: 6-Nov-2016].

[34] "What Is The Maximum Cable Length For A CAN Bus?". Digital.ni.com. 2016. [Online].

Available:http://digital.ni.com/public.nsf/allkb/D5DD09186EBBFA128625795A000FC025.

[Accessed: 13-Feb-2017].

67

Appendices

Appendix A: Verilog Code & MATLAB Commands

Figure A1: Matlab Snippet for Importing, Plotting and Comparing Various Nodes’ Data_H Signal

68

Figure A2: An overall hierarchy of modules and submodules

69

Figure A3: The CANbox2SPI module, containing the CANbox and SPI_BOX

Figure A4: The CANbox outer assembly; our base2CAN node

70

Figure A5: The wiring of submodules within the SPI_BOX

Figure A6: An example of the CAN control module, including signals and logic

71

Figure A7: Arduino Mini Code- CAN node Measurement Tool

72

Appendix B: Relevant Figures and Tables

Figure B1: FPGA- Digilent NEXYS3 Xilinx Board

73

Figure B2: Raspberry Pi 3 Model B with CAN Shield Connected

Table B1: Length Specifications for a CANbus Network [34]

	Worcester Polytechnic Institute
	Digital WPI
	April 2017

	Encoding and Physical Study of the CANbus Sensor Network
	Anna Celeste Hernandez
	Klaudia Linek
	Repository Citation

	tmp.1535548689.pdf.IqsTg

