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Abstract— This paper proposes a hybrid Newton-Raphson 

and genetic algorithm for the estimation of double cage induction 

motor parameters from commonly available manufacturer data. 

The hybrid algorithm was tested on a large data set of 6,380 IEC 

and NEMA motors and then compared with a baseline Newton-

Raphson algorithm. The simulation results show that while the 

proposed hybrid algorithm is more computationally intensive, it 

does make significant improvements to convergence and error 

rates. 
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I.  INTRODUCTION 

The equivalent circuit parameters of induction motors are 
often required in dynamic power system studies, particularly 
for motor starting simulations. However typically, the only 
motor data available to the user is from brochures or 
manufacturer data sheets and rarely are the full equivalent 
circuit parameters supplied. Furthermore, most simulation 
software packages employ a motor model with constant 
parameters applicable over the full range of slip values. But in 
reality, the equivalent circuit parameters of a motor are not 
constant and depend on a number of factors, e.g. slip, 
temperature, saturation, etc [1] [2]. Therefore, in order to use 
simulation software, it is necessary to estimate constant 
parameters such that the calculated performance 
characteristics (e.g. breakdown torque, locked rotor current, 
etc) fairly closely matches the data supplied by the 
manufacturer. 

Over the years, a number of motor parameter estimation 
algorithms have been proposed (for example, [6], [1], [2], [7] 
and [4]). The de facto standard that has emerged from the 
literature, and which has been adopted by the majority of 
commercial software packages, is to use an algorithm based 
on the Newton-Raphson approach. 

In this paper, the standard Newton-Raphson approach is 
extended by combining it with a genetic algorithm to estimate 
two parameters that the Newton-Raphson algorithm by itself 
cannot. The new hybrid algorithm is then tested on a large 
data set of 6,380 motors taken from the EURODEEM and 
MotorMaster databases [10]. The results are compared with a 

baseline Newton-Raphson algorithm in terms of convergence 
and average squared errors.  

II. DOUBLE CAGE INDUCTION MOTOR MODEL 

It has been previously shown that the single cage model is 
insufficient to capture both the starting and breakdown torque 
characteristics of a squirrel-cage induction motor without 
introducing significant errors [3]. The double cage model is 
therefore more appropriate to represent the full torque-speed 
characteristics of a motor with a single set of constant 
parameters.  

The steady-state, double cage equivalent circuit model 
shown in Figure 1 is used in this paper with eight slip-
invariant parameters valid over the full range of slip values 
(i.e. from 0 to 1 pu). 

 

Fig. 1. Double cage motor equivalent circuit (eight parameter model) 

In the equivalent circuit, the inner cage leakage reactance 
𝑋𝑟1 is always higher than the outer cage leakage reactance 𝑋𝑟2 
but the outer cage impedance is typically higher than the inner 
cage impedance on starting. These conditions can be resolved 
by including the following two inequality constraints in the 
model [4]: 

𝑋𝑟1 > 𝑋𝑟2 

𝑅𝑟2 > 𝑅𝑟1 

In order to estimate motor efficiency, the core (and 
mechanical) losses also need to be included in the model. For 
simplicity, the core (and mechanical) losses are represented as 
a single shunt resistance 𝑅𝑐 at the input of the equivalent 
circuit [5]. 
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III. PARAMETER ESTIMATION PROBLEM 

FORMULATION 

The characteristics of an induction motor are normally 
provided by manufacturers in the form of a standard set of 
performance parameters, with the following being amongst the 
most common: 

• Nominal voltage, 𝑈𝑛 (V) 

• Nominal frequency, 𝑓 (Hz) 

• Rated asynchronous speed, 𝑛𝑓𝑙 (rpm) 

• Rated (stator) current, 𝐼𝑠,𝑓𝑙 (A) 

• Rated mechanical power, 𝑃𝑚,𝑓𝑙 (kW) 

• Rated torque, 𝑇𝑛 (Nm) 

• Full load power factor, cos𝜙𝑓𝑙   (pu) 

• Full load efficiency, 𝜂𝑓𝑙 (pu) 

• Breakdown torque, 𝑇𝑏 / 𝑇𝑛 (normalised) 

• Locked rotor torque, 𝑇𝑙𝑟  / 𝑇𝑛 (normalised) 

• Locked rotor current, 𝐼𝑙𝑟  / 𝐼𝑠,𝑓𝑙 (pu) 

 

While all of the parameters in this set can be used in the 
estimation procedure, there are only six independent 
magnitudes that can be formed from them: 𝑃𝑚,𝑓𝑙, 𝑄𝑓𝑙 , 𝑇𝑏 , 𝑇𝑙𝑟 , 

𝐼𝑙𝑟  and 𝜂𝑓𝑙 [4]. Refer to Appendix 1 for details on the 

relationships between the parameters and how these six 
independent magnitudes are calculated from the equivalent 
circuit model. 

The six independent magnitudes can be used to formulate 
the parameter estimation in terms of a non-linear least squares 
problem, with a set of non-linear equations of the form 
𝑭(𝒙) = 𝟎: 

𝑓1(𝒙) = 𝑃𝑚,𝑓𝑙 − 𝑃(𝑠𝑓) = 0  (1) 

𝑓2(𝒙) =  𝑄𝑓𝑙 − 𝑄(𝑠𝑓) = 0  (2) 

𝑓3(𝒙) =  𝑇𝑏 − 𝑇(𝑠𝑚𝑎𝑥) = 0  (3) 

𝑓4(𝒙) =  𝑇𝑙𝑟 − 𝑇(𝑠 = 1) = 0  (4) 

𝑓5(𝒙) =  𝐼𝑙𝑟 − 𝐼(𝑠 = 1) = 0  (5) 

𝑓6(𝒙) =  𝜂𝑓𝑙 − 𝜂(𝑠𝑓) = 0  (6) 

 

Where  𝑭(𝒙) = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6) and 

  𝒙 = (𝑋𝑠, 𝑋𝑚, 𝑅𝑟1, 𝑋𝑟1, 𝑅𝑟2, 𝑅𝑐 ) 

 

In the formulation above, we have six independent 
equations, but eight unknown parameters (since 𝑅𝑠 and 𝑋𝑟2 
are not part of the solution vector 𝒙). 

 

IV. BASELINE NEWTON-RAPHSON ALGORITHM 

The Newton-Raphson (NR) algorithm proposed by Pedra 
in [5] is used as the baseline algorithm in this paper. This 
algorithm was selected because of its completeness, numerical 
accuracy and robustness compared to previously proposed 
methods (for example, in [6], [1] and [2]). Furthermore, the 
algorithm can be applied using commonly available 
manufacturer data, whereas other algorithms require more 
detailed data that may not be readily available. 

The NR algorithm is an iterative method where each 
iteration is calculated as follows: 

 

𝒙𝑘+1 = 𝒙𝑘 − ℎ𝑛 𝑱−1𝑭(𝒙𝑘)  (7) 

 

Where  𝒙𝑘+1 is the solution at the (𝑘 + 1)th iteration 

  𝒙𝑘 is the solution at the 𝑘-th iteration 

  ℎ𝑛 is the step-size coefficient (more on this later) 

  𝑱 is the Jacobian matrix evaluated with 𝒙𝑘 

 

The Jacobian matrix 𝑱 has the general form: 

 

𝑱 =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥6

⋮ ⋱ ⋮
𝜕𝑓6

𝜕𝑥1

…
𝜕𝑓6

𝜕𝑥6]
 
 
 
 

 

 

For systems where it is impractical to compute the exact 
partial derivatives analytically, a numerical approximation 
may be used with finite difference equations: 

 

𝜕𝑓𝑖

𝜕𝑥𝑗
≈

𝑓𝑖(𝒙+𝜹𝑗ℎ)−𝑓𝑖(𝒙)

ℎ
  (8) 

 

Where  𝜹𝑗 is a vector of zeros with a single non-zero value of 

1 at the j-th element 

  ℎ is a constant of very small absolute value (i.e.  

  1 × 10−5 is used in this paper. 

 

A. Linear Restrictions 

It was noted earlier that there are eight unknown 
parameters but only six independent equations. Therefore, the 
non-linear system is underdetermined. In order to make the 
system solvable, the values of 𝑅𝑠 and 𝑋𝑟2 need to either be 
fixed (i.e. assumed to be known) or calculated from 
relationships with other parameters. 



 

 
In the baseline algorithm, Pedra proposes imposing the 

following linear restrictions [4]: 

 

𝑅𝑠 = 𝑘𝑟𝑅𝑟1  (9) 

𝑋𝑟2 = 𝑘𝑥𝑋𝑠  (10) 

 

Where 𝑘𝑟 = 0.5 and 𝑘𝑥 = 1 are the constants suggested in [5]. 

 

B. Parameter Constraints 

The inequality constraints of the double cage model 
(𝑋𝑟1 > 𝑋𝑟2 and 𝑅𝑟2 > 𝑅𝑟1) can be implicitly included into the 
formulation by a simple change of variables [4]: 

𝑥1 = 𝑅𝑟1 

𝑥2 = 𝑅𝑟2 − 𝑅𝑟1 

𝑥3 = 𝑋𝑚 

𝑥4 = 𝑋𝑠 

𝑥5 = 𝑋𝑟1 − 𝑘𝑥𝑋𝑠 

𝑥6 = 𝑅𝑐 

Furthermore, only the absolute values of the parameter 
estimates are used to ensure that no negative parameters are 
estimated. 

 

C. Initial Conditions 

The initial parameter estimates are selected as follows 
based on [4]: 

𝑅𝑟1 =
𝑈𝑛𝑠𝑓

𝑃𝑚,𝑓𝑙

 

𝑋𝑚 =
𝑈𝑛

𝑄𝑓𝑙

 

𝑋𝑠 = 0.05𝑋𝑚 

𝑅𝑠 = 𝑘𝑟𝑅𝑟1 

𝑅𝑟2 = 5𝑅𝑟1 

𝑋𝑟1 = 1.2𝑋𝑠 

𝑋𝑟2 = 𝑘𝑥𝑋𝑠 

𝑅𝑐 = 10 

 

D. Limitations of the Newton-Raphson Algorithm 

In the NR algorithm, linear restrictions are imposed on 𝑅𝑠 
and 𝑋𝑟2 in order to make the underdetermined system of 
equations solvable. It was shown in [8] that the double cage 
model with core losses has 8 minimum independent variables 
(MIVs). Therefore, by constraining 𝑅𝑠 and 𝑋𝑟2 with linear 
restrictions, we are also constraining the solution space by two 
degrees of freedom. Thus without the linear restrictions, a 

solution could potentially exist to an otherwise non-
converging problem. 

 

V. PROPOSED HYBRID ALGORITHM 

The proposed hybrid algorithm attempts to overcome the 
limitations of the NR algorithm by applying an evolutionary 
method (i.e. a genetic algorithm) to select 𝑅𝑠 and 𝑋𝑟2 In other 
words, the baseline Newton-Raphson algorithm is run with 
fixed values for 𝑅𝑠 and 𝑋𝑟2 which are in turn iteratively 
selected using a genetic algorithm in an outer loop. A 
flowchart of the proposed hybrid algorithm is shown in Figure 
2. A more detailed description of the proposed algorithm 
follows. 

Genetic algorithms can be binary coded where the solution 
paramaters are quantized into binary strings (for example, in 
[9]). However, the equivalent circuit parameters in a motor are 
continuous parameters and not naturally quantized. Thus, 
binary coding necessarily imposes limits on the precision of 
the parameters (i.e. due to the chosen length of the binary 
string). For this reason, a continuous parameter genetic 
algorithm is used instead. 

An initial population of 𝑛𝑝𝑜𝑝estimates for 𝑅𝑠 and 𝑋𝑟2 are 

randomly sampled from a uniform distribution with upper and 
lower limits as shown in Table I. Each pair of estimates is 
referred to as a member of the population. 

TABLE I.  RANGE OF INITIAL PARAMETER ESTIMATES 

Parameter 
Range of Initial Estimate 

Lower Bound Upper Bound 

𝑅𝑠  0 0.15 

𝑋𝑟2  0 0.15 

 

The NR algorithm is then run on each member of the 
population. The fitness of each member (in terms of the 
squared error 𝑭′𝑭) is calculated and ranked. The lowest fitness 
members are discarded and the rest are retained to form the 
mating pool for the next generation (there are 𝑛𝑝𝑜𝑜𝑙 members 

in the mating pool). 

The fittest 𝑛𝑒 members in the mating pool are retained for 
the next generation as elite children. Of the remaining 𝑛𝑝𝑜𝑝 −
 𝑛𝑒 children to be created for the next generation, 𝑐𝑓% will be 

produced by crossover and the rest (1 − 𝑐𝑓)% by mutation. 

The proportion 𝑐𝑓 is called the crossover fraction. 

1) Crossover: in the crossover process, two members of 

the mating pool are randomly selected and combined by taking 

a random blend of each member's parameters, e.g. the 

crossover of parameter 𝑅𝑠: 

 

𝑅𝑠,𝑐ℎ𝑖𝑙𝑑 = 𝛼𝑅𝑠,𝑝𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝛼)𝑅𝑠,𝑝𝑎𝑟𝑒𝑛𝑡2 (11) 

 

Where 𝛼 is a random variable selected from a uniform 

distribution over the interval [0,1]. 

 



 

 
 

 

Fig. 2. Flowchart for hybrid algorithm 

 

 

 

 
 

2) Mutation: in the mutation process, a member of the 

mating pool is randomly selected and its parameters are 

mutated by adding Gaussian noise with standard deviations of 

0.01. 

 
The NR algorithm is then run for the next generation of 

estimates for 𝑅𝑠 and 𝑋𝑟2. The fitness is calculated and the 
process repeats itself for 𝑛𝑔𝑒𝑛 generations. If at any point 

during the process the NR algorithm converges, then the 
hybrid algorithm stops and selects the parameter estimates 
from the converged NR algorithm as the solution. Otherwise, 
the parameter estimates yielding the best fitness after 𝑛𝑔𝑒𝑛 

generations are selected. 

The default settings for the hybrid algorithm implemented 
in this paper are shown in Table II. 

TABLE II.  DEFAULT SETTINGS FOR HYBRID ALGORITHM 

Setting Setting Description Default Value 

𝑛𝑝𝑜𝑝 Population of each generation 15 

𝑛𝑝𝑜𝑜𝑙 Number of members in the mating pool 10 

𝑛𝑒 Number of elite children 2 

𝑐𝑓 Crossover fraction 80% 

𝑛𝑔𝑒𝑛 Maximum number of generations 10 

 

VI. COMPUTER SIMULATION 

The baseline NR and proposed hybrid algorithms were 
tested on a large data set from the EuroDEEM and 
MotorMaster databases (version 1.0.17 - 4 April 2007) with a 
mixture of IEC and NEMA type motors [10]. From the 
original set, the motor data was conditioned by eliminating 
duplicate records, removing motors without power factor, 
efficiency or torque data and removing motors with strange or 
inconsistent data (e.g. full load torque greater than breakdown 
torque, asynchronous speed greater than synchronous speed, 
etc). After data cleansing, the final data set consisted of 
motors with nominal ratings from 0.37kW to 1000kW, and the 
following total quantities: 

• 4,002 IEC 50Hz motors 

• 2,378 NEMA 60Hz motors 

 

A. Simulation Results 

Table III shows the results of the simulations performed on 
both the IEC and NEMA motor data set. The results present 
the rates of convergence and average squared errors of the 
proposed hybrid algorithm compared with the baseline NR 
algorithm. 

It can be seen from Table III that the proposed hybrid 
algorithm significantly outperforms the baseline NR 
algorithm, both in terms of convergence rates and squared 
errors. In the IEC data set, the convergence rate is almost 
doubled when using the hybrid algorithm, while in the NEMA 
data set, there is a 54% improvement.  



 

 

TABLE III.  SIMULATION RESULTS FOR BASELINE NR AND HYBRID ALGORITHMS 

Case 

IEC Motors NEMA Motors 

Convergence 
Average Squared 

Error 
Convergence 

Average Squared 

Error 

Baseline NR algorithm, 𝑘𝑟 = 0.5, 𝑘𝑥 = 1 685 (17.1%) 0.5411 751 (31.6%) 0.2514 

Hybrid Algorithm 1363 (34.1%) 0.0625 1159 (48.7%) 0.0282 

 

 

The average squared errors in the hybrid algorithm are 8.7 
and 8.9 times lower than the baseline NR algorithm for the 
IEC and NEMA data sets respectively.  

There is a computational cost for the improvement in 
performance since the hybrid algorithm is considerably more 
computationally intensive than the baseline NR algorithm. 
This is because the evolutionary part of the hybrid algorithm 
must run the NR algorithm multiple times for each generation. 
For example, based on the default settings as shown in Table 
II the hybrid algorithm may have to perform up to  
𝑛𝑝𝑜𝑝  × 𝑛𝑔𝑒𝑛 = 10 × 15 = 150 NR algorithms. This would 

occur in the worst case condition when the hybrid algorithm 
fails to converge. Nevertheless, as motor parameter estimation 
for the purpose of system studies is not a particularly time-
critical task, then perhaps algorithm performance is a much 
larger driver than computational burden and run time. 

In this paper, the default criteria for convergence (i.e. error 
tolerance) is a squared error value of 1 × 10−5. When the 
criterion for convergence is relaxed, one would expect a 
corresponding increase in the convergence rate and this is in 
fact what is observed in the results. Figures 3 and 4 show the 
convergence rate as a function of the error tolerance for IEC 
and NEMA motors respectively. As expected, convergence 
rates increase as the error tolerance is also increased. The 
slope of the curve is relatively flat until the error tolerance is 
increased to 1 × 10−3. Note also that the hybrid algorithm 
outperforms the baseline NR algorithm in all cases. 

 

VII. CONCLUSION 

In this paper, a new hybrid algorithm for motor parameter 
estimation was proposed and compared against a baseline 
Newton-Raphson algorithm. Both algorithms were tested on a 
data set comprising 6,380 IEC and NEMA motors.  

When the baseline Newton-Raphson parameter estimation 
algorithm was applied to the data set, it was found that the 
algorithm had poor convergence properties (17.1% of IEC 
motors and 31.6% of NEMA motors converged). But by 
adopting the proposed hybrid algorithm, significant 
improvements were made to both the algorithm's convergence 
(34.1% of IEC motors and 47.1% of NEMA motors) and 
average squared error. However, the drawback with the hybrid 
algorithm is that it is considerably more computationally 
taxing. 

 

 

 

 

 

Fig. 3. Convergence rate versus error tolerance plot for IEC motors 

 

 

Fig. 4. Convergence rate versus error tolerance plot for NEMA motors 

 

 

 

 

 

 

 



 

 
 

APPENDIX 1: DOUBLE CAGE MODEL EQUATIONS 

 

Stator and rotor currents at slip s can be readily calculated 

from the equivalent circuit (for example, see [6]). The per-unit 

torque can be calculated from the rotor currents as follows: 

 

𝑇(𝑠) =
𝑅𝑟1

𝑠
𝐼𝑟1
2 +

𝑅𝑟2

𝑠
𝐼𝑟2
2  

 

Quantities for per-unit active power, reactive power and power 

factor can be calculated as follows: 

 

𝑆(𝑠) = 𝑈𝑛𝐼𝑠(𝑠)
∗ 

 

𝑃(𝑠) = 𝑇(𝑠)(1 − 𝑠) 

 

𝑄(𝑠) = ℑ𝔪{𝑆(𝑠)} 
 

cos 𝜙(𝑠) =
ℜ𝔢{𝑆(𝑠)}

‖𝑆(𝑠)‖
 

 

Synchronous speed and per-unit slip is calculated as follows: 

 

𝑛𝑠 =
120𝑓

𝑝
 

 

𝑠𝑓 = 1 −
𝑛𝑓𝑙

𝑛𝑠

 

 

Calculating the slip at maximum torque 𝑠𝑚𝑎𝑥 is found by 

solving the equation: 

 

𝑑𝑇

𝑑𝑠
= 0 

 

And under the condition that the second derivative  
𝑑2𝑇

𝑑𝑠2 < 0. In the double cage model, the solution to this 

equation is not trivial and it is more convenient to use an 

estimate, e.g. based on an interval search between 𝑠 = 0 and 

𝑠 = 0.5. 
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