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Abstract—Phishing is a form of online fraud with drastic
consequences for the victims and institutions being defrauded.
A phishing attack tries to create a believable environment for
the intended victim to enter their confidential data such that
the attacker can use or sell this information later. In order to
apprehend phishers, law enforcement agencies need automated
systems capable of tracking the size and scope of phishing attacks,
in order to more wisely use their resources shutting down the
major players, rather then wasting resources stopping smaller
operations. In order to develop these systems, phishing attacks
need to be clustered by provenance in a way that adequately
profiles these evolving attackers. The research presented in this
paper looks at the viability of using automated conceptual
analysis through cluster analysis techniques on phishing websites,
with the aim of determining provenance of these phishing attacks.
Conceptual analysis is performed on the source code of the
websites, rather than the final text that is displayed to the user,
eliminating problems with rendering obfuscation and increasing
the distinctiveness brought about by differences in coding styles of
the phishers. By using cluster analysis algorithms, distinguishing
factors between groups of phishing websites can be obtained.
The results indicate that it is difficult to separate websites by
provenance without also separating by intent, by looking at
the phishing websites alone. Instead, the methods discussed in
this paper should form part of a larger system that uses more
information about the phishing attacks.

I. INTRODUCTION

A phishing attack is an attempt by an attacker, the phisher,
to obtain confidential information from a victim, such as
passwords or bank account details. Phishing attacks generally
target users of online financial systems, although recent infor-
mation has indicated that phishing attacks are now used to get
passwords to critical systems such as government or industrial
machines.

Estimates on the damage of phishing widely vary, and while
recent work in [10] indicate that while previous estimates of
billions of losses [5] due to phishing are probably overes-
timates there are hidden costs such as damage to branding
of attacked companies (which can be incorrectly blamed for
phishing attacks against them) and more generally, losses that
occur from a general lack of trust in conducting business
and banking online. These losses are hard to estimate, but
indicate that phishing is a problem that delves deeper then

initial monetary losses, which were estimated in [10] to be
approximately $US61 million per year.

A phishing attack often has two major elements, an email
and a website. The aim of the email is to convince the victim to
navigate to the website, while the website’s role is to have the
victim enter their confidential information, at which point the
information is saved. Much work has been done previously
on the categorization and filtering of both the websites and
the emails [21], [2]. This research is critical to the guarding
of intended victim’s data, however new methods of detecting
phishing emails results in new methods of circumventing those
detection systems, creating an arms race between phishers and
anti-phishers. Another addition to the anti-phishing problem is
that many users see security as a secondary goal [26], which
lessens their awareness of security issues such as phishing.
Many users are also unaware of the technical information
surrounding the Internet based systems that they use, allowing
phishers to exploit weaknesses in knowledge such as creating
websites that appear legitimate in order to instill false trust in
their victims [6], [12]. One example is the use of a picture
with the SSL ‘lock’ logo, which can be easily faked when
placed in the content of the webpage as a simple image rather
than in the browser as an indicator.

While each element of a phishing attack can be directly
linked to an IP address, phishers often employ means so that
these IP addresses cannot be traced back directly to them.
Botnets are often used [17], which distribute the attack across
a wide range of computers (and therefore, a wide range of IP
addresses) and control of these botnets is often sold, allowing
the phishers responsible for the attacks to remain hidden
behind the wall of protection that a botnet provides. Botnets
also use evasive measures, such as continually changing the
DNS location of the source of an attack, a technique known as
fast flux [11]. Therefore a deeper analysis of the information is
required in order to determine provenance. Research discussed
in [16] used features such as the structure of the phishing site
and the fields of the phishing emails to discover that in their
dataset, just three identifiable groups were responsible for 86%
of attacks. This research provided a great insight into phishing
attacks, and hopefully this process can be automated so that
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these features can be automatically extracted.
Other related work in forensic analysis of email messages

was discussed in [25], where data mining was used to find
links in spam messages. These results interested LEAs, as
some of the clusters found had high levels of confidence,
linking spam messages that were previously not linked by
human investigators. These results used a manually selected
set of features, such as the length of the body of the email or
the sending IP address. This provides a problem in tracking
an evolving enemy, as if the spammers change their habits
to overcome these known discriminating features, than new
features need to be selected as old features become ineffective.
One of the challenges of the research here is to provide
a method for automatically finding these features, so that
profiling systems can evolve as the phishers do.

Despite the great deal of effort by researchers and gov-
ernments, the apprehension rate of phishers remains low. The
reasons for this vary, but are generally related to the anonymity
granted by the Internet, in which it can be difficult for a
knowledgeable target to be tracked online, and also by the bor-
derless Internet, where the laws and law enforcement agencies
(LEAs) of the victim’s country are powerless in the attacker’s
country. To help LEAs better identify and apprehend offenders,
automated systems need to be set up that can take regular
information and provide starting points for investigations to
begin. LEAs are unlikely to spend resources chasing a small
number of phishing attacks [20], as the expended resources
would far outweigh the gains from chasing down the phisher.

The methods used in this research are not just important
in dealing with phishing attacks but could also be used to
deal with the more general problem of email spam, such as
finding automated methods to replicate the work in [25]. The
processes in this paper could also be extended to deal with
authorship issues such as finding and dealing with ‘blog spam’
where stories are copied from credible websites and put on
another blog to generate ad revenue and could also be used to
help determine authorship in legal disputes. This would help
individuals and corporations protect their intellectual property
against an increasing problem of copyright violations.

To date, there is no research the authors are aware of that
focuses on clustering the websites used in phishing attacks to
determine provenance, with research on phishing focusing on
either the detection or prevention of phishing attacks against
end users. This investigation hopes to determine whether this
lack of research is justified, or whether a significant gap exists
that could be exploited to help group phishing attacks together.
Therefore, the main purpose of this research is to investigate
the potential application of conceptual analysis on phishing
websites in order to cluster phishing attacks by provenance.

II. RELATED RESEARCH

A. Text based clustering
Cluster analysis techniques are often used to identify themes

and patterns in text based documents, which includes websites.
There has been a wide range of research on performing
cluster analysis on text based documents including clustering

blog entries to find ‘hot stories’ [19], finding clusters to aid
web searching [27] and finding new genres appearing on the
Internet [24]. One classic example of clustering text based
documents is in [15] in which a thesaurus as developed by
clustering words based on corpus data.

The most prevalent method of text based clustering starts
with the bag-of-words model ([13]), where the order of words
in a document is ignored and instead replaced with a vector
of word frequency counts. While simple, this method has
been shown to perform very well against more complicated
document models. One common method of improving on
the standard bag-of-words model is to use term frequency-
inverse document frequency (TF-IDF, discussed in [23]),
which weights rare words appearing in documents more heav-
ily then common words appearing in many documents.

One drawback of the bag-of-words model, and of many
models of text based documents, is the high dimensionality of
the resulting space. It is not uncommon for the bag-of-words
model to have a dimensionality in the thousands, causing
practical problems for many clustering algorithms that have
complexities based exponentially on the number of dimensions
of the instance space. Another problem is due to a finding
in [3] that as the dimensionality of a problem increases, the
distances between points becomes very similar, which causes
problems when clustering algorithms are trying to clusters
instances based on their similarity to each other.

One common method to overcome the problem of dimen-
sionality is to use dimension reduction techniques such as
Principal Component Analysis (PCA) which finds the top
‘feature vectors’, which are the set of orthogonal vectors that
account for the majority of the variance in the data. It is
common for these techniques to reduce the vector space by
orders of magnitude while maintaining a similar accuracy to
the original model. The practical benefits of being able to
document large corpus’s of data in a smaller time often out-
weighs the small gains by using the full instance space. PCA
was used in [14] to speed up the training of support vector
machines (SVM) and found that SVM was invariant under the
PCA transformation, and was able to use the dimensionality
reduction through PCA to speed up the evaluation of SVM by
an order of magnitude while maintaining comparable accuracy,
highlighting the effectiveness of this technique.

In some instances, one drawback of PCA and of reducing
the number of attributes in a dataset by feature creation is
that distances between objects are often preserved, the issue
of ambiguous distances, albeit in a lower dimensional space
[18]. Subspace clustering algorithms overcome this problem
by finding clustering is specific subspaces of the full set of
attributes. Often clusters exist in these subspaces that are
not considered clusters in higher dimensional spaces due to
the fact that unnecessary attributes or noisy attributes skew
the overall density in the regions where these clusters would
otherwise exist. In this research both dimensional reduction
via PCA and also subspace clustering is used to examine if
either method is more suited for this task.



B. Phishing Profiling
Profiling was identified in [4] as ‘a technique whereby a

set of characteristics of a particular class of person is inferred
from past experience, and data-holdings are then searched for
individuals for close fit to that set of characteristics’. In this
research, this definition is used to infer that if one website
portrays traits very similar to another website, and those traits
are not universal, then the two are likely to be linked by
the same class of author, either because they have the same
author or they were developed in the same way, suggesting
provenance.

To date, there has been little research into profiling the orga-
nizations behind phishing. As a result, criminal investigations
have been reluctant to track down phishers because of the
unknown size of many of these operation. It is difficult to
justify the costs of tracking down phishers for law enforcement
agencies (LEAs) if the size of the impact is not known prior
to the outlay of resources. However through using forensic
and data mining techniques, it was found in [16] that there
was a ‘level of organization in phishing attacks’ and that three
groups were responsible for around 86% of all offenses for one
major financial institution. Research such as this can provide
information to LEAs that they can use to justify the resource
spending, to provide a better return on investment for their
investigations.

One other benefit to profiling phishers is to develop methods
to discourage more people from becoming phishers, such as
developing advertising campaigns targeted against demograph-
ics more likely to become phishers. If phishing does generally
have poor returns for the individual phisher, then there will be
many people leaving the crime for other forms of income [10].
However if phishing has an appearance of a crime with high
rewards and low risks (as pointed out in [7]), then there will
be plenty of new phishers to take the place of those leaving.
Discouragement against those new entrants would result in
fewer phishers operating, which would be easier to manage
globally by LEAs.

C. Clustering algorithms
Three very different clustering algorithms are used in the

research presented here, in order to present a varied view of
the data.

The first algorithm is an iterative version of the k-means
algorithm [9] with random starting values. For this algorithm,
k begins at a small value (usually 2), and the k-means
algorithm is run a number of times, each time with random
starting clusters. The k-means algorithm is run to train those
starting clusters, to find the best locally optimal clustering for
each of the iterations for each given k value. The value for k
is then incremented and the procedure is repeated until k hits
a predefined upper limit. The best values for k is then decided
using a procedure described in the Methodology.

The second algorithm used in this research is the DBSCAN
method [8], which looks for points which are in dense areas,
i.e. those with ‘many, close’ neighbours. These points are then
assumed to be in a cluster, so other points that are in the same

area of high density are added to the same cluster. DBSCAN
is an automatic method of finding the number of clusters,
which is something that many other clustering algorithms have
trouble with. By focusing on density, rather than number of
clusters, the problem is changed from identifying the number
of clusters, to identifying the concept of density.

The final algorithm used in this research is a subspace
clustering algorithm, CLIQUE ([1]). This algorithm begins
by finding dense intervals in each of the single dimensions,
before iteratively joining these intervals to create dense units
in progressively higher subspaces until no further dense units
can be found. The set of dense units is then partitioned into
clusters, where each unit in a cluster is connected to one
another. In this context, connected is defined as sharing a
common face (the same range in (k− 1) dimensions) or both
being connected to a third unit. This algorithm overcomes
many of the problems of high dimensionality, which were
discussed earlier, but comes at a cost of speed, as many
subspaces must be searched to find clusters.

Each of these algorithms suffer from the problem of free
parameters. DBSCAN has two free parameters, namely the
radius of the neighbourhood and the required density of
this neighbourhood (the number of ‘close’ neighbours). The
iterative k-means algorithm require both a starting and ending
value for the search, namely the number of clusters to look
for. As well as the specified parameters, both k-means and
DBSCAN are non-deterministic, meaning different results can
occur for different randomizations of the process, such as the
data access order for DBSCAN or the initial centroids for
k-means. CLIQUE requires two parameters, the first being
the number of intervals to split each dimension into and the
second being the required density of units to be considered
as ‘dense’ units. One benefit CLIQUE has is that it is a
deterministic algorithm, and the same set of parameters and
dataset will always result in the same model. These values can
not be known in advance, and need to be discovered through
searching the parameter space using either a simple search or
performing some heuristic on the data to find ‘good’ values.
Methods exists for searching such parameter spaces, however a
manual method will be used in this research, with automating
this sub-process differed for further research.

These algorithms were chosen to represent a variety of the
different classes of clustering algorithms While some better
algorithms have been developed since k-means and DBSCAN
were developed for cluster analysis, each of these algorithms
are still widely used for their speed and accuracy, even in
high dimensional data. One final justification for the choice
of algorithms presented is the use of the results as part of
an automated system. Having faster algorithms is certainly
a benefit in online automated systems, as hypothesis testing
needs to be performed quickly, and if these algorithms perform
the task required, there is little reason to use more involved
algorithms. In this case, CLIQUE can provide problems, as
it is known to be slower than both k-means and DBSCAN.
However if CLIQUE can identify attributes that are critical
to finding clusters, this information could be used to select



attributes later on.

III. DATA

The data used for the research presented in this paper is
a collection of the source code of websites obtained from
tracking addresses known to contain phishing websites target-
ing a major Australian financial institution during 2007. This
means that while many of the websites are phishing websites,
there are a majority that are not. There are 24403 instances in
the dataset, which is noisy, containing both phishing websites
and non-phishing websites. There is little sense in cleaning
the dataset to include only phishing websites, as any method
that aims to be automated (as this research is) should be
able to handle dirty data as input. Another benefit is that
the non-phishing websites are often placeholder websites, i.e.
temporary websites put up in place of a phishing website
while the phishing attack is not active. This information could
be used in later research to add information outside of the
conceptual analysis presented here.

The dataset used in this research was derived from the
original data by taking a bag-of-words model on the data
and then applying PCA to that model for feature reduction.
The bag-of-words model had 653 dimensions, which was
reduced to just 17 dimensions after PCA was applied. These
17 dimensions represent the smallest set of dimensions needed
to account for over 90% of the total variance of the initial
dataset.

IV. METHODOLOGY

The reduced dataset from the previous section was clustered
using the previously described DBSCAN and Iterative k-
means algorithms. The parameters for these algorithms is
searched for by running the algorithm with different parame-
ters and investigating the results from each set of parameters,
with the aim of finding parameter values that result in good
models of the data. CLIQUE is run on the bag-of-words model
(the non-reduced dataset of 653 attributes), in order to find
sets of attributes that correspond both to clusters and also to
original words or symbols in the code.

In order to determine the validity of the results, the sil-
houette coefficient [22] was used. This method measures the
ratio of the intra-cluster distance compared to the inter-cluster
distance. The silhouette coefficient has a range of -1.0 to 1.0,
and higher values indicate most distinct clusterings, where the
clusters found and dense and well separated. Negative values
for the silhouette coefficient, indicate a poor clustering where
the clusters are poorly separated and overlapping.

The silhouette coefficient punishes models which underfit
or overfit the data, as the ratio of the distance to an instance’s
cluster is compared to the next closest cluster. If the model
underfits the data, the intra-cluster distance becomes large, and
ultimately the silhouette coefficient drops. Likewise, if the
model overfits the data, the inter-cluster distance drops and
also results in a drop in the silhouette coefficient (although
this does not always happen in practice). Sudden increases
between two similar sets of parameters (such as comparing

a value for k to k + 1 in k-means) indicate that significant
improvement has been observed in the model, such as selecting
a good starting parameter. As the silhouette value becomes
much higher, as the model no longer underfits or overfits
the data. One caveat of this procedure is that the silhouette
coefficient can have many local peaks and troughs. This is
caused by clusterings of different types, such as those found
by hierarchical clusterings. As an example, clustering a variety
webpages using this model might find a few different clusters
that are separated by different language, then by language and
intent of the webpage and finally by provenance.

To verify that the results do separate based on provenance, a
small sample of phishing websites that have been labeled by an
expert in the area will be used as a class attribute for some of
the instances. These labels represent empirical knowledge that
is difficult to quantify and for this reason, it is difficult to gain
larger samples without a prohibitive cost in terms of time. The
sample is of 30 phishing websites from the original dataset,
and have been labeled with an integer class depending on the
assumed phishing group behind the website. The clusterings
have been evaluated using the F-Measure against this sample,
with the goal to achieve scores close to 1.0, indicating that
whenever the empirical knowledge says that the two websites
belong to the phishing group, the websites also appear in the
same cluster. It should be noted that this information was
not used in any way during the training process, only as a
supervised method of evaluation on the trained models.

In this experiment, the goal is to find a model that assigns
provenance of phishing websites rather than complete separa-
tion of different attacks, so a simpler model with a comparable
silhouette coefficient is preferred to an overly complex but
better fitting model. In order to determine this, we search for
a plateau of silhouette values where altering the parameters of
the algorithm (eps and neighbourhood size for DBSCAN, k
for Iterative k-means or the density and interval numbers for
CLIQUE) does not drastically affect the silhouette coefficient,
which usually occurs when the model fits the data well. In
these cases, the bounds of the interval represent the changes
in parameter values that give the greatest improvement, which
indicates that these values result in good models.

V. RESULTS

The results for iterative k-means are given in table I, for
k values between 2 and 40, with 500 iterations of the k-
means algorithm run for each value. The higher values for the
silhouette coefficient were obtained for the lowest k values,
and generally becomes lower as k becomes higher. There
are, however, significant increases in the silhouette coefficient
(probability less than 0.05) at k = 5, 7 or 26. Looking at the
median of the scores, it can be seen that for values of k > 7,
the median silhouette coefficient is just below 0.06, before
increasing quickly for smaller k values. This indicates that
while the data separates very well into two clusters (as this
is the highest silhouette coefficient), 5 ≤ k ≤ 7 clusters are
also apparent in the dataset. A further good separation of the
data occurs with k = 26. At this value, the mean, median and



highest silhouette coefficient is abnormally high, and this is
also indicated by the t-test, testing this value against the value
obtained for k = 27

k Mean Median Max t-test F
2 0.13 0.19 0.7 0.02 0.44
3 0.16 0.15 0.7 0.0 0.44
4 0.12 0.09 0.6 0.47 0.44
5 0.11 0.09 0.5 0.01 0.60
6 0.09 0.07 0.52 0.88 0.60
7 0.09 0.07 0.49 0.0 0.73
8 0.07 0.05 0.42 0.38 0.71
9 0.07 0.06 0.45 0.42 0.53
10 0.08 0.07 0.43 0.24 0.70
11 0.07 0.06 0.39 0.55 0.73
12 0.06 0.05 0.39 0.55 0.87
13 0.07 0.06 0.47 0.88 0.88
14 0.07 0.05 0.44 0.76 0.70
15 0.07 0.07 0.42 0.25 0.81
16 0.06 0.05 0.4 0.11 0.70
17 0.07 0.06 0.4 0.8 0.82
18 0.07 0.06 0.44 0.38 0.88
19 0.07 0.06 0.36 0.38 0.85
20 0.07 0.06 0.35 0.39 0.82
21 0.07 0.05 0.42 0.77 0.84
22 0.06 0.04 0.41 0.89 0.82
23 0.06 0.05 0.35 0.23 0.74
24 0.07 0.06 0.34 0.54 0.86
25 0.07 0.05 0.36 0.22 0.85
26 0.07 0.06 0.44 0.0 0.86
27 0.06 0.04 0.36 0.12 0.81
28 0.06 0.05 0.38 0.1 0.89
29 0.07 0.07 0.4 0.71 0.81

TABLE I
SILHOUETTE COEFFICIENT VALUES AND F-MEASURE SCORES FOR

ITERATIVE k-MEANS

The t-tests in table I are against the null hypothesis that
‘this value for k for k-means produces the same silhouette
coefficient scores as k + 1 does’. Significant results (for a
probability of 0.05) occur at k = 2, 3, 5, 7 and 26. At these
values, strong results are expected, as the model fits the data
better than the next highest k-value, indicating that the data
splits naturally into these numbers of clusters.

The critical information for the DBSCAN parameter search
is presented in table II. There is a significant trade-off between
the silhouette coefficient and the number of instances actually
clustered, as DBSCAN discards any instance without a signif-
icant neighbourhood as noise. If we place the caveat that at
least 50% of the instances must be clustered, the best silhouette
coefficient obtained is 0.89, for a neighbourhood diameter
of 0.015 and minimum points value of 20 and the number
of clusters found for that model is 11. From these results,
it is clear that DBSCAN can model a portion of the data
more accurately than k-means, but has difficulty in modeling a
significant portion of the dataset. The number of clusters found
was typically around 9, with the size of the neighbourhood
(Nsize) value increasing the size of the clusters, rather than
increasing the number of clusters. This strongly suggests that
there is a natural separation of around half of the data into
between 9 and 11 distinct clusters.

CLIQUE found the highest silhouette score out of the three

Nsize s k Noise
0.005 0.95 7.8 17879
0.006 0.95 8.0 17918
0.007 0.97 8.8 17512
0.008 0.94 7.8 18041
0.009 0.95 8.4 16877
0.010 0.95 8.8 16712
0.011 0.91 9.8 15541
0.012 0.92 8.8 15467
0.013 0.90 9.6 15136
0.014 0.86 8.8 14756
0.015 0.88 9.2 13825
0.016 0.84 9.0 12938
0.017 0.85 11.0 11805
0.018 0.80 9.8 11683
0.019 0.81 10.4 10962
0.020 0.77 10.4 10525
0.021 0.77 10.4 10154
0.022 0.78 11.2 9759
0.023 0.79 11.0 9561
0.024 0.77 10.6 9463
0.025 0.78 11.8 8742
0.026 0.78 12.2 8338
0.027 0.76 11.6 8698
0.028 0.76 11.0 8759
0.029 0.77 11.8 8201

TABLE II
SILHOUETTE COEFFICIENT VALUES FOR DBSCAN FOR DIFFERENT
NEIGHBOURHOOD SIZES (Nsize). s, k AND NOISE ARE THE MEAN

SILHOUETTE, NUMBER OF CLUSTERS AND NUMBER OF NOISE INSTANCES
RESPECTIVELY.

algorithms used, as shown in table III. A score of 0.99 was
achieved with a density of 0.02 and 30 intervals per dimension.
CLIQUE is a deterministic algorithm, meaning that these
parameters with this database will always achieve the same
model, however ‘similar’ parameters did not achieve as high
scores, with two exceptions (values of 0.91 and 0.88 were
also recorded). This indicates that CLIQUE is very sensitive
to its input parameters and as it takes a long time to run
on large datasets, it may be difficult to use this algorithm
against an evolving dataset. The parameters might lead to a
good model for this dataset, but a different set of parameters
may be necessary for a slightly different dataset.

Tables I and IV show the F-Measure values using the
empirical knowledge as class labels for sets of parameters
for iterative k-means and DBSCAN respectively. It can be
seen that both models perform well, with DBSCAN having
slightly higher scores for this set of parameters. F-Measure
scores are the harmonic mean of the precision and recall, and
correlate closely to the accuracy of a model. These scores
are quite high for such simple models, indicating that the
model fits the data well (although not perfectly). These results
give a strong indication that the models correlate to real-world
data, although more work needs to be done to increase this
value. Table V shows the same scores for a select number
of CLIQUE parameters. CLIQUE performed badly for most
parameter values, with the key problem being a lack of ability
to cluster the instances. For the parameter models where the
largest number of instances from the labelled dataset were
clustered (21), the performance was poor (0.45), indicating



I d s k

10 0.02 0.43 9
10 0.04 0.28 7
10 0.06 0.21 3
10 0.08 0.18 2
10 0.1 0.52 5
10 0.12 0.04 5
10 0.14 0.29 2
10 0.16 0.32 2
10 0.18 0.13 5
10 0.2 0.05 5
20 0.02 0.91 10
20 0.04 0.47 11
20 0.06 0.51 4
20 0.08 0.26 2
20 0.1 0.37 5
20 0.12 0.22 2
20 0.14 0.45 2
20 0.16 0.12 4
20 0.18 0.19 4
20 0.2 0.14 4
30 0.02 0.99 10
30 0.04 0.5 10
30 0.06 0.88 7
30 0.08 0.2 2
30 0.1 0.35 2
30 0.12 0.02 4
30 0.14 0.07 4
30 0.16 0.03 4
30 0.18 0.05 4
30 0.2 0.15 2

TABLE III
SILHOUETTE COEFFICIENT VALUES FOR CLIQUE FOR DIFFERENT

INTERVAL SEPARATIONS (I ) AND REQUIRED DENSITIES (d).

Points in neighbourhood
eps 10 20 30 40 50

0.010 0.783 0.783 0.783 1.000 1.000
0.020 0.725 0.803 0.803 0.857 0.857
0.030 0.786 0.817 0.786 0.817 0.789
0.040 0.817 0.817 0.817 0.817 0.817
0.050 0.852 0.793 0.793 0.793 0.783
0.060 0.875 0.793 0.800 0.793 0.793
0.070 0.811 0.794 0.794 0.794 0.794
0.080 0.871 0.871 0.794 0.794 0.794
0.090 0.871 0.794 0.794 0.794 0.794

TABLE IV
F-MEASURE SCORES FOR DBSCAN AGAINST EMPIRICAL KNOWLEDGE.

RESULTS ARE CONSISTENT FOR VALUES LESS THAN 0.3.

that the model was not sufficient for this data.

VI. CONCLUSIONS

High scores for the evaluation methods were achieved
overall, indicating that when the parameters were correct, the
models fit the data well. The empirical tests in particular fared
very well, indicating that the models are getting close to being
able to identify existing known clusters in the datasets. The
issue of verifying the other clusters found (to see whether they
correspond to new or different phishing groups), or verifying
the purity of the clusters, remains to be tested, and cannot be
tested using the websites dataset used alone.

I
d 20 30 40

0.020 N/A (0) N/A (0) 1.0 (2)
0.040 0.75 (3) N/A (0) 1.0 (1)
0.060 0.67 (5) 1.0 (1) 0.67 (2)
0.080 0.5 (4) 0.75 (3) 0.63 (4)
0.100 0.5 (4) 0.75 (3) 0.75 (3)
0.120 0.67 (2) 0.75 (3) 0.45 (21)
0.140 0.67 (2) 0.75 (3) 0.45 (21)
0.160 0.68 (5) 0.78 (4) 0.45 (21)
0.180 0.67 (4) 0.78 (4) 0.45 (21)
0.200 0.45 (21) 0.67 (4) 0.45 (21)
0.220 0.45 (21) 0.67 (4) 0.45 (21)
0.240 0.45 (21) 0.67 (4) 0.45 (21)
0.260 0.45 (21) 0.45 (21) 0.45 (21)
0.280 0.45 (21) 0.45 (21) 0.45 (21)
0.300 0.45 (21) 0.45 (21) 0.45 (21)

TABLE V
F-MEASURE SCORES FOR CLIQUE AGAINST EMPIRICAL KNOWLEDGE.
NUMBERS IN BRACKETS ARE THE NUMBER OF INSTANCES FROM THE

LABELLED DATA THAT WERE IDENTIFIED BY THE ALGORITHM

One of the difficulties in this research, as in most un-
supervised data mining, is the problem of initial parameter
values. CLIQUE achieved the highest silhouette value, but
its lack of stability with other parameter values and poor
performance against empirical knowledge indicates that it may
be problematic to rely on this algorithm without some other
way of selecting good parameters for the algorithm. DBSCAN
and iterative k-means both performed well, and their stability
with varying-but-similar parameters indicates that these sim-
pler algorithms can perform better in an automated system due
to their reliability under small change, which is a key issue
with automated systems. While accurate, these models are not
perfect, suggesting that verification is an integral part of using
these algorithms in an automated system, to ensure that no
false assumptions are made about the data.

For these reasons, future work can use the methods shown
here could form a part of a larger system, where the clusters
are verified against independently derived clusters using other
methods such as structural features or forensic analysis, as was
performed by [16]. The ability to cross verify the results, as
well as using cluster ensemble techniques, could prove to be
a powerful way to generate verifiable results in an automated
system. This can be used to verify parameter selection, even
as the datasets evolve over time, and can also be used in a
boosting scenario where the whole is greater than the sum of
the parts.
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