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Abstract

Rootkits are dangerous and hard to detect. A rootkit is malware specifically de-
signed to be stealthy and maintain control of a computer without alerting users
or administrators. Existing detection mechanisms are insufficient to reliably
detect rootkits, due to fundamental problems with the way they do detection.

To gain control of an operating system kernel, a rootkit edits certain parts
of the kernel data structures to route execution to its code or to hide files that it
has placed on the file system. Each of the existing detector tools only monitors
a subset of those data structures.

This MQP has two major contributions. The first contribution is a Red
Team analysis of WinKIM, a rootkit detection tool. The analysis shows my
attempts to find flaws in WinKIM’s ability to detect rootkits. WinKIM monitors
a particular set of Windows data structures; I attempt to show that this set is
insufficient to detect all possible rootkits. The second is the enumeration of
data structures in the Windows kernel which can possibly be targeted by a
rootkit. These structures are those which a detector would have to measure
in order to detect any rootkit. This should facilitate future improvement of
rootkit-detection tools.
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1 Introduction

Rootkits are extremely dangerous and threatening, and their defining charac-
teristic is stealth [6]. A rootkit is malware that tries to maintain administra-
tor/superuser privileges on a computer, while hiding the fact that the computer
is compromised. Rootkits do this by manipulating the kernel of the infected ma-
chine so that it reports incorrectly about parts of the kernel where the malware
resides. The state of the art in detection of this sort of stealth is insufficient
and the situation is biased strongly in favor of the attackers. A clever rootkit
author can create rootkits that are practically impossible to detect except with
great resources and the manual effort of experts.

Most currently-deployed detection techniques use signatures. This is where
software scans the contents of the computer, searching for traces of already
known malware, which has been previously reported and studied. This is a
major flaw, because it is then impossible to detect so-called “zero-days”, when
a rootkit is first released into the wild. Rootkits are not prevented from infecting
machines the first time; the scanners can only detect them once someone has
found the rootkit and reported it to the anti-malware vendors.

Additionally, those detection methods run at exactly the same privilege level
as the malware they are trying to detect. The scanner has kernel-level privileges
(and can read and write to core parts of the kernel at will), but so do the rootkits
it is trying to detect. The rootkit author can anticipate this and write special
cases into their code to manipulate scanners as well. This behavior is commonly
observed in real rootkits.

Rootkit infections are severely damaging. They can involve stealing valuable
secrets and sabotaging industrial processes, and are very difficult to clean up
because it is difficult to be sure that all traces have been removed, especially on
a corporate network of even average size.

The lack of reliable detection methods leaves users and administrators in a
situation where they must always suspect that their computers are compromised.
Better techniques are required.

There is research in better techniques for rootkit detection. WinKIM, a
MITRE research project, detects rootkits by comparing kernel data structures
against known goods and developer-specified invariants, from the vantage point
of a hypervisor. Copilot [9] is similar in that it compares the kernel with known
goods, but it gets its privilege separation by running in a PCI-attached periph-
eral device and accessing physical memory via DMA (Direct Memory Access).
Gibraltar [4] is another rootkit detector which is novel in that it uses the Daikon
invariant inference engine to infer invariants of the kernel under inspection, and
then enforces those invariants using a PCI-attached device like Copilot does.

My MQP was completed with the WinKIM team, where my task was to
improve WinKIM by performing a Red-Team analysis of it.
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2 Background

This section explains important background concepts relating to computer secu-
rity in general, the WinKIM rootkit detector, the Windows operating system,
the practice of Red Teaming, assembly code, and self-modifying code. This
section concludes with a survey of related works.

2.1 Security

Design and engineering can be challenging, but they are at least straightforward
when all one wants to do is make a product that essentially works most of the
time. Things get much more interesting when one wants the product to be
reliable in the face of random failures and environmental interference. Writing
code that is meant to be reliable is described by Ross Anderson [2] to be like
programming Murphy’s computer. As with Murphy’s Law, one must expect
that everything will go wrong. Every error code must be checked, no matter
how rarely it is a problem. The code has to try its hardest to run or at least
fail gracefully in every possible circumstance.

Programming for security involves completely different considerations. One
must write the code as if a malicious part of the computer could provide in-
tentionally wrong answers to some kinds of query, specifically with the goal of
making code behave in a way beneficial to the attacker. Anderson calls this pro-
gramming Satan’s computer [2]. The attacker has transformed from the mere
bad luck of the universe, to a malicious intelligent agent who will do everything
in their power to cause bugs to reveal secrets or redirect execution.

It is for this reason that designing, engineering, and implementing secure
products is very hard and requires large investments to be effective.

2.1.1 Attestation

A major topic in security is attestation, the process of validating the integrity
of a computer. This means making sure that it is running a correct copy of
the code that was originally intended by the designers to run on it, with a valid
internal state. Attestation somehow compares the running state of the computer
with a “known good” state, determining whether the computer is functioning
correctly and should therefore be trusted.

One important example of attestation is the Trusted Platform Module (TPM)
that is installed on many motherboards in both PC and Mac systems. It is a
small chip that is capable of cryptographic processing and reading configuration
information about the computer. TPMs were designed to support a feature
known as Trusted Computing, where the TPM can attest that the computer
booted in a particular trusted configuration, and that there is an unmodified
copy of software running, such as Windows. TPMs were initially intended to
enforce Digital Rights Management (DRM), by making it much harder to copy
copyrighted media without permission [1]. They can also support disk encryp-
tion and various cryptography-related features.
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The purpose of rootkit detectors like WinKIM, Copilot and Gibraltar is a
form of attestation: they attest that the machine they measure is in a non-
compromised state, and is running without interference by malware. All three
of these rootkit detectors have a form of privilege separation, just like the TPM.
WinKIM’s privilege separation is due to its placement in a hypervisor, Copilot
and Gibraltar both make use of a trusted PCI-attached coprocessor, and a TPM
is also a trusted coprocessor, but has even more access to the system than PCI
devices do.

2.1.2 Forensics

A discussion of rootkits would not be complete without mention of forensics, the
science of collecting evidence. Rootkit behavior is entirely about anti-forensics,
the destruction or hiding of evidence [6]. Practitioners of computer forensics
often must use specialized tools for data recovery and search to obtain anything
useful from a computer system. Depending on the situation, they might take
memory dumps from a running system that is currently under attack or sus-
pected of being compromised, or they may have access to the hard drives of a
shutdown computer. Their goal is to discover whether attackers have manip-
ulated the computer, and if so, who the attackers are, when they performed
the attack, what they did and how, and what their motivations were. The evi-
dence obtained by computer forensics teams is used to help administrators and
developers debrief on what went wrong and how to fix it in the future, and to
prosecute the attackers in court if possible.

One of the biggest challenges for a computer forensics team is rootkits, be-
cause they are specifically designed to be difficult for forensics professionals to
find [6]. Forensics professionals have only limited time to search for problems,
and the harder it is to discover how a rootkit is keeping its hold on a system,
the more likely it is that the team will give up. Rootkits can be so stealthy
that they are very hard to notice, and even harder to detect with certainty. But
if the rootkit author makes any mistakes in the code, the rootkit might leak
information that leads to its detection. Rootkit authors are thus in the business
of anti-forensics. They need to be sure to destroy data as soon as it is no longer
needed, and hide anything else very carefully.

2.2 WinKIM

WinKIM (Windows Kernel Integrity Monitor) is an NSA-funded MITRE project
that started in the late 2000s, that attempts to solve two fundamental issues
in current rootkit detection, those being signature-based detection and lack of
privilege separation. WinKIM is based on the hypothesis that: there exists a set
of key data structures in the Windows kernel, some of which must be modified
by any rootkit. By measuring and appraising all of these key data structures,
one can detect any rootkit, even those created in the future with knowledge of
how WinKIM detects rootkits.
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This means that WinKIM detects rootkits by what they are, by defini-
tion, rather than by a mere symptom of their presence. To avoid detection by
WinKIM, a rootkit would have to lose the ability to hook or modify anything
useful, if indeed it could still hide itself at all.

Figure 1: A measurement graph generated by WinKIM [5]

In concrete terms, WinKIM runs in a Xen hypervisor as a privileged Do-
main, which is just Xen’s term for Virtual Machine (VM). The Xen hypervisor
is a small operating system that runs directly on a machine’s hardware, and
supports running multiple guest operating systems in isolated virtual machines.
A virtual machine is a simulation of an entire computer, including a CPU,
motherboard, peripheral devices, and disks. Software running inside a virtual
machine may be able to detect that it is being virtualized, but has no way of
escaping or manipulating the hypervisor or other virtual machines on the same
hypervisor. Privileged guest VMs are allowed to control the hypervisor and
read/write to other guest VMs. WinKIM monitors a Windows guest running
under the same hypervisor. The guest Windows machine is an unprivileged
VM, so it is unable to access WinKIM or Xen. WinKIM calls functions in the
Xen libraries to gain access to the (virtualized) physical memory and execution
context of the Windows machine, and periodically performs a measurement. In
contrast to some other detection tools, WinKIM’s measurements are periodic,
not continuous, and the Windows system is not being watched in any way by
WinKIM between measurements. During a measurement, WinKIM locates the
base of the Windows kernel in memory, then recursively parses its data struc-
tures, creating a measurement graph containing information about the contents
of and relationships between all the important data structures in the kernel (see
Figure 1). Then, WinKIM performs an appraisal, where it compares the mea-
surement graph with known-goods and invariants. Many data structures afford
a simple equality check to confirm that they are correct, but others are a bit
more dynamic, requiring the specification of rules that tell WinKIM how the
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structures should look. The appraisal is WinKIM’s output, indicating whether
the Windows kernel is corrupted.

WinKIM’s primary mode of operation is as just described, with a Xen hy-
pervisor. However, as a way of testing WinKIM more easily, there is a “Hosted
Mode” version which runs directly in Windows as a mere device driver. This
can be installed very easily on existing installations of Windows without up-
rooting everything to insert a hypervisor as an intermediate layer. Hosted Mode
WinKIM works in largely the same way as Xen WinKIM, except that there are
some abilities of Xen WinKIM that are hard to simulate when running inside
Windows, like access to the pagefile (there are locks enforced by the filesystem
API) and the ability to pause the entire machine.

2.2.1 Threat Model

WinKIM was designed with a particular threat model in mind. A threat model
states what kind of adversary the system is intended to protect from, and what
the adversary’s abilities are. The designers of WinKIM want it to be able to
withstand attacks from a knowledgeable threat actor capable of providing an
Advanced Persistent Threat (APT). “Knowledgeable” means that the person
or group attacking WinKIM will posess expert knowledge about the Windows
kernel, possibly including original source code, and about the design and source
code of WinKIM. “Persistent” means that the attacker(s) will keep trying, even
for years, until they succeed. The attackers will also try to keep control of the
system for as long as possible. “Advanced” means that the attacker is also
presumed to have expert knowledge in the creation of rootkits and would be
able to write a custom rootkit to attack WinKIM.

The threat model also specifies what the attackers want: it is presumed
that the attackers want to stealthily gain persistent root privileges on Windows
computers without disturbing Service Level Agreements (SLA) or alarming ad-
ministrators or security personnel. “Stealth” here means that their attacks must
remain undetected and it must appear that nothing is wrong on the machines.
A Service Level Agreement defines a service, including specifications of accept-
able amounts of downtime or failures. If an attacker made the system even
temporarily unable to perform its normal services, technicians and administra-
tors might notice and then investigate, ruining their stealth. Additionally, the
attackers are presumed to need the system running in order to complete their
mission or exfiltrate data.

WinKIM’s threat model allows that the attacker can only access the Win-
dows VM, not the hypervisor or WinKIM, as they have only remote access to
the Windows machine. The attacker is expected to be able to get their own code
to run in the kernel, at least briefly, perhaps by exploiting a privilege escalation
attack or installing a Trojan driver that is signed with a stolen certificate. The
attacker will want to hide their code as soon as possible to avoid detection by
WinKIM.
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2.2.2 Xen

Xen is a Type-1 hypervisor, meaning that it runs directly on physical hardware
and allows virtual machines, called Domains in Xen parlance, to be run. This is
in contrast to a Type-2 hypervisor, like VirtualBox or VMWare Player, which
run on top of a conventional operating system as a program (see Figure 2). Xen
itself contains only the kernel necessary to manage VM guests. It plays the role
of an operating system, but does nothing but manage virtual machines. Xen
allows a special Domain to be present, which has privileges over the other VM
guests. This special Domain is called the Dom0. WinKIM runs in the Dom0
because it needs the extra privileges to read directly from the contents of other
virtual machines, and to pause and unpause them. The Windows machine under
test by WinKIM runs in an unprivileged Domain called a DomU.

Figure 2: Type 1 and Type 2 hypervisors [13]

2.2.3 PDB files and symbols

Microsoft provides debugging symbols for their programs and the kernel in files
with the .pdb suffix, meaning Program Database. PDB files document the off-
sets into the binary code where particular functions are implemented, without
revealing the source code. WinKIM greatly benefits from this symbol infor-
mation, because it is the best information available on how Windows operates,
without actually obtaining the source code. The symbols also enable WinKIM
to compute the addresses of structures in a running kernel, relative to other
known addresses.

2.3 Windows Internals

Detailed understanding of the internals of Windows is important when trying
to create rootkits or software to detect rootkits. Windows is not very well
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documented by Microsoft itself; these internals can be learned from the Win-
dows Internals book [12], hacker publications like Uninformed, and the blogs of
researchers. It is also sometimes necessary to talk directly to experts.

2.3.1 Pagefile

The Windows pagefile is a file on disk where Windows can temporarily store
the contents of memory, if it runs out of real physical memory. This process
is transparent to programs, because of Virtual Memory. Programs see a flat
address space of memory they can use (called virtual address space), but it is
translated by the operating system and the processor into physical memory ad-
dresses using the page tables. Part of this translation involves checking whether
a given virtual address points to memory that is currently in physical memory,
or if it is “paged-out” and inside the pagefile. Unlike with UNIX kernels, parts
of the Windows kernel get paged out from time to time.

Since rootkits have full control of the kernel, and the kernel can choose how
it pages-out memory, it is expected that rootkits could force their own memory
pages to be paged-out at any time. This could be done by making sure the
pagefile contains a copy of the data (which takes some time because disks are
slow) and then manipulating the page tables to claim that the data is not in
physical memory and only available in the pagefile.

2.3.2 System Calls

Rootkits often perform their job by hooking system calls, because they are the
interface that the kernel exposes to both userspace programs and device drivers.
If a rootkit can make the kernel provide modified results for some queries, it can
make everything look completely normal, as if there is no rootkit at all. The
Windows kernel has hundreds of system calls, of various categories. For example,
process management functions have the prefix Ps, security functions have the
prefix Se, and Io is for I/O functions. Some system calls are privileged, and
can only be called from kernel-mode code, like in device drivers. These system
calls are prefixed with either Nt or Zw.

Windows handles system calls with multiple layers of abstraction, so there
are multiple locations in which hooking can be performed. Userspace Windows
programs and device drivers link with DLLs like ntdll.dll, which either im-
plement the code themselves or just wrap the real system calls contained in
ntoskrnl.exe [12].

2.3.3 Tables

There are two tables in the kernel of major significance, those being the System
Service Descriptor Table (SSDT) and the Interrupt Dispatch Table (IDT). The
SSDT informs the kernel where it has implementations of system calls, so that
it knows where to jump to when a user-mode program tries to use a system call.
The IDT, similarly, contains pointers to code implementing handlers for hard-
ware interrupts [12]. Hardware interrupts are generated by attached peripheral
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devices, signalling to the CPU that, for example, a buffer is now ready to be
copied out of the device.

Both of these tables are prime targets for rootkits because it is possible to
simply overwrite an entry in either of these such that it points to the attacker’s
code. Then, the attacker’s code will be called every time those events occur
instead of the real kernel code. This is useful for staying persistent and for
hooking interesting behaviors in the kernel for stealth. For example, a rootkit
may want to hide files on the filesystem, and it could do this by hooking the
system calls that involve reading from the filesystem, and inject special cases
into the code that specifically ignore the files placed by the rootkit.

It is relatively straightforward to detect hooking of table entries, though,
because they are almost entirely static for a given version of Windows (and are
thus predictable). A tool can read the contents of the table, and compare it byte-
by-byte with the copy of the table found in a pristine installation of Windows.
Any differences are corruption, possibly caused by a rootkit. WinKIM is very
successful at checking these tables.

2.3.4 PatchGuard

PatchGuard (also called Kernel Patch Protection, or KPP) is a part of the
kernel which periodically reads important parts of the kernel data structures,
and ensures that they hold their integrity. PatchGuard was first added in Win-
dows 7 64 bit, to strongly encourage third-party device driver and antivirus
developers not to hook the kernel in order to operate, but rather use other,
safer alternatives. If it detects hooks, it immediately crashes the system with
Bug Check 0x109, CRITICAL STRUCTURE CORRUPTION. PatchGuard operates by
caching known-good copies or checksums of the protected structures, and peri-
odically checking the in-memory versions for correctness. It checks at a random
interval that is roughly five to ten minutes [15]. PatchGuard checks many things,
but the most important ones are the System Service Descriptor Table (SSDT),
Global Descriptor Table (GDT), Interrupt Dispatch Table (IDT), the system
images (ntoskrnl.exe, ndis.sys, hal.dll), and the processor Model Specific
Registers (MSRs) relating to handling the syscall instruction. It also tries
very hard to hide itself and make sure that tampering with PatchGuard itself is
difficult. There are no Microsoft-provided symbols that document where Patch-
Guard is implemented in the kernel binary, but researchers have had mixed
success in reverse-engineering it and disabling it [15]. As it runs inside the
Windows kernel, trying to protect the kernel, it has no privilege separation to
protect itself from device drivers.

2.3.5 Driver Signing

Microsoft has configured Windows to only run code from drivers that have been
signed by a driver-signing certificate. This makes it fairly difficult for malware
to cause code to run in kernel space, because their driver needs to be signed by
a legitimate signing certificate.
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Digital certificates are a way to prove that a particular message (in this case
the entire contents of the device driver) was created by a trusted authority (in
this case an authentic company which creates legitimate device drivers). This
is achieved by creating a pair of keys, one “public” and one “private”. The
company “signs” the driver by computing a function of the driver and their
secret private key, and including this “signature” with the driver. Then, anyone
who has the signed driver (simply the signature and the driver together) and
the public key can verify that the signature is valid. Any tampering with the
signature or driver would make it fail the check. The signatures are computed in
such a way that it is extremely difficult (in terms of requiring huge amounts of
computing power for brute-force searching) to fake a certificate without actually
posessing the private key.

The certificate model for driver signing is similar to that of SSL CAs. Mi-
crosoft provides signing certificates (private keys) to companies which want to
publish Windows drivers, who then sign their drivers with the provided private
key. The kernel will only load a driver if it has a valid certificate. Driver signa-
ture validation can be disabled, by setting the operating system into “Test sign-
ing mode”, which exists so that driver developers can easily test their changes.
This mode puts obvious watermarks on the Desktop indicating that the system is
in test-signing mode [12]. Since many companies develop drivers, and Microsoft
cannot practically do a thorough investigation of every individual company to
whom it provides signing certificates, it is plausible that an attacker could ob-
tain legitimate-appearing certificates on malicious drivers. This could be done
by masquerading as a legitimate company, or by stealing a copy of a signing
certificate from a company’s systems.

2.3.6 Process List and Thread List

Rootkits commonly try to hide processes from users and monitoring tools, so
that it looks like no malware is running at all. This hiding is done by manipu-
lating the process and thread lists.

Windows has separate notions of “process” and “thread”, similar to UNIX.
A process is in control of one or more threads. Scheduling is done at the res-
olution of threads. Programs that are meant to display which programs are
running generally only ask the kernel about running processes, whereas the ker-
nel internally only cares which threads exist and need to run at a given time.
Process information and thread information are stored separately, so this means
that it is possible for rootkits to manipulate only the process information, like
hiding a process, but leave the thread-related datastructure alone so that the
kernel will still schedule it.

The process and thread lists are both implemented as doubly-linked lists, so
it is quite straightforward to arbitrarily insert and delete items without moving
memory around.

On the other hand, it is not difficult to detect that the process and thread
lists are inconsistent, which would point to malicious manipulation. This can be
checked because the process list contains pointers to all the threads contained
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in a given process. A tool like WinKIM can compare the two lists and report
whether there are threads in the thread list which have no corresponding owner
process in the process list, which would indicate that a rootkit is trying to hide
the process that owns those threads.

2.3.7 System Threads

Just like with user-mode processes and threads, system threads are a target of
rootkits. They are one of the ways that kernel code can be scheduled to run
repeatedly.

Windows, like UNIX, has the concept of threads running in kernel mode,
doing various system tasks that must be executed periodically. These are called
“system threads” by Microsoft, and they can be started by an API call accessible
only to other kernel code. System threads are attached to the System process
by default, which is a catch-all process in the kernel used merely to organize
most kernel threads together. System threads are periodically scheduled by the
scheduler, and are visible to the scheduler’s data structures.

2.3.8 Deferred Procedure Calls (DPCs)

Deferred Procedure Calls are somewhat like system threads in that they are a
way of scheduling code to run with kernel privileges. Rootkits would find them
just as useful for getting their code to run.

Windows, like any operating system, has interrupt handlers, which are pieces
of code that handle events triggered by external hardware. Due to real-time
requirements, such code needs to be highly optimized and not perform any
operations that could reasonably be done at a lower scheduling priority. But,
the interrupt handlers need some way of scheduling the lower-priority work to be
completed eventually. There are multiple solutions, but Microsoft implemented
Deferred Procedure Calls, which are designed to allow interrupt handlers to
schedule work to be done eventually. DPCs are not tied to any particular
process, thread, or kernel thread, and their scheduling system is independent of
those.

2.4 Red Teaming

Most non-trivial software created by humans has bugs [1], because as new fea-
tures interact with old features, it can become more and more difficult for the
programmer to keep all possible interactions actively in mind. Sometimes bugs
are exploitable by hackers. Such exploitable bugs include buffer overflows, logic
errors in special cases, and command injection. While standard testing proce-
dures used in software engineering can be used to get some assurance that there
are few to no bugs affecting functionality, it is very difficult to test to assure
that the software has no exploitable vulnerabilities [3]. Because vulnerabilities
are discovered and exploited by hackers, one way to find vulnerabilities in one’s
own software is to pay hackers to find them. This practice is known as Red
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Teaming or Penetration Testing, where the “Red Team” is the team of hackers
hired to spend time trying to exploit the software. Red Teaming/Penetration
testing can only be effective when used throughout the Software Development
Life Cycle (SDLC), and not just as a final checklist item [3].

2.5 Assembly and machine code

When discussing hooks, it is necessary to understand how the processor inter-
prets programs at the lowest level. The lowest level of abstraction in a computer
is machine code, which is a binary packed format that is not meant to be human-
readable. For example, the machine code for the instruction inc rax is 48 ff

c0. But, humans find it easier to write in higher-level languages like C, which
are compiled down to the machine language that the processor can directly exe-
cute. There is also an intermediate language called assembly language, which is
human readable and has an almost one-to-one mapping with machine code. It is
thus very easy to write a straightforward program that converts assembly code
to machine code or machine code to assembly code. These are called assemblers
and disassemblers, respectively.

However, it is not at all straightforward to write a program that consumes
machine code and generates the C source code that created it. Such a program
is called a decompiler, and they are hard to make because the mapping between
C and machine code is many-to-many, in that there are many possible machine
code programs for a given C source file (due to differences in optimization, or
arbitrary choices by the compiler), and there are also many possible C sources
that could have generated a given piece of machine code, because C is a relatively
expressive language and there are multiple ways to write the same thing.

Microsoft’s Windows operating system, like most proprietary products, is
distributed to users in an entirely binary form, which is synonymous with pre-
compiled machine code. The intention of this is that competitors to Microsoft
will have a difficult time reverse-engineering the operating system in order to
copy its appearance or behavior. It also makes it difficult for attackers to learn
how Windows is vulnerable, or for defenders to learn how to protect Windows.
When developing rootkits or anti-rootkit technology for Windows, then, one
must be able to reverse-engineer parts of Windows by examining the machine
code using a debugger and disassembler. WinDBG provides the u command
(for Unassemble) which will disassemble the bytes at a given address as if they
are machine code.

2.6 Self-modifying Code

Malware often uses self-modifying code as a technique for obfuscation, because
the effect of a piece of such code is not obvious from looking at it. To reverse
engineer it, one would have to run it on a real or virtual machine to inspect
what its code finally becomes, after it computes new values for its own machine
code and rewrites itself. This takes a large amount of work, so it discourages
forensics professionals from trying to understand the code.
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There are two main ways of organizing memory in a computer, the Von
Neumann architecture and the Harvard architecture. In the Von Neumann
computer architecture, there is only one kind of memory, and parts of it can
be data or code, depending on interpretation. This is much more powerful
than the Harvard architecture, which strictly separates code and data into two
memories, usually without easy ways to modify code memory while running.
Since modern computers use the Von Neumann architecture, not the Harvard
architecture, code can be written such that it writes to the memory containing
its own code, changing its own behavior in future runs. Self-modifying code
allows for very useful tricks, like Just-In-Time compilation (JIT) and tuning
algorithms at runtime to suit inputs. It is also fairly dangerous, in that it makes
debugging very difficult, and opens up more attack surface for malware, because
it requires parts of memory to be marked both writable and executable. This
would allow an exploit to write code to that memory which would subsequently
get executed.

2.7 Related Work

There are research projects that are similar to WinKIM in various ways. XenKI-
MONO [10] is a kernel integrity monitor very similar in scope to WinKIM’s sister
project LKIM, which protects Linux kernels. XenKIMONO also virtualizes the
protected kernel in a Xen VM, and also periodically parses the data structures
of the virtualized kernel and compares them against known goods. Copilot [9]
is another rootkit detector which executes on a PCI-connected device, using
the PCI protocol’s ability to read directly from physical memory to scan the
kernel. This provides the same sort of privileged execution that WinKIM gains
by running in a Xen hypervisor. This has the added cost of requiring addi-
tional hardware to be purchased and installed in the machines to be tested, and
this will only work on desktop-size computers with user-customizable peripheral
slots. Rhee et al demonstrate a Virtual Memory-Manager-based rootkit detec-
tor [11], which hooks the translation of virtual addresses to physical addresses,
and preemptively detects malicious accesses to parts of memory. This rootkit
detector virtualizes the protected kernel in the QEMU VM for its privilege sep-
aration.

There have also been attempts at using machine learning to help identify
rootkits; Gibraltar [4] uses the Daikon invariant inference tool to automatically
recognize invariants in kernel code, and then automatically enforces that those
inferences hold true. Limbo [17] is a driver loader for Windows which runs
drivers in a sandbox, measuring patterns in their execution, and using a Bayes
classifier to identify malicious looking execution patterns. It will only load
drivers which do not appear malicious. If machine learning became popular as
a way to detect rootkits, rootkit authors would just start making their rootkits
“similar” to code marked benevolent, which would make it very hard for machine
learning alone to properly detect the difference.

There are other methods of blocking malware, such as Bit9’s Endpoint
whitelisting. This software is installed with kernel privileges, and will only
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run programs that match a whitelist generated by Bit9 and the administrators
of the machine. This can be very effective, but it can be very difficult to admin-
istrate the maintenance of whitelists and still allow work to be accomplished.
WinKIM does not require administrators to manage anything.

3 Approach

My Red-Teaming goal was to create a rootkit for the Windows kernel, and that
rootkit also needed to be undetectable by WinKIM. Since WinKIM only tries to
measure certain specific parts of the kernel, I wondered whether it is possible to
operate maliciously inside the kernel while not touching the parts measured by
WinKIM. I thought it might be possible to violate WinKIM’s core assumptions,
by showing that more data structures need to be measured than currently are,
or that it is possible to create a useful rootkit that resides only in writable (and
therefore not appraised) memory.

There are some rootkit techniques that are definitely unavailable, on account
of WinKIM’s scanning, such as directly hooking the SSDT or IDT, or inline-
hooking functions in ntoskrnl.exe. But perhaps those techniques merely need
to be augmented to bypass detection. I surveyed the workings of the Windows
kernel, noting important data structures, and how they work in normal oper-
ation. I also found how rootkits hook and manipulate these structures, and
learned what WinKIM does in particular to protect the structures. I particu-
larly noted where a structure needs protection but WinKIM’s current abilities
are insufficient. With some structures, I found hypothetical attacks that might
be effective against WinKIM. I will discuss those attacks in detail and what
WinKIM should do about them.

3.1 Quality Assurance by Red Team

Red Teaming is used here as a form of quality assurance testing, to make sure
that the tool behaves as intended when installed and running on a real system,
defending from real attacks. Red Teaming is most often seen as a team of experts
who have a large kit of tools, like scanners, fuzzers, and weaponized exploits,
which they simply deploy to test the system for vulnerabilities to already-known
attacks. This is often good enough for clients who have a standard common
setup, like a web site with a database and a network of office PCs. A standard
Red Team attack is not appropriate for WinKIM, as there do not exist (known
to the author at time of writing) tools for automatically generating rootkits to
test with a rootkit detector. Also, a significant part of this effort was to deter-
mine whether there are design issues in WinKIM; there do not currently exist
automated tools to assist humans with any security design work. Therefore, if
one wants to test the effectiveness of their rootkit detector, they will have to do
it all manually.
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3.2 My Background

Creative Red Teaming is a big thing for one person to do, but I have an unusual
amount of experience that prepared me for this. I took an assembly course in
which I learned how to reverse-engineer a binary “bomb” using a disassembler
and debugger, all while preventing it from “exploding” (contacting the grading
server). The binary was a Linux x86 executable. I am a member of the Cyber
Security Club at my university, and our team has competed in many Capture
The Flag (CTF) competitions. These competitions are one of the best ways
to get into the hacker mindset, of thinking always how systems can be broken,
and subverted, and turned to the hacker’s will. Programmers and engineers
normally only think about how their systems will work in the expected cases.
A hacker thinks about it the opposite way; they have to think about how the
system might fail to work. I also took a course in Software Security Engineering,
which gave me experience in Red Teaming/Penetration Testing. In the course,
we were provided with a vulnerable PHP web application, and instructed to
crack it in as many different ways as possible, documenting our findings. We
had to provide exact details of how we subverted the system, and what that
would allow an attacker to access or modify.

3.3 Discussion with Team

I asked the WinKIM team about how the tool works, and specifically how it
might be incomplete in its detection. It is known by the team that WinKIM
does not measure or appraise certain dynamic parts of the kernel, such as the
list of kernel threads running, or the DPC buffers. WinKIM also did not (at
the time) support reading from the Windows pagefile. The team intends for
WinKIM to support measuring all important parts of the kernel.

3.4 Research on Rootkits

As WinKIM is designed to stop rootkits, I needed to learn what a rootkit is. I
found the book The Rootkit Arsenal by Bill Blunden [6], which gives an overview
of what they do and why. In particular, it explains how 32 bit Windows operates
and how to subvert its datastructures, with complete code examples. It was very
useful but I had to do a lot of research to translate its 32 bit explanations to
modern 64 bit Windows.

I researched two well-known rootkits, Stuxnet and Uroburos. Both of them
are well-publicized for their real-world usage and effectiveness. There is docu-
mentation about how they work and how they were used in the form of dossiers
[8, 14]. From what I read about both Stuxnet and Uroburos, they hooked parts
of the Windows kernel that WinKIM should be able to detect. Accordingly, I
explored actually running them.

The team has access to an isolated malware-testing laptop, meaning it is
not allowed to be connected to the internal network or any writable media. The
way to get data on the machine is by burning CDs and then inserting them into
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the laptop. The CDs must then never be inserted into a non-isolated machine.
This strict protocol makes it extremely unlikely that any malware could escape
the isolated machine.

The isolated machine is set up with WinKIM and a guest Windows VM. I
copied our sample of Stuxnet onto the Windows VM, and ran it, but unfortu-
nately, Stuxnet is 32-bit only, while WinKIM supports only 64-bit Windows.

Uroburos is a much more recently-made piece of malware, and therefore
it does support 64-bit Windows. It actually supports both 32-bit and 64-bit
Windows, due to a well-funded development. Uroburos is a rootkit whose origins
have been traced to Russia, and it is called “crimeware”. It takes control of
Windows computers and copies data out of them, sending it to the creators of
the rootkit.

The team also tried running Uroburos on the isolated laptop and success-
fully got it to infect the machine. WinKIM was able to detect some of its
behavior (it inline-hooks some system calls, like ZwQueryKey, ZwReadFile, and
ZwQuerySystemInformation) but did not notice that it had modified some ker-
nel memory that was paged-out. WinKIM also did not notice Uroburos’s use of
Deferred Procedure Calls (DPCs), because WinKIM does not currently appraise
DPC scheduling data structures.

3.5 Pagefile

The team had mentioned to me that the pagefile is currently something which
WinKIM cannot measure. The Windows pagefile is a file on the disk which is
occasionally used by the kernel to store data which it cannot fit in memory. In
contrast to UNIX, parts of the Windows kernel are actually marked pageable;
the kernel is allowed to free some memory by temporarily moving such parts
of the kernel code into the pagefile on disk. At the time I started this project,
WinKIM was only capable of reading from the memory space of the Windows
guest. Therefore, some parts of the kernel which would be desirable to measure
were beyond reach. The WinKIM team would naturally like the tool to have
as wide a view as possible on general principles, but a more compelling reason
was that the Uroburos rootkit modified some parts of paged-out memory.

It is plausible that the pagefile could be used as part of a rootkit’s stealth; if
the rootkit could detect when WinKIM was about to perform a measurement (as
the measurements are periodic, not continuous), it could force its own code to
be paged-out, temporarily evading detection. This would have to be combined
with other techniques to be a complete rootkit.

I fixed this entire issue by adding pagefile-reading support to WinKIM. In
WinKIM’s Hosted Mode, it appears impossible to read from the pagefile, be-
cause the kernel maintains locks on it. These locks prevent concurrent reads,
even with administrator privileges. It turns out, though, that such locks are
not enforced when the code directly accesses the disk and parses the filesystem
itself. The Sleuth Kit, an open-source library for digital forensics, is just the
tool for the job. It can parse NTFS, the primary filesystem format used by
Windows. It was quite straightforward to use the Sleuth Kit API to open the
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C: drive, parse the file system, and search for the file named pagefile.sys

located in the root of the directory tree:

TSK_TCHAR *images[] = {L"\\\\.\\c:"};

TSK_IMG_INFO *img = tsk_img_open(1, images, TSK_IMG_TYPE_DETECT, 0);

TSK_FS_INFO *fs = tsk_fs_open_img(img, 0, TSK_FS_TYPE_DETECT);

tsk_fs_ifind_path(fs, L"pagefile.sys", &inum);

TSK_FS_FILE *pagefile = tsk_fs_file_open_meta(fs, NULL, inum);

tsk_fs_file_read(pagefile, offset, buf, len, TSK_FS_FILE_READ_FLAG_NONE);

Then, once I had access to the raw bytes of the pagefile, I modified WinKIM’s
page fault handler (WinKIM does all the virtual address translation itself). I
changed it so that it reads from the pagefile when the Page Table Entry (PTE)
has the flags that mean the page is not in physical memory, but rather on the
disk. The format of page tables on the x86 architecture is mostly specified by
Intel in their documentation, but the operating system is free to choose the
format of the PTE when the Valid bit is not set, meaning the page is not in
memory. This allows each operating system to perform its own handling of
paging to disk, whether that involves a pagefile or a swap partition. To find out
how Windows formats its PTEs, I opened WinDBG in kernel debugging mode
and typed the command dt MMPTE SOFTWARE. This prints out the definition of
the internal structure representing PTEs:

kd> dt _MMPTE_SOFTWARE

nt!_MMPTE_SOFTWARE

+0x000 Valid : Pos 0, 1 Bit

+0x000 PageFileLow : Pos 1, 4 Bits

+0x000 Protection : Pos 5, 5 Bits

+0x000 Prototype : Pos 10, 1 Bit

+0x000 Transition : Pos 11, 1 Bit

+0x000 UsedPageTableEntries : Pos 12, 10 Bits

+0x000 InStore : Pos 22, 1 Bit

+0x000 Reserved : Pos 23, 9 Bits

+0x000 PageFileHigh : Pos 32, 32 Bits

I learned from an article written by the authors of The Sleuth Kit [7] that the
PageFileLow member indicates which of multiple pagefiles contains this page
(most systems have only one pagefile), and the PageFileHigh member is the
offset into that pagefile, in pages. On the versions of Windows under test, a page
is always 4096 bytes. Using the lower 20 bits of the virtual address (the offset
within the page), combined with the offset into the pagefile, my code handles
requests to paged-out virtual memory as if it was any other kind of memory.
This enabled WinKIM to greatly expand its view of the kernel, almost doubling
the number of measurement nodes in some cases. This had been a long-desired
feature of WinKIM.
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3.6 Inline-hooking RWX sections

As part of the search for interesting vectors of attack, I used a PE (Portable
Executable) dissector tool called readpe, and looked at the various sections
in ntoskrnl.exe. This file is the main executable for the Windows kernel.
I discovered that the INIT section has the WRITE and EXECUTE flags set,
meaning that this section is allowed to have self-modifying code:

Section

Name: INIT

Virtual Address: 0x556000

Physical Address: 0x576ce

Size: 0x57800 (358400 bytes)

Pointer To Data: 0x4bb400

Relocations: 0

Characteristics: 0xe2000020

Characteristic Names

IMAGE_SCN_CNT_CODE

IMAGE_SCN_MEM_DISCARDABLE

IMAGE_SCN_MEM_EXECUTE

IMAGE_SCN_MEM_READ

IMAGE_SCN_MEM_WRITE

The processor will allow running code to edit this memory, but the processor
will also be able to jump to addresses within that range and execute the data
there as code. This can be useful, but it is generally quite dangerous. Self-
modifying code is most often a concern for stability reasons; it is difficult for
programmers to reason about the workings of such code, and so it sometimes
hides bugs. Here, though, this is a security concern. By design, WinKIM does
not appraise sections of memory marked writable. But here, there is code,
inside a writable section, so WinKIM will definitely ignore any hooks added by
a rootkit.

Relatedly, there was a bug in certain versions of Visual Studio which caused
compiled device drivers to include WRX INIT sections [16]. This broken version
lasted for long enough that many device drivers created for Windows Vista
through Windows 8.1 have this problem. It would normally require several
difficult things at once for a WRX section to be a problem, such as a write-
what-where vulnerability, a leaked pointer, and the ability to trigger a driver
load from userspace. In the case of WinKIM, this is a different sort of problem,
as it is a matter of whether a rootkit can hide useful hooks inside the RWX
section.

As its name suggests, the INIT section of any PE file is used for one-time
initialization. According to Microsoft documentation, this section is discarded
after that initialization. I could not find any information on how aggressively
the kernel discards such sections; it could be that they stay in memory lazily
until the space is needed. I tried looking myself: I used WinDBG on a running
Windows system and tried to dump the memory allocated to the INIT section.
It appeared to be completely deallocated. I tentatively conclude that the only
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way to access the INIT section would be during boot. Since the INIT section
is discarded by the time the system is booted, it may be very difficult to abuse
this in practice.

To discover whether the INIT section was worth hooking, I needed to find out
whether the code in this section was called frequently enough, due to event han-
dling for example. A hook is only useful if the hooked function does something
interesting and other code calls it. With the help of IDA Pro, a commercial dis-
assembly tool, I analyzed ntoskrnl.exe and listed the functions implemented
in the INIT section. I had hoped to find any that were important enough to
be called by system calls, which would allow me to edit code that was, in some
way, executed in response to events. If the functions were called only once, they
would not be very useful for persistence.

I expected to eventually find code to hook, so I studied inline hooking.
This is where the machine code, in memory, is rewritten to contain other code.
Since this involves overwriting single instructions, and not inserting code, the
easiest way is to find a short instruction (2 bytes) in the function preamble,
and overwrite it with a short relative jump to nearby unused memory. A short
relative jump is encoded by the byte 0xeb followed by a signed byte offset. In
the nearby memory, execute the instruction that was replaced, and then do
whatever is desired, followed by another short jump back to the instruction just
after the hook. The final effect is that, when the function is executed, it executes
the new code just before it does any of its work. This sort of hook is called a
prolog detour [6]. These allow an attacker to filter arguments or do special
handling in order to implement stealth, like only returning secret information
when a special code is supplied by the caller.

I implemented a demonstration hook, by selecting NtSetValueKey, a system
call that sets a value in the Windows Registry, which is called very often by many
programs. The code in memory appeared like this before my tampering:

fffff800‘02959dfc 90 nop

fffff800‘02959dfd 90 nop

fffff800‘02959dfe 90 nop

fffff800‘02959dff 90 nop

nt!NtSetValueKey:

fffff800‘02959e00 4c8bdc mov r11,rsp

fffff800‘02959e03 45894b20 mov dword ptr [r11+20h],r9d

fffff800‘02959e07 45894318 mov dword ptr [r11+18h],r8d

fffff800‘02959e0b 45894b08 mov qword ptr [r11+8],rcx

fffff800‘02959e0f 53 push rbx

fffff800‘02959e10 56 push rsi

fffff800‘02959e11 57 push rdi

fffff800‘02959e12 4154 push r12

fffff800‘02959e14 4155 push r13

fffff800‘02959e16 4156 push r14

fffff800‘02959e18 4157 push r15

And, after using WinDBG to edit the bytes of memory to contain different
machine code, it looked like this:

21



fffff800‘02959dfc 4154 push r12

fffff800‘02959dfe eb14 jmp nt!NtSetValueKey+0x14 (fffff800‘02959e14)

nt!NtSetValueKey:

fffff800‘02959e00 4c8bdc mov r11,rsp

fffff800‘02959e03 45894b20 mov dword ptr [r11+20h],r9d

fffff800‘02959e07 45894318 mov dword ptr [r11+18h],r8d

fffff800‘02959e0b 45894b08 mov qword ptr [r11+8],rcx

fffff800‘02959e0f 53 push rbx

fffff800‘02959e10 56 push rsi

fffff800‘02959e11 57 push rdi

fffff800‘02959e12 ebe8 jmp nt!ObpInsertDirectoryEntry+0x8 (fffff800‘02959dfc)

fffff800‘02959e14 4155 push r13

fffff800‘02959e16 4156 push r14

fffff800‘02959e18 4157 push r15

The modified instructions and the target addresses of the jumps are high-
lighted for improved comprehension.

This tiny detour worked flawlessly, though it was completely useless, as my
code simply jumps away, performs the push of r12 which I overwrote with a
jump, and jumps back to the original code. This manipulation of read-only
memory was only possible because I was using WinDBG to edit the memory.
The Windows kernel allows edits by the debugger, to facilitate debugging. Nor-
mally, PatchGuard would have noticed that I edited part of the read-only code
section of ntoskrnl.exe.

I tried to be more ambitious and jump farther away, so that I would have
space to implement a real hook, with some form of parameter filtering. The
nearby memory just above NtSetValueKey (with the nops) only had enough
space to do another, longer jump to more distant memory. In the distant mem-
ory, I just executed the instructions that had been replaced, and did a long jump
back to the next instruction that should be executed in the original implemen-
tation. This detour worked, for the most part. I confirmed that it was executed,
by placing breakpoints in the original code and my detours, but the kernel kept
crashing eventually due to a “Watchdog Timeout” error. Breakpoints some-
times cause the system to misbehave, so I tried it again without inserting any
breakpoints at all. Still, the system crashed. I searched the Internet, and asked
my colleagues, but I could not figure out how my tiny patch was causing an
unrelated-seeming crash. I must have been making some mistake in the setup,
because this should clearly be possible.

As discussed in the article about the Visual Studio bug [16], the device
drivers shipped with the incorrectly-marked INIT sections did not actually need
writable executable memory. The author of that article manually changed the
flag in the device drivers to make the INIT sections read-only, and they still
functioned as normal. This means that it should be possible to automatically
scan for device drivers with RWX INIT sections, and fix them in bulk.
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3.7 System Threads and DPCs

Windows has a set of system threads running at all times, with kernel privileges,
to complete important jobs. The set of threads running at a given time may not
be predictable, and there is no particular table in any static part of the kernel on
disk that would indicate which threads should be running. They can start and
stop at any time. System threads can do anything the kernel can do, including
reading from and writing to anywhere in the kernel address space, user address
space, or physical memory. System threads are scheduled in an analogous man-
ner to user-mode threads, in that there are mutable data structures which are
read by the scheduler to determine which code to run at a given time. Code
running in kernel space can manipulate these data structures at any time, or it
can simply call the documented PsCreateSystemThread system call to create a
new thread.

A system thread simply runs continuously until it terminates itself with
PsTerminateSystemThread. A system thread cannot respond to events and in-
tercept them, as with traditional rootkit behavior, but it can implement polling
behavior to repeatedly check for conditions or read from buffers. For example, a
system thread rootkit could act as a keylogger by repeatedly querying the key-
board buffer and copying it out of kernel space, by writing it to disk or sending
it over the network.

WinKIM does not currently measure or appraise anything to do with the
data structures involved in system threads. This is because WinKIM was de-
liberately designed to only measure and appraise read-only memory. Read-only
memory is marked as such in the page tables by setting a flag on the page frame.

A first approach at appraising system threads might be to whitelist them,
perhaps by name or by what code they point to. One way might be to simply
check that the pointer to the thread code points into memory that will be
appraised. This would ensure that the kernel could only run system threads
whose code came from an appraised part of the kernel.

3.8 Inline-hooking PatchGuard

PatchGuard is completely undocumented by Microsoft, by design; if it became
easy to understand it and bypass it, driver developers might be encouraged
to use such exploits and go back to the hooking techniques they once used.
PatchGuard is, in fact, very deeply obfuscated. It modifies itself during runtime,
including parts of code that reside in read-only memory, ignoring the access
rules that are supposed to apply. This fact has been a cause of frustration
to the WinKIM team, as read-only sections are supposed to remain constant,
but PatchGuard causes false alarms in WinKIM because it is detected as a
corruption. This has forced the WinKIM team to special-case the sections of
memory in which PatchGuard resides, simply ignoring changes made to them,
considering the changes impossible to predict.

Since WinKIM has been forced to ignore PatchGuard, it may be effective to
hijack PatchGuard itself. A rootkit could rewrite code in PatchGuard’s mem-
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ory space, redirecting execution to other attacker-provided code. If the attacker
was clever enough to reverse-engineer PatchGuard, they could repurpose Patch-
Guard to operate as a rootkit and also selectively ignore patches made by the
rootkit.

3.9 Device Driver Hooking

Windows allows third parties to install code that will run with kernel privileges,
in the form of device drivers. As the name implies, they are usually interface
code that allows an end user to plug in some peripheral device to their Windows
machine and access it via software. As mentioned in the section on PatchGuard,
Windows follows the policy that third party code cannot hook core parts of the
kernel. However, a driver can still hook the code of other drivers [12]. And since
there are very many drivers in the Windows ecosystem, it is totally impractical
for WinKIM to successfully appraise all of them to make sure they have not
been manipulated. An attacker could figure out how to exploit a device driver
that is not appraised by WinKIM, then simply hook that driver to install their
rootkit. They can actually install the driver on the system themselves, if it
wasn’t already there. WinKIM would notice that there was another driver
installed, but it currently has no policy on whether that is considered a problem
for the machine’s health.

WinKIM cannot reasonably cope with an arbitrary set of device drivers
present on a machine it needs to appraise. In a real-world deployment of
WinKIM, it will be necessary to enforce a whitelist of allowed device drivers.

4 Conclusions

I investigated a variety of paths an attacker might take in attempting to bypass
WinKIM. In the case of the pagefile, I successfully modified WinKIM to be
entirely immune to that potential problem. With the RWX hooking, it remains
an open question whether this could be practically exploited, and what WinKIM
should do to mitigate it.

Effectively detecting stealth and anti-forensics techniques is one of the tough-
est challenges in computer security. Windows, being a complex closed-source
operating system with a long history of backwards-compatibility, is probably
the most difficult kind of operating system to protect from rootkits. There is
a very large space of feature mis-interactions which might cause an apparently-
safe system to actually be vulnerable. Being closed source (and also obfuscated
in the case of PatchGuard) makes Windows very difficult to protect with a tool
like WinKIM. WinKIM’s effectiveness depends on a deep understanding of ob-
scure parts of the kernel, and lack of source code or documentation make this
extremely challenging.

Since WinKIM is still actively developed and improved, it will likely become
better at detecting the possible attacks described here. WinKIM will need to
be able to appraise more parts of the kernel that are writable and change over
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time, but that follow predictable invariants. In particular, the scheduling data
structures for system threads and DPCs are currently a big hole in its view of
the kernel.
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