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Abstract 

In recent years, antibiotic resistance in pathogens has forced scientists to find and develop new 

treatments to tackle the latest iterations of familiar diseases. Tuberculosis (TB) is known to be 

notoriously difficult pathogen to rid from of the patient. In a bid to find alternative ways to 

produce new antibiotics, some biologists have turned to the soil to find microbes that could 

produce molecules that could be developed into new antibiotic drug treatments. The goal of this 

project was to test microbes isolated from the soil for antibiotic activity against Mycobacterium 

smegmatis, a non-pathogenic relative of the bacterium that causes tuberculosis. Soil isolates that 

produced zones of inhibition were identified by 16S rRNA sequencing. Acetone and ethyl 

acetate extracts were made from these isolates, and several extracts inhibited the growth of M. 

smegmatis. HPLC was used to compare the chemical profiles of several extracts. In total, 6 of the 

21 tested isolates were found to have antibiotic activity against M. smegmatis. 
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Introduction 

One third of the world’s population currently has a form of tuberculosis (TB), either in 

latent or active form (Kim, 2017). Even more concerning, strains of the causative agent 

Mycobacterium tuberculosis are becoming resistant to multiple antibiotics, preventing patients 

from being cured and increasing deaths due to TB (CDC, 2016). Scientists around the world are 

searching for more antibiotics to combat the rising number of antibiotic resistant diseases like 

TB, and they are now turning to the soil for more solutions. 

The discovery of antibiotics was vital in preventing various bacteria from killing millions 

of people, but what does an antibiotic do to stop bacterial disease? There are a number of 

processes that antibiotics target to kill bacteria or inhibit bacterial growth, including inhibition of 

DNA replication (e.g., quinolones), RNA synthesis (e.g. rifamycin), cell wall synthesis, and 

protein synthesis (Clardy, 2009). An antibiotic can either kill a wide range of bacterial species 

(broad spectrum) or a narrow range (narrow spectrum); they can be administered orally or via 

injection; and they can either kill the bacterium outright or inhibit growth. In nature, most 

antibiotics are found in the soil. Actinomycetes, a bacterial family with 80 known genera across 

all soil types, are the primary source of antibiotics and secondary metabolites (Clardy, 2009; 

Chaudhary, 2013). In fact, more than 70% of antibiotics can trace their lineage back to this 

family (Bizuye, 2013). With the many types of antibiotics, scientists have been able to synthesize 

these secondary metabolites, meaning that some of the natural compounds in the antibiotics can 

now be synthesized chemically, and that the search doesn’t have to be restricted to the soil 

(Bhattacharjee, 2016).  

However, almost as quickly as antibiotics were put into production in the 1940s, many 

bacteria including M. tuberculosis adapted and became antibiotic resistant. Reasons for the 

current TB antibiotic resistance crisis include misuse of the drugs, issues with drug availability in 

certain areas in the world, and a rise in HIV cases (Smith, 2014; CDC, 2017; Schmidt, 2008). 

Tuberculosis patients are required to take a minimum of 6 months of antibiotics, usually a 

combination of 4 drugs under medical supervision, with quarantine not always required as the 

TB becomes non-contagious within a few days of initial treatment (WHO Media Center, 2017). 

Due to the intensive treatment, some people will sometimes forget to take their antibiotics or will 

stop taking them when they feel better. Discontinued use of antibiotics provides the opportunity 

for surviving bacteria to grow and acquire mutations that confer resistance (WHO Media Center, 

2017). In cases where dormant bacteria survive and the patient relapses, they can usually be 

cured with another round of treatment, but if they acquire mutations that confer resistance, the 

disease will relapse and the patient will not be cured by another course of treatment with those 

same drugs because the bacteria are now resistant to them. In that case second-line drugs (a 

completely different and more toxic drug regime with a longer course of administration) are 

required (Conolly, 2007). Areas with limited access to medical treatment and overcrowding that 

leads to the faster spread of TB are where some of the multidrug resistant strains of M. 

tuberculosis are persisting. Not only is access to drugs important to curing the disease, but 

having the lab infrastructure to diagnose TB quickly is equally as important to treating the 

patients and preventing spread of the disease. According to WHO, the regions of the world with 

rising cases of drug-sensitive TB as well as multidrug resistant TB include Africa, the Middle 

East, and Southeastern Asia (WHO, 2017). Also, a person is more susceptible to getting other 

disease when they have an immunosuppressant disease such as HIV/AIDS, which highly 

prevalent in Africa and Southeastern Asia (Schmidt, 2008). As for the Middle East, lack of 
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medical treatment and poor environmental conditions due to war have led to the increased 

number of multidrug resistant TB cases (WHO, 2017).  

Antibiotic resistance in TB is not only caused by human factors, but also by adaptations 

in the bacterium itself. M. tuberculosis is intrinsically resistant to many antibiotics due to a 

number of mechanisms. One mechanism includes the multi-layer cell wall, which is difficult for 

most antibiotics to penetrate (Smith, 2014). M. tuberculosis can also enter non-growing states in 

which it is temporarily insensitive to antibiotics, because most antibiotic targets are proteins 

required for replication (Conolly, 2007). Genetic antibiotic resistance arises frequently, making 

multidrug 6-month long treatments necessary (Connolly, 2007). M. tuberculosis is a difficult 

bacterium to treat, but modern methods of finding new antibiotics are working to ease overall 

treatment of the disease. 

One recent example of a newly discovered antibiotic with potential for clinical use 

against TB is Teixobactin, found in 2016. Teixobactin is synthesized by a newly discovered 

species of beta proteobacteria and has been found to kill bacteria that cause pneumonia, MRSA, 

and tuberculosis (Piddock, 2015). The antibiotic was discovered through isolation from soil via a 

tool called iChip, which allowed the bacterium to grow and be isolated from the produced 

product. The iChip is a type of assembly made up of plastic plates and membranes to filter out 

and concentrate microorganisms found in the soil (Piddock, 2015). The big limitations of this 

tool are that it is unsuccessful in identifying gram-negative bacteria and that this device can only 

find small quantities of the microorganisms (Piddock, 2015). With those limitations considered, 

iChip shows promise as a new method to use in identifying new isolates to treat tuberculosis and 

other bacterial diseases. 

The discovery of oxazolidinones has allowed for the synthesis of additional new 

antibiotics. Scientists from EI DuPont de Nemours & Co. Inc synthesized an initial variant of an 

oxazolidinone antibiotic that unfortunately was modified to the point where it was too toxic for 

human use (Bozdogan, 2004). Nine years later in 1996, Upjohn Laboratories (now known as 

Pfizer), were able synthesize less toxic variants of oxazolidinones that led to the creation of the 

drugs linezolid and eperezolid, with linezolid currently an option for use in the treatment of 

tuberculosis (Bozdogan, 2004). Linezolid was shown, in combination with other drugs and under 

close supervision for adverse reactions, to cause a negative sputum culture in 79% of patients 

with multidrug-resistant TB within 4 months (Lee, 2015). Modifying known antibiotics is 

therefore a viable path to improved drugs for TB (Coates, 2007). There is also promise of new 

antibiotics for tuberculosis and other bacterial diseases from the soil. In the Badia region of 

Jordan, 4 Streptomyces isolates were able to cause inhibition against Staphylococcus aureus , 

Escherichia coli and Klebsiella pneumoniae (Saadoun, 2003). The antibiotic activity of the 4 

isolates was attributed by the arid environment and the lack of nutrients in the soil causing the 

Streptomyces samples to be a threat to antibiotic-resistant bacteria (Saadoun, 2003). Antibiotics 

can also be found in microbes growing on plants. An endophyte of Grevillea pteridifolia, 

Streptomyces sp. NRRL 30566, was collected in Australia from the stems of the snakevine plant 

(Castillo, 2003). The organism was then isolated from the plant and put through a series of 

analytical assays (Castillo, 2003). The antibiotic produced by the streptomycete was 

kakadumycin A, a broad spectrum antibiotic that targets gram-positive bacteria such as Bacillus 

anthracis (Castillo, 2003). Antibiotics can come from many sources, which is vital for resolving 

the TB antibiotic resistance crisis. 

Other new TB antibiotics include bedaquiline, delamanid, pretomanid, and lassomycin. 

Bedaquiline fumarate, known as Sirturo™, is an FDA-approved drug used to treat multidrug-
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resistant (MDR) TB (CDC, 2016). Bedaquiline has a shelf life of 4-5 months, is only 

recommended to be used for 24 weeks, and must be in conjunction with at least 3 other TB drugs 

for maximal efficacy (CDC, 2016). Delamanid is also an FDA-approved drug, is used in 

conjunction with several other TB antibiotics to treat MDR TB, and acts by inhibiting the 

synthesis of methoxy mycolic acid and ketomycolic acid, TB cell wall components (Matsumoto 

et al., 2006). Pretomanid is a potential TB antibiotic and while little is known about the 

mechanism of action, it has been shown to be a safe and effective TB drug in combination with 

moxifloxacin and pyrazinamide (Dawson, 2015). Lassomycin is new potential TB antibiotic not 

in clinical use yet, but the mechanism of action is the uncoupling of ATPase from proteolytic 

activity (Gavrish, 2014). 

The goal of our project is to find another anti-mycobacterial antibiotic from microbes 

found in the soil. We used M. smegmatis for our project in place of M. tuberculosis because it is 

safer and grows more rapidly. We attempted to complete this goal through testing the inhibitory 

activities of banked microbes from the WPI course Microbes to Molecules, in which students 

take soil samples and culture isolates that have the potential for producing antibiotic products. 

From the initial 21 isolates grown, 10 of them had zones of inhibition against M. smegmatis. Of 

those 10 isolates, 9 were identified and 6 had secondary metabolites that could create potential 

antibiotics against TB after organic extraction and filtration. 
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Methods and Materials 

 

Soil-derived Microbial Isolates 

 

The list of isolates tested are as follows: 2014-01, 2014-14, 2014-17, 2014-26, 2015-28, 2015-

56, 2016-16, 2017-37, 2017-38, 2017-50, SS-X_0020, SS-X_0036, SS-X_0037, SS-X_0038, and 

SS-X_0039. These isolates were obtained from various soil samples that were purified during the 

Microbes to Molecules class from 2014-2017 and stored in frozen glycerol stocks. The isolates 

were labeled by year they were collected from the soil, then by sample number from the class. 

The intention of the course was to collect microbes from the soil around Worcester and 

determine their potential use as an antibiotic. All 12 isolates were streaked on LB plates from 

frozen stocks. Isolates SS-X_0037 and SS-X_0039 were also plated on TSA plates to see if 

further growth occurred since the samples had difficulty growing on LB plates. Plates were 

incubated for three days in a 37°C. From there, master plates were created using a colony from 

each plate and the other plates were placed in the 4°C refrigerator for further use. The master 

plates were plates that were used to grow a singular isolate and take samples from for further 

experimentation. They were made from the frozen stocks or from another colony form earlier 

master plates, and were made at least 3 times in order to keep the microbes fresh. 

 

M. smegmatis Inhibition Assay 

 

Testing the isolates involved the use of the M. smegmatis, colony samples from the master plates, 

and LB plates. The M. smegmatis was dispensed (200 µL at an OD of 0.8 and wavelength of 

600nm) on each LB plate and dried. From there, each microbe colony was put on the plate using 

a flame-sterilized metal loop and the pick and patch method to spread the microbes. The Pick 

and Patch method is where multiple isolates can be tested and grown on the same plate (Sanders, 

2012). A patch grid is drawn on a petri dish and a colony is picked and streaked in one of the 

patches, not the whole plates (Figure 1; Sanders, 2012).  

 

 
 

Figure 1: Pick and Patch Method used for the Inhibition Assay 

 

Isolate 

M. smegmatis 
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Each microbe was tested against M. smegmatis three times. The criteria for a positive result is a 

zone of inhibition, or a ring around the microbe in which M. smegmatis growth was not 

observed. 

 

Mycobacterium smegmatis Liquid Culture 

Frozen stocks of M. smegmatis strain mc2155 were provided by our advisor, Professor Scarlet 

Shell. M. smegmatis was grown in Middlebrook 7H9 broth supplemented with glycerol (final 

concentration 0.2%), dextrose (final concentration 2 g/L), Tween 80 (final concentration 0.05%), 

bovine serum albumin fraction V (final concentration 5 g/L), and sodium chloride (850 g/L). OD 

was then measured in a spectrophotometer at 600 nm. We diluted the culture to an OD between 

0.83-0.9 and stored aliquots at -80°C for subsequent use in the inhibition and activity assays. 

 

PCR & Gel electrophoresis to produce amplicons for 16S rRNA sequencing 

 

To amplify the gene encoding the 16S rRNA for sequencing, a colony was sterilely put into a 

microtube with 100 µL sterile water. The tubes were placed in a Thermal Cycler and were 

incubated for 10 minutes at 95°C. PCR mixes contained 25 µL of 2X OneTaq (New England 

BioLabs), 2 µL of 5 µM 27F Primer (AGAGTTTGATCMTGGCTCAG), 2 µL of 5 µM 1492R 

Primer (GGTTACCTTGTTACGACTT), and 21 µL of the boiled colony liquid in a total reaction 

volume of 50 µL. The alternative primers that were used were 8F 

(AGAGTTTGATCCTGGCTCAG) and 1391R (GACGGGCGGTGTGTRCA). The PCR 

reaction is first set to warm up to 95°C for two minutes. Then a cycle of 95°C for 30 seconds, 

49°C for 45 seconds and 72°C for two minutes is set to run for 30 continuous times. After the 

cycles are done, the PCR conditions is set to 72°C for 10 minutes and then ends. Following that, 

the PCR products were analyzed by gel electrophoresis in TAE buffer using 1% agarose gels. 

Each individual gel had 0.5 grams of agarose powder in 50 mL of 1X TAE buffer and 20 µL of 

1000X (0.02M) ethidium bromide added in its aqueous state before being poured. Unless 

otherwise specified, 10 µL each of HyperLadder (Bioline) and the PCR reactions were run at 100 

volts for 45 minutes. Once the gel was run, it was removed and taken to the gel image machine 

to view and take pictures of the results.  

 

16S rRNA sequencing analysis 

 

The PCR products were cleaned up by the company Eton Bioscience, a biotech company that 

sequences DNA. The PCR products, which were at least 1 kb long, were sequenced from both 

ends by primers 27F, 8F, 1391R, and 1492R, all of which were sent to Eton. After the isolates 

were sequenced, we took the sequences and used the program 4Peaks, a DNA sequence trace 

viewer application, to observe our confidence in the sequence being correct. The criteria we used 

for a high-confidence sequence was that each nucleotide needed to have a clear, singular peak; if 

there were multiple peaks that were small, then the sequence would be low confidence. Figure 5 

is an excellent example of high confidence data, as the peaks for each nucleotide were singular 

and larger. The low-confidence regions were then deleted from the ends of sequence. From there, 

the edited, high-confidence sequences were then put in BLAST, or the Basic Local Alignment 

Tool from the National Center for Biotechnology Information. When the sequences were entered 

into the database, the top identities were listed based on the percentage of how identical the 
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sequences were to each other. The identity for an isolate was determined based on the highest 

percentage identity to the sequence (needed to be at least 98% for a likely identification), but for 

the isolates that had multiple identities at the same percentage, the correct identity could not be 

determined, as there were no further analytic tests performed to differentiate. For example, 

isolate 2014-01 had both Enterobacter aerogenes and Klebsiella aerogenes 99% identical, and 

since both bacteria are very similar, the isolate could not be identified as one over the other. 

 

Organic Extraction 

 

Isolates to be extracted were spread on the surfaces of LB plates to grow thick lawns. After three 

days, the agar and lawn on each plate was cut into pieces and moved into 100 mL bottles, which 

were then placed in the -20℃ freezer for three days. Next, 12 mL of methanol was added to each 

bottle and each bottle was placed on a rotary shaker at 25℃ and 220 rpm overnight. For the ethyl 

acetate, 4 mL of DI water with 6 mL of ethyl acetate was added to a bottle with half a plate of 

the grown isolates. For the acetone, 6 mL of acetone was added to a different bottle with half a 

plate of the grown isolates. The next day, the bottles were then removed from the shaker and the 

methanol-extract liquid was removed from the mixture using a Pasteur pipet, then in their own 

vials. The vials were then placed uncapped in a fume hood until all visible liquid was evaporated. 

The extracts took a minimum of 2 weeks to evaporate with the methanol, but only 1 day with the 

acetone, and two days with the ethyl acetate. Following the evaporation, the extracts were then 

re-suspended in 2-2.5 mL of methanol. We then used a 3 mL syringe and a syringe filter (0.2 µm 

pores) to filter-sterilize the re-suspended extracts.  

 

Organic Extraction Activity Assay 

We set up an assay for the extracts in order to test for antibiotic activity and all of the isolate 

extracts were tested alongside a negative control of methanol. 200 µL of freshly thawed M. 

smegmatis freezer stock (OD 0.8) was plated on each of several LB plates and spread using a 

glass hockey stick. Filter discs that had absorbed either 30 µL or 60 µL of the extracts were 

placed on those plates after the bacteria dried. The filter discs for this assay were made using a 

hole puncher and large sheets of filter paper. The discs are the 1 mm in diameter and were placed 

in a glass petri dish and autoclaved for 20 minutes on a dry cycle. The plates were incubated at 

37ºC for three days and all isolate extracts and controls were tested in duplicate. The positive 

results had a zone of inhibition around the filter disc indicating that M. smegmatis growth was 

inhibited. The negative controls for this assay were the filter disc without any liquid and a 

methanol soaked filter disc, which test the sterility of both the filter discs and the methanol used. 

 

HPLC 

The HPLC was used to observe the chemical components of the extracts from the isolates that 

showed zones of inhibition in the extract activity assay. The HPLC was made by Agilent 

Technologies, the software used to run the HPLC was OpenLab and a 0.5 µM C18 reverse phase 

silica column was used to seperate the samples. . The program was set to run on the C18 column 

in the HPLC. The instrument was turned on and allowed to run for 20 minutes prior to the start 

of running the sample. For each sample used, 500 µL was placed in each vial to prevent air 

bubbles being run through the column. Each sample ran for 58 minutes at a flow rate of 1 

mL/min, and 100 µL of each isolate was loaded into the column. The gradient of the HPLC 

started with 90% of 0.1% Formic Acid in distilled water and  10% of 0.1% Formic Acid in 
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Acetonitrile and ended with 90% of 0.1% Formic Acid in acetonitrile and 10% of 0.1% Formic 

Acid in distilled water in a continuous gradient (Table 1). This was set up to move the samples 

from a polar to a non-polar gradient to separate the molecules.  The graphs of the peaks were 

collected and compared to the control sample and to other samples for similarities and 

differences.  

 

Table 1: Gradient of the HPLC that was used in the experiment, going from polar to non-polar. 

 

Time 

(min) 

% In 

Water 

% In Acetyl 

Nitrile 

0 90 10 

4.25 90 10 

29.25 80 20 

37.55 80 20 

37.56 50 50 

45.85 50 50 

45.86 20 80 

54.15 20 80 

54.16 10 90 

58.15 10 90 
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Results  

In this project, isolates collected from various soil samples were plated on top of M. smegmatis 

to see if there are any zones of inhibition. If yes, the colonies of the isolates went through the 

PCR and went through gel electrophoresis. If the isolates showed on the gel, they were then sent 

for sequencing and subsequently identified through BLAST. Then the isolates went through an 

organic extract and activity assay. Finally, the molecules in the isolates were analyzed using 

HPLC. 

 

Inhibition and Morphology Assay 

The goal of this assay is to screen for soil isolates capable of inhibiting the growth of M. 

smegmatis from a panel of soil isolates that were collected and banked in the WPI course 

Microbes to Molecules. The isolates were plated on LB agar plates to determine if they could 

grow in that environment. The selected microbes were thawed and plated in a streaking fashion 

and were placed in an incubator at 37℃ and were documented over the course of three days. Ten 

isolates were able to grow on LB plates: 2014-01, 2014-14, 2014-17, 2014-26, 2015-28, 2015-

56, 2016-16, SSX-20, SSX-36, and SSX-38 (See Appendix A). The isolates exhibited a variety 

of morphologies, colors, and colony sizes. Isolates SSX-37 and SSX-39 had very little to no 

growth on LB plates. We tried TSA plates for both of the isolates but did not observe growth 

after 3 days at 37℃. 

 

Figure 2 demonstrates the varied growth of the isolates, and morphology is described in Table 2. 

The best example for the morphology can be seen in part A from Figure 2, as it shows white, 

spotty, and wispy growth. The rest of the isolate morphologies can be found in Appendix B. 
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To test the isolates for ability to inhibit mycobacterial growth, each isolate was patched onto an 

LB agar plate freshly spread with liquid M. smegmatis culture.  Results were observed after 3 

days at 37℃  (Figure 2). The zone of inhibition is defined as a clear space surrounding the isolate 

that is preventing the growth of the M. smegmatis. This zone will be evident if an isolate has any 

potential antibiotic properties against M. smegmatis. Inhibition of M. smegmatis means that it 

could potentially be effective against M. tuberculosis as well, as they are similar organisms. Ten 

of the 21 isolates tested had a zones of inhibition against the M. smegmatis (Figure 3 and  

Appendix B). 

 

 

 

 

 

 

 

 

B 

Figure 2: Growth of Isolates on LB plates.  All observations 

were made after 3 days in a 37ºC incubator. 

A 

C D 

2017-23 2017-38 

2017-46 

2017-37 
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Figure 3: Zones of Inhibition on LB Agar Plates on 

an M. smegmatis lawn 

A 
B 

Zones of 

Inhibition 

2017-31 2017-36 

2017-36 2017-53 2017-10 

2017-50 2017-38 

2017-23 2017-37 

2014-01 

2014-14 

2014-17 

2014-26 

2015-56 2015-28 

2016-16 

2017-46 

2017-43 

C 
D 

E 



14 
 

 

 

 

 

Isolate Name Morphology Zone of Inhibition 

2014-01 white, fluffy, spotty Yes 

2014-14 light, white, wispy None 

2014-17 small, wispy, white None 

2014-26 white, fluffy, spotty Yes 

2015-28 white, fluffy, spotty, wispy Yes 

2015-56 white, fluffy, spotty, wispy None 

2016-16 white, fluffy, spotty Yes 

SS-X_0020 white, fluffy, spotty None 

SS-X_0036 larger, white, spotty, fluffy None 

SS-X_0037 spotty, white, fluffy, small None 

SS-X_0038 White, hardened, spotty None 

SS-X_0039 N/A N/A 

2017-010 spotty, fluffy, white None 

2017-23 spotty, fluffy, white Yes 

2017-31 white, smooth None 

2017-36 large spotty, fluffy, white Yes 

2017-37 spotty, fluffy, white Yes 

2017-38 smaller dots, white, fluffy Yes 

2017-46 pink, smaller dots, wispy Yes 

2017-50 white, fluffy, larger spots Yes 

2017-53 smaller dots, white, fluffy None 

 

Identification of soil isolates 

 In order to determine the identities of the soil isolates, those that produced zones of 

inhibition against M. smegmatis were subject to 16S rRNA sequencing. Colony PCR was used to 

amplify the 16S rRNA gene from selected isolates that displayed zones of inhibition (see Figure 

3). PCR products were visualized by gel electrophoresis (Figure 4).   
 

Table 2: Observations of the Inhibition Assay 

and Morphology of the Isolates 
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Figure 4 (A) shows that all of the isolates that produced PCR products of approximately 1500 

base pairs. For isolate 2017-38, several dilutions of the template were tested to optimize the 

reaction (Figure 4B). Figure 4 (B) indicated that the first and second template dilutions, columns 

C and D, displayed bands with the combination of the three primers at almost the same band 

size. Not all of the isolates worked with the Microbes to Molecules primers, 1492R and 27F, so 

8F and 1391R were used, sometimes in combination with the other primers, to allow us to 

identify 9 isolates. The isolates that didn’t produce the visible product of the 16S rRNA gene 

with the 1492R and 27F primers were 2017-23, 2017-37, 2017-38, and 2017-50. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Agarose Gels of Isolates (A) 2014-01, 2014-26, 2015-28, and 2016-16 using 

primers 1492R and 27F; (B) 2017-38 was amplified using primers 1391R, 1492R, and 

27 F with 10X-decreasing dilutions of template.  

B A 
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Isolate Name BLAST Top Hit and Percentage 

2014-01 Enterobacter/Klebsiella aerogenes 99% 

2014-26 Enterobacter/Klebsiella aerogenes 98% 

2015-28 Enterobacter/Klebsiella aerogenes 99% 

2016-16 Enterobacter/Klebsiella aerogenes 100% 

2017-23 Uncultured Bacteria Clone 98% 

2017-36 Klebsiella pneumoniae 98% 

2017-37 Uncultured Bacteria Clone 98% 

2017-38 Uncultured Bacterium DGGE 100% 

Serratia nematodiphila 100% 

Lelliottia amnigena 100% 

2017-50 Bacillus cerus 99% 

 

 
 

 

 

Each PCR product was sequenced, and low-quality regions of the sequencing trace were trimmed 

using 4Peaks. The results for each sequence are shown in Figure 5 and in Appendix D. 2017-38 

is shown as an example of excellent quality sequence. From there, the sequences were put in 

NCBI nucleotide BLAST and the top hit(s) for identification was placed in Table 3.  For only 

one of the PCR products, (isolate 2017-46), we were unable to get high-quality sequence data 

and were therefore unable to make an identification. The isolates listed in Table 3 had sequences 

of high enough quality where each was able to be identified. However, there was some 

uncertainty to the specific identification of some of the isolates because the isolate sequence was 

deemed equally similar to multiple identities and there was no discernable way to tell which 

identity was correct for the same percentage. For example, 2017-38 had 100% sequence 

similarity with Uncultured Bacterium DGGE, Serratia nematodiphila, and Lelliottia amnigena 

(Table 3). Isolates 2014-01, 2014-26, 2015-28, and 2016-16 were all identified as the same two 

bacteria with equal identity percentages (see Table 3).  

 

 

 

Table 3: List of Isolates and BLAST Identifications 

Figure 5: 4Peaks Analysis of isolate 2017-38. The primer used for the sequencing reaction 

was 1391R. The PCR was done with a mix of 27F, 1391R, and 1492R. 
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Organic Extraction and Activity Assays 

The goal of these assays was to determine if secondary metabolites with inhibitory activity could 

be extracted from the isolates by organic solvents. Following the organic extraction of each of 

the isolates separately in methanol, acetone, and ethyl acetate, extracts derived from each of the 

isolates were tested for antibiotic activity. Once the extraction solvents had evaporated, the 

extracts were re-suspended in methanol and absorbed on filter discs, and in the similar manner to 

the inhibition assay, the filter discs were placed on top of freshly spread M. smegmatis liquid 

culture, incubated for 3 days at 37ºC, and observed for zones of inhibition. 

 

 
 

 

 

 

 

 

The methanol extraction for all for the isolates took a total of 3 weeks to completely evaporate. 

All of the inhibition assays using methanol extractions had similar results to that of 2014-01, 

which was inconclusive (Figure 6). These results are inconclusive because there are no zones of 

inhibition and in some cases there is additional microbial growth around the disks, likely because 

the extractions were not filtered, meaning that contamination was the likely reason for antibiotic 

activity. There was a small zone of inhibition with the methanol, likely due to incomplete 

evaporation of the methanol before placing the disc on the plate. 

Figure 6: Methanol Extractions (A) Methanol-soaked filter 

discs on an LB Agar Plate grown with M. smegmatis with no 

isolates; (B) 2014-01 Extract re-suspended in Methanol on a 

filter disc grown with M. smegmatis on LB Agar Plate 

A B 
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Figure 7: Organic Extraction Activity Assays; in each quadrant, right filter discs have 60 µL of 

extract and left filter discs have 30 µL of extract from the same isolate. 

 

Following three attempts of the Organic Extraction Activity Assay, the attempt shown in Figure 

7 was successful in showing the isolates with zones of inhibition. B and D are Ethyl Acetate 

Extractions, and C and E are Acetone Extractions (Figure 7). Isolate 2017-23 only had an 

A B 

C D 

E 

2017-23 

Filter Disc 

Control 

Methanol 

Control 

2014-01 2014-26 

2015-28 2016-16 

2014-01 2014-26 

2015-28 

2015-28 

2015-28 

2017-36 

2017-36 

2017-37 

2017-37 

2017-38 

2017-38 2017-50 

2017-50 
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extraction with acetone, since its extraction with ethyl acetate solidified and formation to a liquid 

was therefore difficult. The other two attempts did not have enough extract on the filter discs to 

warrant a conclusive zone of inhibition. Figure 7 shows the left filter discs with 30 µL of extract 

having minimal, if any, zones of inhibition while the right filter discs had 60 µL of extract and 

showed the only definite zones of inhibition. A zone of inhibition is more conclusive evidence of 

antibiotic activity for the isolates. Extracts from isolates 2014-26, 2015-28, 2016-16, 2017-37, 

2017-38, and 2017-50 re-suspended in methanol all produced clear zones of inhibition when 60 

µL of extract was applied to the filter.  

 

HPLC 

HPLC was done on extracts from selected isolates in order to determine if there are similar or 

different peaks found in each sample that could indicate the chemical components of the isolates. 

The seven samples that displayed the best inhibition zones (2014-26, 2015-28, 2016-16, 2017-

37, 2017-38 and 2017-50) were made into ethyl acetate and acetone extractions. All of the 

isolates used for the HPLC analysis were re-suspended in methanol. The ethyl acetate extractions 

of isolates 2014-26, 2016-16 and 2017-37, and the acetone extractions of isolates 2015-28, 2017-

38 and 2017-50 were chosen. 

 

 
Figure 8: Graph highlighting the two peaks of the Methanol Control sample 

 

 

 
Figure 9: Graph highlighting the peaks of the ethyl acetate extract from Isolate 2014-26 
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Figure 10: Graph highlighting the peaks of the acetone extract from Isolate 2015-28 

 

 

 
Figure 11: Graph highlighting the peaks of the ethyl acetate extract from Isolate 2016-16 

 

 
 

Figure 12: Graph highlighting the peaks of the ethyl acetate extract from Isolate 2017-37 

 

 
Figure 13: Graph highlighting the peaks of the acetone extract from Isolate 2017-38 
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Figure 14: Graph highlighting the peaks of the acetone extract from Isolate 2017-50  

 

All of the chromatograms indicate a larger presence of a peak at the beginning of the graphs, 

with the isolate extracts showing peaks at 5 minutes going past 2000 mAU (Figures 10-14). 

Extracts from isolates 2015-28 and 2016-16 are nearly identical in the number of peaks, 

including two small peaks located at the 55 minute marker, which is not surprising since they are 

the same microbe (Figures 10 and 11). 2016-16 has smaller peak markers highlighted before the 

20 minute mark than the 2024-26 chromatogram. Isolates 2015-28, 2016-16, and 2017-37 all 

have a singular, smaller peak at the 44 minute mark, which indicates that there is a presence of a 

similar chemical component besides the methanol peak that is present in the majority of the 

samples. (Figures 10-12).  Isolates 2014-26, 2016-16, and 2017-37 all have tall peaks at the 3.0-

3.1 minute mark, and the latter two isolates also have a smaller peak at the 43.7 minute mark 

(Figure 9, 11, and 12). The chromatograms for 2015-28 and 2017-50 have a tall peak at the 4.791 

minute mark (Figures 10 and 14). Isolates 2015-28 and 2017-38 have multiple small peaks 

within the 20-30 minute mark (Figures 10 and 13). All of the figures have multiple smaller peaks 

within the 30-40 minute mark and no other peaks with an absorbance greater than 300 mAU 

occurred besides at the start of the data collection.     
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Discussion 

 

Using the methods provided by the Small World Initiative, we were able to analyze soil 

isolates whose secondary metabolites could potentially be used as antibiotics against TB. We 

selected 21 isolates from the Microbes to Molecules course from the years 2014-2017 that were 

tested for antibiotic activity. Of those, the first 11 isolates were selected from a previous MQP 

that were tested against M. smegmatis and zones of inhibition were seen (Barter et al., 2017). The 

other ten isolates were randomly selected from the 2017 class. From the total 21 isolates, only 10 

isolates had any zones of inhibition when plated with M. smegmatis. Isolate SS-X_0039 had no 

growth at all, either because it was lost in the process of preserving it, or it required nutrients that 

TSA and LB plates could not provide. The isolates 2014-01, 2014-26, 2015-28, and 2016-16 

were expected to be the same isolate based on the morphology, and the results from the BLAST 

sequences proved that to be correct. Of the 10 isolates that initially showed zones of inhibition, 

only one isolate (2017-46) did not produce a PCR product adequate for sequencing. After several 

attempts at PCR including dilution of the template, 2017-46 failed to appear on the gel, 

presumably due to lack of PCR product.  

For the organic extraction activity assay, the methanol-only extractions of the 2014, 

2015, and 2016 samples did not produce extracts with inhibitory activity. While after any organic 

extraction the extracted material has to be re-suspended in methanol, we speculate the reason 

why the methanol only did not work is because methanol is a very polar molecule and had 

difficulty interacting with the secondary metabolites. Ethyl acetate and acetone are far less polar 

than methanol and were successful in interacting with/preserving the secondary metabolites. The 

isolates that produced acetone or ethyl acetate extracts with antibiotic activity following filtration 

were 2014-26, 2015-28, 2016-16, 2017-37, 2017-28, 2017-50, which indicates these isolates 

produced soluble molecules with inhibitory activity. We were surprised that extracts from isolate 

2014-01 did not have inhibitory activity despite this isolate having the same identity as 2014-26, 

2015-28, and 2016-15. We speculate that 2014-01 was a different strain than the other isolates. 

Isolates 2017-23 and 2017-36 may not have had secondary metabolites with antibiotic activity 

based on the activity assay following the organic extraction and filtration. 

 For the HPLC data, the results displayed similar looking graphs with minor differences 

between a few isolates. All of the traces besides the methanol-only control had a tall peak at 

either near the 3 minute mark (Isolates 2014-26, 2016-16, 2017-37, and 2017-38) or the 4.7 

minute mark (Isolates 2015-28 and 2017-50). While the methanol control had a peak right on the 

40 minute mark, none of the other results collected had a peak right on the 40 minute mark; it is 

unclear why this was the case. Based on the evidence found in Figures 9-11, there could be some 

evidence in differentiating between Enterobacter aerogenes and Klebsiella aerogenes. Figure 9 

had much larger peaks than was seen in Figure 10 and 11, which could indicate that 2014-26 is 

not the same species as the other two isolates. Despite not knowing the exact similar chemical 

components amongst the results, there is evidence that the isolates have similar chemical 

components that could reflect molecules with antibiotic activities or simply other shared 

chemical components of these organisms.  

Future research can go into further isolate identification, more activity assay using 

fractions from the HPLC samples, and further testing of the other isolates with different primers 

or media. Most of the isolates were not able to be unambiguously identified at the species level, 

so further testing using more specific primers could help better with identification, especially 

defining the difference between Enterobacter aerogenes and Klebsiella aerogenes that are 
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especially similar. If fractions are taken from an isolate extraction while undergoing HPLC 

analysis, then those fractions can be tested against M. smegmatis to see what molecule(s) in the 

microbes produces the antibiotic activity. Testing out alternative primers for at least the isolate 

that did not produce a product with our 16S primers could allow for better DNA synthesis such 

that the isolate could be identified. For an isolate like SS-X_0039, different media for plates 

could be used to see if the microbe can grow, because in order for the isolate to have been 

preserved in the Microbes to Molecules class, the isolate needed to grow. Ultimately, we were 

able to find 7 isolates that had definite antibiotic activity (Appendix C), indicating that further 

study of these isolates and the molecules they produce may be warranted. 
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Appendix 

Appendix  A: LB Plates of Isolates growth 

 
Left is 2014-01 on an LB plate, Right is 2016-16 on an LB plate 

 

 
Left is 2015-56 on an LB plate, Right is 2-14-26 on an LB plate 
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Left is 2014-17 on an LB plate, Right is SSX_037 on a TSA plate 

 

 
Left is 2014-14 on an LB plate, Right is 2015-28 on an LB plate 

 

 
SSX_020 on an LB plate 
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Left is SSX_036 on an LB plate, Right is SSX_038 on an LB plate 

 

 
Left is SSX_039 on an LB plate, Right is 2017 Master Plate; from top left to bottom right is 

2017-31, 2017-36, 2017-53, and 2017-10 

 
Left is (from top left to bottom right) 2017-38, 2017-50, 2017-37, and 2017-23 on an LB plate, 

Right is 2017-46 (top) and 2017-43 (bottom) on an LB plate 
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Appendix B: Isolates with M. smegmatis displaying zones of inhibition  

 

 
Left is 2017-46 (top) and 2017-43 (bottom) on an LB plate with a lawn of M. smegmatis with 

patches of isolates, Right is LB in-between plate with M. smegmatis; from top left to bottom right 

is 2017-31, 2017-36, 2017-53, and 2017-10 

 

 

 
Left is an LB plate with M. smegmatis lawn and isolates, from top left to bottom right: 2014-01, 

2014-14, 2014-17, and 2014-26; Right is an LB in-between plate, from top left to bottom left: 

2015-28, 2015-56, and 2016-16 
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LB plate with M. smegmatis lawn and isolates, from top left to bottom right: SSX_020, SSX_036, 

SSX_037, and SSX_38 

 

Appendix C: Table of Isolates and Assay Results 

Isolate 
Name Morphology 

Zone in 
Inhibition 

Primers 
Used 

BLAST Top 
Hit/% 

Extraction 
Results 1 

Extraction 
Results 2 

Extraction 
Results 3 

Extraction 
Results 4 

Extraction 
Results 5 

2014-001 
white, fluffy, 

spotty Yes 
27F, 

1492R 

Enterobacter
/Klebsiella 
aerogenes 

99% Inconclusive Inconclusive Inconclusive Some Yes 

2014-14 
light, white, 

wispy None N/A N/A N/A N/A N/A N/A N/A 

2014-17 
small, 

wispy, white None N/A N/A N/A N/A N/A N/A N/A 

2014-26 
white, fluffy, 

spotty Yes 
27F, 

1492R 

Enterobacter
/Klebsiella 
aerogenes 

98% 
Some with 
Acetone Yes Yes Some Some 

2015-28 

white, fluffy, 
spotty, 
wispy Yes 

27F, 
1492R 

Enterobacter
/Klebsiella 
aerogenes 

99% 
Yes, 7/8 filter 

discs 

Mostly (was 
it zone of 

inhibition or 
lack of 

M.Smeg?) Yes Some 
Inconclusiv

e 

2015-56 

white, fluffy, 
spotty, 
wispy None N/A N/A N/A N/A N/A N/A N/A 

2016-16 
white, fluffy, 

spotty Yes 
27F, 

1492R 

Enterobacter
/Klebsiella 
aerogenes 

100% 

Only with 
Acetone (re-

test ethyl 
acetate) 

Yes with 
Acetone 

Yes with 
Acetone 

Inconclusiv
e Some 

SS-X_0020 
white, fluffy, 

spotty None N/A N/A N/A N/A N/A N/A N/A 
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SS-X_0036 

larger, 
white, 

spotty, fluffy None N/A N/A N/A N/A N/A N/A N/A 

SS-X_0037 

spotty, 
white, fluffy, 

small None N/A N/A N/A N/A N/A N/A N/A 

SS-X_0038 

White, 
hardened, 

spotty None N/A N/A N/A N/A N/A N/A N/A 

SS-X_0039 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

2017-010 
spotty, 

fluffy, white None N/A N/A N/A N/A N/A N/A N/A 

2017-23 
spotty, 

fluffy, white Yes 8F, 1391R 

Unculture 
Bacteria 

Clone 98% Inconclusive Yes Yes 
Inconclusiv

e Yes 

2017-31 
white, 

smooth None N/A N/A N/A N/A N/A N/A N/A 

2017-36 
large spotty, 
fluffy, white Yes 

27F, 1492 
R 

Klebsiella 
pneumoniae 

98% 

Minimal 
(small with 
half of the 
filter discs) Mostly Some 

Inconclusiv
e Some 

2017-37 
spotty, 

fluffy, white Yes 
8F, 

1391R* 

Uncultured 
Bacteria 

Clone 98% Inconclusive Inconclusive Inconclusive Some Yes 

2017-38 

smaller 
dots, white, 

fluffy Yes 
27F, 1391 
R, 1492 R 

Serretia sp. 
96% N/A N/A N/A N/A N/A 

2017-46 

pink, 
smaller 

dots, wispy Yes N/A N/A N/A N/A N/A N/A N/A 

2017-50 
white, fluffy, 
larger spots Yes 8F, 1391R B. cerus 99% 

Some (2 filter 
dics) Inconclusive Inconclusive Some Some 

2017-53 

smaller 
dots, white, 

fluffy None N/A N/A N/A N/A N/A N/A N/A 

 

 

 

 

 

 

Appendix D: 4Peaks Analytical Graphs for all Identified Isolates 
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4Peaks for 2014-01 with 27F Primer 

 
4Peaks for 2014-01 with 1492R Primer 

 
4Peaks for 2014-26 with 27F Primer 

 
4 Peaks for 2014-26 with 1492R Primer 

 
4Peaks for 2015-28 with 27F Primer 

 
4Peaks for 2015-28 with 1492R Primer 

 
4Peaks for 2016-16 with 27F Primer 

 
4Peaks for 2016-16 with 1492R Primer 
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4Peaks for 2017-23 with 8F Primer 

 
4Peaks for 2017-23 with 1391R Primer 

 
4Peaks for 2017-36 with 27F Primer 

 
4Peaks for 2017-36 with 1492R Primer 

 
4Peaks for 2017-37 with 8F Primer 

 

 
4Peaks for 2017-37 with 1391R Primer 
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4Peaks for 2017-38 with 27F Primer 

 
4Peaks for 2017-38 with 1492R Primer 

 
4Peaks for 2017-50 with 8F Primer 

 
4Peaks for 2017-50 with 1391R Primer 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Bibliography 

Barter, M., McCarron, C. (2017) New Treatment for an Old Disease. WPI. Online. 

 

Bhattacharjee, Mrinal K. Chemistry of Antibiotics and Related Drugs. Vol. XII. Cham: Springer, 

2016. 
 

Bizuye, A., Moges, F., & Andualem, B. (2013). Isolation and screening of antibiotic producing 

actinomycetes from soils in Gondar town, North West Ethiopia. Asian Pacific Journal of 

Tropical Disease, 3(5), 375–381. http://doi.org/10.1016/S2222-1808(13)60087-0 

 

Bozdogan B., Appelbaum P. C. (2004). Oxazolidinones: activity, mode of action, and 

mechanism of resistance. Int. J. Antimicrob. Agents 23 113–119. 

10.1016/j.ijantimicag.2003.11.003 

 

Castillo, U., Harper, J. K., Strobel, G. A., Sears, J., Alesi, K., Ford, E., ... & Yaver, D. (2003). 

Kakadumycins, novel antibiotics from Streptomyces sp. NRRL 30566, an endophyte of Grevillea 

pteridifolia. FEMS Microbiology Letters, 224(2), 183-190. 

 

CDC. (2017). Drug-resistant TB. U.S. Department of Health & Human Services. 

https://www.cdc.gov/tb/topic/drtb/default.htm 

 

Clardy, J., Fischbach, M., & Currie, C. (2009). The natural history of antibiotics. Current 

Biology : CB, 19(11), R437–R441. http://doi.org/10.1016/j.cub.2009.04.001 

 

Chaudhary, H. S., Yadav, J., Shrivastava, A. R., Singh, S., Singh, A. K., & Gopalan, N. (2013). 

Antibacterial activity of actinomycetes isolated from different soil samples of Sheopur (A city of 

central India). Journal of Advanced Pharmaceutical Technology & Research, 4(2), 118–123. 

http://doi.org/10.4103/2231-4040.111528 

 

Coates, A. R. M., & Hu, Y. (2007). Novel approaches to developing new antibiotics for bacterial 

infections. British Journal of Pharmacology, 152(8), 1147–1154. 

http://doi.org/10.1038/sj.bjp.0707432 

 

Connolly, L. E., Edelstein, P. H., & Ramakrishnan, L. (2007). Why Is Long-Term Therapy 

Required to Cure Tuberculosis? PLoS Medicine, 4(3), e120. 

http://doi.org/10.1371/journal.pmed.0040120 

 

Dawson, Rodney et al.“Efficiency and safety of the combination of moxifloxacin, pretomanid 

(PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, 

open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary 

tuberculosis,” The Lancet , Volume 385 , Issue 9979 , 1738 - 1747 

 

Dye, C., Espinal, M. A., Watt, C. J., Mbiaga, C., & Williams, B. G. (2002). Worldwide incidence 

of multidrug-resistant tuberculosis. The Journal of infectious diseases, 185(8), 1197-1202. 

 

http://doi.org/10.1016/S2222-1808(13)60087-0
http://doi.org/10.1016/S2222-1808(13)60087-0
http://doi.org/10.1016/S2222-1808(13)60087-0
https://www.hhs.gov/
https://www.hhs.gov/
https://www.cdc.gov/tb/topic/drtb/default.htm
https://www.cdc.gov/tb/topic/drtb/default.htm
https://www.cdc.gov/tb/topic/drtb/default.htm
https://www.cdc.gov/tb/topic/drtb/default.htm
http://doi.org/10.1016/j.cub.2009.04.001
http://doi.org/10.1016/j.cub.2009.04.001
http://doi.org/10.1016/j.cub.2009.04.001
http://doi.org/10.4103/2231-4040.111528
http://doi.org/10.4103/2231-4040.111528
http://doi.org/10.4103/2231-4040.111528
http://doi.org/10.4103/2231-4040.111528
http://doi.org/10.1038/sj.bjp.0707432
http://doi.org/10.1038/sj.bjp.0707432
http://doi.org/10.1038/sj.bjp.0707432
http://doi.org/10.1038/sj.bjp.0707432
http://doi.org/10.1371/journal.pmed.0040120
http://doi.org/10.1371/journal.pmed.0040120
http://doi.org/10.1371/journal.pmed.0040120
http://doi.org/10.1371/journal.pmed.0040120


34 
 

Etienne, G., Laval, F., Villeneuve, C., Dinadayala, P., Abouwarda, A., Zerbib, D., ... & Daffe, M. 

(2005). The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is 

there a clue for the unique transformability of the strain?. Microbiology, 151(6), 2075-2086. 

 

Gavrish, E., et al. “Lassomycin, a Ribosomally Synthesized Cyclic Peptide, Kills 

Mycobacterium Tuberculosis by Targeting the ATP-Dependent Protease ClpC1P1P2.” 

Chemistry & Biology, Cell Press, 27 Mar. 2014, 

www.sciencedirect.com/science/article/pii/S1074552114000763. 

                                                

Hatfull, G. F. (2014). Mycobacteriophages: Windows into Tuberculosis. PLoS Pathogens, 10(3), 

e1003953. http://doi.org/10.1371/journal.ppat.1003 

 

Kim, J., Shakow, A., Castro, A., Vande, C., Farmer, P., (2017). Tuberculosis Control. WHO. 

http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index1.html 

 

Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L., & Bourne, P. E. (2009). Drug 

discovery using chemical systems biology: repositioning the safe medicine Comtan to treat 

multi-drug and extensively drug resistant tuberculosis. PLoS computational biology, 5(7), 

e1000423. 

 

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets 

to networks. Nature reviews. Microbiology, 8(6), 423. 

 

Laura J. V. Piddock; Teixobactin, the first of a new class of antibiotics discovered by iChip 

technology?, Journal of Antimicrobial Chemotherapy, Volume 70, Issue 10, 1 October 2015, 

Pages 2679–2680, https://doi.org/10.1093/jac/dkv175 

 

Lee, Myungsun, et al. “Linezolid for XDR-TB - Final Study Outcomes | NEJM.” New England 

Journal of Medicine, New England Journal of Medicine, 16 July 2015, 

www.nejm.org/doi/full/10.1056/NEJMc1500286. 

 

Matsumoto M, et al.(2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with 

promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466. 

                      

Saadoun, I., & Gharaibeh, R. (2003). The Streptomyces flora of Badia region of Jordan and its 

potential as a source of antibiotics active against antibiotic-resistant bacteria. Journal of arid 

environments, 53(3), 365-371. 

 

Sanders, E. R. (2012). Aseptic Laboratory Techniques: Plating Methods. Journal of Visualized 

Experiments : JoVE, (63), 3064. Advance online publication. http://doi.org/10.3791/3064 

 

Santos, D. (2016) Antibiotic discovery against tuberculosis through isolation and identification 

of soil bacteria. WPI. Online. 
 

Schmidt, C. W. (2008). Linking TB and the Environment: An Overlooked Mitigation Strategy. 

Environmental Health Perspectives, 116(11), A478–A485. 

http://www.sciencedirect.com/science/article/pii/S1074552114000763
http://www.sciencedirect.com/science/article/pii/S1074552114000763
http://www.sciencedirect.com/science/article/pii/S1074552114000763
http://doi.org/10.1371/journal.ppat.1003
http://doi.org/10.1371/journal.ppat.1003
http://doi.org/10.1371/journal.ppat.1003
http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index1.html
http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index1.html
http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index1.html
http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index1.html
https://doi.org/10.1093/jac/dkv175
https://doi.org/10.1093/jac/dkv175
https://doi.org/10.1093/jac/dkv175
http://www.nejm.org/doi/full/10.1056/NEJMc1500286
http://www.nejm.org/doi/full/10.1056/NEJMc1500286
http://www.nejm.org/doi/full/10.1056/NEJMc1500286
http://doi.org/10.3791/3064


35 
 

 

“Small World Initiative.” Small World Initiative, 2016, www.smallworldinitiative.org/. 

                                                

Smith, T., Wolff, K. A., & Nguyen, L. (2013). Molecular Biology of Drug Resistance in 

Mycobacterium tuberculosis. Current Topics in Microbiology and Immunology, 374, 53–80. 

http://doi.org/10.1007/82_2012_279 

 

“Tuberculosis (TB).” Centers for Disease Control and Prevention, Centers for Disease Control 

and Prevention, 24 Oct. 2013, 

www.cdc.gov/tb/publications/factsheets/treatment/bedaquiline.htm. 

 

“Tuberculosis (TB).” Centers for Disease Control and Prevention, Centers for Disease Control 

and Prevention, 11 May 2016, www.cdc.gov/tb/publications/factsheets/drtb/mdrtb.htm. 

                                                                                    

University of Utah. (2017). What is an Antibiotics? Genetic Science Learning Center. 

http://learn.genetics.utah.edu/content/microbiome/antibiotics/ 

 

WHO. (2017). Global Map of TB. WHO. 

http://www.who.int/tb/publications/2009/airborne/background/info/en/ 

 

WHO Media Center. (2017). Tuberculosis Fact Sheet. WHO. 

http://www.who.int/mediacentre/factsheets/fs104/en/ 

 

  

http://www.smallworldinitiative.org/
http://doi.org/10.1007/82_2012_279
http://doi.org/10.1007/82_2012_279
http://doi.org/10.1007/82_2012_279
http://doi.org/10.1007/82_2012_279
http://www.cdc.gov/tb/publications/factsheets/treatment/bedaquiline.htm
http://www.cdc.gov/tb/publications/factsheets/treatment/bedaquiline.htm
http://www.cdc.gov/tb/publications/factsheets/treatment/bedaquiline.htm
http://www.cdc.gov/tb/publications/factsheets/drtb/mdrtb.htm
http://www.cdc.gov/tb/publications/factsheets/drtb/mdrtb.htm
http://learn.genetics.utah.edu/content/microbiome/antibiotics/
http://learn.genetics.utah.edu/content/microbiome/antibiotics/
http://learn.genetics.utah.edu/content/microbiome/antibiotics/
http://learn.genetics.utah.edu/content/microbiome/antibiotics/
http://www.who.int/tb/publications/2009/airborne/background/info/en/
http://www.who.int/tb/publications/2009/airborne/background/info/en/
http://www.who.int/tb/publications/2009/airborne/background/info/en/
http://www.who.int/tb/publications/2009/airborne/background/info/en/
http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/mediacentre/factsheets/fs104/en/

	Worcester Polytechnic Institute
	Digital WPI
	April 2018

	The Hunt for TB Antibiotics from the Soil
	Amanda M. Sullivan
	Maria L. Snyder
	Repository Citation


	Abstract
	Introduction
	Methods and Materials
	Results
	Discussion
	Appendix
	4Peaks for 2014-01 with 27F Primer
	4Peaks for 2015-28 with 27F Primer
	4Peaks for 2015-28 with 1492R Primer
	4Peaks for 2017-38 with 27F Primer
	4Peaks for 2017-38 with 1492R Primer
	Bibliography
	Dawson, Rodney et al.“Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-suscept...


