
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

May 2008

NON-DUPLICATIVE APPROACH TO
SHARING BETWEEN STREAMED QUERIES
Bart Shappee
Worcester Polytechnic Institute

Christopher Adam Bass
Worcester Polytechnic Institute

James Albert Roumeliotis
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Shappee, B., Bass, C. A., & Roumeliotis, J. A. (2008). NON-DUPLICATIVE APPROACH TO SHARING BETWEEN STREAMED
QUERIES. Retrieved from https://digitalcommons.wpi.edu/mqp-all/2968

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2968?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: EAR-0708

NON-DUPLICATIVE APPROACH TO SHARING

BETWEEN STREAMED QUERIES

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

James Roumeliotis

Bart Shappee

Christopher Bass

Date: April 24th, 2008

Approved:

Professor Elke Rundensteiner, Major Advisor

1. sharing

2. streamed

3. queries

This report represents the work of one or more WPI undergraduate students
submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review.

1 of 94

Abstract
The push for streaming database systems to handle massive amounts of data and multiple

queries necessitates the development of efficient yet adaptive query sharing technology.

This project designed an effective solution to this problem poised as NASSQ, an elegant

hybrid between static and dynamic routing alternatives. Utilizing the adaptive architecture

of dynamic routing systems, NASSQ supports adaptive sharing of operators among

different queries while refraining from duplicating intermediate data tuples. However like

static routing, NASSQ constructs optimized routes using statistics.

2 of 94

Acknowledgements

The NASSQ system and this entire Major Qualifying Project could not have been
completed without the help and assistance of a number of people. First and foremost, the
guidance provided by Professor Elke Rundensteiner insured that our project was on track
consistently throughout the school year. We would like to then thank our representatives
and collaborators at MITRE, Jennifer Casper and Peter Leveille for providing us with the
facilities as well as the practicality information on SDAF for our project and logistics
with badging and lab setup. With the MITRE Corporation we would like to thank Jing
Hu for providing the data generator. When struggling to switch over to the CAPE engine,
we would like to give a special thanks to Karen Works for dealing with our countless
questions regarding CAPE as well as Rimma Nehme, Venkatesh Raghavan, and the rest
of the DSRG staff for all of the assistance.

Finally we would like to thank the NSF Funding agency for the $100,000 to purchase the
computer equipment for testing. This material is based in part upon equipment supported
by the National Science Foundation under Grant No. 0551584. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

3 of 94

Table of Contents

1 Introduction...8

1.1 Background and Motivation..8

1.2 State-of-art in Streaming Systems..9

1.3 Problem Statement...10

1.4 Roadmap of the Document...11

2 Background...13

2.1 Streaming Database Systems..13

2.2 Static Routes...14

2.3 Dynamic Routes...17

3 SPE Evaluation..19

3.1 Requirements of System Processing Engine (SPE)...19

3.2 Requirements: In-depth Analysis..20

3.2.1 Custom Operators..20

3.2.2 Sharing Data among Queries..21

3.2.3 Dynamic Query Plans..21

3.2.4 Saving State of Query Plans...22

3.2.5 Comparing Metrics..23

3.2.6 Reordering...24

3.2.7 Performance Test...24

3.3 Stream Engine Evaluation...25

3.3.1 Calder..25

3.3.2 CAPE...25

3.3.3 Coral8..25

3.3.4 Esper..27

3.3.5 RiverGlass...29

3.3.6 STREAM...30

3.4 The Chosen Engine...32

4 The Approach: Non-duplicative Approach to Sharing (NASSQ).................................33

4.1 Description...33

4.1.1 NASSQ Routing Tree: Definition and Construction34

4 of 94

4.1.2 NASSQ Operator Process..35

4.1.3 NASSQ Process Layout...36

4.1.4 NASSQ Benefits..37

4.2 The Data Flow..38

4.2.1 Tuple Batch..38

4.2.2 Routing Tree Generation...39

4.2.3 Operator Processing Logic...41

4.3 Design of NASSQ..41

5 Implementing NASSQ on CAPE...44

5.1 Insights into CAPE...44

5.2 QueryMesh...44

5.3 Key Packages ...45

5.4 Java Files Implemented...46

5.4.1 Routing Tree Generation..46

5.4.2 Data Preparation..46

5.4.3 Execution...47

5.5 XML Files Implemented...47

6 Testing and Results..50

6.1 Testing..50

6.1.1 Benchmarking..50

6.1.2 Stream Files...51

6.1.3 Procedure...51

6.2 Testing Decisions...52

6.2.1 Time Stamping...52

6.2.2 25 Query Measurements..53

6.3 Testing Issues...53

6.3.1 Academic Code Base...53

6.3.2 Stream Generator...53

6.3.3 Implementation Limitations...55

6.4 Data Analysis...56

6.4.1 Set Up..56

1.1.1 Throughput..57

1.1.2 System Utilization..57

5 of 94

1.1.3 Latency..63

1.1.4 Memory Usage...64

2 Conclusions...65

2.1 Future works...65

3 Bibliography..67

4 APPENDICIES...69

4.1 Appendix A: SPE Feature List..69

4.2 Appendix B: Test Result Data...71

4.3 Appendix C: Generated NASSQ Batch...77

6 of 94

Table of Figures

Figure 1: Static Route Unshared...14

Figure 2: Static Route Shared...15

Figure 3: The Eddies System..17

Figure 4: Query Plan..18

Figure 5: Sharing..21

Figure 6: NASSQ Operator Diagram..35

Figure 7: NASSQ Routing Tree..36

Figure 8: Static/NASSQ/Dynamic Overview..37

Figure 9: Tuple Batch...38

Figure 10: Routing Tree Generation...39

Figure 11: Pass/Fail List Structure..40

Figure 12: Operator Process on the Tuple...41

Figure 13: Key Packages..45

Figure 14: Java Files Implemented...46

Figure 15: Tuple Throughput Chart..57

Figure 16: Approximate CPU Usage Chart...58

Figure 17: Latency Chart..59

Figure 18: Approximate Memory Usage Chart...60

7 of 94

1 Introduction

1.1 Background and Motivation

The purpose of a standard relational database is to store large quantities of information,

and provide a technology for efficiently retrieving and displaying relevant subsets of

information of the possibly huge data store [1]. Relational databases are useful for static

or mostly-static data, but are not optimized for situations where data constantly updates

and changes more often than the queries run upon it. A relatively new class of systems

has emerged in recent years, known as streaming databases that target to handle more

dynamic data scenarios. Instead of storing static data in a persistent store first and then

running one-time queries on it, these systems receive and operate over large quantities of

dynamically incoming data on streams through continuously standing queries [2].

For example, say the military had sensor arrays, or satellites or any other form of

vehicular tracking, laid out in Baghdad to keep track of troop movements. They would

like to quickly receive updates about any changes of the military situation, such as certain

vehicles showing up, or large groups of enemy or American troops disappearing or

relocating. These sorts of checks are clearly time-sensitive, as actions may need to be

taken in real time to react to the situation. Multiple military leaders may need access to

the same incoming data, without having to wait unpredictably long to receive those

updates. In this case, a streaming database has many advantages over a relational

database to support these types of real-time data monitoring applications, as explained

8 of 94

further below.

Streaming systems offer users several advantages over their static counterparts. For

example, they can receive new data at any time during the execution and process it in

real-time with recent data residing in main memory (without first writing it to disk),

respond to these updates, and feed the results to any actually hooked-up applications.

They can quickly report new results derived from the incoming data, which enables them

to handle time-sensitive data with minimal delay. Results must be bound to only a portion

of the more recent data, referred to as windowing, rather than running over all data that

has ever passed into the database. In other words, streaming databases tend to operate on

moving windows. Relational databases, on the other hand, are by nature finite in size, and

queries are logically specified in the complete snapshot of the data store. Given the

volume of persistent data stored, static databases do not tend to preside real-time

opportunities, instead they optimize for the overall throughput of the system. Streaming

databases on the other hand aim to maximize for maximal continuous output rate given

data is potentially infinite.

1.2 State-of-art in Streaming Systems

In previously implemented streaming database systems, there exist both static and

dynamic methods of choosing the order to process data in [3] also called query plans. In

static route generation, a complete path is generated at compile time when registering the

query before the processing of the data begins. There are many algorithms that have been

used to generate these paths, but they typically are complex and sophisticated. In static

9 of 94

databases, some data is fully known before the query commences, paths can be

completed and then utilized for optimal route design. Hence, the routes, calculated using

these statistics, are expected to remain optimal during query execution [4].

A new paradigm has emerged to generate routes dynamically for streaming systems. In

this paradigm, a complete path is never generated; instead a central processor directs

tuples one by one through the query network from operator to operator using local

calculations, such as observed variability or speed of operators [5]. Routing in this type of

system tries to be highly adaptive.

However, the path generation algorithms in these dynamic systems are calculated at the

individual tuple level, and therefore tend to be simple heuristics and at best locally

optimal. Simpler routing algorithms keep the overhead of route generation small, which

is critical because this cost is accrued for each tuple during run time.

While both methodologies have their respective scopes of applicability, the question

arises if alternate efficient routing decisions other than purely static or dynamic systems

could be derived that may be more high-performance.

1.3 Problem Statement

In this project, we seek to improve the efficiency of stream processing engines by

designing a more routing paradigm mechanism that borrows the benefits of both already-

existing statically and dynamically routed stream processing engines.

10 of 94

 We began this project by researching current stream processing engines to learn what has

already been accomplished. Once we have established a working knowledge of these

existing systems, we began piecing together plans for a new routing method, one that

would keep the positives of currently existing systems while mitigating as many of the

negatives as possible. Once our new approach was developed, we revisited the stream

processing engines we had researched previously to select a platform for our system

development. We chose the WPI’s Constraint-exploiting Adaptive Processing Engine

(CAPE) [9] as the system to use as our core platform explained in Section 5. We build

our project on top of one of CAPE’s subsystems, Query Mesh [14]. This sub-system’s

design idea is similar in some ways to our system, and has all the necessary features to

use to implement our vision as we will explain in Section 4.1. After implementing our

method on the CAPE Query Mesh system, we performed various experiments that we

designed to gauge the success of our proposed paradigm and its implementation.

1.4 Roadmap of the Document

Following this introduction, this paper goes into more depth to describe our research into

streaming systems, our system, and the testing thereof.

In Section 2, we review static and dynamic routing as they apply to streaming database

systems. After that, in Section 3, we record the results of our research into various

currently-existing stream processing engines. We also describe our choice of the stream

processing engine to use as the platform for the development of our project in Section 3,

leading into Section 4 where we explain the methodology behind our core work, the

11 of 94

NASSQ system. In Section 5, we revisit our chosen stream processing engine, explaining

why this system was a good choice for implementing NASSQ. We continue by

describing our actual implementation of NASSQ; this is followed by our testing and

conclusions in Sections 6 and 7. The end of our paper, Section 8, contains various

appendices that we reference throughout the paper to showcase certain points that would

not have fit well in the paper itself.

12 of 94

2 Background

2.1 Streaming Database Systems

A traditional static database conforms to the relational model of how the data is

structured [1]. The data is typically stored on persistent storage devices. A real-time

database, also known as a streaming database, is designed to handle data constantly being

updated [2]. Unlike a traditional database system, where the data is input through a query

language, the data travels through a stream and is constantly flowing. A streaming

database system is set up as a dam interrupting the flow of data. The streams of data pass

through the system and are queried in real-time. Tuples of data that proceed to pass

through the entire query have succeeded and are output by the system as results.

Streaming database systems have been for instance applied to monitoring applications

such as the stock market, where the current values of markets are constantly changing [6].

The desire for optimization is where the battle lies for current streaming systems. In a

relational database, the queries can be optimized prior to calling upon the database;

however, with streaming data, the queries on the data may seem optimal at first yet later

may quickly become ineffective. A change of the initially optimal query execution

structure called the query plan may be necessary to again process the data efficiently. The

two main alternative paradigms for processing of queries with streaming systems revolve

around the concepts of static versus dynamic routing. A static routing system is one that

does not change; the plan is established and set for the entirety of the run. A dynamic

13 of 94

system. When the data arrives on the left side of the figure, tuples are copied three times,

one for each query. The reasoning behind this idea is that when a tuple fails at a particular

operator it is dropped from the system. When a tuple hits operator 2 of query 1 and fails,

that tuple is dropped and not processed any further of query 1. If only one copy of the

tuple were to exist then the other two queries would never get handled. With tuple

replication, while logically correct, there is now a performance issue. Normally, a large

14 of 94

Figure 1: Static Route Unshared

can also be limited. Figure 2 illustrates the

same database system as seen in Figure 1 except now with sharing. The operators distinct

in the system among the queries are now identified and established as possible shared

operators. Many heuristics for operator sharing can be employed. For a simple example,

let us focus on a scenario where operator 4 is found in all three queries. Then the

algorithm may choose to share this operator among all three queries. The difference in

the system now is that when a tuple arrives, it is not duplicated at first. With sharing

introduced, if a tuple fails at operator 4 it is impossible to pass the other three queries and

the tuple is therefore dropped from the system. This eliminates that particular tuple from

being copied. If the tuple passes operator 4, tuple duplication still exists. The tuple is

copied and passed to both operators 1 and 6. In this particular example, operator 1 is also

15 of 94

Figure 2: Static Route Shared

shared, this time between query 1 and query 2. The same benefits apply when a tuple

arrives at operator 1. However, just as before, if a tuple passes, the tuple is copied yet

again. Clearly, tuple replication still exists. The main difference is that it is now limited

rather than coping each tuple initially blindly. Another important note to make is that

sharing is not necessarily the best solution. Analyzing query 1 and query 2, operator 5

seems to be in each query. Clearly sharing operator 5 is possible. However, let us assume

in this particular example that query 2 is a very simple filter while operator 5 consists of a

more complex and thus expensive operation. The processing time of the operator must be

taken into consideration to allow for the optimal structure. With query 2 being a simple

filter yet having a low throughput (fewer tuples pass this operator), it is more efficient to

have tuples carry to operator 2 and fail rather than share operator 5. There are many ways

to look at this particular example considering sharing resources and CPU processing. It is

however important to realize that sharing is not always the best method.

As for the main concept of static routes being unable to adhere to change, the path of the

tuples (the query layout as in Figure 1) must be rebuilt. This modification is costly and

must be worked in appropriately so not to lose any tuples at runtime during query plan

manipulation. Since data is constantly flowing, all of the data currently being managed

must finish before the new route is established. This puts a strain on the system since the

flow is temporarily stalled. While static routes are not easily adaptable, the efficiency of

execution due to lack of overhead as well as the possibility to apply sophisticated routing

heuristics results contributes to a practical streaming database system. For this reason,

most prototype streams so far have adopted these static routing methods.

16 of 94

2.3 Dynamic Routes

The principles introduced with a dynamic routing strategy incorporate adaptive execution

plans. With static routes, the execution plan was established initially and kept fixed for

the remainder of the system; that is, to change the plan a rebuild of the execution plan is

required. Adaptive execution plans focus on updating and changing the execution plan

immediately without having to rebuild each time. The environment and stream

characteristics changes since the data is constantly streaming. While tuples coming in

from different streams may be different, the dynamic route allows for the astonished path

to be executed for each individual tuple.

As an example, a variation of the Eddies system

(Figure 3) will be explained [7]. It is important to

remember that while this example reflects the design

of Eddies, not all dynamic routes function this way.

With any dynamic routing, the principle revolves

around adaptive execution plans. With Eddies, the

idea is to involve an additional operator that functions as a router rather than a traditional

query operator. When a tuple arrives into the system, the router suggests the next operator

to travel to during runtime, not prior to it. An important note to make is that the entire

path is not determined, only the next operator for a particular tuple to go to next to

execute is chosen. When the operator is finished processing the tuple, information is

marked on the tuple to record whether it passed or failed the operator. Once the tuple is

17 of 94

Figure 3: The Eddies System

that consist of a number of operators. Query 3 in particular incorporates operators 2, 3, 4,

and 6. If the router decides to pass the tuple towards operator 6 and fails at that operator,

the router's execution plan changes. Query 3 is the only query that uses operator 3. With

the tuple fails at operator 6, the entirety of query 3 is noted as a failure. The router

decides that there is no reason to ever send the tuple towards operator 3 since query 3 is

the only query to access that operator and that query has failed. This adaptivity prevents

the tuple from traveling to unnecessary operators.

While this is a benefit in reducing the number of operations per tuple, minimal overhead

is now placed at the tuple level. With each tuple traveling back and forth from the router

and having the route calculated at the end of each operation, the cost can be rather

excessive. This process is also expensive when trying complex routing decisions, and for

this reason within said adaptive routing systems [7] the routing logic itself tends to be

rather simplistic and purely heuristic.

18 of 94

3 SPE Evaluation

3.1 Requirements of System Processing Engine (SPE)

The overall project goal is to optimize the execution of multiple simultaneous queries

over streaming data in order to allow for faster real-time data analysis. Given the nature

of the SDAF system, a number of queries have the potential to be composed of similar

operators over the same data. This is the area in which our research will focus; the ability

to share operators between queries instead of processing queries separately. The

hypothesis is that this will reduce execution cost and the aim is that these improvements

will be noticeable when a number of queries are being simultaneously executed.

A few important parts of this problem are comparing queries and recognizing similar sub-

queries to share, adding and removing queries (dynamic query plans), collecting all the

data while combining queries (saving state), to optimize the flow of data. The overall

requirements for query optimization for this project are as follows:

- ability to add custom operators for personalized monitoring applications
- ability to share data among query plans
- dynamic query plans

o saving state during query plan changes

� to prevent data loss
o develop metrics to discover and evaluate sharing potential

- handle the ability for reordering of operators

The challenges for each individual requirement and a more in-depth understanding of

each concept are given in the next section.

19 of 94

3.2 Requirements: In-depth Analysis

Referring back to the overview of the requirements, there are a number of concepts to

implement with this project. Each concept is fully explored and possible problems and

their solutions are looked into in this section.

3.2.1 Custom Operators

By using either existing available operators or coding new methods, the system needs the

support to create personalized operators that can be plugged in any query. For example,

an operator, called BlueTankSelect, which will select a tuple in the stream that is a blue

tank located in a desired location. This would be a custom operator assuming it does not

already exist as functionality within the given system.

Custom operators have a number of very practical applications. First, it will be easier to

call one simple operator rather than a series of operators to do the same thing, similar to

macros. The code itself will have a series of operators executing, but when searching for

patterns and query plans it will be easier to have a simple call of BlueTankSelect rather

than all of the other background calls.

Possible problems will be the ease of editing the SPE and adding new operators. The

problem seems very simple and straightforward, but if the code is too scrambled and

unstructured it can be difficult to understand the proper steps needed to correctly create

and implement an operator into the system. Other complications revolve around what

expensive power is at our disposal to construct these custom operators. It is simple to use

20 of 94

a series of predefined operators to create a new operator but the SPE needs to be explored

to see if new useful custom operators can be created with some ease.

3.2.2 Sharing Data among Queries

The goal is to take data used in one query plan and be able to use this data in other query

plans. Then, if possible, reuse the same stream for multiple queries. When multiple query

windows are created, some of the windows may have overlapping parts. In order to

capture all of the data properly, the stream would need to be

shared among the customer query plans. Sharing data would

allow the query plans (query plan A’ and query plan B’) to

incorporate the same stream data with AB being the

overlapping data of the two query plans (Figure 5).

If data is being shared, it is important that the data is passing through all of the query

plans simultaneously. If any of the data is not synchronized, this can cause further

complications as we may need to store some historical data and refer to it later.

3.2.3 Dynamic Query Plans

Query plans correspond to a pipeline of operations to perform on a particular stream.

However, if several query plans are combined to work together, they may work more

efficiently. Clearly, one would need the technology to change this set of query plans to a

new and better shared plan. Aside from creating a new shared query plan and changing

the current ones, a query may also need to be removed and the still existing queries must

reflect the change.

21 of 94

Figure 5: Sharing

The idea of dynamic query plans allows the plans to be adjusted on the spot. If the query

plans could not be adjusted, there would not be any way to optimize the overall streaming

system efficiently. Overall, the SPE needs to be able to identify patterns between queries

and, if there are any similarities, a new query plan needs to be created and established.

Adapting to the changes for adding, removing, and modifying queries allows the system

to be much more efficient.

One of the big problems with adjusting the query plans is to make sure that no data is

lost. While in the process of modifying the current query plans to create a new plan, the

current data streaming through must also be tracked. Otherwise, there is going to be a gap

in the data that can be crucial depending on the circumstances. If a streaming query is

removed, the original state of the previous query plans must now be changed back to their

original form before sharing. This issue needs to be addressed since the query plan is now

ineffective with one of the streaming queries removed.

3.2.4 Saving State of Query Plans

While the query plans are adjusted to make new shared query plans, the original unshared

state of each query plan must be retained somewhere. The time to construct the new

query plan based off the other query plans would allow for data loss if none of the

original query plans are executing correctly. Therefore, a query plan state must be

recorded to prevent data loss. The saving states of these queries must allow for query

modifications to take place without worrying about removing the original unshared query

plan from existence.

22 of 94

The benefit with saving the states of query plans is that no tuple data will be lost. By

having the original unshared query plans backlogged, as the new query plan is

constructed the original query plans can continue to execute. Also, if a stream query is

deleted and the combined query needs to revert back to the original unshared query plans,

saving the original states allows for this process to be a bit easier.

The main difficulty with implementing a saving state revolves around the idea of where

to store these query states. On top of that, the SPE needs to allow for any number of

query states to be stored at one time.

3.2.5 Comparing Metrics

A cost model is based on a structured set of metrics used to help determine if a particular

query plan is optimized. This estimator can compare new constructed query plans to see

if they are effective or not. If a new query plan is structured based off of a previous query

plan, it would be helpful to know if the new plan is indeed more efficient. An optimizer

should have a set of metrics on which to judge the new query plan. This will prevent time

loss if a new query plan is determined to be ineffective.

A simple question to ask is, “what types of metrics will be used to determine if a query is

optimal?” There needs to be some sort of cost model which will be constructed carefully

to account for all of the variables. This model can be used to determine if it is worthwhile

or not to construct a new query plan.

23 of 94

3.2.6 Reordering

The goal is to change the query plan based on reordering operators and switching parts of

the plan around. Rather than going through the effort of completely changing the query

plan, a change of some local ordering of operators may sometimes be effective. On top of

that, we may need to establish a different ordering to enable sharing. New queries

coming into the SPE can be reordered into a universal structure that can be altered and

modified easier. If all of the filters are moved to the front of the plan, for example,

sharing query plans and operators can be easier.

Determining what order the query plan should be takes time. There are reasons for having

the query plans structured in many different ways. Aside from that, the basic principle of

searching through and properly rearranging the plan in a way can be worthwhile.

3.2.7 Performance Test

A valid test set provides the ability to evaluate the performance of the system, measuring

its effectiveness. The performance test allows us to compare multiple approaches in the

system and determine their effectiveness. Most basically, these tests should allow the

justification of running the queries in a shared operator system over a standard one, if this

is the case. Secondly, these tests should allow us to compare incremental changes in the

system and algorithms used. Getting a good coverage in simulating real world conditions

is a non-trivial exercise. Although this process is aided by data sets to be provided by

MITRE.

24 of 94

3.3 Stream Engine Evaluation

3.3.1 Calder

Calder is a continuous query grid service that brings data streams together to merge them

as a single coherent data resource [8]. Calder extends OGSA-DAI and dQUOB and was

created by the Distributed Data Everywhere Lab out of the Indiana University Computer

Science Department. The Calder architecture has two subsystems of Data Management

and Query Processing. The Calder system uses stream loading and provides a framework

for timely research issues in stream processing.

3.3.2 CAPE

CAPE is WPI’s streaming database system entitled Constraint-exploiting Adaptive

Processing Engine. The aim of CAPE is “to provide novel techniques for processing large

numbers of concurrent continuous queries with required Quality of Service” [9]. CAPE

beyond the core stream engine infrastructure, the CAPE project explores a number of

projects that exploits dynamic metadata at many different levels. The engine is written in

Java and features the ability to develop reactive operators with configurable execution

logic. CAPE also incorporates adaptive operator scheduling. CAPE is explained further

in Section 5.

3.3.3 Coral8

Coral8 is a commercial but free for development purposes Complex Event Processing

engine and development studio, available as an installable program for Windows and

Linux [10]. This program can handle processing requiring filtering, aggregation, multi-

stream correlation, event pattern matching, and other complex processing.

25 of 94

Coral8 is comprised of the Coral8 Server, which is the software engine that actually

processes and correlates data streams at runtime, and the Coral8 Studio, described by

Coral8 as “the graphical environment for defining streams, adapters, CCL queries and

CCL modules, as well as for managing CCL projects at runtime”. This includes the

compiler for CCL and debugging tools. Along with this comes a host of adapters for

input and output from the server, and a Software Development Kit for creating your own

adapters.

As for the specifics of implementation, sliding, counting, and jumping windows are

available, which may be time-based or row-based are harder to define, with the ability to

retain, uniquely identify and remove rows based on one or more column values. There are

basic operators such as grouping, aggregation, sorting, stream filtering, rate limiting, etc.

The syntax is an SQL-like query language called CCL.

The join between two windows is similar to a join between two tables, except that it is

executing continuously. Joiners also exist for stream-to-window correlations and stream-

to-historical data correlations. The join condition can be arbitrarily complex. Inner joins

as well as left, right, and full outer joins are all also supported. There is also a GroupBy

clause that “allows applications to distinguish states by individual column definitions”.

Coral8 is an event pattern matching system. Queries and subqueries can also be made to

historical databases to check data against current streams. Dynamic queries are also

available. As for adapters, both input and output adapters can be written through the built

26 of 94

in SDK, and run either as in-process or as separate processes to the engine. Many

adapters are already written, the relevant ones are: JMS, RFC/RPC (SOAP and custom

plug-ins), SNMP, SOAP/XML, Files (CSV, XML, Binary), Sockets (CSV, XML,

Binary), E-mail, and RSS/ATOM

The Coral8 home page describes many of the useful features that it has, with extensive

documentation for users. The documentation provided by this website shows tutorials for

setting up the engine on various platforms, and information on running, monitoring, and

administering the software. There are even documents showcasing various features of

Coral8 and how they might be best used. There is an Eclipse plugin available which is

open-source, but the Coral8 software itself is not. Nevertheless, Coral8 seems to be freely

accessible, and has documentation on all of its features.

3.3.4 Esper

Esper is an open-source SPE project and a component for CEP and ESP applications,

available for Java as Esper, and for .NET as NEsper. Esper and NEsper enable rapid

development of applications that process large volumes of incoming messages or events

[11]. Esper and NEsper filter and analyze events in various ways, and respond to

conditions of interest in real-time.

Esper breaks down the main features into a handful of categories ranging from Event

Stream Processing, Event Pattern Matching, Event Representations, etc. Under the Event

Stream Processing, the queue can be time, length, interval, and even window based.

There are basic operators such as grouping, aggregation, sorting, etc. The syntax is an

27 of 94

SQL-like query language but there are no specifics as to what it is called. Inner and outer

joins are possible on an unlimited number of streams or windows as well, which can be

useful for combining query windows. The Event Pattern Matching provides logical and

temporal correlation. Specific events can have listeners provided to see if a certain pattern

is being executed. This can allow for common patterns to be stated and the system can

automatically detect and prepare for these patterns. More specifically towards the

representation, Esper supports event-type inheritance as well as polymorphism provided

by the Java Language. It features an event-driven architecture which supports reactions to

event creation, detection, and so forth. As for adapters, Esper features CSV input adapters

and reads comma-separated value formats. The JMS input/output adapters are based on

the Spring JMS templates. Another useful feature is that as of release 1.5, Esper is

multithread-safe and there can by safe multithreaded sends of events to the Esper engine.

The pluggable architecture of this SPE allows for event pattern, event stream analysis,

and other forms of plug-ins.

The Esper home page describes many of the useful features that it has. The best thing

going for Esper is the documentation. Each SPE has been carefully analyzed by our team;

however, Esper seems worthwhile to pursue to at least see if it is practical for our

situation. The documentation provided by this website shows tutorials for setting up the

engine for both Java and .NET. There are even case studies provided which showcase

some of the nicer features of Esper. The fact that Esper is open-source allows for future

additions including customizable operators depending on how difficult the

28 of 94

implementation is. The biggest question with any of these SPE's is if they are manageable

and relatively easy to work with.

While Esper is noted as being an open-source project, there are many hurdles to cross.

The user help through the e-mail aliases provide 24/7 help with relatively immediate

responses. This is very useful for working with Esper; however, not all of the questions

can be answered. While trying to modify the existing code to reorder the filters as we

desire, the Esper team had already adapted one fixed method to sort all of the query

filters into a predetermined path. The problem is that the provided help from the Esper

team did not understand where this modification in the code was and it could not be

turned off. Our goal was to implement our own form of filter optimization and while

Esper already had a working sorting method, the practicality of not being able to alter the

engine to our needs was deterring. Esper’s documentation and tech support seems to

allow for end users on a high level to get what they need. When the goal is to modify the

engine specifically, the documentation is irrelevant and the tech support becomes quickly

puzzled with the objective.

3.3.5 RiverGlass

It is difficult, because of a lack of documentation or elaboration on their website, to

determine exactly what RiverGlass’s products are meant to do. However, their site

describes their primary product as one designed to crawl the web and perform

autonomous searches and prepare reports on this data [12]. Their other advertised product

appears to add onto this functionality, enabling the data coming in from their Recon

29 of 94

program to be viewed in stream format and for data to be processed from this particular

stream. It does not appear to be a generalized stream processing engine.

It is impossible to describe the architectural features of Riverglass’s software, as they

provide no online documentation except for their advertisement pages. Nevertheless, the

scope of this software appears to be outside of the scope of this overview, so it is

unnecessary. RiverGlass’s analytic tools might be useful for web searching and analysis,

but not for our needs. They don’t give enough information to make the purchase of their

commercial software appetizing.

3.3.6 STREAM

STREAM is a research project on SPEs from Stanford University [13]. The STREAM

project officially wrapped up on January 2006, however the source code and other

information is still available on the STREAM project website. STREAM’s core system is

implemented in C++.

STREAM focuses on five main issues that arrive with streaming systems as compared

with traditional relational databases; streaming semantics and language, scheduling query

plans to reduce resource usage, adapting to changing nature of data, quality of service,

and the ability to monitor long running queries. To address the first issue, like other SPEs

STREAM created an extension to the SQL language, called the Continuous Query

Language (CQL). CQL is designed around the idea of three types of operations going

from stream to relational semantics and relational to stream and the standard relation to

relational. Windowing (using a sliding window) in CQL is a stream to relation style

30 of 94

operation with the ability to be specified by time intervals, tuple count, through a

partitioning manner. CQL provides three operations to transition from relational

semantics to streaming; creating an insert stream, delete stream, or relation stream.

STREAM handles the issues of scheduling and adaptivity through the use of internal

techniques and optimizations. Queues as with many SPEs are utilized in stream to store

the tuples for operators in a query plan. In addition STREAM also uses synopsis with

advanced sharing algorithms, to reduced number of synopsis needed along with amount

of resources consumed to facilitate temporary data storage. In reference to query plan

optimization STREAM utilizes a scheduler, which executes operators following a chain-

scheduling algorithm. STREAM also uses constraints.

Quality of service features offered by STREAM are load shedding. STREAM also

supplies the user with a GUI for system administration and monitoring. This GUI allows

for dynamic adjustment of different attributes of the system such as different operators

queue sizes.

STREAM allows for custom operators. STREAM also has a small set of advanced

features, which include support for distributed systems, real-time output, and tools for

handling data revision. STREAM is an adequate SPE, providing all the necessary basic

functionalities with some interesting additions and differences from other standard SPEs.

One of the main issues STREAM was not chosen is that the project was discontinued in

January 2006.

31 of 94

3.4 The Chosen Engine

With a number of Engines to choose from, the initial decision was to narrow down to

three systems normally. From the three selected systems, each one was researched. One

was chosen to work with. At first, Esper was the clear winner. While Esper had a

tremendous amount of documentation and a surprisingly quick responding tech support

team, the inability to alter and modify the engine to our needs was the largest issue. With

Esper as a failure, CAPE was the next in line to work with.

The appeal towards CAPE involved a number of logical reasons. With the developers of

the system being from WPI, problems and technical issues can be dealt with in person

with clear and concise feedback from several individuals. The structure of CAPE is

overwhelming at first; however, sitting down with some of the developers helped to

explain where all of the pertinent classes are located. The biggest benefit with CAPE is

the ability to actually modify the code to adhere to our projects needs. Since the NASSQ

system incorporates dynamic as well as static routing principles, our project required a

flexible engine with user support; CAPE offered both. CAPE already had both a sub-

system with both static routing and dynamic routing.

32 of 94

4 The Approach: Non-duplicative Approach to Sharing (NASSQ)

Section 4 covers the description and implementation of our system. The Non-duplicative

Approach to Sharing between Streamed Queries (NASSQ) is the name of our project

which blends both static and adaptive routing strategies.

4.1 Description

NASSQ is the technique designed to take advantage of the benefits offered in

static/dynamic routing strategies. First, the optimizer generates full routing instructions

for the execution plan. The routing instructions are referred to as a routing tree. They

indicate how the tuples pass through the execution plan. Rather than the system allowing

tuples to travel individually, batches of tuples1
 are accumulated before being sent off to

the routing tree assigner. Once full, the batch proceeds towards the tree generation

assembler who associates the path with the batch. At the operator level (we assume

Boolean operators here), each batch is broken down into two separate batches: one for

tuples that pass the operator and one for tuples that fail. This divide is encoded into the

routing tree execution plan, indicating the conditional path for each type of batch. A

promising attribute of the NASSQ system is that the tuples in the system are typically not

duplicated thanks to the routing tree structure. Along with this, only one instance of each

operator exists while references to that operator allow the batches to travel through the

operators. The NASSQ system idea of combining the overall benefits from two different

strategies results in a new approach for streaming databases.

1 This idea was inspired by QueryMesh, where a batch accumulates a number of tuples before it is sent
through the system [14].

33 of 94

4.1.1 NASSQ Routing Tree: Definition and Construction

The routing tree provides the batch of tuples with an optimized path determined by three

different statistics. First a list of the operators for each query is created. With this list,

data can be collected to see how to devise an optimal tree structure. With the list of

operators constructed, it is passed into a recursive tree building function. There are

particular weights added to three statistics on each operator throughout the building of the

tree. Those three statistics are the per-tuple execution cost, the selectivity, and the sharing

between the queries. Each statistic can be gathered through the course of testing the needs

of the system. With MITRE and the SDAF system, the selectivity and other statistics

would reflect the needs of MITRE. Each of the three statistics carries a particular weight.

The weight of each operator is calculated and the list of operators and their weights is

evaluated to determine which operator to process first.

The construction of the Routing Tree list begins by using the structured list of operators.

The first operator of the structured list is placed in a separate routing tree list while the

rest of the list carries through a different process. The operator that was chosen is then

removed from the list. The new operator list is duplicated; one to proceed as the pass list

and one to proceed as the fail list. The fail list is evaluated more to determine which

queries have failed due to the failure of that particular operator. Any operators remaining

in the fail list that have no bearing any more are then removed from the fail list. In

essence, the fail list of operators is stripped down to only the necessary operators that

should remain. The recursive functionality of the tree building function is called on both

of the newly constructed lists and the process continues. This process carries onward

34 of 94

expands fully to encompass all

possible paths2. The left branches in Figure 7 represent the pass path while the right

relates to failure. In this particular example, operator 4 is found in all three of the queries.

Because of this, if any tuple fails operator 4 it fails all of the queries and is dropped from

the system. The Ø symbol represents the tuples being dropped from the system. While

there may be a number of duplicate operators in a system, it is important to note that all

of these are references to the actual operator objects and not replications of genuine

operators.

Throughout the system layout, while a batch of tuples may fail a particular operator,

unlike the static strategy, a failure does not necessarily mean the tuples are dropped from

2 The duplication of tuples can still be done if desired

36 of 94

Figure 7: NASSQ Routing Tree

In comparison to the static and dynamic routing strategies, the NASSQ approach offers a

number of benefits. Figure 8 illustrates some of the pros and cons for static and dynamic

routing while showcasing how the NASSQ system takes advantages of the benefits from

both strategies. When a new tuple batch is created, the routing tree execution plan is

attached to it. The path could also be determined at runtime, if deemed necessary, thus

this method is highly adaptive. With the help of the recursive tree generation function, the

routing heuristics and tree generation algorithms can be sophisticated. A tuple batch can

be large or small depending on the application which allows for an even better flow of

control.

37 of 94

Figure 8: Static/NASSQ/Dynamic Overview

vice versa for the fail path.

If the processed tuple is not a head tuple, the next check is to see if the tuple is a tail

tuple. A tail tuple causes the output queues to be capped off with a tail tuple. The two

queues (pass and fail) are then sent on their prospective paths to proceed to their

respective next operator. If the processed tuple is not a tail, the tuple is then in fact a

regular valid data tuple and is processed to determine if it passes or fails the query logic.

A tuple that passes the operator is added to the pass queue while a failed tuple gets sent to

the fail queue.

41 of 94

This process happens for each tuple in the input queue of the current operator. The tail

tuple signifies an end to the process.

4.3 Design of NASSQ

The structure of the system is built to encompass adaptivity. The logic behind batches

instead of dealing with tuples individually is to allow for the adaptive structure of a

dynamic plan without having the complete overhead relate to each tuple itself. The cost

to have a customizable plan for each tuple as seen in the Eddies example is high;

however, having a set strategy plan for all tuples, as seen in the static strategy, will not be

optimal for all tuples. With a batch, the convenience of altering the execution plan

dynamically is available without the overhead in Eddies. The developer can set the size

of each batch which can be custom tuned to fit the desired application.

As for the tree generation, a path calculated based on the current operators in the queries

allows for adaptivity when adding and removing queries is involved. If a query is

removed from the system, particular operators may not be needed. The incoming tuples

that are organized into a new batch conversely incorporate this change because the

routing tree generation function can simply be re-executed. Along with this, creating head

and tail tuples helps us to isolate each batch; thereby limiting the amount of work an

operator must do. Similar to a network routing issue, it is easier to have lightweight

clients and a heavy server with most of the computation. In terms of NASSQ, the

operators can be viewed as clients in a way that they do not worry about where to send

the output queues or how to determine the next path. All the operators are concerned

42 of 94

about is whether or not a tuple passes or fails and then places the tuple into the

appropriate output queue. Less overhead on the operator level allows for faster

processing at each individual operator.

A final aspect to the design is where the output ends up. A simple fail queue that is

dropped from the system does just that; it drops from the system. There is no concern

with what to do with it. When an output queue reaches a point where the tuples have

passed some queries, the tuples are written to files that reflect that particular query. Each

output file is designed to be named appropriately with the particular query it has passed.

As the tree continues downward, some of the tuples pass multiple queries (as seen in

Figure 7). In these scenarios, the tuples are written to all of the output files that it is

associated with. The example in Figure 7 where a batch of tuples passes all of the

operators (travels down the entire green path) will end up being written to the files

associated with all three queries.

43 of 94

5 Implementing NASSQ on CAPE

5.1 Insights into CAPE

CAPE is a customizable framework for generating, processing, and outputting streaming

data. It is the centerpiece of many projects at WPI, including a shared-operator static

system, an implementation of a dynamic system known as Eddies, multiple projects

surrounding different types of operators (FireStream, STeM, etc.), and clustered systems

[15, 16]. Depending on the project involved, different parts may be utilized, but in

general, the CAPE system provides an infrastructure for receiving tuples, some method of

path generation, and data structures for representing operators and query plans. XML

files are used to define the system configuration settings, incoming stream schemas,

queries to run on the incoming data, and the operators these queries contain.

5.2 QueryMesh

One project in particular that made CAPE useful to our project’s purposes was

QueryMesh [14]. QueryMesh is a system design for stream processors that work by

analyzing the incoming streaming data and generating a path that takes into account

specifics about the current data and its content.

QueryMesh consists in part of a tuple receiver, called the Classifier, that reads in

incoming stream data, analyses the tuples, and boxes up tuples that are expected to pass

similar sets of operators. For example, scanning for vehicles in a set of tuples taken from

a barren wasteland might be better done by scanning first for radio signals, then checking

for motion, whereas for ones from a military compound perhaps the radio signals would

44 of 94

be less selective so that the motion tracking should be done first. The Classifier then

treats the boxed tuples as a dynamic routing system and generates a path for the batches.

During the operator running, statistics are being taken on the various types of tuples and

what data they’re passing and failing to use in the algorithms for future tuples.

QueryMesh works well for our system because the concept of tuple packaging is already

fully implemented, so we can focus on coding the adaptation to multiple queries, the

routing tree for static path generation.

5.3 Key Packages

Originally, the package

edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.execution

enclosed key files such as the ExecutionController, the

Classifier, and the StreamSelectOperator. In order to

incorporate these files, a separate location was created to

isolate the MQP project located at

edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP. This

particular folder contains the NASSQ

ExecutionController, Router, and Operators. The other

folder

(edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.datastructures) holds the files for

the routing tree as well as the batch of tuples called RusterNode. These two packages

contained the implemented java files of the NASSQ system. The XML data files for the

45 of 94

Figure 13: Key Packages

NASSQ system were created in the resources.QueryMesh.MQP folder. The XML files

were used for various tests we ran on the system, as well as the configuration XML files,

and the stream files, which are pipe-separated value tuples imported via CAPE’s stream

creator.

5.4 Java Files Implemented

5.4.1 Routing Tree Generation

A RoutingTree is generated via the algorithm in

NASSQRouterOperator.buildRoute(). Currently, we plugged

in a very simple algorithm, namely to simply get the next

unchecked operator with the most sharing. In the future, this

could be changed by rewriting the buildRoute() method.

Different algorithmic approaches can be implemented in this

file if the developer chooses to do so.

5.4.2 Data Preparation

When a tuple comes into the input stream,

NASSQExecutionController forwards it to NASSQRouterOperator, which collects tuples

until a suitably large group of tuples arrives. The philosophy to determine the

appropriate number of tuples was not studied and so a batch consisting of several hundred

tuples was used. At this point it places a RoutingTree token at the head of the list of

tuples, and an EndNode is placed at the rear. Then it sends the produced batch of tuples

to the first operator on the routing tree.

46 of 94

Figure 14: Java Files Implemented

5.4.3 Execution

When a RoutingTree token (treated as a tuple) comes into an operator, it’s placed in the

input buffer. The tuple is processed and extracted sub-trees off the pass and fail paths

respectively are placed into the two pass/fail output queue. Then, as the actual tuples that

were batched with it arrive, each will be processed by the operator, and placed in the

appropriate output queue. Lastly, an EndTuple will arrive, which simply marks that the

batch of tuples has ended and that those tuples can be sent off from the output queues.

After a given tuple batch has traversed through all the applicable operators in its route (as

determined by the associated routing tree), the tuple batch proceeds to the java file

OutputAdapterOperator. This operator reads from the batches routing token what queries

the tuple batch has passed, and reports it to the correct outputs (in our system we choice

to utilize a simple text files recording all tuples passed by those queries when testing

accuracy of the system or dropping them during performance testing).

5.5 XML Files Implemented

Details of the system configuration file are either computer-specific (as far as where to do

logging, data flow speeds, etc), and others are related more to other parts of CAPE that

we didn’t modify. There was no need to change the format of this file, except to replace

the values, such as the query plan file name with those of the tests we were running.

Along with that, there is a configuration file to define what streams exist and what port to

listen to, a configuration file to define the stream schemas, and a configuration file to

define the operators and queries that will be running.

47 of 94

Of these, the first two were only modified to represent our incoming streams. We did not

need to change the format of these files at all, except to replace the values with those of

the test we were running.

The last, the Query Plan configuration file, was the only one that received any formatting

changes. The change was to add a variable near the end, called “sharing”, that allowed us

to toggle whether operators and tuples were reused during execution. This allowed us to

test the sharing versus non-sharing alternatives in an otherwise identical system.

As well, in this file, we changed the meaning of a section. In standard QueryMesh, there

is only one query, but it can have multiple paths and so the Query Plan allows for

multiple operator sets to be recorded for the query. In our system, there are multiple

queries, but we don’t define the path, only the set of operators to run.

Due to having many tests and computers on which we did our project, there are many

versions of the configuration files; here are some of the examples:

System Configuration Files:

These files elaborate which java files to use and the overall structure of the other resource
files used during execution.

Resources.QueryMesh.MQP.systemfiles.BFTSystemConfig.xml
Resources.QueryMesh.MQP.SystemConfigQueryMeshPlan.xml

Stream Reader Configuration Files:

These files host the location of the stream data files as well as how many streams there
are going to be in the system and the attributes of the streams.

48 of 94

Resources.QueryMesh.MQP.BFTStreamFeederConfig.xml
Resources.QueryMesh.MQP.CLUSTER_BFTStreamFeederConfig.xml

Stream Schema Configuration Files:

These files detail out the attributes of each individual stream. Each column and property
of the stream is listed here by what type of data it represents and the location of the data
as far as which column.

Resources.QueryMesh.MQP.BFTStreamGeneratorConfig.xml
Resources.QueryMesh.MQP.queryplans.SingleStreamsConfig.xml
Resources.QueryMesh.MQP.StreamsConfig.xml

Query/Operator Configuration Files:

These files are where the operators in the query plan are outlined and created. Operators
such as selects and filters are established and initialized for use during execution.

Resources.QueryMesh.MQP.queryplans.BFTQueryPlan.xml
Resources.QueryMesh.MQP.queryplans.5OP_Low_BFTQueryPlan.xml
Resources.QueryMesh.MQP.queryplans.7OP_High_BFTQueryPlan.xml

49 of 94

6 Testing and Results

6.1 Testing

6.1.1 Benchmarking

In order to properly analyze our results on our system’s throughput we need to collect

benchmarks for comparison. Proper benchmarking requires an environment in which two

conditions can be met; first that processes separate from the SPE have a negligible impact

on the results and second a fine time granularity. These two conditions were satisfied

using WPI’s Linux computing cluster at cs-master.wpi.edu. In this cluster we were able

to run each component of our SPE on separate machines, with minimal additional

processes running, helping us to ensure that other processes did not impact the results.

Also running java on the computing cluster increase the time granularity compared to

using a more low-end laptop, providing the accuracy we need to more effectively run the

stream generator.

However, using a cluster, some additional amount of set up work is required, as each

process has to communicate over a local network, instead of just a local machine.

Switching from the windows environment to the Linux environment also required

additional work to ensure compatibility, primarily with file work such as reformatting the

files based on a different file system structure. We also had to create a set of execution

scripts to run on each machine, the different process (see Appendix C for the readme on

how to run).

50 of 94

6.1.2 Stream Files

The data that we used to simulate incoming streams was Ground Movement Tracking

Indicator (GMTI) data provided by MITRE. This was a 50,000 piece sample data set,

which include attributes (dimensions) per tuple, including coordinates, height, and sensor

ID. This data was designed by MITRE Corporation to simulate real types of data that

could be acquired.

6.1.3 Procedure

One primary measure of the effectiveness of our system was an attempt to measure

throughput on the system. In order to due this we cranked up the stream processor to send

out tuples at as fast of a rate as possible. We increased the generating speed as we

required the input rate to be higher than the output rate, in order to accurately measure the

max throughput of a system. We encountered a number of other concerns with our

approach, primarily with running out of available main memory accessible by the java

virtual machine. When we increased the stream generator to the first speed that was faster

than output, on the Standard query system, the system would constantly crash due to

memory heap issues, as there would be a buildup in system overhead. In order to remedy

this, given that that we could not go to an intermediate speed, we increased the Java heap

size to 3 gigabytes of the 4 available on the cluster machines and shortened the length of

the experiments depending on the streaming speed, for example when the speed was set

to max, we could not stream longer then 7 minutes.

51 of 94

6.2 Testing Decisions

6.2.1 Time Stamping

In order to properly measure the latency of the tuple handling in the system, we had to

choose a time-stamping technique to as accurately as possible measure the time. For this

we chose to insert the timestamps at the stream generator, before sending them out to the

processor. The alternative solution of applying the time stamp once the tuple had entered

the system introduced a significant time error due to the systems nature of execution.

The single threaded process will just let the tuples sit in the input queue until it is

available, before applying a timestamp, which does not allow for an accurate

measurement of latency. Even though the timestamps are coming from two separate

systems, in the WPI cluster the systems clocks are synchronized and the potential error

introduced is negligible in regards to utilizing system side time stamping.

We encountered a problem in our initial attempts at calculating latency, due to the overall

numerical size of the measured latency, which cause a precision error, resulting in an

unusable value. To reduce the numerical size of this overall latency, we implemented a

sampling technique, in which every hundredth (when many operators reported statistics –

Standard Cape) or thousandth (when only the output operator reported statistics –

NASSQ) tuple was recorded. This allowed us to reduce the numerical size that is

associated with summing all recorded values, while continuing to retrieve unbiased

measurement. Overall there were still cases where occasionally the latency resulted in an

unusable number, typically in a high throughput high latency case, but the technique was

overall implemented successfully.

52 of 94

6.2.2 25 Query Measurements

The initial idea behind NASSQ was to develop a system which could handle high tuple

counts and high query counts. In order to properly assess whether or not our system

functioned to that end, we develop a Query Plan containing 25 queries. This number

allows us the ability to test whether or not our system provided improvements to

streaming systems that handle a larger number of filtering queries.

6.3 Testing Issues

6.3.1 Academic Code Base

While working with an academic code base we ran into a number of issues.

• Lack of documentation. This made the startup process take significantly longer

then we originally planned as well as the process of working through the code.

This was partially mitigated by the presence of WPI graduate students familiar

with the code base.

6.3.2 Stream Generator

Failure to Stream – When we shifted our system to generate routes before executing the

system, an error was introduced in NASSQ, in which after setup was completed, a 20

second process, the stream generator would fail to connect. This problem was corrected

how the timeout process was handled, allowing for a delayed startup among the

components running on distributed machine.

DistibutionManager.java Line 352

NASSQ Version

53 of 94

for(Iterator it = config.getMachines(); it.hasNext();){

Machine m = (Machine) it.next();

Socket s = null;

while(s==null){

try {

s = new Socket(m.getIPAddress(),

m.getConnectionListenerPort());

} catch (SocketException se) {

s=null;

Thread.sleep(1000);

}

}

Cape Version

for(Iterator it = config.getMachines(); it.hasNext();){

Machine m = (Machine) it.next();

Socket s = null;

long sockettimeout = System.currentTimeMillis() + 15000;

while(s==null){

try {

s = new Socket(m.getIPAddress(),

m.getConnectionListenerPort());

} catch (SocketException se) {

 if(sockettimeout < System.currentTimeMillis()) {

 System.err.println(

"System could not open socket to " +

 m.getMachineName());

 System.exit(-53);

 Thread.sleep(1000);

}

}

Inconsistent Output Generation - After working through a number of issues throughout

the testing cycle, we have been unable to overcome the issue of “Inconsistent Streaming

Speed” to NASSQ test. In initial rounds of testing there was no noticeable delay when

working with the stream generator, however in the final rounds of testing, given the same

speed setting, the stream generator sent tuples to the 4 different systems at significantly

different speeds. For example in a 10 minute execution, it was observed that the

54 of 94

generator, sent out 5 times as many tuples to NASSQ-NS as it did to NASSQ and 2-4

times as many to standard CAPE implementations as it did to NASSQ-NS. This

significantly hindered our ability to measure high throughput rates effectively and will be

reflected in the results analysis.

6.3.3 Implementation Limitations

Standard Cape Memory Issues - We observed a number of other concerns with our

approach, primarily with memory. When we went to test the maximum throughput rates

of the individual systems, we increased the stream generator to the first speed that was

faster than output, on the standard CAPE system, the system would constantly crash due

to memory heap issues, as there would be a buildup in system overhead. In order to

partially alleviate this, given that we could not go to an intermediate speed, we increased

the Java heap size and shortened the length of the experiment. This was not a complete

fix, however the system still had limitations based on execution length and streaming

speed. These concerns however were not an issue that we encountered while running

equivalent test in any of the NASSQ variants.

NASSQ Tree Generation Time - When conducting our final test on NASSQ, we ran into

a number of issues in regards to tree size. We found that the implementation was not as

scalable as originally anticipated, as the overhead, specifically in regards to execution

cost, required for generating the routing tree as well as for traversing the tree grew

exponentially with the number of queries in a tree. With only two to four queries, we

found that the generation time was negligible. However, when working with 29 queries,

we found that the tree generation (processed as a recursive function), took up a

55 of 94

significant amount of memory (similar to the CAPE issue, however after generation

completed the main bulk of memory for handling the recursive overhead was released

and posed no long term execution concerns), required a larger heap size, and took

approximately 2 minutes to complete on our testing systems. From this we found tthat

the tree needed to be generated prior to system execution. The following is a table of time

requirements for tree generation based on subsets of our original 29 Query plan.

10 Queries 20 Queries 25 Queries 29 Queries
< 1 sec 2 secs 9-11 secs 150+ secs

6.4 Data Analysis

6.4.1 Set Up

Our primary testing utilized a 25-query plan, as our system was intended to address both

high volumes of data and a high number of queries. In addition, we executed the system

for 10 min cycles.

Due to the nature of the issue we experienced with the stream generator, our results

analysis will focus primarily on a 25 query implementations of NASSQ, NASSQNS,

standard CAPE, and shared standard CAPE with a fast, but not overbearing tuple

generation speed (timing variable in the stream.config file was seed = 20, other test that

we conducted and looked at used seeds of 4(faster) and 200(slower)) The memory usage

and CPU utilization statistics were gathered from the system controlling the WPI cluster.

56 of 94

From this test throughput results we can not conclude that NASSQ provides any benefits

to query execution, rather a significantly reduced throughput rate can be observed.

However, two things are note-worthy; first that while NASSQ didn’t perform neither did

shared standard CAPE, which should have preformed better then standard cape,

indicating another under lying issue, potentially some additional overhead that we have

not yet been able to identify. Second, NASSQNS preformed almost as well as standard

cape, indicating a promising area to look at.

57 of 94

Figure 15: Tuple Throughput Chart

A much more promising result is that NASSQ had a lower CPU overhead in comparision

to the two alternatives. You would expect both NASSQ and shared CAPE to have a

reduced overhead than their counterparts because of their reduced throughput rates and

reduced operator counts. The fact that NASSQ-NS with a throughput almost equivalent

to CAPE, but a significantly reduced CPU Overhead is promising, indicating a much

more effective handling of the data. We attribute these results to the reduced number of

operators and the benefits that come with the associated reductions in the amount of

switching between operators.

58 of 94

SSTAN – Shared Standard CAPE
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries (Unshared)
STAND – Standard CAPE (Unshared)

Figure 16: Approximate CPU Usage Chart

A less promising but expected result was increased latency times in NASSQ. These

results lead to our later suggestion to change the scheduling algorithm, as even though

there is an expected increase in Latency, the value should not increase by 200 fold times.

59 of 94

SSTAN – Shared Standard CAPE
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries (Unshared)
STAND – Standard CAPE (Unshared)

Figure 17: Latency Chart

These measuremnts are approximations and were taken from the WPI’s clusters

monitoring toolkit and while not as strong of a measurement as the others, the results in

Figure 18 show one clear advantage to the NASSQ systems, namely, reduced memory

usage.

60 of 94

Figure 18: Approximate Memory Usage Chart

SSTAN – Shared Standard CAPE
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries
NASSQ – Non-Duplicative Approach to Sharing between Streamed Queries (Unshared)
STAND – Standard CAPE (Unshared)

2 Conclusions

Throughout this project we have learned a lot about stream processing engines through

our initial rounds of research and work with ESPER to are development work and testing

within CAPE. We have produced two variations on the CAPE system, to include a

batching and distribution system in which tuples are received, grouped, and sent out

through predetermined routing structure (individual or shared), while sharing operators in

an attempt to reduce execution costs. The primary new ideas that this project brings to

the forefront, is that of the non-duplicative shared routing tree, to reduce tuple copies and

memory usage overhead.

In conclusion we think that the concept of the tree execution path can be useful in the low

query count system, especially with further testing. However, after our poor results in

testing NASSQ on high numbers of queries, we realize that the algorithm for generating

the tree and other components of our system need to be improved in several ways, in

order to reduce generation cost, tree complexity, and execution cost of the system.

2.1 Future works

Needs of the System:

• A system of non-binary operators, those that can handle similiar test on the same

element in order to reduce the tree complexity, and save significant generation

and execution time, enabling a non-binary tree structure (i.e. If three operators are

looking for greater then 1, 2, or 3, tuples greater than 3 necessarily pass the other

61 of 94

2, and thus a four-way (the fourth being less then 1 and thus a failure) branch

could be made, significantly cutting down on the total number of branches that

would need to be made).

• A more efficient tree generation algorithm would improve tree generation

performance and reduce the associated overhead.

• A better scheduler. Looking at the system load while executing the NASSQ

systems in comparison to the standard cape systems, it showed the system is not

being utilized to its full potential. Only achieving a 25-30% processor utilization

shows that there is potential for a significantly greater number of operations to

occur. We believe that the source of this problem may be that the Routing

Operator is visited as often as the regular operators, and that a system that spends

a longer amount of time in the standard operators, between visiting the router,

which takes time to look at things, may increase system utilization.

• When building the tree a hybrid approach, between individual trees for each query

and a single routing tree needs to be looked into, utilizing a maximum number of

queries per tree. This should provide improvements in generation time and

latency, while maintaining many of the other benefits of NASSQ.

When running ad-hoc tests on NASSQ for few queries and large data flow, the results

looked promising as memory usage and execution were significantly lower than both

NASSQ-Unshared and Standard CAPE, however testing has not been significantly com-

pleted on these areas, as our primary focus was high query count.

62 of 94

3 Bibliography

[1] E. Codd. "A relational model of data for large shared data banks." Comm. ACM IS, 6
(June 1970), 377-387.

[2] H. Kostowski. "Stream Database Systems." November 8, 2005.
http://www.cs.uml.edu/~hkostows/stream/streams.pdf.

[3]. K. Munagala, U. Srivastava, and J. Widom. "Optimization of Continuous Queries
with Shared Expensive Filters." Technical Report, Nov. 2005

[4] R. Ramakrishnan and J. Gehrke. "Database Management Systems." McGraw-Hill
Higher Education, 2000.

[5] A. Deshpande, Z. Ives, and V. Raman. "Adaptive query processing." Foundations and
Trends in Databases, 1(1), 2007

[6] Crosman, P. "IBM Previews Ultra-Powerful Stream Processing System" Wall Street
& Technology. 2007. Wall Street Journal. 22 June 2007, Retrieved 28 April 2008. http://
www.wallstreetandtech.com/blog/archives/2007/06/ibm_previews_ul.html.

[7] R. Avnur and J. M. Hellerstein. "Eddies: continuously adaptive query processing." In
SIGMOD,2000.

[8] N. Vijayakumar, Y. Liu, and B. Plale, “Calder query grid service: Insights and
experimental evaluations.” in CCGrid Conference, 2006.

[9] E. Rundensteiner et al. "CAPE: Continuous query engine with heterogeneous-grained
adaptivity." In VLDB Demo, pages 1353–1356, 2004.

[10] Coral8, http://www.coral8.com, 2004-2008.

[11] Esper, http://esper.codehaus.org, 2008-04-13.

[12] RiverGlass, http://www.riverglassinc.com, 2008-04-08.

[13] A. Arasu et al. "STREAM: The Stanford Stream Data Manager." IEEE Data
Engineering Bulletin, 26(1)

[14] R. Nehme, K. Works, E. Rundensteiner, and E. Bertino. "Query Mesh: An Efficient
Multi-Route Approach to Query Optimization." CSD TR #08-009, Purdue University,
West Lafayette, IN, April 2008.

63 of 94

[15] V. Raghavan, E. Rundensteiner, J. Woycheese, and A. Mukherji. "FireStream:
Sensor Stream Processing for Monitoring Fire Spread." 2007 IEEE 23rd International
Conference on Data Engineering, April 2007, pp. 1507-1508

[16] V. Raman, A. Deshpande, and J. Hellerstein. "Using State Modules for Adaptive
Query Processing," 19th International Conference on Data Engineering (ICDE'03), 2003

64 of 94

4 APPENDICIES

4.1 Appendix A: SPE Feature List

65 of 94

66 of 94

4.2 Appendix B: Test Result Data

Standard Run

FILE

Se

ed

Throug

hput Start Stop

Time

(min) Rate/min

2802
35 2 77970

2907
22

4500
00

2.65463
3333

29371.2
8794

2803

05 1 12959

2854

04

4500

32 2.7438

4723.01

1881

2804

02 1 89675

3010

42

4500

00

2.48263

3333

36120.9

1999

2804
12 1 245448 0

4500
00 7.5 32726.4

2804

22 1 268236 0

4500

00 7.5 35764.8

1629.32

3326

2804

32 1 250157 0

4500

00 7.5

33354.2

6667

34491.5

9666

0.04723826

9

NASSQNS Rs-200

FILE

Se

ed

Throug

hput Start Stop

Time

(min) Rate/min

2803

50 1 50736

3083

19

4500

00 2.36135

21486.0

1436

2804
25 1 85345

2789
41

4500
00

2.85098
3333

29935.2
8549

2805

05 1 89122

2800

91

4500

00

2.83181

6667

31471.6

7013

67 of 94

Execution
Count

NASSQStreamSelectOperatorImp 1515 AC-
TIVE 1969

68 of 94

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1515 AC-
TIVE 1969

Tupple Deque
NASSQStreamSelectOperatorImp 1515 AC-
TIVE 1969

Selectivity
NASSQStreamSelectOperatorImp 1515 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1515 AC-
TIVE 1.09E+07

Execution
Count NASSQStreamSelectOperatorImp 44 ACTIVE 425
Tuple Through-
Put NASSQStreamSelectOperatorImp 44 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 44 ACTIVE 425

Selectivity NASSQStreamSelectOperatorImp 44 ACTIVE 0

Execution_Time NASSQStreamSelectOperatorImp 44 ACTIVE 2635000
Execution
Count

NASSQStreamSelectOperatorImp 2020 AC-
TIVE 2073

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2020 AC-
TIVE 2073

Tupple Deque
NASSQStreamSelectOperatorImp 2020 AC-
TIVE 2073

Selectivity
NASSQStreamSelectOperatorImp 2020 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 2020 AC-
TIVE 3.38E+07

Execution
Count

NASSQStreamSelectOperatorImp 1818 AC-
TIVE 2050

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1818 AC-
TIVE 2050

Tupple Deque
NASSQStreamSelectOperatorImp 1818 AC-
TIVE 2050

Selectivity
NASSQStreamSelectOperatorImp 1818 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1818 AC-
TIVE 1.56E+07

Execution
Count NASSQStreamSelectOperatorImp 33 ACTIVE 0
Tuple Through-
Put NASSQStreamSelectOperatorImp 33 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 33 ACTIVE 0

Selectivity NASSQStreamSelectOperatorImp 33 ACTIVE 0

Execution_Time NASSQStreamSelectOperatorImp 33 ACTIVE 0
Execution
Count

NASSQStreamSelectOperatorImp 1313 AC-
TIVE 2009

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1313 AC-
TIVE 2009

Tupple Deque
NASSQStreamSelectOperatorImp 1313 AC-
TIVE 2009

Selectivity
NASSQStreamSelectOperatorImp 1313 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1313 AC-
TIVE 1.34E+07

Execution NASSQStreamSelectOperatorImp 2727 AC- 2050

69 of 94

Count TIVE
Tuple Through-
Put

NASSQStreamSelectOperatorImp 2727 AC-
TIVE 1172

Tupple Deque
NASSQStreamSelectOperatorImp 2727 AC-
TIVE 2050

Selectivity
NASSQStreamSelectOperatorImp 2727 AC-
TIVE 0.571707317

Execution_Time
NASSQStreamSelectOperatorImp 2727 AC-
TIVE 5.12E+07

Execution
Count

NASSQStreamSelectOperatorImp 3030 AC-
TIVE 0

Tuple Through-
Put

NASSQStreamSelectOperatorImp 3030 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 3030 AC-
TIVE 0

Selectivity
NASSQStreamSelectOperatorImp 3030 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 3030 AC-
TIVE 0

Throughput OutputAdapterOperatorImp 3232 ACTIVE 10115

Latency OutputAdapterOperatorImp 3232 ACTIVE 1839020
Execution
Count NASSQStreamSelectOperatorImp 11 ACTIVE 2000
Tuple Through-
Put NASSQStreamSelectOperatorImp 11 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 11 ACTIVE 2000

Selectivity NASSQStreamSelectOperatorImp 11 ACTIVE 0

Execution_Time NASSQStreamSelectOperatorImp 11 ACTIVE 1.11E+07
Execution
Count

NASSQStreamSelectOperatorImp 2929 AC-
TIVE 0

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2929 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 2929 AC-
TIVE 0

Selectivity
NASSQStreamSelectOperatorImp 2929 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 2929 AC-
TIVE 0

Execution
Count NASSQStreamSelectOperatorImp 66 ACTIVE 878
Tuple Through-
Put NASSQStreamSelectOperatorImp 66 ACTIVE 435

Tupple Deque NASSQStreamSelectOperatorImp 66 ACTIVE 878

Selectivity NASSQStreamSelectOperatorImp 66 ACTIVE 0.495444191

Execution_Time NASSQStreamSelectOperatorImp 66 ACTIVE 5846000
Execution
Count

NASSQStreamSelectOperatorImp 1010 AC-
TIVE 2050

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1010 AC-
TIVE 2050

Tupple Deque
NASSQStreamSelectOperatorImp 1010 AC-
TIVE 2050

Selectivity NASSQStreamSelectOperatorImp 1010 AC- 1

70 of 94

TIVE

Execution_Time
NASSQStreamSelectOperatorImp 1010 AC-
TIVE 1.48E+07

Execution
Count

NASSQStreamSelectOperatorImp 1212 AC-
TIVE 2050

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1212 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 1212 AC-
TIVE 2050

Selectivity
NASSQStreamSelectOperatorImp 1212 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 1212 AC-
TIVE 1.67E+07

Execution
Count

NASSQStreamSelectOperatorImp 2828 AC-
TIVE 858

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2828 AC-
TIVE 433

Tupple Deque
NASSQStreamSelectOperatorImp 2828 AC-
TIVE 858

Selectivity
NASSQStreamSelectOperatorImp 2828 AC-
TIVE 0.504662005

Execution_Time
NASSQStreamSelectOperatorImp 2828 AC-
TIVE 7981000

Execution_Time NASSQRouterOperatorImp 00 ACTIVE 3.17E+11
Execution
Count NASSQStreamSelectOperatorImp 22 ACTIVE 858
Tuple Through-
Put NASSQStreamSelectOperatorImp 22 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 22 ACTIVE 858

Selectivity NASSQStreamSelectOperatorImp 22 ACTIVE 0

Execution_Time NASSQStreamSelectOperatorImp 22 ACTIVE 4945000
Execution
Count

NASSQStreamSelectOperatorImp 1616 AC-
TIVE 1999

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1616 AC-
TIVE 1999

Tupple Deque
NASSQStreamSelectOperatorImp 1616 AC-
TIVE 1999

Selectivity
NASSQStreamSelectOperatorImp 1616 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1616 AC-
TIVE 1.04E+07

Execution
Count

NASSQStreamSelectOperatorImp 2626 AC-
TIVE 1928

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2626 AC-
TIVE 559

Tupple Deque
NASSQStreamSelectOperatorImp 2626 AC-
TIVE 1928

Selectivity
NASSQStreamSelectOperatorImp 2626 AC-
TIVE 0.289937759

Execution_Time
NASSQStreamSelectOperatorImp 2626 AC-
TIVE 9815000

Execution
Count NASSQStreamSelectOperatorImp 77 ACTIVE 2100

71 of 94

Tuple Through-
Put NASSQStreamSelectOperatorImp 77 ACTIVE 901

Tupple Deque NASSQStreamSelectOperatorImp 77 ACTIVE 2100

Selectivity NASSQStreamSelectOperatorImp 77 ACTIVE 0.429047619

Execution_Time NASSQStreamSelectOperatorImp 77 ACTIVE 1.73E+07
Execution
Count

NASSQStreamSelectOperatorImp 1111 AC-
TIVE 568

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1111 AC-
TIVE 568

Tupple Deque
NASSQStreamSelectOperatorImp 1111 AC-
TIVE 568

Selectivity
NASSQStreamSelectOperatorImp 1111 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1111 AC-
TIVE 3082000

Execution
Count

NASSQStreamSelectOperatorImp 1919 AC-
TIVE 1142

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1919 AC-
TIVE 1142

Tupple Deque
NASSQStreamSelectOperatorImp 1919 AC-
TIVE 1142

Selectivity
NASSQStreamSelectOperatorImp 1919 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1919 AC-
TIVE 5507000

Execution
Count

NASSQStreamSelectOperatorImp 2323 AC-
TIVE 1999

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2323 AC-
TIVE 1410

Tupple Deque
NASSQStreamSelectOperatorImp 2323 AC-
TIVE 1999

Selectivity
NASSQStreamSelectOperatorImp 2323 AC-
TIVE 0.705352676

Execution_Time
NASSQStreamSelectOperatorImp 2323 AC-
TIVE 5.00E+07

Execution
Count

NASSQStreamSelectOperatorImp 1414 AC-
TIVE 0

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1414 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 1414 AC-
TIVE 0

Selectivity
NASSQStreamSelectOperatorImp 1414 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 1414 AC-
TIVE 0

Execution
Count

NASSQStreamSelectOperatorImp 2222 AC-
TIVE 0

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2222 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 2222 AC-
TIVE 0

Selectivity
NASSQStreamSelectOperatorImp 2222 AC-
TIVE 0

72 of 94

Execution_Time
NASSQStreamSelectOperatorImp 2222 AC-
TIVE 0

Execution
Count

NASSQStreamSelectOperatorImp 3131 AC-
TIVE 0

Tuple Through-
Put

NASSQStreamSelectOperatorImp 3131 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 3131 AC-
TIVE 0

Selectivity
NASSQStreamSelectOperatorImp 3131 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 3131 AC-
TIVE 0

Execution
Count

NASSQStreamSelectOperatorImp 2424 AC-
TIVE 2030

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2424 AC-
TIVE 858

Tupple Deque
NASSQStreamSelectOperatorImp 2424 AC-
TIVE 2030

Selectivity
NASSQStreamSelectOperatorImp 2424 AC-
TIVE 0.422660099

Execution_Time
NASSQStreamSelectOperatorImp 2424 AC-
TIVE 1.23E+07

Execution
Count NASSQStreamSelectOperatorImp 99 ACTIVE 0
Tuple Through-
Put NASSQStreamSelectOperatorImp 99 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 99 ACTIVE 0

Selectivity NASSQStreamSelectOperatorImp 99 ACTIVE 0

Execution_Time NASSQStreamSelectOperatorImp 99 ACTIVE 0
Execution
Count NASSQStreamSelectOperatorImp 88 ACTIVE 2077
Tuple Through-
Put NASSQStreamSelectOperatorImp 88 ACTIVE 2077

Tupple Deque NASSQStreamSelectOperatorImp 88 ACTIVE 2077

Selectivity NASSQStreamSelectOperatorImp 88 ACTIVE 1

Execution_Time NASSQStreamSelectOperatorImp 88 ACTIVE 1.59E+07
Execution
Count

NASSQStreamSelectOperatorImp 2525 AC-
TIVE 2015

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2525 AC-
TIVE 425

Tupple Deque
NASSQStreamSelectOperatorImp 2525 AC-
TIVE 2015

Selectivity
NASSQStreamSelectOperatorImp 2525 AC-
TIVE 0.210918114

Execution_Time
NASSQStreamSelectOperatorImp 2525 AC-
TIVE 1.15E+07

Execution
Count NASSQStreamSelectOperatorImp 55 ACTIVE 847
Tuple Through-
Put NASSQStreamSelectOperatorImp 55 ACTIVE 0

Tupple Deque NASSQStreamSelectOperatorImp 55 ACTIVE 847

Selectivity NASSQStreamSelectOperatorImp 55 ACTIVE 0

73 of 94

Execution_Time NASSQStreamSelectOperatorImp 55 ACTIVE 4429000
Execution
Count

NASSQStreamSelectOperatorImp 2121 AC-
TIVE 1539

Tuple Through-
Put

NASSQStreamSelectOperatorImp 2121 AC-
TIVE 0

Tupple Deque
NASSQStreamSelectOperatorImp 2121 AC-
TIVE 1539

Selectivity
NASSQStreamSelectOperatorImp 2121 AC-
TIVE 0

Execution_Time
NASSQStreamSelectOperatorImp 2121 AC-
TIVE 8166000

Execution
Count

NASSQStreamSelectOperatorImp 1717 AC-
TIVE 415

Tuple Through-
Put

NASSQStreamSelectOperatorImp 1717 AC-
TIVE 415

Tupple Deque
NASSQStreamSelectOperatorImp 1717 AC-
TIVE 415

Selectivity
NASSQStreamSelectOperatorImp 1717 AC-
TIVE 1

Execution_Time
NASSQStreamSelectOperatorImp 1717 AC-
TIVE 2376000

4.3 Appendix C: Generated NASSQ Batch

<queryplan>
<operator root="true" id="32"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.OutputAdapterOperatorImp"
numberOfOutputQueue="1">
<classVariables>

<variable name="IsEddyOp" value="false" />
</classVariables>
<properties></properties>
<schema />
<parents></parents>
<children>

<child type="operator" id = "1"/>
<child type="operator" id = "2"/>
<child type="operator" id = "3"/>
<child type="operator" id = "4"/>
<child type="operator" id = "5"/>
<child type="operator" id = "6"/>
<child type="operator" id = "7"/>
<child type="operator" id = "8"/>
<child type="operator" id = "9"/>
<child type="operator" id = "10"/>
<child type="operator" id = "11"/>
<child type="operator" id = "12"/>
<child type="operator" id = "13"/>
<child type="operator" id = "14"/>
<child type="operator" id = "15"/>
<child type="operator" id = "16"/>

74 of 94

<child type="operator" id = "17"/>
<child type="operator" id = "18"/>
<child type="operator" id = "19"/>
<child type="operator" id = "20"/>
<child type="operator" id = "21"/>
<child type="operator" id = "22"/>
<child type="operator" id = "23"/>
<child type="operator" id = "24"/>
<child type="operator" id = "25"/>
<child type="operator" id = "26"/>
<child type="operator" id = "27"/>
<child type="operator" id = "28"/>
<child type="operator" id = "29"/>
<child type="operator" id = "30"/>
<child type="operator" id = "31"/>

</children>
</operator>

<operator root="false" id="31"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="31" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="3" />
<expressions>

<expr id="1" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="2" type="TerminalConstantImp" qPosition=""
cPosition="" value="41.5" valtype="double" lid="" rid="" />

<expr id="3" type="BinCOMPExpressionStrImp" qPosition=""
cPosition="" value="" valtype="GT" lid="1" rid="2" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="30" />
</children>

</operator>
<operator root="false" id="30"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="30" />

75 of 94

<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="6" />
<expressions>

<expr id="4" type="TerminalExpressionStrImp"
qPosition="0" cPosition="8" value="" valtype="column"

lid=""
rid="" />

<expr id="5" type="TerminalConstantImp" qPosition=""
cPosition="" value="h-e" valtype="String" lid="" rid="" />

<expr id="6" type="BinCOMPExpressionStrImp" qPosition=""
cPosition="" value="" valtype="EQ" lid="4" rid="5" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="29" />
</children>

</operator>
<operator root="false" id="29"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="29" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="9" />
<expressions>

<expr id="7" type="TerminalExpressionStrImp"
qPosition="0" cPosition="7" value="" valtype="column"

lid=""
rid="" />

<expr id="8" type="TerminalConstantImp" qPosition=""
cPosition="" value="a-f-g" valtype="String" lid="" rid="" />

<expr id="9" type="BinCOMPExpressionStrImp" qPosition=""
cPosition="" value="" valtype="EQ" lid="7" rid="8" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="28" />
</children>

</operator>
<operator root="false" id="28"

76 of 94

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="28" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="12" />
<expressions>

<expr id="10" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="11" type="TerminalConstantImp" qPosition=""
cPosition="" value="300" valtype="integer" lid="" rid="" />

<expr id="12" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="10"

rid="11" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="27" />
</children>

</operator>
<operator root="false" id="27"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="27" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="15" />
<expressions>

<expr id="13" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="14" type="TerminalConstantImp" qPosition=""
cPosition="" value="200" valtype="integer" lid="" rid="" />

<expr id="15" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="13"

rid="14" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

77 of 94

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="26" />
</children>

</operator>
<operator root="false" id="26"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="26" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="18" />
<expressions>

<expr id="16" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="17" type="TerminalConstantImp" qPosition=""
cPosition="" value="115" valtype="integer" lid="" rid="" />

<expr id="18" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="16"

rid="17" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="25" />
</children>

</operator>
<operator root="false" id="25"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="25" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="21" />
<expressions>

<expr id="19" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="20" type="TerminalConstantImp" qPosition=""
cPosition="" value="300" valtype="integer" lid="" rid="" />

<expr id="21" type="BinCOMPExpressionStrImp"

78 of 94

qPosition="" cPosition="" value="" valtype="GT" lid="19"
rid="20" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="24" />
</children>

</operator>
<operator root="false" id="24"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="24" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="24" />
<expressions>

<expr id="22" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="23" type="TerminalConstantImp" qPosition=""
cPosition="" value="200" valtype="integer" lid="" rid="" />

<expr id="24" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="22"

rid="23" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="23" />
</children>

</operator>
<operator root="false" id="23"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="23" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="27" />
<expressions>

79 of 94

<expr id="25" type="TerminalExpressionStrImp"
qPosition="0" cPosition="1" value="" valtype="column"

lid=""
rid="" />

<expr id="26" type="TerminalConstantImp" qPosition=""
cPosition="" value="114" valtype="integer" lid="" rid="" />

<expr id="27" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="25"

rid="26" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="22" />
</children>

</operator>
<operator root="false" id="22"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="22" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="30" />
<expressions>

<expr id="28" type="TerminalExpressionStrImp"
qPosition="0" cPosition="12" value="" valtype="column"

lid=""
rid="" />

<expr id="29" type="TerminalConstantImp" qPosition=""
cPosition="" value="300" valtype="double" lid="" rid="" />

<expr id="30" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="28"

rid="29" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="21" />
</children>

</operator>
<operator root="false" id="21"

80 of 94

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="21" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="33" />
<expressions>

<expr id="31" type="TerminalExpressionStrImp"
qPosition="0" cPosition="12" value="" valtype="column"

lid=""
rid="" />

<expr id="32" type="TerminalConstantImp" qPosition=""
cPosition="" value="200" valtype="double" lid="" rid="" />

<expr id="33" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="31"

rid="32" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="20" />
</children>

</operator>
<operator root="false" id="20"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="20" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="36" />
<expressions>

<expr id="34" type="TerminalExpressionStrImp"
qPosition="0" cPosition="12" value="" valtype="column"

lid=""
rid="" />

<expr id="35" type="TerminalConstantImp" qPosition=""
cPosition="" value="100" valtype="double" lid="" rid="" />

<expr id="36" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="34"

rid="35" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />

81 of 94

</parents>
<children>

<child type="operator" id="0" queueId="19" />
</children>

</operator>
<operator root="false" id="19"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="19" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="39" />
<expressions>

<expr id="37" type="TerminalExpressionStrImp"
qPosition="0" cPosition="12" value="" valtype="column"

lid=""
rid="" />

<expr id="38" type="TerminalConstantImp" qPosition=""
cPosition="" value="0" valtype="double" lid="" rid="" />

<expr id="39" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="37"

rid="38" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="18" />
</children>

</operator>
<operator root="false" id="18"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="18" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="42" />
<expressions>

<expr id="40" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="41" type="TerminalConstantImp" qPosition=""
cPosition="" value="43.0" valtype="double" lid="" rid="" />

<expr id="42" type="BinCOMPExpressionStrImp"

82 of 94

qPosition="" cPosition="" value="" valtype="LT" lid="40"
rid="41" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="17" />
</children>

</operator>
<operator root="false" id="17"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="17" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="45" />
<expressions>

<expr id="43" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="44" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.3" valtype="double" lid="" rid="" />

<expr id="45" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="43"

rid="44" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="16" />
</children>

</operator>
<operator root="false" id="16"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="16" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="48" />
<expressions>

83 of 94

<expr id="46" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="47" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.2" valtype="double" lid="" rid="" />

<expr id="48" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="46"

rid="47" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="15" />
</children>

</operator>
<operator root="false" id="15"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="15" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="51" />
<expressions>

<expr id="49" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="50" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.1" valtype="double" lid="" rid="" />

<expr id="51" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="49"

rid="50" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="14" />
</children>

</operator>
<operator root="false" id="14"

84 of 94

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="14" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="54" />
<expressions>

<expr id="52" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="53" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.0" valtype="double" lid="" rid="" />

<expr id="54" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="52"

rid="53" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="13" />
</children>

</operator>
<operator root="false" id="13"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="13" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="57" />
<expressions>

<expr id="55" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="56" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.7" valtype="double" lid="" rid="" />

<expr id="57" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="55"

rid="56" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />

85 of 94

</parents>
<children>

<child type="operator" id="0" queueId="12" />
</children>

</operator>
<operator root="false" id="12"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="12" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="60" />
<expressions>

<expr id="58" type="TerminalExpressionStrImp"
qPosition="0" cPosition="10" value="" valtype="column"

lid=""
rid="" />

<expr id="59" type="TerminalConstantImp" qPosition=""
cPosition="" value="33.3" valtype="double" lid="" rid="" />

<expr id="60" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="58"

rid="59" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="11" />
</children>

</operator>
<operator root="false" id="11"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="11" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="63" />
<expressions>

<expr id="61" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="62" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.8" valtype="double" lid="" rid="" />

<expr id="63" type="BinCOMPExpressionStrImp"

86 of 94

qPosition="" cPosition="" value="" valtype="GT" lid="61"
rid="62" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="10" />
</children>

</operator>
<operator root="false" id="10"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="10" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="66" />
<expressions>

<expr id="64" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="65" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.5" valtype="double" lid="" rid="" />

<expr id="66" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="64"

rid="65" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="9" />
</children>

</operator>
<operator root="false" id="9"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="9" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="69" />
<expressions>

87 of 94

<expr id="67" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="68" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.3" valtype="double" lid="" rid="" />

<expr id="69" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="67"

rid="68" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="8" />
</children>

</operator>
<operator root="false" id="8"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="8" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="72" />
<expressions>

<expr id="70" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="71" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.0" valtype="double" lid="" rid="" />

<expr id="72" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="GT" lid="70"

rid="71" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="7" />
</children>

</operator>
<operator root="false" id="7"

88 of 94

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="7" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="75" />
<expressions>

<expr id="73" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="74" type="TerminalConstantImp" qPosition=""
cPosition="" value="42.8" valtype="double" lid="" rid="" />

<expr id="75" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="73"

rid="74" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="6" />
</children>

</operator>
<operator root="false" id="6"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="6" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="78" />
<expressions>

<expr id="76" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="77" type="TerminalConstantImp" qPosition=""
cPosition="" value="42.7" valtype="double" lid="" rid="" />

<expr id="78" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="76"

rid="77" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />

89 of 94

</parents>
<children>

<child type="operator" id="0" queueId="5" />
</children>

</operator>
<operator root="false" id="5"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="5" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="81" />
<expressions>

<expr id="79" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="80" type="TerminalConstantImp" qPosition=""
cPosition="" value="42.2" valtype="double" lid="" rid="" />

<expr id="81" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="79"

rid="80" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="4" />
</children>

</operator>
<operator root="false" id="4"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="4" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="84" />
<expressions>

<expr id="82" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="83" type="TerminalConstantImp" qPosition=""
cPosition="" value="42.1" valtype="double" lid="" rid="" />

<expr id="84" type="BinCOMPExpressionStrImp"

90 of 94

qPosition="" cPosition="" value="" valtype="LT" lid="82"
rid="83" />

</expressions>
</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="3" />
</children>

</operator>
<operator root="false" id="3"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="3" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="87" />
<expressions>

<expr id="85" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="86" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.8" valtype="double" lid="" rid="" />

<expr id="87" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="85"

rid="86" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="2" />
</children>

</operator>
<operator root="false" id="2"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="2" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="90" />
<expressions>

91 of 94

<expr id="88" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="89" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.7" valtype="double" lid="" rid="" />

<expr id="90" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="88"

rid="89" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="1" />
</children>

</operator>
<operator root="false" id="1"

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQStreamSelectOperatorImp">
<classVariables>

<variable name="QMeshOperatorID" value="1" />
<variable name="IsEddyOp" value="false" />
<variable name="StreamID" value="0" />
<variable name="expression_id" value="93" />
<expressions>

<expr id="91" type="TerminalExpressionStrImp"
qPosition="0" cPosition="11" value="" valtype="column"

lid=""
rid="" />

<expr id="92" type="TerminalConstantImp" qPosition=""
cPosition="" value="40.1" valtype="double" lid="" rid="" />

<expr id="93" type="BinCOMPExpressionStrImp"
qPosition="" cPosition="" value="" valtype="LT" lid="91"

rid="92" />
</expressions>

</classVariables>
<properties />
<schema />
<parents>

<parent id="32" />
</parents>
<children>

<child type="operator" id="0" queueId="0" />
</children>

</operator>

<operator root="false" id="0"

92 of 94

className="edu.wpi.cs.dsrg.xmldb.xat.common.querymesh.MQP.NASSQRouterOperatorImp"
numberOfOutputQueue="32">
<classVariables>

<variable name="Num_Streams" value="1" />
<variable name="Num_Operators" value="32" />
<variable name="Num_SendOff" value="500" />
<variable name="TupleCountThreshold" value="2000" />
<variable name="Sharing" value="true" />
<variable name="Stream0" QueueId="0"

window_type="CountBased" window_size="1500" />
<globalDecisionTree>

<localQM id="1" stream_id="0">
<localDecisionTree id="1" stream_id="0"

is_empty="true" />
<allRoutes>

<route id="1" is_default="true"
path="15|13|8|18" />

<route id="2" is_default="false"
path="15|12|19|29" />

<route id="3" is_default="false" path="8|18|24" />
<route id="4" is_default="false" path="8|18|26" />
<route id="5" is_default="false" path="8|18|27" />
<route id="6" is_default="false"

path="13|8|19|27" />
<route id="7" is_default="false"

path="14|12|8|30" />
<route id="8" is_default="false"

path="16|12|31|9|20" />
<route id="9" is_default="false"

path="10|18|21|28" />
<route id="10" is_default="false"

path="17|10|25" />
<route id="11" is_default="false" path="27" />
<route id="12" is_default="false" path="24|28" />
<route id="13" is_default="false" path="25" />
<route id="14" is_default="false"

path="20|7|27|23" />
<route id="15" is_default="false"

path="11|16|27|23" />
<route id="16" is_default="false"

path="20|16|23" />
<route id="17" is_default="false"

path="20|7|27" />
<route id="18" is_default="false" path="4|7|27" />
<route id="19" is_default="false" path="1|7|27" />
<route id="20" is_default="false"

path="20|1|27" />
<route id="21" is_default="false" path="20|7|5" />
<route id="22" is_default="false" path="20|7|6" />
<route id="23" is_default="false" path="20|7|1" />
<route id="24" is_default="false" path="20|7|2" />
<route id="25" is_default="false" path="4|7|6" />

93 of 94

</allRoutes>
</localQM>

</globalDecisionTree>
</classVariables>
<properties />
<schema />
<parents>

<parent id="31" queueId="30" />
<parent id="30" queueId="29" />
<parent id="29" queueId="28" />
<parent id="28" queueId="27" />
<parent id="27" queueId="26" />
<parent id="26" queueId="25" />
<parent id="25" queueId="24" />
<parent id="24" queueId="23" />
<parent id="23" queueId="22" />
<parent id="22" queueId="21" />
<parent id="21" queueId="20" />
<parent id="20" queueId="19" />
<parent id="19" queueId="18" />
<parent id="18" queueId="17" />
<parent id="17" queueId="16" />
<parent id="16" queueId="15" />
<parent id="15" queueId="14" />
<parent id="14" queueId="13" />
<parent id="13" queueId="12" />
<parent id="12" queueId="11" />
<parent id="11" queueId="10" />
<parent id="10" queueId="9" />
<parent id="9" queueId="8" />
<parent id="8" queueId="7" />
<parent id="7" queueId="6" />
<parent id="6" queueId="5" />
<parent id="5" queueId="4" />
<parent id="4" queueId="3" />
<parent id="3" queueId="2" />
<parent id="2" queueId="1" />
<parent id="1" queueId="0" />

</parents>
<children>

<child type="stream" id="0" name="Stream0" />
</children>

</operator>
</queryplan>

94 of 94

	Worcester Polytechnic Institute
	Digital WPI
	May 2008

	NON-DUPLICATIVE APPROACH TO SHARING BETWEEN STREAMED QUERIES
	Bart Shappee
	Christopher Adam Bass
	James Albert Roumeliotis
	Repository Citation

	MQP_Paper

