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Abstract 
A standalone surgical arm for performing Minimally Invasive Robotic Surgery (MIRS) with standard da 

Vinci Si tools has been developed. Force feedback is now possible with the feedback from torque 

sensors used to measure the forces acting upon the tool tip. The mechanical arm and a control system 

capable of driving the arm and reporting force information to the user via haptic feedback has been 

designed and fabricated. This arm will be used as a platform for research on the performance of 

telesurgery as a function of various haptic mappings and artificial latencies.  
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Introduction 

Executive Summary 
Minimally Invasive Robotic Surgery (MIRS) is a relatively new method of performing surgeries which uses 

surgical robots to perform laparoscopic surgery. This has several advantages over using traditional 

laparoscopic tools, as the manipulators can have many more degrees of freedom and more natural 

motions can be used by the surgeon to control the robot. Current commercially available MIRS systems 

such as the da Vinci from intuitive Surgical do not provide force feedback to the surgeon, so the surgeon 

cannot feel how much force he is applying to different tissues or is using in tying a suture. 

A previous MQP developed a method of sensing the forces used in manipulating one of the da Vinci 

tools (Marchese & Hoyt, 2010). This was accomplished by placing a module between the tool and the da 

Vinci manipulator. This module contains aluminum couplers with strain gauges to measure the torque 

applied to each of the tools degrees of freedom. 

The goal of this project was to construct a surgical arm that would be suitable for use in research into 

haptics and telesurgery. It should allow for forces to be reported back and for the mapping and timing of 

those forces to be reported back to the surgeon in various ways. It should also be possible to experiment 

with varying artificial delay times when performing telesurgery. 

The arm was designed to maintain a remote center of motion through mechanically constrained links. A 

tool interface and carriage was designed to interface directly with a standard da Vinci Si faceplate. This 

interface also includes motor modules to drive the tool tip and torque sensors for measuring each 

Degree of Freedom (DoF) of the tool tip. The linear slide assembly is manipulated by a 2 rotational DoF 

arm that mechanically couples opposing links to remain parallel to each other. The arm is supported by 

a passive positioning system that allows for positioning of the remote center in 4 DoF.  

 To control this arm, a control system comprised of multiple motor controllers and a torque sensor 

interface talking to a master kinematics controller was devised. Two different sizes of motor controllers 

were designed and fabricated for the two different types of motors, and a strain gauge interface board 

was also designed and manufactured. These communicate back to the master kinematics controller, 

which is a Java program running on a PC. The master kinematics controller controls the overall position 

of the arm and tool tip through its commands to the motor controller boards. It also maps the forces 

reported back by the motor controllers and strain gauge interface to the user. 

Some additional work will be required to bring this arm to the point where it will be usable for research. 

The main limitation to the mechanical system is the inability of the timing belt system to support the 

cantilevered weight of the robot. This can be easily fixed by replacing the timing belts with a chain and 

sprocket system.  The software on the motor controllers and the kinematics controller is still mostly 

incomplete and needs to be expanded to allow for additional control modes and more configurability 

and feedback information. The kinematics controller should then be interfaced to the PHANTOM 

Desktop from Sensable so that the arm can be manipulated with force feedback. 
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Literature Review 
The two most common modern techniques for performing surgery are open surgery and Minimally 

Invasive Surgery (MIS). Open surgery is performed through a large incision through which the surgeon 

can see and manipulate the afflicted area, whereas minimally invasive surgery is performed with 

specialized tools and cameras that are inserted into the body through small keyholes as seen in Figure 1. 

(Parker, 2010).  MIS is commonly chosen over open surgery because of the reduced recovery time and 

decreased physical scarring. Furthermore, MIS is often less expensive than open surgery because shorter 

recovery times lead to shorter stays in the hospital, which can be a significant portion of the cost of 

surgery. Laparoscopic surgery is a type of minimally invasive surgery that is used to operate primarily in 

the abdominal region because of the easy access and open space available to maneuver the tools.   

 

Figure 1: Diagram of Laparoscopic Minimally Invasive Surgery 

During the 1990’s a new form of MIS was commercially introduced: laparoscopic surgery aided by 

robotic manipulation. Minimally Invasive Robotic Surgery (MIRS) is currently dominated by Intuitive 

Surgical’s da Vinci system seen in Figure 2. (Intuitive Surgical, 2010) The first da Vinci system was 

introduced in 1999, and the most recent da Vinci SI system offers a 3D HD vision system, three robotic 

arms with surgical tools and another robotic arm for controlling an endoscopic camera (Intuitive 

Surgical, 2010). All of the arms attach to a common column that is wheeled to the operating table prior 

to surgery. A wide variety of interchangeable and disposable tools allows for a wide variety of surgical 

procedures that would be impossible to perform with traditional laparoscopy.  
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Figure 2: Intuitive Surgical's da Vinci Si Surgical System 

A significant advantage to using the da Vinci system is that instead of spending the entire surgery 

standing next to the patient, a surgeon using the da Vinci surgeon controls the surgery from a seated 

position separated from the patient. This method of performing surgery distanced from the patient is 

known as telesurgery and can theoretically be performed from any distance. The capabilities and 

limitations of telesurgery has been an area of great interest to many researchers. 

Another area of interest to researchers is the use and effects of haptics in telesurgery.  Haptics is the 

representation or replication of physical or virtual forces upon a user controlling a system. This 

representation can range from the simple vibration feature common in modern video game systems to 

the advanced 7 Degree of Freedom (DoF) haptic controllers available from Force Dimension (Figure 3) 

(Force Dimension, 2011). When operating traditional laparoscopic tools, the surgeon is able to directly 

feel how much force is being applied, which is untrue of commercially available MIRS systems. However, 

several robotic surgical systems are being developed to make use of emerging haptic technologies and 

will be explained later. 
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Figure 3: Force Dimension Haptic Controller 

Telesurgery 

Before 2001, it was believed that long distance telesurgery would be limited to telementoring from 

within a few hundred miles of the surgery (Marescaux, et al., 2001). Researchers experimented with 

robot assisted laparoscopic removal of pigs’ gallbladders where the surgeons were located in 

Strasbourg, France and the pigs were located in Paris, a distance of around 1000 kilometers. The time 

difference between the surgeons’ motions to the corresponding motion on the surgeon’s video feed was 

about 20 ms, but the researchers experimented with artificially creating lag times of up to 551.5 

milliseconds. According to the perceptions of the surgeons, the maximum, safe time lag was determined 

to be around 330 milliseconds. The researchers then performed this experiment between New York and 

Strasbourg, a distance of greater than 14000 km round trip. The researchers were able to obtain a 

dedicated fiber optic connection with a bandwidth of 10 megabits per second with a Network 

Termination Unit. It was found that with Asynchronous Transfer Mode (ATM) they were able to receive 

every packet of information that was between the stations without error. The time lag between France 

and the US was about 78 to 80 milliseconds without the 70 ms lag due to coding and decoding the video. 

The total lag, with the addition of a few milliseconds lag due to converting between Ethernet and ATM, 

was about 155 milliseconds between a surgeon’s initial movements and the corresponding movements 

on his screen. Marescaux and the other surgeons were highly confident in the results of the 

experimental surgeries and successfully performed the first transatlantic telesurgery on a 68 year-old 

female who was discharged 48 hours after the groundbreaking surgery.  

The use of telesurgery and telementoring has grown in Canada since the first transatlantic telesurgery, 

sometimes known as “Operation Lindbergh.” Dr. Anvari at St Joseph’s hospital in Hamilton, Ontario 

regularly performs telesurgeries in North Bay General Hospital, located in a rural community 400 km 

away (Kay, 2004).  Dr. Anvari also telementors less experienced surgeons from his hospital in Hamilton. 

The use of telesurgery is still experimental and expensive, but many hope that someday it will be 

comparable in cost to transporting patients from rural locations to larger communities. This is especially 

helpful in Canada, where there are 10 million people living in rural or sparsely populated areas. Due to 

the high cost of dedicated fiber, Dr. Anvari’s hospital uses common fiber with a Virtual Private Network 

(VPN) to ensure that data is not lost. Bell Canada is also researching fiber optic and satellite 



SASHA WORCESTER POLYTECHNIC INSTITUTE 11 

communication solutions so that telesurgery can be used effectively in war-zones. The Canadian Space 

Agency and NASA are working with Dr. Anvari and Bell Canada towards the goal of being able to use 

telesurgery on the international space station. Dr. Richard Satava predicts that all surgeries will be 

automated within 40 to 50 years. 

Surgical Robotics Research 

The majority of Radical Prostatectomy surgeries performed in the US are robot assisted due to the 

introduction of the da Vinci surgical system. This procedure is known as Robot Assisted Laparoscopic 

Radical Prostatectomy (RALRP). LRP was first performed in 1992 in the US, but it was deemed “too 

difficult” and was not pursued any further, although European surgeons continued to develop the 

procedure. The widespread use of LRP and the economic conditions in Europe have kept the use of 

RALRP from spreading as quickly as in the US. (Murphy, Challacombe, & Costello, 2008)   

There is minimal randomized evidence to confirm that RALRP is significantly better than Open Radical 

Prostatectomy (ORP), however many surgeons believe that RALRP is easier and better for the patient 

(Murphy, Challacombe, & Costello, 2008). RALRP is inherently minimally invasive, and there is evidence 

that shows that RALRP performs better in terms of blood loss, transfusion requirements, post-operative 

pain and hospitalization time. Not only are these benefits inherently positive, they also lead to an overall 

lower cost of surgery. Murphy et al. conclude that although there lacks randomized evidence to confirm 

that RALRP is better than ORP, it is at least as good as ORP and has already cemented its place in radical 

prostatectomy.  

Nine out of 350 (2.6%) RALRPs were unable to be robotically assisted at Virginia Mason Medical Center 

due to failure of the da Vinci system (Borden, Kozlowski, Porter, & Corman, 2007). Six of these failures 

were detected before surgery and the surgeries were postponed. The other 3 malfunctions occurred 

during surgery but did not result in patient harm. Five of the malfunctions were mechanical 

malfunctions, 3 were electrical challenges and one was due to software incompatibility. The research 

concluded that although rare, robotic malfunctions can lead to psychological, financial and logistical 

burdens for patients, physicians and hospitals. 

John’s Hopkins University conducted a study into suturing comparing the forces involved in suturing by 

hand, by instrument, and by robot, and comparing the differences between experts and novices in each 

of these (Kitagawa, Okamura, Bethea, Gott, & Baumgartner, 2002). The robot used for this study did not 

have force feedback, and it was found that for traditional instrument ties there were slightly better 

forces then for the robot ties. It was also found that using traditional instrument ties provided more 

consistent forces than robot ties, suggesting that force feedback in a robot could improve repeatability. 

It was also found that the difference between the experts and novices for both the instrument and 

robot ties were much smaller than for the hand ties. 

The Iwate University has created an attachment for the da Vinci robot arm which allows it to sense 

forces in its tool (Shimachi, Hirunyanitiwatna, Fujiwara, Hashimoto, & Hakozaki, 2008). This was done be 

constructing a device which the standard da Vinci tool interfaces with. The shaft of the tool is 

encompassed by an overcoat pipe with force sensors along it, allowing for forces to be sensed in the 
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along the shaft and perpendicular to it. This system would allow for force feedback to be provided to the 

surgeon using the da Vinci. 

The Institute of Robotics and Mechatronics in Germany is developing a set of forceps with integrated 

actuation and force sensing (Kuebler, Seibold, & Hirzinger, 2005). This uses force transducers in 

structure called a Stewart Platform in the tip of the forceps. This allows for the forces to be measured 

directly where they are being applied. This would provide a surgical tool with force sensing measured 

directly where the tool is acting, thus providing the user interface with the information it needs to 

provide the user with accurate force feedback. This system has been designed and constructed and is 

currently being tested. 

Alternate Robotic Surgical Systems 

Following the da Vinci's widespread success, there is a variety of research being performed to develop 

new MIRS systems. The German Aerospace Center (DLR) has developed its second generation robotic 

arm (MIRO) that is used in its MiroSurge robotic system (Figure 4) (Institute of Robotics and 

Mechatronics, 2010). The arms weigh less than 10 kg and, unlike the da Vinci system, can be attached 

directly to the operating table in order to optimize the workspace of each arm with respect to the 

others, much like the earlier Zeus system (Lafranco, 2004). The MiroSurge system consists of three 7 

Degree of Freedom (DoF) MIRO arms: two manipulating laparoscopic tools and another manipulating an 

endoscopic camera (Institute of Robotics and Mechatronics, 2010). Force and torque sensors 

(mentioned previously) located near the tips of the tools provide feedback that is represented haptically 

with Force Dimension's Omega.7 haptic controllers. Three translational degrees of haptic feedback are 

possible with the Omega.7 controller. The ultimate goal in developing this technology is to be able to 

use the MiroSurge system to operate on a beating heart, thereby eliminating the need and risks of 

heart/lung machines. 

 

Figure 4: German Aerospace Center’s MiroSurge System 

Researchers at the Technical University of Eindhoven have developed the SOFIE (Surgeon's Operating 

Force feedback Interface Eindhoven) robotic arm (Figure 5) as a means of improving upon the da Vinci 
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system (van den Bedem, 2008). After performing field studies on robotic surgeries with the da Vinci, 

SOFIE was designed with the following design improvements in mind: connection to the operating table 

for easier set-up; additional DoFs at the instrument tip to improve organ approach; reduced system size; 

and reduced costs; and force feedback for reduced operating time and increased patient safety. 

 

Figure 5: Technical University Eindhoven’s SOFIE robot 

The University of Hawaii-Manoa has built a simple, low cost, modular system for performing 

laparoscopic surgery (Figure 6) (Berkelman & Ma, 2009). This system has small, lightweight manipulators 

which can easily be clamped to the table, allowing them to be reconfigured with minimal hassle. These 

arms are designed such that the entire assembly may be placed in an autoclave, allowing for simple 

sterilization. This system does not include force feedback, but is manipulated with a controller which 

could provide haptic feedback. This arm eliminates the need for a remote center, by directly 

manipulating the arm tool from around the incision. 
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Figure 6: University of Hawaii-Manoa's Laparoscopic Surgery Robot 

The BioRobotics Lab at the University of Washington is in the process of developing and testing the 

RAVEN telerobotic system (Figure 7) (Hannaford B. e., 2009), which is specifically aimed at researching 

the effects of long distances on telesurgery. In 2007, this system was successfully tested in the NASA 

Extreme Environment Mission Operations (NEEMO) 12 Mission. The system was operated in an 

underwater lab off the coast of Florida from stations in Ohio, Florida and Washington. Although the 

RAVEN is currently teleoperated with Sensable’s PHANTOM Omni controllers, haptic feedback has not 

yet been implemented. 

 

 

Figure 7: University of Washington’s RAVEN Telesurgical System  
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Objectives 
In order to more completely understand the state-of-the-art of modern telesurgery, a surgery 

performed with a da Vinci Si system was observed at the Boston Children’s Hospital. From watching the 

surgery in its entirety several observations were made: 

 The da Vinci system is very large and can be difficult to place next to the operating table.  

 Depending on the arm configuration needed for the surgery, positioning the fourth arm for the 

extra tool can be unwieldy as it needs to wrap around the other arms from the central podium 

and can often interfere with the movements of the other, more critical arms. 

 There is a need for more than two tool arms and a camera arm in some surgeries. In this specific 

case, a manual laparoscopic tool was used to hold the patient’s liver away from the surgical area 

and as a means of passing needles and other supplies to the da Vinci tools.  

These observations were verified by the hosting surgeons, who believed that a standalone arm that 

could be used in conjunction with the da Vinci system would be a commercially viable product to 

hospitals that have already invested a large amount of money into the da Vinci system. Although the 

commercialization of this project was decided to be outside of the scope, the possibility of 

commercialization drove several of the design requirements for the project at hand.  

The immediate objective for this project was to create an arm and control system that could 

consequently be used to research the effects of haptics on telesurgery.  With this goal and the 

subordinate goal of developing a commercially useful product, the following design statement was 

proposed: 

Develop a surgical arm and controller that can manipulate da Vinci tools and be used alone 

or in conjunction with the da Vinci Surgical System. Additionally this system should be 

modular to allow the use of multiple arms, and be suitable for use in studying haptics and 

telesurgery.  

The first half of the design statement describes the overarching requirement for the mechanical aspects 

of the system. The ability to manipulate da Vinci tools is especially fitting for both of the overall goals. 

Using available tools instead of creating them from scratch allows for attention to be paid primarily to 

the other systems in an effort to expedite the proposed research with the system. Furthermore, 

hospitals that have already invested in da Vinci tooling are more likely to adopt this system if it does not 

require further investment in tooling.   

The software architecture and controls of the system are described by the second half of the design 

statement. Haptic feedback imposes a significant requirement on the communication protocols used by 

the system.   
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Mechanical Design 

Requirements 
Of the original list of design requirements the following applied directly to the mechanical aspects of the 

arm design and were kept in mind throughout the design process. These requirements were compiled 

using the design statement as a guide with inspiration coming from background research and 

discussions with interested parties. 

StandAlone Surgical Haptic Arm (SASHA) should be able to manipulate a da Vinci Si tool about a 

remote center.  

A remote center is necessary for any system performing laparoscopic surgery and can be maintained 

through either mechanical or software means.  An early and major design decision was determining 

which approach would best suit the SASHA system. However, no matter the approach, a minimum of 

three DoFs is necessary to position the tool tip anywhere inside the abdomen.   

SASHA should integrate the torque sensors developed by Andrew Marchese and Hubbard Hoyt for the 

original iteration of this project (Figure 8) (Marchese & Hoyt, 2010) 

These unique torque sensors provide a means of directly measuring the torques applied to the da Vinci 

tool and therefore the forces being applied to the tool tip. Using these torque sensors is also a more 

direct method of measuring torques than by inferring the torque through ideal motor characteristics.  

 

Figure 8: Strain Gauge Based Torque Sensors 

 

SASHA should provide tool tip forces and speeds suitable for laparoscopic surgery.  

The proper tool tip force was determined to be around 20 Newtons in any direction, which is more than 

3 times the maximum force that inexperienced surgeons use to tie sutures (Kitagawa, Okamura, Bethea, 

Gott, & Baumgartner, 2002). The necessary tool tip speeds were determined by observing videos of da 

Vinci operations. Using approximate timing techniques and the distance traveled compared to the 

known length of the tool tip, it was determined that a tip speed of 3 cm per second would be more than 

suitable for this application.  
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SASHA should be able to work in a space large enough to facilitate laparoscopic surgery.  

Through discussions with surgeons at Boston Children’s Hospital, a suitable workspace of the tool tip 

inside the body was determined to be a 6-8 inch diameter sphere. A larger workspace is not necessary 

because of the limited space available in an average human abdomen.  

SASHA should be easy to position before surgery or testing. 

 This means that the robot should be easily attached wheeled up to the operating table. Attention 

should also be paid to facilitating the fine positioning of the RCM. 

Design Iterations 

Initial Designs 

Early design concepts were based loosely on SCARA type and serial robot arms. These types of arms are 

used heavily in industrial applications, where they can have flexible workspaces and fairly 

straightforward mechanics and kinematics. Two early concepts can be seen in Figure 9. The first concept 

uses a planar motion SCARA robot to manipulate a passive ball joint attached to a tool driver. An 

attachment grounded at the robot base would hold the tool shaft to maintain a remote center. The 

other concept shows a serial manipulator with a linear slide for inserting the tool, however the shown 

configuration does not maintain a constant remote center if all joints are active.  

 

Figure 9: Early Design Concepts 

It was decided to continue developing a serial arm because SCARA arms can be heavy and take up a lot 

of valuable space next to an operating table. Furthermore, a serial manipulator is much easier to 

prototype in the limited time available. For the second iteration (Figure 10) of the serial design concept, 

a further link was added to the system so that opposite links could be coupled in parallel to allow for the 

correct motions of the arm about a remote center. However, the issue of not maintaining a proper 
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remote center was not fixed until the next iteration. The solution to this issue was that the order of the 

joints needed to be reversed, as seen in the next prototype (Figure 11). 

    

 

Figure 10: Second Design Iteration 

The third iteration was the first to be physically prototyped (Figure 11). Physical prototyping was 

emphasized so as to manually investigate the motions of the design concepts and as a means of 

checking design decisions before committing too many resources to a design. Using laser cut acrylic and 

PVC piping as axles; it was possible to construct and manipulate the structure and investigate the size 

and workspace of the proposed arm. For this prototype, the size of the arm was based on the size of the 

plastic readily available and the workspace of the laser cutter. 

 

Figure 11: First Physical Iteration 

Next, more investigation was put into the sizes of each of the links before constructing a full size 

prototype (Figure 12). The first approach to determining link lengths was looking into the average size of 

human adults, however applicable data was not immediately available and another analytical approach 

was used instead. Average operating room tables are approximately 19 inches wide, and it was decided 



SASHA WORCESTER POLYTECHNIC INSTITUTE 19 

that the arm should not need to reach all the way across the table when standing straight up. Thus, the 

length of the upper horizontal link was decided to be around 17 inches. This length allows for the robot 

to be positioned on either side of the table and still reach almost the entire width of the table.  

The length of the linear slide element was chosen based on the amount of travel necessary inside the 

abdomen and the length necessary for setting up the robot. The initial requirements call for a workspace 

inside the abdomen of at least 8 inches. This in addition to the setup travel needed to fully remove the 

tool from the trocar, which is the entry port into the abdomen, requires at least 15 inches of travel. As a 

slight factor of safety, a linear slide length of 17 inches was chosen. Consequently, the opposite link was 

modeled to be the same length. 

A passive positioning system was also designed for this full scale prototype. A long arm free to rotate on 

both sides was placed between the operating table rail and the active base of the robot arm. This extra 

arm allows for the remote center to be configured in two degrees of rotational freedom along the 

lengthwise plane of the arm. An additional DoF is the arms placement along the table. 

 

Figure 12: Full Scale Geometry Prototype 

Final Design 
The final SASHA design is a functional prototype using laser cut acrylic as the main structural material 

(Figure 13). The six main components of the arm were designed in the following order: the da Vinci tool 

interface that interfaces and controls the da Vinci tool; the tool carriage and linear slide that moves the 

tool tip in and out of the patient; the transmissions that control the rotations of the arm; the links that 

support the carriage and tool slide; and the passive positioning system that supports the arm and 

attaches to the operating table. Beyond the design requirements and overall objectives described 

previously, special emphasis was placed on manufacturability and the time required for machining each 

module. To this end, many identical parts are used in several modules. For instance, the acrylic plates 
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that define each component are held together by identical nut strips as this required only one repeated 

process instead of a series of different processes. 

 

Figure 13: Final Mechanical Design 

 

Tool interface 

The first goal in creating SASHA was to be able to manipulate and sense tool tip forces. Consequently, 

the design of the tool interface would drive most aspects of the rest of the arm. As can be seen in the 

exploded CAD model in Figure 14, there are two main components to the tool interface: the da Vinci 

faceplate interface and the spring loaded motor module.  

 

Figure 14: Exploded Tool Interface 

The faceplate interface was designed to directly accept and hold a standard da Vinci Si faceplate so as to 

more easily replicate the interface and features of the da Vinci Si tool. To achieve this interface, a 
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faceplate was examined and found to have three distinct interface features: the lower tabs, upper 

locating hole, and upper latch area. The complements to these features were integrated into a single 

body that could be rapid prototyped using a 3D printer. This rapid-prototyped body was also designed to 

be the main structural element of the tool interface component.  

Four discs in the back of the da Vinci tool are used to individually manipulate the four degrees of 

freedom of the tool tip. In the da Vinci Si system, these discs are driven by spring loaded interface bars 

that interface with the da Vinci faceplate discs which in turn interface with the discs of the tool. The 

sprung compliance of this system allows for holding the tool onto the faceplate and easily locking onto 

the discs.  

In order to properly replicate this system, a similar spring system was required. The approach of this 

project differs from the approach of the previous attempt in that each of the driving discs of the tool 

interface are individually sprung, instead of all four discs being on the same plane and spring loaded in 

parallel. Although this extra compliance complicates the system, it also more closely replicates the 

functionality of the da Vinci system.  

The drivers were designed to be directly connected to the low power motors that were used to drive 

them instead of using a cable system as in the da Vinci. Directly driving the interface discs greatly 

simplified the design over such alternatives as gearing or cable drive because of the complications 

inherent in spring loading such a mechanism.  

As discussed earlier, the torque sensors developed and manufactured by the previous team were to be 

used in this design. The sensors were directly integrated between the motor and the tool driving disc.  

 

Figure 15: da Vinci Tool Interface 

 

The exploded view above (Figure 14) shows how the sensor was integrated. On either side of the lexan 

tube that contains the torque sensor and its interface pieces, there is a lasercut plate that holds 4 plastic 

igus bushings, which ride on 2mm stainless steel guide rods between the interface plate and the back 

plate. On one end, there is a low power motor with an integrated quadrature encoder, and on the other 

end are a digital flag sensor, a plastic igus roller bearing, and an exposed axle for the interface driver disc 
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to interface with. The tube is glued to both end plates. Compression springs act against the back plate 

and the motor mount plate and shaft collars keep the springs from crushing the flag sensors. The 

interface driver disc passes through the interface body and is supported by a plastic igus bushing. Set 

screws are used to fix elements to shafts and pins are used to interface to the torque sensor and the da 

Vinci faceplate tool discs. One important note about the faceplate discs is that the pins are not on the 

same radius.  Figure 15 shows the final CAD of the tool interface and Figure 16 shows the assembly of 

the first prototype complete with da Vinci faceplate and tool. 

 

 

Figure 16: First Iteration Tool Interface 

 

 

Carriage and linear slide 

With the tool interface designed and the first prototype assembled, it was possible to design the linear 

slide. The driving design choice to this component was deciding how the tool interface would be 

supported and constrained to a linear path. 

Commercial linear bearing rails, drawer rails and parallel shafts were all considered for the tool interface 

carriage to ride on. The availability and professional quality of commercial linear bearing rails and 

bearing components made available through the igus Young Engineer Support program made this option 

a clear choice. However, the accuracy of these rails also made it very important to maintain the rails in 

perfect parallel in order to avoid binding. The igus linear bearing components were very easy to 

integrate onto the sides of the tool interface with a simple laser cut acrylic plate to make the interface 

assembly into the tool carriage.  
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Both timing belts and lead screws were carefully considered for controlling the position of the carriage. 

Although a lead screw system can be highly accurate and provide inherent mechanical advantage, it 

would also add a significant amount of weight and bulk to the system. Additionally, it would have been 

very difficult to maintain the lead screw in parallel with the other guide rails. This is a problem that 

timing belts do not encounter because of their side-to-side compliance. The timing belt system also 

weighs significantly less than a lead screw system and takes up very little space in comparison. 

The timing belt and igus linear rail system is very flexible in terms of lifting power and control. The 

system uses an open timing belt that can be tensioned using pressure plates on the plates that interface 

the tool interface to the linear bearing assemblies. The diameter of the timing pulleys were chosen so as 

to be able to lift the carriage and provide the required 20 N of extra force for surgery, however, as many 

as 4 motors can be used to move the carriage. The modules for powered and passive pulleys are the 

same and are therefore interchangeable. One or two motors can be used on either or both sides. This 

was an important feature because it was not known if driving motors on both linear rails would cause 

the carriage to twist slightly and bind. The interchangeability allows for testing of the system to 

determine which configuration produces the most desirable results.  Figure 17 shows the system with 

one motor, and the photo in Figure 18 shows the assembled system with two motors on one side. 

 

 

Figure 17: Tool Carriage and Linear Slide 
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Figure 18: Assembled Tool Carriage and Linear Slide 

Transmissions 

The rotational degrees of freedom were designed to be run by high power motors that were donated by 

Comprehensive Power Inc. These motors were chosen out of the group of donated motors because they 

were already fitted with optical encoders and electromagnetic brakes. Both of these features were 

crucial to the project and would have been too expensive to purchase separately. Brakes are an 

essential feature of the transmissions as a safety feature if power is lost to the arm during operation. 

With a proper gear reduction, the brakes will be able to hold the arm without a power source.  

The first transmission designed was the one that remains stationary while rotating the rest of the arm 

and can be seen in Figure 19. The necessary torque for this joint was determined based on the 

maximum location of the carriage during use and the 20 N force that could be applied to the tip. When 

the carriage is a maximum of 12 inches from the remote center, the 20 N force is therefore applied to a 

6 inch lever arm, which results in a total of 7 ft-lbs on the working end of the transmission when the arm 

is perfectly horizontal. A safety factor of 2.5 was used since the rest of the arm was not included in the 

max torque calculations. The High power motor has a suggested running torque of 0.109 ft-lbs at 2950 

rpm, which means that a reduction of 160.5 is necessary to move the arm when it is horizontal. 

Although this worst case is very unlikely, another small factor of safety was used and the final reduction 

used was 183.67 to 1. This results in a max torque of 20 ft-lbs at 16.14 rpm, which corresponds to a tool 

tip speed of 10 inches/sec at 6” beyond the remote center. These numbers are well within the design 

requirements. Additionally, the 1 ft-lb brake integrated with the motor will have more than enough 

braking force to statically hold the arm in its worst case configuration 
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Figure 19: First Rotary Transmission 

The next step was to choose the appropriate gears for the transmission. Originally, 32 pitch gears were 

chosen for each stage of the 4 stage transmission, but upon later inspection it was found that these 

gears would not be able to withstand the torque required of them. The equation used to determine the 

allowable tangential load on a gear is as follows: 

   
       

 
   

   

     
 

Wt = safe pitch line load, lbs 

SW = safe stress, psi 

F = gear face width, inches 

Y = Lewis form factor 

P = diametral pitch 

V = pitch line velocity, feet per min. 

All of the gears were chosen to be 303 stainless steel (with a safe stress of 30000 psi) and the Lewis form 

factor values were found in a table based on the number of teeth of a gear. The velocity values were 

based on the rotational velocity of the motor at the suggested torque through the applicable reduction. 

The Mathematica code used to calculate the safe torque on the gears is included in Appendix D: Safe 

working gear load calculations. This resulted in a mix of 32 pitch, 24 pitch and 20 pitch gears. By working 

close to the limits of the gears, however, the transmission was made as small and light as possible 

without using an expensive planetary or harmonic transmission. The final gear train is as follows: 

            
        

        
 
        

        
 
        

        
 
        

        
          

The second transmission designed is responsible for moving the parallel links of the robot (Figure 20). 

The transmission is separated by a timing belt reduction from the axle that it is ultimately powering. This 

extra space between the transmission and the link allows for the link to rotate about its axle without its 
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motion being overly limited by the physical location of the transmission. The required torque was 

estimated as the 5 lb carriage weight and a 20 N tool force on a 12 inch lever arm in addition to an 

estimated 2 lb weight of the links acting at 6 inches, which equals 10.5 ft-lbs. A safety factor of about 1.5 

was used and the transmission was thus designed to hold around 15 ft-lbs. 

 

 

Figure 20: Second Transmission 

The only difference in selecting the gears for this transmission was the timing belt reduction instead of 

the final gear reduction used in the previous transmission. The pitch chosen for these timing belts was L 

to ensure that the arm would not slip during use or storage. The final reduction was 134.69 to 1, which 

will move the tip greater than the minimum speed and will also allow the brake to hold the arm 

statically during storage or emergency shutdown. The gear train is as follows: 

            
        

        
 
        

        
 
        

        
 
      

      
         

The tensioning system used for tensioning the timing belts is a series of holes that allows for 

cantilevered shoulder bolts with either brass bushings or igus bushing material with eccentric holes. The 

eccentric holes allow for variable tension to be placed on the belt which can then be held constant by 

tightening a lock washer against the igus material. The variety of holes also allows for a wide variety of 

tensioning combinations.  

Stainless steel was used for all load-bearing shafts. Set screws on flats were used for shafts smaller than 

½” in diameter and undersized 1/8” keys were used on the ½ “ shafts. 

Links 

The passive links were designed to allow for sufficient mobility without sacrificing the structural integrity 

of the robot (Figure 21). The construction style used was the same as that of the transmissions and 

linear slide section. Careful attention had to be paid to the widths of the links and the positioning of the 

timing belts. One pulley out of each pair was firmly attached to the link next to it, while the other side 

was fixed to its shaft via set screw on a flat. An equivalent tensioning technique to that of the second 

transmission was used to keep tension on the belts for the passive links. 
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Figure 21: Passive Links 

Passive positioning 

The system used for passive positioning was greatly simplified from that of the previous prototype 

(Figure 22). A stationary ‘L’ bracket was used to support the arm on a single, ½” 303 stainless steel shaft. 

This shaft is held by the operating table rail clamp donated by Allen Medical Systems. This clamp allows 

for translation through the clamp, rotation of the axle, and rotation perpendicular to the length of the 

rail. With the addition of the translation along the length of the rail, this passive positioning system has 

4 DoF, which is sufficient for testing purposes. 

 

 

Figure 22: Passive Positioning System with Allen Madical Operating Table Clamp 
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Kinematics 

The forward kinematics of the system are necessary for determining the location of the tool tip , which 

is crucial for calculating some of the forces on the tool tip based on the motor torques of the positioning 

motors. The kinematics of the tool location are decoupled from the orientation of the tool tip to make 

calculations easy. Figure 23 shows the dimensions of the robot that can be used for translational 

transformations of reference frames. The reference frame used in these calculations is centered at the 

point of the remote center with the z axis pointing directly down through the body and the x axis 

pointing along the length of the operating table. 

 

Figure 23: Linkage Dimensions 

The definitions for the kinematic variables used can be seen in Figure 24 and Figure 25.  The distance 

past the RCM is D, the angle between the tool tip and the YZ plane is theta, and the angle between the 

tool tip and the XY plane is theta. These variable correspond directly to the position of the linear slide, 

first transmission motor and second transmission motor respectively. The equations that govern the 

forward kinematics are the same that define the Cartesian coordinates of a sphere given polar inputs, 

and are as follows: 
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This leads to a Jacobian matrix as follows: 
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This Jacobian can be easily manipulated to find the torques on the motors from known forces at the tip.  

 

 

Figure 24: Body Coordinate System 

 

Figure 25: Arm Angle Definitions 

Future Work and Improvements 

Although this iteration has not been tested as a whole system, SASHA is nearly ready to be used as a first 

iteration research platform. However, the timing belts used to couple the opposing links are not capable 

of supporting the weight of the linear slide link. It is not possible to maintain the tension necessary to 
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keep the timing belts from slipping with the current tensioning method. The easiest and quickest fix to 

this challenge is replacing the timing belt system with a #25 chain and sprocket system. Chain is much 

easier to tension, especially with floating tensioners, and much harder to slip when properly tensioned. 

With this substitution and some thread lock in the set screws of the transmissions, it should be possible 

to start using SASHA as a research tool. 

However, there are many areas that can be improved in a future iteration of the SASHA research 

platform. First, the torque sensors should be redesigned to allow for more elegant wire management, as 

the current system induces a significant amount of drag upon the sensor. The tool interface should also 

be redesigned to eradicate or minimize all sources of drag. The utility of the passive positioning system 

could also be improved, especially given a laser guidance system or a similar method of precisely 

positioning the remote center. Additionally, the entire system could be made significantly smaller and 

lighter with a different structural style which would significantly improve its utility and transportability. 

While the laser cut acrylic is appropriate for the first iteration and proof of concept, sturdier materials 

and structural techniques should be used to make the robot. The next iteration should be much more 

aesthetically pleasing. 

Control System 

Requirements 
There were several requirements that were used to drive the design of the control system. The major 

driving requirements for this project were to be able to use it for research into telesurgery and haptics. 

For this reason, the system needed to be able to be operated remotely as well as provide feedback fast 

enough to be useful to the user, which was determined through research to be approximately 1kHz. The 

controls also needed to be able to manipulate the motors on the arm in a controlled fashion, as well as 

read and act on position and force information for each of the joints of the arm. 

The remote operation requirement meant that there need to be a clean break between the arm 

controller and the user interface. It also meant that there needed to be an easy method of extending 

the communications over potentially very long distances or inserting delays between the user interface 

and the arm controller. The simplest solution to this is TCP/IP connection, allowing for two separate 

processes to be run locally or for processes on separate machines to communicate over an Ethernet 

connection. 

Controlling the arm requires being able to drive each of the motors on the arm, which means that motor 

controllers are necessary. These motor controllers also needed to be able to read the encoders on the 

motors to control the position and speed of the motor. Additionally, the output of the strain gauges 

used for force sensing needed to be measured and reported back to the user. 

Modularity was an additional factor taken into consideration, as this would help to minimize design 

time. This would also mean that debugging would only need to be performed once and any damaged 
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boards would be cheaper and easier to replace. Simple wiring was also desirable, as wires can be very 

difficult to route on a moving piece of hardware.  
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Design Overview 

 

Figure 26: Control System Block Diagram 

Based on the design requirements, a top level design for the control system was developed, as seen in 

Figure 26. A kinematics controller program, running on a PC or embedded Linux system, acts as the 

master controller for the arm. Each motor has its own motor controller which can read the attached 

encoders. This allows for fast control loops to be run onboard without the delay of communications. A 

separate strain gauge interface board reads, amplifies and converts the strain gauge reading to a digital 

signal. Each of the motor controllers and the strain gauge interface communicate with the host 

controller through the same RS485 connection. A USB to RS485 converter capable of speeds up to 

3MBaud allows for the kinematics controller to communicate with these boards. A TCP/IP connection 

allows for the kinematics controller to communicate with the user interface, which can be running on 

the same or a different computer. 

The motors used on this project were six small Low power brushed DC motors and 2 larger High power 

brushed DC motors. The Low power motors, part number 2230V024S, include integrated magnetic 

encoders and a 27:1 gear reduction. These are 24 volt motors with a free speed of 9000 RPM, stall 

torque of 12 mNm, and stall current of .5 amps. The nominal power rating is 2.82 watts. The High power 

motors, part number 14203D475, include an integrated 256 CPR optical encoder.  These are 24 volt 

motors with a free speed of 3390 RPM, stall torque of 1.1225 Nm, and a stall current of 17.4 amps. The 

nominal power rating is 46 watts. The High power motors also have an attached brake which is released 

by applying 24 volts across the leads. In addition to the encoders, each of the motors on the tool 

interface board have a beam break limit switch to allow for a zero position to be consistently 

determined. 

Four of the small motors are used to manipulate the tool, and an additional 2 are used on the linear 

slide. Six low power motor controller boards were necessary to control these. Two of the large motors 
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with brakes were used to control the gross positioning of the arm, so two of the high power motor 

controllers were necessary. Only one strain gauge interface board was needed to interface to all four of 

the strain gauges. 

There were several reasons for doing multiple motor controllers. By doing one motor controller per 

motor, motor controllers could be designed for each distinct type of motor, and then manufactured 

multiple times, minimizing design time. This also meant that if one of the motor controllers broke, it 

would be substantially cheaper to replace do to identical parts and simpler atomic components. This 

also allows for optimal placement of the motor controllers in relation to the motors, minimizing the 

length of the motor and encoder leads. Since each motor also has its own digital signal controller, 

control loops can be run quickly and without having to share resources to control multiple motors. This 

also makes it trivial to add motors or reconfigure the arrangement. This also means that the boards 

could also be used as motor controllers in other research projects. 

Each of these controllers and the sensor interface board also needed to be able to communicate with 

the kinematics controller. RS485 was selected for this task for several reasons. Because of the 

potentially noisy environment, a communications standard with a differential signal was desirable. To 

minimize the amount of necessary wiring, a standard that would allow for either daisy chaining or a 

multi-drop standard was necessary. This standard also needed to be capable of data rates greater than 

1Mbaud to ensure that control information and feedback could be streamed to and from each of the 

controllers at greater than 1kHz, the cutoff for useful haptics. The maximum speeds for CAN were right 

around this 1Mbaud limit, and the CAN adapters for PCs were expensive. I2C was similar to CAN in these 

respects. SPI was fast but lacked a differential signal. RS232 also lacked a differential signal. RS485 and 

Ethernet both met the requirements, with RS485 requiring an inexpensive USB adapter and Ethernet 

working natively on modern computers. Ethernet, however, required substantially more expensive 

components on each of the boards and also had a substantially higher software overhead than RS485. 

Also, while most micro controllers have a UART, there are fewer that have Ethernet interfaces, and 

those are generally more expensive. For these reasons, RS485 was selected as the method to 

communicate with the motor control boards and the strain gauge interface. 

Each of the motor controllers and the strain gauge interface also required a microcontroller to handle 

the communications and any motor control and sensor input. It was decided that all of these should be 

the same controller to minimize the amount of additional design and research that would be required to 

use multiple different microcontrollers. The chosen microcontroller needed to require as few external 

components as possible. This meant that the microcontroller needed to natively handle the chosen 

communications protocol, have an ADC, quadrature encoder decoder, and hardware PWM generation. 

Several lines of Microchips PICs, and Texas Instruments Stellaris and Piccolo series microcontrollers were 

considered. These were all similarly priced and had similar features, with the Stellaris line having the 

advantage of an Ethernet interface. Since it was decided to go with RS485, however, the deciding factor 

came down to familiarity, and the TMS320F28031 from TI’s Piccolo line was selected. Familiarity was 

considered to be an important factor since it reduces the amount of time spent learning the 

development tools and reduces mistakes. Texas Instruments was also known to have excellent 

documentation and sample for their products. 
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It was also decided that minimizing the wiring and external components needed to run each of these 

boards was a priority. To accomplish this, each of these boards has an on board switching regulator to 

provide the 5V logic supply, and an additional linear regulator off of the 5V to supply 3.3 volts to the 

digital signal controller. This allows for each of the board to be run off of only 4 wires, 2 for RS485, one 

24V power and one ground connection. Requiring a low voltage control supply off board would have 

required that additional wires be run to each board. Since the arm is moving it is best to simplify the 

wire paths. 

Common Circuits 
In order to reduce design time several circuits were repeated on each of the three board types 

developed as part of this project.  

Digital Signal Controller (DSC) 

The same digital signal controller, the TMS320F28031, from Texas Instruments was used on each board. 

This controller has 16 ADC inputs, 12 PWM channels, a UART, and a quadrature encoder interface. This 

controller also runs at 60MHz, has 16kB of ram and 64kB of Flash, and requires a single 3.3 volt supply. 

This makes it suitable for use on all three of the board designs. A JTAG port was also broken out on each 

of the boards, allowing for them to be debugged and programmed easily. 

Each of the boards also has a header block which carries out 2 analog inputs, 2 general purpose IO pins, 

and 5V and ground, allowing for additional sensors to be included later. 

5 Volt and 3.3V Supplies 

In order to minimize the wiring to each of the boards it was decided that each should work with only a 

single 24V supply. The DSC’s however required a 3.3V supply and the encoders and the H-bridge require 

a 5V supply. This meant that on board voltage regulators were required. 

 

Figure 27: SwitcherPro Calculated Buck Converter Efficiencies 

To provide the 5V supply it was decided to use a switching regulator since a linear regulator would be 

very inefficient at reducing the voltage by that amount. A buck regulator was designed using TI’s 

SwitcherPro design tools to be able to provide 600 mA at 5V. The predicted efficiency can be seen in 

Figure 27, which can be compared to an expected efficiency of a linear regulator of 40% for 12V in and 

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Ef
fi

ci
e

n
cy

 %
 

Current (A) 

Efficiency For 30V
Input

Efficiency For 12V
Input



SASHA WORCESTER POLYTECHNIC INSTITUTE 35 

16% for 30V in. The characteristics, including voltage ripple calculated by SwitcherPro may be seen in 

Table 1. This meets the current requirements for each of the boards, so the same switching regulator 

could be used on all of them. A TPS5410 was used as seen in Figure 28 to construct the buck converter. 

Table 1: SwitcherPro Buck Converter Characteristics 

Parameter Minimum Maximum Nominal Maximum Units

Input Voltage 12 30 - - Volts

Input Ripple - - - 170.9 mVp-p

Output Voltage - - 5 - Volts

Switching Frequency - - 500 - KHz

Estimated PCB Area - - 176 - mmÂ²

Max Component Height - - - 8 mm  

 

 

Figure 28: 24V to 5V Buck Converter 

A 3.3V supply was also required for the DSC and analog components. A linear regulator was used to step 

down the 5V supply to 3.3V. Since the voltage difference was small, this could be done efficiently. A 

REG113 with a current capability of 400mA was used for this purpose. This had a substantially lower part 

count and cost than the switching regulator. 

RS485 Interface 

In order to communicate with the kinematics controller, each of the boards required an RS485 

transceiver to do the level shifting between RS485 and the UART on the DSC. An SN65HVD11 was used 

for this purpose. 

Low Power Motor Controller 

Requirements 
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The low power motor controller needed to be able to drive a single 24V motor with a stall current of .5 

amps. It additionally needed to be able to read the encoders and beam break limit switches. Measuring 

current was also desirable to serve as a redundant means of determining the forces at the tool tip. 

Component Selection 

To drive the motor, an H-bridge circuit was needed. An integrated solution was found in the L293D. This 

is capable of driving at up to .6 amps and will accept 3.3 Volt logic signals to drive it. This allows for 

PWM signals to be used to drive the motor in both in forward and reverse at varying speeds. 

The encoder in the motor has a 10kOhm pull up resistor to 5V, which is pulled down by a transistor. By 

placing a 20kOhm pull down resistor on the output line, this limits the voltage to 3.3 Volts which is 

suitable for the DSC. 

In order to sense the current into the motor and into the board a shunt resistor and shunt current 

monitor was used. The INA170 is a bi-directional current sense monitor. This amplifies the voltage 

across a low value resistor which is then read by the DSC. This circuit may be seen in Figure 29. 

 

Figure 29: Current Shunt Monitor 

 

 

Current Status 

The low power motor control boards were the first to be designed, assembled, and programmed and 

they are the most complete in terms of testing and programming as a result. One of the completed 

boards may be seen in Figure 30. The complete design including a bill of materials, schematic, and layout 

may be found in Appendix A: Low Power Motor Controller. The motors have been driven with these 

under loads from none to stall condition. RS485 has also been tested and works, with commands being 

able to be received and sent. The encoders also read properly, and the beam break limit switches are 

able to properly zero the encoder count. 
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The software for these boards currently allows for PID control of position. The communications software 

correctly filters out commands based on device address and allows for the kinematics controller to send 

position commands to the board, and the positions are reported back to the kinematics controller 

correctly. 

The 24V in current sensor seems to work properly, but unfortunately the INA170 is only a high side 

current shunt monitor, so the current sensing into the motor does not work. This can be inferred, 

however, from the motor characteristics, speed and duty cycle or from the duty cycle and 24V current 

sensor. Fortunately this is non-critical because the strain gauges are the primary method of measuring 

forces in the tool tip. 

 

Figure 30: Low Power Motor Controller 

Future Work and Improvements 

There is a significant amount of room for software development on these boards, since only one control 

mode is currently supported, and most of the desired information is not currently calculated. Currently, 

only position control mode is supported, other control modes would be velocity control mode and 

current control mode. Future software development should add more control modes and fault 

detection. The ADC is also currently only partially configured and only reads from 2 inputs. Software 

should also be written to allow for constants such as zero positions, PID gains, and ID number to be 

stored and modified in the Flash memory.  

A different method for current sensing should also be used. One suitable method would be to use hall-

effect current sensing similar to what is done on the high power board. This would eliminate the current 

problem of having to deal with measuring a small difference in voltage that swings from one rail to the 

other. 

In wiring these boards, it was also noted that they were difficult to daisy chain as only one set of wires 

would fit into each board. This meant that cables had to be spliced together before they entered the 

connector for each board. A better solution would be to use 2 sets of connectors on each board so that 

each board would be connected to the previous one. A different style of connector would also be 

helpful, since the headers that were used do not lock in place. A suitable replacement may be the Micro-
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Fit 3.0 line from Molex. The connectors are also currently unlabeled, so either silk screened labels to 

specify polarity or keyed connectors such as the suggested Molex connectors would reduce the 

likelihood of wiring the board in reverse. 

High power Motor Controller 

Requirements 

The high power motor controllers needed to be able to control 24V motors with a stall current of 

approximately 20 amps. It also needed to be able to release the brake on the motors and read the 

encoders on the motors. These also needed to be able to measure the current in the motors as this is 

the only way that we currently have to measure the forces in the gross positioning of the arm. 

Component Selection 

The first component to be designed on the high power motor controller was the motor control bridge 

and the gate driver. Since this needed to be able to drive 20 amps, it was determined that discrete 

MOSFETs would be more readily available than any sort of integrated H-bridge. The IRFR1205 N-channel 

MOSFETs were used because of the surface mount package, 44A capacity, and 55V standoff voltage. 

This provided for a substantial safety factor on current, which was important because the only heat-sink 

was the power planes that the MOSFETs were attached to. 3 half H-bridges were formed from this, 2 for 

the motor control and one for releasing the brake.  

All N-channel MOSFETs were used because of their higher current capacities, but this necessitated the 

use of a gate driver. The gate driver selected was the A4935 from Allegro. This allows for driving both 

high and low side of all three half bridges, is compatible with 3.3V logic, and included an integrated 

supply for driving the gates. The three half bridges and gate drive circuitry may be seen in Figure 31. 

Due to the issues with the current shunt monitor used in the low power boards, hall-effect current 

sensors were used on this board. The ACS709 from Allegro was used. This allows for 37.5 Amps to be 

measured in either direction without regard to the potential at those points. 

The encoders drive the signal to 5V or 0V. To interface these to the DSC a simple resistor voltage divider 

was used to step the voltage from 5V to 3V. 
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Figure 31: Gate Driver and 3 MOSFET Half Bridges 

Current Status 

 

Figure 32: High power Motor Controller 

It has been verified that code can be loaded onto the DSC. The drive circuitry has also been tested and is 

able to drive a motor in both directions as well as release the brake. Most of the drive code from the 
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small motor controllers should work with minimal modifications on this board, but this has not been 

tested yet. The current sensors and the encoders also need to be tested. The bill of materials, 

schematics, and PCB layout may all be found in Appendix B: High power Motor Controller. The 

completed board may be seen in Figure 32. 

Future Work and Improvements 

The software developed for the low power board should work with very little modification on the high 

power boards. The gate driver provides fault detection and these faults should be acted upon and 

reported back to the Kinematics Controller. The code also needs to be sure to output complementary 

PWMs for the high and low sides of the half-bridges, as well as output a signal to disengage the brake. 

One of the vias providing the 24V connection to the 5V regulator was missing because it was deleted by 

Altium. The cross hatch for this via may still be seen on the board though. Several of the vias connected 

to ground under C21 and C22 were also left unconnected by Altium. These should not greatly affect 

functionality, but both of these should be fixed on future iterations of the board. 

This board could also benefit from doubling the incoming 24V, ground, and RS485 connections as 

described for the low power motor controllers. The current sensors and encoders also need to be 

tested. 

Strain Gauge Interface 

Requirements 

The strain gauge interface needed to be able to take the voltage differences from the four Wheatstone 

bridges, amplify them, and read them into the DSC so that they could be reported back to the 

kinematics controller. The strain gauge interface also needed to be able to communicate with the ID 

chips in the tools. 

Component Selection 

For the instrumentation amplifier, the previous MQP used an AD620 with a gain of 1000 (Marchese & 

Hoyt, 2010). Since this was proven to work, the same instrumentation amplifier circuit was used, but re-

scaled for 3.3 volts by adjusting the bias voltage to 1.65 volts, and a surface mount variant was used. 

Their results show that a .6Nm torque corresponds to a difference in voltage of approximately .9 volts. 

This circuit may be seen in Figure 33. 
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Figure 33: Instrumentation Amplifier 

The da Vinci tools include a DS2505, a write-once device which contains tool and use information. This 

communicates over a 1-Wire interface, so a 1-Wire transceiver was included to allow for the DSC to 

communicate with the tool. The DSC has to bit-bang this serial port since it has one hardware UART that 

is being used for RS485. The 1-Wire transceiver used was the DS2480 from Maxim, and the circuit may 

be seen in Figure 34. An additional linear regulator, part number TPS79801, was also added to provide 

the 12 volt supply needed to write to the tool. 

 

Figure 34: 1-Wire Interface 

 

Current Status 

The strain gauge interface has been assembled, but beyond confirming that the DSC can be 

programmed, nothing has been tested. The instrumentation amplifiers and the 1-Wire interface both 

need to be tested. The assembled board can be seen in Figure 35 and the complete documentation 

including the bill of materials, schematics, and PCB layout can be found in Appendix C: Strain Gauge 

Interface. 
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Figure 35: Strain Gauge Interface 

Future Work and Improvements 

This board would benefit from the same doubling of input connectors and switching to locking 

connectors that was described for the low power motor controller. This board had the additional 

problem of the JTAG connector interfering with one of the mounting screws. 

The software for this board should be similar to the motor controllers, but it also needs to be able to talk 

with the da Vinci tools. This will require bit-banging the signal on two GPIO lines because there was only 

one UART. The instrumentation amplifiers also need to be tested. In fact, the gain of the amplifiers may 

need to be adjusted because the calculations that the gain was based on were based on oversimplified 

assumptions. The original assumption was that active portion of the torque sensor could be modeled as 

a cantilevered beam with only one captured end. This has led to an inaccurate model that can be fixed 

by modeling the torque sensor as two beams with both ends captured.  

Kinematics Controller 

Requirements 

The kinematics controller needs to be able to communicate with the motor control and strain gauge 

boards, as well as be able to communicate with the user interface.  The user interface connection is over 

TCP/IP, and is easily expanded over an Ethernet or Wi-Fi connection.  The connection to the boards is 

accomplished by a USB-COM485-PLUS1 USB to RS485 adapter. This appears as a standard COM port to 

the host operating system. 

In order to facilitate the use of this project in future research, a well-defined API for communicating with 

the boards is needed. This API needs to also make it clear how to add additional features. 

Current Status 

The Kinematics controller was written in Java and uses the RXTX library to interface to the RS485 

adapter. The kinematics controller currently allows for writing and reading position values to each of the 

boards via the command line, addressing them by serial number. An API is being developed that will 
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have objects representing each of the boards that will allow for values to be transparently written to 

and read from them. 

Communication Protocol 

The kinematics controller acts as a master on the RS485 network, sending requests to the other boards 

which then send back a response. The requests from the kinematics controller are structured as seen in 

Table 2. This allows for the Kinematics controller to address a specific device, set what aspects of it are 

enabled, and set the control mode or other values through the command number and the command 

value. 

Table 2: Request Message 

Byte # Contents Description

1 's' Start character

2 's' Start character

3 Message Number Echoed back to identify what message was sent

4 Device Address Address of the device being talked to

5 Command Number What to do with the data in the command value

6 Enable Enable switching, brake, or other aspects

7 Command Value High Value associated with the command

8 Command Value  Low Value associated with the command

9 Checksum High Checksum of bytes 3-8

10 Checksum Low Checksum of bytes 3-8  

All of the boards listen to all requests, but they will only act on requests that are addressed to 0 or to 

their address number. When their address matches they will respond with the message structure seen 

in Table 3 for the motor controllers and in Table 4 for the strain gauge interface. This structure 

guarantees that the information critical for determining what forces should be reported to the user are 

sent back with every response. It also allows for other value to be sent through the command value. This 

also allows for fault reporting for the motor controllers, which may include things such as a low or high 

DC bus, or issues with the H-bridge or H-bridge driver. 
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Table 3: Response Message from Motor Controllers 

Byte # Contents Description

1 'r' Start character

2 'r' Start character

3 Message Number Echoed message number

4 Device Address Address of responding device

5 Faults High Each bit represents a fault condition

6 Faults Low Each bit represents a fault condition

7 Position High Rotational position of motor

8 Position Low Rotational position of motor

9 Velocity High Rotational velocity of motor

10 Velocity Low Rotational velocity of motor

11 Current High Current draw of motor

12 Current Low Current draw of motor

13 Command Response High Response associated with received command

14 Command Response Low Response associated with received command

15 Checksum High Checksum of bytes 3-14

16 Checksum Low Checksum of bytes 3-14  

Table 4: Response Message from Strain Gauge Interface 

Byte # Contents Description

1 'r' Start character

2 'r' Start character

3 Message Number Echoed message number

4 Device Address Address of responding device

5 Strain 1 High Strain Reading

6 Strain 1 Low Strain Reading

7 Strain 2 High Strain Reading

8 Strain 2 Low Strain Reading

9 Strain 3 High Strain Reading

10 Strain 3 Low Strain Reading

11 Strain 4 High Strain Reading

12 Strain 4 Low Strain Reading

13 Command Response High Response associated with received command

14 Command Response Low Response associated with received command

15 Checksum High Checksum of bytes 3-14

16 Checksum Low Checksum of bytes 3-14  

The checksums for both sending and receiving make it so that it is harder for corrupted messages to get 

through. The start characters make it easy for each board to synch to the start of a new message, and 

whether the message is coming from another board or from the kinematics controller. 
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Future Work and Improvements 

The kinematics controller is far from complete. It currently only allows for position control 

communications with the low power motor controller. It will need to be able to support current and 

velocity control as well as handle faults and force feedback information from all of the boards. The API 

for communicating with each of the boards needs to be clearly defined as well.  

The kinematics controller also needs to be able to perform the kinematics calculations for the 

positioning and forces at the tool tip, as well as be interfaced to a user interface. The user interface 

should visually represent the forces and allow for the user to control the arm using sliders. The user 

interface should also make use of the PHANTOM Desktop from Sensable to allow the user to manipulate 

the arm and receive three degrees of force feedback.  
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Discussion 
There were several major accomplishments in this MQP: 

 A da Vinci Si tool interface complete with torque sensors was designed and fabricated 

 An arm capable of manipulating the da Vinci tool about a remote center of motion was designed 

and fabricated 

 Three different boards were designed to interface to the various components on the arm 

 A simple kinematics controller Java program was prototyped 

The SASHA system has been designed, prototyped, and built. The final product is a standalone arm that 

is just short of being able to stand statically. After minimal replacements, the arm should be ready for 

basic research as a proof of concept model. The tool interface accepts any standard da Vinci tool and 

can measure the torques on the tip of the tool using torque sensors designed by the previous project 

team. Additionally, the arm should be able to generate sufficient forces and speeds required for surgical 

procedures. 

A low power, 24V .5 amp motor controller was designed and six were fabricated to allow for control of 

the tool manipulation motors and the linear slide motors. Position control using the encoders and beam 

break sensors has been successfully demonstrated. These can also successfully receive position 

commands based on their address and report back their current position. 

A high power, 24V 20 amp motor controller was designed and fabricated to allow for control of the 

gross positioning of the tool in 2 axis. This controller has been tested to verify that it can drive the motor 

in either direction as well release the brake on the motor. 

A strain gauge interface was also designed and fabricated to allow for the strain gauges to be reported 

back to the kinematics controller, as well as to allow for the tool information to be sent back to the 

kinematics controller. It was verified that this controller can be programmed. 

A simple Java kinematics controller which is able to communicate with the other boards through a USB 

to RS485 adapter was written. This is able to send and receive position commands by address from the 

low power motor controllers. 

These accomplishments should allow for new group to continue this project. Most of the pieces are in 

place to be able to control the arm with the haptic controller such as the PHANTOM Desktop. 
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Future Work 
There are a number of different goals for this project in the future. In the near future, the modifications 

and additional development mentioned in each of the individual components subsections should be 

implemented. These describe what the next steps in completing this project would be and what 

modifications would improve the project in terms of ease of use and robustness.  

Although the current iteration of SASHA should be able to be used as a basic haptics and telesurgery 

research device, it would benefit greatly from a further design iteration. Better construction materials 

and techniques would greatly improve the stiffness and aesthetics of SASHA.  

The ultimate goal for this system is for it to be used in haptics and telesurgery research. To do this, the 

arm should be controlled with a haptic controller such as the PHANTOM Desktop. Since this has only 

three degrees of force feedback, one of the area’s that should be researched with force feedback is how 

the forces on each joint should be mapped back to the user. It may be that forces in certain axis are 

more useful than others. Different rates for the force feedback should also be experimented with this, 

since slower rates could adversely affect surgery. Telesurgery and the delays associated with it are also 

of interest, and artificially inserting delays to see what is acceptable for control both with and without 

haptics should be tested. 

One of the alternate potential uses of this arm would be as a complement to the da Vinci when 

performing surgeries. It would be worthwhile to take a further iteration of this arm to the hospital to see 

how it would fit on the operating table with a da Vinci. Since the fourth da Vinci arm is difficult to 

position, it may be that a standalone arm would be useful in certain operations. However, the next 

iteration of the arm may benefit from a decreased scope so that the research aspect of the arm is placed 

into focus. With a primarily research focus, the size of the arm can be greatly reduced and simplified. 

Once a suitable research platform has been thoroughly developed, it will be a natural progression 

towards adapting the system to surgical applications.  
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Appendix A: Low Power Motor Controller 

Bill of Materials 
Footprint Comme

nt 
LibRe
f 

Designator Descript
ion 

Qu
anti
ty 

Sup
plier 
1 

Supplier 
Part 
Number 
1 

Supplie
r Unit 
Price 1 

Supplie
r 
Subtot
al 1 

RESC2012M .01uF 
Capacit
or 0805 

Cap C1 Capacito
r 

1 Digi-
Key 

587-
1113-1-
ND 

0.53  $                    
0.53  

RESC1608L .1uF 
Capacit
or 0603 

Cap C2, C3, C5, 
C8, C11, 
C12, C13, 
C14, C17 

Capacito
r 

9 Digi-
Key 

587-
1258-1-
ND 

0.18  $                    
1.62  

RESC2012M 2.2uF 
Capacit
or 0805 

Cap C4, C9, C10, 
C15, C16 

Capacito
r 

5 Digi-
Key 

445-
3464-1-
ND 

    

RESC3225L 100uF 
Capacit
or 1210 

Cap C6 Capacito
r 

1 Digi-
Key 

490-
3390-1-
ND 

1.45  $                    
1.45  

RESC2012M 10uF 
Capacit
or 0805 

Cap C7 Capacito
r 

1 Digi-
Key 

PCC2300
CT-ND 

    

DIOM5226X
23N 

D 
Schottk
y 

D 
Schot
tky 

D1 Schottky 
Diode 

1 Digi-
Key 

B240A-
FDICT-ND 

0.58  $                    
0.58  

RESC1608L BLUE 
LED 

LED3 D2 Typical 
BLUE SiC 
LED 

1 Digi-
Key 

511-
1589-1-
ND 

0.66  $                    
0.66  

INDP101101
X48N 

Inducto
r 100 
uH 

Induc
tor 
100 
uH 

L1   1 Digi-
Key 

445-
3825-1-
ND 

1.8  $                    
1.80  

HDR1X4 Header 
4 

Head
er 4 

P1 Header, 
4-Pin 

1 Digi-
Key 

3M9449-
ND 

0.17  $                    
0.17  

HDR2X3 Header 
3X2 

Head
er 
3X2 

P2, P3 Header, 
3-Pin, 
Dual 
row 

2 Digi-
Key 

3M9459-
ND 

0.26  $                    
0.52  

HDR2X7 Header 
7X2 

Head
er 
7X2 

P4 Header, 
7-Pin, 
Dual 
row 

1 Digi-
Key 

S9170-
ND 

0.34  $                    
0.34  

RESC3225L .1 1% 
1210 

Res3 R1, R6 Resistor 2 Digi-
Key 

RHM.10S
CT-ND 

    

RESC1608L 10K 1% 
0603 

Res3 R2, R10, 
R15, R16, 

Resistor 7 Digi-
Key 

P10.0KHC
T-ND 

0.04  $                    
0.28  
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R18, R23, 
R24 

RESC1608L 3.16K 
1% 
0603 

Res3 R3 Resistor 1 Digi-
Key 

P3.16KHC
T-ND 

0.04  $                    
0.04  

RESC1608L 2.2K 
0603 

Res3 R4, R9, R22 Resistor 3 Digi-
Key 

RMCF060
3JT2K20C
T-ND 

0.02  $                    
0.06  

RESC1608L 100 
0603 

Res3 R5 Resistor 1 Digi-
Key 

RMCF060
3JT100RC
T-ND 

0.02  $                    
0.02  

RESC1608L 16.5K 
1% 
0603 

Res3 R7, R8, R13, 
R14 

Resistor 4 Digi-
Key 

P16.5KHC
T-ND 

0.04  $                    
0.16  

RESC1608L 3.3K 
0603 

Res3 R11 Resistor 1 Digi-
Key 

RMCF060
3JT3K30C
T-ND 

0.02  $                    
0.02  

RESC1608L 33K 
0603 

Res3 R12 Resistor 1 Digi-
Key 

RMCF060
3JT33K0C
T-ND 

0.02  $                    
0.02  

RESC1608L 20K 
0603 

Res3 R17, R19 Resistor 2 Digi-
Key 

RMCF060
3JT2K20C
T-ND 

0.02  $                    
0.04  

RESC1608L 4.7k 
0603 

Res3 R20, R21 Resistor 2 Digi-
Key 

RMCF060
3JT4K70C
T-ND 

0.02  $                    
0.04  

SOIC127P60
0X175-8N 

TPS541
0 

TPS54
10 

U1   1 Digi-
Key 

296-
20787-5-
ND 

5.46  $                    
5.46  

TSOP65P49
0X110-8N 

INA170 INA17
0 

U2, U7   2 Digi-
Key 

INA170E
A/2K5CT-
ND 

3.33  $                    
6.66  

SOT95P280
X145-5N 

REG113 REG1
13 

U3   1 Digi-
Key 

REG113N
A-
3.3/3KCT
-ND 

3.15  $                    
3.15  

SOIC127P60
0X175-8N 

SN65HV
D11 

SN65
HVD1
1 

U4   1 Digi-
Key 

296-
12645-5-
ND 

4.23  $                    
4.23  

SOIC127P10
30X265-20N 

L293D L293
D 

U5   1 Digi-
Key 

497-
2937-1-
ND 

3.78  $                    
3.78  

TSQFP50P12
00X1200X10
5-64M 

TMS32
0F2803
x 

TMS3
20F28
03x 

U6   1         

          55        $                   
31.63  
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Schematics 
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PCB Layout 
Top layer: 

 

Ground Plane: 
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Power layer: 

 

Bottom layer: 
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Appendix B: High power Motor Controller 

Bill of Materials 
Footprint Commen

t 
LibRef Designator Description Qu

ant
ity 

Sup
plie
r 1 

Supplier 
Part 
Number 
1 

Suppli
er 
Unit 
Price 
1 

Suppli
er 
Subto
tal 1 

RESC3225L 100uF 
Capacito
r 1210 

Cap C1 Capacitor 1 Digi
-
Key 

490-
3390-1-
ND 

1.45  $                    
1.45  

RESC2012
M 

2.2uF 
Capacito
r 0805 

Cap C2, C3, 
C11, C14, 
C25, C26 

Capacitor 6 Digi
-
Key 

445-
3464-1-
ND 

    

RESC2012
M 

.01uF 
Capacito
r 0805 

Cap C4 Capacitor 1 Digi
-
Key 

587-
1113-1-
ND 

0.53  $                    
0.53  

RESC1608L .1uF 
Capacito
r 0603 

Cap C5, C6, C7, 
C8, C10, 
C13, C15, 
C16, C17, 
C18, C19, 
C20, C23, 
C24, C27 

Capacitor 15 Digi
-
Key 

587-
1258-1-
ND 

0.11  $                    
1.70  

RESC2012
M 

10uF 
Capacito
r 0805 

Cap C9 Capacitor 1 Digi
-
Key 

PCC230
0CT-ND 

    

RESC1608L .47uF 
Capacito
r 0603 

Cap C12 Capacitor 1 Digi
-
Key 

445-
3456-1-
ND 

    

INDP10310
3X103N 

330uF 
Electroly
tic 
Capacito
r 

Electr
olytic 
Capaci
tor 

C21, C22   2 Digi
-
Key 

565-
2122-1-
ND 

    

RESC1608L BLUE 
LED 

LED3 D1 Typical BLUE 
SiC LED 

1 Digi
-
Key 

511-
1589-1-
ND 

0.66  $                    
0.66  

DIOM5226
X23N 

D 
Schottky 

D 
Schott
ky 

D2 Schottky 
Diode 

1 Digi
-
Key 

B240A-
FDICT-
ND 

0.58  $                    
0.58  

INDP10110
1X48N 

Inductor 
100 uH 

Induct
or 100 
uH 

L1   1 Digi
-
Key 

445-
3825-1-
ND 

1.8  $                    
1.80  

HDR2X7 Header 
7X2 

Heade
r 7X2 

P1 Header, 7-Pin, 
Dual row 

1 Digi
-
Key 

S9170-
ND 

0.34  $                    
0.34  
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HDR2X3 Header 
3X2 

Heade
r 3X2 

P2 Header, 3-Pin, 
Dual row 

1 Digi
-
Key 

3M9459
-ND 

0.26  $                    
0.26  

Molex - 10 
Pin 

Molex - 
10 Pin 

Molex 
- 10 
Pin 

P3   1 Digi
-
Key 

WM380
4-ND 

2.22  $                    
2.22  

Molex - 4 
PIN 

Molex - 
4 Pin 

Molex 
- 4 Pin 

P4   1 Digi
-
Key 

WM380
1-ND 

1.21  $                    
1.21  

TO-252AA IRFR120
5 

IRFR1
205 

Q1, Q2, 
Q3, Q4, 
Q5, Q6 

HEXFET 
Power 
MOSFET 

6 Digi
-
Key 

IRFR120
5PBFCT-
ND 

1.56  $                    
9.36  

RESC1608L 3.16K 1% 
0603 

Res3 R1 Resistor 1 Digi
-
Key 

P3.16KH
CT-ND 

0.04  $                    
0.04  

RESC1608L 10K 1% 
0603 

Res3 R2, R5, 
R16 

Resistor 3 Digi
-
Key 

P10.0KH
CT-ND 

0.04  $                    
0.12  

RESC1608L 100 
0603 

Res3 R3 Resistor 1 Digi
-
Key 

RMCF06
03JT100
RCT-ND 

0.02  $                    
0.02  

RESC1608L 2.2K 
0603 

Res3 R4, R6, 
R11, R12, 
R15, R21 

Resistor 6 Digi
-
Key 

RMCF06
03JT2K2
0CT-ND 

0.02  $                    
0.12  

RESC1608L 3.3K 
0603 

Res3 R7, R13, 
R14, R20 

Resistor 4 Digi
-
Key 

RMCF06
03JT3K3
0CT-ND 

0.02  $                    
0.08  

RESC1608L 33K 
0603 

Res3 R8 Resistor 1 Digi
-
Key 

RMCF06
03JT33K
0CT-ND 

0.02  $                    
0.02  

RESC1608L 4.7k 
0603 

Res3 R9, R10 Resistor 2 Digi
-
Key 

RMCF06
03JT4K7
0CT-ND 

0.02  $                    
0.04  

RESC1608L 1 0603 Res3 R17, R18, 
R19, R22, 
R23, R24 

Resistor 6 Digi
-
Key 

RMCF06
03JT1R0
0CT-ND 

0.02  $                    
0.12  

SOIC127P6
00X175-8N 

TPS5410 TPS54
10 

U1   1 Digi
-
Key 

296-
20787-
5-ND 

5.46  $                    
5.46  

TSQFP50P1
200X1200X
105-64M 

TMS320
F2803x 

TMS3
20F28
03x 

U2   1         

SOIC127P6
00X175-8N 

SN65HV
D11 

SN65
HVD1
1 

U3   1 Digi
-
Key 

296-
12645-
5-ND 

4.23  $                    
4.23  

TSOP63P60
0X150-24L 

ACS709 ACS70
9 

U4, U7   2 Digi
-

620-
1337-1-

4.24  $                    
8.48  
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Key ND 

SOT95P280
X145-5N 

REG113 REG11
3 

U5   1 Digi
-
Key 

REG113
NA-
3.3/3KC
T-ND 

3.15  $                    
3.15  

TSQFP50P9
00X900X16
0_HS-48L 

A4935 A4935 U6   1 Digi
-
Key 

620-
1300-1-
ND 

7.42  $                    
7.42  

          71        $                   
49.41  
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Schematic 
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PCB Layout 
Top layer: 

 

Bottom layer: 
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Appendix C: Strain Gauge Interface 

Bill of Materials 
Footprint Comm

ent 
LibRe
f 

Designator Description Qu
ant
ity 

Sup
plie
r 1 

Supplier 
Part 
Number 
1 

Suppli
er 
Unit 
Price 1 

Suppli
er 
Subtot
al 1 

RESC2012
M 

.01uF 
Capaci
tor 
0805 

Cap C1 Capacitor 1 Digi
-
Key 

587-
1113-1-
ND 

0.53  $                    
0.53  

RESC2012
M 

2.2uF 
Capaci
tor 
0805 

Cap C2, C4, 
C19, C20 

Capacitor 4 Digi
-
Key 

445-
3464-1-
ND 

    

RESC3225L 100uF 
Capaci
tor 
1210 

Cap C3 Capacitor 1 Digi
-
Key 

490-
3390-1-
ND 

1.45  $                    
1.45  

RESC1608L .1uF 
Capaci
tor 
0603 

Cap C5, C7, C8, 
C9, C10, 
C11, C12, 
C13, C14, 
C16, C17, 
C18, C21 

Capacitor 13 Digi
-
Key 

587-
1258-1-
ND 

0.11  $                    
1.47  

RESC2012
M 

10uF 
Capaci
tor 
0805 

Cap C6, C15 Capacitor 2 Digi
-
Key 

PCC230
0CT-ND 

    

DIOM5226
X23N 

D 
Schott
ky 

D 
Schot
tky 

D1 Schottky Diode 1 Digi
-
Key 

B240A-
FDICT-
ND 

0.58  $                    
0.58  

RESC1608L BLUE 
LED 

LED3 D2 Typical BLUE SiC 
LED 

1 Digi
-
Key 

511-
1589-1-
ND 

0.66  $                    
0.66  

INDP10110
1X48N 

Induct
or 100 
uH 

Induc
tor 
100 
uH 

L1   1 Digi
-
Key 

445-
3825-1-
ND 

1.8  $                    
1.80  

HDR1X4 Header 
4 

Head
er 4 

P1, P2, P3, 
P4, P8 

Header, 4-Pin 5 Digi
-
Key 

3M9449
-ND 

0.17  $                    
0.85  

HDR2X3 Header 
3X2 

Head
er 
3X2 

P5 Header, 3-Pin, 
Dual row 

1 Digi
-
Key 

3M9459
-ND 

0.26  $                    
0.26  

HDR1X2 Header 
2 

Head
er 2 

P6 Header, 2-Pin 1         
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HDR2X7 Header 
7X2 

Head
er 
7X2 

P7 Header, 7-Pin, 
Dual row 

1 Digi
-
Key 

S9170-
ND 

0.34  $                    
0.34  

RESC1608L 10K 
1% 
0603 

Res3 R1, R25, 
R31, R32 

Resistor 4 Digi
-
Key 

P10.0KH
CT-ND 

0.04  $                    
0.16  

RESC1608L 3.16K 
1% 
0603 

Res3 R2 Resistor 1 Digi
-
Key 

P3.16KH
CT-ND 

0.04  $                    
0.04  

RESC1608L 2.2K 
0603 

Res3 R3, R11, 
R22, R26 

Resistor 4 Digi
-
Key 

RMCF06
03JT2K2
0CT-ND 

0.02  $                    
0.08  

RESC3225L .1 1% 
1210 

Res3 R4 Resistor 1 Digi
-
Key 

RHM.10
SCT-ND 

    

RESC1608L 100 
0603 

Res3 R5 Resistor 1 Digi
-
Key 

RMCF06
03JT100
RCT-ND 

0.02  $                    
0.02  

RESC1608L 480 
0603 

Res3 R6, R8, 
R14, R16 

Resistor 4 Digi
-
Key 

P475HC
T-ND 

0.04  $                    
0.16  

RESC1608L 1k 
0603 

Res3 R7, R9, 
R12, R13, 
R15, R17, 
R19, R20 

Resistor 8 Digi
-
Key 

P1.00KH
CT-ND 

0.04  $                    
0.32  

RESC1608L 3.3K 
0603 

Res3 R10, R27 Resistor 2 Digi
-
Key 

RMCF06
03JT3K3
0CT-ND 

0.02  $                    
0.04  

RESC1608L 220K 
0603 

Res3 R18 Resistor 1 Digi
-
Key 

P220KH
CT-ND 

0.04  $                    
0.04  

RESC1608L 26.1K 
0603 

Res3 R21 Resistor 1 Digi
-
Key 

P26.1KH
CT-ND 

0.04  $                    
0.04  

RESC1608L 4.7k 
0603 

Res3 R23, R24 Resistor 2 Digi
-
Key 

RMCF06
03JT4K7
0CT-ND 

0.02  $                    
0.04  

RESC1608L 33K 
0603 

Res3 R28 Resistor 1 Digi
-
Key 

RMCF06
03JT33K
0CT-ND 

0.02  $                    
0.02  

RESC1608L 16.5K 
1% 
0603 

Res3 R29, R30 Resistor 2 Digi
-
Key 

P16.5KH
CT-ND 

0.04  $                    
0.08  

SOIC127P6
00-8N 

AD620
AR 

AD62
0AR 

U1, U2, U4, 
U5 

Low-Cost, Low-
Power 
Instrumentation 
Amplifier 

4 Digi
-
Key 

AD620A
RZ-
REEL7CT
-ND 

9.17  $                   
36.68  
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SOIC127P6
00X175-
8N-DS2480 

DS248
0B 

DS24
80B 

U3   1 Digi
-
Key 

DS2480
B+-ND 

5.55  $                    
5.55  

TSOP65P4
90X110-8N 

TPS79
801 

TPS7
9801 

U6   1 Digi
-
Key 

296-
24322-
1-ND 

1.42  $                    
1.42  

SOIC127P6
00X175-8N 

TPS54
10 

TPS5
410 

U7   1 Digi
-
Key 

296-
20787-
5-ND 

5.46  $                    
5.46  

TSQFP50P
1200X1200
X105-64M 

TMS32
0F280
3x 

TMS
320F
2803
x 

U8   1         

SOT95P28
0X145-5N 

REG11
3 

REG1
13 

U9   1 Digi
-
Key 

REG113
NA-
3.3/3KC
T-ND 

3.15  $                    
3.15  

TSOP65P4
90X110-8N 

INA17
0 

INA1
70 

U10   1 Digi
-
Key 

INA170E
A/2K5CT
-ND 

3.33  $                    
3.33  

SOIC127P6
00X175-8N 

SN65H
VD11 

SN65
HVD
11 

U11   1 Digi
-
Key 

296-
12645-
5-ND 

4.23  $                    
4.23  

          75        $                   
68.80  
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Schematic 
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PCB Layout: 
Top layer: 

 

Ground plane: 
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Power layer: 

 

Bottom layer: 
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Appendix D: Safe working gear load calculations 
 

Formula and additional information (SECS Inc.): 
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Sample Mathematica code: 
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Appendix E: Paper Submitted to EMBC 2011 
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