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Abstract 
 Cyther V3 looks to improve Cyther V2, a mechatronic string instrument equipped with ten 

strings and a set of solenoids to actuate the strings. The goal of this project was to create a next 

generation Cyther equipped with a system that can autonomously tune each string during a 

performance, expanding on the types of musical expressions Cyther V2 was capable of. The tuning 

system senses string tension, estimates pitch, adjusts the tension, and corrects for errors in estimation 

using optical pickups. The frequency analysis accuracy and speed, and the tuning accuracy and speed of 

the new autonomous tuning system was analyzed for a single string to determine the quality of the new 

autonomous tuning system. Although the tuning is not precise enough for error to go undetected by 

human perception, this tuning system should provide a platform on which to build more interactive 

compositions and new kinds of musical gestures.  
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Introduction 
 Currently, only a small portion of mechatronic string instruments can self-tune. Of the ones that 

can, pitch analysis is used before a performance to automatically tune themselves to presets. This type 

of system doesn’t allow a composer or performer to adjust the tuning during the performance, which 

could be used to create pitch change effects. On the contrary, dynamically changing pitch allows a 

composer or performer to specify different tunings at any time during the performance, which adds 

glissando and vibrato to aspects of the piece. These techniques could be integrated into interactions 

between a performer and the instrument, adding depth and spontaneity to a performance. 

The goal of this project is to add the ability to dynamically change the pitches of the strings of an 

already existing mechatronic string instrument. The instrument to be improved is WPI’s Music 

Perception and Robotics Lab’s Cyther: a ten-string zither that can be played by a human performer and 

can use solenoids to strike and dampen its strings. The goal of this project is to design and implement a 

tuning system controlled via software that can work while a performer plays the instrument, allowing 

for dynamic pitch changes. The ability to sense and control the pitch of strings while a performer plays 

the instrument provides the possibility to robotically create different string instrument techniques like 

sliding, detuning, and bending that were previously not possible. 

Background 
Pitch Changing Interactions between Musicians and String Instruments 
 Understanding the different techniques performers use to change the pitch of a string is 

important because it allows the creator of a robotic string instrument to design an instrument capable 

of producing these techniques and other new techniques that are derived from the instrument’s robotic 

capabilities. 

 The pitch produced by a string is a function its length, weight, tension [1]. These factors change 

the frequency, magnitude, and shape of the waveform produced by an instrument, which is what the 

ear senses and the brain perceives as the instrument’s sound. The pitch of a string is commonly changed 

by pressing the string against a surface e.g., a fret board, which changes the vibrating length of the 

string. Portamento is a technique where a performer slides his finger or another object along the string 

as he plays, gradually changing the vibrating length of the string to produce a smooth glide. A trill 

requires the performer to quickly alternate between pressing a string at two different positions, 

producing alternating pitches. Vibrato produces a slight alternating change in pitch, produced by the 

performer quickly rolling her finger back and forth around a pitch. Changing the tension in a string is 

another way to change the pitch of the string. Some string instruments have their strings wound around 

rotating pegs. By rotating the peg while the string is vibrating, the performer produces a sliding sound 

from one pitch to another. Another technique utilized by performers is displacing the string, which 

bends the pitch higher due to the increase in tension [2]. 

A performer can change the pitch of a string by lightly placing her finger at specific intervals 

along the vibrating section of the string, damping all but one of the frequencies that the string is 

vibrating at. The orchestrational term for this is harmonics. When a string vibrates, the frequency 

identified as the pitch is the fundamental frequency, the loudest frequency produced by the vibrating 
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string, but the string is also vibrating at other frequencies. Figure 1 is a graph showing how different 

frequencies combine to form the waveform of the string. 

 
Figure 1: Combination of Two Harmonic Waveforms into One Waveform 

 

When a performer’s finger is placed on the string at the node of a non-fundamental partial’s 

waveform, the fundamental frequency can be dampened, but the partial with zero amplitude will not be 

dampened. This creates a lighter, softer sound at a different pitch than the freely vibrating string [3]. For 

example, in Figure 1 the horizontal axis can be thought of as a string. Waves “x” and “y” are the 

waveforms that make up wave “z”, which represents the vibration of the string. If a performer places his 

finger at the node of wave “y”, wave “x” will be dampened and not heard, but wave “y”, which has an 

amplitude of zero at the position the finger is placed, will still be heard. 

Combination of Instruments and Machines 
 One of the appeals of a robotic string instrument is the ability to control an acoustic instrument 

with the speed and precision of a computer. A motor that spins a wheel of guitar picks is capable of 

playing a string much faster than a performer [4], and computer clocks are capable of keeping time 

much more precisely than a person. Mechatronic string instruments use a variety of actuators to alter 

the sound of a string and use software to control the actuation [5]. 

Pitch Changing Devices: Prior Work 

 Some mechatronic string instruments can change the pitch of their strings autonomously. One 

way to do this is to change the length of the vibrating sections of their strings by moving a motor-driven 

bridge to different positions along the string [6]. 

Guitar Bot 

GuitarBot is an example of a mechatronic instrument that uses a sliding bridge technique. As 

shown in Figure 2, a motor spins a belt that is attached to a bridge which slides along the string, 

changing the pitch [4]. The benefit of this design is that it’s possible to create bending and sliding effects 

using the motion of the bridge, but the downside is that the amount of time to change from one pitch to 

another increases the further away the pitches are from each other, so large, fast changes in pitch might 

not be possible. Also, without a damper this instrument produces constant portamenti. 
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Figure 2: GuitarBot Motorized Sliding Bridge CAD Model[4] 

Crazy J’s Guitar Player 

Another way to mechanically change a string’s pitch is to position solenoids above every fret on 

a fret board. The solenoids can push down on the string at the fret, which changes the length of the 

string, causing the pitch of the string to change. Crazy J’s Guitar Player, shown in Figure 3, uses this 

technique and places an array of “fingers” all activated by solenoids along the frets of a guitar. The 

fingers press on the frets and change the pitch of the strings as a guitar player would [7]. The benefit of 

this design is that reaching any pitch will be equally fast because each pitch has a dedicated solenoid. 

This allows for large pitch intervals to be played just as fast as small intervals. Also, by using solenoids to 

press the strings, a varying amount of force can be used to create harmonic effects. The downside of this 

design is that no bending or sliding effects can be created, which limits the expressive capabilities of this 

instrument. Also, using a solenoid for every pitch is expensive. 

 
Figure 3: Crazy J's Guitar Player Solenoid Actuated Pitch Changing Mechanism[7] 

Shibuya Labs Violin Playing Robot 

A combination of sliding actuators along the strings and pressing the strings with solenoids has 

been used by Shibuya Labs in their violin playing robot. They developed a system for pressing on violin 

strings, shown in Figure 4, which slides four solenoids, one for each string of the violin, along the length 

of the violin fingerboard. This technique is the most similar to how a performer naturally adjusts the 

pitch by moving their hand along the finger board [8]. A benefit of this system is that it is capable of 

performing pitch bends and slides by pressing a solenoid onto a string and then sliding along the string, 

allowing for more expressive techniques. Using solenoids to press down on the strings allows the 

instrument to play the harmonics of the strings, like a performer would. By mimicking how a person 
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plays the violin, the Shibuya Labs violin playing robot must move its “hand” to change pitch, which might 

not allow for the instrument to play complex pieces with many large pitch changes that are too difficult 

for a person to play. 

 
Figure 4: Shibuya Labs Prototype for Pitch Changing in a Violin Playing Robot[8] 

The Violobot 

The Violobot created by the Canada Council for the Arts, shown in Figure 5, is another example 

of pitch changing using a sliding finger. This mechatronic string instrument uses four different sliding 

actuators, each with their own finger pressing on a string. A benefit of this system is that it allows for 

pitches to slide in opposite directions, which the Shibuya Labs Violin can’t do because, every actuator 

slides together [8]. This allows for the Violobot to play songs that a person could not play. On the other 

hand, using only one actuator per string means that like the other instruments with sliding actuators, a 

large change in pitch will take more time than if there were actuators for every note. 

 
Figure 5: Violobot, Created by Canada Council for the Arts[8] 
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The Robofiddler 

 Another mechatronic violin with pitch changing capabilities is the Robofiddler. This mechatronic 

string instrument, shown in Figure 6, has a series of bars that press down on the fingerboard with 

varying force. A stepper motor winds up a string, which is attached above the bar. As the string is wound 

up, the bar is lowered, when the string is unwound, the bar is raised up by a spring. The main benefit of 

this system is that it can create different kinds of pitch changes using harmonics because it can press 

down upon the strings with a variable force [8]. The downside of this system is that it cannot create 

pitch bends or slides because none of the actuators move along the string. 

 
Figure 6: Pitch Changing Device in the Robofiddler[8] 

Pitch Changing Devices: Pro-Con Table 

 Table 1 shows the various pros and cons of each pitch changing device: 

 Bend & 

Slide Effects 

Simultaneous Pitch Changes 

in Opposite Directions 

Immediate 

Pitch Transition 

Press with 

Varying Force 

GuitarBot Yes Yes No No 

Crazy J’s Guitar 

Player 

No Yes Yes Yes 

SL Violin Playing 

Robot 

Yes No No Yes 

Violobot Yes Yes No No 

Robofiddler No No Yes Yes 

Table 1: Pros and Cons of Various Pitch Changing Devices[4], [7], [8] 

Autonomous Tuning Systems: Prior Work 

 The mechatronic string instruments mentioned above use various actuators to change the pitch 

of their strings, but they don’t sense the pitches of the strings [4], [7], [8]. Autonomous-tuning string 

instruments are capable of tuning themselves to specified pitches by sensing the current pitch of the 

strings and adjusting until the desired pitch is reached [9]–[11]. The value of autonomous tuning is in the 

ability for an instrument to sense and record its string’s pitches, which allows the instrument to keep 

itself in tune with no input from the performer as well as change it’s tuning during a performance. 
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Tronical Tuning System 

 The Tronical tuning system automatically tunes the strings of a typical guitar (see Figure 7). The 

system, which consists of a computer, six motorized tuning machines, and six buttons, is mounted 

underneath the head of the guitar. When the user is ready to begin tuning the guitar, the system 

instructs them to play certain strings via LEDs. As the user plays the strings they are told to play, the 

processor senses and analyses the harmonic vibrations in the body of the guitar, which are used to 

determine the frequency of the string. The system then rotates small motors attached to the tuning 

machines of the guitar to adjust the tension of the strings until they are at the correct frequency. The 

user can decide whether to tune every string at once, or individual strings via button commands [9]. 

 
Figure 7: Tronical Tuning System on a Guitar[12] 

Gibson Robot Guitar 

 Unlike the Tronical tuning system, which is mounted externally to a guitar, the Gibson Robot 

Guitar has autonomous tuning capabilities built in to the body of the instrument. The autonomous 

tuning system is controlled by a push pull knob on the body of the guitar. The knob allows the user to 

select from six configurable tuning modes. The knob also has LED’s to signify when a string is out of 

tune, being tuned, or in tune during the entire tuning process. The Gibson Robot Guitar has a bridge on 

the body of the guitar (see the left part of Figure 8) that can measure the vibration of each string. The 

movement data from the bridge is analyzed by a processor in the body of the guitar to determine the 

frequency of each string. The frequency information is sent to a processor in the head of the guitar 

shown on the right of Figure 8. The processor in the head of the guitar is connected to small servo 

motors which are connected to the tuning machines at the head of the guitar. The processor determines 

how much to spin the servo motors to achieve the desired pitch [10]. 
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Figure 8: Gibson Robot Guitar Vibration Sensing Bridge (Left) and Autonomous Tuning Tail Piece (Right) 

AxCent Guitars 

 AxCent guitars offer an advantage over other autonomous tuning systems. AxCent guitars are 

similar to Gibson Robot Guitars because they have autonomous tuning capability built into the guitar, 

but AxCent guitars have a method of tuning during a performance and without needing to play the 

strings. The user interfaces with this autonomous tuning system through twelve buttons and an LED 

screen. The buttons are used to set tuning presets and control when the guitar changes its tuning mode. 

The LED screen displays information about the state of the autonomous tuning system and what the 

current tuning mode is. During construction the AxCent guitar is calibrated by collecting information on 

the string’s pitches at different positions. The calibration process allows for the strings to be moved to 

positions regardless of whether or not they are being played, and without the need to measure their 

frequencies [11]. Although the details of the calibration process are publically unavailable, a patent 

owned by Transperformance Inc., the corporation that owns AxCent guitars, describes a method of 

tuning where each string has a transducer that converts its motion into an electrical signal. The signal is 

then processed from the time domain to the frequency domain, where the pitch of the string can be 

evaluated. This pitch can then be related to the position of the motor in the tuning actuator. To tune the 

strings, the body of the guitar houses a mechanism that can slide the strings back and forth as needed 

[13]. A patent referenced by Transperformance Inc. details a way of tuning from the body of a guitar 

where each string is attached to a device that is mounted around a screw shown in Figure 9 [14]. When 

a string is tightened, if there is friction at points where the string contacts the guitar, then the tension in 

string will not be uniform, and the calibrated position of the string will not correspond to the desired 

pitch. To address this issue the AxCent guitar uses bridges made from rollers that roll with the string as 

it’s tightened or loosened, preventing friction caused by the string sliding over the bridge. The string is 

pulled or pushed by the rotation of a motor with a screw for a shaft. This method can provide accurate 

tuning at variable speed [11].  
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Figure 9: US Patent 4,584,923, Tensioning Strings Via Motorized Screws in Guitar Body[14] 

Don Gilmore’s Self Tuning Piano 

 Don Gilmore has created a system for autonomously tuning a piano that’s installed at the 

factory and only makes small adjustments to the pitch when necessary to keep the piano in tune. The 

system doesn’t have a user interface as it is always active, and doesn’t require the user to select pitches 

for the keys. The system senses the pitch by shining an LED at each string with a photoresistor placed 

behind the string. The photoresistor outputs a voltage that corresponds to how much light from the LED 

gets past the string. As the string vibrates, the voltage from the photoresistor changes slightly. This slight 

change is amplified and using a Fourier transform, the signal is transformed to a set of frequencies, 

which is analyzed to identify the fundamental frequency of the string. To adjust the pitch of the strings, 

a small current is sent through the string. This current slightly heats up the string which causes it to 

slightly expand and loosen. This changes the pitch very slightly, but very accurately. This system can tune 

a piano string with an accuracy of +/- .001 cents [15]. 

Tuning with Tension 

 Most of the above methods analyze string vibration to measure pitch. Another option is to sense 

the tension and use it to estimate the string’s pitch. WPI’s Music Perception and Robotics Lab 

prototyped a method to do this by attaching a strain sensor to a beam. One end of the beam was 

mounted to a solid body and the other end to the string. At the other end of the string was a tuning 

machine controlled by a motor. As the tension in the string changed the beam would bend more or less, 

the change in bend of the beam would change the strain on the strain sensor. This change in strain 

caused the resistance of the sensor to change, which was mapped to the pitch of the string. This system 

was able to tune a string with an accuracy of +/- 8 cents. The advantage of a system that can 

autonomously tune a string by sensing the tension is that the strings don’t need to be excited to be 

tuned. The strings can be tuned at any time, and the autonomous tuning system can remain a closed 
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loop system at all times, meaning the system is always sensing the pitch of the string. The limitation of 

this system is that if any parameters of the string are changed, such as the length or the material, than 

then system will no longer accurately predict the pitch of the string and the estimation function will 

need to be changed [16]. 

Autonomous Tuning Systems: Pro-Con Table 

Table 2 shows the various pros and cons of each pitch changing device: 

  User 

Interface 

Frequency 

Detection 

Frequency 

Estimation using 

Non-Frequency 

Measurements 

Tuning 

Before 

Performance 

Sensing 

During 

Performance 

User Can 

Define Goal 

Pitches 

Reduces Friction 

Between Strings 

and Bridge 

Tronical Yes Yes No Yes No Yes No 

Gibson 

Robot 

Guitar 

Yes Yes No Yes No Yes Yes 

AxCent 

Guitars 

Yes Yes Yes Yes No Yes Yes 

Self 

Tuning 

Piano 

No Yes No Yes Yes No No 

Tension No No Yes Yes Yes Yes Yes 

Table 2: Pros and Cons of Various Autonomous Tuning Systems 

Interactions between Musicians and Machines 
 In addition to being able to sense and change the pitch of its strings, a robotic string instrument 

should have a way for a performer to interact with the autonomous tuning system. The instrument 

needs to respond to the performer in a way that allows for dynamic pitch changes without limiting the 

performer’s expressive capabilities. Understanding the different ways that an individual can provide 

information to a machine will help design a system that allows a musician to utilize the autonomous 

pitch changing capabilities of the robot. 

 Mapping a gradual change in the resistance of a circuit to a parameter that needs to be 

controlled is a common way to interface with a machine. A simple example of this is the use of a dial 

connected to a potentiometer to control the gain of an amplifier. Potentiometers are continuous 

variable resistors that can be placed in a number of housings such as dials, levers, and foot pedals. 

Potentiometers are used in electronic synthesizers to map a performer’s input to pitch bends and the 

amplitude of different oscillators in the synthesizer [17]. 

Proximity sensors are another way that the parameters of autonomous tuning mechanisms 

could be mapped to the actions of a performer. These sensors send out short bursts of sound or light, 

then record the amount of time it takes for the burst to be reflected back to the sensor or the angle of 

reflection. Figure 10 shows the path that the infrared light from an IR distance sensor takes to measure 

its distance away from an object. 
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Figure 10: IR Sensor Uses Measured Angle of Light Path to Determine Range[18] 

 

This information is used to calculate the distance that an object is from the sensor. With 

proximity sensors mounted on the instrument towards the performer, it is possible to map the 

performer’s location relative to the instrument to the parameters of the autonomous tuning system. A 

Theremin is an example of an instrument that uses the performer’s distance from it to control different 

parameters. When playing a Theremin, one hand’s distance from an antenna controls the pitch, while 

the other hand’s distance from a different antenna controls the volume [18]. 

Force sensors mounted to surfaces that an individual grips or steps on can be used to control 

the parameters of a performance. A force sensor is a small fine wire mesh. When a force is applied to 

the mesh, its resistance changes. This change in resistance can be mapped to the force applied to the 

sensor [16]. Figure 11 is an image of a force sensor, called a strain gauge. The grid is the mesh of wires 

that changes resistance as it bends. 

 
Figure 11: Force Sensing Strain Gauge Diagram[19] 

 

Accelerometers and Gyroscopes are sensors that can measure linear and angular acceleration. 

These devices can be mounted to a performer or object and provide data about the performer or 

object’s location. Detected movements can then be mapped to different aspects of the performance 

[20]. For example, the Electronic Sitar Controller created by Ajay Kapur uses an accelerometer inside of a 

headset, shown in Figure 12 to allow a performer to trigger different parts of the performance via head 

movements [21]. 
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Figure 12: Electronic Sitar Headset with an Accelerometer for Triggering Performance Events[21] 

Limitations of Prior Work 
 Mechatronic string instruments with pitch changing capabilities do so by changing the vibrating 

length of their strings. Whether they do this by pressing the string into a fret board or by sliding a rod 

along the length of the string, changing the vibrating section of the string’s length limits the playability 

of the instrument by a performer. Most of these mechatronic instruments are played entirely 

autonomously. For an instrument that is meant to be played by a person and a machine simultaneously, 

constantly changing the vibrating length of the string is limiting to the human performer. 

 Of the prior autonomous tuning systems, none of them are designed to work constantly 

throughout a performance. Most use only frequency analysis to tune strings before a performance and 

the only way to tune during a performance is via dead reckoning. These limitations prevent the sliding 

pitches from being used as a part of the piece. A system that could tune at all times can use bending and 

sliding pitches through the piece to expand the expressive capabilities of the instrument. 

Design Specifications and Requirements 
 The robotic string instrument created during this project should be able to sense and control the 

pitch of its strings, and produce portamenti, sliding, and pitch bending effects at all times during a 

performance. Current autonomous tuning systems rely on frequency analysis and can only determine 

the pitch of a vibrating string. Therefore they cannot function at all times during a performance, which 

limits the interactivity of the instrument. In order to sense and control the pitch at all times during a 

performance, a new method of autonomous tuning must be designed. 

Hardware 
The entire instrument must be able to fit within a 36” x 12” x 4” carrying case to keep it stable 

during transportation. The sensors for determining pitch and actuators for changing pitch must be less 

than $30.00 per string because of budget constraints. Any custom circuitry required to control the 

instrument should be designed and built on a PCB board. A microprocessor must be selected capable of 

controlling the entire system. A power supply capable of simultaneously sensing and tuning every string 

on the instrument must be identified. 

The ten strings should be selected so that each string’s range is from the pitch the string makes 

at seven pounds of tension to the pitch the string makes at fifteen pounds of tension. Each string’s 

highest pitch should be the middle pitch of the next highest string. This overlapping range allows for 

closer harmonies during performances. 
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Tuning System 
The tuning system created for this instrument must be able to sense the pitch of each string in a 

way that allows the instrument to create various pitch changing techniques like portamento and vibrato 

at all times during a performance. The actuators of this tuning system should be able to adjust the pitch 

of any string by a semitone in 100 ms or less. This 100 ms value was chosen because it is generally the 

smallest rhythmic interval found in human musical performance [22]. The tuning system should be able 

to tune to a desired pitch with an accuracy of +/- 3.6 Hz because that is the common just noticeable 

difference [23]. 

 The tuning system must be able to process the signals from the sensors to determine the pitch 

of the strings. The software should have a form of closed loop control to keep every string at a desired 

pitch. The software should adjust the pitch estimation function over time to compensate for small 

changes to the instrument that alter the strings’ pitches. The software must be able to interpret signals 

from a computer and from a controller used by the performer that determine the timing, magnitude, 

direction, and speed of the dynamic pitch changes. 

Design 
Structural Design 

 
Figure 13: Cyther V3 Complete Instrument CAD Model 

  

The structural design of Cyther V3, shown in Figure 13, is based on the need for the instrument 

to be modular and portable. The instrument’s length, width, and height are such that it fits snugly inside 

the 36” x 12” x 4” carrying case so that it is not damaged during transportation. The aluminum T-slotted 

aluminum channel provides a sturdy frame which two separate sheets of acrylic are mounted to. The 

two acrylic sheets each span half the length of the instrument and can be replaced independently of 

each other. All the pitch detection and estimation hardware is mounted to one acrylic sheet, and all the 

pitch changing hardware is mounted to the other sheet. If at any point a quick fix needs to be applied, 

one of the acrylic sheets can be replaced with an identical acrylic sheet with duplicate hardware 

mounted to it. The replacement hardware can easily be plugged into the circuit boards because the 

wiring uses connectors. This modular design addresses potential unforeseen damage to the instrument. 

In addition to being modular and portable, Cyther V3 is designed to allow the strings to move as 

freely as possible during a performance. Friction between the strings and the bridge can create non-

uniform tension throughout the individual strings [24] and add inefficiency to the tuning system 
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resulting in slower, less precise pitch changes. To reduce the friction between the strings and bridge, the 

bridge, shown in Figure 14, is made from radial bearings mounted around a shaft. 

 
Figure 14: Cyther V3 Bridge Made from a Shaft and Radial Bearings 

The bearings rotate around the shaft as the string is adjusted, which allows for the tension 

throughout the string to be constant. 

String Selection 
Table 3 shows the ten strings selected for the instrument. The strings were chosen from the 

D’Addario string catalog [1]. Each string was selected so that its highest pitch was the next highest 

string’s middle pitch. Each strings range is from the pitch it makes at 7 lbs. of tension to the pitch it 

makes at 15 lbs. of tension. 

String 

# 

D'Addario 

Item # 

Frequency at 

7 lbs. (Hz) 

Frequency at 

15 lbs. (Hz) 

MIDI Note at 

7 lbs. 

MIDI Note at 

15 lbs. 

Range 

1 NW048 49.16522824 71.97052473 31.05848066 37.6556947 G2 - D3 

2 NW039 59.84292063 87.60106591 34.46098763 41.05820167 A#2 - F3 

3 NW032 71.90465087 105.2576311 37.63984164 44.23705568 D3 - G#3 

4 PL024 88.5397845 129.6089732 41.24273092 47.83994496 F3 - C4 

5 PL020 106.2484075 155.531743 44.39925233 50.99646637 G#3 - D#4 

6 PL017 124.9988343 182.9795572 47.2129334 53.81014744 B3 - F#4 

7 PL014 151.7815167 222.1853898 50.57391111 57.17112515 D#4 - A4 

8 PL0115 184.7693741 270.4746685 53.97866548 60.57587952 F#4 - C#5 

9 PL0095 223.6955788 327.4567976 57.28839863 63.88561267 A4 - E5 

10 PL008 265.5985394 388.7964509 60.26092427 66.85813831 C5 - G5 

Table 3: Strings Chosen for Cyther V3 and the Frequency and MIDI Range of Each String 

Tuning System Actuation 
 The pitches of Cyther V3’s strings are changed by controlling the tension in each string. The 

motor driven tuning machine, shown in Figure 15, changes the tension in a string by winding the string 

around a guitar tuning key modified to be mounted to, and spun by, a motor controlled by an Arduino. 

The tuning machine contains a worm drive with a ratio of 16:1. This increases the torque used to wind 

the string and prevents the tension in the string from applying any forces to the motor, which prevents 

the motor from having to constantly be powered, stabilizing the frequency of the string and increasing 

the lifespan of the instrument. 
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Figure 15: Motor and Worm Drive used to Change the Tension of the Strings for Autonomous Tuning 

  

The strings selected for the instrument can safely handle 17 lbs. of tension. The motors used to 

wind the tuning keys should have a stall torque equal to four times the maximum tension to stay at 

optimal power levels. The Pololu 100:1 Micro Metal Gearmotor was chosen for its size and 30 oz. in. stall 

torque. These values can be used in Equation 1 to determine the maximum tension that the tuning 

system can create in a string. The tuning system used by Cyther V3 can theoretically create a maximum 

of 120 lbs. of tension in a string. This value is much greater than the tension required for producing the 

desired pitches but this extra torque helps offset friction, gear train inefficiencies, and unpredictable 

misalignment of parts due to manufacturing inconsistencies, which reduce the amount of force the 

motor can transfer to the string. This ensures that the motor won’t damage itself while trying to tune 

any of the strings. 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑡𝑟𝑖𝑛𝑔 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 =  
𝑀𝑜𝑡𝑜𝑟 𝑆𝑡𝑎𝑙𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 ×  𝑊𝑜𝑟𝑚 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝑡𝑟𝑖𝑛𝑔 𝑡𝑜 𝐴𝑥𝑖𝑠 𝑜𝑓 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
 

Equation 1: Maximum Tension a String can be wound to by the Tuning System 

Tension Sensing 
 Unlike other robotic string instruments, Cyther V3 can estimate the pitch of a string without 

needing to sense its frequency. The frequency of a vibrating string is a factor of its length, weight, and 

the tension [1]. When the length and weight are known constants, the frequency can be determined by 

only sensing the tension in the string. The tension sensor shown in Figure 16 measures tension through 

a potentiometer coupled to a spring. The ball end of the string is pressed against the spring cap. The rest 

of the string runs through a small hole in the cap, through the middle of the spring and out the bottom 

of the tension sensor, where another hole in the tension sensor leads the string to the bridge on the top 

of the instrument. As the string is tightened or loosened, the amount of force applied by the ball end of 

the string to the spring cap changes, which changes the amount the spring is compressed. As the spring 

compresses, the attached wiper on the potentiometer moves. The voltage across the potentiometer can 

be measured and used by the tuning algorithm to keep each string in tune. The structure of the tension 

sensor does not contact the wiper of the potentiometer or the side of the spring in order to create as 

little contact as possible between moving parts. If the cap makes contact with any stationary parts then 

it might stick and will not accurately reflect the force on the spring. This leads to error in the pitch 

estimation curve. 
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Figure 16: Tension Sensor used for Pitch Estimation 

 

While the instrument is being played, the tuning system keeps each string at a desired 

frequency. It does this by comparing the current potentiometer value of each tension sensor to a value 

determined by the tuning algorithm. The motor then tightens or loosens the string depending on 

whether or not the potentiometer value is lower or higher than the goal value created by the tuning 

algorithm. Once the measured potentiometer value matches the goal potentiometer value, the motor 

stops. This method of tuning is used because the system doesn’t require information on the current 

pitch, which prevents any error in the tuning system from compounding. If the tuning system changed 

pitch based on distance or time intervals, error in one pitch change would affect the quality of all the 

future pitch changes. 

Frequency Sensing 
 Even though Cyther V3 can estimate the frequency of its strings from their tensions at all times 

during a performance, being able to also sense the frequency of its strings helps to increase the 

reliability of the autonomous tuning system. Measured frequency can be compared to estimated 

frequency. If the measured frequency and estimated frequency are different, the string can be adjusted 

and the potentiometer to frequency relationship curve is also adjusted so that future tuning of the string 

is more accurate. This modification of the relationship between tension and frequency is essential for 

long-term use of the instrument because factors such as temperature, warping, string replacements, 

and instrument repair, which can, over time, change the vibrating length of the string, altering the pitch. 

Each string on Cyther V3 has an optical pickup that measures its frequency. The pickup, shown in 

Figure 17 positions a 650nm laser diode (bottom) across from a photoresistor (top). When the light from 

the laser hits the photoresistor, the resistance across the photoresistor drops. Each string passes 

between a laser and a photoresistor, which prevents some light from reaching the photoresistor, 

increasing the photoresistor’s resistance. When the string vibrates, the shadow it casts onto the 

photoresistor oscillates, causing the resistance of the photoresistor to oscillate at the same frequency as 

the string. The oscillating resistance is shown in Figure 18. 
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Figure 17: Optical Pickup used on Cyther V3 

 

 
Figure 18: The Voltage across a Photoresistor in the Pickup as the String Below it vibrates 

 

In order to ensure that the frequency measurements are accurate, the Arduino uses a series of 

checks and averages, shown in Figure 19.  
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Figure 19: Flowchart for Frequency Measuring and Averaging 

 

The Arduino polls the optical pickups every main loop iteration checking for a vibration. When a 

rising edge is sensed, the Arduino starts a timer that runs until the next rising edge is sensed. At this 

point the timer has measured the period of the wave. Using Equation 2, the frequency is calculated, and 

then the Arduino determines whether or not that frequency is within the bounds of what the string is 

capable of playing. If not, the frequency is ignored and the process is repeated. If the frequency is within 

the range of possible frequencies the string can play, it’s added to an array of the previous ten 

frequency measurements. When this array is full, the Arduino checks if all the values are within a range 

of each other to account for errors in the frequency measurement due to the complex nature of the 

string’s vibration. If not, the Arduino waits for another frequency measurement, then replaces the 

oldest measurement in the array with the new one and checks for consistency again. Once the ten most 

recent frequency measurements are within reasonable error of each other, all the values in the array are 

averaged and the average frequency is passed to a function that updates the curve relating 

potentiometer value to string frequency. 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
1

𝑝𝑒𝑟𝑖𝑜𝑑
 

Equation 2: The Relationship between Frequency and Period[25] 
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Relating Potentiometer Value to String Frequency 
 In order to tune the strings to desired pitches, each string must have a potentiometer to 

frequency relationship curve (PFRC). This equation can be determined by combining Equation 3 and 

Hooke’s Law, which states that there is a linear relationship between the length of a spring and the force 

applied to it [26]. The unit weight and length of each string will remain constant, and the 

potentiometers used in the tension sensors change value linearly with respect to distance traveled. This 

information can be used to simplify the PFRC. Equation 4 shows the general form of the PFRC, a linear 

relationship between the potentiometer value and the square of the frequency measurement. 

 

𝑆𝑡𝑟𝑖𝑛𝑔 𝑇𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑈𝑛𝑖𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 × (2 × 𝐿𝑒𝑛𝑔𝑡ℎ × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)2 
Equation 3: The Relationship Between String Tension, Unit Weight, Length, and Frequency [1] 

 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 = 𝐴 × 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦2 + 𝐵 
Equation 4: The PFRC with constants A and B 

 

 The constants of the PFRC are determined experimentally, once for each string, by measuring 

the frequency and potentiometer value at three different frequencies that span the range of the string. 

Linear regression is used to find a best fit curve, then A and B are set to the constants of the best fit 

curve. 

The Arduino must be able to adjust the PFRC as more data is collected and as the instrument 

changes over time. To adjust the PFRC, a curve-adjusting algorithm (CAA) is used. Whenever the 

frequency of a string is measured, the CAA updates the PFRC. The CAA begins by creating a set of points 

along the current PFRC that are evenly distributed within the playable range of the single string. For 

example, if the curve adjusting function creates a set of five points, the experimentally determined 

constants are A = 0.002667 and B = -6.667, and the playable range of the single string is from a 

frequency of 100 to a frequency of 200, Figure 20 shows the set of five points that would be created. 

  
Figure 20: Simple Representation of Step One of the Curve Adjusting Function 
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Immediately after the set of points has been created, the CAA adds another point to the set. 

This new point is created by squaring the frequency measurement given to the CAA and measuring the 

value of the potentiometer in the tension sensor. This added point is responsible for the CAA’s change 

to the PFRC. Continuing from the example above, if the frequency measurement provided to the CAA 

was 170, and the potentiometer value of the tension sensor was 55, then the new set would be the set 

shown in Figure 21, where the blue dot represents the new data point. 

  
Figure 21: Simple Representation of Step Two of the Curve Adjusting Function 

  

The final step of the CAA is to use linear regression to create a new best fit curve from the entire 

set of points, and then replace the PFRC constants with the constants from the new best fit curve. This 

new line, shown in Figure 22 will be the line from which the set of points is created the next time the 

CAA is called. Changing the number of points created in step one of the CAA will change how 

aggressively the PFRC will accommodate new data. With fewer points the PFRC will quickly move 

towards new data, and with more points the PFRC will make much smaller adjustments toward new 

data. 

  
Figure 22: Simple Representation of Step Three of the Curve Adjusting Function 
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Software Interface 
 The pitch of the strings and the activation of the tuning system are controlled with serial 

commands to the Arduino. This allows a composer or performer to give both predetermined and 

impromptu commands to the instrument. Table 4 shows available input commands. 

Command Syntax Inputs Example 

Frequency Analysis 

Toggle 

F - F 

String Tuning Toggle T - T 

Set Frequency ![int],[float]! An Integer that represents the string 

to tune. A floating point number 

that represents the goal frequency. 

!3,234.32! 

Set Constant “A” A[float]A A floating point number that 

represents the value of A. 

A0.0012A 

Set Constant “B” B[float]B A floating point number that 

represents the value of B. 

B214.15B 

End Performance S - S 

Table 4: Serial Commands for Cyther V3 Control 

  

The frequency analysis toggle command controls whether or not the Arduino is polling the 

pickups for a frequency. If this is off, there will be no adjustments to the PFRC. This command can be 

used to prevent the CAA from making dramatic and inaccurate changes to the PFRC when the performer 

is changing the vibrating length of a string by hand. The string tuning toggle command controls whether 

or not Cyther V3 is adjusting the tension in each string. If this is off, none of the strings will change pitch. 

This command can be used to stop the motors from making small back and forth adjustments when the 

tension sensor senses small changes in tension when the string is being plucked. The set frequency 

command can be used to adjust the desired string to the desired frequency. This can be used during 

performances to create bending and sliding effects, as well as change the tuning of the instrument. The 

set A and set B commands can be used to change the constants of the PFRC. The ability to set the 

constants of the PFRC is useful when replacing strings or when the instrument has been played for so 

long that the original constants that were determined experimentally are no longer accurate. Even 

though the CAA will change the PFRC while the instrument is played, being able to manually adjust the 

constants can help accurately tune from the beginning of the performance. The end performance 

command will stop Cyther V3 from being capable of tuning or sensing until it has been reset and display 

the current constants of the PFRC. This should be used at the end of a performance or when 

disassembling Cyther V3 to prevent accidents. 

Circuit Board Design 
 Cyther V3 has ten identical one string tuning systems that each require a connection to a 6V 

power supply and eleven connections to the Arduino. In order to use a common power supply, and to 

lessen the number of connections running from the instrument to the Arduino, three circuit boards 

were designed. All the circuit board schematics can be found in Appendix B: Circuit Board Schematics. 
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Potentiometer Board 

 A circuit board was designed for the potentiometers on Cyther V3. This board allows every 

potentiometer to use the same 5V supply from the Arduino and for the Arduino to read each 

potentiometer from the same analog pin. The circuit board wires all the potentiometers in parallel with 

a 5V supply and connects each of their outputs to a 16:1 analog demultiplexer. The Arduino uses four 

digital pins to determine which potentiometer value is being read and one common analog input for all 

the potentiometers. The ability to only use one analog input for all the potentiometers was necessary 

because the Arduino didn’t have enough analog inputs for each potentiometer and each pickup to get 

its own pin. 

Pickup Board 

 A circuit board was designed for the pickups on Cyther V3. This board contains a voltage divider 

for each photoresistor, which allows the Arduino to measure the change in resistance across the 

photoresistor as the string vibrates. The board also allows every laser diode and voltage divider to use 

the same 5V supply from the Arduino. A resistor of equal value to the photoresistor with no shadow cast 

on it from a string was used in each voltage divider so that when a shadow was cast onto the 

photoresistor from the string, the largest possible change in voltage would be measured. This increases 

the resolution of the pickups, which makes it easier to determine when the wave is at a rising edge. Each 

pickup has its own analog input on the Arduino so that the Arduino can easily and quickly change which 

string’s frequency is being measured. 

Motor Board 

 A circuit board was designed for the motors that tune the strings. The circuit board allowed each 

motor to be powered from the same 6V 10A power supply, while having their speed and direction 

controlled by the Arduino. Five dual H-bridge chips allow each motor to be controlled by the Arduino 

with three pins while receiving power from the 6V 10A supply. Two of the pins determine the direction 

the motor spins, the other pin enables the motor to spin. By using PWM output pins on the Arduino for 

the enable pin on the H-bridge, the motors can spin at variable speeds. The circuit board is powered by a 

6V 10A supply, which is enough for each motor to spin simultaneously and to power the H-bridges. A 5V 

regulator is used on the board to step down the 6V signal from the power supply in order to power the 

H-bridge chips with 5V. 

Results 
Hardware 
 The motors that were used in the Cyther V3 were designed to have extra torque to make up for 

manufacturing inconsistencies and so they could operate at lower power and therefore last longer. 

While tuning from minimum to maximum string tension, the motors were able to tune the strings to 

their maximum tension without stalling. The motors used more current when tuning the strings up than 

when tuning them down. Table 5 shows the current the motors used at different times compared to 

stall current. 

Stall Current Stop Current Tune Up Current Tune Down Current 

843 mA 9 mA 384 mA 253 mA 

Table 5: Motor Current at Different Times during Tuning 
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While Cyther V3 was being played, the motors created acoustic noise that interfered with the 

ability to hear the string. Figure 23 shows how the noise level of the motor compares to the noise of the 

string when the motor is holding the string steady and when the motor is tuning the string and spinning. 

Once the listener is more than two feet away from the instrument, the spinning motor drowns out the 

sound from the string. This isn’t a significant problem because the strings are meant to be amplified with 

an electromagnetic pickup. 

 
Figure 23: Noise from the String and Motor at Varying Distances 

  

During the manufacturing process, errors and lack of project time prohibited completion of the 

PCB’s. As a result, a breadboard was used to test the system on one string. The breadboard used the 

same equipment that the circuit boards were designed to use and was wired in the same way. The 

circuits worked as expected: the signals from the potentiometer and pickup were processed by the 

tuning software without any pre-filtering of the signal and the Motor circuit allowed the Arduino to 

control the motor while getting power from the 6V power supply. 

Unexpectedly, the laser diodes used in the pickups weren’t equally bright. As a result, each 

photoresistor had a different resistance when the laser was shining on it. This problem was solved by 

measuring each photoresistor’s resistance when the laser was on and picking a resistor equal to the 

measured resistance (instead of using one resistor value for every pickup). 

Tuning System 
 The frequency analysis capabilities of the instrument were tested by observing the pickup’s 

waveform and comparing the frequency measured by Cyther V3 to a series of known frequencies. A 

graph of the signal from the optical pickup over time as the string is plucked, shown in Figure 24, was 

used to analyze the quality of the pickup. The graph shows that there is a period of around 1.5 seconds 

where the amplitude of the string’s oscillation is inconsistent before settling into a decaying oscillation. 
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Figure 24: Graph of Pickup Value over Time When the String is plucked 

 

 When the Arduino senses the pluck, there is a delay before it determines the frequency of the 

string. Table 6 shows the amount of time it took the Arduino to determine the frequency of the string at 

different frequencies. The average amount of time when determining the frequency of a string that was 

plucked was 183.8 ms. There were some cases when the string was plucked very hard that it took the 

software around a second to determine the frequency. By using solenoids to pluck the strings the 

impulses will be more uniform and predictable, which will help shorten the amount of time it takes to 

analyze the frequency. 

Frequency (Hz) Frequency Measurement Delay (ms) 

167.51 239 

187.63 118 

198.43 112 

212.77 349 

221.74 101 

Table 6: Delay in Frequency Measurement at Various Frequencies 

 

 The accuracy of the frequency analysis was measured, first by using a waveform generator to 

send a signal directly into the Arduino, replacing the pickup signal. By eliminating the pickup, this 

experiment was used to test the quality of just the software responsible for the frequency analysis. 

Table 7 shows the frequency determined by Cyther V3’s software when a sine wave with a magnitude of 

4V and offset of 2.5V was measured at various frequencies. Based on this data the Arduino can measure 

the frequency of a wave with an error of < 0.0037% which is well within the error that the human ear 

can perceive.  

Frequency From 

Waveform Generator (Hz) 

Frequency Determined 

by Arduino (Hz) 

Error (Hz) % Error 

90 90.27 0.27 0.003 

130 129.89 -0.11 0.000846154 

170 171.31 1.31 0.007705882 

210 210.14 0.14 0.000666667 

250 250 0 0 
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290 289.22 -0.78 0.002689655 

330 331.25 1.25 0.003787879 

370 370.88 0.88 0.002378378 

410 410.26 0.26 0.000634146 

Table 7: Comparing the Frequency from a Waveform Generator to the Measurement of that Frequency by the Frequency 

Analysis Software on the Arduino 

  

 Once it was determined that the software was capable of accurate measurements, another 

experiment comparing FFT analysis of an audio recording of a string to Cyther V3’s software’s analysis of 

the pickup signal was performed. This experiment was used to determine how reliably Cyther V3 can 

measure the frequency of a string during a performance. Table 8 shows the measured frequency of the 

string as determined by an FFT compared to the frequency measured by the Arduino. There is a 

maximum error of .017%, which is higher than the previous test. A probable reason for the higher error 

is that the vibration of the string is not a perfect sine wave and it’s more difficult to measure the rising 

edges of a complex waveform. These results are promising because the frequency was never off by 

more than 3.6 Hz, which is the smallest change that the average human ear can perceive [23]. 

Frequency From 

FFT Software (Hz) 

Frequency Determined 

by Arduino (Hz) 

Error (Hz) % Error 

172 169.21 -2.79 0.01622093 

182 178.9 -3.1 0.017032967 

194 193.44 -0.56 0.002886598 

202 202.45 0.45 0.002227723 

211 210.11 -0.89 0.004218009 

224 220.77 -3.23 0.014419643 

Table 8: Comparing the Frequency of the String Determined by an FFT to the Measurement of the Frequency by the Frequency 

Analysis Software on the Arduino 

  

To test the capabilities of the tuning system a series of pitch changes were analyzed to 

determine the speed and accuracy of the tuning mechanism. Table 9 shows these tests. 

Music 

Interval 

Frequency 

Change 

(Hz) 

Goal 

Frequency 

(Hz) 

Measured Goal 

Frequency (Hz) 

Measured Goal 

Frequency 

Error (Hz) 

Measured Goal 

Frequency % 

Error 

Tuning 

Speed (ms / 

semitone) 

E3 - F3 9.8 174.61 174.53 -0.08 0 247 

F3 - E3 -9.8 164.81 161.82 -2.99 -0.018 247 

E3 - F#3 21.19 185 191.22 6.22 0.034 196 

F#3 - E3 -20.19 164.81 153.63 -11.18 -0.068 151.5 

E3 - G#3 42.84 207.65 207.06 -0.59 -0.003 147 

G#3 - E3 -42.84 164.81 164.48 -0.33 -0.002 112.5 

A3 - G#3 -12.35 207.65 205.36 -2.29 -0.011 191 

G#3 - A3 12.35 220 221.74 1.74 0.008 248 

A3 - G3 -24 196 202.45 6.45 0.033 143 
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G3 - A3 24 220 218.84 -1.16 -0.005 169 

A3 - F3 -45.39 174.61 165.85 -8.76 -0.05 131.25 

F3 - A3 45.39 220 216 -4 -0.018 138 

D#3 - A#3 77.52 233.08 221.74 -11.34 -0.049 100.714 

A#3 - D#3 -77.52 155.56 161.03 5.47 0.035 103.286 

Table 9: Tuning System Test Data 

  

The speed of the tuning system is slightly less than the goal speed of 100 ms / semitone. When 

tuning down, tuning system moves faster than when tuning up, which is in accordance with the 

increased current use when tuning up. The average tuning speed is 166.089 ms / semitone. This could 

be improved by buying more powerful motors, or by reducing the friction in the tuning system. More 

powerful motors were available but they were outside of the budget constraints of this project. 

Based on the data, the tuning system is not accurate enough to go undetected. A majority of the 

pitch changes lead to pitches that are more than 3.6 Hz off of the desired pitch. Some of the smaller 

pitch changes were less than 1 Hz off, but the large changes where the string jumped a fifth were 

consistently more than 3.7 Hz away from the desired pitch. The data shows that the curve adjusting 

function worked well: whenever the measured frequency was off from the desired frequency the curve 

was corrected so that the error in tuning decreased and never compounded. Table 9 shows evidence of 

this because every pitch change was executed one after another and the error in some cases decreases 

from a preceding pitch change which wouldn’t happen if the error was compounding. 

Recommendations for Future Work 
Improvements to the Instrument 
 The circuit boards that have been designed should be manufactured and tested. The Voltera 

One can be used to manufacture the boards, but the steps that should be taken are not the same as 

what the user manual recommends: 1) The holes should be drilled with the CNC machine, 2) the bottom 

layer should be printed and baked, 3) the vias should be filled but not baked, 4) the top should be 

printed and baked, 5) the surface mount components and the through hole components should be 

attached to the top layer with the solder paste. The solder paste will have to be manually applied to the 

holes. Using a soldering iron with the conductive ink is too prone to permanently damaging the boards. 

A method of ensuring that the motor and the tuning machine rotate about the same axis should 

be developed. Currently there is no way to ensure that the motor and tuning machine line up properly, 

which results in the motor wobbling. Removing the wobble could potentially reduce noise and increase 

the speed if the wobble is increasing the friction of the system. Another way to make the tuning system 

tune faster would be to replace the motors with more powerful alternatives. Another improvement that 

can be made to the motors is replacing then with a quieter, brushless alternative. Even though the 

strings will be amplified with an electromagnetic pickup, reducing the noise of the motors is still a 

priority.  

 More testing should be done to determine the source of the tuning system’s inaccuracy. A 

Possible reason for the tuning error is that the resolution of the Arduino’s ADC was not high enough. If 

the range of frequencies that span one value of the potentiometer in the tension sensor is more than 

3.7 Hz, the instrument cannot reach a desired frequency within the desired error. Another possibility is 
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that the PFRC is nonlinear, and by using a linear relationship to determine the desired potentiometer 

value, the desired potentiometer value does not correspond to the desired frequency. More 

experimentation should be done to determine the cause of the tuning inaccuracies. 

If the source of the error is the potentiometer resolution then a smaller potentiometer, or 

higher resolution ADC should be used. If the source of the inaccuracy is the nonlinearity of the best fit 

curve, then a different kind of curve should be generated. Another way to attempt to fix the tuning 

system is to add a section to the best fit curve code which associates a weight with each new frequency 

measurement that corresponds to how accurate that measurement is. With this information, more 

accurate frequency measurements can have more of an effect on the best fit curve, while outliers won’t 

ruin an accurate curve. 

Additions to the Instrument 
 There are two main additions that Cyther V3 is designed to accommodate. The first of these 

additions is a high-level user interface. This interface should allow a performer or composer to specify a 

series of tuning speeds, directions, and intervals that trigger at specific times in sync with the solenoids. 

The user interface should allow a composer to load an entire piece of music to be played by Cyther V3. 

The serial commands that Cyther V3 uses now can be used by the interface to achieve the composer’s or 

performer’s desired effects. 

 The second recommended addition is the creation of a physical tool that can be used by a 

performer to dynamically change the pitch of the strings during a performance without needing to know 

the desired pitch changes ahead of time. One way this could be achieved is to create a mallet with an 

accelerometer inside it and a button on its handle. When the performer presses the button, the 

movement of the mallet could control the most recently played string’s pitch. 

Conclusion 
 The goal of this project was to create a dynamic and interactive tuning system. Although this 

project has come a long way, there is still a lot of work that needs to be done to complete Cyther V3. 

The tuning system is currently capable of tuning to specific frequencies by relating the frequency of the 

string to the value of a potentiometer in a tension sensor. The instrument can then change the tension 

in the string until the desired potentiometer value is reached. When a string is played, the instrument 

can sense the vibration in the string using an optical pickup and measure the frequency of the string. 

Using the frequency measurement, the curve that relates the frequency of the string to the tension 

sensor’s potentiometer value can be updated to prevent the error in the tuning system from 

compounding. The tuning system can be controlled via serial commands to tune to specific frequencies 

and update the best fit curve. 

 Cyther V3 will be a robotic string instrument with unique capabilities. The ability to tune at all 

times during a performance will give robotic string instruments new expressive potential. The 

suspenseful sound of an orchestra slowly descending pitch, the wholesome resolution of bending a pitch 

into perfect harmony, and the power of the blues on a slide guitar were previously unable to be 

performed by a robotic string instrument. Cyther V3 will be capable of these types of expressions and 

more. Furthermore, the ability for a performer to induce these changes, while algorithmic 

harmonization software plays along, will advance the depth and variety of human and machine 

instrument interaction.  
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Appendix A: One String Tuning Code 
#include <TimerOne.h> 

 

// Variables for Pickup 

#define pickPin A0 // pin pickup 1 signal is read from 

 

// Variables for Potentiometers 

#define potPin A10 // pin potentiometer is read from 

 

// Variables for Motors 

#define motora1 22 // pin to control direction of motor 1 

#define motora2 23 // pin to control direction of motor 1 

#define motorctrl 2 // pin to control speed of motor 1 

float goalFreq = 155.56; // the lowest pitch on the 12 tone scale the string can play 

 

// Variables for Frequency Analysis 

#define sampleRate 5000 // Hz 

#define threshold 400 // count up when voltage divider with photoresistor output is 

above this value 

#define minFreq 128.27879 // Hz at 5 lbs of tension for string PL014, string 4 

#define maxFreq 236.53441 // Hz at 17 lbs of tension for string PL014, string 4 

#define countOffset 0 // waveCount offset for accurate frequency determination 

#define sampleSize 10 // how many frequency measurements we take and average 

#define allowedError 5 // the error between frequency measurements that is ok 

int freqState = 0; // what point we are in the frequency analysis process 

float lastFreq = 0; // the last frequency measurement, used for determing if we should 

call curveAdjust 

float sampleSet[sampleSize]; // an array of frequency measurements which is averaged 

to determine the actual frequency 

unsigned long lastCount = 0; 

unsigned long count = 0; 

int lastValue = 0; 

int value = 0; 

int waveCount = 0; 

 

// Variables for Curve Adjusting 

#define sampleNum 4 // the number of points to take from the current best fit curve 

before adding the new point in 

#define lowestFreq 151.78152 // the lowest frequency we want to play 

#define highestFreq 222.18539 // the highest frequency we want to play 

float bestFitCurveA = 0.001052; // PotVal = A * freq^2 + B 

float bestFitCurveB = 228.548812; // These values were determined experimentaly 

 

// Serial command variables 

int freqEnable = 0; 

int tuneEnable = 0; 

int newGoal = 0; 

 

void sample() 

{ 

  count++; 

} 

 

void setup() 
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{ 

  Serial.begin(115200); // use the serial port 

  Timer1.initialize(1000000 / sampleRate); // set up the timer 

  Timer1.attachInterrupt(sample); // an interrupt occurs 

  pinMode(pickPin, INPUT); // set up the pins 

  pinMode(potPin, INPUT); 

  pinMode(motora1, OUTPUT); 

  pinMode(motora2, OUTPUT); 

  pinMode(motorctrl, OUTPUT); 

  digitalWrite(motora1, LOW); 

  digitalWrite(motora2, LOW); 

  digitalWrite(motorctrl, LOW); 

} 

 

void loop() 

{ 

  if(tuneEnable) 

  { 

    changePitch(); 

  } 

  if(freqEnable) 

  { 

    getFrequency(); 

  } 

} 

 

void serialEvent() // Reads serial input for commands of the type "![string#] 

[frequency]" 

{ 

  char inChar; 

  String dataString = ""; 

  if(Serial.available() > 0) 

  { 

    delay(1); 

    inChar = Serial.read(); // get the new byte 

    if(inChar == 'F') // turn off or on frequency analysis 

    { 

      freqEnable = freqEnable ^ 1; 

      if(freqEnable) 

      { 

        lastFreq = 0; 

      } 

      Serial.print("Frequency Anaysis Status: "); 

      Serial.println(freqEnable); 

    } 

    else if(inChar == 'T') // turn off or on tuning 

    { 

      tuneEnable = tuneEnable ^ 1; 

      digitalWrite(motora1, LOW); 

      digitalWrite(motora2, LOW); 

      digitalWrite(motorctrl, LOW); 

      Serial.print("String Tuning Status: "); 

      Serial.println(tuneEnable); 

    } 

    else if(inChar == '!') // giving a string command 
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    { 

      while(Serial.available() > 0) 

      { 

        inChar = Serial.read(); 

        if(inChar == '!') 

        { 

          goalFreq = dataString.toFloat(); 

          Serial.print("Start Time: "); 

          Serial.println(millis()); 

          newGoal = 1; 

          dataString = ""; 

          Serial.print("The new frequency is "); 

          Serial.println(goalFreq); 

        } 

        else 

        { 

          dataString += inChar; 

        } 

      } 

    } 

    else if(inChar == 'A') // giving a string command 

    { 

      while(Serial.available() > 0) 

      { 

        inChar = Serial.read(); 

        if(inChar == 'A') 

        { 

          bestFitCurveA = dataString.toFloat(); 

          Serial.print("The new slope is "); 

          Serial.println(bestFitCurveA,4); 

        } 

        else 

        { 

          dataString += inChar; 

        } 

      } 

    } 

    else if(inChar == 'B') // giving a string command 

    { 

      while(Serial.available() > 0) 

      { 

        inChar = Serial.read(); 

        if(inChar == 'B') 

        { 

          bestFitCurveB = dataString.toFloat(); 

          Serial.print("The new intercept is "); 

          Serial.println(bestFitCurveB,4); 

        } 

        else 

        { 

          dataString += inChar; 

        } 

      } 

    } 

    else if(inChar == 'S') // giving a string command 
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    { 

      freqEnable = 0; 

      tuneEnable = 0; 

      digitalWrite(motora1, LOW); 

      digitalWrite(motora2, LOW); 

      digitalWrite(motorctrl, LOW); 

      Serial.print("A = "); 

      Serial.print(bestFitCurveA,4); 

      Serial.print("  B = "); 

      Serial.println(bestFitCurveB,4); 

      delay(2000); 

      exit(0); 

    } 

  } 

} 

 

void changePitch() // takes a string and the frequency you want the string to be, then 

moves every string to the position it should be 

{ 

   

  int potVal = analogRead(potPin); 

  int goalVal = bestFitCurveA * goalFreq * goalFreq + bestFitCurveB; 

  if(goalVal == 0 || goalVal == potVal) // we should stop the motor 

  { 

    //Serial.println("Stop"); 

    digitalWrite(motora1, LOW); 

    digitalWrite(motora2, LOW); 

    digitalWrite(motorctrl, LOW); 

    if(newGoal) 

    { 

      Serial.print("Stop Time: "); 

      Serial.println(millis()); 

      newGoal = 0; 

    } 

  } 

  else if(goalVal > potVal) // we need to tune up 

  { 

    //Serial.println("Tune up"); 

    digitalWrite(motora1, HIGH); 

    digitalWrite(motora2, LOW); 

    digitalWrite(motorctrl, HIGH); 

  } 

  else if(goalVal < potVal) // we need to tune down 

  { 

    //Serial.println("Tune down"); 

    digitalWrite(motora1, LOW); 

    digitalWrite(motora2, HIGH); 

    digitalWrite(motorctrl, HIGH); 

  } 

} 

 

void getFrequency() // has to look at the string and try to measure its frequency, 

compare it to the desired, and change the equasions 

{ 

  switch(freqState) 
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  { 

    case 0: 

      if(analogRead(pickPin) >= threshold) 

      { 

        waveCount = 0; // this is how many times count has incrimented in between 

peaks 

        lastCount = count; // this is the value of count when the loop ran last 

        for(int i=0; i++; i<sampleSize) 

        { 

          sampleSet[i] = 0; 

        } 

        freqState = 1; 

      } 

    break; 

    case 1: 

      if(count != lastCount) 

      { 

        //Serial.println("We have counted up by "); 

        //Serial.println(count - lastCount); 

        waveCount += count - lastCount; 

        lastCount = count; 

        lastValue = value; 

        value = analogRead(pickPin); 

        //Serial.println("waveCount is equal to "); 

        //Serial.println(waveCount); 

      } 

      if(lastValue < threshold && value >= threshold) // if we sense a rising edge 

      { 

        float checkFreq = 2 * (float)sampleRate / (float)(waveCount + countOffset); 

        //Serial.println(checkFreq); 

        waveCount = 0; 

        if((checkFreq > (minFreq - allowedError)) && (checkFreq < (maxFreq + 

allowedError))) // make sure the frequency we measured is possible 

        { 

          //Serial.println("use it"); 

          for(int i=0; i<sampleSize-1; i++) 

          { 

            sampleSet[i] = sampleSet[i+1]; 

          } 

          sampleSet[sampleSize - 1] = checkFreq; 

          int goodData = 1; 

          for(int i=0; i<sampleSize-1; i++) 

          { 

            for(int j=i+1; j<sampleSize; j++) 

            { 

              if((sampleSet[i] > sampleSet[j] + allowedError) || (sampleSet[i] < 

sampleSet[j] - allowedError)) 

              { 

                goodData = 0; 

              } 

            } 

          } 

          if(goodData) 

          { 

            float frequency = 0; 
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            for(int i=0; i<sampleSize; i++) 

            { 

              frequency += (sampleSet[i] / sampleSize); 

            } 

            if((frequency > (lastFreq + allowedError)) || (frequency < (lastFreq - 

allowedError))) 

            { 

              Serial.println(frequency); 

              lastFreq = frequency; 

              adjustCurve(frequency, analogRead(potPin)); 

              freqState = 0; 

            } 

          } 

        } 

      } 

    break; 

  } 

} 

 

void adjustCurve(float frequency, float potVal) 

{ 

  Serial.print("Old constants: "); 

  Serial.print("A = "); 

  Serial.print(bestFitCurveA,6); 

  Serial.print("  B = "); 

  Serial.println(bestFitCurveB,6); 

  // Creates two arrays of  + 1 length and fills it with sampleNum evenly distributed 

points along the best fit curve of the given string 

  float f[sampleNum]; 

  float x[sampleNum + 1]; 

  float y[sampleNum + 1]; 

  for(int i=0; i<sampleNum; i++) 

  { 

    f[i] = lowestFreq + (highestFreq - lowestFreq) * i / (sampleNum - 1); 

    x[i] = f[i] * f[i]; 

    y[i] = bestFitCurveA * x[i] + bestFitCurveB; 

  } 

  // This adds the most recent data point to the arrays 

  x[sampleNum] = frequency * frequency; 

  y[sampleNum] = potVal; 

  // Now we create a new best fit curve from the evenly distributed samples and the 

newest point 

  float xbar = 0; 

  float ybar = 0; 

  float xybar = 0; 

  float x2bar = 0; 

  float n = sampleNum + 1.0; 

  for(int i=0; i<sampleNum + 1; i++) 

  { 

    xbar += x[i] / n; 

    ybar += y[i] / n; 

    xybar += x[i] / n * y[i]; 

    x2bar += x[i] / n * x[i]; 

  } 

  // Then we update the Values 
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  bestFitCurveA = (xybar - xbar * ybar) / (x2bar - xbar * xbar); 

  bestFitCurveB = ybar - bestFitCurveA * xbar; 

  Serial.print("New constants: "); 

  Serial.print("A = "); 

  Serial.print(bestFitCurveA,6); 

  Serial.print("  B = "); 

  Serial.println(bestFitCurveB,6); 

} 
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Appendix B: Circuit Board Schematics 
Potentiometer Board 
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Pickup Board 
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Motor Board 
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Appendix C: Parts List 
Part Quantity Link to Purchase 

80/20 Framing (72") 2 https://www.amazon.com/dp/B001F0K4KA 

80/20 Framing L 
Mounting Bracket 

10 http://www.mcmaster.com/#47065t236/=14gidh2  

Acrilic Sheet 1 https://www.amazon.com/dp/B006U1JN0Q/ref=biss_dp_t_asn  

Brushed Motor 10 https://www.pololu.com/product/3065  

Encoder (2) 5 https://www.pololu.com/product/3081  

Motor Mount (2) 5 https://www.pololu.com/product/1599  

Spring 10 http://www.centuryspring.com/compression-spring-71421.html 

Potentiometer 10 
http://www.mouser.com/ProductDetail/ALPS/RS08U111Z001/?qs
=sGAEpiMZZMtC25l1F4XBUwVi5%252bD8WO2jauozwkhrepU%3d 

Tuning Machines (6) 2 https://www.amazon.com/dp/B00EB11OHC 

Tuning Machine - 
Motor Shaft Adapter 

10 https://www.amazon.com/dp/B00OK6DQ60  

Shaft 3 https://www.amazon.com/dp/B0045DUX5A 

Shaft Mount 6 https://www.adafruit.com/product/1182  

Ball Bearings (10) 3 https://www.amazon.com/dp/B002BBICBK  

Arduino mega 1 
https://store-usa.arduino.cc/products/arduino-mega-2560-
rev3?utm_source=redirects&utm_medium=store.arduino.cc&utm
_campaign=303_Redirects 

Multiplexer 1 https://www.sparkfun.com/products/9056  

H-Bridge Chip 5 
http://www.mouser.com/ProductDetail/Texas-
Instruments/SN754410NE/?qs=sGAEpiMZZMtYFXwiBRPs07TIpCam
zEu5 

Size 0 Machine Screw 
1" 

40 https://www.mcmaster.com/  

Size 0 Machine Screw 
1/2" 

10 https://www.mcmaster.com/  

Size 0 Nut 50 https://www.mcmaster.com/  

Size 0 Washer 50 https://www.mcmaster.com/  

Size 0 Lock Washer 50 https://www.mcmaster.com/  

Size 8 Machine Screw 
1" 

6 https://www.mcmaster.com/  

Size 8 Nut 6 https://www.mcmaster.com/  

Size 8 Washer 6 https://www.mcmaster.com/  

Size 8 Lock Washer 6 https://www.mcmaster.com/  

Size 8 Rubber 
Washer 

12 https://www.mcmaster.com/  

https://www.amazon.com/dp/B001F0K4KA
http://www.mcmaster.com/#47065t236/=14gidh2
https://www.amazon.com/dp/B006U1JN0Q/ref=biss_dp_t_asn
https://www.pololu.com/product/3065
https://www.pololu.com/product/3081
https://www.pololu.com/product/1599
http://www.centuryspring.com/compression-spring-71421.html
http://www.mouser.com/ProductDetail/ALPS/RS08U111Z001/?qs=sGAEpiMZZMtC25l1F4XBUwVi5%252bD8WO2jauozwkhrepU%3d
http://www.mouser.com/ProductDetail/ALPS/RS08U111Z001/?qs=sGAEpiMZZMtC25l1F4XBUwVi5%252bD8WO2jauozwkhrepU%3d
https://www.amazon.com/dp/B00EB11OHC
https://www.amazon.com/dp/B00OK6DQ60
https://www.amazon.com/dp/B0045DUX5A
https://www.adafruit.com/product/1182
https://www.amazon.com/dp/B002BBICBK
https://store-usa.arduino.cc/products/arduino-mega-2560-rev3?utm_source=redirects&utm_medium=store.arduino.cc&utm_campaign=303_Redirects
https://store-usa.arduino.cc/products/arduino-mega-2560-rev3?utm_source=redirects&utm_medium=store.arduino.cc&utm_campaign=303_Redirects
https://store-usa.arduino.cc/products/arduino-mega-2560-rev3?utm_source=redirects&utm_medium=store.arduino.cc&utm_campaign=303_Redirects
https://www.sparkfun.com/products/9056
http://www.mouser.com/ProductDetail/Texas-Instruments/SN754410NE/?qs=sGAEpiMZZMtYFXwiBRPs07TIpCamzEu5
http://www.mouser.com/ProductDetail/Texas-Instruments/SN754410NE/?qs=sGAEpiMZZMtYFXwiBRPs07TIpCamzEu5
http://www.mouser.com/ProductDetail/Texas-Instruments/SN754410NE/?qs=sGAEpiMZZMtYFXwiBRPs07TIpCamzEu5
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
https://www.mcmaster.com/
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M2 Machine Screw 
3/4" 

40 https://www.mcmaster.com/  

M2 Nut 40 https://www.mcmaster.com/  

M2 Washer 40 https://www.mcmaster.com/  

M2 Lock Washer 40 https://www.mcmaster.com/  

M2 Rubber Washer 80 https://www.mcmaster.com/  

M3 Machine Screw 
3/4" 

20 https://www.mcmaster.com/  

M3 Machine Screw 
1.5" 

30 https://www.mcmaster.com/  

M3 Nut 50 https://www.mcmaster.com/  

M3 Washer 50 https://www.mcmaster.com/  

M3 Lock Washer 50 https://www.mcmaster.com/  

M3 Rubber Washer 100 https://www.mcmaster.com/  

laser diode (10) 1 https://www.amazon.com/dp/B01EL7QZCE 

photoresistor (20) 1 https://www.amazon.com/dp/B00AQVYWA2  
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