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Abstract

Consider a Banach space that contains n cones. Decomposition multi-valued
mapping describes all decompositions of a given element on addends, such that
addend 7 belongs to the i-th cone.

Decomposition mapping arises in different fields of mathematics and its applica-
tions. One of the main area of application is mathematical economics.

This thesis consists of three chapters. The first part of Chapter 1 contains some
preliminary results. Properties of decomposition mapping are investigated, and a
sublinear function closely related to this mapping is introduced and studied in the
rest of this chapter.

In Chapter 2 we study conditions that provide the additivity of the decomposition
mapping. For this purpose we introduce and study the Riesz interpolation property
and lattice properties of spaces with respect to several preorders. The notion of
2-vector lattice is introduced and studied. Theorems that establish the relationship
between the Riesz interpolation property and lattice properties of the dual spaces
are given.

In Chapter 3 the notion of the weakly efficient point is introduced (by means
of the decomposition mapping). The existence problems are elaborated and some
examples are given.
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Preface

1. The goal of this research is to study general cone decomposition. Let us explain
the matter of the problem.

Consider n convex cones Ki,...,K, in a vector space E with n > 2. It is
possible that some of these cones coincide. Let L = > "  K; be the Minkowski
sum of these cones. A collection of elements z; € K;, 1 = 1,...,n is called the

decomposition of an element € L with respect to the collection of cones (/)P
ifz =z +xy+ ... +x,. We are mainly interested in the totality of all possible
decompositions for all vectors x € L. In other words we shall study the set-valued
mapping o defined on L by

O(x):{(mla---;mn)3zxi:$, IiEKi,izl,...,n}.

=1

The mapping o is called the decomposition mapping with respect to cones K, . . ., K.
We can describe this mapping in the following way. Consider the space £™ and the
operator of summation A : E™ — E defined by

Az, .., Zn) = ixz
i=1

Let K = K|, x ... x K, C E™ and let Ax be the restriction of A to K. Then
Ak is the linear operator defined on K and mapping onto L = Zle K;. It follows
directly from the definition of the decomposition mapping that o(z) coincides with
the set-valued mapping Ay’ inverse to A.

2. Decomposition mapping arises in different fields of mathematics and its appli-
cations. The situation when all cones K, ..., K, coincide was mainly investigated.
We mention here only two fields where the decomposition mapping plays a signif-
icant role. One of them is the theory of cones in Banach spaces. Some numerical
characteristics of such a cone K can be calculated with the help of decomposition
mapping o defined for the totality of cones K1, ..., K,, where K; = K for all i (see
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[37, 33] for details). One of the important but rarely studied problems, related to
cones, is the problem of how to define an operator of the projection of an arbitrary
element of a space on a cone [12) 19, 26, 38]. Projections on a system of cones
is also of great interest (see [26, 25]). Such projections can be studied by means
decomposition mapping with respect to the system under consideration.

The other field of application of the decomposition mapping is mathematical
economics. Assume that we have an economy with n agents and m products. Let
E = R™ and K coincide with the cone R} C R™ of vectors with nonnegative
coordinates. A vector z = (z',...,2™) € R?* describes a certain collection of
products (z7 is the quantity of the product j in this collection.) Having vector z,
agents need to distribute it between themselves, that is to find vectors z;,...,z, €
R such that )7, z; = z. The totality of all such distributions coincides with the
set o(z). The decomposition mapping plays an important role in the study of some
models of economic equilibrium and economic dynamics (see [24] for details). From
an economical point of view it is interesting to consider efficient decompositions of
a given element z, that is, decompositions than are better (in a certain sense) that
the other decompositions of this element. A cone decomposition theory based on
efficiency has been developed by J.E. Martinez Legaz and A. Seeger in [25].

3. We use methods of convex analysis for examination of the decomposition map-
ping. Let K3, ..., K, be cones in the space F and let o be a corresponding decom-
position mapping. Then the graph

grU: {(($17'-~7$n)7y) EETL X EIyeO'(.’El,...,.'L'n)}

is a convex cone, hence o is a convex process (see [30]). In another terminology (see
[32, 23, 24]) o is a superlinear set-valued mapping. The dual theory of superlinear
mappings is well developed. We give an explicit description of dual mapping to
the decomposition mapping and describe its properties. This approach allows us to
discover some interesting properties of the decomposition mapping itself.

4. An important question related to decomposition mapping is to find conditions
that guarantee its additivity. In the simplest case when all cones K; coincide with
a cone K, this property is equivalent to the following: the space E with the order
relation generated by K possesses the Riesz interpolation property. It is of interest
to extend this result to the case of two or more cones. To this end, we introduce
a space and objects defined with respect to several cones which can be viewed as
generalizations of such classical notions as vector lattice, exact upper and lower
bounds, Riesz interpolation property and Riesz decomposition property, Double
Partition Lemma etc. On the whole, the problem on additive decomposition can
be solved in such spaces. We establish the relationship between Riesz interpolation
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property with respect to several cones, and lattice properties of the dual space w.r.t.
the corresponding dual cones.

The lattices with respect to several cones are quite natural from the point of
view of applications to mathematical economics (see 2). Indeed, it is quite natural
to assume that each agent i is interested only in the products with the numbers
from a certain subset J; of the set of induces {1,...,n}. This observation leads to
decomposition mapping with respect to a system of cones K1, ..., K,, where K, is
a face of the cone RT?. It can be shown that decomposition mapping with respect
to such systems is additive.

5. Since the decomposition mapping is multi-valued, it is interesting to find
some special decompositions of a given element. In particular various kinds of effi-
cient conic decomposition are of certain interest (see [25] where some of these notions
are introduced and studied). For certain applications the notion of weakly efficient
decomposition is interesting. We introduce this notion and study it. The exami-
nation of weakly efficient decomposition can be done by means of the technique of
superlinear set-valued mappings. The idea to employ the duality theorems is, of
course, not a new one, however, it seems that in our case the use of such a powerful
tool as superlinear multi-valued mappings can be very productive. The notion of
weak efficiency and the notions of efficiency introduced in [25] are closely related.
Existence of a weakly efficient decomposition is an important question. This exis-
tence can be guaranteed by the conditions imposed on the cones. The cases where
the cones are either solid, or minihedral, or locally compact are discussed here. The
last case is the most attractive and interesting from the point of view of nonsmooth
analysis, especially from the point of view of quasidifferential calculus [10]. Recall
that in this theory the principal tool is the cone of sublinear functions which is, in
turn, locally compact.

It follows from the definition of a weakly efficient decomposition that, choosing
some set from the dual space, one can get different sets of weakly efficient points.
The first idea is to take, as such a set, a weakly* compact set. In the present work
this approach is implemented.

6. The thesis is organized as follows. The work consists of Preface, three chapters
and Bibliography.

The first part of Chapter 1 contains some preliminary results. Properties of decom-
position mapping are investigated, and a sublinear function closely related to this
mapping is discussed in the rest of this chapter.

In Chapter 2 we study conditions that provide the additivity of decomposition map-
ping. We introduce and study the interpolation Riesz property and lattice properties
of spaces with respect to several preorders. The notion of a 2-vector lattice is intro-
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duced and studied. Theorems that establish a relationship between the interpolation
Riesz property and lattice properties of the dual spaces are given.

In Chapter 3 the notion of a weakly efficient point is introduced (by means of
decomposition mapping). The existence problems are elaborated and some examples
are given.



Chapter 1

Decomposition Mapping

In this chapter some results from the theory of cones, superlinear set-valued map-
pings and convex analysis (Section 1) are given; the properties of a set-valued decom-
position mapping are studied (Section 2), an explicit form of its conjugate mapping
is derived, its effective domain is described; and a support function, to a decompo-
sition mapping is examined. (Section 3).

1.1 Preliminaries

1.1.1 Some definitions and results from the theory of cones

Definition 1.1.1. A set K in a vector space E is called conical, if A\K C K for
A > 0. A convex conical set is called a cone.

A conic set K is a cone if and only if
z,2ye K, L, peR, = I+ puy € K.

Definition 1.1.2. A cone K is called pointed if K (|(—K) = {0}, or, equivalently,
K does not contain straight lines.

Every cone K in a vector space F induces a preorder (>k) on E (i.e., transitive
and reflective relation); namely >k vy if and only if z —y € K.

A cone K in a space E is pointed if and only if the relation > is an order
relation (i.e., this relation is transitive, reflexive, and antisymmetric).
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Let a cone K induce an order relation >y in a vector space E, let xz,y € E
and ¥y >k =. Then the set

(z,y) K ::{UGEiyZKUZK.T}:(y—K)ﬂ(CE‘l-K)

is called a conic interval (with the endpoints z,y). Let Q C X. An element u € F
such that z < wu for all z € Q) is called an upper bound of 2. An element v € E such
that z > v for all z € Q is called a lower bound of €.

A set Q € E is called bounded from above (below), if this set has an upper bound
(lower bound, respectively).

A cone K in a ordered space E is called a generating cone, if K — K = E.
The following result is well known (see, for example, [36]).

Proposition 1.1.1. A cone K in a space E is a generating cone, if and only if any
finite subset of E is bounded from above or from below.

Let E be a Banach space. We denote the conjugate to E space by E'. (£
is a Banach space of all linear continuous functions [ defined on E with the norm

12l = supygy<1 (2)-)

Let z € F and [ € E'. Then we denote the value of a linear function at the
element z by either [(z) or [I,z]. This double notation will not lead to misunder-
standing.

Let K C FE be a cone. We denote the conjugate to K cone by K*. By definition,
K*={leE:l(z) >0 forall z€ K}.
Note the space E is a cone. It is clear that E* = {0} # E’. Elements of the cone
K* are called positive functions. (In particular, zero is also a positive function.)

Let E be a Banach space with the order relation generated by a cone K. We use
the following terminology:

A cone K is called solid, if it contains an interior point.

A cone K is called locally compact, if K is closed and every closed bounded subset
) C K is compact. This is equivalent to the following: the set {z € K : ||z| < 1}
is compact; K is weakly locally compact if the set {z € K : ||z|| < 1} is weakly
compact

Now let F be an ordered Banach space. The following two results are well-known.

Theorem 1.1.2. (V. Klee, see for example [7, 34]) Let E be a Banach space and let
a cone K be closed and generating. Then every positive (with respect to K ) function
on E is continuous.
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Theorem 1.1.3. (M.Krein-V.Shmulyan, see for example [34].) If, in Banach space
E, a cone K is closed and generating, then there exists a mnumber v > 0, such
that any x € E can be represented in the form r = uw — v, where u,v € K, and

lull, vl < ~ll]l-

This theorem can be generalized in the following way:

Theorem 1.1.4. (see [2]) In a Banach space E, let two closed cones Ky, K, be
gwen, such that E = Ky + K,. Then there exists a number v > 0, such that every
x € E can be represented in the form

z=1m1+y2 (n € K1,y2 € Ks),
where ||y || < yllzll, lly2ll < vllzll-

We need to extend Theorem 1.1.4 for the case n cones with n > 2. We need the
notion of an ideally convex set for this. The following definitions and results can be
found in [17]

A subset U of a Banach space E is called ideally convez if for each bounded
sequence ,, € U and each sequence of positive numbers «,, such that > o, =1 it
follows that ) anz, € U. It is known that each closed convex set is ideally convex,
the sum of a finite number of bounded ideally convex sets is also ideally convex and
the intersection of an arbitrary family of ideally convex sets is also ideally convex.

Let U be a convex set. Recall the a point a € U is called an algebraic interior
point of U if for each z € E there exists A > 0 such that a + Az € U. Let 0 € U.
Then 0 is an algebraic interior point of U if and only if (J,,, AU = E.

The following result holds (see [17]).

Theorem 1.1.5. (E. Lifshitz). Let U be an ideally convez set in a Banach space
E. Then each algebraic interior point of the set U is its interior point.

We now present a generalization of Theorem 1.1.4.

Theorem 1.1.6. Let E be a Banach space that contain closed cones Ki, ..., K,,
such that E = Ky, + ...+ K,,. Then there exists a number v > 0, such that every
x € E can be represented in the form

$:y1+yn (y‘ieKivi:lw“)n):

where ||yl <llz|l, it =1,...,n.
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Proof. Let B the unit ball of E. Consider the sets U; = K; N B, ¢ = 1,...,n.
These sets are closed and convex, hence ideally convex. Since the sets U; are also
bounded it follows that their sum U = U; + ... + U, is also ideally convex. Let
z € E. Since E = K; + ...+ K, it follows that there exists 1 € K1,...,z, € K,
such that z = Y7 | z;. Let m = max;||z;||. Then z; € mU;. It follows from this
that ||z|]| < n-m, so z € n-mU. We proved that E = |J,,,U. This means that
0 is an algebraic interior point of U. Applying Theorem 1.1.6 we conclude that
0 € int U, therefore there exists n > 0 such that nB C U. Let z € E, z # 0. Then

HT’THan C U, hence there exists elements z; € U; such that x =z, +... + z,. We

have z; € K; and ||z;|| < 1. Putting v = 1/n we obtain the desired result. O

Now we will discuss some results concerning normal cones.

Definition 1.1.3. A cone K in a Banach space E is called normal, if inf{||z + || :
z,y € K, ||z = |lyll =1} > 0.

Theorem 1.1.7. (see for ezample [34, 36, 16]) Let E be a Banach space with a
norm || - ||. Then the following conditions are equivalent:

1. K is a normal cone;

2. the norm ||-|| is semi-monotone: there exists a constant v such that inequalities
0<z <y imply ||zl <]yl

3. for each x € K the conic interval (0,z)k is bounded in the normed space E
(that is sUP ek <z Y] < +00).

Theorem 1.1.8. (see for example [34, 36, 16]) If in a Banach space E a cone K is
normal, then in E there exists a norm, equivalent to the gien one, and monotone
on the cone K.

Theorem 1.1.9. (M.Krein, see for example [34, 36, 16]) A cone K in a Banach
space E is normal if and only if K* is a generating cone in E*.

Theorem 1.1.10. (T.Ando, see for exzample [34]) If E is a Banach space with a
closed cone K, then the following conditions are equivalent:

1. K 1s a generating cone;

2. K* 1s a normal cone.
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Let E be a Banach space and K C E be a closed cone. We need the following
definitions.

1) A function f € E' is called uniformly positive on a closed cone K C E if there
exists a constant § > 0 such that f(z) > d||z| for all z € K.

2) A cone K is called plastered (see [16]) if there exists a pointed cone K; C E
and a number v > 0 such that = + v||z||B C K; for each z € K \ {0}.

Theorem 1.1.11. (see for example [16]) Let E be a Banach space with the unit ball
B and a cone K. Then the following statements are equivalent:

1. K 1is a plastered cone;
2. there exists a function f € E' which is uniformly positive on K ;

3. in E there exists a norm, equivalent to the given one and additive on the cone
K -

7

4. the cone K has a bounded (with respect to a norm) base Q (i.e., every x €
K\ {0} admats the unique representation x = oy, where o > 0, y € Q, and
0¢clQ).

1.1.2 Sublinear functions and superlinear multi-valued map-
pings

Let E be a vector space. A function p : E — Ry, = (—00, +00] is called sublinear,
if it is subadditive:

p(z1 + 22) < p(@1) + p(T2), T1,z2 € E
and positively homogeneous:
p(Az) = Ap(z), z€E, A>0.

The function —oo identically equal to —oo also will be considered as sublinear.

If p is a sublinear function and |p(0)| < 4+oo then p(0) = 0. Indeed, it follows
from p(0) = p(2 - 0) = 2p(0).

The set domp = {z € F : |p(z)| < +oo} is called the effective domain of p.

All results presented in the rest of this subsection are valid for Hausdorft locally
convex spaces. Since we will use these results only for sublinear functions and



Chapter 1. Decomposition Mapping 6

superlinear mappings defined on Banach spaces, we present only versions of these
results for Banach spaces here.

Let E be a Banach space. For a sublinear function p : F — R, the set
Op={feFE : [fz] <p(z) z€E}

is called the support set of p. Let p : E — R, o, = (—00, +00] be a sublinear function
and z € dom p. The set

Op(z) ={f €0p : [f,z] =p(z), z € E},
is called the subdifferential of p at the point x.

It follows from these definitions that dp = dp(0). Subdifferentials (in particular
support sets) of a sublinear functions are w*-closed convex subsets of E’.

Let p(z) = —oo for all x € E. Then the support set dp is empty. The following
result by L.Hermander, (see for example [9, 20, 4]) can be considered as a corollary
of Hahn-Banach theorem:

Theorem 1.1.12. Ifp: E — Ry = (—00,400] is a sublinear lower semicontinu-
ous function, then the support set Op is not empty and

p(z) =sup{[f,z] : f€bp} (z€E).

A mapping ¥ : p — Op is a bijection of the set of all sublinear lower semicon-
tinuous functions on the family of all closed convex subsets of the space E’. This
mapping is called the Minkowski duality (see [20] for details).

If a sublinear function p : £ — R, is continuous then this function is either
identically +oo or finite. Later on we will consider only proper sublinear functions,
that is functions p such that domp = {z : p(z) < +oo} is nonempty. It follows from
this that domp = E for each continuous sublinear function.

If a sublinear function p is continuous, then its support set dp is a w*-compact
set (see [9, 14]). A sublinear function p is continuous if and only if p is bounded,
that is

Ipll == sup |p(z)| < +o0
lall<1

The number ||p|| is called the norm of p. We have
p(z) —p@)| < lplllz —9ll,  zyek
Thus if domp = E and p is bounded then p is Lipschitz continuous.

In a Banach space F, let an order relation > be introduced by means of a cone
K. A function p : E — R, is called monotone, if the inequality z > y (z,y € L)

implies p(z) > p(y).
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Proposition 1.1.13. (see for ezample [32]) Let p be a sublinear, lower semicontinu-
ous function, defined on a Banach space E2. Then the monotonicity of p is equivalent
to the inclusion Op C K*.

The following definitions were introduced in [32].

A subset Q of a cone K is called normal with respect to a cone L C E, if
cd((—L)N K) = Q. The intersection of all normal sets with respect to a cone L,
containing the subset Q of a cone K is called the normal hull (with respect to L)
of © and is denoted by Nh(Q). If L = K then we omit the words ”with respect to
L” in the definition of a normal set and the normal hull.

Let E4, E5 be Banach spaces.

A multi-valued mapping ¢ : By — 272 is called a convez process, if:

1. ¢ is superadditive, that is o(z +v) D ¢(z) + ¢(y), (z,y € E1);
2. ¢ is positively homogeneous, i.e. p(Az) = Ap(z), (z € E1, A > 0);
3. its effective domain is nonempty, i.e. dom p = {z € Ey : ¢(z) # 0} # 0;

4. 0 € ¢(0).
In other words, ¢ is a convex process if and only if the graph

gro ={(z,y) € E1 x By 1 y € p(z)}

of the mapping ¢ is a cone in E; X E; and (0,0) € gro.
Sometimes (see for example [23, 32, 24]) convex processes are called superlinear

multi-valued mappings. It is more convenient for us to use this terminology.

A set-valued mapping ¢ : B, — 272 is called closed if its graph is a closed set.
In other words, ¢ is closed if (zx — z,yx € ©(zk),yx — ¥) = y € p(z). If pis
a positively homogeneous mapping then dom ¢ is a conic set, if ¢ is a superlinear
mapping then dom ¢ is a cone. Note that the effective domain of a closed mapping
is not necessarily closed.

A positively homogeneous mapping ¢ with dom ¢ = K is called bounded if
ol == sup{llyll : y € p(z), z € K, ||lz|| <1} < +oo0.

Theorem 1.1.14. Let ¢ : By — 22 be a closed positively homogeneous mapping,
the cone K := domp be locally compact and ¢(0) = {0}, then ¢ is bounded.
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Proof. Assume that |¢|| = +oco0. Then there exist sequences (zj) and (yx) such that
o € K, |zxl| <1, yk € o(zr), |yl = +oo.

e Lk Yk

lyell” [

Then y;, is a bounded sequence. Since K is a locally compact cone we can assume

without loss of generality that there exists ¥’ = limy, and ¥ € K, ||y/|| = 1. Since ¢

is a positively homogeneous mapping, we conclude that y; € (). Since z}, — 0,
v, — v and ¢ is a closed mapping, we have y’ € ¢(0), which contradicts the equality
¢(0) = {0}. O
Proposition 1.1.15. Let a be a superlinear mapping defined on a cone L C E;
and mapping into Ey with weakly compact images. Let for all g € EY the function
py defined by py(T) = Supyeqr)[9,y] be linear. Then a is an additive mapping:
a(z1 + z2) = a(z1) + a(xz) for all 1,25 € L.

o .
Ty = Y =

Proof. . Assume, on the contrary, that there exist vectors z;,zo € L such that
a(z1+x2) # a(z1) +a(z2). Since a is superlinear we have a(z1 +2z2) D a(z1)+a(z,).
Hence there exists y € a(x, + z2) such that y ¢ a(z1) + a(z2). The set a(z;) + a(z2)
is convex and weakly closed. Then there exists g € E’ such that
l9,y] > sup{lg, 2] : z € a(z1) + a(z2)}
sup{[g, 2] : z € a(z1)} + sup{[g, 2] : z € a(z,)|}}
= py(z1) + py(z2)-

It follows from this that

py(z1 + x2) = sup{[g, 2] : z € a(z1 + 22)} = [9,4] > py(21) + Py(22).
This contradicts the linearity of p,. O

Definition 1.1.4. The multi-valued mapping ¢* : Ej — E} is called dual to a
superlinear mapping ¢ : By — 272 if

©*(9) ={f € B :[f,z] <[g,9], Vz € dom g, y € p(z)}.

==l

The mapping ¢’ = (¢*)~! is called conjugate to .

The following duality theorem holds:

Theorem 1.1.16. (see [23, 32]) If ¢ is a superlinear mapping and the sublinear
function py(z) = inf{[g,y] : v € p(z)} is lower semicontinuous for all g € E', then
for all x € dom ¢, g € dom ©* the following holds

sup{[f,z] : fe€ ¢ (9)} =inf{[g,y] : y € p(zx)}, Ipy=¢"(9)
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1.2 Decomposition mapping and its properties

1.2.1 Decomposition mapping and its conjugate

Let E be a Banach space and let E* = E x E... X E be its cartesian product.
We assume that E™ is equipped with the sum-norm: if X = (z1,...,z,) € E"
then || X| = >, |lzi||. By £/, (E™)" we will denote the dual spaces to E and E",
respectively. Note that (E™)" = (E')". For f € E we have | f|| = sup, < |f(z)|. If
F=(f1,--.,fn) € (E™) we have

|Fll = max |I£il

In particular, if f; =...= f,, ;== f then ||F|| = ||f||. In the space E let us consider
the totality of convex closed cones Ki, Ko, ..., K,, and in the space E™ consider
their cartesian product K = K; X K5 X --- X K. The dual cones to Ky, K, ..., K,
and K will be denoted by K7, K3,..., K, and K™, respectively. It is clear that
K*=K;xK;x---x K.

We also use the following notation: L = K; + ...+ K,,. It is well-known and
easy to check that L* =, K}

In the following, let the cone K induce an order in the space E™.

Definition 1.2.1. A set-valued mapping ok, .k, : £ — 2E" defined by

[ {X=(z1,--,zn) €K : Y =z} zEL
O-Kly...,Kn(x) = { @ T ¢ L
is called decomposition mapping with respect to cones K;, ..., K,, and the elements

of the set ok, ,. Kk, are called the decompositions of x.

For the sake of simplicity we denote ok, .. x, by o if it does not lead to confusion.
It is clear that dom o =L := Y | K;.
Proposition 1.2.1. A decomposition mapping o : E — 2F" is a closed superlinear

mapping.

Proof. Let ¢,y € dom ¢ and A > 0.
a) Let us prove the inclusion o(z +y) D o(z) + o(y).
Take an element Z € o(z) + o(y). Then there exist elements

X =(21,--,Zn) €a(x), Y =(Y1,---,Yn) €(y)
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such that Z = X + Y, and by the definition of o we have
n n
mivyiEKi, i:1727"')n7 in:ma Zyzzy
i=1 i=1

Since z; +v; € Ki, i =1,2,...,n,and Y, (z; +y) =z +vy, then X +Y €
oz +Yy).

b) The positive homogeneity can be deduced by the following implications

X =(Z1;5-:38) €0(dz) &= ;e Kyi=1,2...,n, and in:)\z

=1

— %EKi, 1=1,2,...,n, and ;%zz = %Ea(x) <~ X € do(x).

c) Let (X*) and (z*) be sequences in E™, E respectively, and
Xt X, zF -2, and XFfeo(@F), k=1,2,... .
Since K is a closed cone, it follows that the mapping o is closed. O

Remark 1.2.1. The mapping o possesses a stronger property than the property to
be closed. Indeed if X¥ — X then z¥ — z; for all i and hence Zf T — Zf z;. Thus
the following holds: if X* — X and X* € o(z*) then there exists limz* = z and
X €o(x).

Recall (see Definition 1.1.4) that a set-valued mapping ¢* : (E')" — 2F is called
dual to ¢ : E — 2F" if

o (G)={feF : [fz]<[G,X], Vz, X € p(z)}.

Let us give a proof of the superlinearity of the dual mapping.

Proposition 1.2.2. Let ¢ : E — 2E" be a set-valued mapping. Then the dual
mapping p* is superlinear.

Proof. First, let us show the superadditivity of ¢*, i.e.
¢"(G1 + G2) D ¢*(G1) + ¢*(Ga),

where G, Gy € dom o*.
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Let f € ¢*(G1) + ¢*(G2), then there exist elements f1, f» € E such that f; €
¢*(G1), fa € 9*(Gz) and fi + fo = f.

The definition of the dual mapping implies

[f1,z] < [G1, X], [f2,2] < [G2, X] Vz,X € ¢(z).

Summing these two inequalities we obtain
[fi+ f2,z] < [G1+ Gq, X],

or
[f,z] < [G1+ G2, X] Vz,X € p(z),
ie. f€p*(Gr+Ga).
Now let f € ¢*(AG), A > 0, then

[f,z] < [MG, X],

or

[f/A\z] <[G,X] Vz,X € o(z).

Thus, f/X € ¢*(G) and ¢*(AG) = Xp*(G). O

1.2.2 The description of the mapping o*

In this subsection we give an explicit description of the mapping ¢* dual to the
decomposition mapping ok, ..k, = o. Put

K =dom o*. (1.2.1)

It follows from the superlinearity of o* that the set K is a convex cone.

The following theorem allows one to get an explicit form of the mapping ¢* dual
to o.

Theorem 1.2.3. The equality

n

o"(G) = ((9: — K7)

=1

holds for all G = (g1,...,9x) € K.
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Proof. Let f € 0*(G) (G € K), then by the definition of o* we have

[f,z] < [G,X] Vzedomo, X € o(z). (1.2.2)

For every i = 1,2,...,n, and any z; € K; put X, = (0,...,0,%;,0,...,0) € E™
It is clear that X, € o(z;), and (1.2.2) implies that
[f,.’l:z] < [G,le] VCIJ, EK,L', 1= 1,2,...,7’L,

or

[f)xz]S[gzaxz] VmieKia 7;:1727"'7’"’7
1.e.

[f =952 <0 Vz€K;, i=1,2,...,n

It follows from the definition of the conjugate cone that

I~ €=Kjy

thatis feg — K}, i1=1,2,...,n.

This means that

n

fe(e— K.

=1

Conversely, let the last inclusion hold for an element f. Then g; — f € K}, i =

1,2,...,n, and the definition of the conjugate cone K; implies that for all z; €
K;, i=1,2,...,n, we have

OS[gz_f,xz], or [fvxi]g[giaxiLi:1a2a"'an'

Summing over ¢ from 1 to n we get

n

Z[f,xi] < zn:[gi,xi] Ve, € K, 1=1,2,...,n,

i=1 i=1
or
n n
1) =] <) lgne] Vme Ky, i=1,2,...,n (1.2.3)
=1 =1
Consider now an arbitrary z € dom ¢ and z; € K;, @« = 1,2,...,n such that
g By =% Lt X = (8-

., Zy). It follows from (1.2.3) that
[f,2] <G, X] Vz,X € o(),
which is equivalent (by definition) to the fact that f € o*(G).
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1.2.3 Domain of the mapping o*

It will be shown in this subsection that the cone X = domc* is the sum of two
summands, one of which can be obtained by means of the following assertion.

Proposition 1.2.4. The equality
K= ()7 (0)
is valid. (Recall that K = Ky X ... x Kp.)

Proof. In the view of Theorem 1.2.3 we have
G e (0")70) <= 0€0*(G) < 0e( g — K7)
i=1
<= 0€¢g— K/, Vi <<= —g,€-K/Vi <<= g €K/ Vi < Ge K"
|

Corollary 1.2.5. The inclusion K* C KC holds.
Proof. If G € K*, then 0 € ¢*(G), and therefore G € K. O

Consider the set .
M={XeE" : > z=0}
i=1

Let M™ be the orthogonal subspace to M:
M ={Ge (E") : [G,X]=0 VX e M}

(See, for example, [14] where properties of M* are discussed.) Consider also the
diagonal

D={G=(9,9,-.--,9) : g€ E'}
of the space (E')™. It is clear that D is w*-closed in (E™)" = (E')". In the sequel an
element (g,g,...,9) € D will be denoted by g".

Proposition 1.2.6. The subspaces M* and D of the dual space (E™) coincide.

Proof. Let G = g" € D, then for every X € M we have

n n

[G7X] = Z[gvrz] = [gvzzz] =0,

=1 =1
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ie. G € M* and hence D C M*.
Now let us prove the opposite inclusion.

Suppose, there exists an element G € (E')" such that
G e M*\ D.

Since D is w*-closed and convex we can apply the separation theorem which implies
the existence of X = (Z;) € E™ such that

[G,X] > sup[¢", X] = S Z[g, AEDYIEAR (1.2.4)

g€t geEE'’ i
The following cases are possible:

1. if. X ( € M, then the right-hand side of the last inequality is equal to zero, and
[G, X] > 0. On the other hand, [G, X] = 0, since G € M*;

2. if X ¢ M, then Y, Z; # 0 hence

sup(g”, X] = +o00
geEE’

and we have [G, X| > +o00, therefore the both cases lead us to a contradiction.

O
Remark 1.2.2. The following relation holds for the sets K and M

K (M =0a(0).
Proposition 1.2.7. For every g" € M* the equality
o (g")=g—[)K;
i=1
is valid.

Proof. Since the equality

n n

[g,x] = [gvzx’i] = Z[-%xi] = [gA7X]

=1 i=1
holds for all z € dom o, X = (z1,...,2,) € o(z) and every g € E’, then

g€ a*(g"), Vg e FE".
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From Theorem 1.2.3 it follows that
n
a*(0) =~ &7,
=1
then using the superlinearity of the dual mapping o* we obtain the relations
o*(g") = o*(g" +0) D o*(¢") + 0 (0) D g— [ K.
i=1

These inclusions imply that o*(g") # @ for every g" € M*. If f € o*(¢9") then
(see Theorem 1.2.3) g — f € Kf, i =1,...,n, and hence

g—fEﬂK;‘ and ng—ﬂK;*,
i=1

=1

Corollary 1.2.8. M* C K.

Indeed, if G € M* = D then there exists g such that G = g". Since o*(g") is
nonempty it follows that G € domo* = K.

Corollary 1.2.9. If g" € M*, G € K* then
o* (" +G) = g+ o*(G).

Proof. The inclusion f € g + 0*(G) can be rewritten as
B f-ge( oK)
i=1

The last inclusion is equivalent to the following
f-g€g—K;, oo feg+g—K! i=12...,n,
le. .
fe(o+a-K)=0"+0).

=1

O

The following theorem provides us with the explicit form of the effective domain
of the dual mapping o*.
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Theorem 1.2.10. The cone K = domoc™ has the form
K=K"+M"

Proof. From Corollaries 1.2.5 and 1.2.8 it follows that K* C K and M* C K. Since
KC is a convex cone, then K* + M* C K.

Conversely, let an element G = (g1,...,9,) € K and let f € 6*(G) =i, (9: —
K}). Then f € g;— K}, i=1,2,...,n, hence

gef+K,  i=1,..n (1.2.5)

Due to Proposition 1.2.6, an element f* = (f, f,..., f) belongs to M*. Then
(1.2.5) can be expressed in the form G € f* + K*, but f* € M* and therefore

Ge M*+ K*.

Now we will prove several propositions to be used later in this work.

Proposition 1.2.11. For the inclusion f € 0*(G) (G € K) to be valid, it is neces-
sary and sufficient that G — f* € K*.

Proof. Due to Theorem 1.2.3 f € 0*(G) if and only if f € (;_,(¢9; — K;) which is
equivalent to G — f* € K*. O

Proposition 1.2.12. Let z € domo :=L =3 . | K; and let G € K = domo*. If
X = (x1,...,2,) € 0(z), f € *(G), then [G — f,X] >0 and [¢; — f,z;] > 0 for
(i=1,...,m).

Proof. 1t follows directly from the equality [f,z] = [f", X] (X € o(z)) and the
definition of the dual mapping. Indeed, due to this definition we have

[G_fA’X] = [G7X]—[fA’X] =[G, X] - [f,z] 2 0.

In view of Theorem 1.2.3 we have f — g; € — K for all ¢. Since z; € K; it follows
from this that [g; — f,z;] > 0 for (i =1,...,n). O

Proposition 1.2.13. If the elements X = (z1,...,%,) € o(z), f € 0*(G) (z €
dom o, G=(g1,...,9s) € K) are such that [f,z] = [G, X] then

(g:— f,z] =0 i=1,...,n.
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Proof. Since X = (z1,...,%,) € o(z) then for f € E’ the following equalities are
valid:

n n

[f,2] = [f:E‘Tz] :Z[f,xi] = [fA:X]'

i=1 i=1
We have also [f, z] = [G, X], therefore [, X] =[G, X] or

[f*— G, X] :Z[f—gi,flii] =0.

i=1

Since f € 0*(G), then Proposition 1.2.12 implies that all terms of the last sum
have one and the same sign, then [f — g;,z;] =0 (i =1,...,n). O

Proposition 1.2.14. If the elements X € o(z), f € 0*(G) (z € dom 0, G € K)
are such that [f,z] = |G, X]| and G = H + ¢", where H € K*, g" € M*, then

Proof. From Corollary 1.2.9 it follows that

o*(¢"+H)=g+d*(H).

Since f € 0*(¢" + H), then f — g € 0*(H). As for X € o(z), the equalities
[H—I—g/\,X] = [HaX] £ [gAv*X] = [H’X] + [g’x]

take place, and [H + ¢", X| = [f, z] then [f — g, 2] = [H, X]. O

1.2.4° Closedness of K for n =2

The cone K is not necessarily closed. We describe conditions which guarantee that
KC is closed only for n = 2. We need the following Lemma.

Lemma 1.2.15. Letn = 2. Then

’C == {(hl,h2) : hl — h2 € K;f —K;}

Proof. Let Ko = {(h1,h2) : hy — hy € K} — K5}, First we show that K C ICo. Let
(h1, hy) € K. Since
K=M+K =D+ (K x KJ)
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it follows that there exist f € B’ and [; € K}, i = 1,2 such that hy = f + {1, hy =
f +l2. We have hy — hy =13 — lp € Kf — K3, hence (hy, hy) € Ko. We have proved
that K C Ky. We now prove the opposite inclusion. Let (hy, hy) € K. Then there
exist [; € K, and Iy € Kj such that hy — hg =11 —ls. Let f:=hy — 11 = hy — ls.
Then hy = f + 1y, hy = f + I3, hence

(hi,ho) = (f, f) + (i, 1) € D+ (K x K}) =K.
O

Theorem 1.2.16. Let n = 2. Then the cone K is closed if and only if the cone
K} — K3 s closed.

Proof. Let Ki — K be closed. Let (h¥ h) € K,k = 1,... and let (h¥,h%) —
(h1, hy). It follows from Lemma 1.2.15 that k¥ —hZ € K7 —Kj. Hence limy, hf —h} =
hi — hy € K; — K3. Applying again Lemma 1.2.15 we conclude that (hy, hy) € K.

Now assume that K} — K3 is not closed. Then we can find a sequence ¥ €
K; — K3, such that there exists [ := limy [* and | ¢ K7 — K;. Let gF € K}, 1=1,2
be sequences such that limy, g¥ = 0. Consider sequences k¥ = gF + ¥ and h% = g5,
k=1,.... Since g8 — gk e K — K3, I* € K; — K3 and K} — K} is a cone it follows
that

hE —hZ =gf — g5+ 1y € KT — K.
Hence (k¥ hE) € Koy = K. We have (h¥,h2) — (1,0). Since | —0=1¢ K; — Kj it
follows that (,0) ¢ Ko = K. Hence K is not closed. O

1.2.5 Dual to the decomposition mapping in the case when
the cone L is normal

In this subsection we consider the dual mapping to the decomposition mapping when
the cones Ky, ..., K, are such that their sum L = Kj + ...+ K, is a normal cone
(see Definition 1.1.3)

Theorem 1.2.17. If the cones Ky, Ko, ..., K, in E are such that 3 | K; = L is
a normal cone, then
K*+ M* = (E™).

Proof. Take an arbitrary element G = (g1,...,9,) € (E™)'. Since L is normal, the
Krein Theorem (see 1.1.9) implies that the conjugate cone L* is a generating cone.
Therefore any finite subset of E’ is bounded from below. In particular, for the set
{g1,...,9n} C E' there exists an element h € £’ such that

i ZL* h7 i:172)"'7n:



Chapter 1. Decomposition Mapping 19

however L* = ()._, K; and hence g; —h € K for all i = 1,...,n which is equivalent
toh€g— K, i=1,2,...,n,or

7

n

he (g — K7).

i=1

In view of Theorem 1.2.3 we have h € 0*(G). Therefore for every G = (g1,...,9n) €
(E™) the set 6*(G) # 0 and domo* := K = (E"), but K = K* + M, which
completes the proof. O

Corollary 1.2.18. . If the cone L is normal then the cone K is closed.

Proposition 1.2.19. If " | K; = L is a normal cone in E then the decomposition
mapping o is bounded, that is, there exists a constant C > 0 such that

I X|| < C|lz|| for each z €L and X € o(x).

Proof. Since L is a normal cone it follows that there exists a constant m > 0
such that the inequalities z >y y > 0 imply |z|| > m|ly||. Let z € L and
X = (z1,...,%,) € o(x). Foreach j =1,...,n we have >, ,.z; € > ,,; K; C L,
hence z —z; € L. We also have z; € K; C L. This means that z > z; > 0, hence
lzll > mlz;|l, s =1,...,n. Since X =377, ||lz;|| we get

n

1X1 = llzsll < izl = Clle].

=1

where C' = n/m. O

Corollary 1.2.20. If Y, K; = L is a normal cone in E then o(0) = 0.

1.3 The support function of the decomposition
mapping o

1.3.1 A support function and its property

In this section we will study the properties of the decomposition mapping ok, ...k, =
o, using the methods of subdifferential calculus.

For every G € (E™) consider the function pg : E — R defined by

pa(z) = Xierclrfz)[G,X] (z € E).
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(Recall that the infimum of the empty set is equal to +oco, therefore pg(z) = +oo for
allz ¢ domo = L := Y | K;. Recall also that we assume that +00+(—00) = +00.)

The function pg is called the support function of the decomposition mapping o
corresponding to the linear function G.

The function pg depends not only on G but also on cones K, ..., K,. We now
indicate this dependence explicitly:

n n
pe(z) = pe k.., (¢) = inf {Z[gi,xi] : Zdii =z:eK,i=1,... ,n} .
=1 =1

Let
4c(T) = qe,k1,.... ko (T) = SUpP {Z[Qiyffi] : Zﬂh =r:rn, €K 1=1,... ,n} ‘
i=1 =1 =
Then
n n
—4e. K.k, (T) = —sup{Z[gi,xi] : Zzi =g2:EK58=1::s;}
i=1 i=1
£ inf{Z[gi, -z Z(—xz) =—z:—x;€ —-K;,1=1,...,n}
i=1 i=1
= PG -Ki,..—Kn(—T)-
Thus

96, K1 ... Kn (T) = —DG,~ K1 ...,~ K (— ).
It follows from this equality that we do not need to specially study the function gg;
properties of gg can be easily extracted from the corresponding properties of pg. |

Proposition 1.3.1. The function pg ts sublinear.
Proof. Let z,y € domo. Then z +y € domo also. Since the mapping o is super-
linear, we have
T = inf [G,Z] < inf [G,Z
pG( t y) Ze:lfr(lw+y)[ ] - ZEU(IS'FU(’_U)[ ]

— inf (G, X]+[G,Y))

Xeo(z),Yeo(y)

— inf inf (G, X]+[GY
XIEI;(I) Yg;(y)([ ] [ ])

—  inf [G,X]+ inf [G,Y]= pgil).
Xg@[ ]+Yg@[ ] = pc(z) + pe(y)
If at least one of the elements z,y does not belong to domo then pg(z) + pa(y) =
+00, 50 pg(x +y) < pa(z) + pe(y) in this case as well. Thus p is subadditive. It is
easy to check that p is positively homogeneous. |
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Assume that pg(0) = —co. Then for all z € domo =) | K; we have
pc(z) = pe(z +0) < pe(z) + pc(0) = —o0

so it is important to describe G such that pg(0) > —oo. Since pg is positively
homogeneous and 0 € dom pg it follows that pg(0) > —oo which implies pe(0) = 0.

Proposition 1.3.2. The equality pc(0) = 0 holds if and only if G € clK.

Proof. Since pg(0) = infxeq(0)[G, X] it follows that pg(0) = 0 if and only if [G, X] >
0 for all X € 0(0). The set

g(0)={X = (a;l,...,xn):z:cizo,xl €Ki,...,z, € K.}

coincides with the cone M N K, hence pg(0) = 0 if and only if G € (M N K)*.
However
(MOK)* = (M*+ K*) = (D + K*) = K.

Proposition 1.3.3. For every G € K the equality dom o = dom pg holds.

Proof. Since G € K it follows that there exist f € E’ and [; € K] such that
G=f"+(,...,ln). Letz €domo =3  K; and X = (21,...,%n) € o(z) then

G, X] =) [f @]+ Z[li,xi] = [/, 7] +Z[li7$i]-

i=1
Note that [l;, z;] > 0 for all 4, therefore [G, X] > [f, z]. Hence
pe(z) = inf [G,X]> f(z) > —o0.
Xeo(z)
It is clear that pg(z) < [G, X] < +o00. We have proved that domo C dompg. If

z &y K, =domo then pg(z) = +oo (because the infimum over the empty set
is equal to +00). Hence dom o = dom pg. O

1.3.2 Fenchel-Moreau conjugate of the support function

In this subsection we calculate the Fenchel-Moreau conjugate function of the support
function pg. First we prove the following lemma.

Let §(-,92) denote the indicator function of the set 2, i.e.

0, z€q,
6(:0’0):{ +o00, z ¢ Q.

Note that §(z,0) = 400 for all z.




Chapter 1. Decomposition Mapping 22

Lemma 1.3.4. Letp = g+ 6(-,L), where g € E' and L C E is a cone. Then the
conjugate (in the Fenchel-Moreau sense) function p* has the form

p*(h) =d(h,g— L*), heFE.

Proof. From the definition of the conjugate function we have
p'(B) = sup{lha| —plal} = aip{lh—g; 2] — 6k, L)} = suplh—g,2]
T T zE

— 0; h_ge—L*, - 0’ hEQ_L*, B .
- {+0<>, h—g¢-L* _{+oo, hgg—rr. ~Ohg—L7).

For each element G = (g1,...,9,) € (E™) consider the set o*(G).

Theorem 1.3.5. Let G = (g1,...,9n) € K. The conjugate (in the Fenchel-Moreau
sense) to pg function p§ has the form

pe(h) = d(h,a*(@)), heE.

Proof. By definition

pe(z) = inf i Z[g,-, ;).
i=1

Wi )
Yon Bi=®; TERY, =1,...;

Let p; = g; + (-, K;), i =1,...,n, then

S0 théjfunction pg is the infimal convolution of py, ..., p,:
ola) = Prla).
i=1
The well-known Young-Fenchel duality theorem implies that
pa(h) = ipi;‘(h)» hekE.
i=1

But Lemma 1.3.4 yields
) =dhg—K;),  heF.
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Then taking into account the fact that
i=1

~we have

pe(h) =6(h,0*(G@)), heE.

Remark 1.3.1. If G ¢ K := domo* then ¢*(G) = 0, hence p;; = +00.

Corollary 1.3.6. The second conjugate function pg has the form

pg(z) = sup [h,z], reFE
heo*(G)

for every G € K.

Proof. Applying Theorem 1.3.5 we conclude that

pe (z) = sup([h,z] — d(h,0"(G)) = sup [h,z].
heE’ heo*(G)

O

Corollary 1.3.7. Let function pg be lower semicontinuous. Then the equality pg =
pa 1s valid.

Indeed, f** = f for all lower semicontinuous convex functions.

Corollary 1.3.8. Let G € (cIK)\ K. Then pg is not lower semicontinuous.

Proof. Since G ¢ K it follows that P& = +oo. Hence pff = —oo. If pg is lower
semicontinuous then pg(z) = p& (z) = —oo for all z. However, in view of Proposition
1.3.2 we have pg(0) = 0. O

Corollary 1.3.9. Let function pg be lower semicontinuous. Then Opg = 0*(G).

Proof. The set 0*(G) is w*-closed and convex. Applying Corollary 1.3.6 and Corol-
lary 1.3.7 we conclude that pg () = suppe,«(g)[h, z]- The desired result follows now
from the Minkowski duality. |
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1.3.3 Lower semicontinuity of support functions

We now describe some cases where the function pg is continuous (hence, lower semi-
continuous) for all G € K.

Theorem 1.3.10. Let cones K1, ... K, in a Banach space E be such that E = K :=
Sy Ki. Then the function pg (G € K) is continuous.

Proof. From Theorem 1.1.6 it follows that in the Banach space £ = K; + ... + K,
there exists a number v > 0 such that every element z € E can be represented in
the form .
szyi (v € Kii=1,...,n)
i=1

where ||y:|| < v|lz|l, i =1,...,n. We have
(Y1,---Yn) €Eo(x) ={X = (z1,...,2n) EK1 X Ky : T=21+ ... +2;}

and therefore for G = (g1, ...,9:;) € K we have

pe(z) = inf [G,X]= inf ()Z[gi,xi]
=1

Xeo(z) (z1,e-yTn)EC
n n n
< S loowd < 3 lallinl <23 ezl < Cllal,
=1 =1 =1

where C =~ ", |lg;]|. We proved that the sublinear function pg is bounded on E
and therefore it is continuous. a

Theorem 1.3.11. Let the the space E be reflexive and let the cone L = > iy K be
normal.- Then the function pg is lower semicontinuous for all G € K.

Proof. Since the cone L is normal it follows that (see Theorem 1.2.17) K = (E™)" and
(see Proposition 1.2.19) the mapping o is bounded. Let € L and let 7 be a number
such that ||z|| < 7. Let B= {2’ € E : ||z/|| <r}. Then the set o(B) is contained in
the ball By = {X € E™: || X|| < rl|lo||}. The set B x By is weakly compact and the
mapping o is weakly closed. Hence this mapping is weakly upper semicontinuous
on B. We will now show that the function pg is weakly lower semicontinuous at z.
Indeed, let
A <pg(z) = ks G(X).

Consider the set A = {Y € E™ : [G,Y] > A}. Then the set o(z) is contained in
the open set A. Since o is weakly upper semicontinuous then there exists a weak
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neighborhood V' of z such that o(V') C A. Ify € V then pg(y) = infye,()[G,Y] > A
Hence pg is weakly lower semicontinuous. Since pg is convex, this function is also
strongly lower continuous. 0

Some results from the theory of Banach lattices are used in the next theorem.
The short description of properties of lattices that we use can be found in the next
chapter (see Subsection 2.1.1).

Theorem 1.3.12. Assume that K1 = ... = K,, := L where L is a cone such that
the ordered space E with the order relation > generated by L 1is a vector lattice.
Assume also that the norm in E is monotone: |z| < |y| implies ||z| < |ly||. Then
the function pg 1s lower semicontinuous on L for each G € K.

Proof. We will prove that the restriction of ps on L is a continuous function on L.
Since pg(z) = +oo for ¢ L, this continuity implies lower semicontinuity of pg on
E.

Let z € L and (z1,...,%,) € o(z). Since z; € K; =L, i =1,...,n, then

n
z=) x>z 20, i=12...,n
j=1

Since the norm is monotone it follows that ||z|| > ||z;]|, i =1,...,n.

From Theorem 1.2.10 it follows that every element G = (g1,...,9n) € K can be
represented in the form G = H + ¢g", where H = (hy,...,h,) € L* X --- X L*, g" €
M* ie. there exist h; € L*, i =1,...,n and g € E* such that

g=Mtg 1=1,2, ..., %

Let x € L. Since for X = (x1,...,%,) € o(z) we have
G(X) = ki) + ) g(z:) =) hilw) + g, 7],
i=1 =1 i=1

we conclude that

n

pa(z) = [g,z] + < inf Z[hi,xi]> =[9,z] + q(z)

ST zi=z, z;€L, i=1,...,n P

where
n

_ inf he, 4], €L 1.3.1
Q(-Z') Y mi=m, :lvrileL, i=1,...,n ;[ v ] .’E ( )
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Since the function z — [g, z] is continuous, we need only to prove that ¢ is continu-
ous. It easy to check that ¢ is a sublinear function. We now show that ¢ is bounded
on L. Indeed let z € L. Then

n

qlz) = inf > ki, @i

ET di=ax; Ziel; =Ly0

i=1

< inf nz Aied
i=1

ST zi=z, €L, i=1,...,

IA

> lhallllz] = Tlll,
i=1

where I' = Z IIh:]]-
i=1

We now show that the function q is increasing, that is z >, y >, 0 implies ¢(z) >
q(y). Indeed let z,y € Land z —y := z € L. Let X = (z1,...,%,) € o(z). Since
T =1vy+zwithy,2€ L and x = (z1,...,%,) it follows from the Double Partition
Lemma (see Section 3.1.1) that there exists y1,...,y, € L and z1,...,2, € L such
that z; =y, +2,i=1,...,n. Let Y = (y1,...,%n). ThenY € o(y) and ¥ < X in
the sense that y; < z; for alli = 1,...,n. Since h; € L* we have [h;, z;] > [h;, ys] for
all 4. This implies > _,[hi, z;] > >_;[hiyi]. Thus for each X € o(z) we found Y € o(y)
such that [H, X] > [H,Y]. It follows from this inequality that q(z) > q(y). We have
proved that ¢ is increasing.

We now consider the function ¢ defined on the entire space E by the formula:

+

g(z) = q(z*), where z* =sup(z,0).

Let us identify some properties of g.

1) @(z) = q(z) for € L. Indeed, z* =z for z € L.

2) G is a subaddive function. Indeed, we have for z,y € E: (z +y)" <zt 4+ y*.
Since q is increasing and sublinear, it follows that

gz +y) =gz +y)") < gz +y") <qlz¥) +ay") = 2(z) + 2v)-
3) g is a positively homogeneous function. This is clear.
Thus, § is a sublinear extension of g. We also have for z € E:
q(z) = q(=z") < Tllzi| < Tl

Thus the sublinear function ¢ defined on E is bounded. Hence this function is
continuous. Since g(z) = ¢(z) for z € L it follows that ¢ is continuous on L. O
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1.3.4 Infimum of a sublinear function over the o(z)

Let E be a Banach space with cones Ki,...,K,. Assume that the space E™ is
equipped with the order relation generated by the cone K = K; x ... x K,,.

Let @ : E™ — R be some sublinear, monotone, continuous function, defined on

the space E™ (dom @ = E™). Consider a function sg defined on E by:

sg(z) = Xie%{z)Q(X) z € E.

We need the following Minimax Theorem (see for example [29]).

Theorem 1.3.13. Let (E, F) be a pair of vector spaces with a coupling function
(e,f) — le,fl (e € E, f € F). Assume that E and F are equipped with weak
topologies o(E, F) and o(F, E) respectively. Let Q@ C F and ¥ C E be convez sets
and the set Q) is o(F, E)-compact. Then

inf —supi _
inf f}elg[f +€] s inf[f, ]

Note that if E is a Banach space and F' = E’ then o(F, E) coincides with weak*-
topology.

Lemma 1.3.14. Let @ : E™ — R be a sublinear continuous function. The equality

sq(z) = sy pe ()

holds, where 0Q 1is the support set of the function Q.

Proof. Since @ is a sublinear continuous function, then the support set 0Q is w*-
compact and the Hormander Theorem (see 1.1.12) yields

Q(X) = max|G, X], X € E.

Hence,

=3 = inf X].
sq(z) = inf Q(X) = inf mexlG,X]

Since for any € E the set o(z) is convex and the set Q) is convex and w*-compact,
we can use Theorem 1.3.13:

inf sup [@,X] = sup inf [G,X]= sup ps(z).
Xe€o(r) GedQ GedQ X€o(z) GedqQ
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Proposition 1.3.15. Let Q be a sublinear continuous monotone function. Assume
that functions pg are lower semicontinuous for all G € K*. Then sq is a lower
semicontinuous function.

Proof. In view of Lemma 1.3.14 we have so(z) = supgegg Pa(z). Now we note,
that since @ is monotone, then the inclusion 9@ C K* holds (see Proposition
1.1.13). Since pg is lower semicontinuous for G € K* it follows that sq is also
lower semicontinuous as the supremum of lower semicontinuous functions. O

Theorem 1.3.16. The support set of the function sg has the form
dsg = clo*(0Q),

where cl denotes the closure of a set the in weak"- topology.

Proof. It was shown previously that

sq(z) = S, pe(z)-

Using subdifferential calculus and Corollary 1.3.9, we get

0sg = 0s¢(0) =clco U 9pc(0) = clco U o*(G) = clco 0" (0Q).
ceoQ GedQ

Since the mapping ¢* is superlinear and the set 0Q is convex it follows that o*(0Q)
is convex, hence coc*(9Q) = o*(0Q). O



Chapter 2

The additivity of the
decomposition mapping and
lattices with respect to several
preorders

In this chapter we study conditions that provide the additivity of the decomposition
mapping o. In order to give a description of these conditions we need to extend
many notions of the theory of ordered space for spaces that are equipped with several
preorders. We also describe a sublinear single-valued operator, acting on an ordered
Banach space, such that the conjugate set-valued mapping to this operator coincides
with o (Section 2). Kantorovich - Riesz type theorems are proved. Examples are
given.

2.1 The additivity of the decomposition mapping

2.1.1 Preliminaries

We need some definitions and results from the theory of Banach lattices.

Consider a set E equipped with an order relation >. An element u is called the
infimum of a set Q C E (u = inf Q) if

e u < z for each = € (;

o if 2 <z for all x € Q then z < u.
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An element v is called the supremum of Q C E (v = sup Q) if

e v > g for each z €
e if z >z for all z € Q then z > v.

Definition 2.1.1. An ordered vector space E, such that for any finite set {2 there
exists sup Q2 and inf Q is called a vector lattice. A cone K C E is called minthedral
if E with the order relation >f generated by K is a vector lattice.

It is easy to check that this definition is equivalent to the following one:

Definition 2.1.2. An ordered vector space E, such that for any set {z,y} C E
consisting of two elements there exists sup(z,y) and inf(z,y) is called a vector
lattice.

If z € E, where E is a vector lattice then the element |z| = sup(z, —z) is called
the modulus of z. It is easy to check that |z| = z* + z_ where z* = sup(z,0),
z_ = —inf(z,0). Elements z* and z_ are called the positive and negative parts of
x, respectively.

A vector lattice, such that its every nonempty subset bounded from above has
the supremum, is called a K -space (or Kantorovich space) or Riesz space

Let E be an ordered Banach space with the order relation >, introduced by a
cone K.

Definition 2.1.3. We say that an ordered vector space E possesses the Riesz in-
terpolation property, if for every four elements ay, as, by, ba, satisfying the inequality
b >k a; (i,j = 1,2), there exists an ”intermediate” element ¢ € E, such that
b 2k c 2k a; (,j = 1,2).

It is easy to see that this definition is equivalent to the following

Definition 2.1.4. We say that an ordered vector space £ possesses the Riesz in-
terpolation property if for all finite sets z1,...,Zn and y1, ..., Ym such that z; < y;
for alli = 1,...,n and j = 1,...,m there exists z € Z such that z; < z < y;,
b= 100030 J = Lysw T

It is easy to show, that every vector lattice possesses the interpolation property,
for example, we can consider an intermediate element z = inf (Y1y---,Ym) OF 2 =
B 5 5 5 5 3 B«

We need also two more definitions. Both of them can be expressed in terms of
arbitrary finite sets and sets that consists of two elements only. For the sake of
simplicity we consider only sets that consists of two elements.
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Definition 2.1.5. We say that an ordered vector space E possesses the Riesz de-
composition property if for every four elements x1, 2, Y1, Y2, satisfying the inequality
z1 + T2 < 91 + 9o and for every z such that 1 + 22 < 2z < y1 + y2 , there exist
elements z1, 2o, such that z = 21 + 23 and 7 < 2y < y; and 73 < 25 < Yo

Definition 2.1.6. We say that the double partition lemma holds in an ordered
vector space F if the relations

T=1x+7 (z; >0, 22 >0), z=y+z (y>0,2z>0)
implies the existence of positive elements y1, 21, Y2, 22 such that

‘Tl:y1+21) $2:y2+22, y:y1+y27 z =21+ 2.
It is known that the following assertions are equivalent (see, for example, [35]) :

e A space E possesses the Riesz interpolation property;
e A space E possesses the Riesz decomposition property;

e The double partition lemma holds in E;

The Riesz interpolation property is closely related to the minihedrality of the con-
jugate cone. The following results hold (see for example, [16, 36]:

Theorem 2.1.1. Let E be an ordered Banach space and let the cone K of positive
elements be a generating and normal cone. Then in the dual space E' the Riesz
interpolation property is equivalent to the minthedrality of a cone K*.

Theorem 2.1.2. (L.Kantorovich-F.Riesz) If an ordered Banach space E possesses
the Riesz interpolation property, and the cone K of positive elements is a closed
generating and normal cone, then the dual space E' is a K-space.

A proof can be found in [36].

2.1.2 Riesz interpolation property in a space with two cones

Consider an ordered Banach space with the cone of positive elements K. Consider
now the family of cones K7, ... K, with an arbitrary n > 1 where K; = K for each
i=1,...,n. It can be shown that the decomposition mapping o, ..k, is additive
if and only if the space (E,K) possesses the Riesz interpolation property. (See
Theorem 2.1.3, where a more general result is proved.) Our goal is to generalize
this result for the case of different cones Ki, ..., K,. For this purpose we need to
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generalize the notions of vector lattice and Riesz interpolation property for a space
with different cones. In the classical situation where a cone K can be repeated n
times with an arbitrary n we have different equivalent definitions of vector lattice (see
Definitions 2.1.1 and 2.1.2, respectively). One of them is given in terms of arbitrary
finite sets and the other one in terms of sets that contain only two elements. If we
have different cones K, ..., K, then the situation is different: we can consider the
supremum and the infimum only finite sets that contain exactly n elements with
the given n. A similar remark can be made with respect to the Riesz interpolation
property, the Riesz decomposition property and the double partition lemma.

We will start with the Riesz interpolation property.

Let pointed cones K71, ..., K, in a vector space E be given. Each of them induces
its own order relation >; (i =1,...,n) on E . The space E with cones K, ... K,
is denoted by E = (F; Kq,...,K,).

Remark 2.1.1. If the cones K, ..., K, coincide and are equal to a cone K, we will
use either notation (E, K1, ... K,) with K; = K, i=1,...,n or notation (E, K) (if
the latter is used, it is assumed that the number n is known).

For the sake of simplicity we consider the case n = 2. Then we show how the
definitions and results obtained can be extended for an arbitrary n.

We introduce the following definition.
Definition 2.1.7. Consider a space (E; K1, K3) and let L = K; + K. We say that

(E; K1, K3) possesses the Riesz interpolation property if for for every four elements
Z1,To, Y2, Y2 € F, satisfying the inequalities

Y1 2K, T1, Y2 2K, T2, Y1 =L T2, Y2 2L L1, (2.1.1)

there exists an ”intermediate” element ¢ € E such that

Y1 2k, € 2Kk, T1, and Yo >k, € >k, T2, (2.1.2)

We will also call this property the Riesz interpolation property in E with respect
to cones Ky, Ks.

Remark 2.1.2. It follows from (2.1.2) that y1 >1 ¢ > @3 and y2 > ¢ > z1. Indeed,
if there exists an element ¢ € E such that

Y1 2K, €2k, 71 and  Yp >k, C >k, T,

thenc—xlechL, yg—CeKQCL.
Sincec—xzy € K CL, yy —c€ Ky C L then x5 <y cand y; > c.
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Note that
K+ K =K, K+K =K, K +K=L K+K-=L
Hence (2.1.1) can be expressed in the form
i — o € H K

We will use the definition of an interval (z,y)my with respect to a cone H C E.
Recall that

(@, )p=@+H)(\v-H), (@y€eE, y>ya)

We can express Definition 2.1.7 in terms of intervals: if 2, 72, 41, Y2 are four elements
such that y; — z; € K; + Kj, 1,5 = 1,2, then

(1, 1)K, N (T2, Y2) K» 7# 0. (2.1.3)

It follows from (2.1.3) and Remark 2.1.2 that
ﬂ (Ti, Yi) kit K; 7 0.
i\j=1,2

Remark 2.1.3. To check the Riesz interpolation property with respect to the cones
K, K, in the space E = (E; K;, K3) it is sufficient to verify that an intermediate
element exists under the additional hypothesis: x;,z, € L. Indeed, assume that the
Riesz interpolation property holds for all four-tips Z1, T2, 91, 92 such that y; — tz; €
K;+K;and %,,%, € L. Let z;,y; € E, 4,j = 1,2 and y; —z; € K; + K; (i,5 =1,2).
Let z = 1 + 22 — W1 Consider four elements Z; = ©; — 2, Ty = T2 — 2, Y1 =
Y1 — 2, tys = y2 — 2. We have

try =21 — 2=y — T2 €L, Ty:=xz3—2=y1—21 € K; CL.

Therefore the Riesz interpolation property holds for elements z;—z, y;—2 (1,7 = 1, 2)
so an element ¢ exists such that

T >k, € >k, T1, and Y2 2k, C 2k, Ta.
Let c=¢+ z. Then
Y1 2k, C 2K, T1, and Y2 2k, C 2k, T2

We have proved that the Riesz interpolation property holds in (E; Ki, K3).
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2.1.3 Riesz decomposition property and double partition
lemma in a space with two cones

Definition 2.1.8. We say that the space E = (E;K;, K3) possesses the Riesz
decomposition property if

(x1 + z2, 91 + Y2) K+ Ky = <971,y1)K1 + (T2, Y2) K,

for all z1,y; € K1, x3,ys € Ky such that y1 >k, 1, Y2 2k, To.

Consider a space (F;Ki, Ks). Let z1,y1 € K1,%2,¥2 € Ky and y1 >k, 2,
Y2 >k, To. Then

(T1 + T2, Y1 + Y2) Ky 4K D (T1, Y1) Ky + (T2, Y2) K- (2.1.4)

Indeed if z; <k, 21 <k, y1 and z3 <k, 22 <k, Yy then 2y — 2, € K1,;1 — 21 €
Ky, 20 —x9 € Ky, Yo — 29 € K5, hence

T1 + T2 SKi+k, 21+ 22 SKi+k, Y1t Yo
In view of (2.1.4), the Riesz decomposition property is equivalent to the following:
(T1+ 22, Y1 + Y2) K+ ke C (1, Y1)k + (T2, Y2) K-
This means that each element z such that
T1+ T2 Sk 4Ky, 2 SKi+K, Y1+ Y2
can b% represented as the sum z = z; + 2, with
z1 <k, 21 <k, Y1 and T3 <k, Z2 <k, Vo

Thus if K; = K, := K and K induces an order relation in E then Definition 2.1.8
coincides with Definition 2.1.5.

Remark 2.1.4. The Riesz decomposition property with respect to cones K, K is
equivalent to the fact that the equality

0,2+ Y r+x = (0,2) i + (0, 9) K,
holds for all x € K7, y € K.

Indeed, let we know that for each y; € K; and y2 € K3 and 2z such that

0 <ki+Ks 2 SK1+K2 Y1 + U2
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there exists z; € K; and 2z, € K3 such that
z21+2z=2 and 2z <k, Y1, 22 <k, Y2 (2.1.5)
Let 1,y € K1, T2,y2 € Ko and Y1 >k, %1, Y2 >k, T2- Let
Ty + T2 <K+ K, 2 SK+K, Y1t Y2
Then
0 —<—K1+K2 = (xl + 1132) SK1+KZ (yl =+ y2) - (‘7"1 + .’122).
Using (2.1.5) with respect to y; — 1 and y, — z, we can conclude that required

elements z; and 2z, exist.

Consider space (F; K1, K3) with two cones K; and K,. Consider two arbitrary
elements 31,2 € K; and two arbitrary elements y,, 2z, € Ky. Let

T =y1+2’1, $2:y2+22 and Yy =1y +y2, z2=2z1+ 2. (216)

and £ = 27 + T3. Then z; € K3, 3 € Ky and z € L. We can also represent = as
the sum of two elements from L: z = y + z. The reverse assertion will be called the
double partition lemma.

Definition 2.1.9. We say that the double partition lemma holds in the space F =
(E; K1, Ks), if the reverse assertion holds: if for an element x € L the following
equalities hold:

T =12, +Ty, where z; € Kj,22 € Ky

and
x=vy+2z where y,z€L,

then elements y1,21 € Ki, 12,22 € K, exist such that each z; (¢ = 1,2) can be
represented in the form z; = y; + 2; and also y = y; + 2 and 2z = 21 + 2.

Remark 2.1.5. Let K; = K, := K. Then the Riesz interpolation property holds
in the space (F; K1, K5) if the ordered space possesses the ”classical” Riesz inter-
polation property. The same conclusion can be made with respect to the Riesz
decomposition property and the double partition lemma.

2.1.4 Additivity of the decomposition mapping

The decomposition mapping ok, x, = 0 : & — 25” with respect to cones K; and
K, in the space E = (F; K, K3) is expressed in the following way:

o(x) ={X =(z1,22) E Ki x Ky : 1 + 22 =2} (T E€E).
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Recall that domo = L := K; + K. We are interested in conditions that guarantee
the additivity of the decomposition mapping.

The following theorem claims that all above definitions are equivalent and that
each of them is equivalent to the required additivity.

Theorem 2.1.3. The followings statements are equivalent:

1. the space E = (E; K1, K3) possesses the Riesz interpolation property;
2. the space E = (E; K1, K3) possesses the Riesz decomposition property;
3. the double partition Lemma takes place in the space E = (E; Ki, K3);

4. the decomposition mapping ok, k, =0 : B — 2B s additive, i.e. if t,y € L
then o(z +y) = o(z) + o(y). (Here L = K; + K5.)

Proof. 1 = 2. In view of Remark 2.1.4 it is enough to show that

<07 T + x?)Kl-‘er = <0) xl)K] + <07 xQ)Kz'

Let 71 € Ky, 7o € Ky, and y € L and let ;1 + o > y. We can express these
conditions in the following way:

YKk, Y—T1, T22k, 0, y>2p0, z22py—21.

Let us apply the Riesz interpolation property to these inequalities, and find an
intermediate element, i.e. an element ¢ € E such that

- Y Kk, C2K Y — L1, T2 2K, C>K, 0. (2.1.7)
Let y, =y — c and yo = ¢. Then (2.1.7) yields

n €Ki, yweK, x>k Y1, T2k, Y-
We have also y = y; + ¥z, i.e. 1 and y, form the required decomposition and

Y1 € <0;x1>K17 Y2 € <0ax2>K2'

2 = 3. Let an element z € E be such that z = z; + x5, where z; € K1, x5 € K>
and x = y+z, where y,z € L. Then z1+1z5 > y > 0. By the Riesz decomposition
property elements y; € K;, y» € K3 exist such that

T1 2/, Y1, T2 2K, Y2, Y = Y1+ Yo
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Let 21 = T1—Y1, 22 = Ta—Ya. Wehave 21 € K1, 20 € Ky, 11 =91+ 21, T2 = Y2+ 22
and
2ntzm=r1+T2—(h+y)=2—y==z2

Therefore the elements yi, y2, 21, 22 are as desired.
3 => 4. Let y,z € L. Since the decomposition mapping ¢ is superlinear, then

o(y + 2) D o(y) + o(z). Let us prove the opposite inclusion. Let X = (z1,72) €
o(y + z), then by the definition of the mapping o we have

1€ Ky, 1o € Kb and z7+ 22 =y + 2.

In view of the double partition Lemma there exist elements y1, 21 € K1, Y2, 22 € Ko,
such that every x; (i = 1,2) can be represented in the form z; =y, +21, T2 = Y2+ 22
and y =y + Y2, 2 = 21 + 22. [t means that

Y = (y1,%2) €0(y), Z = (21,2) € 0(z)

and X =Y + Z,1e. X €0(y) + o(z2).
4 = 3. It can be proved by an argument similar to that in the proof of 3 = 4.
3 = 1. Let elements a1, as, by, by € E satisfy the inequalities

bl ZKl ay, bl ZL g, b2 ZKz A2, b2 ZL ay.

Letul :bl—al EKl, Uzzbg—az EKQ, (%1 :bg—al EL, ’ngbl—az € L.
Then u; + uy = v; + v5. From the double partition Lemma it follows that elements
1,21 € K1 and ys, 20 € K5 exist such that

Uy =Vy1+z1€K1, Up=Yo+2E K, and v1=y1+Y2 €L, va=21+20 € L.

The element ¢ = a; + ¥, is an intermediate between a; and b; (z,7 = 1,2). Indeed,
uy = by —ay >k, y1 yields by >k, a1 +vy1 >k, a1,and v; = by —a; > ¥ implies that
by >1 a1 +y1 >1 a;. Since the equality v; = y; +yo yields by —y, = a1 +yi, then from
Uy = by —az >1 y2 and uy = by — a; >r Y1 we obtain by >1 a1 +y1 = b2 — Y2 =1 aa.
Finally, the inequality us = by —az >k, Yo yields by >k, ba—y2 = a1 +91 >k, a2. O

2.1.5 Examples

First we will give an example of cones such that the decomposition mapping o is
nonadditive.
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Figure 2.1: E = (R? K, K3)
Ezample 2.1.1. Let the following cones be given in the space E = R*: the positive
orthant and the ray passing through the point 7' = (—1,1) € R? (see Fig. 2.1), i.e.
K ={X = (u,v) €R* : uw>0,v>0},

Ky ={X =(u,v) €R? : u=—-X\v=X\X\>0}

Let z = (1,0) € K3,y = (—1,1) € K,. Then z+y = (0,1). We have
o(z) ={X = (21,%2) : 21 € K1, 73 € K3, 21+ 3= (1,0)}.
Let (z1,22) € o(z) with z; = (z1,22), 2o = (z3,23). Then
21>0,22>0, zl+ai=122+25=0;

Ty =-)\ z5=X where A>0.

Therefore z; = =, o = 0. Thus

o(z) = {(z,0)}. (2.1.8)
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Let us calculate o(y). We have
o) ={Y = (y1,%2) -1 € K1, 42 € Ky, yn +y2 = (—1,1)}.
Let (y1,42) € o(y) with y1 = (y1,91), ¥2 = (v2,%3). Then
20,9720, yi+yp=-11+y=1

Yp = — A, y§:)\ where A\ > 0.

An easy calculation shows that y; = 0, yo = y, hence
o(y) =1(0,9)}- (2.1.9)

Let z = (0,1) = z + y. Let us calculate o(z). We have
0(2) ={Z = (21,22) : 21 € K1, 220 € K5, 21+ 22 =(0,1)}.
Let (21,22) € 0(2) with 21 = (21, 2%), 22 = (23,22). Then
220,220, 2+2=0,20422=1;

z3=—)\, z:=X where A>0, 21 —A=0,2+X=1

It follows from this that 2] + 27 = 1. It is easy to see that vectors 21, z; for which
the mentioned conditions hold have the form

2 21 =(a,1—a), zo=(—a,a) with ae€][0,1]. (2.1.10)
On the other hand each pair (21, 22) such that (2.1.10) holds belongs to (z). Thus
o(z) ={Z = ((a,1 — @), (—,a)) : @ € [0,1]}.
Alternatively it follows from (2.1.8) and (2.1.9) that

o(z)+o(y) = {(=,0)+0,9)}={(10)+(-1,1)} ={(0,1)}
{(ey1 - @), (—a,a)) :a=0)}.

Thus o(z) # o(z) + o(y).

Consider one more example.

Ezample 2.1.2. Again let us take space £ = R% Let K; = R?% be the positive
orthant and let K; = {X = (u,v) € R? : u = 0,u = X\ > 0} be the ray passing
through the point 7' = (0,1) € R?, i.e. (see Fig. 2.2). Note that K; + Ky = K;.
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Figure 2.2: E = (R? K1, K»)

Let y € K5. Then

0,9)r, ={z' € K1:0< 2" <y} = (0,9,
Note that for each u,v € R} = K it holds that:
- (0,u) i, + (0,v) K, = (0, u + V) K, .

Hence for z € K; and y € Ky we have

<07$>K1 + <O’y>K2 = <0,-75>K1 + <07y>K1 = <0’y>K1+K2'
Thus the Riesz decomposition property holds in the space (E; K, K3).

Let K, be a cone and K, be a subcone of K;. Recall, that K> is called a face of
K, if the inclusions z,y € K; and x +y € K, imply z,y € Ko.

In Example 2.1.2 the cone K; and its face K, were considered. As it will be
shown in the following theorems, this situation can be considered in a more general
case.

Theorem 2.1.4. Assume that the double partition Lemma holds in the space B2 =
(E,K;) and let a cone K, be a face of the cone Ky. Then the double partition
Lemma is valid in the space E = (E; K1, K3).
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Proof. Let 21 + 2z = x + y, where z,y € K1 + Ky, 21 € Ky, 29 € K,. Since
the double partition Lemma holds in the space F = (E; K}), there exist elements
Z1,Z2,Y1,Y2 € K7 such that

21=T1+Y1, Z2=T2+Y2, T=T1+T2, Y=Y+ Yo

As x9,ys € K1, 20 = o+ Y2 € K5 and the cone K, is a face of the cone K7, then
Ta,Y2 € Ky, i.e. the double partition Lemma holds in the space E = (E; Ki; K>)
with respect to the cones K; and K. O

Remark 2.1.6. Let the double partition lemma be valid in the space (E; K, K3)
where K is a face of K;. We could not derive from this that this lemma holds in
(E, K1), hence the assertions: ”the double partition lemma holds in (£; K;)” and
"the double partition lemma holds in (E; K, K3) are not equivalent”.

Theorem 2.1.5. Let the space E = (E; H) possess the Riesz interpolation property,
and let cones Ky, Ky be faces of the cone H. Then the space E = (E; K, Ks)
possesses the Riesz interpolation property.

Proof. Let L = K1+ K, and elements x1, z2, 1, Y2 € E satisfy the following relations:
N 2Kk, T, Y120 T2, Y2 2K, T2, Y2 2L T

Since K, K5, L C H then y; >g x;, 1,5 = 1,2.

As the space E = (E; H) possesses the Riesz interpolation property, then there
exists an element ¢ € £ such that

Yi ZH c EH :L'ja Za] = 1727

ie.
nw—cE€H, y—c€H, c—xz1€H, c—zy€H.

It follows from the inequality y; >k, =7 that
y—21=(y1 —¢c)+ (c—x) € K;.
In the same manner the inequality y, >k, T2 implies
Yo — Tg = (Y2 — ¢) + (¢ — z2) € K.
As K, K, are faces of the cone H, we have
1—¢C c—1T1 € Ky, y,—c, ¢c— Ty € Ko,

ie. y1 >k ¢ >k, T1, Y2 >k, C >k, Tz. Therefore, the space E = (E; K, K>)
possesses the Riesz interpolation property. O
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The definitions and results presented above can be easily extended to the case
where the number of cones is greater than two. We will consider this only for the
Riesz decomposition property. This property in the space E = (F; K, ..., K,) can
be expressed in the following form: if z; € K; (i = 1,...,n) then

<07 T+ T2+ + 'TTL>K1+K2+---+KTL = (07 I1>K1 St <07 x2>K2 +oee <07 xn)Kn~

Lemma 2.1.6. Let the Riesz decomposition property hold for the space (E; Ky, ...,
K,_1) with the cones K,... K,_1. Let K& = Ky + ...+ K,_; and let the Riesz
decomposition property hold for the space (E, KM K,) with the cones KM, K,.
Then this property also holds for the space (E; K1, ..., K,) with the cones K, ... K.

Proof. We have for an arbitrary z; € K;,1=1,...,n—1:
(0,1 + T2+ -+ + Tno1) Ky + Kot Ky = 0, 1)1y + (0, Ta) i, + - + {0, Tnm1) Ky
and we also have for y € KO and z,, € K,,:
0,y + Zn) kr 1k, = (0,¥) k) + (0, Zn) ken.
Lety=a21 + 2o+ + Ty € KU, Since
KOy K, =Ki+...+Ky1+ K,
it follows that

<0vy + 3771)1{(1)-1-1{,1 = (Oa Tyt Lo+t $n>K1+Kz+--»+Kn

and
<07y>K(1) + <07 $n>Kn = <Ou Ty + T+ -+ xn—l)K1+K2+"-+Kn—1 =+ (07 xn)Kn
= <07$1>K1 =} <Oa$2>K2 SRR o <07xn_1>Kn—1 + (07$n>Kn'
Thus the result follows. O

Using this lemma and induction we can easily extend all results that known
for the Riesz decomposition property for the case of two cones, to the case of n
cones. Definition of the Riesz interpolation property can be extended to the case of
n-cones in a similar manner. We can also define in a similar way what it means for
the double partition lemma to hold with respect to n cones and define the additivity
of the decomposition mapping in this situation. Using induction it is easy to extend
all results that were proved in this section for the case of two cones to the case of n
cones.
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2.2 A vector lattice with respect to several pre-
orders

2.2.1 Supremum and Infimum in a space with several cones

Let cones K, ..., K, be given in a vector space E. Let us introduce a partial order
>k,, 9 =1,...,n on E by means of these cones putting for each i : = 2k, y ory <g;
z,ifz—yeK; (r,y € E). As usual we denote this space by E = (E; Kq,. .. . K-

Let us introduce the notions of supremum and infimum in the space £ =
(E;Ki,...,K,). We will need these notions only for sets of n elements so we give
corresponding definitions only for such subsets of E.

Let {z1,...,2,} C E = (E; K1, ..., Ky).

Definition 2.2.1. An element u € E = (E; K3, .., K,) is called an infimum of the
set {Z1,...,Tn} with respect to Ky,..., Ky, if

(i) z; >k, u for every i =1,2,...,n;
(i) if an element 2z € E is such that z; >k, 2 for every ¢ = 1,2,...,n, then
u>g 2z, 1=12,...,n.

We will denote an element with properties (i) and (ii) by v = Inf{z1, ..., Za}.

A supremum is defined in a similar way.

Definition 2.2.2. An element v € E = (E; Ky,...,K,) is called a supremum of
the set {z1,...,z,} with respect to Ki,..., Ky, if

(i) v >k, z; for every t = 1,2,...,m;
(ii) if an element z € E is such that z >k, z; for every ¢ = 1,2,...,n, then
ZZKi’U, 7::1,2,...,77,.

We will denote an element with properties (i) and (ii) by v = Sup{z1,...,Zn}.

Remark 2.2.1. The suggested notation is not well defined since we use the same
symbol for different elements. However this will not lead to misunderstanding; also
starting from the page after next we will consider only cones K, ... , K, such that
each finite set {z1,...,Zn} can have no more than one Inf{z,,...,z,} and one

Sup{ Ty, . - y B} «
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Remark 2.2.2. Tfall K, ..., K, coincide, then the definitions of Inf and Sup coincide
with the definitions of ordinary inf and sup for n elements.

Let us study the properties of these new objects.

Proposition 2.2.1. Let
(&) N (=) K:) = {0} (2.2.1)
i=1 =1

Then each set {x1,..., T} cannot have more than one infimum and supremum with
respect to (K1,. .., Knp).

Proof. Assume that elements v and uw # u are infimums of a set z1,...,Tn with
respect to Kl,... K,. Since z; >k, u for every ¢ and o’ Inf(xl,...,:vn) we
conclude that u >k, u for all i. Hence w —u € K; for all 2. This means that
v —u € [\, K The same argument shows that u — v € (i, ., K lLe.
W —u € ==y, Ki Since (N, Ki) N (—NKi), = {0} it follows that u =
u'. The same argument shows that a set (zy,... ,Tn) cannot have more than one
supremum with respect to (K1, ..., Ky). O

The following example shows that if condition (2.2.1) does not hold then a set
of n elements can have more than one infimum.

Ezxample 2.2.1. Let E =R? and
Ky ={z = (z},2%2%) € E:z' >0}, Ky = {z = (z',2% 2% € E:2* > 0}.

Let , = (z},22,2%) and z, = (73,3, z3) be a set of two elements. Let

u' = min{z!,z}}  «®:=min{a?, T3}

Consider an element v = (u!,u?, u?), where u® is an arbitrary number. Then u is
an infimum of (z1, z2) with respect to (K1, K3). Indeed, 71 > K, u and 22 2k, U It
is clear that z; >, z implies u >k, 2,1 = 1,2. Thus the set (z1, To) has an infinite
set of infimums.

In the rest of this chapter we always assume that we consider infimum and
supremum only with respect to a system (Ki,...,K,) of cones such that (2.2.1)

holds: .
(&) N (—[ ) Koy = {0}

i=1

We will now examine some simple properties of the Infimum and Supremum.
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Theorem 2.2.2. Letz;,y; € E = (E; K,...,K,), i =1,2,...,n and let there exist

Inflzy;. . ;zn}, Sup{zi;...;zn}, Inflva;. . unt, Sup{yi;...;yn} with respect to
cones Ky,..., K,.

Then the following assertions are valid:

1. Sup{E;.. 8t 2 i« 08} (E=0,2,:..50);

2. there exist Sup{—z1;...;—zn} and Inf{—xy;...;—z,} and
Inf{z1;...; 20} = —=Sup{—z1;...; —2n},
Sup{z1;...;2Zn} = —Inf{—x1;...;—Tn};
3. for every z € FE there exist Sup{z1+2;...;T,+2} and Inflz1 +2;...;T,+ 2}
and

Inflzy;...;zn} + 2= Inflzn + 2;. . . 20 + 2},
Sup{z1;...;Zn} + 2= Sup{z1 + 2;...; 20 + 2};

4. forﬁevery A > 0 there exist Inf{\z1;...; Az} and Sup{\z1;...; \z,} and
A1 0} By = A1« - 280}
ASup{z1;...;x,} = Sup{Az1;...; Az };
5. for every A < 0 there exist Sup{\z1;...;  \zn} and Inf{Az1;...; \z,} and
Mnf{zy;...;2,} = Sup{dz1;...; Az},
ASup{z1;...;z.} = Inf{z1;.. 5 TR}
6. ifx; >k, yi, 1 =1,2,...,n, then
Inf{z1;.. 520} 2k, Infyn; - sy}, 1=1,2,...,n,
SuplEny. <« i8n} 2 Sl =« inf; 1 = 1200040
Proof. Let uw = Inf{xy;...;2,}, v = Sup{zy;...;Zn}
1. The assertion follows immediately from the definitions:

Sup{d#re. | B} Zr; By 2w HB1 oo (B} G =1,25 .« 58)
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2. Since z; >k, u, then —u >k, —x;, 1=1,...,n;

Let an element ¢ € E be such that

L2k, —%; or Z; >, —t, 1=1,2,...,m.
From the definition of u we have u >k, —t or t >k, —u, 1 =1,2,...,n, lLe.
—u = Sup{—21;...;—Zn}.

In a similar way it can be shown that
Sup{z1;...;Tn} = —Inf{—z1;...; —z,}.

3. Let z € E. Then the inequality z; >k, u yields z;+2 >k, u+z, 1 =1,2,...,n.
If an element v € E is such that z; + 2z >k, vorz; >, v —2, 1t =1,2,...,n,
then the definition of w implies that u >g, v—20ru+2z 2k, v, 1 =1,2,...,n
ie u+z=Inf{z;+2... ;2. + 2}

The second equality can be proved in a similar way.

4. The case when A = 0 is obvious. Consider the case A > 0.

From z; >k, u we have Az; >k, M, ¢ = 1,2,...,n. If an element z € F
is such that \z; >k, 2, 1 = 1,2,...,n then z; >g, 2/, i = 1,2,...,n, and
hence u >k, z/A or Au >k, z, i =1,2,...,n.

Therefore Au = Inf{\z1;...; A\, }.

The second equality can be proved by similar reasonings.
5. Let A < 0. Applying 4. we conclude that
Inf{|A|z1;. . .5 [Alzn} = [Au, Sup{|A|z1;...;[Alza} = |Alv.
From 2. it follows that
Sup{Az1;...; 20} = —Inf{|Az1;...; | A|za} = —|A|u = My,
Inf{A\z1;...; zn} = —=Sup{|A|z1;...;|Azn} = —|A|Jv = Iv.

6. Since y; >, Inf{yr;...;yn}, @ = 1,...,n, then z; >k, Inf{y1;...;0n), 7 =
1,2,...,n. The definition of the element u yields

u>g, Inf{ys;.. 5y}, 1=1,2,...,n.

The opposite equality can be obtained in a similar way.
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Figure 2.3: E = (R? K, K>)
O

In general, the operation Inf and Sup do not commute in the sense that Inf(z1, z2)
is not necessarily equal to Inf(zy,7;) and Sup(z1,z2) is not necessarily equal to
Sup(z2, z1). Consider an example

Ezample 2.2.2. In the cartesian plane £ = R? take the positive orthant K; = R2
and the upper half-plane

Ko ={(u,v) e R?* : veER,}
(see Fig. 2.3).

Consider the space (E; K1, Ks). Let 1 = (3,3), 22 = (—2,2) € E. Then
U = Inf{z,; 72} = (3,2) (see Fig.2.4).

Indeed, z; — U = (0,1) € Ky, 2o — U = (=5,1) € K3, s0 11 >, U, T2 2k, U.
Let an element z = (21, 22) € F be such that z; >, z and 73 >, 2, 1.e.

3>z, 322z, 222

This yields 3 > 21, 2> 29, 1.e. U >k, z and U >k, 2. So then U = Inf{z; z2}.
We will now show that Inf{zs;z1} = z5 (see Fig.2.5).

Indeed, z, — z3 = (5,1) € K;. Thus z; >, 2. We also have 25 >k, 2. The
desired equality easily follows from this.
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Figure 2.5: U’ = Inf{zy;2,}
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]
Therefore this simple example shows us that

Inf{z,; 22} # Inf{zo; 2.}

The operation Inf and Sup with respect to a system of cones can be useful for
the description of some objects. We now present an interesting example. Consider
a space (E, K;) where E = R™ and K; = R}. Let z € R?, = intR}. Consider
the conic segment (0,z)f,. This is a parallelepiped with 2" vertices. One of these
vertices is zero and one more of the vertices is z. We cannot describe other vertices
of (0,z) in terms of the order relation generated by the cone K.

We will now show that Inf operation allows, by choosing appropriate cones to
" catch” other vertices of the parallelepiped (0, z). Moreover for each of the vertices
z; there exists a cone H; such that z; = Inf(z,0) with respect to the pair of cones
Ezample 2.2.3. Let E = R™ be the Euclidian space and K; = R7} be the positive
orthant. Let z = (z',...,2") € E be an element with positive coordinates: z* >
0, (i=1,2,...,n). Then the set

<0,CE>K1 == {y eRn A ZKI Y ZK] 0}
is an n-dimensional parallelepiped (see Fig. 2.6).

Let & = 2" be the number of vertices of (0,z)x, and let z; = (z},...,%7)
(=1,2,...,k) be these vertices .
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Let us introduce the index sets I = {1,2,...,n} and let

Observe, that if i ¢ I; then

£=z; (jel).

Consider the cone:

Hj:{(ylv"'Jyn)eRn : yi€R+, ’LGIJ}

The following assertion holds:

Proposition 2.2.3. The vertez z; (j = 1,...,k) of the parallelepiped (0,z)k, can
be calculated as Inf{x;0} in the space (E; Ky,H;) j=1,...,k.

Proof. Since z; = (zj,...,2}) € (0,2)k, (j = 1,2,...,k) it follows that z >

zj, § =1,2,..., k. From the construction of the set I; and the cone H; it is easy to
see that —z; € Hj, i.e. 0 >g; z;.

Now let an element z = (2!,...,2") € E be such that
z ZK] 2 0 ZHJ- z.

Then #* > 2%, i € I and 2* € —Ry, i € I;. Since z* = &% for i ¢ I; and
£t >0 (i € I) then 2% > 2* (i € N), i.e. 75 2k, 2.

As 2t — 2 > 0 (i € I;), then
25 =2 = (B = 2, B — Zys s . ;85 — 5) € H;.

Thus we have proved that z; >k, 2, ©; >u, z. This means that z; = Inf{z;0}
(with respect to the pair of cones K, H;). O

In the following, unless otherwise indicated, we will consider the case where the
number of cones is equal to two.

Let cones K, and K, be given in a space E. Let us introduce new definitions.

Definition 2.2.3. We say that a pair of cones K; and K, generates a space L, if
E = Kl == KQ.

It is clear that & = K, — K, if and only if £ = K, — K;.
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Definition 2.2.4. A set Q C E = (E; K, K5) is called bounded from above (below)
if an element u € F exists such that u >k, z (z >k, u, respectively), ¢ = 1,2 for all
z € .

Observe that the following simple proposition holds.

Proposition 2.2.4. 1) If for each z € E the two-element subset {0,x} is bounded
from below then a pair of cones K; and —K, generates the space E.

2) If for each © € E the subset {0,z} is bounded from above then a pair of cones
K, Ky generates the space E.

Proof. 1) If the two-element set {z,0} is bounded from below, then there exists
u € E such that
T2k U 02k, U
ile.z—u€ Ky, ue —Ks.
Then the element x can be represented in the form z = (z —u)+u € K1 + Kp =
K, — (<K;) and since z is an arbitrary element, we obtain £ = K; — (—K3).

2) Let {z,0} be bounded from above, then there exists u € E such that
UK T, UK, 0

ie. x—u€ —Ki, ue K,

Then the element z can be represented in the form z =z —u+u € —K; + K,
and since z is an arbitrary element, we obtain £ = Ky — Kj. O

Proposition 2.2.5. Assume that the cone H := Ky N K, is generating. Then for
each z,y € E the set {z,y} is bounded from above and from below.

Proof. Let z,y € E. Since E = H—H it follows that there exists 1,91 € H, z2,¥2 €
H such that £ = 1 — 2, ¥y = y1 — y2. This means that ¢ <y z1, vy <g y1. We have
z<pg o <gzi+yandy <g 1y <y 1 +y1. Since K1 D H, Ky D H it follows
that  <g, =1 +v1, ¥ <k, 1 + y1. Thus {z,y} is bounded from above. A similar
argument shows that this set is bounded from below. O

2.2.2 2-vector lattices

Definition 2.2.5. A space E = (E; K1, K>) is called a 2-lower (upper) vector semi-
lattice, if for any two elements z,,z, € E there exists Inf{z1,z2} (Sup{zi, 22},
respectively) in the space E = (E; Ki, K>).




Chapter 2. The additivity of the decomposition mapping and
lattices with respect to several preorders 52

Definition 2.2.6. A space E = (E; Ki, K5) is called a 2-vector lattice, if for any
two elements 1,z €C E there exist Inf{z;, z>} and Sup{z1, .} in the space E' =
(EJ Kl) KZ) .

The following proposition contains an example of a 2-vector lattice.

Proposition 2.2.6. Let E = R*, K; = R?, K, = {z € R* : o' > 0}. Then
(E; Ki, K>) is a 2-vector lattice.

Proof. Let z € R*,y € R™. First we will show that there exists Sup(z,y). Consider
separately the two cases.

1) 2! > y'. Then z >k, = and z >k, y. It easily follows from this that
z = Sup(z,y).

2) z' < y'. Let u = (y',2%,...,2"). Then u >, = and u >k, y. It is easy to
establish that z >k, z, z >k, y implies z >k, u, z >k, u. Hence u = Sup(z,y).

Now we establish that Inf(z,y) exists.
1) Let ! < y'. Since 7 <, = and z <k, ¥ it follows that z = Inf(z,y).

2) Let z' > ¢'. Let v = (y*,22,...2"). Then z <k, v, y* <k, v. It is easy to
establish that v = Inf(z,y). O

Ezample 2.2.4. The space (E, Ky, K,) with E = R* K; = —R% and K; = {z =
(z!,z%) : 22 < 0} is depicted on Fig. 2.7. It is clear that Sup(z,y) in (E, K1, K3) co-
incides with the Inf(z,y) in (B, —K1, —K,); here —K; = RZ, =K, = {z = (z*,2?)
22 > 0}. Let z = (4,—-2), y = (2,1). (See Fig 2.7.) Then V = Sup(z,y) = (2, —2)
(see Fig. 2.8) and U = Inf(z,y) = = = (4, —2) (see Fig. 2.9).

We will now present more complicated examples of a 2-vector lattice.

Proposition 2.2.7. Let (S,%, ) be a measure space and E = LP(S,%, ) with
0 < p < +oo. Assume that E is equipped with the natural order relation [ =
y <= xz(s) > y(s) ae.) . Let Ky be the cone of nonnegative on S functions
z€E. Lt BeY and Ky = {z € E : z(s) > 0, s € B} be the cone of nonnegative
on B functions. Then

1) the space (E, K1, Ka) is a 2-vector lattice; if z,y € E then Sup(z,y) = v and
Inf(z,y) = u, where

wls) = { sup(xx(sgsy(s)) 5 é gng; (2.2.2)

_f inf(z(s),y(s)) seB
uts) = { o(s)  s€ S\B 2:2:8)
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Figure 2.7: E = (R? K3, K>)
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Figure 2.8: V = Sup{z;y}
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_al 2

-6 I 1

Figure 2.9: U = Inf{z;y}

2) the space (E, Kz, K1) is a 2-vector lattice; if z,y € E then Sup(z,y) = and
Inf(z,y) = u', where

v | sup(z(s), (s)) sEB

v'(s) = { P y(s)y seS\ B (2.2.4)
v f inf(z(s),y(s)) seB

W (s) = { y()s)y ) e\ B. (2.2.5)

Proof. 1) Let =,y € E. We will prove that v defined by (2.2.2) coincides with
Sup(z,y) in (E, K1, K>). First we will show that v >, 2. Indeed, v(s) > z(s) for
s € B and v(s) = z(s) for s € S\ B, hence v >k, . Since v(s) > y(s) for s € B, it
follows that v >, y. Now let z >x, = and 2z >k, y. Then 2(s) > z(s) for all s € S
and z(s) > y(s) for s € B, hence 2z >, v and z 2k, Y.

The same argument shows that the function u defined by (2.2.3) is equal to
Inf(z,y) in (E, K1, K3).

2) Let z,y € E and let v/ be defined by (2.2.4). Then v'(s) > z(s) for s € B
and v/(s) > y(s) for all s € S, hence v' >k, T and v’ 2k, y. It is easy to check that
(z 2k, T,2 21, ¥) = (22K, V', 22K,), 800 = Sup(z,y) in (E, Kz, K1). The
same argument shows that v’ = Inf(z,y) in (E, K, K1) O
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Proposition 2.2.8. Let (S,3, 1) be a measure space and E = LP(S,%, u) with
0<p<+oo. Let B, € 2 and B, = S\ B;,. Consider the cones

Ki={ze€FE:z(s)>0,s€ B}, Ko={re€FE:z(s)>0,s€ By}.

Then (E; K1, Ks) is 2 vector lattice and for each x,y € E we have

B _Jz(s) seB
Sup(z,y) = Inflz,y) = { y(s) s € B,.
Proof. The proof follows immediately from the definitions of Sup and Inf. O

It follows from Proposition 2.2.8 that in 2- vector lattices the equality Inf(x,y) =
Sup(z,y) can be valid for z # y. Of course this is impossible in classical lattices.

Theorem 2.2.9. Let E = (E; K, K) be a 2-vector lattice. Then for any x1,T2 € E
the equalities

T1 + o = Inf{z1; T2} + Sup{xe; z1} = Inf{zs; 1} + Sup{z1; 22} (2.2.6)
hold.
Proof. Let x1, x5 € E, then Item 3. of Theorem 2.2.2 yields

Sup{z2; 71} — 71 — To = Sup{z2 — T1 — T2; T1 — 1 — Ta} = Sup{—x1; —T2}.

Item 2. of the same theorem implies that
Sup{—z1; —z2} = —Inf{z1; 22 }.
Hence, T, + 22 = Inf{z;; 22} + Sup{z2; z1}.
Similarly, since
Sup{z1; T2} — T3 — 71 = Sup{z1 — T2 — T1; Ty — T2 — 1} = Sup{—x2; —T1},

and
Sup{—z2; —z1} = —Inf{zs; 21},

then
T1 + Ty = Inf{zy; 21} + Sup{z; z2}.
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Let a space E = (E; K1, K») be a 2-vector lattice.

Now let us introduce the following definitions.
Definition 2.2.7. The elements
z/, = Sup{0;z}, z_ = —Inf{z;0}

are called the positive and the negative parts of an element z € E = (E; K, K»)
with respect to a pair of cones (K7, K3).

It follows from the definition of Sup and Inf that z/, >k, 0 and —z’ <k, O,
hence z/, € K; and z_ € K.

Definition 2.2.8. The elements
2/ = Sup{z;0} € K,, 27 =-Inf{0;z} € Ki

are called the positive and the negative parts of an element z € E = (E; K, K>)
with respect to a pair of cones (Ka, K1).

Put
ool ==, + 2L, lz|" =z + 2.

We have |z|' € L, |z|” € L, where L = K1 + K.

2.2.3 Absolute value in 2-vector lattices

Definition 2.2.9. The quantity

2] + al”
#l="

is called the absolute value of an element z € E = (E; K1, K>) in a 2-vector lattice.

These new notions will be illustrated by the following examples.

Ezample 2.2.5. Let E = R? be the cartesian plane, K; = R% be the positive orthant,
and K, = {z = (z!,22) € R* : 2! € R, } be the right half-plane (see Fig. 2.10).

Consider the point z = (=2, —2) € E. It can be shown (compare with the proof
of Proposition 2.2.6) that (see Figs. 2.11, 2.12, 2.13,2.14)

U = Inf{z;0} = (-2, -2) and 2’ = —U = (2,2); <z, = Sup{0;z} = (0,0);

U’ = Inf{0;z} = (=2,0) and 2” = —U’ = (2,0); | = Sup{z;0} = (0,-2).
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Figure 2.10: z € E = (R* K3, K>)
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Figure 2.11: U = Inf{z,0} € E, 2’ € K,



Chapter 2. The additivity of the decomposition mapping and
lattices with respect to several preorders 58

-2+ X ® 4+
‘xK2

" L ! I I y
-6 -4 -2 0 2 4 6

Figure 2.12: 2/ = Sup{0;z} € K;

Figure 2.13: U’ = Inf{0,z2} € E, z” € K,
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Figure 2.14: 2/, = Sup{z;0} € K>
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Figure 2.15: z, |z|', |z|" € E
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We have |z =z, +2_ = (2,2), |z|" =2 +2” = (2,-2)

(=] + [=|")

| = 5 = (2,0) (see Fig. 2.15).

Ezample 2.2.6. Let (S, %, 1) be a measure space and let £ = LP(S, %, ). Consider
the space (E, K, K,) where K; = {z € E : z(s) > 0,aes € S}, Ky ={z € E:
z(s) > 0:x(s) > 0,a.e. s € B}, where B € ¥. Let u € E. Then

] Ju(s)] seB
e ={ " 5p

Indeed, applying Proposition 2.2.7, we have

T

A [ —inf(u(s),0) seB
u’_(s) : —Inf(u,0) = { —u(s) séB.

Therefore i
R O
u’ (s) == Sup(u,0) = { Supgt(gs), 0) ;;g
u” (s) := Inf(0,u) = { —inf('g(s),()) ;;g
Therefore

Iul/l(s) = UZ_(S) + u,i(s) = { |UE)S)| ssg’g

Finally we have

ol 30t + 1y = { M 25

Ezample 2.2.7. Let E = LP(S,5,p), B1 € £,B, =S\ Z, Ky = {z € E: z(s) 2
0, s€ B}, K ={z € E:xz(s) >0, s € By}. Then (see Proposition 2.2.8) we
have for z,y € E:

Sup(z, y)(s) = Inf(z,y)(s) = { o e
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Tt follows from this that

.'L’I_*_(S) = Sup(oax)(s) = { ;1;?5) :S’seegzl
7' (s) = —Inf(z,0)(s) = { —m()(S) sseegr:

z. (s) = Sup(z,0)(s) = { xE)S) ;eegr:

z (s) = —Inf(0, z)(s) = { _3?(5) ;366521
Then L , —z(s) s€ B
! |z|'(s) = 2y (s) + 2L(s) = { z(s) sE€B;
jz|" (s) = &'y (s) + 2 (s) = { _””"352) Z E g:

Hence

|z| =0 forall z€E.
Now let us study the properties of these new objects.

Theorem 2.2.10. Let E = (E; Ky, K5) be a 2-vector lattice, and let z,y € E. Then

/

1 w=ul —al i -

—3

=g =@
2. |z|' = Sup{—=z;z}, |z|" = Sup{z; -z},

|z| = Sup{0;z} + Sup{0; —z} = Sup{z;0} + Sup{—=z;0} (2.2.7)
and |z| >k, 0, i =1,2;
3. | —z|=|z|
If at least one of the cones Ky, K; is a pointed cone then
4. Inflz’_;2, } =0, Inflz” ;2 } = 0;
5 |z|' = Sup{z’_; 7.}, |z|" = Sup{z’;z"},

If both K; and K, are pointed then

6. |z| =0 if and only if x = 0;
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Proof. 1. By substituting z, = 0 in (2.2.6), we obtain the required result.

2. Taking into account Item 1. of the current theorem and Item 2. of Theorem
2.2.2 we have

lz|' =2/ +3_ = (¢, -z )+ (g +2.)=x+22 =

=z — Inf{27;0} = z + Sup{—2z; 0} = Sup{—=z;z}.

Similarly
lz|" =2 +2" =@ - )+ (&’ +22) =z + 21" =
= z — Inf{0; 2z} = = + Sup{0; —2z} = Sup{z; —z}.
Thus
2] = ||’ J; JEe _ Sup{—:v;x}—;—Sup{a:; —z}
_ (Sup{-=;2} + ) + (~= + Sup{z; —=}) _ Sup{0;2z} + Sup{0; —2z}
2 2

and
o - Bulomio) =)+ (o Suplr —z))
B 2
_ Sup{—2z;0} + Sup{2z; 0}
B 2

= Sup{—=;0} + Sup{z; 0} >k, 0.

3. It is obvious.

4. Let u = Inf{z/,;2_}. Since #/, >k, 0, 7 >k, 0, then u >k, 0, ¢ = 1,2. Let
z1 =z —u, 2o =1a_ —u. It follows from the definition of Inf that 2z >k, 0
and z; >k, 0. Item 1. of the current Theorem yields z = 2z — 23, and therefore
7 >k, ©. Since also z; >k, 0 we have z; >k, Sup{0;z} =2/, 1 =1,2.

The latter inequality implies that u = z/, — 21 € —K;, 1 = 1,2. Since at least
one of the cones K, and K is pointed it follows that u = 0.

The second equality can be deduced by similar reasoning.
5. Theorem 2.2.9 and Item 4. of the current theorem yield
|z|' = 2/, + 2" = Sup{z_; !} + Inf{z);2’ } = Sup{z_;z' },

|z|” = 2/, +z"” = Sup{z’;z"} + Inf{a@ 2’} = Sup{z’;z”}
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6. Let |z| = 0. Applying (2.2.7) we have Sup{z; 0} + Sup{—=;0} = 0, therefore
Inf(z, 0) = —Sup{—=; 0} = Sup{z;0}. We have

z >k, Inf{z;0} = Sup{z; 0} >k, -

Inf{z;0} = Sup{z;0}. It follows from

Since K, is a pointed cone, then x =
K, is a pointed cone, we have z = 0.

this that ¢ <g, 0 and T >k, 0. Since
The proof of assertion z =0 = |z| = 0 is trivial.
O

Proposition 2.2.11. Consider a space (E, K1, K3) such that the cone H = K1NK»
is a generating cone. Assume that for each hi,hy € H there exists Inf(hy, he) and

Sup(hy, h2) in the space of (B, K1, K3). Then (E, K1, K>) is a 2-vector lattice.

Proof. Let =,y € E. Since H is a generating cone, then (see Proposition 1.1.1)
the set {z,y} C (E,H) is bounded from below, i.e. there exists an element z € E
such that z,y >g 2. This means that z — 2 € H, y — z € H so there exists
u = Inf(z — z,y — 2) in the space (E, K1, K3)
2.2.2, Ttem 3. A similar argument shows that there exists Sup(z,y)-

 The result follows now from Theorem
O

Now we consider Inf and Sup in a 2-vector lattice E = (E; K1, K2) as operators

acting from the space E? to the space E.

We need the following definitions. Let G be a vector space. An operator A
G — (E, K1, K») is called sublinear if A is positively homogeneous (A(Mz) = NA(z)
for all z € G and X > 0) and subadditive: for each 1,22 € G it holds:

A(zy + 7o) <k, Az1) + A(z,), i=12

An operator A: G — (E, Ky, K>) is called superlinear if A is positively homogeneous
and superadditive: if for each z,,z» € G it holds:

Az + 22) >k, Alm) + Alz2),  1=1,2
Theorem 2.2.12. Consider operators P : E? — E and Q : E*> — E, where
P(X) = Inf{z1; 32}, Q(X) = Sup{z1; T2}, where X = (31,%2) € E?.

Then P is a superlinear operator and Q is a sublinear one.

ors P and @ are positively homogeneous (see Theorem 2.2.2,
additive and @ is subaddive.

Proof. Both operat
Item 4.). So we need only to prove that P is super




Chapter 2. The additivity of the decomposition mapping and
lattices with respect to several preorders 64

We will start with P. Let X' = (a},23) € E?, X? = (z2,72) € E*. Then
P(xXY) = Inf{z}; s}, P(X?) =Inf{z;z),
P(X*+ X% = Inf{z} + 2%; 73 + 73}
By the definition of Inf we have
o >k, P(XY), € >x, P(X1), z? >, P(X?), 72 >k, P(X?).

Therefore
x% +$§ ZKI P(Xl) +P(X2)7 J’é +x% ZKz P(Xl) +P(X2)

From the definition of Inf, we obtain

Inf{z} + z3; 73 + 22} >k, P(X') + P(X%), 1=1,2,

or

P(X' + X?) 2k, P(X) + P(X%, i=1,2.

Consider now the operator Q.

Let
Q(X') = Sup{zl;z3}, QX" = Sup{z}; 3},

Q(X* + X?) = Sup{z} + 2%, 23 + T3}
Then
QXY >k, 71, QX') 2k, ¥y and QX?) >k, 72, QUX?) 2k, T3

and
QXY + Q(X?) >k, 1 + 71, Q(XY) + Q(X?) 2k, T3 + T3

Thus
QXY + Q(X? >k, Sup{z] + 22,1y + T3} = QX'+ X?), i=1,2

O

The following theorem states that T, z_, T, z" are sublinear projections onto

the corresponding cones. First, we will prove the following lemma.
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Lemma 2.2.13. Let E = (E; K1, Ks) be a 2-vector lattice with the pointed cones
K; and Ky. Then for every x € E in the relations

Sup{0; Sup{0;z}} = Sup{0;z}, Sup{Sup{z;0};0} = Sup{z;0}
and
Inf{0; Inf{0; v} } = Inf{0; 2},  Inf{Inf{z;0}; 0} = Inf{z; 0}

are valid.

Proof. We will prove only the first equality. Other assertions can be proved by
similar reasoning. Let U = Sup{0;z} and V = Sup{0;U}. We have U > O,
U >k, U, hence U >k, Sup(0,U) =V,i=1,2.

Conversely, V >k, 0, V >k, U yield V >k, Sup{0;U} >k, U. Since Kj is a
pointed cone then U >k, V and V >k, U imply U = V. O

An operator A : E — E where E is called a projector if A> = A.

Theorem 2.2.14. Let a space E = (E; K1, K3) be a 2-vector lattice. Assume that
the cones Ky and K, are pointed. Consider the operators Ty, T', T'/, T" defined on
E by

@)=, T(0)=c, Tiw)=dl, T()=a"

Then these operators, acting from E to E are sublinear projectors, besides T' (E) C
Ky, T"(E) C Ky and T' (E) C K, T}/ (E) C K,.
Proof. Let z € E = (E; K1, K>). Let
Tlz)=2, T-@E=s, T s)=8, Tiz)=2.
Consider the vectors Y, = (z,0) € E?, Z, = (0,z) € E%. Then
Ti(z) =Q(Z), T.(z)=-P(:), T{(z)=Q(Y:), T (z)=-P(Z),

where the operators P and @) are the same as in Theorem 2.2.12. Then Theorem
2.2.12 implies the sublinearity of T, 7", T%, T".

The definitions of 2/, z”, z{,z” yield
T (z), T"(x) € Ky and T (z), TY(z) € K>
forall z € F.
Finally, let us show that (T%)* =17, (I")* =T, (TY)* =T}, (IT")*=T".
It can easily be obtained by means of Lemma 2.2.13:
(T} () = TL(T(2)) = T.(&',) = Sup{0; Sup{0;5}} = Sup{0; 2} = T (a),
where z € E.

By acting analogously with 77, 7" T” the required assertion can be proved. [



Chapter 2. The additivity of the decomposition mapping and
lattices with respect to several preorders 66

2.2.4 Kantorovich -Riesz type theorems

Let E = (E; K1, K3) be a space with two cones K, K5. Consider the space E' =
(E'; Kf, K7) with the cones K7, KJ, where £’ is the dual space to £ and K} are
the conjugate cones to K; (i = 1,2). We consider the relation between the Riesz
interpolation property in F = (E; K1, K,) and the property of E' = (E'; KT, K7) to
be a 2-vector lattice. As above, let

o=0g, ik, () ={X = (21,22) E K1 x K3 : z1+z2=2} (z€K;+K>),
be the decomposition mapping with respect to the cones Kj, K, and let

pe(z) = inf [G,Y] (x € E, G €dom o)

Ye€ok, Kk, (%)

be the support function of o corresponding to a linear function G' ( pg was defined
and studied in Section 1.3).

First, we will prove the following assertion.

Proposition 2.2.15. Let cones K1, Ky be given in the space B and let L = K1+ K.
If the decomposition mapping 0 = ok, k, : E — 2F% 4s additive on the cone L, then
pg is a positive additive on L function for every G € K* = K{ x K.

Proof. Let G € K* and z,y € L. Since o is additive, then o(z +y) = o(z) + o(y).
Thus,
pg(z+y)= inf [G,Z]= iof [G,Z]=

Zeo(z+y) Zeo(z)+o(y)

- if 6,7+ 7= int [G.Z]+ inf [G,7")=

Z'€o(a), 2"€a(y) Z'eo(a) 27ea(y)
= pa(z) + pa(y)-

We proved that pg is additive on L. Now let us show that pg (G € K*) is positive
on the cone L, i.e. if x € L then pg(z) > 0. Indeed, it follows from the fact that
o(z) C K =Ky x K;and G € K* = K] x K3. O

Proposition 2.2.16. Assume that the cone L = K; + Ky from Proposition 2.2.15
1s generating and closed. Consider a function lg define on E by

lo(z) = p(z1) — pa(za), T =2 — Ty, IT1,To€E L. (2.2.8)

Then lg s well defined and lg € E'.
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Proof. First we show that g is well-defined. Let z = z; — To = y1 — Y. Since
T1+Ys = y1 + T2 and pg is additive it follows that pg(z1) +pc(y2) = pa(vr) +pc(z2),
therefore

pe(x1) — pa(y2) = pe(y1) — pa(y2)-

This means that the number /g(z) does not depend on the presentation of z as the
difference of two elements from L. It is clear that g is an additive function. Since
pe is sublinear it follows that peg is positive homogeneous. Let z = 21 — Z». Then
—z = x5 — 1, hence lg(—z) = pg(z2) —pe(z1) = —lg(x). Thus pg is homogeneous.
Since the cone L is generating and closed it follows (see Theorem 1.1.2) that each
positive on L linear function is continuous, hence lg € E'. O

Let
w(z)= sup [G,Y] (r € E, G € dom d"). (2.2.9)
1 YEUKl,KZ(I)
The links between g and pg were discussed at the beginning of Section 1.3. Assume
that the mapping o is additive. Then the function ¢¢ is additive. Assume that the
cone L is generating and closed. Then the function

ma(z) = g6(z1) — 4c(T2), T =T — T2 (2.2.10)

is well defined. This function is a linear continuous function defined on E. These re-
sults can be proved in the same manner as the corresponding results for the function

DbaG-

The following statement is a version of Theorem 2.1.2 (L. V. Kantorovich-F.
Riesz) for spaces with two cones.

Theorem 2.2.17. Let E be a Banach ordered space with the closed cones K1, Ky
and let the cone L = Ky + Ky be closed and normal. If the space E = (E; K1, K3)
possesses the Riesz interpolation property with respect to the cones K, K, then the
dual space E' = (E'; K3, K3) is a 2-vector lattice with respect to the conjugate cones
K, K3,

Proof. Since L = K, + K it follows that L* = K} N Kj;. Since L is normal it follows
(see Theorem 1.1.9) that L* is a generating cone. In view of Proposition 2.2.11 it
is enough to show that Inf(gy,g2) and Sup(gi, g2) exist for elements G = (g1, 92)
with g1,9. € L*. We will prove only the existence of Inf(z1,z5). The existence of
Sup(z1, 7o) can be proved by a similar argument.

Theorem 2.1.3 shows that the Riesz interpolation property with respect to the
cones K1, K, in the space E = (E; K1, K>) is equivalent to the additivity of the de-
composition mapping, so applying Proposition 2.2.16 we conclude that the function
lg defined by (2.2.8) is a positive linear continuous function.
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We will prove that lg = Inf{g:; 92} € E' = (E; K3, K3)-
Evidently for all z; € K, 22 € K, the following inequalities hold:

lo(z1) = pa(z1) < g (z1), le(ze) = pa(z2) < ga(T2)-
By the definition of the conjugate cone we obtain
le <k: g1, lo <K; 92
Let an element h € E’ be such that
h <kr g1, h <k; g2
Let z € L and elements z, € Ki and 75 € K, be such that z = 71 + 2. (In other
words, (z1,22) € Oy k) ().) Since 71 € K, and z, € K, we have
[h,z1] < [91,71], [h, T2) < [g2,T2]-
Hence

[h,x] < lg1, 1] + (g2, T2] for all (z1,%2) € 0K, Ko (T)-
This yields

[h,z] < inf {lg1, z1) + [92, T2l } = pe(@) =lg(z), (z€ L).

T (21,%2) €0 K, Ko (T)

Therefore [h,z] < [lg, 7], (¢ € L), that is h <p+ lg. Since L™ = KiNK; it
follows that
h<ks f, h<k; [

This means that lg is the infimum of the elements g1, g2 with respect to the
cones K7, K. We have proved that for each g1,g2 € L* the infimum with respect
to K7, K; exists.

We now turn to the supremum Sup(gi, g2)- The existence of Sup(g1, 92) can be
proved by the same argument using functions gc defined by (2.2.9) instead of pa
and functions mg defined by (2.2.10) instead of la. O

In relation with this theorem we consider Examples 2.1.2 and 2.2.2 that were
discussed above.

Ezample 2.2.8. Let E = R2 be the cartesian plane, K1 = R? be the positive orthant
and K, = {\U}xso be the ray passing through the point U = (0, 1) (see Fig. 2.16).

Then K; = R% and K3 = {(u,v) eR* : vV E R, } are conjugate cones to K,
and K, respectively.
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It is evident that the space E and the cones K, Ky, L = K + K> satisfy all the
hypotheses of Theorem 2.2.17 (see Fig. 2.17) and the Riesz interpolation property
takes place in the space E = (R? K, K,) with respect to the cones K; and K
(see Example 2.1.2). Then Theorem 2.2.17 implies that the dual space E’ is a 2-
vector lattice with respect to the positive orthant K and the half-plane K3 which
is confirmed by Example 2.2.2 stated at the beginning of this section.

It is interesting to find conditions that guarantee that the inverse to the statement
in Theorem 2.2.17 holds. We will demonstrate that this statement is valid if E is a
reflexive space. Actually we will prove the following stronger result.

Theorem 2.2.18. Let E = (E; Ki,K>) be a reflexive Banach space with cones
K, and Ky. Assume that the cone L = K| + K3 1s closed, normal and generating.
Assume that the space (E'; K5, K3) is a 2-vector lower semilattice. Then (E, K, K)
possesses the Riesz interpolation property.

Proof. For the sake of definiteness we assume that (E'; K7, KJ) is a 2-vector lower
semilattice. We will check that the decomposition mapping o = ok, k, is additive,
this implies the Riesz interpolation property. We will show that for all G = (g1, g2) €
(E’)? the support function pg of the decomposition mapping ¢ = ok, k, coincides
with the restriction of a certain linear function on L. Recall that pg is sublinear
and (see Theorem 1.3.11) is lower semicontinuous for all G € (E?)’.

Let U=1{h € E': h<k: g1, h <k ga}. We have for each h € U, z € L and
X = (z1,2) € o(x):
[h, 1] < [91, %1], ([h, z2] < [g2, z2]).

Therefore

[h,z] = [h,21] + [h, o) < inf  ([g1, 1] + [92, %2]) = po(2).
X=(z1,z2)€0(x)

We have demonstrated that h € dpg, so U C Opg.
Now let h € Opg and let z; € K;. Then

[h)xl] S pG(xl) = 1nf [917:{’{[] + [9271.,2] S [glaxl] + [927 0] = [glyx1]~
X=(z},z})€o(z1)

Thus b <k: g1. In the same manner we can show that h <k; g. It follows from
this that dpg C U.

Thus we have proved that dpg = U. Let hg = Inf(g1,g2). Then hy € U and
he 2k: h, hg 2k h for all h € U. Since pg 1s lower semicontinuous we have

pc(z) = sup [h,z] = sup[h, z].
h€dpg heU
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Since hg >k» h for all h € U we have that hg(z;) > h(z;) for all h € U and
z; € K;, (1 =1,2) hence

pg(z1) = suplh, z1] = [ha, 21, e K,
helU
and
pg(z2) = suplh, z2] = [ha, %2, x € K.
heU

Now let z € L and X = (21,72) € o(z). Since pg is sublinear and hg € Ops we
have
[he, 7] < pa(e) < pe(z1) + pa(@2) = [ha, 11] + [he, 32] = [he, 2]

Thus pg(x) = [he, z] for all z € L. Hence we can consider pg as the restriction of a
function hg € E’ to the cone L.

Applying Proposition 1.2.19 we conclude that the decomposition mapping is
bounded, therefore sets o (z) are bounded for all z € K. Since the space E is reflexive
it follows that these sets are weakly compact. We now can apply Proposition 1.1.15
that show that o is an additive mapping. g

A similar result can be proved for 2-vector upper semilattices.

Theorem 2.2.19. Let E = (E; K, K;) be a reflezive Banach space with cones
K, and K. Assume that the cone L = K; + K, 1is closed, normal and generating.
Assume that the space (E'; K¥, K3) is a 2-vector upper semilattice. Then (E, K1, K>)
possesses the Riesz interpolation property.

The proof is similar to that of Theorem 2.2.18. We need to consider the super-
linear function gg, where g () = SUDx—(s, z2)co(z) ([91, Z1] + [g2, T2] and repeat the
proof of Theorem 2.2.18 with obvious changes.

Corollary 2.2.20. Let E = (E; K1, K>) be a reflexive Banach space with cones K
and K. Assume that the cone L = K, + K, is closed, normal and generating. If the
space (E'; K&, K2) is either a 2-vector lower semilattice or 2-vector upper semalattice
then this space 1s a vector lattice.

Indeed, applying either Theorem 2.2.18 or Theorem 2.2.19 we conclude that
(E; K1, K3) possesses Riesz interpolation property. Combining this with Theorem
2.2.17 we obtain the desired result.




Chapter 3

Weakly-efficient Decompositions

3.1 Preliminaries

Efficient decomposition of an element with respect to a given collection of cones is
important for many applications. Such decompositions often arise in mathematical
economics (see [24]). Many examples of efficient decomposition are given in the
paper [25] by J.E. Martinez Legaz and A. Seeger. The authors of this seminal paper
proposed to use several definitions of efficiency. They are as follows.

Let (E; K1, K3) be a Banach space with closed cones K; and K». Consider the
decomposition mapping ok, k, defined by K, K.

Definition 3.1.1. A decomposition (Z1,Z2) € o(z) (x € L := K; + K>) is called
efficient if the pair (T;,T2) is an efficient point of the set o(z) with respect to the
partial order induced by the cone K; x Ks, i.e. if (z1,22) € o(z) and (Z1,T2) —
(:171,382) € Kl X KQ, then

(.'171,.'1:2) — (51,52) S K1 X KQ.
If K, K, are pointed cones then (Z1,T2) — (21, 22) € K X Ky implies (21, z2) =
(.’I_Jl, i’z).
Definition 3.1.2. A decomposition (Z1,Z2) € o(z) (z € K + K3) is called ideal if
it satisfies the inclusion

(z1,22) — (T1,T2) € K1 X Ky Y(z1,22) € 0(z).

Definition 3.1.3. A decomposition (Z1,Z,) € o(z) (z € K1+ K>) is called efficient
in the i-th component (i = 1,2) if the inclusions (z1,z2) € o(z) and T; — z; € K;
ll’l’lply T, —T; € K; (Z =1, 2)
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The problem of conical decomposition and its efficiency first rose in the theory
of vector lattices (see [15] and references therein). In fact, if a space F is a vector
lattice with a cone H which induces an order, then for any element z € E the
following equality takes place

z=xzV0+zAO0,

where z V 0 = sup(z,0) € H, £ A0 = inf(z,0) € —H. Thus, as we see here, there
is a decomposition of the element x € E into the elements from the cones H and
—H. The pair (zV 0,z A0) € H x (—H) is called a lattice decomposition [15, 34].
Furthermore, it is well-known that if there exist elements y € H, z € —H such that

r=y+2z,

theny >y V0, 2>z AN0.

In terms of the above definitions, this fact means that the pair (zV0,zA0) € o(x)
is an ideal efficient decomposition of the element x with respect to the pair of cones
(H,—H). It is easy to show that (see [25]) the lattice decomposition (z V 0,z A 0)
is the unique efficient decomposition of the element x.

Furthermore, let us note the following J.-J.Moreau theorem on the orthogonal
decomposition [26, 25], which is one of the most brilliant result in this field.

Here and in the following [-,-] is the scalar product in a Hilbert space E =
(E,[,7]) and || - || = v/, ] is the norm in E.

Theorem 3.1.1. Let (E,[-,-]) be a Hilbert space, Ky = K € E be a cone, and
Ky = —K* be its polar. Let x,m and my be three elements of E. Then the following
statements are equivalent:

a) elements m, T are the projections of x onto Ky and K, respectively, i.e.
m =argmin{||lz — vl @ €Ki}, i=1,2;
b)x=m +m, m €Kiy, m € K, and [m, 7] =0,
It can be shown (see [25]) that the orthogonal Moreau decomposition (77, m3) €

o(x) is componentwise efficient.
The following recent result from [25] should be mentioned here:
Theorem 3.1.2. Let Ky and K, be two closed cones in a Hilbert space (E, [-,-]) and

letz € L := K, + K,. Consider an arbitrary pair (z1,22) € 0(x), where 0 = 0k, k-
Then the following two statements are equivalent:
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a) elements my,my are the projections of 1 and x4 on the sets Ki N (x — K5) and
KN (z — K;), respectively, i.e. w1 and 7y are minimizers of the problems

lz1 — 91| — min, |lz2 — y2|| — min,
yleKlﬂ(x—KQ). yQEKgﬁ(x—Kl).

b) the pair (m1,m2) is the unique mazimizer of the problem
[z1,91] + [@2, Y] + [y1, 9] — max

(y1,92) € o(2).
Furthermore, under the following additional assumption imposed on the cones K1, K,
and the elements x1,Ty:

[£1,22) <O forall z, € Ky, 25 € Ky}
SL'l—CCQE—KT or T — I E—K;,

the pair (m,m2), defined by the above equivalent conditions, is an efficient decompo-
sition of the element x.

The existence of efficient decompositions (in various senses) has been studied by
many authors (see, for example, [6, 13, 21]).

In the next section we will introduce the notion of weakly-efficient decomposi-
tion, which is different from notions of efficiency defined in [25]. We will examine
the properties of weakly-efficient decomposition using the techniques developed in
the previous chapters; a relation to the efficient decomposition will be shown and
examples given (Section 3.2); the case of a weakly-efficient decomposition with re-
spect to the support set of some sublinear function with given properties will be
studied separately (Section 3.3).

3.2 A weakly-efficient decomposition

As was mentioned, in [25] the definition of an efficient decomposition was given,
where the order was chosen as the efficiency criterion. Here a new definition will be
proposed, with the duality involved, and the technique of superlinear multi-valued
mappings will be used.

Let E be a Banach space. Consider cones K, ..., K, in E and their Cartesian
product K = K; x --- x K, in E". As before, 0 = ok, kx, : E — 2F™ is the
decomposition mapping with respect to the cones K, ..., K, i.e.

o) ={X=(z1,...,2,) E K=K, x--- X K, imizac} (mGL:zZKi).
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Let D be a subset of the set = dom ¢*, i.e. D C K.

Definition 3.2.1. A point X € o(z) where z € dom o is called a weakly efficient
decomposition of z with respect to a given subset D, if there exist functions G € D

and f € 0*(G) such that [f,z] =[G, X].

A quadruple of vectors (z, X, f,G) in this definition is called compatible with
respect to the mapping o.

In the following we will see that the set D C K plays an important role in the
definition of a weakly-efficient decomposition. Theorem 1.2.10 implies the equality
K = K*+ M*, where M* =D := {G = (g,...,9) : g € E'} and we can observe the
following facts related to the set M™.

Proposition 3.2.1. If D = M* then any decomposition X € o(x) is a weakly-
efficient decomposition with respect to D.

Proof. It is a consequence of the fact that for all z € dom o, X € o(z) and any
g" € D = M* Proposition 1.2.7 yields

gea(g") and [g,2] = [¢g", X].
0

Proposition 3.2.2. Let D C K*. Let X € o(z), f € ¢*(G) (z € dom o =
L, GeK)and G =H+ g" € K where H € K*, g" € M*. Then, if the quadruple
(z, X, f,G) is compatible, then the quadruple (z, X, f —g, H) is also compatible with
respect to the mapping o.

Proof. This result is a corollary of Proposition 1.2.14. O

These two assertions allow us to consider only the case D C K™*.

Since we are interested in a decomposition of any element of the space £ into
the cones, we will consider the cones K7, Ko, ..., K, such that

Y K;=E, ie. L:=domo=E.
i=1

Then Theorem 1.3.10 implies that for all G € K the sublinear function
pg(z) =inf{[G,X] : X €o(z)}, (z€E)

is continuous. Recall that a cone K is called solid if int K # (). The following theorem
establishes the relation between the efficient and weakly-efficient decompositions.
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Theorem 3.2.3. Let K := K; X --- X K,, be a solid cone in the space E™, then if a
decomposition X € o(z) (z € E) 1is efficient, then it is weakly-efficient, if D = K*.

Proof. Let x € E. As X € o(z) is an efficient point with respect to the solid cone
K, then
int(X — K) ﬂa(m) =0.

Since K is a solid cone, by means of the separation theorem, we will find a
function G € E’ such that

sup [G,Z] < inf [G,Y] (3.2.1)
ZeX-K Yeo(x)
which implies the following two inequalities:

(G, X] < inf [G,Y] = pe(z) (3.2.2)

Yeo(z)

and

sup [G,Y] < +o0.
Ye-K

The latter yields G € K*.
Since
X €o(z), and pg(z)= inf [G,Y]
Yeo(z)

it follows that [G, X] > pg(z). Combining this inequality with (3.2.2) we get
G, X] = pa(z). (3.2.3)
Since pg is continuous, then the corollaries of Theorem 1.3.5 yield

pg(z) = sup [f, 7]
feo*(G)

In view of Corollary 1.3.9 we have 0*(G) = Opg. Since pg is a continuous
function, it follows that o*(G) is a nonempty and weakly* compact set, therefore

po(a) = max [f,a].

Let a function f € 0*(G) be such that [f, z] = pg(z).
The equality
[f, 2] =[G, X]

takes place, and hence the quadruple of vectors (z, X, f, G) is compatible with re-
spect to the mapping o. So, it is proved that the decomposition X € o(z), (z € E)
is weakly efficient if D = K*. O
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Figure 3.1: £ = R?

The following examples imply that the problem of the existence of a weakly-
efficient decomposition with respect to D = K* can be reduced to the problem of
finding the min of the function pg, (G € D).

First we introduce the following definition. Consider a Banach space (E; H, Q)
with closed cones H and Q. The set H()(z — Q) is called the positive germ of an
element = on the cone (—Q) (see [20]). We can use the positive germ for calculation
of the support function pg of the decomposition mapping oy,g = 0. Indeed

= inf
pG(x) z1+9:2=1:,11;1€H,22€Q{[gl’ Il] T [92, -'1;2]}

= (g2, 2] + zleH,H;fmleQ[% — g2, 1]

inf -~ :
(92, z] + il o1 — 92, 7]

This formula will be used later.

Ezample 3.2.1. Consider the plane E = R? and take the positive orthant and the ray,
passing through the point ¢ = (—1, —1) as the cones, i.e. K3 =R, K, = {\t} >0
(see Fig. 3.1).

Then the dual cones are (see Fig. 3.2) K =R? and

K;={(f9) €R* : [(£,9),(-1,-1)] 20} ={(f,9) eR* : f<-g}



Chapter 3. Weakly-efficient Decompositions 78

1k

-2+

—4F

=B L L L L L I 1 L )
=5 -4 -3 =2 -1 0 1 2 3 4 5

Figure 3.2: E' = R?

Let 2° = (=2,3) € R?, g1 = (4,2), g2 = (—2,-3) and G = (g1,92) € D =
K} x K. The decomposition mapping o, x, = 0 is expressed in the following way:
o(z%) = {(z1,22) € R”Zx R? : z; = (v',v%), i=1,2, u* >0, v' >0,
W=\ v2==\ A>0, u' +u®=-2 o' +v*° =3}

Let us represent pg(z°) in the form:

pa(z®) = inf {lg1, 1] + [g2, z2] }

z1+z2=20, T1€K)1, 22€K>2

= inf {lgr, z1] + [g2,2° — 1]}

T1EK) ,a:o—xl eKs

0 .
= , T+ nf — g2, T1].
[g2 v ] I;[EKllﬂ(a:O—Kz)[gl 0 xl]

The set over which the last inf is taken, is defined as follows (see Fig. 3.3):

Ko ()@ = K) = {(,0) €R? : w020, u—v=—5}

An easy calculation shows that:

fl = argmin{[91 — g2,x1] . I S Kl ﬂ(.’lio — Kg)} = (0,5)
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Figure 3.3: K1()(2° — K3)

Then To=T—T1 = (‘—2, —2), X = (Tl,—fz) S 0'(1') and

pa(z°) = 20.

We have (see Fig. 3.4):

(@)= (91 — K[ V92— K3) ={(f,9) €R® : 4> f, 2> 9, =5< f+g}.

It is easy to show that the linear function f +— [f, 2% = —2f" 4 3f? attains its
maximal value on the set 0*(G) at the point f = (—7,2). Therefore, it is shown that
the quadruple of vectors (z°, X, f, @) is compatible with respect to the mapping o.

Ezample 3.2.2. Again, consider the cartesian plane E = R? with the cones
K, = {(u,v) €eR? : v>u, v>—u},
Ky ={(u,v) €eR?* : v <2u, u<0},
Ky ={(u,v) €R® : u= —%u, v < 0} = {A(3,—1)}aso
(see Fig. 3.5).
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Figure 3.6: B/ = R?

The conjugate cones have the form (see Fig. 3.6):

Ki={(f,9)eR* : g>f, g>—f},

K= {(/,9) € : g<—3f, g0},

K;={(f,9) €R* : 3f>g}.

Take the point z° = (—5,2) € R? and the vectors g = (0,4) € K}, g2 =
(-2,4) € K3 and g3 = (2,-2) € K3, 1ie. G=(g1,92,93) € D = K} x K5 X K3.

Let us calculate the set ok, x, i, (z°) = o(2°). We have

o(z°) = {(z1,22,735) ER*xR2xR? : z; = (v',7%), i =1,2,3,
vt >l ot > =l vP < 2u?, 02 <0, ud =3\ P ==\ A >0,
ut +u? +ud = -5, vt +0? +0% =2}

Let us represent the function pg in the form

pe(z®) = inf 3{[91,371] + (92, 2] + [g3, T3]} =

T1+z2+x3=20, 7;€K;, 1=1,2,

0 . .
: f — 02, %3] + f — Go, T1].
[g2 = ] + :EauelKa [QS 92 $3] r3€K3, Ileé?ﬂ(zo_za—Kz)[gl e 1]
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Figure 3.7: K;((2° — K, — K3)

For each z3 = A(3, —1) € K3 (A > 0), the set K, [|(2°—xz3—K>) can be explicitly
expressed (see Fig. 3.7) as

Klﬂ($0—$3—K2):{(u,’U)€R2 v > —u, v>2u+ 124+ TA}

By substituting the values of g1, g2, and g3 in the preceding expression of the
function pg we have

pG($0) = [(_27 '"4)’ (_57 2)] + il’zlg[(él, 2)? (3)" _)‘)]—I_

igf) v>—u, v12nz£+12+7,\[(2’ 8), (u;v)] =
2+ 0+ inf inf {2\ + 8v}.

A>0 v>—u, v>2u+12+7A

It can be easily verified that both the last infimums are attained at

X=0, T = (T,7) = (—4,4) € Ki, ie. pg(z®) =26 and

T3=A(3,-1)=0, o=z —T1 — T3 = (—-1,-2).
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Figure 3.8: 0*(G)

The conjugate mapping with respect to the cones K7, K3, and K3 at a point
G = (g1,92,93) € Ki x K} x K} has the form (see Fig. 3.8):

o*(G) = (0 — KD )92 — K3)
= {(f,9) eR? : g< —f+4, g< f+4,
9>3f~8,9> 4 g>—2f~5)

It is easy to show that the linear function f — [f, 2% = —5f' + 2f? attains its
maximal value on the set 0*(G) at the point f = (=6, —2). Hence, it is shown that
the quadruple of vectors (z°, X, f, G) is compatible with respect to the mapping o.

A weakly efficient decomposition is not always efficient. However, in some special
cases we can say that the efficient and weakly efficient decompositions coincide. We
consider one of such cases.

Consider a closed solid cone H in the space E and let a point —Z € intH. Let
us introduce the following cones:

A= {/\f},\zo and Df = {G = (gl,gg) S H*x L* : [92 - gl,f] Z 0}

Theorem 3.2.4. For any x € E in the set o(z) = oma(x) there exists a unique
weakly efficient decomposition with respect to the set D = Dz, which is an efficient
one.
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Proof. Since (—H) is a solid cone and Z € int (—H), then & = H + A. Therefore for
every « € E there exists A > 0 such that x € AT + H. It follows from this that the
set O,z = {\ € R, : \T € z— H} is nonempty, hence A = inf{\ : A € Q,z} < +oo.

Let G = (g1,92) € Dz, i.e. [g2—¢1,%) >0, and let z € E. Then

POE) = e o e 0] T Gl =

lgval+  _ inf 192 —g1,5) = g1, 2]+ fnf [g> =g, AT] =
[gl’l'] + [92 - 917XT] = [glug] + [gZ’XZE]v
where 7=z — \T € H.
As the sublinear function pg is continuous and dom pg = E then the support set

dpe = 0*(G) is a nonempty weakly compact set, and there exists f € 0*(G) such
that

pg(ZE) = fgé()é)[fa LE] = [f,iL']

Therefore B _
[91,@—] + [92, /\E] = [f,.’]?] (IE € E)

And hence the decomposition X = (7,A\Z) € oga(z) is weakly-efficient with

respect to Dz. (Indeed, G € Dz, f € 0*(G) and [G, X]| = [f, z].)
Let a pair (21,22) € og(z) (z € E) be such that

(anj) - (21,Z2) € H x A.

Since z5 € A there exists b\ > 0 such that zo = 27

The fact that A\T — A% € A implies X > \. Then the definition of X yields X = .
So, ¥ = z1 and (21, 22) — (§,AZ) € H x A, and the proof is complete. a

Let a vector lattice (E, H) be given with the order >y induced by the cone H. As
it was mentioned in Section 3.1, for each z € E = H — H the lattice decomposition
X = (zVv0,zA0) € Hx (—H), where V0 = sup(z, 0), A0 = inf(z, 0) is the unique
efficient decomposition of the element z. Furthermore, it is an ideal decomposition,
ie. for all (zy,z3) € H X (—H) such that z; + z2 = = the inclusion

(z1,79) — (zV 0,z A0) € H x (—H)

holds.
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Theorem 3.2.5. In a vector lattice (E, H) the decomposition (zV0,zA0) € o(z) =
oy _(x) is weakly-efficient with respect to D = H* x (—H") for any z € E, fur-
thermore, the relation

pG(x) = [gl’x N 0] + [9271. A 0]

is valid for any G = (g1,92) € H* x (—H™).

Proof. Let G = (g1, 92) € H*x (—H*), then gy —g» € H* and the following equalities
hold:

pa(z) = inf {lg1, z1] + [g2, z2]}

T1+xo=x, T1€H, ©26—H

- inf -
ZleH, :la:Il—:IJj[E—H{[gl, xl] + [92, L wl]}

— inf —

lg2,a) + _inf 91— 92, 21]
- [92’ I] - z1 ZHéTlﬁlZHﬂﬂ[gl ~ 9 £L‘1]
- [92) x] =k mlzigfi;?vo[gl — g2, xl]

(92, 2] + [91 — g2,z V 0] = [g1,2 V 0] + [g2,2 — 2 V O]
= [g1,z V0] + [g2,z AD].

Let z € E. As the sublinear function pg is continuous then the support set Opg =
0*(G) is a nonempty weakly compact set, and there exists f € 0*(G) such that

pG’("E) = fglyﬁ()((;)[f’ JI] = [f,iE]

Let X = (zV 0,z A 0). Then the quadruple of vectors (3:,5(: , f, G) is compatible
with respect to the mapping ¢ and hence the decomposition X = (z V 0,z A0) is
weakly-efficient with respect to D = H* x (—H*). O

Theorem 3.2.6. Let closed cones K, and K, be given in a reflexive space E and
let € E be a point such that the positive germ Ky N (z — K3) is bounded. Then
there exists a weakly-efficient decomposition with respect to an arbitrary nonempty
subset D of K; x K} in ok, k,(T).

Proof. Let G = (g1,92) € D. We have

pc(z) = inf {lg1, z1] + g2, T2]} =

z1+z2=1, T1€K1,52€K>2

= [g2, %] + inf (91 — g2, 1] = [g2, 7] + (91 — 92, %)

inf
z1€K1, z—11€K> z1€K1N(z—K2)
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Since E is reflexive and the set K, N (z — K3) is bounded it follows that this set
is weakly compact, hence there exists Z; € H N (z — K») such that

i _ _ B -1
zlEKll(I‘ll(z—KZ)[gl 92,.@1] [gl gz, 1]

Let Z, =z — Z;. Then

) = (g2, x| + inf — g2, T1| = |G, T| + — G2, T1] = |91, 1| + |92, T2|.
pc(z) = [g2, 7] xleKlﬂ(z—Kz)[gl 92,71 = [92,2] + [91 — 92 1] = [91, Z1] + [g2, Z2]
As the sublinear function pg is continuous, then the support set 9pe = o*(G) is a
nonempty weakly compact set, and hence for the given z there exists f € o*(G
such that B

pG'(.’E) = fg%)[f’ l‘] = [f,CU], (‘T € E)

Then

(91, &1] + (92, Z2) = [f, z]-

And hence the decomposition X = (21,T,) € 0k, k,(2) is weakly-efficient with
respect to D, since G € D, f € o*(G) and |G, X] = [f,z]. O

Remark 3.2.1. The result of Theorem 3.2.6 holds if we assume that H is a weakly
locally compact cone in an arbitrary (not necessarily reflexive) Banach space E.

3.3 A weakly-efficient decomposition with respect
to the support set

In this section we will continue to study a weakly-efficient decomposition in the case
where the set D C K is w*-compact. Then this set coincides with the support set
of a sublinear function @, namely Q(z) = max{[g,z] : g € D}. It is convenient to
use the function @ later.

Let E = (B : Ky,...,K,) be a Banach space. Assume that the space (E™)" is
equipped by the order relation > generated by the cone K = K7 x ... X K.

The following theorem provides us a method for finding a weakly-efficient de-
composition with respect to the support set of a sublinear function (the existence
of min on o is assumed).

Theorem 3.3.1. Let a continuous sublinear function Q : E™ — R be monotone.
Let the decomposition mapping o be bounded. Let T € E be an element such that
argmin{Q(X) : X € ()} # 0. Then any decomposition X € argmin{Q(X) :
X € 0(Z)} is a weakly efficient decomposition with respect to D = 0Q).
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Proof. Consider the function

= inf X .
sale) = nf Q(X), weB
Let X € argmin {Q(X) : X € 0(z)}, i.e. Q(X) = so(7).
As the function () satisfies the assumptions of Lemma 1.3.14, then

sg(x) = Gs;lg)QpG(ac), ze k.

Here the support set 0Q C K*, due to the monotonicity of Q.

Since the function ) is sublinear and continuous then 9@ is a nonempty and
weakly compact set, therefore there exists a vector G € 9Q) such that sq(Z) = pg(Z).

As X € argmin {Q(X) : X € o(z)} and

pg(z) = inf [G,X],

Xeo(z)

then

G, X] = p5(2).

Since the sublinear function @ is continuous it follows tat this function is bounded.
The boundness of @ and ¢ implies the boundness (hence, continuity) of the function
pg- Then Corollaries 1.3.6 and 1.3.7 imply

pg(z) = suwp [f, 3]
fea*(G)

It also follows from the boundness of ps that 0*(G) is a nonempty weakly com-
pact set, then there exists a vector f € o*(G) such that pz(z) = [f, Z].

_ As aresult for the vector 7 and the vector X € ¢(Z) we have found two elements
G € D =0Q and f € ¢*(G) such that

[7a I] = [6’ 7]7
and the weak efficiency of the decomposition X € o(Z) is proved. O

From the theorem it follows, that the problem of the existence of a weakly-
efficient decomposition with respect to the support set of a sublinear monotone
function is closely related to the problem of the existence of min of this function on
the set o(z), = € E.
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3.4 Efficiency in 2-vector lattices

In this section we will give a brief discussion on ideal decomposition (see Definition
3.1.2) in a 2-vector lattice E = (E; K, K3). The decomposition mapping o : £ —
25* with respect to the pair of cones (K, —K,) is expressed in the form:

0k -1, () = {X = (z1,22) € K1 X (—K3) : z1 + 22 =13} (z € E),
and with respect to the pair of cones (K3, —K)) it can be written in the form:
Oy -1, () = {X = (21,22) € K3 X (=K1) : z1+ 22 =1} (z € E).

Theorem 3.4.1. Let E = (E; K1, K,) be a 2-vector lattice, and x € E, then

1. ifz=y—zwherey € Ky, z € Ky, theny >k, ., 2 2k, 2, i =1,2, ie
the pair (2, —x") € 0k, —Kk, () is an ideal decomposition with respect to the
cone Ky x (—Ka).

2. ifx =z—y where z € Ky, y € Ky, then z >k, o, y >k, 27, 1 =1,2, i.e.
the pair (', —z") € ok, -k, () is an ideal decomposition with respect to the
cone Ky x (—K7).

Proof. 1. Sincey >k, 0, 2z =y—2 >k, 0, or y >k, 0, y >k, T then the
definition of 2/, yields y >k, 2/, i =1,2. Since 0 >, —y = -z — 2, z 2k, 0
or z >k, —%, Z >k, 0, then

z >k, Sup{—=z;0} = —Inf{z;0} =2’ , i =1,2.

2. The relations z >, z, z >k, 0 imply 2z >k, #/, while the relations y >g, 0
and y >k, —z imply that y >k, Sup{0; —z} = —Inf{0;z} = 2”, i =1,2.

O
Theorem 3.4.2. Let the function pg defined on E by

pe(z) = inf [G,Y], z€E

YETK, ,— I, (T)

be continuous for every G € Ki x Kj. Then the decomposition X' = (2., —z") €
O, —K,(T) is weakly-efficient in a 2-vector lattice E = (E; K1, K3) with respect to
the set D' = K x (—K3)
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Proof. Let x € E = K, — Ky, G = (g1,92) € K x (—K3), then g1 — g» € K{ + K
and the following equalities hold with respect to the function pg:

&X) = inf G, Y| =
pc(z) — (I)[ ]
= inf _
Y1+y2=c, inEIKI, y2€—K2{[gl’y1] + [92’ yz]}
= [92, 2] + inf (91 — 92,31] =

y1€K1, z—y1€—K>

= (g2, x] + inf 91 — 92,11 =

V12K, 0, Y12K,T

= (g2, 2] + inf 01 — 92,01 =

ylz;{ix;, 1=1,2
= [92, 2] + [01 — 92, 7y = [g1, %y ] + [92, —z'].

Since the sublinear function pg is continuous and dom pg = E (G € K} x (—K3))
then the support set Ope = 0%, _k,(G) is a nonempty weakly compact set, and

pe(z) = max [f,z]=[f 2] (¢ € E).

feo';{b_xz (@)

Thus the quadruple (z, X', f’,G) is compatible with respect to the mapping o
and therefore the decomposition X' = (z'.,—z") € ok, —k,(z) is weakly-efficient
with respect to D' = K} x (—K3). a
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