
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2014

Improving the Speed of Peer to Peer Backup
Systems with BitTorrent
Daniel David Bouffard
Worcester Polytechnic Institute

Marc Evan Green
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Bouffard, D. D., & Green, M. E. (2014). Improving the Speed of Peer to Peer Backup Systems with BitTorrent. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/769

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212995331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/769?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

A Major Qualifying Project Report

ON

Improving the Speed of Peer to Peer
Backup Systems with BitTorrent

Submitted to the Faculty of

WORCESTER POLYTECHNIC
INSTITUTE

In Partial Fulfillment of the Requirement for

the

Degree of Bachelor of Science

by

Daniel Bouffard
Marc Green

UNDER THE GUIDANCE OF

Mihály Héder
Professor Gábor N. Sárközy

May 1, 2014

Abstract

For many computer users, having access to a reliable file backup service is im-
portant. As computers and computer-related technologies improve, users have
the ability to generate higher resolution content. Creating backups becomes
less feasible as the amount of data grows; limited network bandwidth makes
the backup process cumbersome, and access to a large amount of storage space
for backups is either limited or expensive. In this report, we propose a new
backup system, BTBackup, which aims to solve both problems. Our system is
designed as a Peer-to-Peer (P2P) network, where users of the system use each
other as backup locations. Users offer storage space that is proportional to the
amount of data that they back up. This means that the capacity of each user’s
physical storage is the only limiting factor for how much they can back up. We
solve the problem of long data transfers for big files by leveraging the speed
offered by the BitTorrent protocol, which uses a file chunking mechanism to
download files from multiple peers at once. By testing our system in various
scenarios, we show that it achieves our goal of quicker backup creation and
recovery through the use of file transfer parallelization.

Acknowledgements

Mihály Héder, our SZTAKI Project Advisor, for his advice, insight, expertise,
and bottomless teapot.

Gábor Sárközy, our WPI Project Advisor, for his guidance, encouragement,
and editorial skills.

Worcester Polytechnic Institute, for the opportunity to study abroad.

MTA SZTAKI, for the resources to design, develop, and test our system.

The employees of MTA SZTAKI, for their open arms and continued friendship.

Contents

1 Introduction 4

2 Background 7
2.1 Centralized Backup Systems 7
2.2 Peer to Peer Backup Systems 8

2.2.1 Peer to Peer Networks 8
2.2.2 File Chunking . 11
2.2.3 Fairness . 12
2.2.4 Churn and Data Migration 13
2.2.5 Cryptography . 14

2.3 Distributed Hash Tables . 15
2.4 The BitTorrent Protocol . 16
2.5 BitTorrent Sync . 17

3 BTBackup Design 19
3.1 Data Exchange . 19

3.1.1 The Metadata Layer 20
3.1.2 The Data Layer . 23
3.1.3 Churn and Data Migration 23

3.2 Fairness . 24
3.2.1 Challenge Mechanism 25

4 Implementation 26
4.1 Language and Tools . 26
4.2 System Design . 26

4.2.1 Overview . 26
4.2.2 The Data Layer . 27
4.2.3 The Metadata Layer 28
4.2.4 The Peer . 29
4.2.5 System Core . 29

1

5 Experiments 32
5.1 Environment . 32
5.2 Test Scenarios . 33

5.2.1 File Size versus Number of Files 33
5.2.2 Effects of Churn . 35

6 Results 38
6.1 File Size versus Number of Files 38

6.1.1 Data Recovery Speed from Peer’s Perspective 38
6.1.2 Data Recovery Speed from Nodes’ Perspective 40
6.1.3 Upload Speed of Data Backup 42

6.2 Effects of Churn . 43
6.3 Summary . 45

7 Conclusion 46
7.1 Future Work . 47

7.1.1 BTBackup Security . 47
7.1.2 NAT Traversal . 48
7.1.3 Finding the optimal number of replications 48
7.1.4 Local Backup Information File Storage 49
7.1.5 Incentivizing Uptime 49
7.1.6 BTBackup Implementation 50

2

List of Figures

2.1 Trading protocol of PeerStore [6] 13
2.2 Convergent Encryption from PeerStore 15

4.1 The design of our system . 27

6.1 The speed at which a peer recovered 1 GB worth of data. . . 39
6.2 The combined speed of nodes uploading a 1 GB file to a peer

for file recovery. 41
6.3 The speed at which each entity backs up a 1 GB file. 42

3

Chapter 1

Introduction

As the capacity and performance of hard drives continues to increase over
time, users continue to store their data in greater volumes. This includes
high resolution photos, videos, and audio for the personal user, and databases,
source code repositories, and operating system images for the technical user.
The increase in stored data gives rise to a greater need for the data to be backed
up, in preparation for the undesirable event that one’s hard drive becomes
inaccessible. This can happen if one’s computer crashes, the hard drive fails,
or the computer is lost or stolen.

Most backup systems that are in use today are centralized, meaning that
they rely on some central entity to store their data. This entity is typically
a company that offers data backup as a service, such as Dropbox or Google.
While these solutions are somewhat convenient, since the service is guaranteed
to almost always be online, there are several problems with this approach. The
amount of data that users can backup is severely limited, and obtaining more
space costs money. In a time where owning terabytes of data is common,
general purpose cloud storage meant for everyday use is not a feasible backup
solution. Dedicated backup solutions can offer an adequate amount of space,
but often require expensive recurring payments for their service. In addition to
this, users must trust the entity to which they send their data to both remain
online and respect their privacy. This trust is not always possible.

Although they have not gained much popularity, peer to peer (P2P) file
backup systems have been created and studied by researchers for over a decade.
These systems do not suffer from the aforementioned drawbacks of centralized
systems; they are free to use, limited in storage only by the user, and do not
require a trusted central entity. Instead of backing up their data to a server,
peers back up their data to each other. However, abandoning the centralized
server model in favor of a distributed one brings with it new problems that
must be addressed before wide-spread adoption can be expected. Research

4

in this area has focused on topics such as handling node churn1 [3], efficient
routing algorithms [4], and minimizing bandwidth [6].

We have designed and implemented a new P2P backup system, called
BTBackup, that improves the speed of backing up and recovering data. Our
primary contribution, and the technology responsible for faster file backup and
recovery, is the way in which we handle data transfer: BitTorrent Sync, a new
synchronization application created by BitTorrent, Inc. BitTorrent Sync uses a
modified version of the BitTorrent protocol [9] in order to quickly synchronize
files between groups of peers. This protocol is especially effective at transfer-
ring large files, which makes its use perfect for the domain of P2P file backup.
By leveraging BitTorrent Sync, we take advantage of BitTorrent’s ability to
better utilize a peer’s bandwidth by downloading from multiple sources at
once. This is in contrast to other P2P backup systems, which directly down-
load from one source at a time. Our approach takes advantage of the fact
that P2P backup systems require data replication, the act of inserting several
redundant copies of data into the network, to combat node churn. We view
the set of nodes storing replications for a given file as a BitTorrent swarm,
allowing us to use the BitTorrent protocol without additional overhead.

A secondary contribution of our research is the testing infrastructure we
have designed. We created test scenarios to (1) measure the extent to which
BitTorrent increases data backup and recovery transfer speeds, and (2) ensure
our system is a feasible backup solution under realistic conditions. To test
the former, we measured the rates of data transfer over time when backing
up 1 GB of data. In order to see the effects filesize has on speed, we ran this
test thrice: once with one 1 GB file, once with ten 100 MB files, and once
with one hundred 10 MB files. To test the latter, we created a test scenario
that simulated usage of our system in a realistic environment. Each instance
of this scenario created 100 peers on a network using MTA SZTAKI’s cloud
computing environment: SZTAKI Cloud. Specifically, this scenario measured
the effects of node churn, or the rate at which nodes enter and leave the
network, on our system. Since our system handles churn by moving replicas
from unavailable nodes to available ones, we measure how much extra network
traffic is generated to see the effects of churn. We take this measurement by
running a test instance with no churn, and then running another one with
churn. To provide a realistic setting, we had each peer limit their download
and upload speeds to values that are based off of worldwide Internet bandwidth
statistics.

After running our tests, we found that BitTorrent performs well as the
data layer transport protocol for a P2P backup system. Specifically, we found
that larger but fewer files are handled more efficiently than a greater number

1Node churn refers to the continuous arrival and departure of nodes in a P2P network.
See Sections 2.2.1 and 2.2.4 for more detail.

5

of smaller files, given the same amount of total data. We also determined that
our system handles node churn well: given a rate of churn modeled off of the
average Internet user, peers can expect to replace a replica every 11 days on
average. Our final and most important result is that our system was able to
achieve data backup and recovery rates up to 3̃00% quicker than the rates that
could be realistically achieved in traditional backup systems.

The rest of this paper is organized as follows. Chapter 2 introduces the
reader to the concepts and ideas necessary to understand our system, including
glimpses into other peer to peer systems. Chapter 3 describes the design of
our system; Chapter 4 describes our implementation of it. In Chapter 5, we
discuss how we tested our system, and Chapter 6 analyzes the results. Finally,
Chapter 7 concludes our paper and outlines future work to be done.

6

Chapter 2

Background

2.1 Centralized Backup Systems

Several popular backup systems currently in use have a centralized system
design. In these systems, there are many clients that all back up their data
to a central location controlled by a single entity. Examples of these include
general purpose cloud services and dedicated backup services.

Common elements of general purpose cloud services include a very limited
amount of data storage per person1, with the option to obtain more for a fee.
Three of the more popular systems are Google Drive, Dropbox, which has over
200 million users [1], and OneDrive, with over 250 million users [2].

Dedicated backup services have a relaxed data storage limit2, but require
recurring payments to use. Two popular dedicated backup services are Back-
blaze and Bitcasa.

There are several benefits to using a centralized backup system. The first
is that it is very probable that the service will always be on, as the content is
being stored on servers dedicated to that purpose. Companies who offer file
backup services have the hardware resources to store redundant copies of data,
should a server fail. They will also have the personnel to investigate and fix
any problems with the service.

However, there are also several problems with using a centralized system to
back up data. One of these problems is that there is a single point of failure,
should the storage site be compromised in some way (for example, natural
disasters). This is less of a problem for big companies with the resources to
handle these situations, but there is still a cost to take the necessary preven-
tative measures when creating the system.

Another problem with centralized systems is a matter of trust: when a

1On the order of gigabytes to tens of gigabytes.
2On the order of terabytes, though it is not uncommon to see unlimited data storage

offered.

7

user stores his or her data using a third party, the third party essentially has
control of that data. Even if the third party claims to offer encryption for all
data that they hold, there could still be a backdoor in the service that allows
them or another entity to obtain an unencrypted version of the data. One
solution to help combat this is to manually encrypt the data before sending it
to the third party, but this is hardly a convenient solution.

Finally, in general purpose cloud services, there are often restrictions on
what can be stored. This includes both the size of individual files and the
amount of total data. More space is gained by paying a monthly or yearly
fee, but even then the amount of space is capped at a specific size. For users
who need to back up a large amount of large files, these systems are not
very useful. Dedicated backup services have less limitations on the amount of
available storage, but generally cost more as a result.

Peer to peer backup systems, on the other hand, provide an equivalent
service and suffer from none of these drawbacks.

2.2 Peer to Peer Backup Systems

Peer to Peer (P2P) Backup Systems do not require users to back up data to
a central entity. Instead, each user offers some of his or her storage space in
order to use the space of others as backup locations.3 We start this section by
introducing peer to peer networks, and then discuss the technical components
of existing P2P backup systems.

2.2.1 Peer to Peer Networks

A peer to peer network is a type of distributed network model in which par-
ticipants form direct connections to each other. This is in contrast to the
centralized client-server network model, in which all participating clients con-
nect to a central server to carry out their task. Client-server network models
are used on the World Wide Web: the clients are users’ web browsers and the
server is the website being visited. In peer to peer networks, each participant,
or ”peer”, functions as both a client and a server; peers initiating a request
take on the role of the client, and peers answering the request take on the role
of the server. It is common for P2P networks to make use of a tracker to help
manage the organization of peers. To become completely decentralized, P2P
networks could use a distributed hash table4 instead.

3A P2P backup system can use a central entity to store metadata, such as the location
of backups, and still be considered P2P, albeit not completely decentralized. It is the fact
that the data is being stored on peers that makes it P2P.

4Distributed hash tables are discussed in Section 2.3.

8

In the client-server model, servers are expected to always be available and
accessible. Peer to peer networks do not have this luxury. Instead, they expe-
rience the constant fluctuation of peers joining and leaving the network. This
is called churn [7]. Churn in P2P networks complicates the communication
between peers because the sought peer may be offline. This is especially a
problem in P2P backup systems; for example, a peer might try to recover data
from another peer who is not online. The strategies for dealing with churn,
and many other P2P-specific complications, heavily depend on the type of
overlay network a P2P application uses. We discuss churn in more detail in
Section 2.2.4.

Overlay Networks

An overlay network is any network built on top of another network. That
is, an overlay network consists of nodes with neighbors who are not physi-
cally connected, but instead use the underlying network to establish a virtual
connection. They need not be constrained by the limitations of the physical
world. Consider a trivial example where there are three computers connected
to the Internet, but located in different parts of the world. These three com-
puters could form an overlay network by agreeing to be virtual neighbors to
each other. If their overlay network was used in a P2P application, then, when
connecting to each other, they will use the underlying network, the Internet,
to actually send messages. The P2P application does not need to know about
the underlying network that is used to route messages; it only needs to know
that there is an overlay network that defines the direct connections between
peers.

Peer to peer applications use overlay networks as their foundation.5 The
P2P overlay network provides structure for the application that uses it, allow-
ing peers to find each other.

There are three categories of overlay networks that can be used as the
network abstraction on which a P2P network is built. Structured overlay net-
works organize peers according to some geometry, e.g., a ring. This structure
is strictly maintained as nodes join and leave the network. Unstructured over-
lay networks, on the other hand, do not organize peers, but instead allow
the network to grow into any shape, determined only by the routing table of
each peer. Hierarchical overlay networks are composed of multiple groups of
peers each forming their own overlay network. A representative peer from each
group joins a top-level overlay network, connecting the distinct groups [8].

We discuss structured overlay networks in more detail below, as that is the
type of overlay network our P2P backup system uses.

5Overlay networks are used for many purposes, not just P2P applications. Note, however,
in discussing overlay networks, we will still refer to their participants as peers.

9

Structured Overlay Networks

Structured overlay networks are defined by a topology and a virtual address
space. For example, in our system, peers are organized in a ring and addressed
by 20 byte numbers—our address space is the set of all 20 byte numbers. In
other systems, peers could be organized in a 3D cube and addressed by their
(x,y,z) coordinates. The topology defines the set of neighbors each peer has in
the overlay. The address space serves as a way to uniquely identify peers.

The purpose of peer to peer networks (and more broadly, networks in gen-
eral) is to share data. In the P2P networks that focus not just on sharing data,
but also storing, locating, and possibly retrieving data (like ours), the data
shares the same virtual address space as the peers. That is, these structured
overlay networks give the data themselves valid addresses. For example, in our
system, the data being backed up is also given a 20 byte ”address”. This is
done to determine which peer is responsible for a given piece of data. Specif-
ically, a peer is responsible for all data in the address space that the peer is
closest to. It is for this reason that peer address assignment should be evenly
distributed, to keep the distribution of work equal.6

To join a structured overlay network, a peer must know at least one other
peer already in the network. This peer is often called the bootstrap peer. The
joining peer will contact the bootstrap peer to find its proper place in the
topology. We come back to this below in more detail in our explanation of
how to find other peers.

Leaving a structured overlay network can be as simple as not responding
to any messages. Our system, like many others, leaves this functionality un-
defined. Node failures due to hard shutdowns will not follow the protocol to
leave the network, so it is easiest to treat all node departures as node failures.

To find other peers, a peer in a structured overlay network will consult its
routing table. This table is initially populated upon joining the network, and
is kept up to date as peers join and leave. When a joining peer first contacts
a bootstrap peer, it is unlikely that the bootstrap peer has the joining peer’s
direct neighbors7 in its routing table. This is because the routing table is
designed to include many peers that are close, and only a few peers that are
far. A joining peer, by asking the bootstrap node, will learn of the peers in the
bootstrap peer’s routing table that the joining node is close to. The joining
peer will then contact these peers, ask for the same information, and learn of
peers it is even closer to. This process repeats until the joining node learns its
direct neighbors [8].

6The average size of the address space for which a peer is responsible decreases as more
peers join the network, which allows these types of networks to easily scale in size.

7Given the structure of the overlay network and the joining peer’s ID, there is a defined
set of peers in the network that are the joining peer’s direct neighbors. We are discussing
how the joining peer learns who is in this set.

10

Overlay networks are the abstraction that connects all the users of a P2P
system. It is the foundation on which a P2P application can be built, and
is responsible for providing methods for peers to join and leave the network,
and find other peers in the network. Furthermore, structured overlay networks
allow the P2P application to locate specific information very quickly because
their virtual address space provides full accountability of any piece of data. It
is for this reason we chose a structured overlay network as the substrate of our
P2P application; it is easy to determine which peer is responsible for a given
backup because we know it will be the one closest in the address space.8

2.2.2 File Chunking

The format in which files are stored can have an effect on the efficiency of the
P2P backup system. At first, backing up each file as a whole might seem like
the obvious choice, since files are only useful in their entirety. However, the
creators of the P2P backup systems pStore [5] and PeerStore [6] have shown
that there are benefits to splitting files up into fixed-sized chunks, rather than
distributing complete files to peers. In these systems, this is accomplished by
creating two types of files: a ”file block”, which contains a section (chunk) of
the original file, and a ”file block list”, which contains information on which
file blocks compose the original file and how to order them. This allows for
peer heterogeneity in terms of storage capacity. For example, if a peer needs to
store a 10GB file, it does not need to find an individual peer capable of storing
10GB (which might be rare); rather, it needs to find a number of peers, each
capable of storing the size of a chunk (which is magnitudes smaller in size than
the original file).

Equation 2.1 shows how many peers are needed to store a file F for a given
chunk size c, the number of desired replications of the file r, and the size of
the file Fsize.

Number of peers =
Fsize

c
× r (2.1)

Although lowering the chunk size will increase the chances of finding a peer
to store on, it is important to choose a reasonable chunk size, as using more
nodes for storage will add more overhead in finding those nodes.

File chunking also gives the benefit of easy versioning and updating of files.
When a newer version of a file is backed up, the only chunks that need to be
reinserted into the network are the ones that differ from the previous version.
Old versions of file chunks stay in the network, so that any full version of the
file can be reconstructed by requesting the appropriate file chunks. Backup

8However, churn complicates this. For example, a peer with an even closer address may
join the network between storing and retrieving the data.

11

systems can also reduce the amount of storage space used by sharing identical
file chunks between peers.

Our system does not use file chunking. Instead, by using BitTorrent as
the data transport protocol, we have applied the concept of splitting files into
chunks in a new way in P2P backup systems. We distribute complete files
to each backup location, but separate files into chunks when they are being
transferred; this is how BitTorrent works. With the BitTorrent Protocol, a
peer can download a file by requesting chunks of it from many peers at the
same time. By utilizing the upload bandwidth of several peers, a file can be
downloaded quicker than if it were directly downloaded from one entity (see
Section 2.4 for more details).

2.2.3 Fairness

Another aspect of P2P backup systems is fairness between peers. Peers need to
be storing an amount of data proportional to the amount that they are backing
up to other peers. This can be challenging to enforce, because untrustworthy
peers can attempt to game the system to obtain free backup storage. For
example, consider a simple system where each peer must offer to store the
same amount of data that they back up on other peers. A peer could claim
that all of the storage space that it should be offering is being used by other
peers, while in reality the peer has not taken in any other peer’s data. It is
clear that a mechanism needs to be built into the system that ensures that
peers store the data of each other.

PeerStore handles this via a combined trading and challenge system. When
a peer wants to create a backup of its data, it finds a peer to trade data with.
In its request to back up data, the peer will also advertise that it is willing to
store a certain amount of data for its trading partner. The peer that receives
the request will then need to accept or reject it, and if the request is accepted,
the acceptor will also need to request a certain amount of storage in return. If
the original requestor accepts this offer, then the two become trading partners
and will send each other data. This process is illustrated in Figure 2.1 [6].

While this ensures that peers will agree to take data in proportion to the
amount that they want to back up, it still does not guarantee that peers hold
onto that data. For example, a peer could form a trading agreement with
another peer, exchange data, and promptly discard the received data. To
combat this, peers can periodically challenge each other to prove that they are
actually storing data. This is the approach that we, like PeerStore, propose.
We provide peers the ability to ask each other to prove they are storing the
data that they are supposed to be storing. A peer proves itself by replying with
a value that could only be derived if they were, indeed, safekeeping the data.
See Section 3.2.1 for more details about our proposed challenge mechanism.

12

Figure 2.1: Trading protocol of PeerStore [6]

2.2.4 Churn and Data Migration

With each storage node being regular users, it is often the case that nodes
can be offline. Recall that churn refers to the fact that peers will continu-
ously enter and leave the P2P network. The designer of a P2P backup system
must take this into consideration if the system is to provide reliable access to
backed up data. This has been accomplished via data migration [5, 6], where
the availability of files is periodically checked and replicas are made when the
peers being used for backup are not reliably available. Other data migration
algorithms have been designed specifically to work in high churn networks [7].
In this case, data replicas are periodically redistributed to different groups of
nodes, which means that newer nodes have a chance to store data. This is
beneficial because data stays evenly distributed throughout the overlay net-
work, preventing any single node from being responsible for too much data,
regardless of when they joined.9

The number of replicas to maintain will have an impact on the performance
of the system. If the replica count is too low, the probability of recovering the
file is lowered. If the replica count is too high, then bandwidth and storage
space will be needlessly used; the peers storing replicas do not significantly
contribute to the availability of the data, and the peer backing up the data
will need to store more data for others as part of the fairness mechanism.

9It is important to note this strategy is designed to work in an unstructured overlay
network, not a structured one. Structured networks need not redistribute like this because
the evenly distributed address assignment provides the even data distribution.

13

2.2.5 Cryptography

Cryptography is the study of techniques for secure communication in the pres-
ence of third parties [13]. It is heavily relied upon in the computer world to
protect secrets, verify identities, and ensure data has not been tampered with.
Our system uses cryptography to encrypt users’ data before replicating it to
strangers’ computers. Encryption is the process of obfuscating text into a state
such that it cannot be understood without decryption, the reverse process. Se-
cret keys are used to parameterize encryption algorithms so that, although the
specific process for encryption is public, the message it encrypts remains a se-
cret. In symmetric-key encryption, the key used to decrypt is identical to the
key used to encrypt. This differs from public-key encryption, in which two
different, yet mathematically related, keys are used [15].

Encryption in P2P backup systems is necessary to prevent the peers who
are storing backups of data from reading it. A system in which backups were
unencrypted would be much less popular with users, because they would lose
privacy by using it. The term associated with this is confidentiality, meaning
that data that is supposed to be confidential, remains confidential [16]. Our
P2P backup system leverages BitTorrent Sync, which uses the AES encryption
algorithm to encrypt backups before replicating them.

Hashing is the process of applying a function to some arbitrary-length mes-
sage, resulting in a fixed sized output, or hash. Cryptographic hash functions
have mathematical-based properties, e.g., pre-image resistance, that provide
certain guarantees (with high confidence) about the resulting hash. Pre-image
resistance refers to hash functions that cannot be reversed. That is, given
hash(m) = h, the hash function is pre-image resistant if an adversary cannot
find the input m when given the output h. The other required properties of
cryptographic hash functions are second pre-image resistance and collision re-
sistance. A hash function has second pre-image resistance if, given an input
m1, it is difficult to find a second input m2 such that hash(m2) = hash(m1).
This is similar to collision resistance, which describes hash functions for which
it is difficult to find any two inputs that map to the same output [14].

To strengthen hashing algorithms, a salt can be utilized. A salt is es-
sentially a randomly picked string of bytes that is concatenated to data to
be hashed. The same hash will be calculated if the same salt is used with
the same original data. Using salts is a useful technique in preventing dictio-
nary attacks, where an attacker compares a precomputed list of inputs and
their hashes with a target hash of some unknown data in an attempt to find
out what the unknown data is. Dictionary attacks are common on password
hashes, because, upon success, the attacker will discover the password used to
generate the password hash. With a salt, however, the precomputed hash for
the data will not match. The list of hashes cannot be easily recomputed with
the salt, since hashing is designed to be an expensive and lengthy operation.

14

Figure 2.2: Convergent Encryption from PeerStore

Convergent encryption is a technique used in pStore and PeerStore to en-
sure confidentiality [5, 6]. Convergent encryption involves taking the hash of
the unencrypted data, and then using the hash as the symmetric key to en-
crypt the data. The main benefit of using convergent encryption is that the
same data will be encrypted the same way each time, so identical blocks in
the network can be shared between peers in their encrypted form, without
the need for a complicated key exchange protocol. Convergent encryption is
illustrated in Figure 2.2.

While this is a convenient optimization, it has a security weakness: any
user who has access to the unencrypted version of a file can confirm whether or
not that file is being stored in the system. This encroaches on users’ privacy.

2.3 Distributed Hash Tables

A hash table is a data structure that maps unique keys to values. It has
attractive performance features, such as O(1) average lookup time. This means
that, on average, the time it takes to retrieve a value from the hash table is
independent of the number of entries being stored. This performance comes
from the use of a hash function when organizing the data internally. A hash
table can be represented as an array of buckets, which are slots used to store
the data. Hash functions are used to map a given key to an index in the
array of buckets. Thus, given a key, the hash table can compute the bucket
in which the (key, value) pair is stored. In the event of hash collisions, the
(key, value) pairs in each bucket can be stored as a linked list. Hash tables
use hash functions that have uniform hash distribution to minimize collisions,
since traversing the linked list is the bottleneck of the operation. Hash tables
have O(1) insertion and deletion time for the same reason [17].

15

A distributed hash table (DHT) is a hash table that is stored across multiple
nodes. Each node is responsible for a portion of the hash table’s contents.
In exchange for distributing the storage cost among several nodes, DHTs do
not have O(1) search, insertion, or deletion time. Instead, the put(k, v) and
get(k) operations in a DHT are designed such that they can be sent to any
participating node. The receiving node will forward it closer to the node
responsible for the given key k. There is a trade-off between the size of each
node’s routing table (i.e., who they know about) and how fast operations can
be performed.

The cost of routing is acceptable because the usefulness of distributing
the storage cost far outweighs the drawback of slower operations on the data
structure. The alternative would be to have each peer keep a copy of the
entire hash table. This solution suffers from several problems: it makes the
hash table hard to maintain, the download time can become nontrivial, and
it might become infeasible to store the entire table on regulars peers, since it
can become huge with larger networks.

DHTs play a major role in many P2P systems. They serve as the means
through which peers can find either data or other peers, depending on the
system; our system uses a DHT for the latter. In conjunction with the struc-
tured overlay network, the DHT allows for peers to discover each other. This
is primarily done when looking for peers to send backups to. We discuss how
we use a DHT in more detail in Section 3.1.

2.4 The BitTorrent Protocol

BitTorrent is a peer to peer protocol designed for fast file sharing [19]. A
peer who wishes to share a file creates a .torrent file containing metadata
about the file to be shared. This peer is known as the file’s initial seeder,
or uploader, and through the use of a BitTorrent client, starts seeding, or
uploading, the file. When a peer acts as a seeder, its sole purpose is to share
the file that it is seeding with other peers. Peers who wish to download the file
must acquire its .torrent file through an out-of-band channel, which is often a
torrent indexer. Peers use the .torrent file to locate the initial seeder through
either a centralized tracker or a DHT. These peers then connect to the initial
seeder and start downloading the file. These peers are known as leechers until
they possess a full copy of the file, which is when they, themselves, become
seeders. A swarm refers to all entities, seeders and leechers, participating in a
given torrent.

While this is more complex than hosting a file on a server and having
users download it, with enough peers there is a huge performance gain with
respect to download speeds. The reason this works is due to the differences in
upload and download speeds on the Internet; with most Internet connections

16

offered to consumers, the upload bandwidth is much smaller than the download
bandwidth. This means that, in the scenario where one machine is transferring
data over the Internet to another machine, download speeds would be severely
limited by the upload bandwidth of the uploader. If multiple machines are
trying to download from the same uploader, the download speeds will be even
worse, as the upload bandwidth is being shared.

The BitTorrent Protocol takes advantage of this by having leechers down-
load content from multiple peers who are a part of the torrent. A file is parti-
tioned into several chunks, or file blocks, and a file download is performed by
requesting these chunks from multiple peers.

BitTorrent can transfer files quickly due to multiple seeders each upload-
ing different chunks of the file to each leecher. This parallelized download is
enhanced by the fact that leechers, too, upload the chunks of the file they
possess to other leechers who do not have those chunks.10

2.5 BitTorrent Sync

BitTorrent Sync is a new application developed by BitTorrent, Inc. It is a P2P
synchronization tool that allows users to share files between trusted devices.
This is accomplished by generating a set of 20-byte ”secrets” for each folder to
share and distributing the secret to each trusted device. All data is encrypted
using AES-128 in counter mode [10], the key of which is derived from the secret.
There are three different secrets, each of which provide different permissions
for the peer that is given the secret: the read/write secret, the read only secret,
and the encryption secret, which allows the node to store an encrypted version
of the data so that it cannot read the contents. A variation of the read/write
and read only secrets also exists called the one-time secret, which allows a peer
to send out a valid key that is only usable by one node [11].

Users of BitTorrent Sync have several options for having their synced de-
vices locate each other. The following list is taken from the BitTorrent Sync
technology page [10] and describes each method of peer discovery:

• Local peer discovery. All peers inside local network are dis-
covered by sending broadcast packets. If there are peers with
the same secret they respond to the broadcast message and
connect.

• Peer exchange (PEX). When two peers are connected, they
exchange information about other peers they know.

• Known hosts (folder settings). If you have a known host with
a static ip:port, you can specify this in Sync client, so that it

10This is a simplified version of the BitTorrent protocol. For more information, see [19]

17

connects to the peer using this information.

• DHT. Sync uses DHT to distribute information about itself
and obtain the information about other peers with this secret.
Sync sends SHA1(Secret):ip:port to DHT to announce itself
and will get a list of peers by asking DHT for the following
key SHA1(Secret)

• BitTorrent tracker. BitTorrent Sync can use a specific tracker
server to facilitate peer discovery. The tracker server sees the
combination of SHA1(secret):ip:port and helps peers connect
directly. The BitTorrent Sync tracker also acts like a STUN
server and can help do a NAT traversal for peers so that they
can establish a direct connection even behind a NAT.

In our system, we take advantage of the ”known hosts” discovery method.
When one peer picks another as a site for a replica of one of its files, it adds that
other peer’s IP address and listening port to the list of known hosts. When the
backups need to be restored, the list can be reloaded into BitTorrent Sync. We
decided to use this because it does not rely on the use of a central authority.

To allow other developers to use BitTorrent Sync as a part of their ap-
plications, the BitTorrent Sync API has been created [12]. Developers can
obtain an API key by applying for one and have the application accepted by
the BitTorrent Sync developers. The API key allows a developer to use all
API functions, which are issued in the form of HTTP requests sent to the web
interface that is started by the BitTorrent Sync executable.

BitTorrent Sync leverages the BitTorrent protocol to provide quick down-
loads between synced peers. We, too, leverage this through the use of BitTor-
rent Sync to provide fast recovery of backed up files. The specification of our
system is described in the next chapter.

18

Chapter 3

BTBackup Design

In this chapter, we discuss the design of BTBackup, our Peer to Peer backup
system. See Chapter 4 for our implementation of it.

3.1 Data Exchange

This section discusses the data structures and protocols of our system that are
used to move data between entities in the network. Henceforth, we use the
following terminology to disambiguate participants:

Peer: A participant who is sending replicas of their data into the network for
safekeeping. We refer to this process as backing up data.

Node: A participant who is storing a replica for a peer. We refer to this
process as storing data.

This terminology is used to give context. It is very likely that every par-
ticipant in the system will eventually serve both roles (perhaps even simulta-
neously), but we refer to them as peer or node depending on what role they
are playing in a given situation. A peer plays the role of the client, whereas a
node plays the role of a server.1 When there is no context, we use the terms
interchangeably.

Note the emphasis of the action taken by each: a peer is said to back up
data, and a node is said to store a replica of the peer’s data. Understanding
this distinction will aid in understanding the description of our system.

PeerStore showed that separating the metadata layer from the data layer
can result in significant bandwidth reduction. By relaxing the requirement
to strictly maintain a set number of replicas per file, the system can reduce

1We may qualify each term to help give context. For example, we may say ”. . . a repli-
cation node . . . ” to emphasize the fact that the node is storing a replica.

19

the data migration cost. For example, it is unnecessary to immediately find a
new replication node when a current replication node goes offline; only when
the node has shown to be consistently unavailable should the system seek a
replacement. Given that there exists more than one replica of a peer’s data,
having one temporarily offline is not catastrophic.2

Our system separates the two layers as well: the metadata layer is respon-
sible for storing information about each data layer exchange (among other
information), and the data layer is responsible for the actual exchange of the
data.

3.1.1 The Metadata Layer

In the broadest sense, the metadata layer is used by peers to find nodes. Peers
use it to determine which nodes will be used to store their data, and, in the
event of local data loss, peers use it to find those same nodes so they can
recover their data. The former is described below in Finding Replication
Nodes, the latter in Metadata Record.

The metadata layer is a DHT that maps a given node ID to information
about the node (e.g., its IP address), called its metadata record. A node ID
is a unique identifier for a node. It is used as the address of the node in the
structured overlay network.

Metadata Record

A metadata record is used for three purposes:

1. Find the IP address of the node it describes,

2. Determine if the node it describes should be used to store one’s data,

3. Find the nodes to which the peer it describes is backing up.3

A metadata record stores the following information for each node in the
system: (node IP, blacklisters, backed up files, stored files). A thorough ex-
planation of the information stored in a metadata record follows. Table 3.1
summarizes the information.

2Note that this implies the low possibility of not being able to recover data that is backed
up. Also note that this situation is unavoidable in all backup systems. We leverage this
fact by relaxing the aforementioned requirement like PeerStore; this sacrifices theoretical
availability for performance and usability.

3To clarify: each metadata record belongs to single entity. In the first two use cases, a
peer looking to back up data queries for the node’s metadata record. In the last use case, a
peer starts the data recovery process by querying for its own metadata record. The entity
requesting the metadata record (and the reason for doing so) changes based on the context.

20

Node IP: The IP address of the node that the metadata record describes.
This is used by peers who wish to back up a file on this node to directly
contact it.

Blacklisters: The list of (peer ID, timestamp) pairs, where the peer IDs are
the IDs of those who have determined that the node is unreliable (see
Section 3.1.3 for the definition of what makes a node unreliable) and the
timestamp is the time when the ID was inserted. This information is
used by peers who are considering using the node as a backup location.
If the node has too many blacklisters (greater than some number n),
peers will decide against using that node, and move on to select another
node. In order to prevent sybil attacks, where a malicious user has many
identities and blacklists a node many times, n should be a nontrivial
amount and proportional to the size of the network. In order to prevent
nodes from permanently being shut out from the network, entries in the
blacklist are removed some set amount of time after they are inserted;
this is accomplished via the aforementioned timestamp.

Backed Up Files: The list of information on the files backed up by the peer
that the metadata record describes. Each element in the list stores the
following data: the file ID, the filesize, the list of replication node IPs,
and a timestamp indicating when each replication node stored the file.
The file ID is a unique identifier for the file, and must be in the same
address space as node IDs (as explained in Section 2.2.1). This infor-
mation is used by peers looking to recover their data. After retrieving
their own metadata record, peers will ask the corresponding replication
nodes to transfer the data for each file they wish to recover. The more
replication nodes that are online for a given file, the faster the recovery
of the file (due to the BitTorrent protocol used in the data layer). The
timestamp is not yet used, but is included because future revisions to
the specification may need it (for example, for peers to check that the
node’s replica is up-to-date).

Stored Files: The list of information on the files stored by the node that
the metadata record describes. Each element in the list stores the fol-
lowing data: the file ID, the filesize, the peer backing up the file, and a
timestamp indicating when the node stored the file. This information, in
conjunction with the information in Backed Up Files, is used as part
of the fairness mechanism, described in Section 3.2.

21

Node IP The most recent IP address used by this node
Blacklisters List of peers who consider this node unreliable
Backed Up Files List of information on files this peer has backed up
Stored Files List of information on files this node stores for other peers

Table 3.1: Summary of a metadata record

Finding Replication Nodes

For every file a peer wishes to back up, it must find a predetermined number of
nodes that can store the file. To ensure an even distribution of responsibility
in the structured overlay network, a random bitstring in the address space
of the overlay network is generated; the DHT provides the functionality to
find the node whose ID is closest to the randomly generated bitstring, for the
overlay network’s given definition of closeness. For example, Kademlia, the
DHT that the BitTorrent application bases its DHT implementation on, uses
XOR operations to find closest IDs [23]. With Kademlia, the distance d(x, y)
between nodes with IDs x and y is defined as:

d(x, y) = x⊕ y

To provide O(log n) lookup times, the DHT is arranged as a binary tree,
where each node is a leaf and the path to a node is the bits of its ID. The
binary tree is further partitioned into subtrees. In order for any given node
m to find any other node n, m must know the location of node o, which is a
part of n’s subtree. In this way, all nodes must know about at least one node
in each subtree.

Once the peer has found the node it is looking for, it can query it for the
candidate node’s metadata record. From the metadata record, the peer can
calculate if the candidate node is obligated to store its file. We discuss the
situation in which a node is obligated to store a peers file in Section 3.2. The
peer also uses the metadata record to ensure the candidate node does not
have too many blacklisters. If the candidate node meets both requirements,
the peer chooses it to store a replica and uses the data layer to contact the
node to inform it of the decision. The metadata layer is updated appropriately,
and the data layer is used to transfer the file. This process repeats until the
predetermined number of nodes are found.

Data Recovery

In order for this system to be useful, there needs to be a method of recovering
one’s data after a computer failure. To do this in our system, each peer needs
to keep track of a minimal amount of data. This includes the peer’s ID, so

22

that it can be reintegrated into the system, and information on each file being
backed up. For each file, the encryption keys and the addresses of each node
that has a replica needs to be stored. The peer needs to keep track of this
information file through some other means. In the future work section, we
describe a simple mechanism to extend our system, where this information file
could be stored in the system itself.

3.1.2 The Data Layer

The data layer is responsible for copying the data to be backed up from the
peer to the node. This includes the quick communication by the peer to the
node informing it that it is a replication node for a given file.

Our main contribution in this paper, and the only requirement of the data
layer, is that it uses BitTorrent as the data transport protocol. By doing so
we increase the speed of data recovery, because the peer can download the
data from all replication nodes simultaneously, and data backup, because the
nodes, in addition to the peer, can give the data they possess to each other.

Security

The data that is transported via the data layer is encrypted so that the repli-
cation nodes cannot read it. The strength of the encryption is left unspecified
as a means of future-proofing this specification.

Furthermore, all communication between peers and nodes is encrypted to
limit information leakage.

3.1.3 Churn and Data Migration

For users of our system to take advantage of the speed increases offered by the
BitTorrent protocol, a sufficient number of replicas need to be maintained in
the overlay network (for a comprehensive explanation of how the BitTorrent
protocol works, see Section 2.4). Since the P2P network will be composed of
ordinary network users, backups that are created may not always be available.
Therefore, it is not enough to rely on the backups that are created when a file
is first backed up; in the worst-case scenario, all of the nodes on which a user
has created replicas have permanently left the network, leaving the user with
no way to retrieve any backup. If one or two replication nodes are online when
the backups are needed, the user will be able to recover their file but will not
see much of a speed benefit from the BitTorrent protocol, as opposed to when
all replication nodes are online.

To solve this problem, peers in our system periodically check on the nodes
that they are using as backup locations in order to gauge how available they
are. During normal program operation, each peer tests the availability of its

23

replication nodes via a challenge mechanism, described in Section 3.2.1. The
challenge mechanism not only ensures the node is online, but also confirms it
is storing the peer’s data. If the replication node is online and passes the chal-
lenge, the peer does not need to do anything; it will continue to (accurately)
think that the node is reliable. If the node fails the challenge (by being offline
or not storing the user’s data), however, the peer will take note that the node
was unreliable in this instance. It would be unfair to immediately conclude
that the node is consistently unreliable, since it may have been temporar-
ily offline (for example, a user temporarily shutting down his/her computer).
Therefore, a node needs to fail the challenge mechanism several times before
the peer concludes that it is consistently unreliable. It is possible that a node
gets unlucky and happens to be offline during all checks, even though it is
online during a different part of the day. If this is the case, then the node
is not frequently available for that peer, and should be seen as consistently
unreliable from the peer’s perspective.

When a peer determines that a node is consistently unreliable, it does two
things. The first is that it adds its own ID to the node’s blacklist in the
DHT. The second is to move its replica to a new node. The peer sends an
update to the DHT that it is removing the replica on the unreliable node. This
accomplishes two things: all other peers in the network can see that the node
is storing less data, and the node can see that it no longer needs to store the
replica, so it can remove it the next time it checks the DHT for any changes.
The peer will then look for a new node to put a replica on, using the same
process that was used for creating the original backups (see Section 4.2.3).

3.2 Fairness

To ensure fairness (see Section 2.2.3 for background information), each node
must contribute storage space proportional to the amount that they are back-
ing up. Since a peer will have replicas of its file stored on multiple nodes, the
amount of space that a peer offers4 must be much larger than the amount of
unique data that it is backing up. If n replicas are maintained for each file and
F represents the set of files that a peer backs up, the total amount of space t
that the peer must offer can be expressed as:

t = n

|F|∑
i=1

size(Fi) (3.1)

There exists one problem with this mechanism: when the network first starts
up, no peer has created any backups, so no one is obligated to store data for

4That is, offers to store when it assumes the role of a node.

24

other peers. To solve this, our system requires that each peer is obligated to
take at least s bytes of data from other peers, regardless of how much data it
has backed up. To include this, t can be reexpressed as:

t = max(s, n

|F|∑
i=1

size(Fi)) (3.2)

Let a be the amount of data a node is currently storing, and z be the size
of a file a peer is trying to back up. When the peer finds a candidate node
with t − a > z, it can choose that node as a replication site, knowing that it
is obligated to accept the data.

3.2.1 Challenge Mechanism

Even though the technique described above allows peers to find nodes with a
sufficient amount of storage space, it does not guarantee that the node will
keep its promise and actually store the data. If no one is there to make sure
that the promise to store data is kept, a malicious node could trick peers
into thinking that it is storing more data than it actually is. This would be
simple to accomplish; a node only has to accept data over the network but not
actually store it. A peer will only find out that its data has been discarded
when it needs to retrieve backups, at which point it is too late.

To solve this problem, we have designed a challenge system that forces
nodes to prove that they are actually storing the data that they are claiming
to store. This system is based on the mechanism used in PeerStore [6]. A
challenge in our system consists of a randomly-generated salt followed by a
specified range of bytes in the file being backed up. The node holding the peer’s
data must take the bytes in the specified range, hash it using the provided salt,
and return the result to the peer. The peer is able to test whether the answer
is correct by encrypting the file in the same way as it is stored on the node and
hashing the byte range + salt accordingly. If the correct answer is returned,
then the node has passed the challenge. If the node does not respond or gives
the wrong answer, the challenge has been failed. By choosing a random subset
of bytes and by using a salt, the node cannot calculate the hash ahead of
time and only store that; the whole file must be stored in order to be able to
successfully complete all possible challenges.

25

Chapter 4

Implementation

Our goals for the implementation of BTBackup were to make it a fast, mod-
ular, platform independent system that is as close to the specification as time
permitted. Furthermore, it should allow us to adequately analyze the feasibil-
ity and performance of BitTorrent Sync as the data transport protocol in the
backup system.

4.1 Language and Tools

Our implementation of BTBackup is written in C++. This language was
primarily chosen for its speed. We use the Boost library (version 1.55) to
remain platform independent. We use Jsoncpp (version 0.6.0-rc2) to serialize
and unserialize the JSON that the implementation uses for message passing.
We use cURLpp (version 0.7.3) to interface with the BitTorrent Sync Web
API.

4.2 System Design

4.2.1 Overview

We have designed our system to be modular. We realize that future work on
our system might include the replacement of our data and metadata layers.
Our solution for making these parts interchangeable with different implemen-
tations is to define standard interfaces between the two layers and the core
application. These interfaces can be followed to create new implementations
for the two layers. Along with these two layers, there is one more major part to
our application: the system core. The system core comprises the core function-
ality of our system, which includes accepting and executing user commands,
receiving network requests from other peers, and maintaining the P2P system.

26

Figure 4.1: The design of our system

A high-level overview of our system is offered in Figure 4.1. We explain
each of these components in the following sections. In this figure, the compo-
nents enclosed in rectangles are internal to our system, while the ones in ovals
are external. Connections with arrowheads represent a unidirectional flow of
information, while connections with no arrowheads represent a bidirectional
flow of information. Components that are colored green are part of the system
core.

4.2.2 The Data Layer

To implement the data layer of our system, we use BitTorrent Sync. Each peer
runs a copy of BitTorrent Sync as a daemon on their system. Our program
interacts with it through the use of the BitTorrent Sync API [12], several
aspects of which we take advantage of. The first and main aspect is that
it takes care of the actual data transfer; so long as our program provides
BitTorrent Sync with the appropriate secrets and IP addresses of hosts involved
in each file backup, it will take care of all data transfer in the data layer.
The second is that the secrets that BitTorrent Sync generates can be used as
general-purpose IDs in our system. We use these secrets as IDs for each peer
when they join the overlay network, so that peers can be uniquely identified.
This is possible due to the massive range of IDs that exist; according to the
BitTorrent Sync Technology page, IDs must be at least 20 bytes long [10],
which gives a minimum address space of 2160 unique addresses.

There are two downsides to using BitTorrent Sync. The first is that the

27

software is currently closed source. This means that, while BitTorrent claims
that BitTorrent Sync is completely secure, we have no know way of confirming
this. It also means that we have less control over how our data layer functions
and what information can be accessed from it. This is a problem that we had
to solve with regard to the challenge mechanism described in Section 3.2.1, the
solution for which is described in Section 4.2.5. Ideally, we would find an open
source version of BitTorrent Sync. However, we were not able to find such
a system that was fully functional. The second downside is that BitTorrent
Sync is currently in Beta release. This means that, while the system is usable
and has all of its features, there still might be many bugs, which leads to more
error in our system as a whole.

4.2.3 The Metadata Layer

Due to time constraints, we simplified the implementation of the metadata
layer of our system from a DHT to a tracker. As part of this simplification, we
ensure that the tracker would not perform noticeably better than a DHT by
not making obvious optimizations. To make the future transition to a DHT
as easy as possible, we created a standard interface that our program uses to
interact with a metadata layer, where each interface call is general enough to
be implemented for any type of metadata layer implementation. The following
operations are supported:

Join Network: The peer registers itself with the overlay network, specifying
what ID it wants to use.

Find Closest Node: Given a valid ID, return the closest ID that is registered
in the network. This is used for finding nodes to replicate on. In our
implementation this is accomplished via a binary search through the
array of all registered keys, giving an average case search time of O(log n).

Get: Given an ID, return the Metadata Record of the corresponding node.
This is most closely related to the standard get function used in hash
tables.

Blacklist Node: When a peer performs this interface call, it adds its own ID
to the list of blacklisters for a specified node.

Backup File: Register the creation of a newly-created backup with the meta-
data layer.

Update File Size: Let the metadata layer know that the size of a given file
has changed.

28

Remove Backup: Given a file ID and node ID, a peer can remove a specific
replica of one of its files.

Our tracker implementation is a standalone multithreaded application. It uses
a custom threadpool implementation, called the Dispatcher, to accept several
connections at a time from peers to process the interface calls listed above.
Each Metadata Record is stored in an unordered map, which maps node IDs
to their corresponding record.

4.2.4 The Peer

In our implementation, we have a central object called the Peer. The Peer,
as the name suggests, is used to represent the information and functionality
associated with a single peer in the network. Much of the functionality of the
controllers in the system core is implemented as calls to Peer methods. This
is because the Peer is what allows access to the data and metadata layers. It
also keeps track of the backed up files part of the peer’s metadata, in a data
structure called the LocalBackupInfo. This information is important to all of
the controllers in some way, helping to serve as their access to the peer’s view
of the other parts of the system.

4.2.5 System Core

The system core is composed of several controllers, each of which implements
a different logical unit of the system. Each controller is explained in detail
below.

Console Controller

The main purpose of the Console Controller is to allow input to our program
from a text console. During runtime, it waits for the user to enter a command,
determines which command was entered and with what parameters when ap-
plicable, and calls the appropriate function to handle the command. It acts
as the main thread of execution in our program. Currently, there is only one
command that is supported via this controller:

• backup <fileName> - adds a file to backup.

Since the Console Controller runs on the main thread of execution, it man-
ages the life cycle of the other controllers.

Through the use of the backup command, the Console Controller is the
part of our system that creates backups of files. In addition to finding nodes
to create replicas on and asking them to back up the data, the file needs to
be registered with BitTorrent Sync as part of the backup process. There is a

29

problem with this, however: data is registered in BitTorrent Sync by adding
folders to it, not files. We want to treat each file as its own backed up data
unit, with its own set of replica nodes. For this reason, each file that is backed
up in our system needs to be in its own folder. We create a set of directories
under a single root directory that is managed by our program. When a new
file is added to BitTorrent Sync via our program, a new directory is created
for it, and it is put into that folder.

There is still a problem with this approach, however. A system which
moves the user’s files would be inconvenient, since it ruins the way in which
the user’s files are organized. Furthermore, if the files being backed up need
to be in a specific location (e.g. they are used as part of a program that looks
for the file on a particular path), then the system is not usable. Creating a
copy of each backed up file is not feasible either, since users may backup large
quantities of data.

To solve all of these problems, we make use of the system’s hard link
mechanism. When a new backup is created, the new directory is created, as
stated above. Instead of moving or copying the file, however, we create a hard
link that references the same data as the file to back up. By doing this, the data
is not duplicated. This not only saves storage space, but also allows BitTorrent
Sync to backup files without needing to create new directories outside of the
directory tree specifically created for our program.

Network Controller

The Network Controller is used to wait for incoming connections from the
network and handle each connection based on the data being sent. It is im-
plemented so that any handler can be registered, making it a flexible solution.
We take advantage of this by using it in both our tracker and peer appli-
cations. The peer application uses it to handle backup requests from other
peers, while the tracker uses it to accept metadata layer requests. If the sys-
tem is expanded, the Network Controller will have more responsibilities, such
as handling DHT requests in the peer and carrying out node challenges.

BTSync Controller

A challenge that is created by having our data layer implemented as a separate
application is that the way the two programs view the network needs to be
kept in sync. For example, when a file that is tracked by BitTorrent Sync
is updated, the changes in content are automatically managed without the
intervention of our program. Although BitTorrent Sync will see those changes
and update its information accordingly, our program has no way of knowing
that a change in file size has occurred. To remedy this, we created the BTSync
Controller, whose purpose is to periodically query BitTorrent Sync through its

30

API for changes in file size. Each peer stores a local copy of the metadata of its
backed up files, which is compared to the data from the API query. If there is
any difference in the file sizes, the controller concludes the file size has changed
since the last check. In this case, it uses the Peer to update the local copy of
the metadata and send an update to the metadata layer to register the change
in the network. Note that only file updates that change the file size cause the
metadata layer to be updated, since our application is only concerned with
the quantity of data being stored, rather than the content itself.

Metadata Controller

The purpose of the Metadata Controller is similar to that of the BTSync
Controller, in the sense that its purpose is to periodically check for changes
in the system state. In this case, it is to make sure that sufficient replicas of
each file are being maintained.

In our implementation, the Metadata Controller periodically attempts to
ping the nodes that are storing data for the peer in order to determine how
reliable they are; this is a simplification of the challenge mechanism described
in Section 3.2.1. When a node is deemed consistently unreliable, the Meta-
data Controller initiates the creation of a new replica and the deletion of the
unreliable one.

The Metadata Controller also queries the metadata layer to determine if
any peer has stopped backing up to the node it is running on. In this case, it
initiates the removal of the stored data.

31

Chapter 5

Experiments

In order to thoroughly evaluate our system, we identified several variables that
could lead to differences in performance. These variables are:

• Size of each file being backed up

• Number of replicas to maintain per file

• Churn rate

• Number of nodes present in the system

• Rate at which nodes are challenged (ping test)

• Number of malicious nodes

From these variables, we derived a set of test scenarios that allowed us to
judge the performance of the system. While the test scenarios are specific to
our system, they allow us to evaluate the strengths and weaknesses of BitTor-
rent Sync (and, by extension, BitTorrent) as the data transport mechanism in
a peer-to-peer backup system.

The following sections describe how we performed our testing. For the
results of each test scenario, see Chapter 6.

5.1 Environment

In order to test our system, we needed an environment that would allow us to
create and populate our network with as many nodes as we needed for each
test scenario. We used SZTAKI Cloud, a virtualization platform that runs on
the open source cloud computing system OpenNebula. SZTAKI Cloud allowed
us to create and clone virtual machines for each test scenario.

32

Each virtual machine was a headless GNU/Linux machine running Ubuntu
12.04, 64-bit. Each machine had a 2.1 GB hard drive for the operating system,
1 virtual CPU, and 1 GB of RAM. Depending on the test, we also attached
another virtual hard drive to each virtual machine, as more storage was needed
in order to backup large files.

Each machine is connected to each other via a virtual network that has a
1 Gbit link capacity. As this capacity is unrealistic for several of our tests,
where the network is supposed to model users spread across the Internet, we
used a bandwidth-limiting program called wondershaper. wondershaper is a
command line utility that allows a user to set specific upload and download
bandwidth limits on a per-interface basis. This is achieved by creating packet
queues. When wondershaper is invoked to limit the bandwidth on a particular
interface, it captures all of the packets going through that interface in both
directions. It can then remove them through the queue and send them in the
appropriate direction, either towards the network or to a process on the same
machine, at a rate specified by the user. The use of this utility allowed us to
easily simulate realistic network delays for the tests that needed them.

In order to collect data, we used a logging server, running syslog-ng, an
open source implementation of the syslog protocol [20, 21]. In any syslog
implementation, messages are sent and categorized using a facility code, which
defines where the message came from and its severity. [20] and [21] specify
that there are eight ”local use” facilities to be used by processes that have
not been assigned a facility. We used one of these for our testing, via the
Linux command line logger utility. All entities that are a part of a test sent
log messages to the local use facility. When a test finished, we were able to
download the log file and clear it for the next test.

5.2 Test Scenarios

The following sections describes each test scenario, as well as how we performed
each test and what variables each scenario tests in particular.

5.2.1 File Size versus Number of Files

In this scenario, we tested how our system handles a constant amount of data
spread out across a varying number of files. We run this test for two reasons.
First, it allows us to measure the performance of BitTorrent against different
file sizes. Since the use case for BitTorrent is typically downloading large
files, it is important to determine whether or not our system will perform well
when users try to backup many small files, should it be used in a production
environment. Second, it will demonstrate the ability of our system to backup

33

and recover files faster than if they were transferred by a direct download
protocol.

Our tests for this scenario used 8 virtual machines in SZTAKI Cloud: 1
peer, 5 nodes, 1 tracker, and 1 syslog-ng server. To have a wide range of file
sizes, we tested with 10 MB, 100 MB, and 1 GB files. In each test instance,
the total amount of data backed up was 1 GB, so 100 files, 10 files, and 1
file were backed up, respectively. The procedure for each test instance is as
follows:

1. Clear the log file on the syslog-ng server. This is to remove the data of
previous test instances.

2. Clear all existing items from BitTorrent Sync on the peer and all nodes.
This also removes data from previous test instances.

3. Start the tracker server and all nodes. Both of these entity types do not
do anything until the peer joins the network.

4. Start the peer. When the peer is started, it backs up as many files as the
particular instance demands. These backup commands are sent through
our program’s standard input.

5. Wait for the peer to find all nodes and create replicas on them.

6. Stop the nodes and the peer.

7. Save the log file and reset it.

8. Restart the nodes.

9. Remove all backups from the peer. This is done to simulate the peer
losing all of its data. The only information that is not removed is a
single file generated by our program, which contains all of the information
needed to retrieve each backup file.

10. Start the peer again. The information file is loaded on program startup,
which signals BitTorrent Sync to add the backup folders again and con-
tact the appropriate nodes.

11. Wait for all backups to be restored.

At the end of this sequence, the peer has successfully used our system
to backup its files and retrieve them when needed. On the peer and the
nodes, the process was orchestrated by a script. Logging occurs during backup
creation and retrieval. During both of these phases, the number of bytes being
downloaded and uploaded was sampled once per second. This is the data that

34

is sent to the log server. Sampling was achieved by using a series of shell
commands to obtain the information and put it in a useful format. The exact
command is as follows:

sar -n DEV 1 1 | grep eth0 | grep -v Average | \

awk ’{print $1, $2, $6, $7, "\n";}’

The sar command retrieves the desired network statistics, from which the
other commands extract the specific data we are interested in. These results
can be found in Section 6.1.

5.2.2 Effects of Churn

As we have already discussed, churn is important to consider when designing
a realistic P2P backup system. The goal of this test scenario is to determine
how well our system handles churn. To do this, we created a network of 100
peers, in addition to the tracker and the log server. Each peer had a single
100 MB file that it tried to back up. This means that, with five replicas per
file, there was 5 GB of data in the network.

We measure the effects of churn by logging the number of bytes sent over
the network. We gathered this data by using the ifconfig command, which
reports the total number of bytes that have been sent and received on each
interface. For this scenario, we only collected the number of bytes sent by
each peer, as the number of bytes received does not take packets lost in the
network into consideration. The exact command used is as follows:

ifconfig eth0 | grep ’TX bytes’ | awk -F : ’{print $3}’ | \

awk ’{print $1}’

eth0 is the name of the network interface. With the ability to query this
at any time, we were able to determine the number of bytes sent each second
by calling the above command once every second. The output is then sent to
a logging server, which collects the data from every peer into one log file.

There are two instances within this test scenario. The first is our control,
where all peers joined the network at the start and did not leave until the end of
the instance. Running this test allowed us to see how much data is transferred
without any churn. In the second instance, nodes entered and left the network
at a rate specified by a distribution function, described below. By having
nodes limit their availability, the peers that store data on them perceive them
as unreliable and move their replicas to other nodes, creating more network
traffic in the process. By measuring this network traffic and comparing it to
the traffic of the test instance with no churn, we can determine the average
amount of network traffic generated by data layer maintenance.

35

In our test instance with churn, we modeled a network where each peer
had an average uptime of 150 seconds (2.5 minutes) and an average downtime
of 75 seconds (1.25 minutes). We chose these numbers based on the amount
of time a typical user might be online in a given day. We reasoned that, if a
typical user keeps his or her computer on during the day and shuts it off when
he or she sleeps (for 8 hours), then the uptime in the average day will be 16
hours. Our implemented challenge mechanism sends a challenge message to
replication nodes every 6 hours and blacklists them upon 50% challenge failure
over 4 days, meaning that a node is blacklisted if they fail 8 or more challenges.
We scaled these numbers down so that we would have a 1 hour test: a 6 hour
challenge interval becomes a 60 second challenge interval, and the challenge
period becomes 16 minutes. To make the challenge period evenly fit into the
1 hour test, we rounded the challenge period down to 15 minutes. We scale
16 hours of uptime and 8 hours of downtime down to 2.5 minutes and 1.25
minutes, respectively.

To create churn, we have peers enter and leave the network at varying
time intervals. The tests were controlled by a Python script that initialized
the test environment and ran the test upon machine boot. The script starts
and stops BTBackup to simulate the node entering and leaving the network,
respectively. To determine the duration of time, the script picked a timeout
from one of two distributions, depending on whether the peer was entering or
leaving the network. This is also the strategy used in PeerStore [6].

Our distributions are a combination of three functions over the range [0, 1).
In order to choose an uptime or downtime, a node chooses a random number
in this range, and applies it to the following piecewise function:

f(x) =

10xc if 0 ≤ x < 0.2

[4(x− 0.2) + 2]c if 0.2 ≤ x < 0.8

[e21(x−0.8) + 3.4]c if 0.8 ≤ x < 1

The value of c is what differentiates between choosing an uptime or a
downtime. In order to obtain the average uptime and downtime stated above,
we used c = 50 for uptime and c = 25 for downtime. Since the middle equation
is our biggest range, we modeled it so that its average values for each value
of c approximately corresponds to the average uptime and downtime. We
used a steeper linear equation from 0 to 0.2 so that very short uptimes and
downtimes are represented, but very few nodes will ever choose values using
this function. The steepness also makes the transition to the middle equation
quick but continuous. For the top range, we chose an exponential function
so very long uptimes and downtimes are represented. For example, the upper
bound for uptime is 3504.32 seconds, or 58.41 minutes for c = 50, which is
almost the entire length of the test. Nodes who pick these values represent

36

computers that are almost always online, such as servers or NAS units.
To make this test scenario more realistic, each node has their upload and

download bandwidth limited to different values at the beginning of each in-
stance. Download speeds are picked from a normal distribution of Internet
speeds. In order to have a mean and standard deviation for our distribution
that is reflective of current Internet speeds around the world, we found statis-
tics on the average download speed per country, as well as the number of
people in each country who use the Internet [24, 25]. This allowed us to find
the expected value for download speed by taking a weighted average, W :

W =

|D|∑
i=1

niDi

D is the set of country download speeds and n is the corresponding percentages
of global Internet users that each country has. The normal distribution is only
used for download speeds; rather than choosing an upload speed using the
same method, we took each download speed and divided it by 2.53, the mean
ratio between download and upload bandwidths based on the aforementioned
statistics. This ensures that the upload speed is lower than the corresponding
download speed, which is often the case on the Internet, as well as ensuring
that the two speeds are proportional.

37

Chapter 6

Results

In this chapter, we present the reader with the results of the test scenarios
outlined in Section 5.2 and their analyses.

6.1 File Size versus Number of Files

In addition to giving us insight into the effects that file size and the number of
files has on the speed of data backup, we used this test scenario to determine
the extent that BitTorrent increases the data transfer rate of file backup and
recovery.

6.1.1 Data Recovery Speed from Peer’s Perspective

Figure 6.1 shows the speed of a peer recovering 1 GB of data in three different
situations. Each situation differs in how many files comprise the 1 GB payload:
one 1 GB file, ten 100 MB files, and one hundred 10 MB files. The moving
average of each data series is shown instead of the raw data to reduce visual
clutter; the trends are analogous. The usage of moving averages is the reason
why some lines do not cross the x-axis.

It is clear that the peer downloaded its data faster when the data was
comprised of fewer files. The peer downloaded the fastest when there was
only one file to recover, and the slowest when there were one hundred files to
recover. This aligns with the theory behind the BitTorrent protocol, which is
designed to transfer larger files quicker.

It is worth noting that the increase in speed does not scale linearly with
the size of the file. Although the size of the files increased by the same order
of magnitude between the trials, the increase in recovery speed seems to have
diminishing returns. Table 6.1 provides relevant statistics. The mean recovery
speed increased by 41.65% between the ”Hundred 10 MB Files” trial and the
”Ten 100 MB Files” trial. Compare this to an increase of 3.43% between

38

Figure 6.1: The speed at which a peer recovered 1 GB worth of data.

One 1 GB File Ten 100 MB files Hundred 10 MB files
Mean Speed (kB/s) 8144.84 7874.69 5559.32
Standard Deviation of Speed (kB/s) 2564.97 1899.86 1649.70
Median Speed (kB/s) 9121.41 8379.84 5874.48
Max Speed (kB/s) 11478.79 10948.98 8242.56
Duration (sec) 162 165 231

Table 6.1: Statistics on Peer Data Recovery.

39

Node 1 Node 2 Node 3 Node 4 Node 5
Mean 2303.07 1293.71 1702.47 1556.95 571.41
Standard Deviation 1921.11 1714.13 1852.66 1796.30 1000.72
Median 2024.57 477.37 1187.60 1028.09 171.38
Max 7632.07 7423.9 6936.94 7237.46 5216.15

Table 6.2: Statistics on Node Upload Speed (in kB/s).

the ”Ten 100 MB Files” trial and the ”One 1 GB File” trial. Looking at it
another way, the total time it took to recover the files between the former
trials improves by 40%, whereas the recovery time between the latter trials
improves by only 4.76%.

6.1.2 Data Recovery Speed from Nodes’ Perspective

Figure 6.2 shows the combined speed at which the nodes are uploading a
1 GB file to a peer during the file recovery process. A moving average is
used to reduce visual clutter. We can see a significant improvement between
the combined upload speed achieved by all nodes compared to the individual
upload speeds of each node.

There are two interesting characteristics of this graph. The first is that data
transfer does not start immediately; rather, it starts after the 10 second mark.
This happens because the peer must index the file before sending parts of it
to each node, as part of the BitTorrent Protocol. The second characteristic
is that the data transfer rates for each node vary greatly over time. This can
also be attributed to the BitTorrent Protocol: the peer requests file chunks
from specific nodes, which corresponds to the peaks in data transfer. With
this same reasoning, the peer might not use every node all of the time, which
would correspond to the points in the graph where the upload speed drops for
specific nodes.

If the peer was restricted to recovering its data from only one node, its
download speed would be limited by the node’s upload speed. Table 6.2 lists
the relevant upload speed statistics of the nodes. At best, the peer could
download at an average of 2303.07 kB/s. However, by using BitTorrent as a
data transfer protocol instead of a direct download, the peer’s download speed
is limited by the sum of each node’s upload speed: 7427.61 kB/s. This means,
on average, the peer can theoretically download 322.50% faster!1

1This number is based on the mean. The highest median is 2024.57 kB/s and the sum
of medians is 4889.01 kB/s, 241.48% faster.

40

Figure 6.2: The combined speed of nodes uploading a 1 GB file to a peer for
file recovery.

41

Figure 6.3: The speed at which each entity backs up a 1 GB file.

6.1.3 Upload Speed of Data Backup

Figure 6.3 shows the speeds at which each participating entity is backing up
a 1 GB file. We use a 20 period moving average to reduce the visual clutter
while keeping the overall trends the same.2

We confirm that the nodes, in addition to the peer, are actively backing
up the peer’s file. This is the expected behavior of the BitTorrent protocol,
which allows all users in a swarm to share data with each other. BitTorrent
Sync, which uses a modified BitTorrent protocol, also seems to leverage this
feature.

The peer generally uploads the fastest for the first 9 minutes; the nodes
are all requesting chunks from mostly the peer throughout this period, as it
is the initial seeder. However, around the 9 minute mark, the nodes seem to

2The use of a 20 period moving average significantly alters the peaks and valleys of each
line. This is acceptable for our purposes because we are only concerned with each line’s
existence and relative placement, not its individual details.

42

Node 1 Node 2 Node 3 Node 4 Node 5 Peer
Mean 1500.61 1094.83 1347.10 1240.98 656.69 2768.05
Standard Deviation 1815.66 1342.76 1645.63 1648.66 896.84 2512.48
Median 757.55 585.35 757.56 480.7 190.36 2268.65
Max 9141.97 7399.65 11195.35 8950.34 6252.98 9902.18

Table 6.3: Upload speed statistics of each entity in a 1 GB transfer (in kB/s).

start requesting data from each other more often than the peer, as seen by the
peer’s decrease in upload speed between the 9 and 10 minute mark. Another
interesting phenomenon occurs directly after this interval, from 11 minutes
onward: the upload speed for most of the nodes picks up again, while the
peer’s upload speed drops to a similar rate. While it is difficult to determine
exactly why this happens, since we do not have access to the exact version
of the BitTorrent protocol that BitTorrent Sync uses, we theorize that this
change is a reflection of BitTorrent distributing the work of uploading to the
nodes. At the end of our tests, we noticed that all nodes had almost the entire
file downloaded, with the exception of one, which had almost half the file left
to download. It is possible that when nodes are close to being finished with
the download, they work together to help other nodes get to a similar state. In
this case, four of the nodes and the peer would be uploading to the fifth node,
whose upload speeds looks like it is 0kB/s from around 9 minutes onward.

As with Figure 6.2, we believe the interval of time at the start of the test
with no activity is due to BitTorrent Sync indexing the 1 GB file before it can
transfer it.

Table 6.3 contains statistics about the upload speeds of each entity. Know-
ing that each entity contributes to the backup process, we can sum the average
speeds of each to find the total average speed of backing up the data: 8608.26
kB/s. Compared to the peer’s upload speed of 2768.05 kB/s, the performance
of our system was 310.98% faster.3 We were able to achieve this speed increase
by using BitTorrent as the data transfer protocol in our system, effectively par-
allelizing the backup.

6.2 Effects of Churn

This scenario was comprised of 100 peers each replicating a 100 MB file 5
times, meaning there was theoretically a total of 50 GB of data in the network,

3If we look at the median values instead of the mean values, our system was
5040.17 kB/s

2268.65 kB/s
= 222.17% faster.

43

Without Churn With Churn
58.00 GB 72.27 GB

Table 6.4: Amount of data transferred in a 100 node network over 1 hour.

ignoring the effects of churn. Table 6.4 summarizes the actual amount of data
in the network, with and without churn.

First, notice that the actual amount of data sent in the network without
churn was 58 GB, 8 GB more than the calculated theoretical value. Distributed
over 100 machines, this means each peer sent an additional 81.92 MB of data on
average into the network throughout the duration of the test. Extra network
traffic produced by our system could have contributed to this discrepancy,
including communications between the peers and the tracker, and between
the peers themselves. BitTorrent Sync could also be responsible, since there is
overhead associated with both the metadata it maintains to stay synchronized,
and the BitTorrent protocol it uses (e.g., requesting chunks of data from peers).
Communications between the script that instrumented the test and the log
server may also have generated a nontrivial amount of traffic.

We designed this scenario to simulate an average level of churn over 16
days. The difference in data sent between the instance with churn and the
one without is 14.27 GB. This means, on average, each peer sent an addi-
tional 146.12 MB of data in the presence of churn. In other words, with
our system, the average peer can expect to create an additional replica ev-

ery
16 days

146.12 MB
× 100 MB per replica = 10.95 days. We can also conclude

that, since an additional 146.12 MB of data was generated per peer, there
was roughly a 150% increase in data generated due to node churn. This is in
comparison to the amount of data being backed up per peer.

It is important to note that these numbers are specific to the conditions
that we have created for this test scenario. It is possible that a greater or lesser
amount of churn would be present in a production environment; the amount
that we have chosen is an approximation. The users of our system would be
the ones to determine the availability of the average peer in the network. For
example, if many users have servers, NAS devices, or other machines that are
constantly online and are contributing resources to the network, the amount
of churn will be lower, and therefore less replicas will need to be moved on
average. The network could also be mainly made up of users who keep their
computers off for most of the day, in which case the amount of traffic generated
would be much higher. Since we have modeled our churn rate off of the average
user, the results of our tests should be reflective of what would be seen in a
production system.

44

6.3 Summary

Section 6.1.1 compared how our system performs when recovering many small
files versus few large files. We concluded that there is a large performance gain
by recovering fewer, larger files, but the returns diminish between files of size
100 MB and 1 GB.

Section 6.1.2 verified our hypothesis that our system would recover data
faster than an equivalent one using a direct download data transfer protocol.
Our data suggests that the speed increase could be upwards of 300%. This
is possible, because the use of multiple nodes in a file recovery allows the
download bandwidth of the peer to be fully utilized. This has the side effect
of distributing the load of backup recovery among the nodes.

Section 6.1.3 showed that our system lessens the peer’s load of backing
up a file by distributing the task to the nodes as well. This has the side
effect of speeding up the backup process, because nodes upload the data they
have at a given time to each other, better utilizing their download bandwidth.
Due to the recurring need for replica replacement, the benefits of speeding
up the backup process will be experienced throughout the backup’s lifetime.
Our experiment showed that the speed increase could be upwards of 300%.
It is important to consider the number of replicas per file here, because the
replica count that is maintained affects the speed and bandwidth usage of the
backup and restore procedures. As the number of replicas per file increases,
more traffic must be generated to create and maintain those replicas, but the
download speed when recovering will significantly improve. Of course, the
maximum recovery speed is limited by the peer’s download bandwidth.

Section 6.2 explained that, in the presence of an average amount of churn,
the average peer would need to make a new replica of any given file every
11 days. This time interval is derived by taking the average amount of time
between the creation of replicas in our test instance and scaling that number
based on the scaling factor that we used for the entire test instance. Further-
more, the overhead caused by churn is roughly 150% of the file being backed
up.

45

Chapter 7

Conclusion

As consumer technology improves and higher resolution content can be gen-
erated and used by more people, the need for higher capacity backup systems
increases. Most backup systems that have gained popularity have a central-
ized model, where backups are created on the storage servers of the entity that
is offering the service. While this system model is practical for backing up a
small amount of data, it is not a suitable option for users who need to backup
a large amount of data, because these services often come with a data cap;
additional space is only obtainable by paying a fee.

The alternative to centralized backup systems are Peer-to-Peer systems,
where peers use each other as storage sites for their backups. By distributing
the storage available to the network in this way, there is no central entity that
the users need to rely on. In addition, the amount of storage space scales with
the size of the network, since all users must offer space if they want to use the
space of others. This means that, instead of paying for remote storage space
in money, users ”pay” for the storage with their own storage space.

There are several challenges to creating a robust and reliable P2P backup
system, however. Without the existence of a central entity that is solely ded-
icated to storing the files of others, it is possible that one’s backups could be
inaccessible at any given time, since regular users will often shut their comput-
ers off. Keeping track of who stores what data and making sure that everyone
is contributing fairly are also major concerns. In addition to these problems,
P2P backup systems share another problem with centralized systems: if users
want to backup large amounts of data, the process of transferring the data is
lengthy and inconvenient.

To address these problems, we have proposed a new P2P file backup system,
which we call BTBackup. BTBackup uses concepts from existing research on
P2P backup systems to address most of the problems stated above. The main
focus of BTBackup is to address the problem of slow backup creation and
restoration. This was accomplished via the use of BitTorrent Sync, which uses

46

the BitTorrent protocol to transfer data. By using this protocol, peers can
maximize their use of both upload and download bandwidth when creating
backups and restoring files.

In addition to addressing the problem of slow backup speeds in particular,
BTBackup is useful as a general tool for P2P backup research. As P2P file
backup is still a relatively new and dynamic research area, having a tool to
prototype backup systems is valuable. Our program is open source, so it is
easy for anyone to download our code and make improvements to any part of
the system.1

To test whether or not our system provided an increase in file transfer
speeds, in addition to providing solutions for the other challenges of P2P
backup systems, we implemented a prototype of our system and tested it
on a virtualized, 100 node network using MTA SZTAKI’s cloud computing
system. We found that it was able to handle node churn with a reasonable
amount of overhead in network traffic, requiring the replacement of a replica
every 11 days. More importantly, however, we found that our system allowed
for a 3̃00% improvement in both file backup and restoration speeds over sys-
tems where a single uploader is used. This would not be possible if these data
transfers were only between a user and some other entity, whether it is the
service provider in a centralized backup system or a single peer in another P2P
backup system.

7.1 Future Work

7.1.1 BTBackup Security

We would like to see our system design incorporate security. Specifically, the
DHT should have some scheme that ensures (1) entries cannot be tampered
with by the node responsible for them and (2) nodes cannot lie about the data
with which they are involved. We believe both of these goals can be achieved
through the use of chained digital signatures.

Regarding (1), there could be a digital signature encompassing the entire
entry to prevent the responsible node from modifying it. Perhaps the node
that the entry describes could digitally sign it upon modification; or maybe the
most recent node to modify an entry could digitally sign it. These solutions
solve the immediate problem, but bring about additional ones that need to be
investigated.

An example solution for (2): the communication between peers during the
”Finding Replication Nodes” phase of backing up a file could be extended
to require both parties digitally sign the information. That is, when a peer

1Our code is available at https://github.com/marcgreen/p2pbackup.

47

informs a node that it will be backing up a given file of a given size, the
DHT can store an additional entry containing their digital signatures, binding
them to the exchange. This provides non-repudiation for the amount of data
a peer is backing up and a node is storing, each of which a malicious user
is incentivized to lie about. This solution does not deal with the blacklisters
data, though a similar scheme for that is easy to imagine.

To reduce the size of the DHT with the addition of these digital signatures,
a chaining mechanism could be put in place, similar to the one in Bitcoin’s
blockchain. Instead of appending digital signatures to the corresponding DHT
column, the content that the new digital signatures sign could include the old
digital signatures. The old ones could then be overwritten. This preserves
their effect, but removes the associated storage cost. More thought needs to
be given to this to design an optimal mechanism (and to determine if chaining
is even required).

7.1.2 NAT Traversal

We have designed our system so that peers directly contact each other by their
IP address. While there are no problems with this solution when all peers are
directly visible to the public Internet, it does pose a problem when they are
behind a router that uses Network Address Translation, or NAT. When one or
more hosts are behind a NAT-enabled router, they send network packets that
have a destination outside of their subnet to the router. The router creates
mappings between the hosts’ internal IP address and the ports that they are
using to the router’s publicly visible IP address and a port that is chosen by
the router. This is convenient for the typical home user, since Internet Service
Providers typically only give one public IP address per Internet subscription.
A home user can connect multiple devices to the NAT-enabled router, and they
will all seem to be one device (with the router’s public IP address) to the rest
of the Internet. While it is convenient, it comes at the cost of not being able to
initiate a connection to a device behind a NAT, since no IP/port mapping has
been made yet. This is the case with most home users today, so we would need
to design some mechanism to overcome this in our system if it were to be used
by people all over the world. We can turn to Skype, BitTorrent, BitTorrent
Sync, and other P2P applications for inspiration. These applications and
protocols use mechanisms such as publicly visible supernodes as relay servers
[22], trackers [19], and Universal Plug and Play (UPnP) [10].

7.1.3 Finding the optimal number of replications

In order to minimize storage overhead, we would like to find the optimal
number of data replicas to create before their provided speed enhancement

48

is outweighed by their storage cost.
Our approach takes advantage of the need for replicas in a P2P backup

system to combat node churn; we use the already-present replication nodes
as a BitTorrent swarm, which provides the speed boost without additional
overhead. However, we wonder if the cost of creating replicas in addition to
the ones needed for data availability would improve the data transfer rate
even more. The fact that the additional replicas also provide greater data
availability should also be taken into account.

Optimally, we would want to determine the minimum number of replicas
needed in order to provide data availability while still taking advantage of
the speed boost provided by BitTorrent. In order to determine this number,
further tests could be done on our system that modifies the number of replicas
that a peer seeks to create. The download and uploads speeds would then
be measured for each replica count and compared to each other in order to
determine if there are any differences. In order to also test data availability,
the tests could factor in a rate of churn, similar to the test scenario described
in section 5.2.2. The availability of replicas would then be measured based on
our system’s challenge mechanism.

7.1.4 Local Backup Information File Storage

In section 3.1.1, we explained that it would be possible to backup the metadata
that allows a peer to find its backups. We believe that it could be possible
to do this within BTBackup itself, which would eliminate the need to use
some other means of safekeeping the data, such as another backup service
or storing it on some other physical media. To do this, a simple username
and password system could be added to the metadata layer. In a system
like this, the node ID could be a hash of the chosen username, rather than
one generated randomly or by IP address. The backup information file would
then be stored with that user’s metadata. In a system implemented with a
DHT, this information would have to be encrypted, since it would be easy
for the node holding that information to read it. This could be accomplished
by hashing the user’s chosen password and using the hash as the encryption
key. This way, the only person who can read the information is the one who
it belongs to. In this case, the only information that needs to be remembered
by each user is his or her username and password. This is reasonable, as many
modern applications have a username/password system.

7.1.5 Incentivizing Uptime

As mentioned in Section 6.2, our system could see much lower replication rates
if the average uptime per peer is longer. In order to help increase the average,

49

the fairness mechanism described in Section 3.2 could be extended to offer
an incentive for having high uptimes. When a peer stays online for a long
time, it could be awarded more space to backup data. This could increase the
likelihood that users keep their machines online for longer periods of time, since
it essentially gives them free storage. However, if a system like this were to be
implemented, there are several problems that need to be addressed. If some
users are getting more storage space than what they are offering, then other
users would be getting less space than what they are offering. Our system
would not only need to determine who gets less storage space, but also what
to do if many users are staying online often; it is possible that most people do
this, so there is not much extra storage space to offer. In addition to this, we
would need to figure out when to revoke extra space, in case malicious nodes
attempt to game the system and limit their availability after being awarded
space. If this is the case, more decisions need to be made in order to determine
which replicas will be removed from the system, if the peer is using some or
all of the space that is being revoked.

7.1.6 BTBackup Implementation

There are many features missing from our implementation that we would like
to see added. A brief, nonexhaustive list follows. It does not include other
future work detailed in this chapter.

• Replace the centralized tracker with a DHT to become completely de-
centralized.

• Encrypted communication between peers to reduce information leakage.2

• The ability to backup folders, not just files.

• Implement a more sophisticated challenge mechanism. Our current im-
plementation of the challenge mechanism only checks for node availabil-
ity. In order to have a system where all peers are storing the amount
of data they are supposed to, the challenge mechanism we described in
section 3.2.1 will need to be implemented.

• Use only open source software. Currently, BitTorrent Sync is closed
source. In order to ensure that the system can be completely trusted, we
would either need to wait for BitTorrent Sync to become open source,
use an open source alternative, or create our own.

2The actual transfer of data is already encrypted; this item refers to the transfer of
encryption secrets and challenge messages.

50

Bibliography

[1] Dropbox. ”Company Info”. Retrieved on 29 April 2014 from
https://www.dropbox.com/news/company-info .

[2] O. Shahine. ”Over 250M people using SkyDrive”. 6 May 2013. Retrieved
on 29 April 2014 from http://blog.onedrive.com/over-250m-people-using-
skydrive/ .

[3] S. Legtchenko, S. Monnet, P. Sens, G. Muller. ”Churn-Resilient Replica-
tion Strategy for Peer-to-Peer Distributed Hash-Tables”. July 2012. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) Volume 7
Issue 2. Article No. 28

[4] P. Maymounkov, D. Mazières. ”Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”. 2002. IPTPS ’01 Revised Papers
from the First International Workshop on Peer-to-Peer Systems, Pages
53-65

[5] C. Batten, K. Barr, A. Saraf, S. Trepetin, ”pStore: A Secure Peer-to-Peer
Backup System”. 2001.

[6] M. Landers, H. Zhang, K. Tan. ”PeerStore: Better Performance by Re-
laxing in Peer-to-Peer Backup”. 2004. P2P ’04 Proceedings of the Fourth
International Conference on Peer-to-Peer Computing, Pages 72-79

[7] J. Augustine, A. Molla, E. Morsy, G. Pandurangan. ”Storage and Search
in Dynamic Peer-to-Peer Networks”. 2013. SPAA ’13 Proceedings of the
twenty-fifth annual ACM symposium on Parallelism in algorithms and
architectures, Pages 53-62

[8] A. Passarella. ”A survey on content-centric technologies for the current
Internet: CDN and P2P solutions”. January 2012. Computer Communi-
cations Volume 35 Issue 1, Pages 1-32

[9] BitTorrent, Inc. ”Frequently Asked Questions”. Retrieved on 29 April
2014 from http://www.bittorrent.com/help/faq/sync .

51

[10] BitTorrent, Inc. ”Technology”. Retrieved on 29 April 2014 from
http://www.bittorrent.com/sync/technology .

[11] BitTorrent, Inc. ”BitTorrent Sync User Guide”. Retrieved
on 29 April 2014 on http://btsync.s3-website-us-east-
1.amazonaws.com/BitTorrentSyncUserGuide.pdf .

[12] BitTorrent, Inc. ”BitTorrent Sync API Beta”. Retrieved on 29 April 2014
from http://www.bittorrent.com/sync/developers/api .

[13] R. Rivest. ”Cryptology”. J. Van Leeuwen. Handbook of Theoretical Com-
puter Science 1. Elsevier.

[14] P. Rogaway, T. Shrimpton. ”Cryptographic Hash-Function Basics: Defi-
nitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance”. 2004.

[15] N. P. Smart. ”Cryptography, An Introduction : Third Edition”. 10 April
2013. Retrieved from http://www.cs.bris.ac.uk/ nigel/Crypto Book/ .

[16] OWASP. ”Guide to Cryptography”. 25 Febru-
ary 2012. Retrieved on 30 April 2014 from
https://www.owasp.org/index.php/Guide to Cryptography .

[17] Donald Knuth. ”The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd ed.)”. 1998. Addison-Wesley, pp. 513558. ISBN 0-201-
89685-0.

[18] A. Loewenstern, A. Norberg. ”DHT Protocol”. 31
January 2008. Retrieved on 29 April 2014 from
http://www.bittorrent.org/beps/bep 0005.html .

[19] B. Cohen. ”The BitTorrent Protocol Specification”.
10 January 2008. Retrieved on 29 April 2014 from
http://www.bittorrent.org/beps/bep 0003.html .

[20] C. Lonvick, ”The BSD syslog Protocol”. August 2001. Retrieved on 29
April 2014 from https://tools.ietf.org/html/rfc3164.

[21] R. Gerhards, ”The syslog Protocol”. March 2009. Retrieved on 29 April
2014 from https://tools.ietf.org/html/rfc5424.

[22] S. Guha, N. Daswani, R. Jain, ”An Experimental Study of the
Skype Peer-to-Peer VoIP System”. Retrieved on 29 April 2014 from
http://saikat.guha.cc/pub/iptps06-skype/ .

52

[23] P. Maymounkov, D. Mazières. ”Kademlia: A Peer-to-peer Information
System Based on the XOR Metric”. 2002. IPTPS ’01 Revised Papers
from the First International Workshop on Peer-to-Peer Systems, 53-65.

[24] International Telecommunications Union (Geneva). ”Percent-
age of Individuals using the Internet 2000-2012”. June 2013.
Retrieved on 29 April 2014 from http://www.itu.int/en/ITU-
D/Statistics/Documents/statistics/2013/Individuals Internet 2000-
2012.xls .

[25] Ookla. ”Household Download Index”. April 2014. Retrieved on 29 April
2014 from http://www.netindex.com/download/allcountries/ .

53

	Worcester Polytechnic Institute
	Digital WPI
	April 2014

	Improving the Speed of Peer to Peer Backup Systems with BitTorrent
	Daniel David Bouffard
	Marc Evan Green
	Repository Citation

	Introduction
	Background
	Centralized Backup Systems
	Peer to Peer Backup Systems
	Peer to Peer Networks
	File Chunking
	Fairness
	Churn and Data Migration
	Cryptography

	Distributed Hash Tables
	The BitTorrent Protocol
	BitTorrent Sync

	BTBackup Design
	Data Exchange
	The Metadata Layer
	The Data Layer
	Churn and Data Migration

	Fairness
	Challenge Mechanism

	Implementation
	Language and Tools
	System Design
	Overview
	The Data Layer
	The Metadata Layer
	The Peer
	System Core

	Experiments
	Environment
	Test Scenarios
	File Size versus Number of Files
	Effects of Churn

	Results
	File Size versus Number of Files
	Data Recovery Speed from Peer's Perspective
	Data Recovery Speed from Nodes' Perspective
	Upload Speed of Data Backup

	Effects of Churn
	Summary

	Conclusion
	Future Work
	BTBackup Security
	NAT Traversal
	Finding the optimal number of replications
	Local Backup Information File Storage
	Incentivizing Uptime
	BTBackup Implementation

