Worcester Polytechnic Institute

Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

January 2010

Infrared Multitouch Interface

Sean Julian Thulin
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation
Thulin, S.J. (2010). Infrared Multitouch Interface. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3951

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPL. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPL. For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3951?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Worcester Polytechnic Institute

Infrared Multitouch
Interface

MQP Final Report

Sean Thulin
1/13/2010

Abstract

Touch based computing (also known as a Natural User Interface) is a rapidly growing
trend. While touch based screens have been around for several years now, they had been
limited to a single touch at a time. Recently, support has been building for a new type of
system that allows multiple touches at the same time. This allows more than 1 person to
interact with the screen at the same time as well as support for gestures commands such as
rotate, scale, and others. Currently, the majority of these systems are based on using a
projector and a camera. This requires a large area to house the enclosure. With the recent
decrease in costs, flat panel displays have become very affordable. The goal of this project is to

design a multi touch system that would work with an existing flat panel display.

2|Page

Table of Contents

ADSTIACT ...ttt et e reeneennes 2
Lo o [¥ ot o Ty PRSP OPRRPRRURPPI 5
INitial DESIZN AN RESEAICNuvviiiiiiieiieiiteeee et e e e et r e e e e s e e aabaeeeeeeessennsbeeeeas 7
[aTi]I YoT o] g T=1ol o PR USPPURPRRTRRRRORE 7
Component Research and SEleCtioN.......cooc i e e 9
Testing Procedure and RESUIEScoooe it e e e e et e e e e e e s 11
Circuit DESIZN aNd LAYOULviieiiiiiei ittt et s e e s sbae e e s s aaa e e s ssbaeeessnbaeeeenaneeas 13
Transmitter and RECEIVEN BOAIdcooiuiiiiiiiiiiiieeiieeice ettt 14
IMICIOCONEIOIIET ...t et sre e 18
Printed CircUit BOArd LAYOUL.......ueeeiiiiieeiiiieieee e cccrreeee e e e e e ctrreee e e e e eesaraaeeeeeeeesanbraseeeeessennsrnnees 19
PCB ASSEIMDIY ..ttt ettt eeeer e e e e et b e e e e e e e sesbbbareeeeeeeeasabbaraeeeeeeeannbbraareeeeeesarnres 21
B IC=) 1 = URPNt 24
(O e oY= (- 0 V1 V- P 26
DEtECLION PrOCESSING .uvvvriviiiiiiiiiiiiiiiireitrtrtrrrrrrrrrrrrrrrrrerererrrrrrererrrrrrrterrreretereretetetetereteeeeeeaeasaeeens 27
REVISION NISTOIY .eiiiiiiiiie ettt e e s s b e e e s s bae e e ssbbeeesssbaeesssneeas 29
Final Thoughts and LESSONS LEAINEMccccuviiiiiiiiieiieiiee ettt e e s aae e e s nbae e s 32
(600 4Tl (U111 o I PP PP PRTOPRRPRPRRPR 34
APPENAIX A = COUBcoiiiiiiteeeee ettt e e e e e ee e e e e e e e eeseabbraeeeeeeeessnstsaaaeeeeeeesnssraeaeaeenans 35
Appendix B — Layouts and SCREMALICS....uuiiiiiiiiiiieeiec ettt esearrer e e e e seaarraeeeeeees 48
FiN o1 [o [P QO o] =1 I 6 1] AP O PP PP 50
Appendix D — Bibliographyo s a e 51

3|Page

Table of Figures

Figure 1 - Frustrated Total Internal Reflection (FTIR)iiiviiiiiieeeieieeieiiireeeee e eerirreeee e e eeeennnns 5
FIUIE 2 - INTrar@d IMatriX....eei e eeeeeeiiiiee sttt e e st e e e s aae e e s s ta e e s ssabaeeessbsaeessnsaaessnns 7
Figure 3 - Infrared Side SCanNiNg MatriXceeeiiiiiiiiiieiiee e eeeerirrree e e e eeensrrreeeeeeesesenanreens 8
Figure 4 - DeSiN FIOW Chartcciiiiiieieiiee ettt ettt e e s s arae e s s saaae e s s sate e e s sabaeee s 13
Figure 5 - Transmitter Board SChemMatiCoeivii i e 15
Figure 6 - Reciever Board SChEMAtiCccuvviiiiiiiieeee e e e e e e 15
Figure 7 - Transmitter Breadboard MOCKUPccuuviiiiiiei e 16
Figure 8 - Receiver Breadboard MOCKUPcoiieiiiiiieieee ettt eenrree e e e 17
Figure 9 - MSP-EXP430F5438 Experimenter Boardcccccevecciiiiieee e i e e 18
Figure 10 - TransSmMitter BOAId........uuuuuiuiuiiiiiiiiiiiiiiieiirererereeeeeeeeereerereeereressrereereeesrererrerrrrererreerereeeees 20
Figure 11 - RECEIVEI BOAIdcoouiiiiiiiiie ettt ettt s e s s e e s s sabae e e snaateeeenssaeeeas 20
FigUre 12 - RECEIVEr BOAIT TOP ..uuuruiuiiriiiiiiiiiiriiiirirrirrrrererrrererereeeeeereeeeerererereretserrerrrrrrrerrrerrrerereeeens 21
Figure 13 - Receiver Board BOTEOMciiiiiiiiiiiiiec ittt e e s naae e s 22
Figure 14 - TransSmMitter BOArd TOP.....uuuuuuuurriiriiiiiiriiririrrerrrerererereerereeeeerererererrerserererrrrrtrerrestereeee 22
Figure 15 - Transmitter Board BOTTOM........ciiiiiiiiiiiiieiee ettt e e e e e 23
T U] I LI o] o =T o @] oY =Tl o] o PPPPPPPPPPP 23
Figure 17 - Infrared LED HUMINGteAcuveviiiieiiiiieeee ettt e e e errree e e e e e e 24
Figure 18 - Fully Assembled LayOuUtuuiieiieiiiiiiiee et e e e e nvar e e e e e e e nnneees 25
Figure 19 - Object Detection FIOWCHAIt........coiiiiiiiiiiieeec et e e 27
Figure 20 - Data OUtpUL Vid SErIal.....uuiiiiiiiieieiie sttt e s e sbaee s 29
Table 1 - Infrared TranSMItEErsc..ui i s 10
Table 2- INfrared RECEIVETSco.uiiiiieeee ettt st e e 10

4|Page

Introduction

Preliminary background research has shown that this type of a system is most
commonly accomplished with the use of a layer of infrared light and a camera positioned to
pick up the object reflection as shown in Figure 1. While this works well with a high
performance computer with customized object detection software, it has its draw backs in that
the camera has to be mounted some distance from the surface and usually behind a

translucent panel so that no objects block the light.

Acrylic Pane

] [— =i |

Pt vt
/ Scattered Light Scatiered Light

Figure 1 - Frustrated Total Internal Reflection (FTIR)

This detection method does not lend itself very well to modern flat panel displays as
there is no open space behind the display layer to mount cameras. Other systems involve a
special layer built into the screen. Micro thin wires are laid out in a grid and the capacitance of
human fingers causes a detectable change across them. This works well also, but is not easily
scalable and cannot be adapted to existing displays as a custom solution for each sized display
would be required.

5|Page

Given the limitations of the methods discussed above, a better method for detecting
fingers “touching” an existing flat panel display should be developed. This system needs to
offer some sort of invisible detection as it will be interacting with a light emitting display and
there should be no interference with it. This is often achieved by using an infrared light

detection source since these beams are not part of the visible light spectrum.

6|Page

Initial Design and Research

Initial Approach

Activating the touchscreen
e T T .
| N | Infrared light

/’J] | grid

-
&1 nip
_ viewhale area
Lof display
-

|
Ll 1] L L] L L L L L]
The infrared light beams emitted by LED /

pairs formm a invisible gid on the surface
of glass

Figure 2 - Infrared Matrix

One commonly used configuration is to layout an infrared beam grid. As illustrated in
Figure 2 a row of infrared LEDs would be placed along the top and sides of the display with
matching receivers along opposing sides. When an object breaks the field, the sensors will see

the shadows and be able compute the X-Y coordinates of the object.

7|Page

s polarizing film

IR emitter array
SAAA SO R A O O O

linear sensor array

Figure 3 - Infrared Side Scanning Matrix

Another design option that also uses infrared emitters and sensors would require a large
piece of acrylic to serve as an overlay of the existing panel. A row of LEDs placed along the top
edge would shine into the clear acrylic and be trapped inside. This LED light would pass
through a vertical polarizing filter to make it travel straight down. When a finger presses along
the upper plane, the light would scatter from that point in all directions as seen in Figure 3.
Receivers along the side would pick up this scattered light and measure intensity. Another
polarizing filter, placed in front of the sensors, will be required to orient the scattered light and
prevent it from going off axis. This design option would reduce the number of electrical
components, but may not work with large displays as the polarizing film does reduce the light

output by 50% each time it passes through the filter.

Unfortunately, the design option using an acrylic substrate was stopped before it was

started. The requirements for the acrylic sheet should be at least a half in thick and more than

8|Page

an inch longer than the size of the display on all sides. However, polycarbonate and acrylic
sheets are commonly sold in sizes of 4 feet by 8 feet. This would produce several pieces of
adequate size for production, but is cost prohibitive for prototyping. Attempts to find a more
suitable sized piece also proved difficult as the markup and shipping prices made the cost jump
to over $100. Inquires made to local supply stores such as Lowes and Home Depot did not yield
pieces that are thick enough to be a suitable transmission surface. Products were not of
sufficient strength and thickness to resist warping from finger presses. Local picture frame
stores were also contacted, but produced similar results. Sufficient products could be ordered,
but would incur extra costs because of ordering and distribution charges. This also meant that
small samples could not be obtained. Because of these problems, the decision was made to
abandon this approach and focus on the other infrared based object detection option that is

described in Figure 2.

Component Research and Selection

Unfortunately, the intriguing side scan method described above was not economically
feasible. However, other the method under consideration will still require a large number of
infrared diodes and detectors. Following the practices from projects in the past, orders were
placed with both Mouser Electronics and Digi-Key Corporation. Seven different LED
transmitters and six different receivers were selected for testing based on price and availability.
5 of each product were ordered for the purpose of testing and selection. Table 1 and Table 2

detail several different aspects of each product including viewing angle, costs, and power.

9|Page

c Price | Price

Manufac | Part# Size Degrees | Wavel | V.Max | (mA) | Power | 1X 500X Site
Lite-On LTE-4208 5mm | 20 940 1.6 50 0.8 0.24 |0.14 Digikey
Kingbright | WP7104F3C | 3mm | 34 940 1.6 50 0.8 0.2 0.0936 | Digikey
Fairchild QEC112 3mm | 16 940 1.5 50 0.75 0.23 | 0.103 | Mouser
Fairchild QED234 5mm | 40 940 1.6 100 1.6 0.2 0.104 | Mouser
Fairchild QED523 5mm | 28 880 1.8 100 1.8 0.38 | 0.197 | Mouser
Vishay TSAL7200 5mm | 34 940 1.6 100 1.6 0.21 0.14 Mouser
Vishay TSAL6100 5mm | 20 940 1.6 100 1.6 0.28 0.142 | Mouser

Table 1 - Infrared Transmitters
Manufac Part# Size Wavel | RiseTime | FallTime | Price 1X | Price 500X | Site
Lite-On LTR-3208 | 5mm 940 10 us 15us 0.23 0.13126 Digikey
Fairchild Qsci112 3mm | 880 5us 5us 0.18 0.099 Mouser
Fairchild Qsb122 5mm | 880 7 us 7 us 0.28 0.138 Mouser
Fairchild Qsb722 5mm | 880 N/A N/A 0.48 0.16146 Digikey
Vishay BPV1ONF | 5mm | 940 2.5us 2.5us 1.11 0.494 Digikey
Vishay BPV11F 5mm 930 6 us 5us 0.57 04 Mouser

Table 2- Infrared Receivers

10| Page

Testing Procedure and Results

The layout of the final product will require a large array of transmitters and receivers
flashing very quickly and spaced at a maximum of a few feet apart. A test was devised to
simulate this condition with all the different possible permutations of transmitter/receiver
pairs. Each set LEDs and Phototransistors was fed a 5 volt DC oscillating signal. This square
wave signal would vary in frequency from 1 KHz all the way up to 25 KHz to see if there were
any problems with output voltage. The test rigs were spaced roughly 3 feet apart to allow an
object to be placed in the middle to block light. The output of the photo transistor was
observed with a graphic multimeter and compared against the original signal. This test was
required to measure the turn on time of the receiver as well as the time it takes to get a

consistent and stable output.

Testing yielded better than expected results since all pairs handled the 25 KHz signal
without a problem. Most receivers stabilized faster than the manufacturer stated in the
specification documents. However, voltage output varied between manufacturers. While all of
the Fairchild phototransistors output voltage levels similar to the input voltage levels, the Lite-
On was only able to produce a maximum of 2.5 Volts, and the Vishay diodes only dispensed a
little over 1 Volt. This whittled down the list of choices to a Fairchild device. Since all 3 tested
devices passed with flying colors, the decision to use the cheapest product was made. However
an executive decision to use only 5 millimeter LEDs with the final product changed the decision

to the Fairchild QSD-122 Phototransistor.

11| Page

With the receiver selected, it was a simple process for choosing a transmitter. All 7
transmitters were tested to see which would produce the highest output signal with the
phototransistor. As to be expected, the matched infrared LED from Fairchild performed the
best and was also one of the cheapest. This was the driving factor in the decision to use the

Fairchild QED-234 as the transmitter.

12| Page

Circuit Design and Layout

For this project, circuit design was done in several phases. The initial planning phase
revolved around the approach. In thinking ahead with the design, the decision was made make
the size of the overlay scalable. The frame would be broken down into smaller segments that
could then be strung together in any order and still function correctly. This meant that the
design would have to incorporate some sort of power and signal pass through system as well as
the ability to know where each board is in relation to the end. At the end of each side will be

right angled connectors to pass all the signals around.

_—————

[
5V Source
| E— . :
1 USE Cable | Distrobution
\
N - /
5V
\ 4
USB Data
Micro Controller s
Output Lines
A
Multiple Array sections
h 4
> Decoder » IRLED Array

Input Lines

Comparitor <

5

IR Receiver Array |«

Figure 4 - Design Flow Chart

13| Page

The design was first conceived using National Instruments MultiSim program. Two
different layouts (a transmitter and receiver) were devised. To keep the total number of wires
down, a series of decoders would be used to control the system. As described in Figure 4, each
board would have power, ground, a clock signal, a chip select, and 4 address lines. These could
be passed around to every board as this sequence was not dependent on their position along
the frame. The receiver board would need an extra data bus to be able to pass information
about each board. A group of 8 traces would be passed along each board. At one end of the
board, all the lines would be shifted over by one. This means that the trace for pin one would
become pin two on the second board and so on. This way all the data would be transmitted

properly and one can reference the position of the board based on the pin they chose.

Transmitter and Receiver Board

Each transmitter board (as seen in Figure 7) is equipped with two 4-to-16 decoders. This
would allow a total of 32 individual outputs to be selected. Since the LEDs being used can draw
a maximum of 100mA each, and this value is much greater than the total power the decoder
could supply safely, the decoder was hooked into an array of darlington pair transistors to
handle the switching from low current to high current. After a cost benefit analysis, it was
determined that the cheapest way to keep a small footprint was to use a 7 count Darlington
array. This meant that my total number of individual selectable outputs would shrink to 28.

The array was wired in line with the cathode side of the LEDs to provide a ground switching

14| Page

setup. All the LEDs would be powered from a central 5V line that was then fed through a 33

Ohm resistor to ensure proper voltage regulation. Larger versions of Figure 5 and Figure 6 can

be found in Appendix B.

Prepryrr®
!

.
-2l

‘ ancasian

Figure 5 - Transmitter Board Schematic

s
s
s
=
s
s
s
P

2]

ig

Figure 6 - Reciever Board Schematic

15| Page

TITN

e A0

" . .

AN
o

N

Figure 7 - Transmitter Breadboard Mockup

On the receiver board (as seen in Figure 8), a similar setup to the transmitter board was

used. However, since this is a low power circuit, each phototransistor was wired directly to the

16 |Page

decoder to source power. The outputs of the phototransistors were all tied to a single
comparator. Since only 1 output would be active at any given time, no isolation is needed. The
comparator was wired in reverse output, so that when the input voltage dropped below the
threshold, the comparator would output a logic high signal. This was then fed through a zener

diode to regulate it to a maximum of 3 volts before reaching the input on a microcontroller.

RESEE - .
e

Figure 8 - Receiver Breadboard Mockup

17 |Page

Microcontroller

The microcontroller used was donated by Texas Instruments. The original design called
for a chip that had on board USB as well as plenty of I/O ports. The MSP430 series was chosen
due to familiarity as | have several years of experience with this chip. With these design
constraints, an ideal choice would be TI's newest line, the F55XX series. However, due to
unforeseen complications, Tl was unable to release a proper development board and chip in
time for this project. However, a backup solution was donated by Texas Instruments. The MSP-
EXP430F5438 does not have USB built into the MSP430 processor, however this particular
experimenter’s board has an SPI-to-USB conversion chip onboard. This is obviously not an ideal
solution for a final product as it has a lot of extras that were unneeded, but as this solution was

donated, it made an adequate substitute.

Figure 9 - MSP-EXP430F5438 Experimenter Board

18| Page

Printed Circuit Board Layout

Circuit board layout design was done using National Instruments companion program
called UltiBoard. This program has the ability to import the layout directly from MultiSim. First
step in this process was to establish the guidelines of the board layout to minimize costs. After
looking at several Printed Circuit Board manufacturing companies, the student discount from
Advanced Circuits of Aurora, CO had the best price. To receive the discount, the design had to
adhere to certain standards. The PCB could not be more than 60 square inches, the holes
couldn’t be smaller or bigger than certain sizes, and the board had to be a certain thickness.
Sticking to these design constraints was not a problem, but there was no room for error as a 2"

production run was not in the budget.

With the design constraints taken care of, the layout started with the placement of the
LEDs. They were spaced along the edge of the board and as close as possible to maximize
resolution. With that taken care of, the rest of the components were placed to minimize
electrical trace lengths and vias (connections between top and bottom of board). Each board
had matching right angle male and female connectors. Main power and ground lines were
made thicker than the signal lines to handle the extra current as shown in Figure 10 and Figure

11.

19| Page

Figure 10 - Transmitter Board

: I
ey
?
¢
oarcC o

With the layout done, it was found that 4 of these could be placed on a single PCB and

Figure 11 - Receiver Board

still fit within the 60 square inch design requirement. This would incur a small step-and-repeat
charge, but still placed the total cost well below what other manufacturers offered. Final total
count made these boards just over 6 inches long and allowed for 8 of each type of board. This

would be more than enough to surround the 32 inch television that had been acquired for use

20| Page

with this project. The corner connecting pieces were not designed through layout as it would
not be cost efficient to have them made. Instead, it was chosen to have them hand assembled

instead.

PCB Assembly

Doing PCB layout for the first time is always a learning process. With that being said,
there were some issues with the boards that were traced back to problems with the layout in
the first place. The clearance between the edge of the holes and the components that fit in
them were very tight. All components did fit, but some were harder to place than others. This
is just something that happens and extra precaution will be taken next time to increase the size
of the drill holes next time. The other problem incurred was a layout issue of an unchecked
ground path that was imported from MultiSim. An extra trace was placed in each receiver
board design that required the trace to be cut and an extra ground wire to be rerun for one of

the decoder chips as shown in Figure 12 and Figure 13.

e .

pJPOg JSA 838y e 5 ~ uinul uees

H

'&-}‘@ tlﬁ;ld\lﬂ g J .-._' - . : .. u.» . !J! A @a@&ﬁ‘\‘ﬁi\@
bk . Y = o & - | y i

Figure 12 - Receiver Board Top

21| Page

Figure 13 - Receiver Board Bottom
Despite the issues mentioned above, the rest of the assembly went smoothly. All 500+
components were soldered by hand. The transmitter board did not have any design flaws other
than the tight fit on the holes for the LEDs. While assembling the boards was a tedious process,
it did re-enforce proper soldering techniques as seen in Figure 14 and Figure 15. Extra
components were ordered to cover the possible event that one was damaged during assembly.
Basic continuity tests were performed on each board to test that a solid connection is made

between the component and the circuit board.

Figure 14 - Transmitter Board Top

22| Page

&y d 744 i i - . -~ -

| g " e 4 . e S aact >3
WA AS A8 AR A a4 44 B Lu B8 Ba Le Ld 4 ba da d4 on

A At oA

srB VMBIV

PR)

Figure 15 - Transmitter Board Bottom

The right angle pieces were designed to simply pass along the signal wires between the
boards at a right angle and also provide a power and data hookup from the microcontroller
board. Each of the 4 boards is unique so that it only fits in a specific corner. This design allows
for less operator assembly error as the parts won’t fit together in any other way. Ideally, they
would be manufactured just like the rest of the boards, but for cost reasons, it was simpler to

design and assemble these by hand from existing prototype boards as seen in Figure 16.

DoD0EEo00,
08006006a68588
330 100000000
ARYYY 000000

CooOnos

Figure 16 - Corner Connectors

23| Page

Testing
As discovered earlier, a simple way to track the infrared LEDs is to use a cell phone

camera as seen in Figure 17. This method was used again to make sure that each individual LED

lights up and to full brightness.

Figure 17 - Infrared LED llluminated

Since the new development board had a different pin out structure than the testing
board used for the prototype, modifications were needed to allow the existing microprocessor
code to work with the new setup. Once these were taken care of, it was discovered that not all
of the components were aligned properly and needed to be adjusted to achieve a maximum

signal to noise ratio. A fully assembled layout can be seen in Figure 18.

24| Page

s

Figure 18 - Fully Assembled Layout

25| Page

C Programing

Once the hardware testing had been completed, the code and algorithms needed to be
tested. Coding for the project will be done using IAR’s Embedded Workbench. Due to the
amount of code required, the limitations of the free “kickstart edition” (which has a code size
limit of 4 KB) would not allow the use of the demo code provided by Texas Instruments, so a full

version of the product was used for the project.

The initial code was borrowed from the test program included by Texas Instruments.
This was used to initialize the development board and get it into a low power state. This code
was provided publicly under Gnu Public License. All the code for the excess components on the
MSP-430EXPF5438 board (the LCD, accelerometer, microphone, etc...) were removed to cut
down on processor usage and power consumption. The next step was to implement a proper
scanning procedure. Since each board has a total of 28 LEDs, a simple count up pattern can be
used. By using a single register to control the clock and address lines, one can just add one a

single number, and it will trigger the clock in between incrementing the address lines.

The clock and address lines are also passed on to the receiver boards so that the
matching photodiode is activated at the same time. At this point, each receiver board has a
single data line that can be read once the receiver is activated. So the code can simply read

from that line and store it in a shift register before moving on to the next cycle. This repeating

26 |Page

pattern is created from a simple “for” loop function that handles incrementing 28 times before

resetting.

Each board has 28 bits of data per full cycle and is stored in its own 32 bit variable. This
makes it easy to reference exact data points. The input lines are attached to two different
registers since Tl didn’t provide a full register of expansion pins. The data is read in on each
clock cycle. Then it is inverted since a logic low means that an object was detected, but the
original specifications called for object detection to be logic high. At the end of that cycle, each

bit is appended to the variable for its corresponding board, and then the cycle repeats.

Detection processing

e)
NO—{ Output Object Data

N

Is the object bigger
than a finger?

(

| Object Detected

/

YES

Do we have an
existing smaller
object?

m—
NO—{ Output Object Data |
. Y

YES

Find corner that is 6utput both objea
N What?—)»|
closest to old object ow at _ center point data /

Figure 19 - Object Detection Flowchart

27 |Page

Once a full cycle of all 28 pairs of transmitters and receivers has completed, it’s time to
run detection and output the results. As seen in Figure 19, the first thing the code does is check
to see if there are any hits on a given receiver board. If there aren’t then it skips to the next
one. This makes the scan rate much faster when the board is idling. If there is a hit, then
processing begins. The smallest and largest x and y values are recorded, and then averaged to
get a center point and a radius. If the object is small like the size of a finger, it is treated as 1
object. Once the size changes to something bigger, it is assumed that it can’t be a single finger.
The corners of this new larger object are compared against the center point of the previous
pass. The corner that is not close to the previous point is then chosen to be a 2nd object and is
treated as such. Once the two points are found, the system refines the center point

calculations.

Regardless if there are one or two objects present in the touch field, the output is then
sent out via a UART-to-USB converter where it is translated on a computer via a USB-to-Serial
adapter. This allows the raw data to be viewed in a terminal screen. This was simply a
formality as this is where the user interface ends. Normally, this step would be bypassed as a
2" piece of software would be created to pass this data to applications. Writing programs for
windows proved to be very problematic given the lack of computer science background, so this

step was agreed to be skipped. A final output of the sequence can be seen in Figure 20.

28| Page

i | i

;"'r:_-ll,', COMT:115200baud - Tera Term VT | = | [=] | 8

File Edit Setup Control Window Resize Help

(A46,.0836> R:1 -
(@68 .A18> R:1[]

Figure 20 - Data Output via Serial

Revision history

The code for the project was written in several stages starting at the bare basics. After
it was established that the MSP430 Experimenter Board worked via the Texas Instruments
demo program, most of the program was removed to make room for the sequencer algorithm
used from the initial prototype. This was constantly checked with a digital scope that can
handle multiple data channels at the same time. After several attempts, a proper algorithm
was devised to turn on each LED one at a time and then move to the next one as fast as
possible. The speed on this was slowed to make sure that every component had plenty of

setup and hold time before moving on to the next step.

29| Page

After a proper sequence was created (and confirmed via a camera that can see
infrared), attention was paid to the receivers. Each one had to be fine-tuned to make sure that
it was seeing a proper signal. Due to a design flaw, there wasn’t as strong an output as there
was in the bread boarded design, so some of the receivers would trigger a false positive. Since
the transmitters and receivers were highly directional, some simple realignment fixed all the
problems. This data was then fed to the development board’s LCD screen for simple raw data
analysis. However the code to drive the screen drastically reduced the performance of the

system, so it was scrapped as soon as possible.

The next step in this process was to get the USB communication between the board and
the computer working. Fortunately, the Texas Instruments demo program had a basic system
setup to send and receive data. However, the bit rate on this was set so low that it was slowing
down the overall system performance. Due to a problem in the documentation of the code
from TI, it took several hours to rewrite the clock to run faster as the math they had used was
incorrect and produced an invalid and uneven clock signal. Once this problem was remedied,

the output of raw data could be seen in a terminal view.

These paved the way for the final phase of refining the touch detection algorithm and
optimize code to squeeze extra speed out of the system. Several revisions were made and

sometimes undone to get this working correctly. In hindsight, some sort of check in system

30| Page

would be best to use next time since it makes it easy to view changes. A final version of the

code can be found in the appendix.

31| Page

Final Thoughts and Lessons Learned

If I had to do the project over again, I’'d make some changes. First and foremost, | would
definitely take on a partner or two. Due to the start date of the project, having a partner
wasn’t going to be possible because of scheduling conflicts. This meant that there was a large
amount of work that was to be done by just 1 person and | think a better job and more
creativity would come from a group environment. A CS major would have also been very
helpful. When it came down to it, my windows programing skills are just nonexistent. It would
have been nice to get this project working with actual graphical demos instead of just text

displays.

Extra attention needed to be paid to the board layout. Using the design import
functions in UltiBoard combined with the automatic layout features meant that little things
could be overlooked. Because of this, the comparator was wired backwards and didn’t end up
giving me the extra sensitivity that | required. And the holes in the boards were too small, so |

need to make sure that | give components more clearance the next time | do layout.

| have learned a lot from this project. It did seem like | bit off more than | could chew,

but | am ultimately satisfied by the results. | gained a large amount of experience in design and

32| Page

implementation as well as learning to rely on only myself and work independently. The project

was a success in my book and that’s what counts the most.

33| Page

Conclusion

Overall, the project was a success. The system was able to detect and track multiple
(more than one) touches on the screen at a given time. The frame was designed in a method
that is expandable and reproducible and it works with existing surfaces. One could even use
this on non-screen surfaces, but it seems as though this would be an overly expensive and

complicated solution.

By starting with initial planning and research, continuing through design and testing, and
resulting in a working prototype, this MQP has been an accurate representation of my
understanding of the total design process. This project, at the culmination of my educational
experience at Worcester Polytechnic Institute, gave me a proper understanding of real world

design situations and | will take the knowledge learned to a future job.

34| Page

Appendix A - Code

//**//***
* Kk

// MSP-EXP430F5438 Experimenter's Board - User Experience Demo
//

// Main Project File: UserExperience.c

//

// D. Dang

// Texas Instruments Inc.

// Ver 1.00 - May 2008

// Built with Code Composer Essentials CCE v3.2

//

// Modified and improved upon by Sean Thulin for MQP

//

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program. If not, see <http://www.gnu.org/licenses/>.

//*k*k*k*k**k*k*k*k**k**k*k*k*k~k*k*~k~k~k~k~k*k*k*k*k~k*k*k*k*k~k*k~k*k*k*k*k**k*k**~k~k~k*k*k~k************************
* k

#finclude <msp430x54x.h>

#include "MSP-EXP430F5438 HAL\haliMSP—EXP43OF5438.h"
#include "UserExperienceDemo\UserExperienceGraphics.h"
#include "UserExperienceDemo\flashUtils.h"

//--Calibration constants and user configuration values stored in INFOB Flash
// at production;

__no_init unsigned char boardMode @ 0x1900;

__no_init unsigned char lcdBackLightLevelSetting @ 0x1908;
__no_init unsigned long lastAudioByteFlash @ 0x1940;
__no_init unsigned char temperatureConversion @ 0x1928;
__no_init long temperatureCalibrationC @ 0x1920;

__no_init unsigned char wakeUpOnAcc @ 0x1978;

__no_init unsigned char lcdContrastSetting @ 0x1910;

_ no_init int Acc X Calibrated Offset @ 0x1950;

__no_init int Acc Y Calibrated Offset @ 0x1960;

__no_init int Acc Z Calibrated Offset @ 0x1970;

#define TIME OUT 10
#define TIME OUT2 3
#define MENU MAX 6

#define SETTING MENU MAX 6
#define MENU ITEM WIDTH 14

enum{ LPM4 MODE, LPM3 MODE, ACTIVE MODE, APPLICATION MODE } ;
enum{ APP CLOCK, APP BAL BALL, APP USB, APP AUDIO, PMM MCLK, MENU SETTING};

35| Page

enum{ SET TIME, SET CONTRAST, SET BACKLIGHT, SET TEMPERATURE CONVERSION,
CONFIGURE ACCELEROMETER, EXIT SETTING};

unsigned char boardModeLOCAL;

int Acc X Calibrated OffsetLOCAL;

int Acc_ Y Calibrated OffsetLOCAL;

int Acc_Z Calibrated OffsetLOCAL;

unsigned char lcdBackLightLevelSettingLOCAL;
unsigned char lcdContrastSettingLOCAL;
unsigned char temperatureConversionLOCAL;
long temperatureCalibrationCLOCAL;

unsigned char wakeUpOnAccLOCAL;

/*static char menuText[]={
"MSP-EXP430F5438\0"

" 1. Clock \O"

" 2. UniBall \OQO"

" 3. USB-UART \O"

" 4. Voice Rec\0"

" 5. PMM-MCLK \O"

" 6. Settings \0O"

Yoo o*/

unsigned char menuPos, settingMenuPos;
unsigned char timeOutCounter = 0;
unsigned char CpuMode, accWake=0, menuPos, settingMenuPos;

volatile unsigned char buttonsPressed;
volatile unsigned char buttonDebounce;

char TemperatureStr[]= "\0\0\0\0\0\0";

char VccStr[] = "0.0V";

unsigned char RTCAccHalfSec = 0, RTCExit64Hz= 0 , RTCExitSec= 0, RTCAccSec =
0;

#include "UserExperienceDemo/clock.c"
#include "UserExperienceDemo/balanceBall.c"
#include "UserExperienceDemo/usbTest.c"
#include "UserExperienceDemo/audio.c"
#include "UserExperienceDemo/menuSetting.c"
#include "UserExperienceDemo/PMM.c"

void setupRTC() ;

/**//**

@brief Checks for the board revision and returns a value < 0 if wrong
revision is specified in main.c

@param none

@return Whether or not the board revision matches the software
- 0 - The board revision does not match the software

- 1 - The board revision matches the software

*
*
*
*
*
*
*
*
***/

unsigned char assert board version(void)

{
P8DIR &= ~BIT7; // Set P8.7 input

36| Page

P8OUT |= BIT7; // Set pullup resistor
P8REN |= BIT7; // Enable pull up resistors

#ifdef REV 02

if (! (P8IN & BIT7)) // Board rev = 0 027
return 0;
#else
if ((P8IN & BIT7)) // Board rev = 0 03?
return 0;
#endif
P8DIR |= BIT7; // Set P8.7 output
P8OUT &= ~BIT7; // Set P8.7 =0
P8REN &= ~BIT7; // Disable pull up resistors

return 1;

}

/******************* SWDelay() ************************/

void swDelay (unsigned int max_ cnt)

{

unsigned int c¢ntl=0, cnt2;

while (cntl < max cnt)
{
cnt2 = 0;
while (cnt2 < 125)
cnt2++;
cntl++;

}

/****************** abS () *******************************/

int abs (int i) {
return 1 < 0 ? -i : 1i;

/**//**

* @brief Enters LPM3 and waits for either accelerometer tilt or a button
tilt
* to activate the board.

@param none

@return none

*
*
*
*
***/

void lowPowerMode3 (void)
{
int accX, accY, acci;

CpuMode = LPM3 MODE;

halLcdClearScreen() ;
halLcdImage (TI_BUG, 14, 106, 10, 0);

hallcdSetBackLight (0) ;

37| Page

hallLcdStandby () ;

accWake = 0;
if (wakeUpOnAcc)
{
RTCCTLO |= RTCRDYIE; //Enable interrupt
RTCAccSec = 1;
halAccelerometerInit () ;
halAdcSetQuitFromISR(1);
}

halBoardSetSystemClock (SYSCLK 12MHZ) ;

/* Either a button press or an RTC interrupt will wake the CPU

* from LPM3 mode. The RTC interrupt will periodically enable and

* re-initialize the accelerometer to see if the user has registered

* a change in the tilt that is greater than the accelerometer thresholds.
* If so, accWake is set and the board is activated

*/

do

{

halAccelerometerShutDown () ;

__bis SR register(LPM3 bits + GIE); // Enter LPM3
__no_operation(); // For debugger only

if (!buttonsPressed)

{

halAccelerometerRead(&accX, &accY, &accz):;

accWake = (accX > ACC_X THRESHOLD || accX < -ACC_X THRESHOLD | |
accY > ACC_Y THRESHOLD || accY < -ACC_Y THRESHOLD) ;
}
}
while (accWake == 0 && buttonsPressed == 0);

halBoardSetSystemClock (SYSCLK 16MHZ) ;

RTCCTLO |= RTCRDYIE; //Enable interrupt
RTCAccSec = 0;
halAccelerometerShutDown () ;

halLcdInit () ;

halLcdInit () ;

hallLcdClearScreen();

hallcdSetBackLight (1cdBackLightLevelSettingLOCAL) ;
CpuMode = ACTIVE MODE;

/**//**

* @brief Enters LPM3 and waits for either accelerometer tilt or a button
tilt

to activate the board.

* @param menuText The text that constitues the application menu.

38| Page

@param menuPos The line of the current menu option.
@param change

*

*

*

*

*

* - 0 - Move menu selection up
* - 1 - Move menu selection down
*

*

*

*

*

*

@param menuNum The enumerated value that represents the current
menu selection.

@return none
**/

void menuUpdate (char *menuText, unsigned char *menuPos, int change,
unsigned char menuNum)

halLcdPrintLine (&menuText [*menuPos*MENU ITEM WIDTH+16],
(*menuPos) +1, OVERWRITE_TEXT) ;

if (change == 0) //Subtract
{
if (*menuPos > 0)
(*menuPos) --;
else
*menuPos = (menuNum - 1);
}
else
{
if ((*menuPos) < menuNum - 1)
(*menuPos) ++;
else
*menuPos = 0;

halLcdPrintLine (émenuText [*menuPos*MENU ITEM WIDTH+16],
(*menuPos) +1, INVERT TEXT | OVERWRITE_TEXT)

/**//**

@brief Draws and manages the selection of the menu options.

@param menuText The text that constitues the application menu.

menu selection.

@return The updated, or latest, menu selection.

*

*

*

*

* @param menuNum The enumerated value that represents the current

*

*

*
***/

unsigned char activeMenuMode (char *menuText, unsigned char menuNum)
{

unsigned char menuPosition, quit = 0;

int 1i;

halAccelerometerShutDown () ;

halAdcInitTempVcc () ;
RTCExitSec = 1; // To update digital clock

39| Page

halButtonsInterruptEnable (BUTTON ALL);

halLcdClearScreen() ;

halLcdImage (TI_TINY BUG, 4, 32, 104, 12);
menuPosition = 0;

//Print menu title

halLcdPrintLine (menuText, 0, 0);

//Print menu items
for (i=1;i<menuNum; i++)

halLCdPrintLine(&menuTeXt[i*MENU_ITEM_WIDTH+l6], i+1, OVERWRITE TEXT) ;
//First line is inverted text, automatic selection

halLcdPrintLine (&menuText [0*MENU ITEM WIDTH+16], 1, \
INVERT TEXT | OVERWRITE TEXT)

timeOutCounter = 0;

buttonsPressed = 0;

halAdcSetQuitFromISR(0);

while (CpuMode == ACTIVE MODE && quit == 0)
{
TAOCTL &= ~TAIFG;

__bis SR register (LPM3 bits + GIE); //Returns 1if button pressed or
clock ticks
// __no operation(); // For debugger only

if (buttonsPressed)

{

switch (buttonsPressed)

{

case BUTTON UP: menuUpdate (menuText, &menuPosition, 0, menuNum) ;
break;
case BUTTON DOWN: menuUpdate (menuText, &menuPosition, 1, menuNum) ;
break;
case BUTTON SELECT: CpuMode = APPLICATION MODE; break;
case BUTTON S2: CpuMode = APPLICATION MODE; break;
case BUTTON S1: quit = 1;
default: break;
}
timeOutCounter = 0;
}
else //1if no button pressed --> clock
ticks
{
halAdcStartRead() ;
digitalClockDraw () ;
halAdcReadTempVcc (TemperatureStr, VccStr);
halLcdPrintLineCol (TemperatureStr, 7, 12, OVERWRITE TEXT);
halLcdPrintLineCol (VcecStr, 8, 12, OVERWRITE TEXT);
if (++timeOutCounter > TIME OUT)
CpuMode = LPM3 MODE;
}
buttonsPressed = 0;

}
RTCExitSec = 0;
halAdcShutDownTempVcce () ;

40| Page

}

return menuPosition;

/**//**

*
*
*
*
*
*

@brief This is the example code's main function.

@param none

@return none

int MQPSETUP ()

{

0x0000,

/* Check for the version of the board */
if (!assert board version())
while (1) ;

//Initialize clock and peripherals
halBoardInit () ;

halBoardStartXT1 () ;
halBoardSetSystemClock (SYSCLK 16MHZ) ;

loadSettings () ;

//Initialize buttons

buttonDebounce = 1;

halButtonsInit (BUTTON ALL);
halButtonsInterruptEnable (BUTTON ALL);

// Enter LPM3
// For debugging only

__bis SR register (LPM3 bits + GIE);
// __no_operation();

CpuMode = ACTIVE MODE;
//setupRTC () ;

//variables used for detecting finger positions
unsigned long tempinput = 0x0000;
unsigned long tempinput2 = 0x0000;
{ 0x0000, 0x0000, 0x0000, 0x0000,

unsigned long input2[] = 0x0000,

0x0000 };

0x0000;
0x0000;

unsigned long tempa =
unsigned long tempb

int
int
int
int
int
int
int
int
int
int
int

X min =
X max =
x1l = 0;
x2 =0
x_old
xlr =
y min
y_max
vyl = 0;

y2 = 0;

y _old = 0;

0;

o~
~

Il
o
~

**/

0x0000,

41| Page

int ylr = 0;

int r = 0;

int r old = 0;

halUsbInit(); // start USB connection

while (1) // main loop
{
//reset detection storage variable to 0
for (int g = 0; g < 8; g++) {
input2[g] = 0x0000;
}
// P4 BIT Outputs: ADDR1 - ADDR2 - ADDR3 - ADDR4 - NONE- CS1 - CS2
P4DIR |= (BITO|BIT1|BIT2|BIT3|BIT4|BIT5|BIT6); // P4.0 Decoder control
output
P5DIR |= (BITO0); // clk
P5SEL &= ~(BITO);
P3DIR =
P3SEL =
P7DIR =
P7SEL ;
P4SEL &= ~(BITO|BIT1|BIT2|BIT3|BIT4|BIT5|BIT6)

’
’

’

[oNeoNeNe]

// Loop through decoder forever

while (1) {
for (int k = 0; k < 2; k++) { // Chip Select 0 or 1
if (k == 0) { // Chip 0
P40OUT &= ~BIT5;
P40OUT |= BITG6;

}
else { // Chip 1
P40OUT &= ~BIT6;
P40OUT |= BIT5;
}
P40OUT &= (BIT6|BIT5); // clear all ADDR lines

swDelay (1) ;
for (int 1 = 0; 1 < 14; i++) { // loop 14 outputs of decoder chip
P50UT += 1; // CLK high
swDelay (1) ;
P50UT -= 1; // CLK low
swDelay (1) ;
P40OUT += 1; // shift up to next segment
swDelay (1) ;

tempinput = P3IN; // read in part of the scan

tempinput >>= 4; // shift it over to align it properly

tempinput &= 0x000F; // zero out the rest that we don't care about
tempinput2 = P7IN; // read in the other half of the scan
tempinput2 &= 0x00F0; // zero out what we don't want

tempinput |= tempinput2; // add them together to get 1 long reading
tempinput ~= 0x00FF; // and zero out the rest

// append the first byte and invert order
for (int r = 0; r < 8; r++) {

input2[r] <<= 1;

input2[r] &= OxXFFFFFFFE;

input2[r] += (tempinput & 0x00000001) ;

42 | Page

tempinput >>= 1;
}
} // loop back to top to switch decoder chips
} // At this point all 28 segments should be cycled

// start output for terminal readout
halUsbSendChar (27) ;
halUsbSendString (" [2J", 3);
halUsbSendChar (27) ;
halUsbSendString (" [1;1H", 5);

// clear variables incase they don't get overwritten

x min = 0;
x max = 0;
x2 = 0;
y min = 0;
y max = 0;
y2 = 0;

// loop for the 6 boards that we have
// this would be changed in a later version to make it user assigned
for (int z = 0; z < 6; z++) {

tempa = input2[z]; // read in first board
if (tempa != 0) { // do we have any hits?
tempb = 0;

for (int x = 0; x < 28; x++) { // invert the order of the bits
tempb <<= 1;
tempb += (tempa & 0x00000001);
tempa >>= 1;

}

// for each bit, check to see what position it is

for (int x = 0; x < 28; x++) {

if ((tempb & 0x00000001) == 1) {
if ((x + (z*28)) > 111) { // if it's greater than 111, then it
must be a y

if(y min == 0) { // check for the first hit or "edge"
y min = (x + (z*28)-111);
}
if (y max < (x + (2z*28)-111)) { // check for the last hit
or "edge"
y max = (x + (z*28)-111);
}
}
else {
if(x min == 0) { // check for the first hit or "edge"
x min = (x + (z*28));
}
if (x max < (x + (z*28))) { // check for the last hit or
"edge"
X max = (x + (2z*28));

}
}
}
tempb >>= 1; // shift over 1 before starting again
}

43 | Page

object

other

}

// average the diameters to get the radius

ylr = (y max - y min) / 2;
xlr = (x max - x min) / 2;
r = (ylr+xlr+l)/2; // + 1 is to make it round up instead of down

if (r < 3) { // if the radius is smaller than 3,

// set midpoint to middle of triggers
vyl = (y min + y max) / 2;
xl = (x min + x max) / 2;

r old = r;
}
// start of 2nd point detection

really only have 1

else {
//compare edges to see what is near old object and make 2nd object on
edge
if (abs(x old - x min) < 5) {
x2 = (x_ max - r old);
xl = (x_old + x min)/2;
}
else {
X2 = (x_ min + r old);

+

x1l = (x_old
}
if (abs(y old - y max) < 5) {

X max)/2;

y2 = (y min + r old);
yl = (y_old + y | " max) /2;
}
else {
y2 = (y max - r old);
yl = (y old + y min)/2;

}

}
// output the x,y and radius of each point

halUsbSendChar (' (")
if (x1 > 100) {
halUsbSendChar ('1");
}
else {
halUsbSendChar ('0");
}

halUsbSendChar ((x1/10) + 48);
halUsbSendChar ((x1%10) + 48);
halUsbSendString(",0",2);
halUsbSendChar((yl/lO) + 48);
halUsbSendChar ((y1%10) + 48);
halUsbSendString (") R:",4);
halUsbSendChar (r_old + 48);

if ((x2 !'=0) || (y2 '=0)) {

halUsbSendChar (27) ;
halUsbSendString (" [2;1f", 5);
halUsbSendChar (' (") ;

if (x2 > 100) {

44 |Page

halUsbSendChar ('1");
}
else {
halUsbSendChar ('0");
}
// output 2nd line
halUsbSendChar ((x2/10) +
halUsbSendChar ((x2%10) +
halUsbSendString(",0",2);
halUsbSendChar ((y2/10) + 48);
halUsbSendChar ((y2%10) + 48);
halUsbSendString (") R:",4);
halUsbSendChar (r old + 48);
}
x old = x1;
y_old vl;

48) ;
48) ;

}
}

/**//**

@brief Initializes the RTC calendar.

Initial wvalues are January 01, 2009, 12:30:05

@return none

*
*
*
*
* @param none
*
*
***/

void setupRTC (void)

{
RTCCTLO1l = RTCMODE + RTCBCD + RTCHOLD + RTCTEV 1;

SetRTCHOUR (0x12) ;
SetRTCMIN (0x30) ;
SetRTCSEC (0x05) ;
SetRTCDAY (0x01) ;
SetRTCMON (0x01) ;
SetRTCYEAR (0x2009) ;

RTCCTLO1 &= ~RTCHOLD;

RTCPS1CTL = RT1IP 5; // Interrupt freq: 2Hz
RTCPSOCTL = RTOIP 7; // Interrupt freq: 128hz
RTCCTLO |= RTCRDYIE + RTCTEVIE; // Enable interrupt

}

/**//**

@brief Sets up the WDT as a button debouncer, only activated once a
button interrupt has occurred.

*
*
*
* @param none
*

* @return none
***/

void startWDT ()

45| Page

}

//WDT as 250ms interval counter
SFRIFG1 &= ~WDTIFG;

WDTCTL = WDTPW + WDTSSEL 1 + WDTTMSEL + WDTCNTCL + WDTIS 5;
\

SFRIE1l |= WDTIE;

/**/

#pragma vector=RTC VECTOR

{

}

interrupt void RTC ISR (void)

static unsigned char counter=0;
switch (RTCIV)
{
case 0x02: if (RTCExitSec == 1)
__bic SR register on exit (LPM3 bits);

if (RTCAccSec == 1)
{
halAccelerometerInit () ;
halAdcStartRead() ;
}
break;
case 0x04: Dbreak;
case 0x08: if (RTCExit64Hz == 1)
if (4++counter == 4)
{
counter = 0;
__bic SR register on exit (LPM3 bits);
}
break;
case 0x0A: if (RTCAccHalfSec == 1)
{
ADC12IFG = 0O;
ADC12CTLO |= ADC12ENC | ADC12SC;
}

break;

}
RTCCTLO &= ~RTCRDYIFG;

#pragma vector=WDT VECTOR

{

}

interrupt void WBTiISR(void)

if (buttonDebounce == 2)

{
buttonDebounce = 1;
SFRIFG1 &= ~WDTIFG;
SFRIE1l &= ~WDTIE;
WDTCTL = WDTPW + WDTHOLD;

#pragma vector=PORT2_ VECTOR

{

interrupt void Port2 ISR(void)

46 |Page

if (buttonDebounce == 1)
{
buttonsPressed = P2IFG;
buttonDebounce
startWDT () ;
__bic SR register on exit (LPM3 bits);

Il
N
~.

}
else if (0 == buttonDebounce)
{
buttonsPressed = P2IFG;
__bic SR register on exit (LPM4 bits);
}

47 |Page

Appendix B - Layouts and Schematics

48 |Page

52

AN
i

I
T
T

Pt
[

L -umm.”ﬂl.

HDR1X10

“ERR]

X10

4514BP_5V

S S VO SO VO OO OO A A VO SO SO S W
ol
o
o FISSE S SO S VO A O (O A O (O
ot D1
—] 2
SEnsl 1N52258 So0
1%
HDRIX8
pinl 22
o i
o
o
Hta
o
i — A
?WJ
| =
||||| T sv
!
{90 o o e v i 7 HDRIX10 | 33Q ,
YIWLY
W TR TW TR TR Sg S S Su Sk S S
i
_w__r | _..__r
= H
= H
= - =
2] : H
:

74HC4514D

I

49 | Page

Appendix C - Total Cost

Initial product purchase for testing = $28.35

PCB manufacturing: $33 x 4 = $265.46

TI MSP-EXP430F5438: SO

Phototransistor QSD-122: $0.20 x 224 = $44.80
LED QED-234: $0.14 x 224 = $31.36

RA Header Socket 575-502001: $10.22 x 5 = $51.10
RA Pin Header 575-642001: $10.29 x 4 = $41.16
Darlington Array ULN2003A: $0.235 x 32 = §7.52
Decoder CDN4514BE: $0.95 x 32 = $30.4

Zener 1N5225: 50.03 x 8 = $0.48

Comparator LM339N: $0.27 x 8 = $2.16

33 Ohm Resistor CCF60: $0.06 x 8 = S0.48

39 Ohm Resistor CCF60: S0.06 x 8 = $0.48

5.1K Ohm Resistor CCF60: $0.06 x 8 = $0.48

10 Ohm Resistor CCF60: S0.06 x 16 = $0.96

20K Ohm Resistor CCF60: $0.06 x 8 = $0.48

Total: $505.67

50| Page

Appendix D - Bibliography

A D Metro Touch Screen Primer: http://www.admetro.com/pdfs/Touch Screen 101.pdf

Advanced Circuits: http://www.4pcb.com/

Digikey Catalog: http://dkcl.digikey.com/US/EN/PDF/US2010/Complete.html

Fairchild QED234 datasheet: http://www.fairchildsemi.com/ds/QE%2FQED234.pdf

Fairchild QSD122 datasheet: http://www.fairchildsemi.com/ds/QS%2FQSD124.pdf

Mouser Electronics Catalog: http://www.mouser.com/catalogviewer.aspx

Multi-Touch Surfaces: A Technical Guide: http://mi-lab.org/files/2009/10/bymultitouch.pdf

Natural User Interface Group: http://nuigroup.com/forums

Texas Instruments MSP-EXP430F5438: http://focus.ti.com/docs/toolsw/folders/print/msp-
exp430f5438.html

Texas InstrumentsCD74HCA4515 datasheet: http://focus.ti.com/lit/ds/symlink/cd74hc4515.pdf

Tyco Technologies - A Survey of Mainstream and Emerging Touch Technologies:
http://www.sidchapters.org/pacificnorthwest/meetings/dec03 08 presentation.pdf

51| Page

	Worcester Polytechnic Institute
	Digital WPI
	January 2010

	Infrared Multitouch Interface
	Sean Julian Thulin
	Repository Citation

	Microsoft Word - Project Final Report - Revised.docx

