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Abstract 

A collaboration between WPI and ENSIC was undertaken to investigate the 

properties of emulsions as a drug delivery system.  The use of biocompatible amphiphilic 

polymers as emulsifiers for controlled drug delivery is a relatively new technology.  The 

emulsifier acts as a barrier between phases in oil-in-water emulsions to increase 

stability.  Oil soluble drug substances can then be encapsulated within the oil 

nanoparticles where the polymer surfactants help to control the drug release into a 

biological system over time.  The goal of this project was to research the stabilization and 

drug release kinetics of modified dextran (DexC6), an amphiphilic polymer.  The most 

stable emulsions were formed with a DexC6 aqueous concentration of 40g/L in a system 

of 40% octyldodecanol oil volume.  Experiment results showed consistent drug release 

kinetics for DexC6, that encapsulated lidocaine is released at a much slower rate than free 

lidocaine.  This conclusion encourages further research into drug delivery through 

emulsion systems. 
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1 Introduction 

As new drug substances and medical therapies are discovered it is necessary to 

consider their applications to human subjects.  As with any medical treatment, safety and 

comfort of the patient is a major concern.  In the realm of drug delivery this may be 

achieved by administering lower doses at less frequent intervals. 

Traditional methods of drug delivery include intravenous and oral administration.  

These methods are controlled by first order rate kinetics.  First order drug release is 

heavily dependent on time and concentration.  This poses several potential dosing 

problems.  A high concentration of drug cannot be administered due to toxicity concerns.  

However, only a small percentage of the drug administered actually reaches the targeted 

body parts and therefore several doses are required (Chaubal, 1997).  These drug delivery 

problems are some of the pressing issues facing the pharmaceutical industry today. 

An ideal drug delivery method releases the drug through zero order kinetics, 

resulting in a slower, more controlled drug release and a steady concentration of drug 

within the body.  Controlled drug release helps to guard against toxicity problems 

because it prevents the initial spike of the drug substance that occurs with uncontrolled 

release (Chaubal, 1997).  Slower release causes only a small amount of drug to be 

released over time.  This means that more of the drug is absorbed by the body and less of 

the substance is wasted.  Many drug therapies are more effective when the amount of 

drug remains constant in the body.  Therefore, zero order kinetics is preferable because it 

is a safer, more efficient and more effective drug therapy.  A graphical comparison of 

controlled release kinetics as compared with uncontrolled release kinetics is shown in 

Figure 1 (Chaubal, 1997). 
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Figure 1: Conventional release kinetics vs. controlled release kinetics 

  Research has shown that zero order release kinetics can be achieved by using 

oil-in-water emulsion particles.  In this system the drug substance is dissolved within the 

oil particles.  These emulsions can be enhanced through the use of polymer surfactants to 

stabilize the emulsion particles and control the release kinetics.  This type of system is 

beneficial because it achieves the desired release kinetics and can be used to deliver oil-

soluble drugs into an aqueous system, such as the human body. 

The purpose of this project was to investigate the properties of oil-in-water 

emulsions stabilized with a dextran polymer, DexC6.  DexC6 is a natural hydrophilic 

sugar polymer that has been modified by addition of a hexane group to make the 

molecule amphiphilic.  These polymers were used to stabilize the emulsions and control 

drug release.  Parameters investigated included degree of hexane substitution, emulsion 

particle size, emulsion stability, oil and drug properties and drug release kinetics.  

Lidocaine was the model drug substance. 

It was determined that octyldodecanol was the best oil choice.  The most stable 

emulsions were formed with 40% oil volume and 40 g/L dextran in the aqueous phase.  

Most importantly, release of lidocaine was substantially slower when encapsulated in 

emulsion particles than when in free solution.  The details of these finding are presenting 

in the following report.
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2 Background 

2.1 Polymers 

Polymers are an important class of materials with extremely versatile physical 

properties.  They can be natural or synthetic and include materials such as rubber, Nylon, 

silk, polysaccharides, plastics and DNA.  Polymers first became important to the 

chemical industry in the 1830’s when Charles Goodyear discovered the process of 

vulcanization to produce a stiffer and more useful form of natural rubber.  The industry 

reached another significant milestone in the 1930’s when synthetic polymers such as 

nylon, polystyrene, neoprene and vinyl were discovered (Gordon, 1994).  Since then 

polymer based materials have been an important part of everyday life.  

2.1.1 Polymer Structure 

Polymers consist of many smaller molecules, called monomers, that are 

chemically bonded together to form a chain.  These chains can be arranged into different 

polymer structures.  Figure 2 illustrates that the monomer chains can be linear, branched 

or cross-linked in a network. 

 
Figure 2: Polymer Structures (Gordon, 1994) 
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In linear chains, a polymer that consists of just one type of monomer is known as 

a homopolymer.  A copolymer is a molecule that contains more than one type of 

monomer.  There are several types of copolymers, including random copolymers, block 

copolymers, and alternating copolymers. Random copolymers have monomers that are 

arranged in no particular order.  Block copolymers are characterized by blocks of one 

type of monomer followed by blocks of another monomer.  Alternating copolymers rotate 

between monomers in a pattern (Faigle, 1997).  The different monomer conformations of 

linear polymers are shown in Figure 3. 

 

 

Figure 3: Types of Linear Polymers (Faigle, 1997). 

 

 The individual chains of branched polymers may contain the characteristics of 

linear polymers shown in Figure 3.  Similarly, if the main polymer chain and its branches 

consist of only one monomer then it is a branched homopolymer.  However, if the 

polymer branches are of a different monomer than the main chain, it is known as a graft 

copolymer, as shown in Figure 4.  Polymers with a high degree of branching are known 

as dendrimers (Gordon, 1994). 
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Figure 4: Graft Copolymer Structure (Gordon, 1994) 

 

 There are countless combinations of different structural and chemical polymer 

conformations.  The immense variety of polymer molecules available clearly explains the 

wide range of physical properties exhibited by polymeric materials.  It is this diversity 

that has made polymers such an interesting and in-demand field of research. 

2.1.2 Polysaccharides 

 Polysaccharides are a classification of polymers that are widely used in drug 

delivery.  They are polymers whose monomers are monosaccharides.  Monosaccharides 

are the simplest form of carbohydrates, with a chemical formula of (CH2O)n.  They are 

classified as ketones or aldehydes, depending on their structure and can be formed in 

chains or rings.  The monosaccharides polymerize and are linked together through an 

oxygen atom to form polysaccharides, as shown in Figure 5.  Polysaccharides tend to be 

very large and are often branched polymers. 
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Figure 5: A) Typical monosaccharide  B) Illustration of monosaccharide linkage 

 

 Polysaccharides are very useful in drug delivery applications because they have 

excellent biocompatibility and biodegradability (Dumitriu, 2001).  Polysaccharides are 

biocompatible because they are natural polymers.  Due to their chemical makeup, they 

are biodegradable into simple digestible sugars in the human body.  These characteristics 

make them very useful for drug delivery applications. 

2.1.3 Dextran 

 Dextran is a glucose polysaccharide.  Structurally it consists of an α-D-1,6-glucan 

linked backbone with side chains forming off the oxygen atom bonded to carbon number 

three.  The degree of branching is approximately 5% with each side chains typically 1-2 

glucose units in length.  The structure of Dextran is shown in Figure 6 (Rotureau, et al., 

2005). 
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Figure 6: Chemical structure of A) Dextran monomer  B) modified DexC6 polysaccharide 

 

 Dextran is produced in a laboratory by the bacterium Leuconostoc mesenteroids 

B512F during fermentation of sucrose from sugar beets (Amersham).  The Dextran 

polymer is then divided into fractions based on average molecular weight.  Dextran 

polymers range in molecular weight from 1,000-200,000 daltons.  Typical fraction 

notation is the molecular weight divided by 1,000, therefore a Dextran fraction with an 

average molecular weight of 40,000 would be denoted Dextran 40. 

 Dextrans have several properties that make them good candidates for drug 

delivery applications.  They are readily soluble in water and are neutrally charged.  In a 

dry powder form they are stable for more than five years.  However their most significant 

asset is their biocompatibility.  Dextran may be ingested orally and is quickly digested as 

evidenced by an increase in blood sugar.  It has been used intravenously as a blood 

plasma extender since the Korean War.  Blood plasma extenders can help to temporarily 

keep trauma patients alive who have lost a lot of blood (Chemical Heritage Foundation).  
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Dextran is also biodegradable and its byproducts are readily absorbed into the natural 

environment.   

Natural Dextran can be easily modified by substitution with functional groups to 

manipulate its physical properties.  This study will focus on Dextran 40 reacted with 

epoxyoctane to form DexC6, or Dextran substituted with hexane chains, as shown in 

Figure 6.  The hexane groups are soluble in organic materials, creating an amphiphilic 

polymer that gives DexC6 its surfactant properties. 

2.2 Surfactants 

 Surfactants are a special type of molecule, generally of low to moderate molecular 

weight, which consist of a hydrophobic part and a hydrophilic part.  The hydrophobic 

part of the molecule, known as the tail, is soluble in oils and organic materials, but is 

more or less insoluble in water.  Conversely, the hydrophilic portion of the molecule, or 

polar headgroup, is soluble in water and relatively insoluble in organic material 

(Malmsten, 2002).  The anatomy of a surfactant molecule is shown in Figure 7.  

 

 

Figure 7: Surfactant Molecule 

 

The hydrophobic chains of surfactant molecules are generally similar from one 

molecule to another (Hargreaves, 2003).  However, there is significant variety in the 
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nature of the hydrophilic portions, therefore surfactants are classified according to their 

headgroups.  Figure 8 shows that there are four classifications: anionic, cationic, nonionic 

and zwitterionic (amphoteric) surfactants. 

 

 

Figure 8: Different Surfactant Classifications (Malmsten, 2002) 

 

 Anionic surfactants are the largest of the four groups.  They are characterized by 

their negatively charged polar headgroup.  Due to their highly electronegative atoms they 

are particularly sensitive to salts and will display a decrease in surfactant properties in the 

presence of salts (Malmsten, 2002).  Anionic surfactants are most frequently used in 

soaps and cleaning agents due to their pronounced detergent properties, however, they 

have also found significant use in drug delivery applications. 

 Cationic surfactants consist of positively charged headgroups, frequently 

obtaining their charge from amines.  Similar to anionic surfactants, they are also sensitive 

to salts.  They are often irritating and potentially toxic in biological systems.  Therefore, 

they have limited use in drug delivery applications, with the exception of antibacterial 

functions (Malmsten, 2002). 
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 Nonionic surfactants are molecules with uncharged polar headgroups.  Because 

they have no charge they are much less sensitive to salts, however, display some 

temperature sensitivity.  Micelle formation (to be discussed in Background section 2.3) 

occurs at lower surfactant concentration.  Overall, nonionic surfactants are less irritating 

than charged solvents and therefore are the most frequently used in drug delivery systems 

Malmsten, 2002). 

 The final class of surfactants, zwitterionic or amphoteric surfactants, has a polar 

headgroup with both positively and negatively charged ions.  Depending on pH, a 

zwitterionic surfactant may behave as a cation or anion (Hargreaves, 2003).  They are 

less common, however, they are used in personal care products because they are mild 

with a low irritancy. 

 Regardless of the headgroup classification, their common basic structure causes 

all surfactants to behave similarly in solution.  Their amphiphilic structure prevents 

surfactants from dissolving normally in aqueous solution.  In fact, if the hydrophobic tail 

is very prominent, the surfactant may not dissolve at all.  However, if the molecule has 

enough polar character to be water soluble the surfactant molecules display interesting 

behavior in solution.  This is due to the fact that contact between water and the 

hydrophobic surfactant tails is thermodynamically less favorable than the intermolecular 

contact between surfactant tails (Malmsten, 2002).   
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Figure 9: Water Minimizing Surfactant Orientations  

 A) adsorption at the oil-water interface B) micelle formation 

 

Similarly to an oil and water mixture, the forces between similar molecules 

(water-water or oil-oil) are stronger than the forces between oil and water molecules 

(Hargreaves, 2003).  This causes the surfactant molecules to orientate themselves to 

minimize contact between their hydrophobic tails and water molecules.  They do this by 

adsorbing at interfaces, for example in emulsions, or by associations between surfactant 

molecules to form self-assembly structures such as micelles.  Figure 9 shows examples of 

water minimizing surfactant orientations.  The effect of micelles will be further discussed 

in the following section. 

2.3 Micelles 

 The formation of micelles is a special characteristic of surfactant molecules.  A 

micelle is an aggregate of surfactant molecules, usually spherical in shape, but other 
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geometric shapes are possible, such as rods, packed rods and parallel layers (Wikipedia).  

A typical spherical micelle is shown in Figure 10.  In an aqueous solution micelle 

surfactant molecules orientate themselves with hydrophobic tails inward so as to exclude 

water molecules.  This arranges the sphere so that the hydrophilic polar head groups are 

facing outwards, readily interacting with water molecules.  This conformation is 

energetically more favorable because it allows the electrostatic interactions of ionic or 

polar molecules. 

 

 

Figure 10: Schematic illustration of a spherical micelle (Malmsten, 2002). 

 

Micelles are a result of the amphiphilic nature of surfactants.  Their duality causes 

them to have limited solubility in water.  At concentrations above their maximum 

solubility, surfactant molecules associate to form aggregates such as micelles 

(Hargreaves, 2003).  This concentration is known as the critical micelle concentration 

(CMC), which is different for each surfactant.  This is the concentration at which micelles 

are first formed and also can be found by various physical-chemical properties such as 

osmotic pressure, surface tension, turbidity, electrical conductance, spectral behaviour, 

and others (Burger, et al., 2004).  The formation of micelles in solution is an important 
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characteristic of surfactant molecules and must be taken into consideration during 

emulsion preparation. 

2.4 Emulsions 

 An emulsion is a mixture of two immiscible liquids, where one phase is dispersed 

within the other in the form of droplets.  The droplets are known as the dispersed phase 

and the bulk liquid is known at the continuous phase.  There are two kinds of emulsions 

that are common in drug delivery applications, water in oil (W/O) and oil in water (O/W).  

W/O emulsions are frequently used for sustained release of drug substances, such as 

steroids or vaccines, through intramuscular injection.  O/W emulsions are most 

commonly used for intravenous injections (Stevens, 2003).  “Double emulsions” of oil-

water-oil (O/W/O) and water-oil-water (W/O/W) also exist, but are more complex and 

less common.  The major emulsion types are shown in Figure 11

 

 

Figure 11: Different types of emulsions (Burguera, 2004) 

   

Prior to mixing the two liquids will remain as two separate phases with the 

substance of lower density layered on top of the substance of higher density.  An 

emulsion is thermodynamically unstable and therefore will not form spontaneously, 

 13



energy must be added.  Energy may be added in the form of vigorous shaking or 

sonication, which uses sound waves to agitate the mixture.  The formation of an emulsion 

system is a complex process which involves the generation and stabilization of new 

interfaces (Malmsten, 2002).  These new interfaces exist in the barrier between droplets 

of the dispersed phase and the bulk continuous phase.  The additional interface area often 

causes emulsions to appear opaque.  Increasing interface area also increases the total 

amount of interfacial tension in the system, therefore making it less stable and explaining 

the need for excess energy.   

For drug delivery purposes emulsion components must be chemically and 

physically stable, sterilizable, biologically compatible and reasonably priced.  The 

droplets are typically between 200 and 600 nm in diameter with greater than 90% of the 

particles below 1000 nm (Stevens, 2003).  Based on these criteria emulsions stabilized 

with polysaccharide surfactants are very useful because polysaccharides are natural sugar 

molecules and are biocompatible with the human anatomy.  Emulsions are important in 

drug delivery because they provide safer administration of water insoluble drugs.  A drug 

substance can de dissolved in the dispersed oil phase if it is insoluble in the continuous 

aqueous phase.  This is a useful method for getting oil-soluble drugs into the aqueous 

environment of the human body without the use of hazardous organic solvents. 

 The drawback of using emulsions in drug delivery is that they are naturally 

unstable.  If they are not stabilized the droplets will coalesce into two distinct phases.  

However, if the destabilization can be slowed down then they can certainly be very useful 

in drug delivery applications.  Their destabilization can be significantly slowed through 

the use of surfactants.  Amphiphilic surfactants are able to arrange themselves so that 
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their hydrophobic tails are anchored to the oil phase and their hydrophilic heads are 

exposed to the aqueous phase.  They then act as a stabilizing barrier between the two 

phases.  This helps to lower the interfacial tension and therefore slow destabilization.  It 

may also help to form smaller emulsion particles (Malmsten, 2002).  Once these particles 

have been stabilized they are much more useful.  In order to create emulsions useful for 

drug delivery purposes, it is important to study their stability and the mechanisms by 

which they destabilize. 

2.4.1 Emulsion Degradation 

 As previously stated, emulsions are thermodynamically unstable.  Figure 12 

shows that there are four main mechanisms by which emulsions destabilize: creaming, 

flocculation, coalescence and Ostwald ripening.  Each type occurs gradually over time 

and depends on different emulsion characteristics.  Knowledge of the destabilization 

mechanism helps one to manipulate the emulsion characteristics, therefore slowing the 

rate degradation and producing a more stable emulsion. 
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Figure 12: Different mechanisms of emulsion destabilization (Malmsten, 2002). 

 

 Creaming is a form of emulsion destabilization based on gravity and density.  

Creaming, occurs when there is a significant density difference between the dispersed 

droplets and the continuous phase.  If the density of the droplets is lighter than that of the 

continuous phase, then the droplets float to the top and form a layer.  Sedimenting is the 

opposite of creaming and occurs when the droplets are denser than the continuous phase 

and sink to the bottom.  Creaming is also dependent on droplet size, with larger droplets 

creaming (or sedimenting) faster than smaller ones.  The rate of creaming can be slowed 

by decreasing droplet size or by increasing the viscosity of the continuous phase 

(Malmsten, 2002). 

 Flocculation occurs when emulsion droplets clump together into loose formations 

called flocs, but do not join to form a larger droplet.  This is also known as aggregation.  

The predominant cause of this phenomenon is inter-particle interactions, especially 

electrostatic interactions.  This is more frequent in high concentration emulsions because 

when there are more particles there is a higher probability of collision and interaction.  
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The electrostatic interaction can be decreased by the presence of a low salt concentration 

in the continuous phase to balance the charged particles.  However, increasing salt 

concentration will increase electrostatic repulsion and increase the rate of flocculation 

until the salt concentration reaches a point where it is high enough to re-stabilize the 

particles and the rate of flocculation decreases (Malmsten, 2002).  Therefore, to avoid 

emulsion destabilization by flocculation the salt content of the continuous phase should 

be monitored. 

   Coalescence occurs when two emulsion droplets approach each other and the 

continuous phase fluid between them drains out.  This causes the interfacial film between 

them to become thinner.  If the film ruptures then the two droplets combine to become 

one larger droplet.  This change is irreversible.  The presence of stabilizing surfactants 

protects against coalescence because surfactants provide a steric barrier and serve to 

lower interfacial tension between emulsion droplets (Malnsten, 2002).  If there is not 

enough surfactant present in the continuous phase or the droplet size is so small that there 

is not enough surfactant to sufficiently coat the emulsion droplets coalescence will occur.  

Therefore, the best way to prevent coalescence is to ensure there is sufficient amount of 

surfactant present. 

 The final and most complex emulsion destabilization mechanism is Ostwald 

ripening.  This occurs when large emulsion droplets grow larger and small emulsion 

droplets shrink and eventually disappear.  This is related to the pressure within the 

emulsion droplets.  The pressure within an emulsion droplet is larger when the surface 

curvature is larger, or when the droplets are small.  This causes the dispersed phase to 

have a higher solubility outside a small droplet than outside a large droplet.  Therefore, 
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the material in small droplets can dissolve in and diffuse through the continuous phase 

until it comes out of solution and joins the material in a larger droplet.  Eventually the 

small droplets disappear; meanwhile the large droplets have gained material and grown 

larger.  This is dependent upon the solubility of the dispersed phase in the continuous 

phase, the higher the solubility, the faster the emulsion degradation (Malmsten, 2002). 

2.4.2 Dry Emulsions  

 Solid substances are generally much more stable than those in liquid form.  For 

this reason it is sometimes desirable to dry drug-encapsulated emulsions to prolong shelf 

life and preserve stability.  The dried particles can later be used for intravenous injection 

after reconstitution into liquid form by the addition of solvent    Emulsions may also be 

dried to form tablets for oral administration pathways.  This is done through 

lyophilization or freeze-drying.  During lyophilization the sample is frozen with liquid 

nitrogen and then the solvents are allowed to sublime under vacuum conditions.  The 

extreme conditions produced by the lyophilization process can affect the physical and 

chemical properties of the drug, therefore, care must be taken to preserve the material of 

interest.  During drying, the solutes are concentrated which may result in particle 

aggregation.  Compounds such as carbohydrates and polyalcohols are sometimes used as 

protectants to buffer the emulsion particles.  Polysaccharide surfactants such as Dextran 

are natural carbohydrates and therefore act as protectants in dry emulsions (Malmsten, 

2002).  Dry emulsions are still a fairly new technology and there is still much research to 

be done. 

 18



2.5 Past Research at ENSIC 

The Laboratorie de Chimie Physique Macromoléculaire (LCPM) at ENSIC has 

been researching polymeric surfactants for many years now.  They aim to develop 

polymer stabilized, oil in water emulsions for use in drug delivery systems.   Much of 

their study in this area has been focused on Dextran, a natural polysaccharide.  Natural 

polysaccharides are good candidates for this application because they are water soluble, 

have low toxicity and low biological interaction (Rouzes, et al., 2002). 

2.5.1 LCPM Publications: "Surface Activity and Emulsification 

Properties of Hydrophobically Modified Dextrans" 

In order to enhance the surfactant properties of natural Dextran the polymer was 

modified with hydrophobic groups to obtain an ionically neutral, amphiphilic molecule.  

In 2001 LCPM investigated the properties of Dextran substituted with phenoxy aromatic 

rings, denoted DexP.  The DexP formed a protective layer around the oil droplets.  As 

compared with unmodified Dextran, DexP produced smaller emulsion droplets with a 

thinner polymer layer coating the droplet.  This indicated that the DexP layer was more 

densely packed than the unmodified Dextran layer, which was attributed to the presence 

of hydrophobic anchoring groups.  The study also found that as the DexP concentration 

was increased, the aqueous solution viscosity was lowered, the interface layer became 

more closely packed due to a more compact formation, and both the surface tension and 

interfacial tension decreased.  The study concluded that oil in water emulsions stabilized 

with hydrophobically modified Dextran was a promising development in drug delivery 

systems (Rouzes, et al., 2002). 
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2.5.2 LCPM Publications: "Influence of polymeric surfactants on the 

properties of drug-loaded PLA nanospheres" 

The following year LCPM continued to investigate modified Dextrans and 

optimize their properties.  The study was expanded to include alkyl modified Dextrans 

(DexC4 and DexC10) as well as DexP.  It was determined that Dextran polymers with a 

low degree of substitution did not form stable emulsion particles.  However, polymers 

with a higher degree of substitution formed stable emulsion particles due to the presence 

of hydrophobic anchoring groups and lowered surface tension.  LCPM also researched 

the formation of drug-loaded nanospheres through emulsions stabilized with modified 

Dextran.  The polymer was placed in an aqueous solution while the drug substance 

(lidocaine) was dissolved in oil.  By studying a series of emulsions it was concluded that 

DexP cannot be used to encapsulate lidocaine.  This was explained by the interaction 

between the drug substance and the phenoxy aromatic ring.  This reduced the surfactant 

properties of the modified Dextran and prevented the formation of stable emulsion 

particles.  However, successful drug-loaded nanospheres were formed with alkyl 

Dextrans.  The DexC coated particles exhibited similar diffusion-controlled release of 

lidocaine as uncoated particles, therefore indicating that polymer coating does not 

significantly alter drug release kinetics (Rouzes, et al., 2003). 

2.5.3 LCPM Publications: "Amphiphilic derivitives of dextran: 

Adsorption at air/water and oil/water interfaces" 

In 2003 research was expanded to include substitution with ionic groups as well 

as hydrophobic groups.  These polymers were denoted DexPτSs, where τ indicates the 
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degree of hydrophobicity and s indicates the degree of ionic substitution.   This was done 

to increase the degree of substitution while maintaining polymer solubility.  Previously, 

the upper limit of the degree of substitution was approximately 20%, which was limited 

by the ability of the polymer to remain soluble in water.  By introducing ionic 

substitutions as well as hydrophobic ones the overall degree of substitution could be 

much larger.  Previous research has shown that the larger the degree of substitution, the 

larger the decrease in surface tension.  This trend was examined by experimenting with 

polymers with a range of hydrophobicities and charge densities.  Modifying Dextran 

chains with ionic groups had a significant effect on the adsorption kinetics.  It was 

observed that if hydrophobicity is maintained, increasing the ionic content of the polymer 

slows the time dependence of polymer adsorption.  This is explained by increasing 

electrostatic interactions and repulsions.  Conversely, maintaining the ionic content and 

increasing the hydrophobicity of the polymer results in faster kinetics due to faster 

dynamic surface tension.  In this case the hydrophobic interactions were predominant and 

the presence of ionic groups served to maintain solubility.  Therefore, by significantly 

increasing the hydrophobic degree of substitution and using ionic groups to maintain 

solubility, adsorption kinetics and dynamic surface tension are much faster (Rotureau, et 

al., 2004).  

2.5.4 LCPM Publications: "Amphiphilic Polysaccharides: Useful Tools 

for the Preparation of Nanoparticles with Controlled Surface 

Characteristics" 

The 2004 LCPM publication focused on the kinetics of oil in water emulsion 

stabilization and the size of the resulting droplets.  Kinetics was studied by observing the 
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change in interfacial tension over time.  The study determined equilibrium of droplet 

formation was determined by the diffusion of the polymer.  The limiting step was the 

diffusion into the already-adsorbed layer of macromolecules rather then diffusion through 

the bulk solution.  The time required for equilibrium was dependent on the polymer’s 

ability to adsorb to the interface.  This is related to the degree of substitution because a 

more highly substituted polymer has more hydrophobic anchoring groups and therefore is 

better adsorbed to the interface.  Therefore, increasing the degree of substitution 

decreases the equilibrium value of the interface.  No polymer desorption was observed 

during the droplet formation.  This indicates that there is no back diffusion from the 

interface. 

The study also looked at the impact of polymer/weight ratio on droplet size.  It 

was determined that a small polymer/weight ratio was controlled by the amount of 

polymer available to coat the emulsion particles.  There is a minimum polymer layer 

thickness required to prevent coalescence, therefore as the polymer amount decreases the 

droplet size increases.  This is logical because a fewer number of large particles has a 

lower total surface area than many small particles.  Conversely, for larger polymer/weight 

ratios the droplet size reaches a minimum where further addition of polymer does not 

result in a smaller droplet size.  This indicates that at larger polymer/weight ratios the 

droplet size is no longer controlled by the amount of polymer available.  The kinetics of 

emulsion destabilization was also studied.  Ostwald Ripening was determined to be the 

predominant method of emulsion destabilization (Durand, et al. 2004).   
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2.5.5 LCPM Publications: "Neutral Polymeric Surfactants Derived 

from Dextran: A Study of Their Aqueous Solution Behavior" 

 The most recent LCPM publication examined how modified polymeric 

surfactants, namely modified Dextrans, behave in aqueous solution.  The polymer 

molecules have a tendency to clump together and form aggregates in solution.  The 

research examined the influence of different structural parameters on the aqueous 

solution behavior.  Parameters such as the quantity and type of hydrophobic substitutions 

were examined.  Polymers with different sized hydrophobic substitutions behaved 

differently.  For example, increasing the degree of substitution consequently increased 

associative behavior in DexC6, whereas it decreased the tendency to form aggregates in 

DexC10.  This inconsistency is explained by the competition between intermolecular and 

intramolecular forces.  Aggregates in solution were detected by viscometry and light-

scattering experiments.  The study concluded that aggregates do form in dilute solutions 

when a polymer-specific degree of substitution has been exceeded.  These aggregates 

account for viscous solution behavior.  Understanding the interactions between polymer 

molecules is crucial to understanding the kinetics of polymer-stabilized emulsion 

formation (Rotureau, et al., 2005). 

2.6 Collaboration with WPI 

 WPI and ENSIC have a longstanding research partnership.  The research 

presented in this paper was preceded by several other WPI-ENSIC research teams.  

Undergraduate students from WPI have traveled to Nancy, France to complete their 

Major Qualifying Projects since 2002.  Each group has researched a different aspect of 
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polymer stabilized emulsions for drug delivery.  Some of this research is currently in 

press for publication in the Journal of Colloids and Surfaces A. 

 In 2002 Brancato, Miller and Pistorino studied the effect of modifying a Dextran 

polysaccharide backbone with different hydrophobic substitutions.  They studied DexC6, 

DexC10 and DexC20 as stabilizers for water in oil emulsions.  They concluded that any 

of the three polymers could be used as an effective stabilizer.  However, they determined 

that the oil used, Nujol, had a low affinity for the drug substance, lidocaine.  Therefore it 

was concluded that additional oils should be investigated. 

 As a direct result from the previous group’s conclusions, in 2003 Desmond, 

Savard and Shea focused on identifying an oil that was better suited for lidocaine 

encapsulation.  They found that 40% Nujol and 30% olive oil produced the desired 

lidocaine release kinetics.  They experienced difficulty maintaining a constant particle 

size during lyophilization and therefore recommended further optimization studies. 

 In 2004 Manawanitjarern and Rogers investigated a variety of oils as well as 

higher Dextran concentrations.  Miglyol was the oil with the best experimental results.  It 

was then recommended that further study be devoted to Miglyol.  Parameters such as 

particle size, particle stability, partition coefficient and drug release kinetics would be of 

interest for further development of oil in water emulsions. 

 The most recent research was conducted in 2005 by Correia, McElearney and 

Pinzon.  The research focused on DexC6 as an emulsifying polymer.  Significant studies 

were conducted regarding emulsion particle size and particle stability.  The particles were 

found to be stable for one week, but unstable after lyophilization and reconstitution.  The 

study also examined the release kinetics of the lidocaine drug into water and weak buffer 
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solutions.  The buffer solution was used to more closely simulate some of the properties 

of blood.  It was observed that the lidocaine was released more slowly into the buffer 

solution than the water.  It was recommended that more research be performed in the area 

of particle stability after reconstitution.   

 The aim of this current study is to further investigate the particle size, stability 

and release kinetics of DexC6 at a higher polymer concentration.  Emulsions containing 

an aqueous solution of 30g/L and 40 g/L DexC6 in dilute NaOH were tested.  The 

experimental methodology, results and recommendations are detailed in the remainder of 

this paper. 
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3 Methodology 

3.1 Synthesis of Dextran C6 (DexC6) 

 The amphiphilic modification of dextran by adding hydrophobic C6 hydrocarbon 

chains onto the polysaccharide backbone occurred in dimethyl sulfoxide (DMSO) in the 

presence of tetrabutylammonium hydroxide (TBAOH).  The modified dextran was 

synthesized by adding 150ml of DMSO to 15g of Dextran T40© purchased from 

Amersham Biosciences in Uppsala, Sweden (Mw = 40,000g/mol).  The solution was 

placed in a round bottom flask in an oil bath at 40◦C and was mixed for 30 minutes using 

a magnetic stirrer to allow the dextran to completely dissolve.  Once the dextran had 

dissolved, 75ml of TBAOH at 1M was added to the flask.  The new solution was allowed 

to mix for 20 minutes.  After this time had elapsed, 14.2ml of epoxyoctane was added to 

the solution.  This amount of epoxyoctane represented a one-to-one ratio of dextran 

monomer units to epoxyoctane units.  This was calculated as the ratio required to obtain 

approximately a 15 to 20 percent substitution ratio of hydrophobic groups in the modified 

dextran.  The solution was then allowed to come to room temperature and continue to 

mix for three days before being placed in a dialysis membrane to begin the polymer 

recovery process. 

3.1.1 Dialysis Purification of the Polymer 

 The solution containing the modified dextran polymer needed to be purified of all 

side products and unused reactants before the polymer could be recovered.  Purification 

by a dialysis membrane was chosen because of the difficulty of precipitating the modified 
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dextran from DMSO and based on past experimental experience at the LCPM.  The size 

of the pores of a dialysis membrane is indicated by the molecular weight cut off (MWCO) 

of the membrane.  The MWCO is an approximate value for the maximum molecular 

weight of molecules that can pass through the membrane.  However, the size and shape 

of the molecules is much more significant in determining their ability to escape through 

the membrane.  The proteins used by the manufacturer to test the MWCO of their 

membrane tend to clump together and take up a larger volume than the modified dextran 

dissolved in DMSO, which tends to extend into longer, skinnier strands.  Therefore a 

modified dextran of similar molecular weight to the protein used to determine MWCO 

could escape though a smaller pore.  The membrane chosen for the dialysis was a tube-

shaped Spectra/Por® membrane with a molecular weight cut off (MWCO) of 6,000 to 

8,000 g/mol, a width of 40mm, diameter of 25.5mm and a volume to length ratio of 

5.1ml/cm.  This choice was based on experimental experience at the LCPM.  The pores 

of this membrane have been found to be large enough to let the unreacted epoxyoctane, 

its byproducts, DMSO and the salts from the TBAOH through, but small enough to keep 

the larger modified dextran polymer chains within. 

 The membrane was first cut to size and then placed in a water bath for 10 minutes 

to ensure thorough wetting and easier handling.  The bottom of the membrane was 

secured with three knots before adding the polymer solution.  The top of the tubing was 

then sealed with three more knots and the membrane was placed into a cylinder 

containing a 50/50 mixture of 96.2% ethanol (EtOH) and water with a magnetic mixer.  

The ethanol served the purpose of extracting the unreacted epoxyoctane, its byproducts, 

and the DMSO, while the water served the purpose of extracting the salts from the 
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TBAOH.  The ethanol was added first so that the differences in the water and ethanol 

densities could facilitate mixing of the dialysis solution.  The ethanol and water solution 

was changed twice a day for five days.  After the five days, the solution was switched to a 

pure water solution for four days and changed twice daily to complete the dialysis and 

remove any ethanol that had entered into the membrane so that the product could be 

freeze dried. 

 However, on the sixth day of dialysis, when the solution was changed to pure 

water, the membranes became swollen and one ruptured during handling.  The majority 

of the contents of the membrane were recovered by dropping the ruptured membrane into 

a nearby Erlenmeyer flask.  A new membrane was then prepared and dialysis was 

continued. 

3.1.2 Freeze Drying 

 After a week of dialysis, the polymer solution had to be centrifuged before it 

could be freeze dried for recovery.  However, it was at this point that the problems with 

our synthesis became apparent.  The polymer solution in the membrane should have been 

mostly clear with some precipitate.  Yet, in this case it was cloudy and not transparent, 

thus indicating that our polymer may not have been water soluble.  We continued with 

the centrifugation to see if enough precipitate could be removed from the solution to 

make it clear.  The polymer solution was centrifuged using a Jouan GR 20 22 centrifuge 

at an RCF value of 15,644 g for 30 minutes.  The liquid phases were extracted and 

combined in a round bottom flask for freeze drying and the precipitate at the bottom of 

the centrifuge tubes was collected in a small jar and stored for later use by the LCPM in a 

lab refrigerator.  The liquid phase was still cloudy at this point and it was decided to 
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continue with the freeze drying so that the dried product could later be reconstituted with 

less water and recentrifuged. 

 The solution was split into two round bottom flasks for freeze drying, making sure 

not to fill each flask above 20 percent of its volume.  Each flask was then placed in a 

liquid nitrogen bath and turned until all the water inside each flask had frozen.  Once the 

material was sufficiently frozen, the flasks were attached to the freeze dryer.  The freeze 

dryer uses a vacuum to sublime the ice formed within the flasks to dry the product.  The 

flasks were removed from the freeze dryer once all the water had been removed, 

approximately 48 hours later. 

 The dry polymer was then collected in a round bottom flask and 50ml of water 

were added to attempt to dissolve it.  After about two hours, the solution resembled a 

viscous gel and 50ml more water were added to attempt to dissolve the polymer.  After a 

few more hours, the solution no longer resembled a gel but it was thick and opaque and 

clearly not water soluble.  Therefore, the solution was put back into a dialysis membrane 

and a dialysis solution of 0.1 M NaCl was used for two days, changing the solution every 

three hours.  The presence of the salt ions increased the hydrophobic properties of the 

polymer, making it precipitate out of solution and collect at the bottom of the membrane, 

leaving the rest of the solution clear.  However, when the dialysis solution was switched 

back to water, the polymer remained precipitated as a brownish sludge with a gum-like 

consistency.  Therefore, it was certain by this point that our polymer was not soluble and 

therefore not suitable for further use.  The most likely cause for the insolubility of the 

polymer is that it was allowed to react too long and this resulted in an over 

hydrophobically substituted polymer.  In order to confirm this, we freeze dried the gum 
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like polymer substance and the polymer solution separately.  Once dry, the two samples 

were prepared for NMR polymer characterization following the procedure in 0 3.1.3 

NMR Polymer Characterization to determine the substitution ratios of our polymer.  

Since it was certain that our synthesis had not produced the desired product, some 

previously prepared DexC6 with an approximately 20 percent substitution ratio was 

selected for use in all further experiments. 

3.1.3 NMR Polymer Characterization 

Although we were using a previously prepared sample of DexC6, the exact 

substitution ratio was not known.  Therefore, the sample had to be characterized using 

nuclear magnetic resonance (NMR) spectroscopy.  Since NMR measures the different 

types of bonds formed with 1H hydrogen isotopes, it is important to ensure that there are 

no additional 1H sources, such as in water or in the solvent used, present.  Therefore, 

about 30mg of polymer was placed in a vial in an oven at 100°C overnight to dry.  Then 

deuterated DMSO was used to dissolve the polymer because it contains no 1H atoms.  

Deuterated compounds use a heavier isotope of hydrogen, 2H, in place of normal 1H, 

therefore the hydrogen atoms do not affect the NMR results.  The polymer was allowed 

to dissolve in the deuterated DMSO solution for an hour before being placed in an NMR 

tube and being submitted to the lab’s NMR technician for analysis. 

3.2 Analysis of Lidocaine 

 Lidocaine is the model drug used by ENSIC in their drug delivery system 

research.  It was important to evaluate the properties of this drug such as the extinction 

coefficient, the solubility in dilute NaOH and the partition coefficients of this drug in 
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different oils in order to understand the behavior of the drug and execute meaningful 

experiments. 

3.2.1 Extinction Coefficient of Lidocaine 

 The extinction coefficient (ε) of lidocaine relates the ultraviolet (UV) absorbance 

to the concentration of lidocaine in the solution being analyzed through Beer Lambert’s 

lCA ][ε=  

Equation 1: Beer Lambert's Law 

law, which can be seen in Equation 1, where A is the optical density or absorbance, ε is 

the extinction coefficient or molar absorptivity in units of L/mol cm or L/g cm, [C] is the 

concentration of the compound in units of mol/L or g/L and l is the pass length of the 

sample in units of cm.  UV spectroscopy was chosen for analysis because lidocaine has 

an aromatic ring that absorbs UV light, making it very easy to read using the UV 

spectrophotometer.  The chemical structure of lidocaine can be seen in Figure 13. 

 

Figure 13: Chemical Structure of Lidocaine 
http://encyclopedia.laborlawtalk.com/Image:Lidocaine.png, 02/08/2006 

 

 To determine the extinction coefficient of lidocaine, a plot of the concentration of 

lidocaine in solution versus its absorbance was required.  The plot is linear for lidocaine 
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concentrations less than 1 g/L and the slope of the line is the extinction coefficient.  

Therefore a stock solution of approximately 1 g/L lidocaine in 10-4 M NaOH was 

prepared for the analysis.  The exact amount of lidocaine and 10-4 M NaOH used to make 

the solution were weighed using a precision scale to determine the exact concentration of 

the solution because weighing is more accurate than measuring by volume as long as the 

density of the solution is known.  Since 10-4 M NaOH is very dilute, the density was 

assumed to be equal to water.  In this case, 0.026g of lidocaine was combined with 

25.755g of 10-4 M NaOH solution to obtain a lidocaine solution of 0.999 g/L.  The 

solution was allowed to stir overnight to ensure that it was completely dissolved before 

UV spectroscopy tests were preformed. 

 Before the UV spectrophotometer could be used, it had to be calibrated.  The 10-4 

M NaOH solution was used as the baseline calibration for the machine.  A spectrum scan 

was then run to on the NaOH solution to verify that no light was absorbed at all 

wavelengths.  Once the machine was calibrated, the stock solution of lidocaine was used 

to make solutions with approximate concentrations of 0.25 g/L, 0.5 g/L, 0.75 g/L and 1 

g/L.  Each of these dilutions was prepared using the precision scale so that the exact 

concentration of each was known.  Each solution was then run through the UV 

spectrophotometer and the absorbance at the peak of each spectrum scan, corresponding 

to a wave length of 262 nm, was recorded.  Each absorbance was then plotted against its 

respective concentration and a trend line was added, giving the slope of the line and thus 

the extinction coefficient of lidocaine.  
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3.2.2 Solubility of Lidocaine 

 Once the extinction coefficient had been determined, UV spectroscopy could be 

used to determine the solubility of lidocaine.  Approximately 1g of lidocaine was placed 

in 100mL of 10-4 M NaOH solution and allowed to stir overnight.  Then the lidocaine 

solution was centrifuged to collect the undissolved lidocaine so that the saturated 

lidocaine solution could be removed.  The concentration of the saturated lidocaine 

solution was assumed to be greater than 1 g/L and thus it needed to be diluted for UV 

analysis.  A one to six dilution ratio was chosen and both the amount of saturated solution 

and 10-4 M NaOH solution added were weighed using the precision scale.  The diluted 

sample was then analyzed using UV spectroscopy and the absorbance was recorded.  

Using the extinction coefficient previously determined, the concentration of the sample 

was less than 1 g/L and no further dilution was needed.  The actual saturation 

concentration of the lidocaine was then back calculated based on the amount the sample 

was diluted. 

3.2.3 Partition Coefficients (Kp) 

In order to measure the differential solubility of a compound in two solvents, the 

partition coefficient, Kp, must be determined.  The partition coefficient is the ratio of the 

solute concentration in the desired solvent to the solute concentration in the undesired 

solvent as seen in Equation 2.  In this case, the solute is lidocaine, the desired solvent is 

oil and the undesired solvent is 10-4M NaOH solution made with MilliQ water.  

NaOHdilute

oil
p Lidocaine

Lidocaine
K

][
][

=  

Equation 2: Partition Coefficient 
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To determine the partition coefficient, two methods were used.  In the first, 

lidocaine was dissolved in a known volume of oil and then the oil was mixed with a 

known volume of dilute NaOH solution.  In the second, lidocaine was dissolved in a 

known volume of dilute NaOH solution and then the dilute NaOH solution was mixed 

with a known volume of oil.  In both cases, the phases were shaken and then stirred with 

a magnetic stir bar and then allowed to separate before the aqueous phase was extracted 

for UV spectroscopy to determine the concentration of lidocaine.  Equation 3 was used to 

calculate the partition coefficient. 

KP =
(x − [Lidocaine]dilute NaOH × z)

(y × [Lidocaine]dilute NaOH )
 

Equation 3: Partition Coefficient (rearranged) 

Where x represents mg of lidocaine, y represents mL of oil, and z represents mL 

of dilute NaOH.  Everything was weighed using a precision scale so the exact quantities 

would be known. 

3.2.4 Oil Purity 

The partition coefficients of four different oils were determined.  However, before 

the partition coefficients could be determined, the oils had to be washed to remove any 

impurities that may affect the UV analysis.  Small amounts of each oil (5ml) were 

washed three times with 10-4M NaOH.  After the third washing, samples of the aqueous 

solution were tested with UV spectroscopy to determine purity.  If the oils were pure, the 

UV spectrum, baselined with pure 10-4M NaOH, would record no absorbance.  If the oils 

were not clean, the washing was repeated.  When clean, the oils were ready for use in 

partition coefficient experiments.  The four oils under investigation were dicarylyl 
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carbonate, caprillic-capric triglyceride, octyldodecanol, and miglyol.  The most suitable 

oil, determined by partition coefficient experiments, was then washed in large quantities 

for emulsion experiments. 

3.3 Emulsions 

 The preparation and creation of emulsions was critical to our experiments.  

Emulsion properties such as the size and stability of the oil in water particles would affect 

the encapsulation and release properties of our drug.  This section explains the 

preparation and creation of emulsions and the tests done to determine the size and 

stability of the emulsions using DexC6 concentrations of 30g/L and 40g/L in the aqueous 

phase.  The results from these experiments determined which DexC6 concentration 

would be used for lidocaine encapsulation. 

3.3.1 Emulsion Preparation 

Emulsions were prepared in 10mL batches in 50mL plastic sonication tubes.  

Each emulsion was comprised of 6mL of aqueous solution and 4mL of oil solution.  The 

aqueous solution was 10-4M NaOH.  It had to be kept tightly sealed and the pH checked 

periodically to maintain the dilute concentration.  DexC6 concentrations of 30g/L and 

40g/L in the aqueous phase were used depending on the experiment.  The DexC6 was 

allowed to dissolve overnight in the aqueous solution.  The oil phase was octyldodecanol.  

It was determined that this oil had the most favorable results from the partition coefficient 

experiments.   

 Once the appropriate amount of DexC6 had dissolved overnight in 6mL of 

aqueous solution, 4mL of oil solution were added to the 50mL sonication tube.  Prior to 
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sonication, the material in the sonication tube was vortexed at a speed of 2500 rpm for 

one minute.  All components added to the sonication tube were weighed using a precision 

balance so that the exact quantities were known. 

3.3.2 Emulsification 

Emulsions were prepared using sonication.  Sonication is a high energy process 

that delivers ultrasound waves to the oil and water mixture, disrupting the two immiscible 

phases and allowing them to mix.  Due to this high energy disruption, very small 

emulsion particles form and the role of the amphiphilic polymer is to stabilize these 

emulsions.  The Vibra-Cell sonication equipment by Bioblock Scientific was used to 

prepare all emulsions. 

The sonication probe was lowered into the sonication tube so that the tip was just 

below the separation of the two phases.  A line was marked on the probe to ensure that 

the probe would be placed at exactly the same spot on all successive sonications.  Careful 

attention was paid to ensure that the probe did not touch the walls of the tube.  The 

portion of the tube containing the emulsion was submerged in a water bath to help 

dissipate the heat released during sonication. 

A sonication time of 210 seconds was chosen for an active cycle of 50 percent 

and a power level of 5, which is approximately equivalent to 100W.  These settings 

remained constant for all sonications.  Once the sonication was complete, the emulsions 

had been formed and were ready for experiments and testing. 
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3.3.3 Particle Sizing 

 A High Performance Particle Sizer (HPPS) by Malvern Instruments was used to 

measure the size of our emulsion particles.  The HPPS measures the retro-diffusion of 

light from particles in a solution using a Neon-Helium laser reading from multiple angles.  

This method allows for measurements of particles from solutions of high concentration 

and over a wide range of particle sizes, from 0.6 to 6000 nm, as well as minimizing 

sources of error such as dust particles.  Since it is impossible to make emulsions of 

uniform size, the HPPS gives only an average size for three different runs for each 

sample, with between eight and twenty measurements per run.  The HPPS also provides a 

polydispersity value for each set of runs, which is a number indicating how widely the 

distributed the particle sizes were within each sample.  Samples with a polydispersity 

value greater than 0.4 were deemed to have too wide a particle size distribution to be 

considered useful.  Samples with too high of a polydispersity value were discarded and 

redone. 

 To prepare samples for the HPPS, a 0.001M NaCl solution was prepared to dilute 

the emulsions.  The HPPS cuvette was filled half way with NaCl solution and one drop of 

emulsion was added.  The sample was then mixed, bubbles were eliminated, the cuvette 

face was cleaned and then placed in the machine for analysis.  Initial particle sizes were 

measured one hour after sonication to allow any bubbles formed during the sonication 

process to settle. 

3.3.4 Emulsion Stability 

 Two methods were employed to test the stability of the emulsions.  The first was 

to measure the particle sizes of the emulsions 24 hours after sonication and then again 
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after 96 hours to see if the average particle size increased.  The second method used to 

evaluate the stability of the emulsions involved centrifuging the emulsions and then 

measuring the particle size.  The forces applied by the centrifuge acted as a method to 

artificially age the emulsions by encouraging them to separate back into two phases.  The 

emulsions were placed in the Jouan GR 20 22 centrifuge at an RCF value of 109 g for 10 

minutes.  The size of the emulsion particles was then measured using the HPPS to see if 

the size had increased.  Smaller deviation in the particle size measured during both 

methods meant a more stable emulsion. 

3.3.5 Emulsion Reconstitution 

 The last test performed on the emulsions was to examine their ability to be 

reconstituted after freeze drying.  Freeze drying allows the emulsions to be dried without 

being chemically altered.  Dry emulsions could hopefully be stored for longer periods of 

time without their composition being altered and then be reconstituted before an 

application.  This would improve their shelf life and thus their usefulness as a conduit for 

drug delivery in the medical world.   

 For the freeze drying process, 5mL emulsion samples were placed in small 

centrifuge tubes, frozen and then dried for a period of 48 hours.  The dry emulsions were 

then reconstituted by adding an amount of MilliQ water equivalent to that removed 

during the drying process, 3mL.  The solutions were vortexed for one minute and then 

placed in a sonication bath for 15 minutes.  The particle sizes for the reconstituted 

emulsions were then evaluated using the HPPS machine. 
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3.4 Lidocaine Encapsulation 

 Lidocaine is the drug used by ENSIC to model their emulsion based drug delivery 

system.  Lidocaine was dissolved in the oil phase of the emulsion in a concentration of 

25mg/mL.  To accomplish this, the same emulsification procedure described in 0 3.3.1 

Emulsion Preparation and 0 3.3.2 Emulsification was used with the exception that 40g/L 

was the only DexC6 concentration used.  Exact amounts added were always weighed 

using a precision scale.  Also, the lidocaine was allowed to dissolve in the oil phase 

overnight in a separate 50mL sonication tube.  The aqueous phase containing DexC6 was 

added to the oil phase before the sonication process.  The lidocaine-encapsulated 

emulsions were tested for particle size as in 0 3.3.3 Particle Sizing and for stability with 

time only as in 0 3.3.4 Emulsion Stability.   

3.5 Lidocaine Release Kinetics 

The release kinetics of lidocaine were studied to determine the rate at which 

lidocaine was being released from its encapsulated emulsion to an external medium.  This 

information is important in the medical world because it is critical to know how much 

drug is being released into a patient’s body and at what rate, so that overdose situations 

can be prevented and so that the useful life of a drug dose can be determined.  In order to 

show how a lidocaine-encapsulated emulsion releases lidocaine compared to non-

encapsulated lidocaine, release kinetics experiments were carried out for lidocaine alone, 

for lidocaine in the presence of DexC6 and for lidocaine-encapsulated emulsions. 

The external medium in all release experiments was the same aqueous solution of 

10-4M NaOH used throughout all experiments.  Having the external medium be the same 
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as the aqueous phase of the emulsion eliminated any additional driving forces of mass 

transfer other than molecular diffusion.  The release experiments were done using 

Spectra/Por dialysis membranes containing the lidocaine solutions in a dialysis solution 

of the external medium.  For all release experiments, the amount of dialysis solution was 

equal to 2mL for every 1mg of lidocaine contained within the dialysis membrane.  Before 

any experiments could be performed, the dialysis membrane had to be washed in a bath 

of DI water.  A UV spectrum was run on the bath solution to see if the membrane was 

clean.  If it was not, the washing process was continued until the UV spectrum showed 

that the membrane was clean. 

3.5.1 Lidocaine Release 

 A 10mL solution with a lidocaine concentration of 3g/L was allowed to dissolve 

overnight.  The solution and lidocaine added were weighed using a precision scale to 

know the exact amounts contained in the solution.  The solution was then poured into the 

dialysis membrane, which was double knotted at both ends and then placed in the dialysis 

solution.  60mL of dialysis solution were used for this experiment.  Samples were 

removed from the dialysis solution for UV analysis to determine the amount of lidocaine 

present on a regular basis, approximately every 15 minutes.  Samples were returned to the 

bath after analysis. 

3.5.2 Lidocaine Release in the Presence of DexC6 

 A 10mL solution with a lidocaine concentration of 3g/L and a DexC6 

concentration of 40g/L was allowed to dissolve overnight.  The solution, lidocaine and 

DexC6 added were weighed using a precision scale to know the exact amounts contained 
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in the solution.  The solution was then poured into the dialysis membrane, which was 

double knotted at both ends and then placed in the dialysis solution.  60mL of dialysis 

solution were used for this experiment.  Samples were removed from the dialysis solution 

for UV analysis to determine the amount of lidocaine present approximately every 30 

minutes.  Samples were returned to the bath after analysis. 

3.5.3 Lidocaine Release from an Emulsion 

 A lidocaine-encapsulated emulsion was prepared and emulsified according to 

section 0 3.4 Lidocaine Encapsulation.  The exact amounts added were weighed using a 

precision scale.  The emulsion was then poured into the dialysis membrane, which was 

double knotted at both ends and then placed in the dialysis solution.  200mL of dialysis 

solution were used for this experiment.  Samples were removed from the dialysis solution 

for UV analysis to determine the amount of lidocaine present approximately every 30 

minutes.  Samples were returned to the bath after analysis. 
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4 Results and Discussion 

4.1 Synthesis of Dextran C6 (DexC6) 

 The synthesis of Dextran C6 was executed according to the procedure outlined in 

LCPM publications (Rotureau, et al, 2005).  The hydrophilic Dextran T40 starting 

material was modified with epoxyoctane to yield DexC6, an amphiphilic Dextran 

polymer substituted with hydrophobic hexane groups.  The reaction appeared to process 

normally; however, later problems were attributed to this synthesis.  It is likely that the 

substitution reaction with epoxyoctane was allowed to process for 3 days, which was too 

long.  This resulted in a polymer that was more substituted than desired.  Too much 

hydrophobic substitution yielded a polymer that was no longer water-soluble.  The 

synthesized polymer was therefore unusable for oil in water emulsion preparation.  

Because the synthesis and purification took a significant amount of time it was 

impractical to synthesize another batch of DexC6.  Therefore, for experimentation we 

used a previously synthesized batch of DexC6 that was stored in the lab. 

 NMR spectroscopy was used to confirm the initial hypothesis that the 

epoxyoctane substitution reaction was allowed to proceed for too long.  The goal was to 

obtain a sample of DexC6 with an alkane chain substituted onto approximately 20% of 

the Dextran sugar units.  The NMR spectrum of the desired molecule is shown in  

Figure 14.  The peaks corresponding to the different parts of the polymer molecule are 

identified by their position on the graph.  The group of peaks on the right corresponds to 

the substituted alkane chains, whereas the group of peaks on the left represents the 

Dextran backbone.  By comparing the areas of these peaks, it is possible to calculate the 
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ratio of substituted Dextran sugar units to unsubstituted Dextran sugar units.  The sample 

shown in  

Figure 14 had a substitution ratio of approximately 20%.  This sample had been made 

previously by another student and was used in all of our experiments.  

 

 

Figure 14: NMR spectrum of 20% substituted DexC6 used in experimentation 

 

 When it became apparent that our synthesis of DexC6 had not processed as 

expected we began to investigate the cause of this error.  An NMR spectrum was run to 

check for problems with the substitution ratio.  The NMR data from our problematic 

synthesis is shown in Figure 15.  It is clear that the ratio of the peak sizes of alkane to 

Dextran is much larger than in the previous sample.  The calculated substitution ratio was 

approximately 55-60%.  This confirms the hypothesis that our synthesis had reacted for 
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too long and was therefore over substituted.  This explains the problems experienced with 

the sample we synthesized and supports the decision to use a pre-made sample. 

 

 

Figure 15: NMR spectrum of problematic synthesis 

 

4.1.1 Dialysis Purification of the Polymer 

 To remove excess reactants and solvents the polymer solution was placed in 

tubular Spectrum® membranes for dialysis purification.  The first phase was processed 

with a dialysis solution of 50/50 ethanol in water.  This would normally process for three 

days, however our experiment processed for five days due to the fall of a weekend during 

the initial dialysis phase.  The second purification phase was dialysis with pure distilled 
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water.  This processed for four days in order to remove and ethanol that may have passed 

into the membrane.  The first dialysis phase processed normally; however, there were 

significant complications with the pure water dialysis. 

4.1.2 Overcoming and Preventing Membrane Rupture 

 Our polymer solution was contained in two separate dialysis membranes in two 

separate cylinders containing the dialysis solution.  On the sixth day of the dialysis, the 

solution was switched from a 50/50 solution of ethanol and water to a solution of pure 

water.   

 The dialysis mechanism operates based on equilibrium.  The undesired solvents, 

byproducts and excess reactants remaining in the polymer solution within the membrane 

diffuse through the membrane to achieve equilibrium in the dialysis solution.  In the same 

manner, the ethanol and water in the dialysis solution diffuse through the membrane to 

achieve equilibrium in the polymer solution.  As previously mentioned, the membrane 

was selected to prevent the DexC6 polymer from escaping.  Therefore, by frequently 

changing the dialysis solution, the undesired products that had diffused out of the 

membrane were removed and the equilibrium was upset such that more undesired product 

was forced to diffuse into the dialysis solution to restore the equilibrium. 

On the sixth day of the dialysis, the solution was switched from a 50/50 solution 

of ethanol and water to a solution of pure water.  During the first day of pure water 

dialysis we encountered a significant problem when the dialysis membrane ruptured 

during a routine dialysis solution change.  The tubular membranes were removed from 

the solution and gently turned several times to mix the sediment within the membranes.  

During turning one membrane sprang a small leak.  We were able to contain most of the 

 45



spill in a beaker before the membrane tore completely.  The cleanliness of the beaker was 

questionable.  The material collected from the ruptured membrane was put into another 

membrane and continued the dialysis process. 

There are several factors that attributed to the rupture of the membrane.  By the 

sixth day, the membrane contained a significant amount of ethanol and water and when 

the dialysis solution was switched to pure water, the membrane initially floated.  

However, throughout the day, due to the same equilibrium mechanism, water entered the 

membrane and the osmotic pressure within the membrane increased until the membranes 

were swollen and about to burst.  Prior to rupture, the membrane was noticeably more 

swollen than it was when initially placed into the water dialysis solution.  This indicates 

that more solution diffused into the membrane than out of it.  Purification by dialysis is 

driven by equilibrium and permeability of a substance through a membrane.  There was a 

significant ethanol concentration within the membrane and no ethanol in the dialysis 

solution.  Over time equilibrium dictates that ethanol will diffuse out of the membrane 

and into the dialysis solution in order to obtain equal ethanol concentrations. Ethanol is a 

molecule more than 2.5 times larger than a water molecule.  Therefore it would seem that 

it is easier for a water molecule to diffuse through a membrane than an ethanol molecule.  

The drive for equilibrium may have initially driven water into the membrane in attempt to 

dilute the ethanol rather than driving the ethanol out of the membrane in order to obtain 

equal concentrations. This explanation is plausible because when the dialysis solution 

was switched to pure water, the membrane initially floated, indicating it contained a 

significant amount of ethanol.  However, throughout the day, due to the same equilibrium 

mechanism, water entered the membrane and the osmotic pressure within the membrane 
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increased until the membranes were swollen. This influx of liquid put a strain on the 

membrane and made it more prone to breakage. 

It is interesting to note that the previous project group that performed the same 

procedure had a similar problem with membrane rupture at approximately the same point 

in the dialysis.  It may be worth modifying the dialysis procedure to adjust time intervals 

of solution change or gradually reducing the concentration of ethanol in order to prevent 

membrane rupture in the future.  

4.2 Analysis of Lidocaine 

 Prior to conducting any emulsion experiments we had to gather data about the 

model drug substance, Lidocaine.  One of the reasons Lidocaine was chosen is because it 

has a much greater solubility in oil than water.  It is not completely insoluble in water, 

therefore we conducted several experiments to gather more information about the 

solubility properties of Lidocaine. 

4.2.1 Extinction Coefficient of Lidocaine 

 The first task was to develop a standard curve using dilute Lidocaine solutions of 

known concentration.  Four solutions were prepared and analyzed using UV spectroscopy.  

Beer’s Law dictates the linear relationship between UV absorbance and solution 

concentration. 

lCA ][ε=  

Equation 4 : Beer Lambert's Law 
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Therefore, by plotting absorbance by solution concentration the extinction coefficient, ε, 

can be calculated as the slope of the line.  This is shown in Figure 16.  
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Figure 16 : Standard curve of Lidocaine solubility 

 

The extinction coefficient was calculated to be 1.8023 L g-1 cm-1, which is 

consistent with previous research.  This information is very useful because for subsequent 

calculations we were able to measure the concentration of dilute Lidocaine solutions 

using UV spectroscopy. 

4.2.2 Solubility of Lidocaine 

 We attempted to calculate a maximum solubility limit for Lidocaine in water, 

however, this proved to be somewhat problematic.  Our first experiment yielded a 

saturation concentration of 4.147 g/L.  However, on other occasions we were unable to 
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get this much Lidocaine to dissolve in water.  Therefore the saturation concentration is 

inconsistent and not reproducible. 

 There are several possible explanations for this.  Variations in temperature and 

mixing time could have an effect on the amount of Lidocaine that dissolves.  We tried 

two different separation techniques to remove the undissolved Lidocaine, centrifugation 

and filtering.  Neither method worked very well.  There is also a very good possibility of 

human experimental error involved in separation and dilution. 

 To account for this inconsistency we made a fresh saturated Lidocaine solution 

whenever it was needed.  We would then determine the concentration by diluting the 

sample and measuring its UV absorbance. 

4.2.3 Partition Coefficients (Kp) 

Partition coefficient (Kp) experiments were conducted for four different oils: 

dicaprylyl carbonate, caprylic/capric triglyceride, octyldodecanol and miglyol.  The 

experiments mixed each of the oils with a dilute NaOH solution saturated with lidocaine.  

Three separate trials were run, each with a different volume ratio.  In each case, 

octyldodecanol was calculated to have the highest Kp value.  This data is shown in Figure 

17. 
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Figure 17: Partition coefficient results 

 Although octyldodecanol is the best oil in each trial, the actual Kp values are not 

consistent.  This can be attributed to two causes.  First, each experimental trial was 

prepared with a different ratio of oil volumes, which may have affected the final results.  

Theoretically this should not impact the Kp value, however, variations in preparation, 

small sample sizes and the discrepancy of the UV spectrometer on a day-to-day basis 

may have had a significant impact.  Secondly, there were significant problems preparing 

lidocaine solutions of the same concentration due to the low solubility of lidocaine in 

aqueous solutions.  There is no measure of the error calculation because each trial was 

run only once.  As a result of this data, octyldodecanol was chosen for further 

experimentation. 

 Octyldodecanol was the only oil used in the second set of experiments.  Rather 

than dissolve the lidocaine in aqueous solution, this procedure used lidocaine dissolved in 

the oil.  The experiment was repeated four times for consistency and it was determined 

that octyldodecanol had a Kp of 62 ± 3.  These results are much more consistent than the 

first set of experiments. 
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4.3 Optimization of Emulsion Parameters 

LCPM had never made oil in water emulsions consisting of forty percent oil before.  

Therefore, it was necessary to determine what concentration of modified dextran polymer 

was required to produce stable emulsions with particle sizes at or smaller than 300 nm.  

The two polymer concentrations studied were 30g/L and 40g/L in a 10-4M NaOH 

solution that comprised the aqueous phase of the emulsion.  In order to test the stability 

of the emulsions, the particle size over time, the particle size after artificial aging in a 

centrifuge and the particle size after reconstitution were studied.  No lidocaine was 

present in any of these emulsions, the only goal here being to determine the best polymer 

concentration to be used in lidocaine encapsulation and release kinetics experiments. 

 As mentioned in the methodology section, all particle size measurements were 

made with the High Performance Particle Sizer (HPPS).  After sonication, emulsions 

were stored at room temperature and particle sizes were measured at 24 and 48 hours.  

The emulsion from the first trial was then split, one half was centrifuged for artificial 

aging and the other half was freeze dried so that it could be reconstituted later.  The 

particle sizes of the artificially aged emulsions were measured immediately after they 

were removed from the centrifuge.  The freeze dried emulsions were reconstituted using 

the same volume of MilliQ water that was removed.  The emulsions were then vortexed 

for one minute and placed in a sonication bath for 15 minutes, after which the particle 

sizes were evaluated.  The results presented in Table 1 show the average particle size for 

three runs on the HPPS with its standard deviation for each trial. 

 

 

 51



Table 1: Average Particle Sizes of Emulsions 
Emulsion 24 hrs (nm) 48 hrs (nm) Centrifuged (nm) Reconstituted (nm) 

30g/L Trial 1 317 ± 5 352 ± 8 453 ± 10 293 ± 3 
30g/L Trial 2 355 ± 5 349 ± 3 N/A N/A 
40g/L Trial 1 273 ± 2 284 ± 1 281 ± 3 248 ± 5 
40g/L Trial 2 284 ± 2 289 ± 5 N/A N/A 

 

 As can be seen from the table, the emulsion with a 40g/L concentration was 

already superior at 24 hours because it had particle sizes below 300 nm, one of the main 

criteria, while the emulsion with a 30g/L polymer concentration had particle sizes above 

300 nm.  By 48 hours, the average sizes for 40g/L have changed little and are still below 

300 nm while the average sizes for 30g/L are around 350 nm.  The greatest difference 

was shown after the artificial aging in the centrifuge.  The average particle size for 30g/L 

was well above the 300 nm desired value while the particle sizes for the emulsion with 

40g/L had not increased at all.  When it came to the particle sizes of the reconstituted 

emulsions, both were below 300 nm but the average size for 40g/L was still significantly 

below that of 30g/L.  The particle size superiority of the 40g/L polymer concentration can 

be seen in Figure 18. 
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Figure 18: Emulsion Particle Size Comparison 

 In every case, the particle sizes for emulsions with a polymer concentration of 

40g/L are below 300 nm and smaller than those for emulsions with a polymer 

concentration of 30g/L.  The stability of the particles was also better for the 40g/L 

concentration.  This is most evident by looking at the results of the artificial aging of the 

emulsions in the centrifuge.  The particle sizes for the emulsion with a polymer 

concentration of 30g/L experienced a significant increase after being centrifuged, 

showing that 30g/L is not a high enough polymer concentration to produce stable 

emulsions.  On the other hand, the particle sizes for the emulsion with a polymer 

concentration of 40g/L remained relatively constant after centrifuging.   

 The concentration of 40g/L was expected to produce smaller particle sizes and 

have greater stability than the concentration of 30g/L.  However, the objective was to be 

able to use the least amount of polymer necessary to make emulsions that met our criteria.  

A polymer concentration of 30g/L was not enough to effectively stabilize the surface area 
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of the oil, while 40g/L proved to be sufficient.  The only unexpected result was the 

particle sizes of our reconstituted emulsions.  The results of past WPI groups working 

with modified dextran stabilized oil in water emulsions had shown that the particle sizes 

for reconstituted emulsions were much larger than the initial sizes had been prior to 

freeze drying.  This increase in size ranged from 57 nm to 571 nm (Correia, McElearney 

and Pinzon, 2005).  Both of our reconstituted emulsions had lower average particle sizes 

than their initial particle sizes.  This is a positive result showing that emulsions can be 

reconstituted within the desired particle size range.  However, this could also be due to 

having much larger concentrations of polymer in our emulsions and a higher oil 

percentage, meaning that less of the emulsion structure was removed during freeze drying.  

This may have helped the stability of the dry emulsions.  Also, our reconstituted 

emulsions were vortexed and placed in a sonication bath, which probably also 

contributed to the lower particle sizes.  Still, these are interesting results that should be 

investigated further to understand the effects polymer concentration and oil percentage in 

an emulsion have on the ability to effectively reconstitute emulsions.   

4.4 Lidocaine-Encapsulated Emulsion Stability 

Lidocaine-encapsulated emulsions were made with a polymer concentration of 

40g/L in the aqueous phase.  A couple of these emulsions were tested to determine 

particle size and stability with time.  Particle size measurements were taken at 24 and 96 

hours.  As can be seen in Table 2 the initial particle sizes for both emulsions are below 

the desired 300 nm size.  The emulsions were stored at room temperature and by 96 hours 

the particle sizes for both emulsions had grown above 300 nm, but were not unreasonably 

large.  Still, the stability of the emulsions was slightly less than desirable.  In order to 
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obtain better stability results in the future, it is suggested to store the emulsions in a 

refrigerated setting, which should slow particle growth.  

Table 2: Lidocaine Emulsion Particle Size 
Emulsion 24 hrs (nm) 96 hrs (nm) 

1 297 ± 3 339 ± 5 
2 285 ± 1 327 ± 6 

 

4.5 Lidocaine Release Kinetics 

Kinetics tests were performed to understand how the rate of lidocaine release from 

a lidocaine-encapsulated emulsion compared to a solution of just lidocaine and a solution 

of lidocaine and modified dextran.  This testing was useful to show how a lidocaine-

encapsulated emulsion might be used to provide controlled drug delivery in an 

intravenous application.  The experimental model used here assumed that the main 

mechanism of drug release was molecular diffusion and the results from the experiments 

can be seen in Figure 19. 

Some problems were encountered during the release kinetics testing.  The most 

significant problem was the 10-4M NaOH solution.  The dilute NaOH solution was 

problematic due to its instability.  The solution was initially chosen to constitute the 

aqueous phase of our emulsions because of lidocaine’s strong dependence on pH.  

However, the NaOH solution was dilute to the point that the pH was constantly changing 

even though the solution was always tightly covered.  Small amounts of water absorbed 

into the NaOH solution from the air could change the pH of the solution significantly 

over the course of a day.  While the pH of the solution was checked and brought back to 

approximately 10 daily, the rate of degradation of the pH during the experiments was 

unknown.  The UV spectrophotometer was baselined with NaOH solution that had been 
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properly adjusted at the beginning of each experiment but the degradation of the NaOH 

solution used in the experiments could have led to inaccurate UV analysis.  The release 

experiments were also only run over one day, approximately 7 hours.  Due to the 

degradation of the NaOH solution, results obtained after one day were unreliable. 

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0 100 200 300 400 500

Time (min)

Li
do

ca
in

e 
C

on
ce

nr
at

io
n 

(m
g/

m
l)

Lido Lido & DexC6 Lido Emulsion

 
Figure 19: Lidocaine Release Kinetics Comparison 

The building also lost power briefly during the release experiments with lidocaine 

and modified dextran and the lidocaine-encapsulated emulsion.  Therefore, the UV 

spectrophotometer had to be baselined again once the power returned and this could have 

contributed to some error as well.  However, although the error due to the NaOH solution 

negates the quantitative certainty of our results, we feel that the trends exhibited by our 

results are still useful to analyze.   

According to Figure 19, the lidocaine and DexC6 solution had the fastest rate of 

release.  Yet, it is more likely that DexC6 molecules were able to escape through the 

large pores of the membrane along with the lidocaine because the lidocaine only curve 

and the lidocaine and DexC6 curve were expected to be the same.  The DexC6 present in 
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the dialysis solution removed for UV analysis would have added to the measured 

absorbance, thus making it seem as if the concentration of lidocaine in the solution was 

higher than it actually was.  In order to determine the actual absorbance of the lidocaine, 

it would have been necessary to determine what the presence of DexC6 adds to the 

extinction coefficient of lidocaine.  However, there was not time to do this and therefore 

the results from the lidocaine and DexC6 release study will be excluded from further 

discussion. 

The lidocaine only curve and the lidocaine emulsion curve show that the rate of 

release from the emulsion was slower than from the lidocaine only solution.  The initial 

sharp increase in concentration on the emulsion curve has been explained in previous 

years as a release of unencapsulated lidocaine from the aqueous phase of the emulsion.  

However, we do not think that this is the case here because an initial sharp increase in 

concentration was experienced in all the release experiments, all at a similar time in the 

release experiment.  A possible explanation for this sharp increase is that the dialysis 

solution was not well stirred.  The dialysis solution was very gently stirred by a small 

magnetic stir bar on the lowest possible rpm setting.  This was done because molecular 

diffusion was assumed to be the main mechanism of drug release and we did not want to 

introduce any convective mass transfer by stirring the dialysis solution.  By not stirring 

the solution, a strong concentration gradient developed initially in the dialysis solution 

which affected the results of the UV analysis.  Mass transfer proceeds from a higher 

concentration to a lower concentration.  Therefore it is reasonable that the initial release 

proceeded at a fast rate.  However, after a long enough time, it appeared that lidocaine 
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had diffused throughout the dialysis solution and perhaps the weak stirring also had some 

effect to weaken the concentration gradient and the release rate slowed. 

In order to avoid a concentration gradient that can affect results, we suggest that 

release kinetics experiments be done in the future with a well mixed dialysis solution.  

While this will introduce convective mass transfer to the experiments, we feel that this 

would actually be more useful for studying the release kinetics of a drug delivery system 

intended to be used intravenously.  Since blood flows throughout the body, emulsions 

delivered intravenously would be exposed to convective mass transfer and their release 

would not just be governed by diffusion.  Therefore we feel that having a well mixed 

dialysis solution would produce more accurate and more useful results. 

Analyzing the lidocaine and the lidocaine emulsion curves after the initial peaks 

in concentration shows that the emulsion releases lidocaine at a slower rate than the 

lidocaine only solution.  This was the desired result.  Encapsulating lidocaine in an 

emulsion is not only a method for delivering a poorly water soluble drug to the body, but 

also a method for controlled drug release.  By releasing drug at a slower rate, dangerous 

peaks in drug concentration can be avoided and a longer period can elapse between doses.  

However, another study would be needed to gather data over a longer time period with 

more accurate results.  In order to do this, it would be necessary to choose another 

aqueous phase that is more stable than dilute NaOH.  It would also be advantageous to 

have a well mixed dialysis solution for the release kinetics experiments to avoid 

concentration gradients and model convective mass transfer.  Still, the current results are 

promising that drug encapsulated emulsions are useful for delivering oil soluble drugs 

into the body in a controlled manner. 
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5 Conclusions and Recommendations 

 The goal of this study was to investigate the use of DexC6 as a surfactant in oil in 

water emulsions, to determine its effect on the stability and size of emulsions as well as 

its impact on the release of the model drug lidocaine from emulsions.  To accomplish this 

goal, modified dextran was synthesized, physical properties such as drug solubility and 

partition coefficients were determined and the stability of the emulsions along with the 

release kinetics of lidocaine were observed. 

 Our synthesis of modified dextran was a failure due to over substitution during 

the reaction process.  The reaction was carried out for three days rather than two, 

therefore substitution ratios of 55-60 percent were observed instead of the desired 20 

percent.  This made the modified polymer insoluble in water and thus unusable.  In the 

future, it is suggested that the duration of the reaction be verified multiple times to avoid 

any such oversight. 

 During the purification process of our synthesis, one of the dialysis membranes 

ruptured.  This was the second membrane rupture in two years.  In order to avoid such 

rupture in the future it is recommended to make smaller membrane tubes, to always have 

a safety beaker nearby when changing the dialysis solution, to be very cautious on the 

day the dialysis solution is switched to pure water and to change the dialysis solution 

more frequently, approximately every three hours, on that day. 

 The extinction coefficient of lidocaine was calculated to be 1.8023 L g-1 cm-1 

which agreed with known literature values.  The solubility of lidocaine in the dilute 

NaOH solution was approximately 4.147 g/L, however this was not a reproducible result 

due to the instability of the pH of the NaOH solution and variations in temperature and 
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mixing time.  The solubility of lidocaine of a saturated sample was determined each time 

it was needed and to ensure solubility, lidocaine solutions were prepared with a 

concentration of approximately 3 g/L. 

 The partition coefficients of lidocaine for four different oils were determined.  

Octyldodecanol had the highest partition coefficient through experimentation of 62 ± 3 

[(g lidocaine/mL oil)/(g lidocaine/mL NaOH soln)].  This value was much higher than the 

value obtained for miglyol last year; therefore octyldodecanol was used for all emulsion 

and release kinetics experiments. 

 This year was the first year emulsions had been made with 40 percent oil.  

Therefore, different polymer concentrations were tested to determine which produced the 

most stable emulsions with the smallest initial particle size.  A DexC6 concentration of 

40 g/L was determined to be the best, producing initial particle sizes below the desired 

300 nm and showing the least deviation in size with time, artificial aging in a centrifuge 

and after reconstitution.  A DexC6 concentration of 40 g/L was therefore used in all drug 

release kinetics experiments. 

 The lidocaine release kinetics experiments were based on the model that diffusion 

is the main mechanism of drug release.  Therefore the dialysis bath was not well stirred 

and this contributed to a concentration gradient in the bath that may have affected 

measurements.  Given that emulsion based drug delivery is being investigated for 

intravenous use, and because blood in the human body is a flow system, it would be 

interesting to conduct release kinetics experiments in the future with a well mixed 

dialysis bath to introduce convective mass transfer.  This would eliminate the 
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concentration gradient observed in the bath and would perhaps be a more realistic drug 

release model.  

 It was observed during lidocaine release kinetics experiments that lidocaine 

encapsulated in an emulsion was released at a slower rate than in a solution of lidocaine 

alone.  This is a promising result but due to the choice of 10-4M NaOH as the aqueous 

phase in all experiments, the results may not be quantitatively significant.  The NaOH 

solution was chosen to fix the pH at approximately 10 because lidocaine is pH-sensitive.  

However, the NaOH solution was unstable and the pH could change significantly over 

the course of a day.  Therefore, better pH control is needed through the use of buffers.  

While the use of the NaOH solution may have contributed to inaccurate measurements, 

we feel that the trends exhibited in the release kinetics experiments are indicative that 

there is a more controlled lidocaine release from an emulsion.   
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Glossary 

 
 

Aggregation – collection: several things grouped together or considered as a whole 
 
Amphiphilic – denotes a molecule combining hydrophilic and hydrophobic properties 
 
Association Concentration (Cass) – upper concentration limit of the dilute domain for 

amphiphilic polymers 
 
Coalescence – Liquid particles in suspension that unite to create particles of a greater 

volume 
 
Colloid – a substance comprising very small, insoluble particles, usually 1 to 1000 nm in 

diameter, that are uniformly dispersed or suspended in a finely divided state 
throughout a continuous dispersion medium, not settling readily 

 
Creaming – type of emulsion destabilization where droplets of the less dense component 

float to the top and form a separate layer 
 
Critical Concentration (CC) – concentration above which no further decrease in surface 

tension is observed 
 
Degree of Substitution – see Substitution Ratio 
 
Dextran – a linear polysaccharide made of many glucose molecules joined into a long 

chain. 
 
Differential Scanning Calorimetry (DSC) – an analytical method which measures the 

changes in the thermal properties of a material as a function of temperature 
 
Droplet Surface Coverage (Γ) – the amount of polymer coating the emulsion, reported in 

units of weight per unit surface area 
 
Dynamic Light Scattering (DLC) - analytical technique used to determine the change in 

size and position of small suspended particles.  It is particularly suited to 
determining small changes in mean diameter such as those due to adsorbed layers 
on the particle surface 

 
Dynamic Surface Tension – measurement of surface tension values under conditions that 

are not at equilibrium (dynamic zone) 
 
Emulsion – A mixture of two insoluble liquids such, as oil and water, consisting of 

droplets of one liquid dispersed throughout the other 
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Flocculation – The clumping together of smaller particles to form larger particles which 

drop out of suspension more quickly 
 
Freeze-drying – (also known as Lyophilization) is a dehydration process typically used to 

preserve a perishable material, or to make the material more convenient for 
transport. Freeze drying works by freezing the material and then reducing the 
surrounding pressure to allow the frozen water in the material to sublimate directly 
from the solid phase to gas 

 
Huggins Coefficient (kH) – a parameter in the Huggins Equation  
 
Huggins equation - The equation describing the dependence of the reduced viscosity, ηi  

⁄ c, on the mass concentration of a polymer, c, for dilute polymer solutions of the 
form: ηi  ⁄ c = [ η] + kH[ η]2c  where kH is the Huggins coefficient and [ η] is the 
intrinsic viscosity. 

 
Hydrophilic – Attracted to water. Having the property of mixing readily with water. 

Hydrophilic compounds are typically polar compounds, with charged or 
electronegative atoms 

 
Hydrophobic – Repelled by water. Having the property of not mixing readily with water. 

Hydrophobic compounds are typically non-polar compounds, without charged or 
electronegative atoms, and often contains many CH bonds 

 
Induction Period – The initial slow phase of a chemical reaction which later accelerates 
 
Interfacial Tension – The surface tension at the surface separating two non-miscible 

liquids.  The tangential force at the surface between two liquids, or a liquid and a 
solid, caused by the difference in attraction between the molecules of each phase. 
Expressed as a force per unit length or as an energy per unit area. 

 
Intrinsic Viscosity (η) – A measure of the capability of a polymer in solution to enhance 

the viscosity of the solution. The intrinsic viscosity number is defined as the 
limiting value of the specific viscosity/concentration ratio at zero concentration. 

 
Lyophilization – see Freeze-drying 
   
Oil Volume Ratio (C/V) – ratio of polymer concentration to oil volume dispersed in the 

aqueous phase 
 
Ostwald Ripening – the process by which larger particles (or droplets for emulsions) 

grow at the expense of smaller ones due to the higher solubility of the smaller 
particles and to molecular diffusion through the continuous phase 
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“Overlap Concentration” (C*) – The concentration of a polymer in a solution at which 
the molecules begin to interpenetrate each other and become entangled. At this 
concentration there may be significant changes in properties such as sharp increases 
of viscosity and the mechanism of motion  

 
Partition Coefficient (KP) –  ratio of the solute concentration in the desired solvent to the 

solute concentration in the undesired solvent 
 
Polyelectrolyte Effect – decrease in hydrodynamic volume with increasing electrolyte 

concentration.  This is due to a decrease in electrostatic repulsion 
 
Polysaccharide – A biological polymer composed of sugar subunits 
 
Reconstitution – The process of adding liquid to a dry powder to make a new solution 
 
Reduced viscosity - The ratio of the relative viscosity increment to the mass 

concentration of the polymer, c, i.e. ηi ⁄ c, where ηi is the relative viscosity 
increment. 

 
Relative viscosity increment - The ratio of the difference between the viscosities of 

solution and solvent to the viscosity of the solvent, i.e. ηi = ( η − ηs) ⁄ ηs, where 
η is the viscosity of the solution and ηs is the viscosity of the solvent. 

 
Kinetics – The study of the rates of chemical reactions 
 
Saccharide – an essential structural component of living cells and source of energy for 

animals; includes simple sugars with small molecules as well as macromolecular 
substances 

 
Static Light Scattering (SLC) – analytical technique used for determining the structural 

information about the particles, including size, shape and molar mass 
 
Steric – Steric effects are the interaction of molecules dictated by their shape and/or 

spatial relationships 
 
Substitution Ratio – (also known as Degree of Substitution) the number of grafted 

hydrophobic groups per 100 glucopyranose units  
 
Surfactant – A soluble chemical compound that reduces the surface tension between two 

liquids, usually an organic compound whose molecules contain a hydrophilic group 
at one end and a hydrophobic group at the other 

 
Surface Tension (γ) – The force that controls the shape of a liquid. Surface tension results 

from the force of cohesion between liquid molecules 
 
Viscosity - resistance of a liquid to sheer forces (and hence to flow)
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Appendix A: Equipment and Experimental Procedure 
(Correia, et al. 2005) 

A.1 High Performance Particle Sizer (HPPS) 

Malvern Instruments Ltd., United Kingdom 
Microsoft Windows 2000 software 

A.1.1 Software Set Up 

 Before the emulsions were run in the HPPS machine it was necessary to create a 

Standard Operating Procedure (SOP) which is the method of measurement that was used 

during this investigation. Creating an SOP allows us to measure all the emulsions in the 

same way by setting pre-set parameters that will be stored in the file and that could be 

used later on without having to repeat the set up procedure.  

 To create and SOP, the HPPS software called Dispersion Technology Software 

program is opened and in the Configure menu New SOP is selected. Next the 

measurement type is chosen. For this investigation Size measurement was selected, but 

HPPS is able to measure not only this property but Protein Melting Point, Zeta Potential, 

Molecular Weight of the sample and trend.  

 After selecting the type of measurement a sample name must be selected, this will 

help later on to see the description of the sample being tested. General notes can also be 

included in this section; such as different concentrations used. It is important to check on 

the box that says Show this page when the SOP is started… since this will allow us to 

change the name of the emulsion if we need to and modify any comments we have made 

with previous samples. Then click Next. 
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 In the next screen the type of cell or cuvette that will be used with this equipment 

must be specified since depending on the material that the cell is made of, the accuracy of 

the measurements can vary significantly. During this project a DTS0012-Disposable 

sizing cuvette was chosen. The following table summarizes the properties of this type of 

cell. 

Table 3: Choosing the correct (Size measurements) adapted from Zeta Nano Series User Manual, p 
4.4 

Disposable Polystyrene (DTS0012)  
Typical Solvent Water, Water/Ethanol 
Optical Quality Good to very good 
Minimum Sample Volume 1mL 
Advantages Low cost 

Single use disposable (No cleaning 
necessary) 

Disadvantages Not resistant to organic solvents 
Unsuitable for use at high 
temperatures (Above 50ºC) 

  Once this type of cell is chosen the software determines the conditions of 

measurement for that cell type, i.e. cell position.  

 After clicking on Next, the sample settings have to be specified. During this 

investigation only sample settings for size determination were set. The first step is to 

determine the material and dispersant properties. To do so, the Dispersant tab must be 

selected which provides us with a list of all the possible dispersants for that type of cell, 

such as decane, toluene and water among others. During this project, Water was selected 

as our dispersant material. 

 The next step was to set up the measurement properties. A temperature of 25ºC 

was specified because our sample needed to be at room temperature during measurements 

in order to avoid any changes in particle size. The type of measurement duration was set 

to Automatic because as stated previously this will allow the equipment to perform the 

same test with all the samples, thus avoiding changes in how the measurement is done. 
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By setting the measurement duration to automatic the measurements were divided into a 

number of runs of at least 10 seconds in length. For accuracy of results, the number of 

measurements was set to 3 since this allowed us to confirm how well the solution was 

mixed after being diluted.  

A.1.2 Sample Measurements 

 Once the SOP file has been created and all the measurement properties for 

particle size have been set the HPPS was ready to take measurements. After turning the 

HPPS on it was important to let the machine stabilize for about 30 minutes before starting 

the first run since this was considered enough time for the machine to reach room 

temperature and provide more accurate results. To prepare the sample two or three drops 

of the emulsion were placed into the disposable cuvette. The sample was then diluted 

with MilliQ water. It was important to fill the cuvette at least 10mm from the bottom of 

the cell since the HPPS starts measurements 8mm from the bottom of the cuvette.  

 Once the sample was diluted the cell was placed into the particle sizer and it was 

left undisturbed for at least 10 minutes to let the sample settle and the dilution mix. Once 

this period of time has elapsed from the measure menu Start SOP is selected. This will 

bring up all the files that the program has. After selecting the SOP file name that was 

given previously, the sample was ready to be measured by pressing the Start key. The 

system starts the measurement by setting the number of runs and by attenuating the index. 

Once these parameters were set, the sample starts running.  

 While the sample is running it is possible to observe the quality of the sample or if 

there is dust in the sample. This can be easily seen in the Count Rate and the 
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Correlation tabs. It can be determined from the count rate if there is dust in the sample if 

there are sharp spikes in the plot that is displayed.  

 The quality of the sample is easily observed under the correlation tab since this 

provides a plot that helps to interpret any problems with the emulsion. Figure 20 is an 

example of how to differentiate between a contaminated sample and a normal one. 

 
Figure 20: Correlation Function 

 Once the sample run is finished, results by intensity as well as by volume can be 

obtained. For accuracy during this project all the results reported are based by intensity. 

Figure 21 shows the equipment used to determine the average particle size of most of our 

emulsions. 
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Figure 21: High Performance Particle Sizer 

 

A.2 Emulsification 

Bioblock Scientific Vibracell 
Prolabo Adjusting Table 
 
 To prepare all the solutions a certain amount of Dextran C6 was added into a 

100ml vial. MilliQ water or Phosphate buffer was added to the vial where a concentration 

of 5g/L was maintained. The solution was then placed on a Bioblock Stirrer at a speed of 

350 rpm and it was left stirring overnight to ensure that the entire polymer dissolves in 

the continuous phase.  

 Once the dextran was dissolved, the emulsions were prepared by weighting 4mL 

of oil and placing it in a 50mL centrifuge tube along with approximately 6mL of water or 

buffer. A ratio of 1 to 6 weight of oil to weight of water or buffer was always kept. The 

mixture was vortexed for 1 minute and then it was placed in an ice bath where the tube is 
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being held by a rubber flask holder. Placing the centrifuge tube in this rubber stand 

guaranteed that the emulsion was stable during sonication.  

 The flask containing the emulsion was placed in the sonicator wooden cabinet. 

The sonication probe was then immerged into the emulsion being careful that the probe 

was at least halfway down the emulsion and that it did not touch the plastic tube.  

 The Vibracell box was then set up so the emulsification process would last 3 

minutes. This was done by adjusting the time setting to 180 seconds. The active cycle 

was set to 50% which means that the probe will send sound waves to the emulsion for 

one second every two seconds. The power setting was set by turning the knob to 5 which 

represent a voltage of about 100W. Once all the settings were set the wooden cabinet 

door was closed and the Marche button was pressed. Figure 22 shows the Bioblock 

Scientific Vibracell sonicator used during this project. 

 
Figure 22: Bioblock Scientific Sonicator 
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A.3 Centrifugation 

Apparatus: 
Jouan GR 20 22 
 

The centrifuge is used to separate the desired product from the undesired solvent. 

The preparation of the centrifuge tubes is very important. There are six slots for the 

centrifuge tubes that were used. Opposite sides of the rotor must be equally balanced. In 

this specific centrifuge, the weight difference on opposite sides of the rotor must be 

within 50 mg of each other. If this weight difference limit is not obeyed, the machine can 

break. 

Place the centrifuge tubes in the rotor with its respected equal weight centrifuge 

tubes on the opposite side of the rotor. Then with the hand wrench lightly secure the lid. 

Excessive force is not necessary. Then close the hood of the centrifuge. Next set up the 

program desired. 

Programming: 

Turn on the centrifuge with the switch located on the right side of the machine 

Press 'Prog' 

Output: "Numero Programme: _ _" 

Press 20 then enter 

Output: "Prog Numero 20 Exist" 

Press enter 

Output: "Rayon: _97mm" 

Press enter 

Output: "Duree/Int? (1/0): 1" 
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Press enter 

Output: "Duree: _ _h_ _min" 

Enter desired length to centrifuge then press enter 

Output: "Temperature: 25 C" 

Enter desired temperature then press enter 

Output: "Delta Temp: 0 C" 

Press enter 

Output: "Acceleration: _" 

Enter desired acceleration (1-9) then press enter 

Output: "Frienage: _" 

Enter desired frienage (1-9) then press enter 

Output: "Vit/NBG? (1/0): 1" 

Press enter 

Output: "Vitesse: _ _ _ _ _ Tr/mn" 

Enter desired revolutions per minute (up to 18000) then press enter 

Output: "Ecrire Sous Le No: 20" 

Press enter 

Press start to begin program 20 

Once the program has run through completion and the pressure inside the 

chamber returns to atmospheric pressure, the hood can be opened using the switch on the 

right side of the machine. Next remove the lid using the hand wrench. The centrifuge 

tubes can then be removed carefully and with as little agitation as possible. It is even 

suggested to extract the aqueous face while the tubes are at the centrifuge to stop the 
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agitation created when walking with the samples. Additional runs of the aqueous face 

may be needed to obtain the desired separation. Once finished turn off the machine. 

Figure 23 shows the centrifuge apparatus used during this investigation. 

 
Figure 23: Centrifuge System 
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A.4 Freeze Drying 

 
Labcono Freeze Dry System/Freezone® 4.5 
Alcatel rotary pump 
 
 Once the emulsions were prepared a certain amount of Dextran T40 modified or 

unmodified was added in order to obtain a final ratio of 5 mg total Dextran per ml of 

solution. The solution was left shaken on a stirrer table overnight to ensure that all the 

Dextran that was added was dissolved in the emulsion. When the solution was completely 

dissolved the emulsions were placed in 5mL plastic centrifuge tubes were these were 

filled with 2.5 to 3mL of the emulsion. It was important to put no more than 3mL of 

solution into these tubes in case of overspilling the emulsion during freeze drying. About 

five or six holes were punched into the caps of the centrifuge tubes using a needle to 

allow air to flow out of the tubes during lyophilization.    

 Once all the tubes were sealed using the caps they were properly labeled and an 

elastic band was used to hold all the tubes together.  Liquid nitrogen was then poured into 

a Styrofoam container and the tubes were then immerged in the container and then spun 

around to make sure that liquid nitrogen made contact with the emulsions through the 

tubes. The tubes were bathed in liquid nitrogen until the emulsions froze and a thin sheet 

of ice was seen around the tubes. The emulsions were then placed in a big glass container 

and attached to the Labcono Freeze Drying System. A paper towel was then folded and 

placed under the container for support.    

The pump attached to the freeze drying system was turned on letting the vacuum 

system activated. The valve that connected the glass flask and the apparatus was then 

turned clockwise in a very slow motion until the motor pump made a distinct noise 
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indicating that the pressure in the system was increasing. The valve was turned until it 

was parallel with the top of the flask. The pump kept going until the pressure stabilized 

ceasing the noise and starting the drying process. The samples were left in the freeze 

drying system for a period of 48 hours where the sample had sufficient time to dry. 

To remove the flask from the drying system the valve connecting the glass flask 

to the apparatus was turned counterclockwise where the pressure starts releasing and the 

flask was then removed from the system. The rotary pump as well as the freeze drying 

apparatus was then switched off.  

The dried product was then scraped off the centrifuge tubes using a metal spatula 

and it was placed in a 20mL vial where it was reconstituted by adding a certain amount of 

MilliQ water and then analyzed.  

A.4.1 Lyophilization during Polymer Synthesis 

 
 For the case of freeze drying during polymer synthesis, after centrifuging the 

solution containing the Dextran polymer, section 3.1.2. Recovery of Polymer due to 

Membrane Break, the solution is placed in a round bottom flask and then immerged in the 

liquid nitrogen bath. As with the emulsions the flask is spun around to allow the nitrogen 

to make contact with the solution. The flask is spun for a period of 5 to 7 minutes where 

the solution is frozen and ready to be dried. Figure 24 shows how the flask is spun and 

Figure 25 shows the freeze drying apparatus used during this investigation. 
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Figure 24: Liquid Nitrogen Bath 

 

 
Figure 25: Labcono Freeze Drying System 
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A.5 UV Spectroscopy 

  UV-2101 PC Shimadzu 2nd Floor 
 

Before running UV the computer was turned on as well as the UV spec.  It was 

important to turn on the UV before opening the program.  Once the program was opened, 

it would run a self check to ensure that the equipment was working properly.  Once the 

check was complete you must go to the menu bar at the top and to configure and 

parameters (Control P).  Once this menu was opened you would change the wavelengths 

to 500 nm and 190 nm and the speed to medium.  The other settings were in default, 

which consisted of: measuring mode, Abs; Recording Range 0 to 2.5; Slit Width (nm) 1.0; 

and Sampling Interval Auto. 

At this point samples were prepared.  Make sure to wash the cuvettes before each 

run and remove and solutions from previous runs using a pipette to ensure that no 

droplets remained.  The cuvettes were then washed using the new solution before adding 

the sample to be tested.  Once the samples were prepared the reference was placed in the 

further back cell while the sample was placed in closer cell.  Click on the start and allow 

the UV to run the spec.  Once the spec was complete click on the “Go to WL” button and 

type in 262 for the absorbance of lidocaine.  This function provided a non-steady answer 

therefore wait for the system to sit on one number before reading the absorbance at that 

wavelength.   

If only one cuvette was available follow the same directions for set up but run the 

reference as a sample and leave air in the reference. After the spec was run use the “Go to 

WL” and again go to 262 nm.  After the system leveled out at a specific value click on 
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the “Auto Zero”.  This system would then subtract this value from all values obtained for 

each wavelength.  Only use this procedure to obtain a spec of lidocaine.  If any other 

peak is being investigated use “Go to WL” at that specific wavelength and auto zero 

using that value. 

Figure 26 shows the UV spectrophotometer used during this investigation. 

 
Figure 26: UV Spectrophotometer 
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 A.6 Dialysis Membrane 

 The Spectra/Por membrane was used during the polymer synthesis as well as drug 

release kinetics testing.  In order to use the membrane one must cut the desired length and 

place the membrane into a beaker filled with MilliQ water.  This is done to ensure the 

purity of the membrane. After 15 minutes take a sample from the water bath and have it 

tested through UV spectroscopy to check that it is clean and that he membrane is usable.  

If it is clean the membrane can then by tied off at one end and the solution is added.  

After the solution is poured into the membrane the other end is tied off and the membrane 

is placed into the bath. 

If however the water does not read 0 on the UV machine, the membrane needs to 

be placed in another MilliQ bath until such time that it does read zero.  Repeat this 

procedure each time a membrane is used. 
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Appendix B: Data 

B.1 Emulsion Particle Size (No Lidocaine Present) 

 

24 Hours 

Emulsion 
Z-Avg 
(nm) Polydispersity

Mean Count Rate 
(kcps) 

30g/L Trial 1 321.4 0.288 418 
30g/L Trial 1 311.5 0.369 415 
30g/L Trial 1 318.5 0.277 418 
30g/L Trial 2 351.7 0.396 242 
30g/L Trial 2 352.4 0.385 241 
30g/L Trial 2 361.3 0.379 241 
40g/L Trial 1 275.0 0.257 394 
40g/L Trial 1 272.6 0.230 386 
40g/L Trial 1 271.6 0.250 384 
40g/L Trial 2 286.0 0.214 406 
40g/L Trial 2 284.1 0.208 403 
40g/L Trial 2 282.4 0.231 396 

 

 
48 Hours 

Emulsion 
Z-Avg 
(nm) Polydispersity

Mean Count Rate 
(kcps) 

30g/L Trial 1 357.6 0.300 401 
30g/L Trial 1 355.6 0.276 397 
30g/L Trial 1 343.3 0.290 397 
30g/L Trial 2 346.2 0.348 220 
30g/L Trial 2 351.9 0.372 223 
30g/L Trial 2 349.2 0.383 225 
40g/L Trial 1 284.0 0.238 318 
40g/L Trial 1 282.7 0.257 317 
40g/L Trial 1 284.7 0.241 313 
40g/L Trial 2 284.3 0.294 365 
40g/L Trial 2 287.7 0.296 377 
40g/L Trial 2 293.8 0.261 375 
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After Centrifuge Aging 

Emulsion 
Z-Avg 
(nm) Polydispersity

Mean Count Rate 
(kcps) 

30g/L Trial 1 464.9 0.326 234 
30g/L Trial 1 445.1 0.322 236 
30g/L Trial 1 450.3 0.366 240 
40g/L Trial 1 283.9 0.243 402 
40g/L Trial 1 279.2 0.259 411 
40g/L Trial 1 280.3 0.254 407 

 

After Reconstitution 

Emulsion 
Z-Avg 
(nm) Polydispersity

Mean Count Rate 
(kcps) 

30g/L Trial 1 295.7 0.354 203 
30g/L Trial 1 289.7 0.384 205 
30g/L Trial 1 291.7 0.379 201 
40g/L Trial 1 252.6 0.267 293 
40g/L Trial 1 248.2 0.309 292 
40g/L Trial 1 243.1 0.268 293 
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B.2 Lidocaine Emulsion Particle Size 

 

24 Hours 

Emulsion Z-Avg (nm) Polydispersity Mean Count Rate (kcps) 
1 297.3 0.255 290 
1 300.3 0.263 287 
1 294.6 0.276 288 
2 283.5 0.308 306 
2 285.4 0.335 310 
2 286.2 0.372 306 

 

 

96 Hours 

Emulsion Z-Avg (nm) Polydispersity Mean Count Rate (kcps) 
1 343.7 0.311 300 
1 338.0 0.340 296 
1 333.7 0.327 298 
2 332.3 0.343 399 
2 326.8 0.357 393 
2 320.9 0.364 384 
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B.3 Release Kinetics: Lidocaine Only 

 

Lidocaine Solution 
Extinction Coefficient = 1.8023 
10mL Sample: 
Lidocaine Conc = 2.977 g/L 
60mL Dialysis Soln: 
NaOH Soln Mass = 60.026g 
   
Time 
(min) 

abs @262 
nm 

conc 
(g/L) 

0 0.0000 0.0000
20 0.0670 0.0372
35 0.0630 0.0350
50 0.0880 0.0488
65 0.1680 0.0932
80 0.2150 0.1193
95 0.1990 0.1104

110 0.2150 0.1193
125 0.1790 0.0993
140 0.1883 0.1045
155 0.1943 0.1078
170 0.2046 0.1135
185 0.2091 0.1160
200 0.2111 0.1171
215 0.2240 0.1243
230 0.2280 0.1265
245 0.2340 0.1298
260 0.2360 0.1309
275 0.2390 0.1326
290 0.2420 0.1343
305 0.2460 0.1365
320 0.2430 0.1348
335 0.2495 0.1384
350 0.2490 0.1382
365 0.2520 0.1398
380 0.2490 0.1382
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B.4 Release Kinetics: Lidocaine and DexC6 

 

Lidocaine & DexC6 Solution 
Extinction Coefficient = 1.8023 
10mL Sample: 
Lidocaine Conc = 3.007 g/L 
DexC6 Conc = 40.003 g/L 
60mL Dialysis Soln: 
NaOH Soln Mass = 60.006g 
   
Time 
(min) 

abs @262 
nm 

conc 
(g/L) 

0 0.0000 0.0000
30 0.1500 0.0832
60 0.2650 0.1470
75 0.3160 0.1753
90 0.2100 0.1165

105 0.2220 0.1232
120 0.2280 0.1265
135 0.2750 0.1526
155 0.3260 0.1809
175 0.3750 0.2081
190 0.3860 0.2142
205 0.3760 0.2086
235 0.3780 0.2097
265 0.4040 0.2242
295 0.3910 0.2169
330 0.4210 0.2336
365 0.4300 0.2386
395 0.4460 0.2475
425 0.4610 0.2558
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B.5 Release Kinetics: Lidocaine-Encapsulated Emulsion 

 

Lidocaine-Encapsulated Emulsion 
Extinction Coefficient = 1.8023 
10mL Sample: 
Lidocaine Mass = 0.10029g 
Octyldodecanol Mass = 3.22920g 
DexC6 Mass = 0.24006g 
NaOH Soln Mass = 5.97183g 
200mL Dialysis Soln: 
NaOH Soln Mass = 200.025g 
   
Time 
(min) 

abs @262 
nm 

conc 
(g/L) 

0 0.0000 0.0000
30 0.1500 0.0832
60 0.2650 0.1470
75 0.3160 0.1753
90 0.2100 0.1165

105 0.2220 0.1232
120 0.2280 0.1265
135 0.2750 0.1526
155 0.3260 0.1809
175 0.3750 0.2081
190 0.3860 0.2142
205 0.3760 0.2086
235 0.3780 0.2097
265 0.4040 0.2242
295 0.3910 0.2169
330 0.4210 0.2336
365 0.4300 0.2386
395 0.4460 0.2475
425 0.4610 0.2558
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Appendix C: Sample Calculations 

C.1 Sample Calculations: NMR Analysis 

 
 
Determine approximate location of desired functional groups on NMR specttrum. 

 Dextran monomer: 4.4 – 5.3 ppm 
 Anomeric proton of dextran monomer:  4.7 ppm 
 Alkane CH3: 0.9 ppm 
 Alkane CH2: 1.3 ppm 

 
Area of NMR peak represented by height of integral line 

 Dextran monomer: 4.34 cm 
 Anomeric proton: 1.0 cm 
 Anomeric proton / all dextran monomer hydrogens:  (1.0 cm / 4.34 cm) = 0.230 

 
Area per hydrogen atom proportional to composition of sample 

 Total dextran monomers: [(0.230) · 24.981] / 1 hydrogen = 5.76 
 Alkane chains (substituted monomers): 3.420 / 3 hydrogens = 1.14 

 
Substitution ratio = substituted monomers / total monomers 
1.14 / 5.76 = 0.198 = 19.8% 
 
DexC6 sample is approximately 20% substituted 
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C.2 Sample Calculations: Lidocaine Standard Curve 

 
 
Raw Data: 

Sample  
Concentration 
(g Lidocaine/L) 

Absorbance 
@ 262 nm 

Absorbance 
@ 270.5nm

  0.00 0.000 0.000
1 0.99859 1.783 1.313
2 0.7433 1.334 0.985
3 0.49534 0.936 0.710
4 0.24984 0.450 0.332

 
 
Sample Calculations:
 
Beer’s Law:  A = ε·l·C 
l is length in cm of sample.  For standard setup l = 1.0 
 
A = ε·C 
Plot data points on (x,y) coordinate in (C,A) form: 

Li doc a i ne  S t a nda r d a t  2 6 2 nm

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

co ncentrat io n (g Lido caine/ L so lut io n)

 
Find best fitting line to be y = 1.0823 x 
 
Extinction coefficient (ε) = slope of line = 1.8023 
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C.3 Sample Calculations: Saturated Lidocaine  

 
Prepare saturated lidocaine solution by mixing 10-4 M NaOH and lidocaine solid.  Allow 
to mix overnight and filter out excess lidocaine solids. 
 
Dilute saturated solution.  Aim for lidocaine conc < 1.0 g/L so that Beer’s Law may be 
applied. 

Dilution:  1.02118 g Lido solution, add water until 7.06510 g total  
1.02118 / 7.06510 = 0.01445 dilution factor 
 

Take UV measurement and apply Beer’s Law.   
ε = 1.0823 from previous calc 
 
A = ε·l·C 
1.080 = 1.0823 · (1.0) · C 
C = 0.5993 g/L  →  this is less than 1.0 g/L, OK to use Beer’s Law 
 
Account for dilution: 
C1V1 = C2V2
(0.5993)(7.06510) = C2 (1.02118) 
C2 = 4.147 g/L 
 
Saturated lidocaine solution concentration = 4.147 g/L 
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