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Abstract 
Corrosion is the leading cause of material damage. Quantitatively measuring corrosion 

effects and understanding the mechanisms are crucial to predicting/modeling this phenomenon 

and preventing it. The goal of this study is to develop a reliable testing and analysis methodology 

that allows quantitative evaluation and further prediction of corrosion damage in ferrous 

materials. To achieve this goal, a testing apparatus was built, and a relationship between 

corrosion rate and sample volume, environment, temperature, agitation, and time was uniquely 

created. Stainless steel samples were studied in a saline solution using two standard testing 

methods with various conditions. The changes in mass were measured, and an original optical 

methodology for both surface and cross-section damage evaluation was established. Over time, 

the change in mass showed an asymptotic decrease, whereas surface area damage increased 

asymptotically. An analytical relationship between corrosion rate and various controlling 

parameters was ultimately developed for damage prediction in corroded materials. These results 

and findings will be presented and discussed.  
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1.0 Introduction 

1.1 Problem Statement 

Corrosion prevention is one of the largest issues in the production of ferrous metals. Any 

iron or steel product is likely to be affected by corrosion in its life time. Corrosion can be simply 

a cosmetic issue or it may pose a serious threat to the function of a product. Regardless of the 

concern, preventing corrosion is still one of the most challenging topics in steel production 

today. This project focuses on a stainless steel product that faces a harsh environment including 

above average temperatures and constant moisture with high salinity. In most cases this 

corrosion is only a cosmetic issue, but still creates a loss for the company in sales. 

The sponsoring company has performed corrosion testing on products in the past, only 

returning comparative information. The challenge this team has been given is to develop a 

quantitate method for describing the corrosion experienced by the product independent of other 

products. With this quantitative method the team hopes to provide a groundwork for future 

testing with specific test procedures and equipment to be used so that a predictive model can be 

created with relative certainty. 

1.2 Key Questions 

When beginning this MQP, the group was faced with several questions that were deemed 

key. These questions were as follows: 

•      What materials are considered? 

•      What environments are of concern? 
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•      How do the materials react in these environments? 

•      What testing type will appropriately address these operating conditions? 

•      What materials are to be studied (specifically heat treatment, protective coatings, etc.)? 

•      What is the desired life expectancy & performance of the test samples? 

•      What are some of the typical performance measures & test parameters used by the      
sponsoring company (environment & chemical cleaners, stress type/level, temperature)? 

•      Will we study actual samples or test specimens of similar geometry? 

•      What type of information/knowledge/methods/tools will be most useful to the sponsor’s 
engineers for the samples design for corrosion resistance? 

Each of these questions had a specific goal intended to clarify the objectives of this 

project. With cooperation from the sponsor’s engineers, all of these questions were answered and 

the objectives that were stated previously were created under their supervision to ensure that the 

project satisfied all of the initial requirements. 

1.3 Methodology Overview 

The group researched causes of corrosion in metals and applied that knowledge to study 

its effects on the provided samples. The group tested all the components of each sample and 

recorded the effects that corrosion had on them over a predetermined period of time. From that 

point of study, the results were compared to the results obtained in different test environments 

and examined the effects on the sample product. The group created a specialized apparatus to 

conduct tests on the products and all their components. The results were analyzed for the 

duration of the testing period against ASTM standards. The created methodology differentiates 

between the separate parts and measures them accordingly. 

          The ability to evaluate corrosion over time will be of great aid to the engineers working 

with these specific products. Numerical values for different characteristics of the corrosion 
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growth and effects on these certain products will give insight to possible ways of improvement. 

From these numerical analysis’, other engineers can grade the effectiveness of the samples 

against ASTM standards for corrosion. As a result, this study will help create a method of testing 

corrosion that applies specifically to ASTM standards for any specific product. 
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2.0 Background 

2.1 What is Corrosion? 

Corrosion is a chemical or electrochemical reaction between a metal and its environment 

that degrades or weakens the material. There are a few restrictions on the definition of corrosion. 

The first restriction is that corrosion does not include reaction on a nonmetal. Corrosion also 

does not include damage by physical deterioration. The main products in physical wear are 

metallic, and the products of corrosion are always non-metals formed by chemical reaction. 

Corrosion alone cannot damage metals, and is often a combination of physical and chemical 

degradation, which is termed corrosion erosion. The most common form, rust, is a specific form 

of corrosion involving the deposition of iron oxides on the material surface. 

All substances aim to stabilize by achieving a low energy state. Corrosion is a natural 

process that provides a way for substances to lower their energy state, which is explained further 

in the following sections. Most metals, with the exception of very noble metals, will corrode 

under normal environmental conditions.1 For the non-noble metals that do not corrode, a thin 

film of oxide products forms on the surface that protects against further corrosion.  

Corrosion is always described as a combination of a metal with its environment. In order 

to fully understand a corrosive system, the effected materials and environment must both be 

identified. An analysis of the corrosiveness of an environment cannot be made without 

1 Davis 
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identifying the tested metal. The opposite is also true; an analysis of rate of corrosion of a metal 

cannot be made without information about the environment. 

2.2 Economics of Corrosion 

Corrosion is one of the most economically damaging issues that many engineering 

projects to date face. As such, engineers are confronted with the task of deciding whether the 

best of way of dealing with corrosion is to protect the subject with control methods, or design the 

subject so that part replacement is economically worthwhile. However, designing for corrosion 

resistance is an expensive business as the price includes the prices of resistant metals, the cost of 

protection, maintenance, and planned amortization.2 From this, the initial cost of the structure 

isn’t the only cost that must be considered, but also the maintenance over time as corrosion takes 

affect and the costs to keep the subject in proper working order increases.  

 

Figure 1: Corrosion on infrastructure.3 

2 Talbot 

3 Frodesiak 
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In terms of a dollar value, a 2002 study on the cost of corrosion conducted by NACE 

found the following. “Corrosion Costs and Preventive Strategies in the United States”, backed by 

the U.S. Federal Highway Administration, estimated annual costs at the time due to corrosion to 

be at $276 billion dollars.4 For comparison, the Willis Tower cost around $175 million dollars to 

build.5 Mathematically speaking, the United States could build 1577 Willis towers if corrosion 

costs were eliminated altogether. This amount puts a number on the issue to show how serious 

the impact of corrosion is in terms of economics. 

2.3 Thermodynamics of Corrosion 

Thermodynamics is a branch of chemistry that is helpful in predicting the chemical 

reactions that are possible based on fundamental natural laws. Thermodynamics provides a 

relation between the substances involved, and the environmental conditions. In this study, the use 

of thermodynamic principles has helped to explain test outcomes and support the physical data 

involved. Thermodynamics indicates whether or not a reaction will occur, but does not provide 

information about the rate of reaction. A review of the relevant thermodynamic terms and 

relations is presented in the following section. 

Corrosion is a process that changes the chemical properties of a substance. The Second 

Law of thermodynamics applies in the form the Clausius inequality. The Clausius inequality 

states that the change in entropy of a system must be greater than or equal to zero. Entropy is a 

4 Nace 
5 Willis 
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measure of the disorder of a system; high entropy corresponds to a system that is in high disorder 

or is highly random. A process is only spontaneous if the total entropy is increased. 

With this entropy principle and the First Law of thermodynamics, it follows that any 

spontaneous reaction, at constant pressure, must produce a decrease in the Gibbs free energy. 

The change in Gibbs free energy must be less than or equal to zero for the reaction to proceed in 

the direction written. The Gibbs free energy is defined as the enthalpy of a system minus the 

temperature multiplied by the entropy. The physical meaning of the Gibbs free energy of a 

system is the maximal electrical work which can be obtained from the reaction proceeding2. 

Gibbs free energy1.  

 

Figure 2: Relative free energy diagram of three systems.6 

The change in Gibbs free energy of a system is determined by comparing the relative 

value of Gibbs free energy for the left trough to the relative value at the right trough. Starting 

from the left, the first diagram shows a process that will lower the Gibbs free energy of the 

system by proceeding from left to right. The middle curve shows a system in which there is no 

driving force for reaction in either direction because the start and end values of Gibbs free energy 

6 Davis 
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are equal. The right curve represents a system that will produce an increase in Gibbs free energy 

by proceeding from left to right, so only the reverse reaction will occur. As this diagram shows, 

the direction of the reaction depends on the relative changes in Gibbs free energy. 

All spontaneous processes continue until the change in entropy of the system has reached 

a maximum and the Gibbs free energy has reached a minimum. These two conditions represent a 

system that is in equilibrium, when the lowest energy state has been achieved. When a system is 

in equilibrium, there is no driving force for change. 

2.3.1 Relating Free Energy to Potential 

During the process of corrosion there is a constant transfer of potential charge within the 

system. The Gibbs free energy of a system can be related to the cell potential by the following 

equation1:  

∆𝑮𝑮 = −𝒏𝒏𝒏𝒏𝒏𝒏  [ 1 ] 

In the Eq. 1, “n” is the number of electrons transferred in the reaction, “F” is the 

Faraday’s constant (F=9.649 x 104 C mol-1), and “E” is the electrical potential of the cell. The 

electrical potential is a measure of the driving force required to transfer electrons in the system. 

Combining Eq. 1 with knowledge of Gibbs requirements for spontaneity, it can be used to 

determine if a process will occur as written, or if the reverse reaction will dominate. A large 

positive potential difference produces a large negative value of Gibbs free energy and means the 

process is highly spontaneous. 

Page 19 of 146 

 



The electrode potential for various metals is tabulated in an electromotive force (emf) 

series3. These tables typically record the standard reduction potential of a metal. The standard 

reduction and oxidation potential for a metal have the same magnitude but different signs. The 

emf series has potentials recorded at standard conditions, which correspond to 1 molar 

concentration and 1 atm pressure. The Nernst equation, Eq. 2, is used to account for non-

standard conditions. 

𝐸𝐸 = 𝐸𝐸0 − 𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

ln𝑄𝑄   [ 2 ] 

Metals that are higher up on the emf series represent metals that are more active. The emf 

series is limited for determining which metal is anodic in respect to the other, because the actual 

activity of a metal varies depending on the environment3. For this reason, galvanic series have 

been created that compare potentials in specific environments.  

2.3.2 Corrosion Induction 

Most corrosion processes are electrochemical, which requires a positive electrode, a 

negative electrode, and an electrolyte solution. Corrosion in a single material is similar to 

corrosion in a galvanic cell, which occurs between two separate materials allowing for various 

types of reactions. There are two parts to the reaction, chemical reduction which occurs at the 

cathode, and oxidation which occurs at the anode. The process is initiated when a low-resistance 

metal causes a short-circuit, essentially closing the circuit between the cathode and the anode. 

Small impurities embedded in the surface of a metal allow for the flow of electricity, creating a 

local-action cell. The surface of many metals contains a composition of electrodes created by 
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these surface impurities. As long as the metal stays dry, no current will flow and corrosion does 

not occur. 

An electrolyte is a solution that contains a compound that dissociates into ions when 

dissolved by a solvent. For example, sodium chloride (NaCl) when dissolved becomes aqueous 

Na+ and Cl- ions. This ion containing solution carries the electrons that will be transferred from 

one electrode to the other. When the current is said to flow, the convention assumes the direction 

of a positive current, flowing from the positive electrode to the negative electrode. However, 

only negative charges (electrons) move in a metal, moving from the negative electrode to the 

positive electrode. In the negative electrode, oxidation occurs, which is a loss of electrons. The 

electrons that are lost in the reaction are now free to move. In the positive electrode, reduction 

occurs, which results in a gain in electrons. For this reason, electrons flow from the negative 

electrode that produces electrons to the positive electrode that requires electrons. 

Slight differences in the potential of the surface of the metal create a cathode and an 

anode. Due to the differences in potential, the metal will lose electrons and dissolve in the 

solution. The electrons will stay behind and move to the anode, and at the cathode, the electrons 

are then taken up by a depolarizer. The depolarizer reacts with the metal in solution to form 

corrosion products that bind to the surface. 

2.3.3 Corrosion Reactions 

Corrosion reactions can be used to measure corrosion growth by observing the 

transaction of electrons flowing between the anode and cathode. When monitoring the corrosion 
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in a galvanic cell, the overall reaction must be split into two half reactions. At the anode, there 

are three typical oxidations that can occur involving the metal.7 

𝑀𝑀 = 𝑀𝑀𝑛𝑛+ + 𝑛𝑛𝑒𝑒− [ 3 ] 

𝑀𝑀 + 𝑛𝑛𝐻𝐻2𝑂𝑂 = 𝑀𝑀(𝑂𝑂𝐻𝐻)𝑛𝑛 + 𝑛𝑛𝐻𝐻+ + 𝑛𝑛𝑒𝑒− [ 4 ] 

𝑀𝑀 + 𝑛𝑛𝐻𝐻2𝑂𝑂 = 𝑀𝑀𝑂𝑂𝑛𝑛𝑛𝑛− + 2𝑛𝑛𝐻𝐻+ + 𝑛𝑛𝑒𝑒−  [ 5 ] 

In the three reactions, n is the number of electrons. The first oxidation is the production 

of metal cations where the metal is oxidized into an ion that goes into solution. This reaction 

frees up electrons that can now move to the cathode. The second reaction displays the formation 

of oxides or hydroxides which represent the corrosion products that develop on the surface of a 

metal and can prevent further oxidation. The final reaction represents the metal reacting with 

water in order to form an anion. These three oxidations all involve the release of electrons.8  

The other half reaction occurs at the cathode and involves a reduction reaction. There are 

four typical reductions that occur at the cathode of a galvanic cell. 

𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂 + 4𝑒𝑒− = 4𝑂𝑂𝐻𝐻− [ 6 ] 

𝑂𝑂2 + 4𝐻𝐻+ + 4𝑒𝑒− = 2𝐻𝐻2𝑂𝑂 [ 7 ] 

2𝐻𝐻+ +2𝑒𝑒− = 𝐻𝐻2 [ 8 ] 

2𝐻𝐻2𝑂𝑂 + 2𝑒𝑒− = 𝐻𝐻2 + 2𝑂𝑂𝐻𝐻− [ 9 ] 

7 Baboian 
8 Babion 
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The first reduction is in an aerated, neutral or alkaline solution in which the oxygen is 

reduced. The second reduction reaction is for an aerated cell with an acidic solution in which the 

oxygen is also reduced. The third reduction occurs in acidic solution, in which the hydrogen 

cation is reduced in solution to produce hydrogen gas. The final reduction occurs in neutral or 

alkaline solution and the hydrogen in water are reduced. As shown, these four reactions need to 

consume electrons in order to proceed. 

 

2.4 Forms of Corrosion 

Though corrosion is seen in many forms, there are two broad classifications: Corrosion 

that is not influenced by any other processes, and corrosion that is influenced by other processes. 

Stresses, as well as erosions, are examples of the corrosion that is influenced by another process 

while pitting is a chemical process separate from other corrosion attacks. The following 

information characterizes each type of corrosion potentially expected. 

2.4.1 Intergranular 

Intergranular corrosion is the targeting of the grain boundaries or adjacent areas in a 

sample. Highly magnified cross sections of a material will show grain boundaries that are 

distinctly separated by lines or borders. Figure 3 shows an example of the effects of intergranular 

corrosion. The grain boundaries towards the top of the photo have become much more 

pronounced where those towards the bottom are barely visible. It appears that the corrosion is 

making its way downward through the material spreading only by each boundary. This effect 

occurs when grain boundaries are specifically susceptible to attack, often caused by poor bonds 
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between grains. To treat or lessen the corrosion that results in grain boundaries heat treatments 

are often the method, and will be discussed in later sections.  

 

Figure 3: Intergranular corrosion.9 
 
2.4.1.1 Exfoliation Corrosion 

Exfoliation corrosion is a form of intergranular corrosion which lifts up the surface grains 

of metals. This effect is often rare and is an extreme case of intergranular corrosion. The force of 

expanding corrosion products occurs at the grain boundaries just below the surface. Materials 

most often affected are extruded sections where grain thickness is relatively small.10 Figure 4 

shows a case of exfoliation corrosion where a section of material has been severely damaged. It 

is clear that material has been pushed to the edge and created a mass on the side of the structure 

by formation of corrosion products. 

9 Antkyr 
10 Calle 
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11 

 

2.4.2 Pitting 

Pitting corrosion is a type of corrosion that is formed on an unprotected or exposed part 

of an alloy that is previously coated by a film. These pits can have various depths, an example is 

shown in Figure 5. 

12  

 

Pitting corrosion is also influenced by many other parameters including environment, 

potential difference, temperature and metal composition, all factors that are involved in 

predicting corrosion rate or intensity. Pitting is considered to have various levels including: film 

breakdown, metastable pitting, pit growth, and pit death. The process will not start unless the 

11 NASA 

12 NASA 

Figure 5: Pitting of various depths.12 

Figure 4: Exfoliation corrosion.11 
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film breaks down, and a stable condition of growth of the pitting occurs for a short while before 

the actual pit begins to form. Metastable pitting occurs just after film breakdown where pit 

formation has begun, but has not developed a fully stable system. During metastable pitting the 

film may still close up and again prevent pit formation. Pitting is commonly used in the study of 

failure predictions. 

2.4.3 Stress Corrosion Cracking 

Stress corrosion cracking [SCC] is a gradual process that combines an applied load or 

tensile stress with a corrosive environments. There are three requirements for SCC to occur: The 

first general requirement is that the environment must promote cracking. The next requirement is 

the metal must be susceptible to SCC, and finally, the applied tensile stress must be above a 

minimum threshold. This threshold stress requirement to induce cracking is usually small due to 

its long term effects. Cracks in the metals or alloys usually proliferate at a rate from 10-9 to 10-6 

m/s (4 × 10-7 to 4 × 10-4 inch/s). SCC can be separated into three stages:13 

1. The crack begins to grow 

2. Steady state stage where growth is linear 

3. Final failure stage 

13 ASM V13a 
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An example of SCC resulting in failure is the explosions of boilers in steam driven trains. 

Figure 6 is a typical branching out formation of SCC: 1415 

This year the sponsoring company decided not to focus on SCC and left this type of 

testing as a future addition. For this reason the fixture design has included flexibility to 

incorporate future SCC testing as an added benefit, but will not be a focus of the project. 

2.5 Corrosion Growth in Steels 

 This project specifically deals with corrosion in stainless steel. The following sections 

describe corrosion in various scenarios more specific to steels to provide a better understanding 

of the processes involved. 

 

14 Calle 

15 NASA 

Figure 6: Stress corrosion branching.15 
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2.5.1 Atmospheric Corrosion 

Atmospheric corrosion occurs under a water film deposited by atmospheric humidity. A 

very thin, absorbed film of water is required for corrosion formation, often obtained by dew 

accumulation alone. In the presence of water, hydrated oxides form which are the principal 

anodic process of steel corrosion. On the opposite end, cathodic corrosion occurs by oxygen 

reduction. Important factors in atmospheric corrosion include: time of wetness (TOW) or relative 

humidity, temperature, levels of chloride deposition, and presence of atmospheric pollutants. 

Each of these factors relate to the effectiveness of the electrolyte to conduct ions. TOW 

determines a material’s exposure to an electrolyte. Prolonged exposure provides greater 

opportunity for ion transfer. Similarly, saline particle deposition and the presence of other 

particles will affect surface electrolyte formation. Particles such as chlorides, ionic in nature, can 

enhance electrolyte performance while others may inhibit ionic transfers. The presence of 

pollutants in the air such as sulfur and nitrogen oxides, which increase the acidity of 

precipitation, can also accelerate the corrosion process. Figure 7 shows an atmospheric corrosion 

system. This complex system all occurs in a single water droplet on the surface of the material 

and does not require much humidity for corrosion to begin.  
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Figure 7: Mechanism of atmospheric corrosion.16          

2.5.2 Aqueous Corrosion: 

           Aqueous corrosion is subject to the same operations as atmospheric corrosion with the 

difference of increased electrolyte availability. With the material submerged there is the potential 

for flow velocity which provides a sufficient supply of oxygen for stable oxide formation, 

accelerating corrosion. The largest difference between atmospheric and aqueous corrosion is that 

complete submersion provides a nearly infinite supply of ions and oxygen for the system to feed 

on. Much like in aqueous corrosion, pH can affect growth due to hydrogen evolution as a 

cathodic reaction.          

2.5.3 Pitting in Stainless steels 

           Stainless steels are able to resist generic oxidation corrosion by the formation of a thin 

passive surface film. Pitting is a specific case of corrosion commonly found in stainless steels 

that undermines the protective layer through localized corrosive attacks, which produce pits. The 

propagation of pits involves the dissolution of metal and the maintenance of a high acidity at the 

16 Flatworldknowledge 
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bottom of the pit by the hydrolysis of the dissolved metal ions. Figure 8 displays the formation of 

a pit system. The process begins within the surface defects of the steel where Chloride ions break 

down the oxide layer of the steel, and concentrate in the existing defects. A balanced system is 

composed of an anodic metal dissolution reaction at the bottom of the pit with a cathodic 

reaction on the adjacent surface. The system produces acid, which in turn propagates the pre-

existing defect. Pit formation depends on maintenance of acid levels in the bottom of the pit, 

making the process extremely susceptible to circulatory flows. 

 

Figure 8: Pitting corrosion system.17 

2.6 Types of Corrosion Tests 

2.6.1 Immersion Testing 

Immersion corrosion testing is the most commonly used testing methods to determine the 

corrosion rate of various metals in different environments. This testing method involves the 

complete immersion of the metal or alloy into an aqueous solution for a selected period of time. 

The immersion test can be changed by creating specific fixtures that can test for various 

17 Davenport 
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parameters such as: SCC, resistance to pitting, hydrogen embrittlement, and galvanic corrosion 

while the samples are still immersed.18 

2.6.2 Cabinet Testing 

Cabinet testing, also known as salt spray testing, has been used for about 100 years to test 

the rate of corrosion of metals, and the resistivity of certain coatings applied to the metals. There 

has been extensive discussion of the salt fog test since its inception because of the reproducibility 

variances and the questionable correlation of results as related to actual “in-service” 

performance. Although many industries do not prefer the test, as it is not always applicable, 

changes have been made to the testing system creating more expansive and reliable results. The 

improvements made include tolerance limits for the test variables, which help in the production 

of reliable results, new test fixtures, and new procedures. However, there are still variables and 

different specifications that need to be implemented in the process so that test standards can be 

improved and better adapted to different applications. 

The most commonly used salt spray test is the ASTM B 117, which yields amount and 

type of corrosive activity in a certain metal or alloy to compare to standards. Parameters of the 

test are shown in Table 1. 

 

18 ASM V13a 
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Table 1: Solution composition 

Test 

Method 

Designation Content Specific 

gravity 

pH °C °C Duration 

Salt Fog ASTM B 117 5% NaCl 1.0255–

1.0400 

6.5–7.2 35 95 24h/Cycle 

 
2.6.3 Electrochemical Testing 
 Corrosion involves oxidation and reduction reactions, and therefore electrochemical tests 

can be conducted to study the corrosion mechanisms of metals and alloys. ASM Volume 13a has 

provided Table 2, which summarizes the electrochemical tests that can be used. 

Table 2: Electrochemical test methods 
Category Test method 

No applied signal Open circuit or corrosion potential 

Dissimilar metal corrosion (galvanic corrosion) 

Electrochemical noise analysis 

Small-signal polarization Polarization resistance (linear polarization) 

Electrochemical impedance spectroscopy 

Large-signal polarization Potentiostatic and galvanostatic polarization 

Potentiodynamic and galvanodynamic polarization 

Scanning electrode techniques Potential scans 

Current scans 

Electrochemical impedance spectroscopy scans 

Miscellaneous tests Hydrogen permeation 

Anodized aluminum corrosion test 

Electrolytic corrosion test 

Paint adhesion on a scribed surface 

Impedance test for anodized aluminumodized 

Critical pitting temperature 
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2.7 Corrosion Control 

Corrosion control has long been the goal of engineers to prevent the damages and costs 

related. As such many methods have been developed over the years to prevent corrosion. 

Whether it is by heat treatment or coatings, it is important to gain an understanding of the 

measures used to control corrosion before analyzing corrosion damage. Corrosion control in steel 

is the focus since that is the material under consideration. 

2.7.1 Iron Carbon Alloy Crystalline Structure 

In Iron-Carbon alloys, such as steel, there are several microstructures that should be 

understood when discussing corrosion. Each structure has different grain boundaries and 

properties that affect corrosion. The different structures include: fine and coarse pearlite, 

spheroidite, bainite, and martensite. For all but martensite, there are two phases present in the 

material.19 A fine crystal structure is a stronger material, but a coarse structure has a higher 

ductility and toughness. With a highly ductility the material can undergo greater plastic 

deformation without failure. 

2.7.1.1 Sample Material 

 The examined samples were provided by the sponsor company. The information provided 

states that both large and small samples share the same composition. Both sample types are a 400 

grade stainless steel, with a 0.6 [wt %] carbon and 12-13% composition by weight chromium. 

The number in front of the stainless steel is the AISI number used to identify the metal and its 

19 MullenDore 
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properties. The first number identifies the types of steel, the second indicating if there are any 

alloying elements. The last two digits represent the carbon percentage of the metal. The AISI 

number of the steel involved in testing will not be given due to proprietary reasons, so 400 grade 

stainless steel was assumed. The 400 grade means that the samples are either a ferritic or 

martensitic structures. This lines up perfectly with the samples that are being evaluated and 

allows the use of phase diagrams to not only evaluate the structure and chemical make-up of the 

samples, but the effects that these will have on corrosion as well. 

2.7.1.2 Phase Diagrams 

Phase diagrams describe the crystal structure transformation of metals under specific 

conditions. During the heat treatment phase, the steel is raised to 1130°C to initially form an 

austenite structure. From there the structure is altered in the cooling stage to martensite, which is 

seen in Figure 9, the 0.6 [wt %] carbon means that the samples started in the pearlite region. 20 

These regions are important for corrosion damage, each type of crystalline structure has various 

impacts on the corrosive growth of the sample. These effects of the crystalline structure on the 

corrosion are discussed in a further section. 

The cooling phase is another important aspect of the stainless steel creation process. 

Cooling is a factor that affects how the crystalline structure forms. The rate at which the steel is 

cooled, temperature, and medium should all impact the final result. The crystalline structure 

formed as a result of cooling is the final structure that the metal will have. While the structure 

can change during the heating process, the cooling process is what the solid version of the metal 

20 Callister 
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will have. Therefore, getting the steel to the right temperature in the right amount of time is very 

important. A benefit of alloying the material of steel is that it decreases the critical cooling 

temperature of the steel. This in turn makes it easier to form martensite in the material and in 

thicker cross sections. This is useful as martensitic structures have numerous benefits, and have a 

unique relationship with corrosion compared to other microstructures21.  

 The cooling process is important in the overall corrosion process, due to the cooling 

influence on the metals. When looking at the cooling graphs of the stainless steels, the curves 

that indicate the transition of the metal into different structures rely on the rate of cooling. The 

charts are based on the time and temperature and can be seen in Figure 10. 

21 Callister 

 

Figure 9: Stainless steel phase diagram.21 
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Figure 10: Isothermal transformation for 400 steel.22 

 The martensite structure only forms when the cooling temperature rate reaches 120°C/s in 

approximately 1 seconds. What this means is that the rate of cooling on each metal influences its 

final phase type. Hence from our known samples, we can roughly estimate the minimum cooling 

rate required to produce the conditions that are under observation. From this, confirmation about 

the structure of the samples can be made when combined with images from the microstructural 

analysis.   

Figure 11: Stainless steel cooling chart.23 

22 Callister 
23 Materials Knowledge: Hardenability of Steels 
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It should be noted that alloyed steels have a slightly different cooling curve than normal 

iron-carbon diagrams. The additional elements involved in the alloying process can create 

multiple differences in the cooling diagram. These variations can range from, but aren’t limited 

to the following: shifting to the longer nose of the austenite to pearlite transformation, and the 

formation of a separate bainite nose.  These alterations to the cooling diagram mean that different 

cooling rates can be used to result in different structures when compared to the normal chart. The 

charts are often represented in terms of log time, so careful evaluation of the time taken during 

the cooling process is essential when determining the minimum time and temperature rate 

change to achieve a certain structure. This is important as with the samples under review, only a 

small portion of the composition is known. Therefore, the closest possible charts are used as a 

best estimate of the composition.  

2.7.1.3 Pearlite 

Pearlite is a microstructure that forms when there is an increasing amount of Fe3C in a 

steel alloy. If this occurs while holding all other elements constant, then the result is a harder and 

stronger material. This also results in a higher tensile and yield strength, along with a Brinell 

hardness increase. However, as the carbon content of this structure increases, it suffers a 

decrease in both ductility and toughness. Pearlite has two phases, ferrite and cementite, which 

influence the mechanical properties of the material. While cementite is strong and rigid, it also 

restricts the deformation of the material.24 

  

24 Bhadeshia 
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2.7.1.4 Spheroidite 

Of all the steel alloys, spheroidite microstructures are the weakest and softest. In turn for 

this weakness however, they are the most ductile.25 Alloys that contain a pearlitic microstructure 

have greater strength and hardness than those with a spheroidite microstructure. Pearlitic alloys 

also have less boundary area per unit volume than in spheroidite. However, spheroidite has 

boundary structures that are not nearly as constrained. They are also very tough as cracks only 

encounters a very small fraction of the brittle cementite phase, making propagation difficult. The 

crystalline structure of spheroidite is that of rods and spheres. Figure 12 shows the magnified 

microstructure of spheroidite where these spherical cementite phases are generally seen. 

 
Figure 12: Spheroidite microstructure.26 

2.3.1.4 Bainite 

Bainite is a very useful class of steel as its structure is generally finer, stronger, and 

harder than those of the pearlite microstructure.27 They have a desirable combination of strength 

and ductility, which makes them an ideal material structure for many tasks. The bainite grain 

25 Mullendore 

26 Callister 
27 Mullendore 
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boundaries are similar to martensite boundaries, only smaller and deformed due to nucleation. 28 

Figure 13 shows the fine grain formation in bainite where grains are smaller and closely packed 

together giving the material higher strength. 

Figure 13: Bainite microstructure.29 
2.3.1.5 Martensite 

Martensite is the strongest and hardest microstructure in iron-carbon alloys and is also the 

most brittle (it has negligible ductility).30 The overall hardness of the martensite structure 

depends more on the carbon content, rather than on the microstructure. Instead, the properties are 

attributed to the interstitial carbon atoms, which hinder dislocation motions and relations to slip 

systems. When failure occurs, the structure is forced apart on the atomic level, meaning slips 

systems are the means on which the material fails. The presence of carbon atoms inhibits damage 

from progressing through the iron crystal structures. The structure of martensite is plate 

shaped.31 

28 Bhadeshia 

29 Callister 
30 Mullendore 
31 Bhadeshia 
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32         

Figure 15: Various microstructures occurring in Fe-C alloys.33 

32 Hero-m 
33 Callister 

Figure 14: Martensite microstructure.32 
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2.7.1.6 Effects of Crystalline Structures 

 Each of the previously described structures result in different grain boundaries for the 

material involved.  Due to the fact that intergranular corrosion attacks along the grain 

boundaries, the corrosive effect varies according to each crystalline structure. The larger the 

grain boundary, the more effect corrosion has on the sample. Due to this factor however, 

martensitic structures are less resistant to corrosion than other grades of steel.34 In terms of 

corrosion resistance, austenitic steels have the highest resistance, with ferrite next in line. 

Austenite has the highest corrosion resistance due to its high chromium percentage with a 

mixture of nickel.  

2.7.1.7 Cooling of Samples 

Figure 16 is a representation of the cooling rate of a 400 grade stainless steel. The 

necessary cooling rate to maintain a completely martensitic structure must be high enough to 

completely avoid the lower nose. Due to this general restriction, parameters of the cooling rate 

equation can be determined.  It should be noted that any equations given in the following section 

are solely based on the maximum or extreme case of just avoiding the nose. It is entirely possible 

the cooling rate is more extreme and accomplished in a shorter time, hence altering the suspected 

equations. The overall results however, would be the same in accomplishing a fully martensitic 

structure. 

34 Stainless Steels 

Page 41 of 146 

 

                                                 



 
Figure 16: Equations on cooling temperature. (altered from [35]) 

 The alterations have been made to indicate the known values and estimates. It is known 

that the samples used undergo an initial heating up to a temperature of 1200°C. Slight estimation 

and adjustments have been made to adjust for the image variation due to book scanning. Using 

the chart that was provided in the book, taking into account the logarithmic x-axis of graph and a 

constant y, the equations were estimated. The equations that are used in Figure 16 are not based 

in the logarithmic scale, but the can be translated roughly to the books graph. Once the general 

shape of the equation is known, other guesses can be attempted in relation to the curves. 

 Figure 17 shows the first attempt at an equation curve that could represent the cooling 

rate. Using the known starting temperature and estimating the furthest point of the nose at around 

12 seconds, a decay equation was found.  

35 Callister 
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Figure 17: Cooling rate on a logarithmic time scale. 

 Another method to evaluate this is to look at the cooling method used to cool the 

samples. Using heat transfer, known equations, and the known variables allows for the 

determination of the temperature change and conditions constituting the temperature change. 

Due to the sample sizes, the first equation that should be considered is the equation to determine 

the Biot number of the sample. 

𝐵𝐵𝑖𝑖 = ℎ
𝑘𝑘
𝐿𝐿𝑐𝑐   [ 10 ] 

Here Lc is the characteristic length of the sample, the ratio of volume over area. 

Estimating a convection coefficient (h) of 100, which is a very plausible value in the range of 

water, and a thermal conductivity (k) of stainless steel, the Biot number for our sample is much 

less than 0.1. As a result of this, the small answer means that the lumped capacitance method of 

heat transfer can be used as shown in Eq [11]. If the value were greater than 0.1, then this 

method would not be practical.  

𝑅𝑅𝑓𝑓−𝑅𝑅∞
𝑅𝑅𝑖𝑖−𝑅𝑅∞

= exp (− ℎ
𝜌𝜌𝑐𝑐𝜌𝜌

𝑡𝑡) [ 11 ] 

Page 43 of 146 

 



𝑇𝑇(𝑡𝑡) = (𝑇𝑇𝑖𝑖 − 𝑇𝑇∞) exp �− ℎ
𝜌𝜌𝑐𝑐𝜌𝜌

𝑡𝑡� + 𝑇𝑇∞   [ 12 ] 

For Eq. 12, the ρ is density in kg/m3 and c is the specific heat of the material. 𝑇𝑇∞ is the 

temperature of the surroundings, and the Ti is the initial temperature of the sample. Using the 

measured dimensions of the sample, along with the use of Matlab to evaluate the results, the 

cooling rate was determined. 

The measured length of the sample was 0.035 meters, the width was 0.005 meters, and 

the thickness was 0.01 meters. The k value for stainless steel is 15.1 and the specific heat is 480. 

The density value used was 8055 kg/m3 

Since there is an estimated time and temperature for the phase change bulge, the equation 

for temperature as a function of time can be created. From this, the relationship of the multiple 

variables can be evaluated and the effects on the cooling rate determined. Figure 18 shows the 

results of these estimations. Comparisons can be drawn in regards to the interactions and the 

points of interests of the temperature change. It also allows for the estimation and speculation as 

to what fluid is used in the cooling process and what temperature the fluid may be at, allowing 

for an overall assessment of the material under speculation. Even with the assumptions being 

made, this equation provides a reasonable assessment of the overall cooling equation of the 

samples, as the cooling rate is not linear, but exponential over time. 
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Figure 18: Cooling rate coefficient comparisons. 

2.7.2 Heat Treatment of Steels 

The heat treatment of steel is about one thing, producing martensitic steel. This is 

accomplished through the continuous and rapid cooling of an austenitized specimen.36 During 

heat treatment, the material’s structure undergoes various changes to ideally create a stronger 

metal. Most companies focus on the formation of high content martensitic steel.  A sample of 

steel that has been successfully heat treated results in the formation of a steel with a 

predominantly martensitic microstructure. A high degree of martensite in the structure, not only 

means that there is primarily martensite on the surface, but that there is a strong presence 

throughout the interior of the specimen as well. There are three requirements which include: 

1. Composition of the alloy 

2. Type and character of the quenching medium 

3. Size and shape of the specimen 

36 Mullendore 
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Heat treatment also has a factor in the hardenability. Hardenability is the influence of alloy 

composition to transform to martensite in a particular quenching treatment. It’s important to note 

that hardenability is not true hardness. Hardness describes the resistance to indentation while 

hardenability represents the depth to which a material is hardened during heat treatment. 

When heat treatment is performed on steels, the severity of the quench is another factor that 

must be taken into consideration. Severity of quench is the term used to indicate the rate of 

cooling.37 The more rapid the cooling of the steel, the more severe the quench is. When cooling 

steels, the three most common mediums used are water, oil, and air. In terms of severity of 

quench, water has the most severe quench, followed by oil then air. During the cooling of metals, 

simple thermodynamic properties have to be taken into account. An example is that the velocity 

of the cooling media influences the cooling rate of the metal. 

 

Figure 19: Quenching chart.38 

37 Mullendore 
38Callister 
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The purpose of these methods is to protect the metal from corrosion. The heat treatments 

focus on the diffusion method of corrosion. Martensitic crystal formations have interstitial 

carbon atoms, which occupy the space of iron atoms in steel, hindering diffusion. The presence 

of interstitial carbon atoms does not prevent corrosion completely but slows down the process of 

corrosion through diffusion. This diffusion process is known as interstitial diffusion, where 

atoms migrate from one interstitial position to a neighboring one that is empty. 

Heat treatment must be used with caution some about materials. While heat treatments 

may help prevent corrosion of some types, it leaves the material vulnerable to other attacks. An 

example of this situation is shown in stainless steel. Normally, chromium carbides form on the 

grains and help prevent growth, whereas some heat treatments may remove the carbides and 

leave the metal more susceptible to corrosion. 

2.7.2.1 Annealing 

Annealing is the process of exposing the metal to high temperatures for an extended period 

of time and then controlling the cooling process to slow it down.39 Heat treatment is performed 

to prevent vacancy diffusion. Vacancy diffusion occurs when there are atomic gaps in crystalline 

structures lattice sites. Vacancy in these lattice sites mean that atoms can migrate from one 

location to another. Annealing is used to primarily affect three aspects of steels: 

1. Relieve stresses 
2. Increase softness, ductility, and toughness 
3. Produce specific micro structures 

39 Mullendore 
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When performing annealing, there are three stages that need to be considered: the initial 

heating to the desired temperature, the “soaking” or holding the metal at temperature, then 

slowly cooling the metal. 

2.7.2.2 Normalizing 

 Steels that have been plastically deformed often consist of grains of pearlite, which are 

irregularly shaped, relatively large, and substantial in size. Normalizing refines these grains, 

decreases average size, and produces a more uniform and desirable size distribution.40 

Normalizing is accomplished by holding the temperature of the sample to at least 55°C above the 

critical temperature for transformation, and allowing time for complete transformation into 

austenite. Finally, the cooling process is done by air cooling. 

2.7.2.3 Full Annealing 

 Full annealing is often utilized in low and medium carbon steels. For this, the alloy is 

treated by heating to a temperature of about 50°C above critical temperature. The metal is 

furnace cooled and will have a pearlite structure. Furnace cooling means that the furnace is 

turned off, and the metal is left inside to cool at the same rate as the furnace. This results in small 

and uniform grain boundaries.41 

 

 

40 Mullendore 
41 Mullendore 
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2.7.3 Material Selection 

One of the most important considerations in corrosion control is the material selection. 

For example take an alloy of two metals alpha and beta. Between those two metals there will be 

one that is more active and one more passive to corrosion. As a result when corrosion begins, the 

more active metal will corrode and more passive metal will not. As such, by using a material 

with a majority of passive metals, it will only face limited corrosion by its active sections. This 

gives engineers some control over the formation of corrosion. It is important to keep in mind that 

single phase alloys still have better corrosion resistance than two phases.42 

2.7.4 Passivity 

When a metal undergoes corrosion, a chemical reaction occurs on the surface. As a result 

of this chemical reaction, corrosive products are left over. Engineers have been able to use the 

chemical reaction formula to determine the type of product that will result from the corrosion 

reaction and utilize it. This is a passive protection from corrosion. As the corrosion starts to 

occur the solution and sample are in contact. Corrosive products form from this process, and stay 

attached to the surface of the sample. Overtime, the surface of the metal will be completely 

protected from the solution by a layer of corrosive product.  This is one of the reasons that 

stainless steel, which is highly resistant to corrosion, is an iron–chromium alloy. Since the 

sample and solution is no longer in contact, the corrosion reaction ceases, which stops the 

corrosion of the surface. From this, engineers have applied films to the surface of the metal to 

42 Mullendore 

Page 49 of 146 

 

                                                 



prevent any corrosion to begin with. While they do their job, the films are often extremely thin, 

some on the order of angstroms (10-10m). 43  

2.7.5 Films/Coatings 

While some materials form a protective layer via the passivity method, sometimes metals 

are coated in a proactive layer to prevent any kind of corrosion. These films are employed when 

other methods are inappropriate or economically impossible.44 These coatings and films are 

normally paints, based on alkyd and epoxy resins. They are applied as liquids which 

subsequently polymerizes onto hard surfaces, such as that of metals.45 

Other more inexpensive metals that require film protection may also be coated in a thin 

layer of corrosion resistant material. Although metals are the most common coating material, 

there are organic options as well, such as silicon. Resistant metals are often expensive, which is 

why they are used sparingly. Resistant metals are often applied by the process of electrode 

position. This method is important as it is for the study of stainless steels. Due to the large 

percentage of chromium located in stainless steels, when corrosion occurs, the film method takes 

place. During the corrosion of stainless steels, chromium forms a passive film of chromium 

oxide on the surface of the metal. This film creates a barrier between the metal and oxygen, 

which in turn stops the corrosion process. This also has another benefit as the corrosion is 

43 Callister 
44 Talbot 
45 Talbot 
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prevented for spreading into the interior structures of the steel, which would cause major damage 

or possible failure of the structure over time.  

2.7.6 Metallic Coated Steels 

           Metallic coatings provide a barrier between the steel and electrolytes. There are two 

categorizations of coatings: noble coatings, and sacrificial coatings.  Noble coatings are 

comprised of noble metals in the galvanic series. These coatings fail in areas with surface defects 

or porosity where galvanic current accelerates attack of the base metal, which will eventually 

undermine the coating. Sacrificial coatings create an anodic surface to steels. At the pores, the 

direction of galvanic current through electrolytes moves from coating to base steel. As a result of 

this movement, the base steel becomes cathodically protected. 

2.7.7 Cathode and Anode Protection 

Corrosion is a cycle that continues as long as the cycle path is completed. In an 

electrochemical corrosion cell, there are four main parts that must be present for corrosion to 

occur. These are the anode, cathode, an ionic path through the solution, and electric path through 

the metals. This is a very destructive process over time, so engineers have found that by 

interrupting the process, corrosion can be halted. This is done by cathodic protection. Cathodic 

protection occurs when an external source supplies electrons to the anode, making it a cathode 

and reversing the corrosion process. Since the anode, which usually gives up electrons to 

corrode, no longer loses it electrons, the process of corrosion oxidation ceases. Figure 20 

displays a basic functioning corrosion system between a cathode and anode. This process of 

cathodic protection in some way breaks the cycle and transfer of ions. 
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Figure 20: Anode and cathode current flow.46 

2.8 Background Test Types 

2.8.1 Types of Corrosion Tests 

This section investigates various methods for testing and ultimately quantifying corrosion 

growth. Testing types range dramatically in terms of difficulty and produced values. Whether a 

complex electrochemical examination or a simple optical test is conducted, these measures 

provide valuable information regarding corrosion. When examining corrosion, each test provides 

a piece of information to a varying degree of accuracy.  These tests have been developed and 

improved over the years to aid engineers and scientists in evaluating the effects of corrosion. The 

following tests are believed to have potential to be involved with the experiment. From this 

initial research, a series of several tests will be chosen to effectively quantify results. The end 

goal of this project is to provide numerical analysis accurately describing the corrosive effects 

observed. Consider this, the following topics were studied: 

2.8.1.1 Visual Observation 

Visual observation is one of the simplest corrosion test procedures. This method involves 

simply viewing the specimen by eye to ascertain the results of the test. While this test works well 

46 Principles of Corrosion 
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in combination with other tests and is very simple to complete, it still suffers from several 

factors. Commonly it is used for comparative analysis, but offers no numerical or individual 

description. There is no way to get a quantitative result from this test and the results are subject 

to human error and individual judgment. 

2.8.1.2 Loss/Gain in Weight 

Loss/gain in weight experiments are a valuable and relatively simple test when analyzing 

the physical effects of corrosion.  The test requires only a laboratory scale and are relatively 

simple. By measuring the gain or loss of mass over time, the damage can be measured 

quantitatively. A large number of test specimens are required for this test type and can suffer 

from measurement errors. For this specific study, a measurement of relatively high accuracy is 

required. Specifically, the scale used must be accurate to 4 decimal places. 

Instead of measuring mass loss, sometimes the gain in weight is measured. This method 

assumes that all the corrosion products that formed on the sample stay on the surface and that the 

chemical stoichiometry is known. Although mass gain measurements are used, the most common 

change in mass measurement is weight loss.  

After the data for weight loss experiments has been recorded, Eq. 13 can used to calculate 

the corrosion rate: 

𝐶𝐶𝐶𝐶 = 𝐾𝐾∗𝑊𝑊
𝐴𝐴∗𝑡𝑡∗𝐷𝐷

      [ 13 ] 

In the Eq. 13, K is a constant used to ensure proper units, W is the mass loss in grams, A 

is the area in cm2, T is the time of exposure in hours, and D is the material density in g/cm3. If K 

is set to 3.45*106, the answer will be in mils per year (mpy), and if K is 8.76*104 then the 
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solution will have units of millimeters per year (mm/y). For most steels and stainless steels, the 

density is around 7.9g/cm3.47 

2.8.1.3 Change in Electrical Resistance 

Electrical resistance tests play a major role in measuring the growth of corrosion via 

intergranular attack. The idea behind electrical resistance (ER) monitoring is that once a sample 

is exposed to a corrosive environment, the surface area decreases and results in an increase in 

resistance. The change in resistance is related to the change in surface area or depth, and can be 

used to determine a corresponding corrosion rate.  This test is very useful in that it does not 

disturb the specimen during testing, so a single specimen can be tracked over time. The response 

from electrical resistance monitoring to localized corrosion is limited, and this leads to the 

production of a relatively easy time curve. 48 Though there aren’t many drawbacks with this 

testing type, there is the issue that the type of attack cannot be determined from this test.  

The change in electrical resistance monitoring technique was recently used in a study to 

determine corrosion rates. The study was conducted on concrete samples that were tested by 

periodically wetting and drying the samples. Figure 21 shows the results for the comparison of 

the ER and the electrochemical noise (EN) method of corrosion monitoring.  

47 Vander 
48 Legat 
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Figure 21: Comparison of EN and ER corrosion monitoring methods.49 

This study confirmed that the ER probes were able to reliably measure the cumulative as 

well as average corrosion rate.  

2.8.1.4 Hydrogen Evolved/Oxygen Absorbed 

The hydrogen evolved test focuses on the hydrogen evolved from the corrosion process 

into the solution.  This test allows for the easy creation of time curves as the hydrogen can be 

measured without disturbing the specimen. The test is useful in that it examines the solution the 

specimen is in, but it does not help examine the distribution of the attack. 

The oxygen absorbed test follows many of the same steps as the hydrogen test, where the 

solution is tested and the specimen remains undisturbed. The reading is done with a DO probe, 

which is a device that measures the percentage of oxygen dissolved in the solution, so the results 

49Legat 
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can be tracked over time. As the samples corrode, the relations of the oxygen dissolved rate will 

allow for the evaluation the corrosion rate. 

 During both tests the samples cannot be disturbed. That means that once the samples are 

set and the test begins, they cannot be moved. As such any movement of the apparatus or 

disturbances could potentially influence the results, so precautions should be taken to ensure 

accurate results. 

2.8.1.5 Depth of Pitting 

Depth of pitting allows for the examination of the corrosive effects at a microscopic 

level. The examination of the pitting is adaptable to determine the total attack of the corrosion.  It 

also allows for the measurement of corrosion penetration by all methods except intergranular 

attacks, which occur not as localized sites but follow grain boundaries. This testing method does 

have drawbacks such as the need of multiple testing samples, and a difficulty in gaining accurate 

measurements. However, as more samples are taken, any possibilities for errors will be 

minimized as an average will be taken for all the samples. Figure 22 displays the cross section of 

various pit types that can be measured by their depth, but also in other ways. Pits may also be 

described by the average size (in diameter) or by the average density of pit occurrence (in 

number of pits/area). 
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Figure 22: Pitting types.50 

2.8.1.6 Microscopic 

Microscopic testing allows for the determination of the type of corrosive attack affecting 

the sample. This testing allows for measurements of pitting and the study of the initiation of the 

corrosion attack. It serves the purpose of supplementing the results of other tests, but otherwise 

does not offer many other benefits. It also suffers from the fact that it cannot be used for 

quantitative measurements. 

2.8.1.7 Change in Physical Properties 

This test method focuses on the structural properties of the specimen. Tests involving the 

change in physical properties range in many degrees because there are many physical properties. 

The physical properties that are most valuable to the project at hand however, are not of a 

quantitative use if tested. As such, any physical property changes would be worth the effort 

50 Corrosion Clinic 
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required when there are other tests that would reveal more information about the nature of 

corrosion. 

2.8.1.8 Electrochemical 

a. Single Electrode Potential 

Electrochemical testing provides several methods for corrosion testing. Single electrode 

potential is a method that focuses on the study of film formation and breakdown. This type is 

useful with other tests to determine the total corrosion of the sample. Single electrode potential 

allows for the determination of film surface stability, though it is difficult to interpret and does 

not measure the amount of attack to be expected. 

b. Potential Difference between Two Dissimilar Metals 

Measuring the potential difference in the sample allows for the opportunity to study the 

galvanic effects that are occurring in the test specimen. This test helps to determine which metal 

will be more severely corroded due to the effect of the solution that is used. This test primarily 

helps to determine which metal will corrode more severely. The issues with this test are that 

results are not quantitative, and polarization characteristics (described in the section anodic and 

cathodic polarization) are more valuable for the purpose of corrosion analysis. 

c. Film Resistance Measurements 

The film resistance test focuses on determining the penetrability of the surface films of 

the specimen when in contact with various solutions. This test gives a quantitative measurement 

of the influence of anions on the probability of the breakdown of films. This test has difficulties 

when performed, as the voltage used must be standard. Also, other reactions must not occur 
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when this test is being performed, as these reactions can interfere with the measurements 

recorded. 

2.8.1.9 Electrometric 

Electrometric testing focuses on measuring the thickness of the film surface. This is a 

simple and accurate method for determining these quantities, and therefore provides quantitative 

results. It is however, limited to samples that have adherent, thin surface films on certain metals. 

2.8.1.10 Influence of Metal on the Environment 

           This series of testing revolves around completely qualitative factors of the sample 

following testing. Intended for the investigation of effects the sample would have on the 

environment or its duty following corrosion, it has very few quantitative purposes. One purpose 

is to examine whether the corrosion products have a detrimental effect to the quality of a 

product. It is also often used to determine what metal should be used in a product. However, such 

measurements don’t reveal any relevant information into the nature of the corrosion attack. That 

being said, there is still a purpose that can be employed, provided only as supplementation to 

other, more quantifiable tests. It may be employed by visual means such as the naked eye, or any 

magnification of such. 

2.9 Predictive Models 

2.9.1 Mechanical Models 

 Scientist and engineers have often attempted to model the nature of corrosion; however, 

this modeling depends on a multitude of variables. There are a few basic models that are 

commonly consulted to determine the nature of corrosion. This section describes models based 

on the mechanisms of corrosion growth. The first of these is the Pourbaix diagram. 
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2.9.1.1 Pourbaix Diagram 

Figure 23: Pourbaix FeO.51 

The Pourbaix model maps the stable phases for aqueous solutions. This in turn allows for 

predictive expectations as to when corrosion will take place between an aqueous solution and a 

sample.  As seen in Figure 23, when a potential is applied to a sample submerged in a particular 

aqueous solution, the pH levels give an indication as to whether or not corrosion will occur. 

From this information the minimum potential that must be present to begin corrosion can be 

determined, or what pH level is needed for prevention.  

 Simplifying the Pourbaix diagram for certain materials and solutions can produce graphs 

that display the passivity, immunity and corrosive states of the metal in the solution. Needless to 

say this is a powerful tool for those investigating corrosion, as knowing when the combination of 

potential and pH level will result in corrosive growth is vitally important. However, it should be 

noted that these diagrams are not universal. Each diagram changes depending on the aqueous 

solution and the material being considered. The environment of the aqueous solution must also 

51 Pourbaix Diagrams 
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be taken into account, specifically the right vertical scale in Figure 23. This scale is used to 

determine whether the solution is more aerated (oxidization) or composed of organic wastes 

(reducing).52  It is meant to show the concentration of the standard reducing agents and electrons. 

Lower values mean the solution is more disposed towards reduction.  

 

Figure 24: Corrosion section Pourbaix.53 

 The potential-pH diagram also shows that certain combinations allow for the 

determination of corrosion type. The graph type allows for the determination of general 

corrosion, pitting and a combination of the two. General corrosion, along with pits, form mostly 

along crevices of the metal. 

2.9.1.2 Pitting Modeling 

 Analysis of pitting can provide a more qualitative analysis of corrosion. This analysis 

commonly relies on visual inspection and results can vary from test to test based on who is 

52 Pourbaix Diagrams 
53 Luo 
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conducting the measurements. Though the measurements can be variable, methods and charts 

used to evaluate are standardized. Blistering, pitting and flaking are assessed using charts to help 

quantify them.54 These charts provide a guideline used to assist in the classification of number of 

pits and size of the pits. Similar charts are utilized when looking at cracking which, instead of 

looking at number and size, investigate spacing and width. 

There are several other model types that have been developed over time in regards to 

pitting. One of these models is meant to describe the probability that no stable pits form at the 

given time t. Stable pits are those that will continue to grow as time elapses. The following 

equation was developed by the Shibata and Takamiya in 1986.55 

𝐿𝐿𝑛𝑛[𝑃𝑃(0)] = −𝜆𝜆𝜆𝜆(𝑡𝑡 − 𝜏𝜏𝑐𝑐)𝑒𝑒−𝜇𝜇𝜏𝜏𝑐𝑐     [ 14 ] 

Here, lambda represents the frequency of nucleation of metastable pits per unit area, mu 

is the probability of repassivation and τ is the critical age beyond which the metastable pit 

becomes stable.56 Parameter a represents the sample’s surface area. This approach was used by 

Henshall in 1992 to predict the growth of stable pits in 304 stainless steel. 

54 Ailor 
55 Sridhar 
56 Sridhar 
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Another model created involves the critical potential required for pit nucleation (growth) 

and bulk chloride calculation. The following equation was derived by Lin, Chao, and Mcdonald 

in 1981.57 

𝐸𝐸𝑝𝑝 = 4.606𝑅𝑅𝑅𝑅
𝜒𝜒𝑛𝑛𝜒𝜒

log 𝐽𝐽𝑚𝑚
𝐽𝐽0𝑢𝑢

−𝜒𝜒
2�
− 2.303𝑅𝑅𝑅𝑅

𝑛𝑛𝜒𝜒
log 𝜆𝜆𝐶𝐶𝐶𝐶−   [ 15 ] 

In this equation, the χ is used to represent the charge of the cation. The F is the faraday 

constant and α is the charge transfer coefficient. Jm is the submergence rate of the cation 

vacancies into the metals, J0 is the migrational flux of cations, u is a prexponetial term associated 

with the chloride-oxygen vacancy at the solution-film interface.58 T represents temperature, and 

acl the activity of the chloride ion in the solution. 

2.9.2 Electrochemical Models 
General corrosion rate is given in Eq. 16.59 

𝐶𝐶 = 𝐾𝐾𝑊𝑊
𝐴𝐴𝑡𝑡𝐷𝐷

      [ 16 ] 

R=corrosion rate [mm/yr] 

K=constant 

t=time of exposure [hours] 

W=weight loss [g] 

A=area [mm2] 

D=density [g/mm3] 

Electrochemical Mass Loss60 

57 Sridhar 
58 Sridhar 
59 Sedriks 
60 Baboian 
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𝑊𝑊 = 𝐼𝐼𝑜𝑜𝑜𝑜𝑡𝑡𝐴𝐴.𝑊𝑊. 
𝑛𝑛𝑛𝑛

   [ 17 ] 

W=mass loss [g] 

Ioxt=Product of current and time [A∙s] 

A.W. =Atomic weight of the of the electro active species 

n=number of electrons transferred 

F=Faraday’s constant [C/mol] 

When electrochemical corrosion occurs, and there is no applied potential influencing the 

corrosion, oxidation and reduction of the sample occur simultaneously at the metal/electrolyte 

interface.61 In this situation, the net current density applied to the sample is zero, with finite 

corrosion rates on the anodic surface. The mixed-potential theory allows for the corrosion 

process to be divided into half-cell oxidation and reduction reactions as discussed later.62  

Electrochemical corrosion rate is given in Eq. 18 and Eq. 19:63 

𝐶𝐶𝐶𝐶 = 3.27∗10−3𝑖𝑖𝑜𝑜𝑜𝑜𝐸𝐸.𝑊𝑊. 
𝜌𝜌

   [ 18 ] 

𝐸𝐸.𝑊𝑊. = 1

∑ 𝑛𝑛𝑖𝑖𝑓𝑓𝑖𝑖
𝐴𝐴.𝑊𝑊.𝑖𝑖

     [ 19 ] 

CR=corrosion rate [mm/yr] 

E.W=equivalent weight 

ρ=density [g/mm3] 

61 Baboian 
62 Baboian 
63 Baboian 
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fi =the mass fraction of the ith component of the alloy 

A.W.i =the atomic weight of the ith component of the alloy 

Ni=the number of electrons transferred or lost when oxidizing the ith component element 

i =the number of component elements in the alloy 

 The electrochemical corrosion rate is gained by altering the mass loss equation due to 

electrochemical corrosion. Rearrangement of the mass loss equation allows for a corrosion rate 

when Iox (current) is uniformly distributed over the surface area, or the corrosion can be 

classified as localized in area A. 

Film Thickness64 

𝐶𝐶 = 𝜖𝜖𝜖𝜖𝑜𝑜𝐴𝐴
𝑑𝑑

   [ 20 ] 

C=film thickness [mm] 

A=surface area [mm2] 

d=dielectric thickness [mm] 

ϵo=the electric permittivity of a vacuum [F/mm] 

ϵ=the dielectric constant for the passive film or coating  

Immersion Penetration 

𝑝𝑝𝑒𝑒𝑛𝑛𝑒𝑒𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝑙𝑙𝑀𝑀𝑀𝑀 𝑖𝑖𝑛𝑛 𝑚𝑚𝑚𝑚)(𝐶𝐶−𝑓𝑓𝑀𝑀𝑐𝑐𝑡𝑡𝑙𝑙𝑓𝑓)
(𝑀𝑀𝑓𝑓𝑎𝑎𝑀𝑀 𝑖𝑖𝑛𝑛 𝑚𝑚𝑚𝑚2)(𝑑𝑑𝑎𝑎𝑛𝑛𝑀𝑀𝑖𝑖𝑡𝑡𝑑𝑑)      [ 21 ] 

C-factor=1 for mm; or C=0.061 for mils 

 
 
 

64 Baboian 
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Mixed Potential Theory 

 The mixed potential theory is based on the current distribution in a system with two 

metals.65 The general idea of the theory is that when a common potential is reached, the 

corrosion current of the metal higher on the noble scale will be reduced, and the corrosion 

current of the lower noble metal will increase.66 Therefore while the potential of two metals is 

the same, the current density of the two different metals will differ. Total attack depends on the 

proportion of the total anodic current and the relative areas of the metals. 

𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑐𝑐𝑙𝑙𝑓𝑓𝑓𝑓 �𝑒𝑒
�2.3(𝐸𝐸−𝐸𝐸𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐)

𝛽𝛽𝑎𝑎
� − 𝑒𝑒�

−2.3(𝐸𝐸−𝐸𝐸𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐)
𝛽𝛽𝑐𝑐

�� + 𝐶𝐶 �𝜕𝜕𝐸𝐸
𝜕𝜕𝑡𝑡
�   [ 22 ] 

𝑝𝑝𝑐𝑐𝑙𝑙𝑓𝑓𝑓𝑓 = 1
2.3𝑅𝑅𝑝𝑝

� 𝛽𝛽𝑎𝑎𝛽𝛽𝑐𝑐
𝛽𝛽𝑎𝑎+𝛽𝛽𝑐𝑐

�   [ 23 ] 

 
Figure 25: Mixed potential theory.67 

65 Talbot 
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2.9.3 Established Models 
Influence of Salt Content 

𝑓𝑓(𝑆𝑆𝑓𝑓) = 𝛾𝛾
𝜀𝜀√2𝜋𝜋(𝑆𝑆𝑐𝑐+𝛿𝛿) 𝑒𝑒

�−(ln(𝑆𝑆𝑐𝑐+𝛿𝛿)−𝛽𝛽)2

2𝜀𝜀2
�     𝑆𝑆 ≥ 0    [ 24 ] 

𝑓𝑓(𝑆𝑆𝑓𝑓) = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑐𝑐𝜆𝜆𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠   

𝑆𝑆𝑓𝑓 = 𝑐𝑐𝜆𝜆𝑠𝑠𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑠𝑠 𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝  

𝛾𝛾 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑛𝑛𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖 𝜆𝜆𝑐𝑐 𝜆𝜆 𝑚𝑚𝜆𝜆𝑚𝑚𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑐𝑐𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑡𝑡𝑝𝑝 𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑒𝑒   
𝑣𝑣𝜆𝜆𝑠𝑠𝑖𝑖𝑒𝑒𝑐𝑐 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝   
(𝛾𝛾 ≥ 0)   

𝛿𝛿 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑛𝑛𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖 𝑡𝑡𝑝𝑝 𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝜆𝜆𝑡𝑡𝑒𝑒𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 (𝛿𝛿 ≥ 0)  

𝛽𝛽 𝜆𝜆𝑛𝑛𝑖𝑖 𝜀𝜀

= 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡𝑐𝑐 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛𝑖𝑖𝑝𝑝𝑛𝑛𝑚𝑚 𝑡𝑡𝑝𝑝 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑒𝑒𝜆𝜆𝑛𝑛 𝑣𝑣𝜆𝜆𝑠𝑠𝑖𝑖𝑒𝑒 𝜆𝜆𝑛𝑛𝑖𝑖 𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑖𝑖𝜆𝜆𝑝𝑝𝑖𝑖 𝑖𝑖𝑒𝑒𝑣𝑣𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 

Influence of Temperature 

𝑓𝑓(𝑇𝑇𝑓𝑓) = 𝑐𝑐𝑇𝑇𝑓𝑓 + 𝑖𝑖 [ 25 ] 

𝑓𝑓(𝑇𝑇𝑓𝑓) = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑡𝑡𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝜆𝜆𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒  

𝑇𝑇𝑓𝑓 = 𝑡𝑡𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑝𝑝𝜆𝜆𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛  

𝑐𝑐 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑚𝑚 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝𝑒𝑒 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓(𝑇𝑇𝑓𝑓) − 𝑇𝑇𝑓𝑓 𝑝𝑝𝑒𝑒𝑠𝑠𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐ℎ𝑝𝑝𝑝𝑝  

𝑖𝑖 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓(𝑇𝑇𝑓𝑓) 𝑣𝑣𝜆𝜆𝑠𝑠𝑖𝑖𝑒𝑒 𝜆𝜆𝑡𝑡 𝑧𝑧𝑒𝑒𝑝𝑝𝑝𝑝 𝑇𝑇𝑓𝑓   
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Influence of Dissolved Oxygen 

𝑓𝑓(𝑂𝑂𝑓𝑓) = 𝜆𝜆𝑂𝑂𝑓𝑓 + 𝑑𝑑 [ 26 ] 

𝑓𝑓(𝑂𝑂𝑓𝑓) = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑖𝑖𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑠𝑠𝑣𝑣𝑒𝑒𝑖𝑖 𝑝𝑝𝑜𝑜𝑠𝑠𝑚𝑚𝑒𝑒𝑛𝑛 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛  

𝑂𝑂𝑓𝑓 = 𝑖𝑖𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑠𝑠𝑣𝑣𝑒𝑒𝑖𝑖 𝑝𝑝𝑜𝑜𝑠𝑠𝑚𝑚𝑒𝑒𝑛𝑛 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝  

𝜆𝜆 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑚𝑚 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝𝑒𝑒 𝑝𝑝𝑓𝑓𝑓𝑓(𝑂𝑂𝑓𝑓) − 𝑂𝑂𝑓𝑓 𝑝𝑝𝑒𝑒𝑠𝑠𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑐𝑐ℎ𝑝𝑝𝑝𝑝   

𝑑𝑑 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝑛𝑛𝑚𝑚 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑓𝑓(𝑂𝑂𝑓𝑓) 𝜆𝜆𝑡𝑡 𝑧𝑧𝑒𝑒𝑝𝑝𝑝𝑝 𝑂𝑂𝑓𝑓   

Influence of Ph. 

𝑝𝑝 = 𝑘𝑘𝐶𝐶𝐻𝐻𝑛𝑛+   [ 27 ] 

𝑝𝑝 = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒  

𝐶𝐶𝐻𝐻+ = ℎ𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑛𝑛 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛  

𝑛𝑛 = 𝑒𝑒𝑜𝑜𝑝𝑝𝑝𝑝𝑛𝑛𝑒𝑒𝑛𝑛𝑡𝑡 𝑖𝑖𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑖𝑖𝑒𝑒𝑛𝑛𝑡𝑡 𝑝𝑝𝑛𝑛 𝑡𝑡ℎ𝑒𝑒 ℎ𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑛𝑛 𝑝𝑝𝑝𝑝𝑛𝑛 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑛𝑛𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛  

(𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑝𝑝𝑛𝑛𝑐𝑐𝑝𝑝𝑒𝑒𝜆𝜆𝑐𝑐𝑒𝑒𝑐𝑐 𝑤𝑤𝑝𝑝𝑡𝑡ℎ ℎ𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝𝑚𝑚𝑒𝑒𝑛𝑛 𝑝𝑝𝑝𝑝𝑛𝑛 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛)  

𝑝𝑝(𝑝𝑝ℎ) = 𝑘𝑘10−(𝑛𝑛∗𝑝𝑝𝐻𝐻)  

𝑘𝑘 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡  
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Influence of Water Velocity 

𝑓𝑓(𝑣𝑣𝑓𝑓) = 𝜆𝜆(1 − 𝑒𝑒−𝜂𝜂(𝑣𝑣−𝜃𝜃))   [ 28] 

𝑓𝑓(𝑣𝑣𝑓𝑓) = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑝𝑝 𝑣𝑣𝑒𝑒𝑝𝑝𝑠𝑠𝑝𝑝𝑣𝑣𝑝𝑝𝑡𝑡𝑠𝑠  

𝑣𝑣𝑓𝑓 = 𝑓𝑓𝑝𝑝𝑠𝑠𝑤𝑤 𝑣𝑣𝑒𝑒𝑝𝑝𝑠𝑠𝑝𝑝𝑐𝑐𝑝𝑝𝑡𝑡𝑠𝑠 𝑝𝑝𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝  

𝜆𝜆 = 𝑚𝑚𝜆𝜆𝑚𝑚𝑛𝑛𝑝𝑝𝑓𝑓𝑝𝑝𝑐𝑐𝜆𝜆𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑡𝑡𝑝𝑝 𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝜆𝜆𝑠𝑠𝑖𝑖𝑒𝑒 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑛𝑛 𝑝𝑝𝜆𝜆𝑡𝑡𝑒𝑒 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝  

𝜃𝜃 = 𝑐𝑐𝑝𝑝𝑛𝑛𝑐𝑐𝑡𝑡𝜆𝜆𝑛𝑛𝑡𝑡 𝑝𝑝𝑛𝑛𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖 𝑡𝑡𝑝𝑝 𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑝𝑝𝑖𝑖𝑛𝑛𝑐𝑐𝜆𝜆𝑡𝑡𝑒𝑒𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑝𝑝𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑑𝑑𝑖𝑖𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛   

𝜂𝜂 = 𝑓𝑓𝜆𝜆𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝 𝑡𝑡𝑝𝑝 𝜆𝜆𝑖𝑖𝑎𝑎𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑖𝑖𝑝𝑝𝑣𝑣𝜆𝜆𝑡𝑡𝑖𝑖𝑝𝑝𝑒𝑒 𝜆𝜆𝑛𝑛𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑠𝑠𝑝𝑝𝑝𝑝 𝑝𝑝𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑖𝑖𝑝𝑝𝑣𝑣𝑒𝑒  

Nonlinear Corrosion Wastage Model for General Corrosion68 

𝜕𝜕𝑑𝑑𝑛𝑛,𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑡𝑡

= 𝑑𝑑∞
𝜏𝜏𝑡𝑡
𝑒𝑒−(𝑡𝑡−𝜏𝜏𝑐𝑐)/𝜏𝜏𝑖𝑖       𝑡𝑡 > 𝜏𝜏𝑐𝑐 [ 29 ] 

𝜕𝜕𝑑𝑑𝑛𝑛,𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑡𝑡

= 0   𝑡𝑡 ≤ 𝜏𝜏𝑐𝑐 [ 30 ] 

𝑖𝑖𝑛𝑛,𝑖𝑖(𝑡𝑡) = 𝑖𝑖∞ �1 − 𝑒𝑒
−𝑡𝑡−𝜏𝜏𝑐𝑐𝜏𝜏𝑖𝑖 �        𝑡𝑡 > 𝜏𝜏𝑐𝑐   [ 31 ] 

𝑖𝑖𝑛𝑛,𝑖𝑖(𝑡𝑡) = 0        𝑡𝑡 > 𝜏𝜏𝑐𝑐     [ 32 ] 

The equations presented here were developed by Soares et al. for the immersion of steel 

plates.69 The equations were developed for situations that are similar to what is being tested by 

68 Soares 

69 Soares 
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this project. Using these equations as a guideline for the development of final equation specific 

to this project, a baseline can be created along with multiple variations of the testing environment 

and other unique consideration from the test setup.  

 For the several corrosion rate equations that are presented in this paper, the ones that will 

be under the most consideration and will most likely be applied to this project are the influence 

of water velocity and pH levels. The paper itself is in regards to ships that are travelling through 

the ocean, so the comparison to this paper’s testing will require some alteration. However, the 

relationships in the end should, in theory, be similar even once the alterations are made. All 

changes or variations that at implemented will be explained. 

 In terms of the overall corrosion waste, the equation that was developed from their paper 

is as follows: 

𝑖𝑖𝑐𝑐,𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖,1(𝑆𝑆𝑓𝑓)𝑓𝑓𝑖𝑖,2(𝑇𝑇𝑓𝑓)𝑓𝑓𝑖𝑖,3(𝑂𝑂𝑓𝑓)𝑓𝑓𝑖𝑖,4(𝑝𝑝𝐻𝐻𝑓𝑓)𝑓𝑓𝑖𝑖,5(𝑣𝑣𝑓𝑓)𝑖𝑖𝑛𝑛,𝑖𝑖(𝑡𝑡)    [ 33 ] 

From this equation the overall corrosion waste can be determined. As stated before, due 

to the conflicting balance and importance of certain parameters, the functions they used will be 

different from the ones used in this project. Also the relations of all the functions that are being 

evaluated as a part of the waste function will see some rearrangement of the inclusive functions. 

Namely the oxygen dissolved function will feature far less prominently in the project of this 

paper, and as such the minimization or elimination will be taken into account. This will mainly 

be due to the idea that the oxygen will remain at a fairly constant level with the overall change 

being minimal. The same can be stated for the salt content as the solution that is being used will 

be constant through all tests. 
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3.0 Methodology 
         To begin, the team conducted general research about the process of corrosion. The goal of 

the research was to establish a complete understanding of corrosion, specifically how and why it 

occurs. From here research was done into the current testing methods of corrosion, and adapted 

to the study of this project, with the addition of the standards provided by the sponsor. After the 

team completed testing all of the products, analytical and numerical analysis of the data acquired 

was performed. The next step after the analysis was creating a mathematical model to predict the 

rate of corrosion with respect to time using the data that was acquired.  

The project began with general research in to the corrosion problem. The intent was to 

firmly establish the reasons for corrosion formation, along with a general understanding of its 

effects. From this research, the groups was able to discuss and decide on which types of 

corrosion would most likely be experienced. From this point, research was directed into the 

current testing methods of corrosion, and utilized to develop the methods of testing applied in 

this project.  

There were quite a few research resources available to the group members during the 

course of the project. In order to create a fixture for testing, the machine shop in Washburn Labs 

was used for the creation of several test components. The upper levels of Washburn also had 

chemical rooms where solutions and etchants were mixed, and samples were polished and 

examined. The chemical laboratories in Goddard Hall were used for accessing the chemicals 

needed to create the testing solutions and etchants. 
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3.1 Tests that apply 

3.1.1 Loss/Gain in Weight 

Loss/gain in weight testing is a very useful test when evaluating the effects of corrosion 

on a sample over time. By exposing the sample to a corrosive solution for a period of time, the 

gain in weight caused by the corrosive product allows for an evaluation of the chemical reaction 

occurring on the sample. Alternatively, by removing the loose corrosive product from the 

sample, a weight difference can reveal the chemical process that occurred over time as well. As 

such the two tests are very similar with only how the sample is handled at the end of corrosion 

induction process being the major difference. The testing apparatus allows for the testing of 

multiple samples at the same time in the same solution, which helps to minimize unexpected 

variables that may interfere with future measurements. However, the drawback to these tests is 

the number of samples required to get an accurate graph of mass vs. time is much larger than 

some other tests available. 

3.1.2 Cross-sectional Corrosion Damage Measurement 

There are several steps required for measuring the cross-sectional corrosive damage in small 

samples. To begin, a clean unaffected small sample is mounted and polished. This clean sample 

is placed on the microscope with the 50X magnification, during which a technique called 

thresholding is used on this clean sample. The process of thresholding selects a specific color 

range on an object. For this study, the entire clean sample was selected as the threshold. After the 

entire sample is selected, this threshold setting is saved on the computer for later use in 

comparisons. In addition to saving these threshold settings, the entire uncorroded cross-section 

area is measured for future comparison.  
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Once the clean sample has been thresholded, a dried corroded sample is placed on the Nikon 

Eclipse MA200 microscope and properly oriented for cross-section measurements. The 

microscope lens is placed in the 20X magnification. In order to ensure uniform measurements, 

the samples are rotated on the microscope such that the tip is always towards the user. 

3.1.3 Surface Area Measurement 

One way to quantify the damage in the smaller samples is to evaluate of the surface area 

change using the Nikon Eclipse Digital Microscope.  This process provides numerical values for 

the damaged area that is present on a smaller sample.  Each sample is taken and placed flat onto 

the microscope, and an un-corroded threshold is loaded onto the corroded sample. Each sample 

is examined and numerically analyzed at 5 sections, to provide a complete picture of the 

distribution of damage along the entire sample.  The same procedure is followed with all other 

samples to gather as much data as possible to avoid any inconsistencies. Using the NIS- 

Elements program (Optical Analysis Program), data that is seen and logged is then easily 

transferred to an excel sheet where loss in area could be seen. The area of the damaged or 

corroded area is subtracted from the original undamaged area to provide the final remaining area. 

3.2 Current Testing Standards 

The sponsoring company provided the group with confidential documents describing 

their current testing for corrosion along with the ASTM G44-99 (2013) Standard Practice for 

Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5% Sodium Chloride 

Solution.70 The company had based its testing procedures from this ASTM standard, which 

70 ASTM Standard G44-99 

Page 73 of 146 

 

                                                 



provided the basic outline for the procedures. Though the company procedure is commonly used 

for SCC testing, it is often used for other forms of corrosion testing such as: uniform corrosion, 

pitting, intergranular, and galvanic corrosion. The testing practice can be applied as a guideline 

for existing tests or used for a unique testing process, keeping in mind that strict test conditions 

are stipulated for the assurance that variations in results are due to variations in the test material 

and not the procedure.  

The alternate immersion test is an all-purpose test that produces valid comparisons for 

most metals. While it is an accelerated test and is considered to be representative of certain 

natural conditions, it is not intended to predict performance in specialized chemical 

environments where a different mode of corrosion may be operative. The test utilizes a one hour 

cycle that includes a 10 minute period in the aqueous solution followed by a six hour drying 

period outside of the solution. This cycle is continued 24 hours a day for a time period 

recommended for the particular material, which can be from 20 to 90 days or longer depending 

on corrosion resistance.  

3.2.1 Important specifications 

 The following test specifications and considerations are taken from the ASM standard 

G44-99.71 They are applicable to the current test methods that will be adapted for the team’s 

testing purposes. 

 

 

71 ASTM Standard G44-99 
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3.2.2 Solution conditions 

The salt solution shall be prepared by dissolving 3.5 ± 0.1 parts by weight of NaCl in 1.5 

gallons of Distilled water (DI). The pH of the salt solution, when freshly prepared, will be within 

the range of 6.4 to 7.2. Only diluted reagent grade HCL or reagent grade NaOH shall be used to 

adjust the pH of the solution which should also be kept at 40◦C. The volume of the test solution 

should be large enough to avoid any significant change in its corrosiveness either through 

exhaustion of corrosive constituents or the accumulation of corrosion products. An arbitrary 

minimum ratio between the volume of test solution and area of specimen of 32 mL/cm2 is 

recommended. Evaporation losses must not be replenished with the salt solution. The simplest 

and recommended procedure is to initially fill the solution to a liquid level line and refill to that 

line daily. Fresh solution shall be prepared weekly but more frequent replacement may be 

required. The portions of the apparatus that contact solution should be cleansed by flushing with 

water.  

3.2.3 Current Testing Standards 

These standard practices have been adapted by the sponsoring company to form two test 

procedures for corrosion induction. The tests vary by the duration and by the aggregation of the 

solution. One of these tests lasts only 48 hours, while the other takes up to two weeks to 

complete. The basic procedure for both tests requires immersion in a heated chloride solution. 

The accelerated test leaves the product in the solution for the complete 48 hours to provide 

aggressive corrosion induction. The other procedure utilizes alternate immersion spending 3 

minutes in solution followed by a drying time of 7 hours. This test allows the specimen to dry 

completely in conditions that are similar to those the actual product endures.  
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The testing used in this project replicated the procedures currently in use, following both 

the sponsor company’s procedure and ASTM G44-99 (2013). The testing implemented were as 

standardized and repeatable as possible in order prevent unintentional variables. Testing involved 

a combination of the two methods to develop reliable data over both short and long term testing.  

3.2.4 Stirring Plate 

The fixture will be placed upon an electromagnetic stirring plate to satisfy multiple needs. 

The first is that the stirring bar will be used to provide flow to the fixture. The stirring bar will be 

magnetically rotated by the magnetic field generated by the plate, which in turn creates the flow 

in the fixture. This flow will be important to accelerating the process of corrosion. The stirring 

plate also provides the source of temperature control. The base of the stirring plate will allow the 

solution to be raised to 40◦C, and the temperature probe will keep the solution at the 

predetermined degrees with minimal variation. Therefore, the stirring plate plays a valuable role 

in the overall conductance of the testing procedure. 

3.3 Fixture 

 The fixture for this project had several goals it must satisfy. The fixture must hold 45 

specimens at one time for testing, and also must be able to hold a corrosive solution without 

suffering any side effects that are detrimental or intrusive to the testing procedure. Finally the 

fixture must be able to withstand a temperature greater than 40◦C without any damage or effects 

detrimental to the tests or the fixture itself. To this end the following apparatus was designed to 

satisfy these needs. 

 

Page 76 of 146 

 



3.3.1 Apparatus 

Any suitable mechanism may be used to accomplish the immersion provided that: (1) it 

achieves the specified rate of immersion and removal, and (2) the apparatus is constructed of 

suitable inert materials. The rate of immersion and removal should be as rapid as possible 

without jarring the specimens. For purposes of standardization, an arbitrary limit was adopted 

such that no more than two minutes elapse from the time the first portion of any specimen is 

immersed, until it is fully covered by solution. Materials of construction that came in contact 

with the salt solution shall be such that they are not affected by the solution to an extent that they 

can cause contamination of the solution and change its corrosiveness. The specimen holders 

should be designed to electrically insulate samples from each other and from any other bare 

metal.  The shape and form of the specimen supports and holders should: 

• Avoid any interference of free contact of the specimen with the salt solution 

• Not retain a pool of solution in contact with the specimen after immersion 

• Avoid specimens contacting each other 

3.3.2 Initial Fixture Design 

The fixture was designed to meet the conditions of the ASTM Standard Practice for 

Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5% Sodium Chloride 

Solution while satisfying additional testing requirements. The fixture must hold multiple small 

samples at once while still providing accurate testing conditions. Basic requirements include that 

this fixture must expose test samples uniformly to solution, facilitating alternate immersion 

techniques in an environment that will not interfere with corrosion development.  
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Additional functional requirements of our apparatus ask that it can support the heating 

and circulation of solution while able to test various types of specimens. The team have added 

the circulation of solution to accommodate for the size of the apparatus and to ensure localized 

environments do not develop. Solution circulation helps to maintain the accuracy of testing and 

to accelerate the growth of corrosion. SCC testing is not a major concern for this project, but the 

designs should be mindful of future SCC test development in such a manner that there is room to 

accommodate such a change. 

3.3.2.1 Material Selection 

The material used in apparatus construction is extremely important to the validity of 

testing. To recall requirements outlined by ASTM G44-99 (2013) the apparatus must be 

constructed of suitable inert materials. Materials that come in contact with the solution shall be 

such that they are not affected by the corrodent to an extent that they can cause contamination of 

the solution and change its corrosiveness. The largest constraint is to avoid any metal materials 

in construction, which leads to the use of either a polymer or glass for tank construction. Glass 

provides excellent chemical resistance but is difficult to work with and was therefore limited in 

use. Polymers are ideal to use a single material in apparatus construction. Acrylic is a promising 

material that was selected for the fixture. It displays excellent chemical resistance in much more 

reactive environments while also providing rigidity, ease of manufacturing, high temperature 

resistance and translucent options. The Borosilicate glass however, had a much higher thermal 

conductivity, which is why it was selected for the base component where heat transfer was most 

important. 
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3.3.2.1 Physical Design 

Initial designs featured a rectangular tank with a removable lid, opening from the top. 

Attached to the lid would be the support for an insertable rack allowing specimens to be 

organized and placed in the assembly when outside of the apparatus with ease. The rack would 

then be slid in the supports and lowered into the solution. This design provides ease of load up 

and handling, is able to keep the specimens in the rack while drying, and has space for up to 15 

samples. The preliminary apparatus design developed using SolidWorks modeling is displayed in                 

Figure 26, and the independent rack can be seen in Figure 27. Several rack designs could be 

implemented to accommodate for various test products, each fitting into a standard support. The 

downfall of this design was in the implementation of solution flow. The rectangular tank would 

inhibit flow while the linear placement of samples in the rack introduced non-uniform exposure 

to solution circulation.  

 

                Figure 26: Primary fixture design. 

 

              Figure 27: Independent rack design. 

3.3.3 Secondary Fixture Design 

The secondary design set out with the goal to better accommodate for uniform flow 

patterns and specimen exposure. In designing this fixture, all components were dependent on a 
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circular flow design. The cylindrical tank allows the solution to circulate uniformly. Test 

samples are attached to the sides in equal configurations in order to maintain that each 

experiences similar flow velocities. The objective was to include nine test mounts, one for each 

sample, that adjust vertically and can adapt to various product dimensions. Vertical adjustment 

allows the selection of the ideal placement for exposure to solution circulation, which may vary 

with height.  

For analytical purposes, the fixture was designed as a basic cylindrical tank with nine test 

fixtures simulating the size and shape of the design. Each fixture is about two inches in width, 

based on a product width of 1.5 inches. The tank itself is 16 inches in diameter, allowing for the 

specimens to sit four inches from both the exterior wall and center of the tank, avoiding wall 

boundary effects and the development of stagnancy in the center caused by circular flow effects. 

Figure 28 displays the design model used to test flow circulation using SolidWorks FloXpress. 

Several different configurations were tested by altering inlet and outlet positions. The initial 

design placed the inlet and outlet ports at the bottom of the cylinder, opposite of each other, seen 

in Figure 29. This provided sufficient circular flow on the tank bottom but neglected the top and 

center of the apparatus. Secondly, the team placed the inlet at the top of the tank, keeping the 

outlet position.  This configuration provided a better distribution of circular flow along tank 

walls but continued to create stagnancy in the center, displayed in Figure 30. The final design 

brought the most uniform flow patterns by placing the inlet at the top of the apparatus and the 

outlet in the center of the base. Simulations show that this developed the best circular flow 

pattern on the edges of the cylinder while reducing stagnancy in the center. Figure 31shows the 

flow pattern for this design.  

Page 80 of 146 

 



As a final consideration, research was done in to use of magnetic stirring and heating 

plates. This proved to be a useful alternative to circulation by an external pump. The plate has 

the advantage of stirring the solution using a magnetic stirring stick placed in the apparatus. It 

would alleviate the need for an external pump, which may introduce solution contamination 

while providing consistent mixing. The test apparatus could simply be placed on this plate 

serving the dual purpose of a heater and a stirrer. Two constraints may limit the stirring plate: 

available plate size and conduction of heat through apparatus material. However, research into 

the available plates allowed the team to find an appropriate sized one for this project.  

 

 

Figure 28: Circular flow apparatus design 
configuration. 

 

Figure 29: Initial inlet and outlet. 

 

Figure 30: Alternate inlet configuration. 

 

Figure 31: Final flow configuration. 
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3.3.4 Final Fixture Design 
 
3.3.4.1 Considerations 

To satisfy the requirements of the tests that were conducted, the team designed the final 

fixture accordingly. A circular tank was chosen to achieve uniform conditions for each test 

specimen. The circular shape allows each sample to be equally distant from both the outer walls, 

and the tank center. The shape accommodates for the introduction of flow to the system as well, 

providing the capability to use a stirring platform for uniform agitation. The stirring platform 

was chosen as a means to heat and mix the solution because it offers a single piece of equipment 

with control of mixing speed and temperature through a thermal sensor placed in the tank. The 

tank size was determined by considering the available stir/hot platform sizes along with the 

position of sample fixtures.  Final dimensions of the tank were 12 inch I.D. by 10 inch height, 

providing enough space for 5 fixtures, and a total of 45 specimens to be placed in the tank and 

allowing for a reasonable solution height of 8 inches. The complete assembly is displayed in 

Figure 32.        

  

 

 

 

 

Figure 32: Complete assembly. 
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3.3.4.2 Material Selection 

 Acrylic plastic and “SCHOTT BOROFLOAT 33” Borosilicate glass were chosen for the 

material of the tank components due to their inert properties and capability to be operated on in 

the shop on campus. The Acrylic plastic was used for the racks, smaller components of the tank 

that hold the samples, and the circular body of the tank. The majority of the components were cut 

from sheets, using a laser cutter providing the accuracy and capability to produce small slot 

widths (.010 inches) needed for small sample testing. Bonding of various parts was easily 

accomplished using a chemical bonding agent, which physically bonded the two pieces of acrylic 

into one. The initial strategy to manufacture the tank was to form a thin acrylic sheet into a ring, 

then bonding it at the seam to a flat base. Due to the various challenges this method could 

introduce, it was determined that the best solution was to build the tank by bonding an acrylic 

tube to a flat base. This strategy increased material costs but provided a reliable tank for future 

testing. The base of the tank was made of the Borosilicate glass, and was chosen due to its high 

chemical resistance and thermal conductivity. Since heat was going to be introduced to the tank 

for testing purposes, a material that was strong enough to withstand the pressure of the solution 

on top and the heat had to be chosen, which the Borosilicate glass accomplished. 

3.3.4.3 Sample Fixture 

The fixture was to be capable of holding two types of samples, both small, and large 

products. From there, racks were designed with slots where either size can rest at any given time, 

shown in Figure 33. Slot sizes alternate to provide the most compact design. Based on the testing 

strategy, the apparatus needed to hold at least 30 of the small samples at once, specifically 

intended for the characterization of corrosion growth over time. Each fixture is able to house six 
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small products and three large products, which provided a total of 30 small products and 15 large 

products among the five sample fixtures within the tank. Each rack was horizontally positioned 

to provide the most uniform solution environment. Sample placement was designed to provide 

adequate spacing on either side from the sidewall, or the center of the tank.  

 

Figure 33: Slot placement. 

3.3.4.4 Vertical Adjustment 

A requirement of each fixture was to be able to adjust the vertical rack placement, 

allowing for optimization based on mixture effects. A pin system was developed to lower or raise 

the samples to multiple heights. The rack itself is attached to two vertical supports that hang 

from the top of the tank shown in Figure 34. The sliding mechanism provides rigidity to the 

fixture relying on the pins strictly for vertical placement. Figure 33 displays the slot features of 

the rack component that the vertical supports slide through. There is a through hole in the rack 

that allows a single pin to pass through both vertical supports and the rack, maintaining vertical 

placement. 
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Figure 34: Tank support rack. 

 

 

   

  

Figure 35: Sample rack holder.

Tank Lid 

Since some tests were conducted with heat, a lid was designed to fit over the rack hooks 

in order to contain vapors and help maintain solution temperature. The lid is important in 

preventing the evaporation of water from the tank, which could potentially increase the 

concentration of sodium chloride in the solution. As for accommodations for the thermal sensor 

that was inserted in the tank, a hole was cut into the lid to tightly fit a rubber seal and the thermal 

sensor. A series of notches were cut in the tank lid allowing for the top of each fixture to 

protrude through. The lid was made of half inch material to provide substantial weight, creating a 

better seal.  
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3.3.5 COMSOL Simulation 

Before a design for a fully functional testing tank could be finalized, certain precautions 

were taken to ensure the apparatus will provide a suitable environment. One concern was the 

involvement of an agitation bar to stir solution during corrosion induction. The team wanted to 

ensure that agitation was uniform throughout the tank. If any area were to receive a significantly 

different agitation rate then testing results would be skewed and not properly represent natural 

corrosion formation. The following sections describe the process by which tank conditions were 

simulated with the software package COMSOL to ensure these requirements were satisfied. 

 

 

 

Figure 36: Tank lid with notches. 
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3.3.5.1 Geometry 

The model used in this study is based on the COMSOL Multi-physics sample model 

titled “Laminar Flow in a Baffled Stirred Mixer”.72 The model is designed as a cylindrical tank 

with four fixtures along the edge. A screen shot of the model geometry is shown in Figure 37. 

 

Figure 37: COMSOL model geometry. 

  The tank has an overall diameter of 12 inches and a height of six inches to model the 

water level. The fixtures divide the circumference into four sections of equal length, and touch 

the side of the tank. Each section of the fixture that extends into the tank center has a height and 

width of 0.5 inches and extends into the center for three inches. The actual experiment setup has 

five fixtures, each with two fixture pieces extending into the center. This simulation was created 

with only four fixtures in order to simplify the design. It is important to note that this model does 

not perfectly resemble the actual setup and is meant as an approximate guide to determine the 

sample and solution height. The stir bar is 2.5 inches in length and has a radius of 0.25 inches. 

72 COMSOL 
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The smooth tips of the stir bar were modeled by adding two spheres of 0.25 inches radius to the 

ends. The model also consists of a central cylinder with a two-inch radius, and its purpose will 

later be explained. 

3.3.5.2 Model Design 

The basis of the model is a system with two domains. The outer domain is fixed and the 

inner domain rotates. The inner domain is the two-inch cylinder in the center, and the outer 

domain consists of everything outside of the two-inch center. In order to create a model with 

only two domains, the entire model was created as the volume that water occupies within the 

system. This study is focused on the fluid mechanics of water, so none of the components in the 

model are made of acrylic. In order to create the outer domain, the four fixtures and inner 

cylinder were subtracted from the outside cylinder. The fixtures in the model represent gaps in 

the model of volume that water does not occupy. The inner domain was created in a similar 

fashion as the result of subtracting the central stir bar from the inner cylinder.  

3.3.5.3.Boundary Conditions 

A no-slip boundary condition was applied to most of the model surfaces. The no-slip 

boundary condition signifies that the fluid in contact with that surface has no velocity, and the 

fluids surrounding this surface have increasing velocities until the bulk velocity is reached. This 

condition was applied to all surfaces in the model except for the top surface and the inner 

cylinder surface. Flow continuity was applied to the central cylinder surface in order to signify 

that the flow on both sides of the boundary are the same, as the inner cylinder was only created 

to separate a fixed domain from the rotating domain. A symmetry boundary condition was 
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applied to the top surface boundary to control the flow. This condition ensured that the flow had 

no velocity normal to the top boundary. 

3.3.5.4 COMSOL Results 
Time to steady state  

The first step in the analysis of the stir tank model was to determine the time required to 

attain a steady state. The model solution is time dependent, so each solution is different 

depending on the specific time elapsed. Each solution was qualitatively inspected to determine 

the time after which no changes appeared in the solution. It was assumed that after the time to 

reach a steady state was attained, the solution was identical for all time intervals afterwards. In 

order to accomplish this task, the model was solved for all times between zero and 20 seconds 

with intervals of two seconds in-between. The fixture heights were also set to 4 inches from the 

base. The results of this analysis are shown in Figure 38.  

 

Figure 38: Velocity magnitude at t=2 seconds. 

Figure 38 shows the velocity magnitude of the water after two seconds. The red region 

indicates areas where the velocity has increased. As expected, the areas closer to the stir bar have 
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a higher velocity than the regions that are farther away. The solution has clearly not had enough 

time to fully develop, as the red region has only spread into the center of the tank. 

 

Figure 39: Velocity magnitude at t=6 seconds. 

Figure 39 shows the velocity magnitude of the water solution after six seconds. The 

solution bulk velocity is increasing and the red region is spreading to the tank walls. However, 

the stirring has not yet affected the top portion of the tank. 

 

Figure 40: Velocity magnitude at t=10 seconds. 
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Figure 40 is for the velocity at ten seconds. After ten seconds, the fixture was assumed to 

be at steady state. For times after ten seconds, slight changes occur to the velocity profile but the 

following general trends stay the same. The red velocity region curves down and around to affect 

the walls. The red region is also spread to the center and region above the fixtures. Also, a small 

curve in the velocity profile representing a vortex can be noted at the top center. All following 

results are shown after ten seconds, because these velocity profiles show that steady state can be 

assumed.  

Fixture Height 

The next and key analysis of the COMSOL model was the determination of the ideal 

fixture height. The ideal position for the fixtures was determined based on the lowest height at 

which all the samples experienced uniform flow. The height of the fixtures was varied from two 

inches to 5 inches above the base at one-inch intervals. An ideal testing height was determined 

from qualitative analysis of the following results. 

 

Figure 41: Velocity contour plot at 2 inch height. 
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Each line on Figure 41 represents a flow path with a specific velocity. The contour plot 

for the model at a two-inch fixture height reveals areas of concern in the tank. As shown in the 

figure, the right samples could experience a different flow pattern than the samples on the left 

region. In addition, there seem to be regions over the samples in which a different flow is passing 

over due to small vortexes formed. 

 

Figure 42: Velocity contour plot with 3 inch height. 

Figure 42 shows results that are very similar to the previous results with minor 

improvements. The left side samples seem to experience more uniform solution velocity than the 

flow pattern on the previous graph. The right side, however, continues to show a pocket on the 

right side. 
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Figure 43: Contour plot and arrow surface at fixture height of 4 inches. 

The final figure is for the fixture with a four-inch height, which represents the lowest 

height at which the samples should be placed for each sample experiences similar flow. The left 

and right side samples have no velocity pockets passing over them. The figure also shows the 

velocity vectors as red arrows. These velocity arrows show that the flow passes evenly over the 

samples. Also, a minor vortex is at the top, which is acceptable because it does not influence the 

samples. 

3.4 Part Drawings 

 See appendix A for complete drawings of the final apparatus parts. 

3.5 Corrosion Induction 

The process of testing begins with general research in to the corrosion problem. An 

understanding of corrosion, how and why it occurs, is vital to the development process of 
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completion for the testing. From here there is an examination of the current testing methods of 

corrosion, and adapting those to the chosen test procedure. The testing procedures chosen 

involve three types of tests: pitting, weight loss, and change in electrical resistance of the 

products, conducted at specified intervals in the induction process. To prepare the metallographic 

surfaces for the following optical tests, the test specimens will be sectioned, mounted, polished, 

and etched. These steps will ease the process for observing the test specimen in optical data 

collection performed once the corrosion process is completed. 

3.5.1 Background 

The corrosion inducement procedure is one of the most important aspects of this project. 

Inducting corrosion onto our specimens will be accomplished by exposing the specimens to a 

corrosive solution, in this case calcium chloride. Corrosion will be induced in two different ways 

through methods labeled the soak and the Dip & Rinse test. The soak method involves a straight 

soak of the specimens being considered. The specimens will remain submerged in the solution 

for the desired duration of the test. The Dip & Rinse method involves the submerging the 

specimen for short duration, such as only a few minutes and then removing the specimen from 

the solution for set drying time. Each of these tests requires that the solution be at a different 

calcium chloride concentration, which will be specified by the test. 

3.5.1 Pre-Test Procedure 

Prior to testing, there are certain preparations were completed. Each rack in the tank was 

labeled from one through five. In order to keep track of each sample position in the tank, the 

team developed a scheme where each slot in the rack had an order. Labeling involved the type of 
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test so that sample one of the alternate immersion samples is distinguishable from the total 

immersion. The larger samples required no major preparation other than be independently placed 

in the numbered slots as well so that that they can be identified during the testing phase. The 

moisturizing strip was removed from each large sample to prevent mass influence. All samples 

however, were weighed for their initial mass, as the change in mass test requires it. From the 

initial weight of the three samples, the significant figures required to accurately measure these 

samples should become clear. As such, all future mass measurements should be to the same 

number of significant figures as determined by this pretesting phase. For the testing purposes of 

this experiment all mass measurements were taken to four decimal places.  

3.5.2 Solution Preparation 

When preparing the station to begin testing, several steps must be completed to ensure 

accuracy and precision among samples. The first step when preparing the tank was to rinse the 

inside of the tank and all holders with a small amount of deionized water. This is to remove any 

contaminants on or in the equipment that may or may not interfere with the testing process. Once 

the tank and holders have been cleaned out, then tank can be filled with the desired solution. The 

magnetic stir plate allows for the mixing of chemicals within the tank. While this isn’t 

encouraged, depending on the chemicals, the mixing process can be accomplished quickly within 

the tank while the solution is heating to temperature. 

The amount of solution used per test is 1.5 gallons. This fills the tank enough to 

completely immerse the samples for the duration of the test. The 1.5 gallon volume requires 

197.8 g of sodium chloride to produce a 3.5% solution. When filling the tank with the NaCl 
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solution, the deionized water should be added slowly to prevent excess splashing within the tank. 

Once the necessary amount is within the tank, the stir plate should be set 20-30◦C for ten minutes 

to prevent any thermal shock on the base of the tank. From there, the temperature can be raised 

to the required 40◦C.  During the entire heating process, the temperature probe of the plate must 

remain in the solution. It is important to recognize that the stir plate controls heat output based on 

its current temperature reading. This means if the probe is not receiving an accurate temperature 

reading, it will continually output large heat in an attempt to increase the temperature, which can 

lead to a dangerous testing environment and can potential damage the tank or equipment. 

Adding the NaCl in small amounts with a stir rpm of 300 allows for a quick and equal 

mixing of the solution. A glass stir bar can also be used if needed to break up and chucks on the 

base of the tank. This should all be done while the tank is heating, to save time and assist in 

mixing. 

3.5.3 Sample Preparation & Handling 

While the solution is undergoing heating the samples can be inserted in the holders. Each 

sample should be inserted so that they can be easily tracked as to which sample is which. For that 

reason, every holder has a number 1-5 for easy identification. It is recommended that a numbered 

diagram of the apparatus be printed. Gloves should be worn when inserting the samples to 

prevent any contamination potentially affecting test results. Once the samples are inserted into 

the holders, each holder can then be placed into the solution granted the predetermined 

temperature has been reached. The lid lining of the tank has cut outs where each holder should 

rest with equal spacing. This is required for the lid to properly close on the tank. The holders 
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should be inserted slowly into the solution to prevent any damage to the holders and to make 

sure the samples remain firmly in place. From this point, the lid can be placed over the tank and 

should securely fit over the legs of each holder. This is to prevent as much loss to evaporation as 

possible during the test. 

When removing the samples from the tank, there are a couple of steps that must be 

followed in order to maintain consistency among the test samples. When removing the samples 

from the tank, a tweezers or other small griping instrument should be used on the smaller 

samples. Gloves should be worn during this portion to prevent an unnecessary damage. If a 

larger sample is blocking or making it difficult to remove smaller sample, the larger sample can 

be lifted carefully to make access to the smaller sample easier.  

Once removed, all samples should be dipped in a beaker of deionized water. This is in 

order to remove any solution that may still be attached which could create undesired corrosion. 

The sample is then gently dabbed on both sides by a paper towel to remove the excess water. 

Once dry, the samples are individually separated and labeled for data collection. 

3.5.4 Total Immersion Test 

The following procedure for Total Immersion is altered based on the procedure of the 

sponsoring company. A 3.5% sodium chloride solution was selected for this study, however the 

solution may be altered in future tests. The procedures outlined in the previous two sections 

should be followed for solution and sample preparation. Once all samples are completely 

submerged in the corrosive solution the total immersion test has officially started, and the 

following specific procedure was used to remove the samples. Three small samples and one large 
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sample were removed from the fixture at every specified time interval. Three small samples were 

removed at a time so that an average value can be calculated for each time slot. After the four 

total samples were removed, they were placed on a paper towel to dry. The small samples were 

also carefully flipped to ensure both sides are dry. These samples were then individually stored 

in labeled bags for later analysis. The remaining 27 small samples and nine large samples remain 

immersed in the corrosive solution. Once the next specified time interval has passed, this 

procedure for removing samples was repeated until no samples remain in the tank. 

The main difference between the Total Immersion test described in the ASTM standard 

and the procedure presented is the selected time intervals. The ASTM standard states the samples 

must be left in the solution for a minimum of six hours before removal. However, the used 

altered procedure does not have a minimum immersion time. This change was implemented in 

order to gain a better understanding of the corrosion damage at shorter time spans. The following 

two tables show the selected time intervals for the first and second total immersion tests 

respectively. 

Table 3: Total Immersion Test 1 time intervals 
 

Interval 
Number Time Small Samples 

Remaining 
Large Samples 

Remaining 
Total Hours 
Immersed 

0 8:00 AM 30 10 0 
1 11:00 AM 27 9 3 
2 2:00 PM 24 8 6 
3 5:00 PM 21 7 9 
4 8:00 PM 18 6 12 
5 8:00 AM 15 5 24 
6 11:00 AM 12 4 27 
7 2:00 PM 9 3 30 
8 5:00 AM 6 2 33 
9 8:00 PM 3 1 36 

10 8:00 AM 0 0 48 
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Table 4: Total Immersion Test 2 time intervals 

Interval 
Number Time 

Small 
Samples 

Remaining 

Large 
Samples 

Remaining 

Total 
Hours 

Immersed 
0 3:00 PM 30 10 0 
1 4:30 AM 27 9 1.5 
2 9:00 PM 24 8 6 
3 9:00 AM 21 7 18 
4 3:00 PM 18 6 24 
5 3:00 PM 15 5 48 
6 3:00 PM 12 4 72 
7 3:00 PM 9 3 96 
8 3:00 PM 6 2 120 
9 3:00 PM 3 1 144 

10 3:00 PM 0 0 168 
 

3.5.5 Alternate Immersion Test 

The alternate immersion (Dip & Rinse) test shares many similar features of the total 

immersion test. While the preparation measures are the same, such as mass measurements, the 

major differences arise in conduction of the test. Once all preparations are complete, the test 

begins with the immersion of samples for a time of 10 minutes. The immersion should not be 

shorter or longer than this established time. Once the time is reached, all the samples should be 

removed from the solution. Once removed, the samples should be removed from the features that 

hold them and placed on a wire rack to dry. It is important that all samples be carefully labeled 

so that the exact number of the sample can be know when the time comes for analysis. The 

samples should not be rinsed and should be left to dry on the wire rack for a minimum of six 

hours. Once the minimum amount of drying time has passed, the necessary sample for that time 

interval can be removed and labeled as such. Once the samples are labeled, the remaining 
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samples should be dipped into the solution again for the 10 minute time limit and the process 

repeated.  

Table 5: Dip & Rinse time table 
Interval 
Number Time 

Small Samples 
Remaining 

Large Samples 
Remaining 

Total Hours 
Immersed 

0 8:00 AM 30 15 0 
1 8:00 PM 28 14 12 
2 8:00 AM 26 13 24 
3 8:00 PM 24 12 36 
4 8:00 AM 22 11 48 
5 8:00 PM 20 10 60 
6 8:00 AM 18 9 72 
7 8:00 PM 16 8 84 
8 8:00 AM 14 7 96 
9 8:00 PM 12 6 108 

10 8:00 AM 10 5 120 
11 8:00 PM 8 4 132 
12 8:00 AM 6 3 144 
13 8:00 PM 4 2 156 
14 8:00 AM 2 1 168 
15 8:00 PM 0 0 180 

 
3.6 Data Collection  

A series of three collection types have been selected based on the following 

considerations: The goal of this project is to produce a reliable and repeatable method for 

quantifying corrosion. Therefore the tests are simple to complete providing the least chance of 

error. They are also among the quicker tests to complete and multiple can be completed with a 

single sample. The use of a single sample for multiple tests allows for the comparison of data 

between collection types, further ruling out variation. The following sections will explain the 

process for analyzing the tests. 
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Once all samples for a testing round have been collected, the use of each sample needs to 

be determined. Due to the fact that some testing methods pursued in this project are destructive, 

all non-destructive tests must be completed first. These non-destructive tests include mass 

measurements and surface area analysis, and should be completed before the mounting stage of 

test procedure.  

3.6.1 Mass Measurement 

 When measuring the mass of the smaller and larger samples for testing, it is important 

that the mass measuring device provide up to four significant figures. This will be due to the 

small mass of the smaller samples. The larger number of significant figures is to accurately 

measure the difference in mass between each of the samples and the overall change of the 

samples after the corrosive process. When measuring the sample masses, it’s important to tare 

the scale before each measurement. The tare will take into account anything that may have fallen 

on the scale and interfered with the measurements. This will be especially important after the 

corrosive process when the change in mass is relevant. The samples will have the possibility of 

losing some corrosive product while on the scale. While this would not affect that samples 

measurement, as the corrosive product is still a part of the change of mass, if the product stays on 

the scale and no tare is performed, it could adversely affect the results. Also, due to the 

sensitivity of the measuring device it is important that the samples be maintained in an 

environment that prevents the accumulation of dust or other particles on the samples. For 

example, after measuring the samples, each was returned to a plastic bag to keep the samples 

clean. This should help hold a consistent and reliable result throughout the testing process in 

terms of mass measurement. 
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The final mass of each sample should not be taken immediately following its removal 

from tank. This is due to several reasons, but the most important is the water weight. If weighted 

immediately following removal, there is a chance of water and/or solution still being on the 

sample. This would affect the mass, and due to the sensitivity of the measuring device and the 

accuracy required, the results would not be reliable or usable. As such, the mass measurement of 

samples should wait to the completion of the test, and the final samples removed should be given 

a day or so to dry completely. This is especially important for the larger samples, which have a 

significant amount of plastic surrounding them. The chances of solution being trapped, or stored 

in crevices is high and precautions should be taken to prevent this occurring in the 

measurements. 

3.6.2 Surface Area Analysis 

Following the completion of a testing cycle and following the overall mass measurement 

test, the next test conducted is the surface area analysis. To complete this testing method, a video 

microscope should be used as to provide a constant visual feedback at 5x magnification, which is 

necessary for this analysis process. To begin the testing process, a completely un-corroded 

sample must be used as a baseline for the test. It should be noted that the general lighting in the 

room can have an effect on the baseline threshold imaging, so if testing is stopped for an 

extended period of several hours, a new baseline threshold should be used.  

 When selecting the baseline threshold, the area selected should the entire area of the un-

corroded sample in the image. This process should be done for two certain areas of the sample. 

Those areas of the sample are the interior of the second cut out and main section between 
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cutouts. These areas are needed for the overall change that will occur in the future samples. 

Therefore the five total areas for analysis per sample are next to and on the hole, for both the 

upper and lower cut out, and the area exactly in the middle of the two cut outs. The area in the 

middle should be reached by taking the image of next to the cut out, and performing two screen 

wide movements towards the center. This should put camera in about the center of the sample for 

every sample that is considered.  The thresholding therefore gives the initial un-corroded area 

and calibrates the computer for the color of the un-corroded surface. 

 Once the initial thresholding is completed, then the sample analysis can begin. There are 

5 points to be examined per sample in order to avoid as much variation as possible. It should also 

be noted that the camera will be inversed, so the top of the sample in video screen is actually he 

bottom of the sample. The five sections that are being evaluated are then thresholded with the 

same threshold as the baseline and the corroded areas should not be accounted for when the 

image analysis takes place. This in turn grants a change of surface area for the samples, when 

compared to an un-corroded sample. 

Once the corroded sample is thresholded, the image is then measured for the area covered 

by the threshold and the data exported to an excel document. This process should be repeated 

five times per sample, once for each of the designated areas 

3.6.3 Cross Sectional Analysis 
 
3.6.3.1 Mounting 

A series of samples will be mounted for cross sectional optical analysis. Mounting is 

required because of the small size of the samples. A mounting machine will be utilized in order 
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to properly mount the sample. To begin, the sample must be cut along the surface that is to be 

evaluated. In this case each sample is cut in the center. A sharp cutting instrument should be used 

to minimize the damage to the sample during the cut. Once the cut is made, a C-clamps is used to 

hold the sample in place before mounting. 

Once the sample is held properly, the sample will be placed on the platform of the 

mounting machine with the surface that is going to be observed on the bottom of the platform. 

The EXTEC mounting machine must be turned on from the back left corner and verified that the 

water supply is active. The sample is then lowered into the machine by holding the down arrow 

on the control panel. When at the bottom of the machine, mold powder can be funneled into the 

chamber using only a single scoop which is provided with the powder. For all mounted samples 

glass reinforced EPOXY mounting powder was used.  

 

Figure 44: Mounting press. 

The top lid of the machine must be secured by rotation and the red cover rotated over the 

lid. The mounting machine’s pre-programed function F-1 is used run the cycle. The cycle time 

should take 20-25 min to complete. Once completed, the mount removed should look like an 
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inch thick bottom cap. This will be a completed mount with the surface to be examined at the top 

of the mount. Figure 45 shows an example of the mounted sample. 

 

Figure 45: Mounted sample. 
3.6.3.2 Polishing 

Once the sample has been mounted, it must be polished to a near mirror finish for optical 

viewing. This is accomplished by grinding the mount on increasingly higher grades of sand 

paper until the surface looks smooth under an optical microscope. For this project, the starting 

sandpaper grade was 600, which then increased as the surface was polished. The surface was 

examined under an optical microscope in order to evaluate the polish of the sample and 

determine whether it was ready for etching. Once the sample is viewed under the optical 

microscope and no scratches on the smaller sample can be seen, then the mount can be etched. 

After mounting, polishing, and etching the predetermined samples numbers, cross-

sectional analysis can begin for the samples. Each of the samples must be clearly polished as to 

allow for the visual distinguishing of corroded and un-corroded surface. The process that will be 

used to distinguish the corrosion will be the same thresholding process that was employed on the 

surface area. The fixed area that will be looked at is the distance of 200 microns from the tip of 
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the sample going towards the center. This area will be consistent for every sample as to provide a 

clear pattern of the penetration of corrosion. Due to the time needed to mount the samples, a 

single sample from each time slot was taken and mounted for the cross-sectional analysis. 

3.6.3.3 Etching 

Etching was specifically used in the microstructural study. It is the process of exposing a 

material surface to certain acids and or chemicals in order to view particular aspects of the 

material microstructure. In this project, etching was used for two particular reasons: to determine 

the microstructure of the samples and to see the effects of corrosion on the microstructure. The 

process for etching the samples begins with the determination of the etching solution. By etching 

the sample, specific particles are isolated and removed to provide a better surface for optical 

inspection.  

 

Figure 46: Etching locations and resulting microstructures. 

A nital solution was chosen, which constitutes a 2% mix of nitric acid. Plastic gloves are 

required during any chemical handling and all procedures must occur in a fume hood as a safety 
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precaution. The sample needs to be placed in 2 ml of the nital for a specified period of time (in a 

magnitude of seconds), then quickly removed and placed in a petri dish of 2-5 ml of ethanol 

(enough to effectively cover the sample) to stop the reaction. For nital, the duration should be 5 

seconds. Fry’s reagent was also used in etching. Fry’s reagent requires significantly less time, as 

the etchant is far stronger, and should be diluted where necessary to achieve useable results.  

Both etchants are aggressive acid solutions which can easily over etch the sample. Careful 

attention must be given to the time of reagent exposure.  

Once the sample has been soaked in ethanol, it is air dried by a hair dryer or any other 

reasonable source for a period of 1-2 minutes. When completely dried, the mount is examined 

under microscope to determine the extent of the etching. If the etching is not deep enough the 

process should be repeated until favorable etching is seen. If over etching occurs, the sample can 

be repolished and etching performed again. An example of the etched material can be seen in 

Figure 47.  

 

Figure 47: Microstructure of tempered martensite. 

Page 107 of 146 

 



4.0 Results 

4.1 Mass Data Analysis 

4.1.1 Total Immersion Test 1 

To begin the experimentation of this project, test 1 focused on the total immersion of the 

samples. Following the mass measurement guidelines, the initial mass values were taken, and 

once the test was complete, final mass was taken to examine the difference. For all collected 

mass data, see Appendix B. The final column in the appendix tables represents the average 

change in mass for each time interval. The first interval change average value represents the 

average change in mass for samples one, two, and three. The second value represents the average 

of samples four, five, and six, and the same pattern is followed for each of the 30 samples down 

the column. 

From the collected data, several graphs were developed in relation to the mass loss over 

time. The mass vs. time graphs can be very telling in terms of their relationship and the overall 

effects of the corrosive process. An important calculation is the average mass loss per interval. 

From the first interval, the samples have continually decreasing overall masses.  

Page 108 of 146 

 



 
Figure 48: Small sample mass change. 

Using Figure 48, the difference in mass can be seen with relation to the initial and final 

masses. From this figure the relationship over time is obviously one of deterioration. Though 

there are some variations from sample to sample, the general relation is that the longer the 

samples are immersed, the more mass is lost over time. By taking the average of the mass change 

per interval, an examination of the mass loss per interval can be made, so the time slots mass 

change can be seen. The data forms a fairly linear pattern with a few variations. From this it can 

be hypothesized that the mass loss over time follows a linear pattern for at least the first 48 

hours. 
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Figure 49: Interval mass change. 

The final method of examination employed on the mass is the interval change in mass. 

This is to examine the difference between the points in the interval mass change and thus the 

difference of the rate of change. Using this comparison allows the view of how quickly mass 

changes through the intervals occurred, and what interval had the greatest change of mass. From 

these numbers, a period of increasing mass change from the first interval to the fourth was 

observed, followed by a period of constant mass increase. During the final interval, there was a 

rapid jump in the rate of mass change. 
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Figure 50: Rate of interval mass change. 

The rate of change of the change in mass allows for some interesting analysis. From the 

research in the background, it is known that as corrosion occurs a film forms on the surface area. 

As the corrosive process progresses, particularly around the 5th interval, the film begins to form 

and slow down corrosion. The entire sample is still exposed to the solution, so the loss of mass 

continues, but at constant rate.  

 

Figure 51: Small samples mass measurements. 

The mass change of the large samples was not as revealing as those of the smaller 

samples. Still, there were a few points of interest to be noted and changes made for future tests as 
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a result. The mass change of the larger samples collected in the initial test will be discussed 

further alongside the results of total immersion test 2, as the combination of the results is more 

revealing. 

 

Figure 52: Large sample mass change, initial total immersion test. 

4.1.2 Alternate Immersion Test 1 

Following the procedure for the Dip & Rinse test, the samples were exposed to the set 

conditions for the selected amount of time. The masses were measured again to calculate the 

difference due to corrosion. The results however, were not as expected, returning a very small 

mass loss in the samples.  

The change in mass following the 3 minutes submersion process was very small. Due to 

the limited exposure to the solution, there was not much corrosion during this test. The result is 

that the masses measured either varied very little or actually increased during the testing phase. 

The explanation for this occurrence is that there was so little corrosion occurring during the 

duration of the test that all variance can be attributed to the variance of the mass scale. Due to the 
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precision of the equipment, any variation may be the cause of the measurement differences. 

Therefore, the change in mass cannot definitively be determined a result of corrosion for this 

test, but rather the standard deviation of the equipment, explaining the miniscule gain and loss of 

mass at each interval. 

4.1.3 Total Immersion Test 2 

The mass results from the total immersion test 2 were completed specifically to 

supplement the results found in test 1. By overlapping several intervals and increasing the overall 

time for the test, the general pattern of corrosion begins to take shape.  

 It is worth first noting that the change in mass from total immersion test 1 and 2, when 

the time interval overlaps, are fairly similar. There are some slight differences, but the scale stays 

the same and the slight variation is to be expected as corrosion cannot be completely controlled 

to replicate results. Still these similar results reinforce the fact that the corrosion pattern is being 

repeated and the overlapping numbers support each other.  

 When combing the two total immersion test results, the average interval mass provides a 

pattern over the course of the 168 hours of immersion. The following can be seen in Figure 53. 
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Figure 53: Total Immersion Test 2 small sample mass measurements. 

From this graph, the general formula of the corrosion can be determined. The pattern 

shows that the expected corrosion equation follows the pattern of an exponential decay. From 

this, the baseline and starting point of the overall equation can be formed. However, it also 

allows for some hypothesis revolving around the point where corrosion may in fact stop. This 

point is in reference to the point in which the sample may stop losing noticeable amounts of mass 

and appear to show a mass change of around zero. By fitting the data points, an equation for this 

estimation can be found. 
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Figure 54: Mass loss over time. 

This line was found using the following equation: 

y=1.75e-7*t2-0.000088*t+.0918;   [ 34 ] 

From this equation the derivative is taken to find the zero point of the slope. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 3.5𝐸𝐸 − 07𝑡𝑡 − 0.000088 = 0  𝑡𝑡 = 251.42 𝐻𝐻𝑝𝑝    [ 35 ] 

𝑠𝑠(251.42) =  .08073 𝑀𝑀𝜆𝜆𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝜆𝜆𝑛𝑛𝑚𝑚𝑒𝑒/𝐻𝐻𝑝𝑝    [ 36 ] 

This answer is plausible, though unlikely, as that result suggests only a 13% mass loss 

occurred before the corrosion process stopped completely. Still, it is a useful estimate and could 

be a testing point for future tests that take the time duration longer that the duration tested here. 
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When looking at the larger samples, it is easier to consider the combination of the two 

total immersion tests due to a similar method to the smaller ones. To start, combining the initial 

and final mass measurements of all the larger samples are shown in Figure 55. 

 

Figure 55: Combination of large sample mass change in Total Immersion Test 1 and 2. 

It should be noted that the initial masses of the samples from the first total immersion test 

were greater as a component of the sample was left attached for that test. It was later discovered 

to absorb water and hence interfere with mass measurements. This explains why earlier the mass 

varies so much, as the component was removed for the second total immersion test. 

 The first part of this graph that stands out is the fact that the first two samples end with 
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effects, the earlier samples were measured sooner, and hence there was most likely still solution 

in the cases that influenced the mass measurements. 

 Still, the mass results of these samples are not as informative as the smaller samples. This 

is mainly due to the plastic structure around the samples. This plastic makes up a majority of the 

sample mass. Relative to this weight, the metal samples within have a very small mass. 

Therefore, even when corrosive effects are present, mass loss is minuscule when compared to the 

rest of the sample. From this it is safe to assume that the most reliable results for mass change 

come from the smaller samples.   

 

4.1.4 Alternate Immersion Test 2 

 Results seen from the final alternate immersion trial mirror the results seen in test 2. The 

numbers show a minimal change in mass, even when the immersion time was increased more 

than threefold to try and induce more corrosion. Due to the lack of useable data, this section will 

focus on discussing the possible changes to this test to get actual corrosion results in this time 

period.  

 The original Dip & Rinse test resulted in very little mass change and the second test 

experienced the same pattern as the original test. Increasing the immersion time did not affect the 

results, so another possible method of influencing the corrosion rate seems to be other changes to 

the test procedure. Instead of changing the immersion time, each sample should be left to dry in 

between tests in a more humid setting. Since the goal of the test is simply to induce corrosion, 

the humid setting should not, in theory, influence any of the future test results. The rise in 

humidity may slow the drying rate of the samples leaving moisture on the samples, and 

continuing the corrosion process. Since the samples that have run their time in the solution will 
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be stored in a separate environment, there is no fear of influencing the results by making this 

change. 

4.1.5 Change in Mass after Sample Removal 

It should be noted that corrosion will continue to occur to a sample exposed to excess 

oxygen. To counter this effect, all samples were stored in air-tight bags as soon as they were 

removed from the solution and during times when tests were not being conducted. To confirm 

that the masses of the samples did not change from the original measured values, several samples 

were measured again over a month after the original mass measurement. The results found the 

masses were almost exactly the same as initially measured.  As a result, the assumption that no 

additional corrosion or change to the mass occurs once the samples are removed from the 

solution can be made. 

4.2 Surface Area 

After the samples were corroded, the surface area damage was measured by visual 

thresholding. During the two total immersion trials 30 small samples and 10 large samples were 

corroded with the 3.5% sodium chloride solution. The first total immersion test was conducted 

for two days. In order to increase the scope of the results, the second test was conducted for a full 

week. The second test time intervals were strategically chosen to fill in gaps in the results. 

4.2.1 Total Immersion Test 1 

The results for the surface area damage for the first total immersion test are shown in 

Figure 56. The ten data points shown each represent an average of three numerically ordered 

Page 118 of 146 

 



samples. As shown in the figure, there is an upward trend as time increases. The corrosion 

relationship appears to be linear, however this relationship cannot be stated with certainty as the 

results represent a limited time range. 

 

Figure 56: Total Immersion Test 1 surface area corrosion damage. 

4.2.2 Total Immersion Test 2 

After total immersion test 1 was conducted, the total immersion test was repeated for a 

longer time range of 168 hours to develop a better understanding of corrosion growth behavior.  

Figure 57 shows the combined results for the second total immersion test as well as the 

initial results. 
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Figure 57: Combined Total Immersion Surface Area Corrosion Damage. 

Similar to Figure 56, each of the ten new data points in Figure 57 represents the average 

of three damaged results. This figure corresponds more with what is expected. In comparison to 

the first total immersion test, which showed a linear relationship, this figure shows a more 

asymptotic relationship. It is expected that the corrosion damage reaches an asymptotic value, as 

the samples are stainless steel, which creates a layer of oxides covering the surface and blocking 

corrosion over time.  

With the exception of the final data point from total immersion test 1, the data fits fairly 

well with the results from total immersion test 2. In general, the surface area test produces more 

reliable results at a larger time scale. Early on in the corrosion process, corrosion grows from the 

sample tip outwards in a seemingly arbitrary fashion, so some of the early variation in the results 

can be included in the noise. As the damage progresses, a thicker layer of oxides is formed on the 

surface, which produces a more pronounced and consistent product.  
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Pictures were taken of the surface area damage for a group of the small samples. 

Afterwards, these representative samples were used as part of the cross sectional analysis for this 

project. Figure 58 shows surface area images for the total immersion test 1. 

 

Figure 58: Surface area of damage of Total Immersion Test 1. 

The images represent the surface area of damaged results for the total immersion test 1. 

The images are separated into five columns, each of which represents a sample. The red area 

shows the area selected by the threshold software and represents the un-corroded area. From left 

to right, the images represent samples at 6, 12, 24, 30, and 36 hours of exposure to the corrosive 

solution.  
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Although the damage does seem to get progressively larger from left to right, these 

results can be influenced at early stages by the drifting of corrosion products over the surface. As 

is shown in the third column (24 hour sample), it is expected that the damage to this sample 

would be less. However some corrosion products have drifted to the left and may have led to a 

higher surface area of damage measurement. A potential solution to this issue is to carefully wipe 

the surface of each sample with a solution that will not cause further damage or influence the 

corrosive film. Figure 59 shows the surface area of damage results for the total immersion test 2.  

 
Figure 59: Surface area of damage for Total Immersion Test 2. 

Each column represents a sample with a different exposure time. From left to right, the 

pictures represent 1.5, 6, 24, 48, 96, 144, and 168 hours of exposure. From these images is clear 

that the damage progressively increases as time passes. An interesting note is that the damage 

originates at the sample tip (right side of pictures) and progresses to the center. Although it can 

be seen that some of the earlier samples have slightly higher results due to surface products 

Page 122 of 146 

 



drifting to other areas, this interference is much less for the later time period samples where the 

corrosive film is more pronounced. 

4.3 Cross Section Analysis 

 Cross sectional analysis of the samples offer a view of the internal effects of corrosion 

growth. Figure 60 shows progressing penetration of corrosion with increasing time from left to 

right. Throughout the project a consistent attack was observed internally. The following sections 

describe the data collected on this growth. 

                   

Figure 60: Cross section of samples. 

4.3.1 Total Immersion Test 1 

A graph was constructed from the cross sectional data acquired by optical thresholding 

from the first total immersion test, shown in Figure 61. From this a slight pattern in regards to the 

interior cross-section corrosion was observed. The steady decline indicates the possibility of an 

equation defining the process of interior corrosion such as this. Following the analysis of total 

immersion test 1, several points of discussion came up, which will be addressed in the third tests 

analysis section. 
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Figure 61: Cross sectional area for Total Immersion Test 1. 

      

 

 

 

4.3.2 Total Immersion Test 2 

The cross section analysis on the samples from total immersion test 2 were performed 

with the original intention of supplementing and reinforcing the results from that test. However, 

when comparing the cross sectional graphs for each test, there are several inconsistencies. 
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Figure 63: Cross sectional area for Total Immersion Test 2. 

 The main inconsistency and primary concern is that fact that the cross-sectional area of 

the first test showed a significantly faster corrosion rate than samples of total immersion test 2. 

The differences weren’t a small rate, but rather a rather drastic change. As a result, it is necessary 

to try and determine the reason for this major difference. When looking at the mass changes of 

these two tests, changes occur on a fairly similar level at similar time intervals, meaning that the 

exposure and mass loss were similar. To understand this inconsistency, the units of each was 

compared and it was found that the scaling of the program had changed between the tests. This 

resulted in the variation of data that was seen. However, by making a few assumptions regarding 

how the scaling changed, it is still possible to get viable data from the results.    

To try and explain the causes behind this internal corrosion rate, the most likely 

possibility is to focus on the thresholding method as the main issue. While the thresholding 

method is sound in theory, the likely cause of this issue is the lack of precision on the instrument 

used. The main issue therefore is the computer’s ability to distinguish the small corroded 

particles in a cross-section. This can be seen in the results later during the third test, where the 

0

5000

10000

15000

20000

0 9 21 33 45 57 69 81 93 105 117 129 141 153 165Cr
os

s S
ec

tio
na

l A
re

a 
U

nc
or

ro
de

d 
(µ

m
2 )

Time (Hr)

Cross-Sectional Uncorroded Area

Page 125 of 146 

 



cross section area is very small. On several of these samples, the depth of penetration was 

significantly larger than the previous samples, yet the cross-section selected by the program was 

often off, requiring manually alteration to try and align the results. Therefore, the programs 

limitation lead to human factors in the data collection process, which in the end is the most likely 

cause for these results. 

The general lighting was another source of potential error for this test. The thresholding 

measurement relies on optical methods which isolate specific colors and shades of the material. 

Therefore, this process requires an extremely consistent lighting environment during the measure 

of all test samples. However, due to the time necessary to completely measure samples, the 

lighting could change due to the time of day or even shadows through a window.  

Still, the method brings up several factors that could be considered for future tests. One is 

that a smaller focus area may be needed in order to pursue this method of analysis. The tests here 

were done on a 200X magnification, on a very small sample as well. Therefore, larger samples or 

a larger magnification may help solve the calibration problems that were faced by the project 

team.    

4.4 Equation Formulation 

A primary goal of this project was in the development of a corrosion rate equation based 

on the data collected. By using the established corrosion equation Eq. 16, we took the next step 

of determining what the value of the constant K1 would be.  
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Looking at the comparisons of the known literature equation and the teams’ 

representation of the volumetric equation, the similarities a fairly close. This is due mainly to the 

fact that the volumetric is based off of the literature equation. Since the established model 

focuses mainly on a length per time model, by expanding this to be m3 per time, the volumetric 

form could be evaluated. All that remained was to find the functions that represented the 

measured data of W, A, and V. 

To begin the process to determine the necessary functions, the change in mass was 

determined. By plotting the change over time, it is possible to fit an equation, which will 

effectively function as the W term in the predictive volume corrosion model. 

R=Rate of corrosion [in/yr] 
W=Weight loss [g] 

ρ=Density [g/m3] 

A=Corroded Surface Area [m2] 
T=Time [Hr] 

k=Corrosion constant 

Established Corrosion Model 

V=Rate of corrosion [m3/hr] 
W=Weight loss [g] 

ρ=Density [g/m3] 

A=Corroded Surface Area [m2] 
T=Time [Hr] 

K1=Corrosion parameter [m2] 

Predictive Volume Corrosion Model 
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Figure 64: Mass loss over 168 hours. 

Using this function, which can clearly be seen in Figure 64, the function of time for mass 

loss can now be inserted in the corrosion equation. This process is repeated for surface area data 

as well. 
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Figure 65: Surface area corroded (%). 

 It’s important to note here that the surface area is represented in un-corroded percentage 

values. Therefore, to get the necessary value of A, the percentage was changed to one minus the 

un-corroded percentage given by the equation. This grants the corroded surface area percentage, 

which when multiplied by the surface area grants the necessary variable.  

 The final variable is the corrosion rate R, which is normally given in length over time 

units. However, the formulation attempted by the project alters the R to a volume related 

variable. To achieve this from the data, the cross section corrosion area was fitted over time like 

the previous variables. 
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Figure 66: Cross section corrosion area. 

 Since it was determined that the corrosion through the samples was fairly uniform from a 

cross sectional view, multiplying the cross section by the length gives the sample’s volume 

change. Since the exact measurements of the samples can be measure, this makes determining 

the volume and corrode volume fairly simple. The exact density is unknown, but because of the 

material, a reasonable estimation can be made. By checking the units and converting to the 

necessary units, the variable K1 was solved for. 
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Figure 67: Solved K1 parameter value. 

 It should be noted here that K1 is a function of time that has the units of m2. However, 

this K1 depends on the multitude of variables that affect corrosion, and were not tested in this 

project. Still, by fitting the K1 curve, estimations on where certain variables would fit can be 

made. For example, known effects of fluid velocity, temperature, and salinity have been 

researched in the background of this paper. Taking the general form on the K1 equation, which is 

shown in Eq. 37, allows for these variables placement. 

−𝐴𝐴𝑒𝑒(𝑏𝑏𝑡𝑡) [ 37 ] 

For example, it was researched that the effect of temperature was linearly related to the 

corrosion process. As temperature increases, corrosion rate does so linearly as well. Therefore, 

the variable placement can be made to reflect that knowledge. The same can be done with the 

other variables, resulting in the following proposed equation. Eq. 38: 

−𝐾𝐾2
𝑛𝑛(𝑣𝑣)
𝑛𝑛(𝑆𝑆)

𝑒𝑒(𝑛𝑛(𝑅𝑅)𝑡𝑡)    [ 38 ] 

where F(v) is the  velocity factor, F(T) is the temperature factor and F(S) is the salinity 

factor 
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The K2 is a representation of all the corrosive factors that aren’t currently being tracked 

or have a known measured effect. This includes factors such as humidity or solution 

contamination, which may influence the corrosive rate. As such, if the equation for the effect of 

humidity over time was found, then it would be possible to known exactly how that factor would 

influence the rate of corrosion based on where it would be fit in Eq. 38. While this project 

doesn’t go into the exact locations of many of these variables, it allows for future research to be 

done to predict exactly where certain factors should be located and their effect on corrosion, 

based on the representative mathematical model of that factor.  
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5.0 Conclusions and Future Work 
 The goal was to develop a reliable test method and quantitative procedure for analysis of 

corrosion damage in samples. These deliverables can be applied to the sponsoring company’s 

products for numerical evaluation of samples. To begin with, the design of a specific apparatus 

to provide a standardized testing environment for the samples was created. This apparatus 

controls multiple variables that affect the growth of corrosion during induction and can be easily 

modified in future testing. As an effort to expedite the testing process, the apparatus was 

designed to contain multiple samples at once. Temperature, solution, and agitation can be 

modified to change the rate of corrosion or provide an alternate environment if needed. 

Two corrosion induction procedures have been adapted from the sponsoring company 

procedures and ASTM standards to provide reliable standardized methods and to fit the purposes 

of this project. The total immersion test involved a complete immersion of the samples for an 

extended period of time. The alternate immersion test method involved short periods of 

immersion followed by long drying periods.  

The samples were analyzed using mass measurements, surface area, and cross section of 

damage measurements. In terms of the mass measurements, each sample was measured for initial 

mass before corrosion growth and final mass after corrosion occurs. Using optical methods, the 

surface of the samples were analyzed to determine the surface area of corrosion growth. With a 

similar optical method, the cross section of these samples was measured to determine the extent 

of internal corrosion damage. 
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Analyzing the data, the change in mass showed an asymptotic decrease, whereas surface 

area damage increased asymptotically. As for cross sectional corrosion damage, a similar 

increase in area of damage was observed. Taking each of these measures with respect to time, the 

team combined those equations with a known corrosion rate equation to relate each of these 

measurements to the change in volume. An original K1 parameter was developed to account for 

the known relations from the predictive volumetric corrosion model. This final equation comes 

with a corrosion parameter K2 that is a function of all non-stated corrosive variables. The 

variable K1 was modified to account for the contributions of additional corrosion factors of the 

variable K2. Future tests with more parameters will improve the known relationship with K2 

based on the factors’ corrosive mathematical models. 
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6.0 Recommendations 
For future projects the team has several recommendations to make regarding equipment 

and procedures. When conducting corrosion induction the team noticed that a significant amount 

of corrosion product can accumulate in the testing solution. This product may or may not affect 

the growth of corrosion going into longer sample periods. The salinity of the solution is another 

concern. Monitoring the salinity of the solution throughout tests to see whether it remains 

constant may be useful in determining more accurate results. This topic may require some 

investigation going further to verify whether it is in fact an issue. Something else to consider 

during corrosion induction is the humidity of the room. During this project the team had no 

methods of monitoring or control the humidity of the room in which tests occurred. 

After each test the samples should be kept in a desiccator, with fresh desiccant in the 

bottom to absorb any moisture present and prevent further corrosion growth. This will help to 

maintain the accuracy of all analysis. During surface area analysis it was noticed that longer 

exposure times to solution provided a better picture of growth over time. It was also noticed that 

on the surface of these samples were hard corrosion product and a film of similar color left 

behind by products in the solution. This films tints the surface in a way that may affect image 

analysis which is color dependent. A suggested solution to this would be to remove the film by 

either use of a solution or another physical method taking care not to remove actual corrosion 

products. 
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Appendix A: Part Drawings 
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Appendix B: Mass Measurement Data Tables 
Table 6: Total Immersion Test 1 mass measurements small samples 

Small Samples 
# 

Initial 
Mass(g) 

Final 
Mass(g) 

Mass Change 
(g) 

Interval 
Change 
Average 

1 0.0918 0.0916 0.0002 0.0001 
2 0.0912 0.0911 0.0001 0.0005 
3 0.0912 0.0911 0.0001 0.0007 
4 0.0918 0.0915 0.0003 0.0013 
5 0.0913 0.0909 0.0004 0.0026 
6 0.0916 0.0906 0.001 0.0023 
7 0.0911 0.0905 0.0006 0.0027 
8 0.0917 0.0909 0.0008 0.0030 
9 0.0916 0.0908 0.0008 0.0028 

10 0.0919 0.0909 0.001 0.0045 
11 0.0917 0.0903 0.0014  
12 0.092 0.0903 0.0017  
13 0.0919 0.089 0.0029  
14 0.0924 0.0891 0.0033  
15 0.0918 0.0901 0.0017  
16 0.0909 0.0886 0.0023  
17 0.0912 0.089 0.0022  
18 0.0912 0.0886 0.0026  
19 0.0913 0.0891 0.0022  
20 0.0921 0.0884 0.0037  
21 0.0917 0.0893 0.0024  
22 0.0916 0.0887 0.0029  
23 0.0918 0.0886 0.0032  
24 0.0913 0.0885 0.0028  
25 0.0919 0.0896 0.0023  
26 0.0921 0.0888 0.0033  
27 0.0918 0.0889 0.0029  
28 0.0925 0.0884 0.0041  
29 0.0923 0.087 0.0053  
30 0.0927 0.0885 0.0042  
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Table 7: Total Immersion Test 1 mass measurements large samples 

Large Sample 
# 

Initial Mass 
(g) 

Final Mass 
(g) 

Mass Change 
(g) 

1 3.0163 2.9781 0.0382 
2 3.0144 2.9781 0.0363 
3 3.019 2.976 0.043 
4 3.0163 3.0005 0.0158 
5 3.0035 2.9501 0.0534 
6 3.0078 2.9551 0.0527 
7 3.022 2.9915 0.0305 
8 3.0069 2.9494 0.0575 
9 3.0048 2.9519 0.0529 

10 3.0062 3.0141 -0.0079 
 
 
Table 8: Dip & Rinse Test 2 mass measurements large samples 

Large 
Samples 

Initial Mass 
(g) 

Final Mass 
(g) 

Mass 
Change 

1 3.0128 3.0199 -0.0071 
2 3.0134 3.1289 -0.1155 
3 3.012 3.0149 -0.0029 
4 3.0109 3.022 -0.0111 
5 3.0156 3.0233 -0.0077 
6 3.0106 3.0187 -0.0081 
7 3.0031 3.0261 -0.023 
8 3.0055 3.0172 -0.0117 
9 3.0123 3.0186 -0.0063 

10 3.0081 3.0246 -0.0165 
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Table 9:  Dip & Rinse Test 2 mass measurements small samples 

Small 
Samples 

Initial Mass 
(g) 

Final Mass 
(g) 

Mass 
Change 

Interval 
Change 

1 0.0924 0.0926 -0.0002 -0.0002 
2 0.0922 0.0925 -0.0003 -0.0003 
3 0.0924 0.0925 -0.0001 -0.0001 
4 0.0919 0.092 -0.0001 -0.0001 
5 0.0918 0.0922 -0.0004 -0.0001 
6 0.0912 0.0916 -0.0004 1E-04 
7 0.0926 0.0922 0.0004 -3.33 E-05 
8 0.0921 0.0926 -0.0005 -0.0006 
9 0.0915 0.0917 -0.0002 3.33 E-05 

10 0.0918 0.0918 0 0.0003 
11 0.092 0.0916 0.0004  
12 0.0915 0.0922 -0.0007  
13 0.0924 0.0928 -0.0004  
14 0.091 0.0916 -0.0006  
15 0.0928 0.0923 0.0005  
16 0.0916 0.0912 0.0004  
17 0.0914 0.092 -0.0006  
18 0.0916 0.0911 0.0005  
19 0.0921 0.0922 -0.0001  
20 0.0918 0.0925 -0.0007  
21 0.0922 0.0915 0.0007  
22 0.0918 0.0924 -0.0006  
23 0.0912 0.092 -0.0008  
24 0.0918 0.0922 -0.0004  
25 0.0922 0.0921 0.0001  
26 0.0913 0.0918 -0.0005  
27 0.092 0.0915 0.0005  
28 0.0923 0.0924 -0.0001  
29 0.0923 0.0919 0.0004  
30 0.0922 0.0917 0.0005  
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Table 10: Total Immersion Test 2 small samples 

Initial 
Mass(g) 

Final 
Mass(g) 

Mass Change 
(g) 

Interval Mass 
Change 

0.0921 0.0917 0.0004 0.0003 
0.0923 0.092 0.0003 0.0010 
0.0915 0.0913 0.0002 0.0023 
0.0924 0.0912 0.0012 0.0025 
0.0918 0.0909 0.0009 0.0040 
0.0921 0.0913 0.0008 0.0059 
0.0918 0.0891 0.0027 0.0069 
0.0922 0.0904 0.0018 0.0082 
0.0916 0.0891 0.0025 0.0091 
0.0923 0.0898 0.0025 0.0098 
0.0915 0.0891 0.0024  
0.0917 0.089 0.0027  
0.0917 0.088 0.0037  
0.0915 0.0876 0.0039  
0.0919 0.0874 0.0045  
0.0922 0.0864 0.0058  
0.0924 0.0862 0.0062  
0.0916 0.086 0.0056  
0.0922 0.0851 0.0071  
0.0917 0.0855 0.0062  
0.092 0.0847 0.0073  

0.0913 0.0823 0.009  
0.092 0.0842 0.0078  

0.0918 0.0841 0.0077  
0.0916 0.0832 0.0084  
0.0923 0.0825 0.0098  
0.0916 0.0825 0.0091  
0.0915 0.0825 0.009  
0.0911 0.0804 0.0107  
0.0921 0.0823 0.0098  
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Table 11: Total Immersion Test 2 large samples 

Sample # 
Initial Mass 

(g) 
Final Mass 

(g) 
Change in 

Mass 
1 2.9362 2.9386 -0.0024 
2 2.9375 2.9432 -0.0057 
3 2.9302 2.9296 0.0006 
4 2.9281 2.9261 0.002 
5 2.9319 2.9278 0.0041 
6 2.9353 2.9293 0.006 
7 2.9416 2.929 0.0126 
8 2.933 2.9148 0.0182 
9 2.9397 2.9285 0.0112 

10 2.9385 2.9137 0.0248 

 

Table 12: Alternate submersion Test 2 small samples 

Sample 
# 

Initial Mass 
(g) 

Final Mass 
(g) 

Change in 
Mass 

Interval 
Change 

1 0.0916 0.0914 0.0002 0.0002 
2 0.0924 0.0922 0.0002 5E-05 
3 0.0911 0.0911 0 0 
4 0.0924 0.0923 0.0001 0.0002 
5 0.0922 0.0922 0 -0.0003 
6 0.0925 0.0925 0 -0.0004 
7 0.0924 0.0922 0.0002 -0.0005 
8 0.0921 0.092 0.0001 -0.0006 
9 0.0922 0.0923 -1E-04  

10 0.0918 0.0923 -0.0005  
11 0.0921 0.0927 -0.0006  
12 0.0917 0.0918 -0.0001  
13 0.0919 0.0924 -0.0005  
14 0.0923 0.0928 -0.0005  
15 0.0908 0.0916 -0.0008  
16 0.0917 0.092 -0.0003  
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