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ABSTRACT 

The purpose of this project was to design, build and test a 1A smart battery charger that 

accurately and efficiently charges a 3V, 6V or 12V battery. The smart battery charging system 

integrated an AC/DC converter, a MOSFET driver circuit, and a DC/DC converter to charge the 

battery. The concepts of experimental design and simulation were observed.  
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1    CHAPTER 1: Introduction 

           The purpose of this project was to introduce and provide a detailed description and 

practical analysis of the project design approach to build a smart battery charger.  The original 

design for a smart charger consisted of a number of modules; an AC/DC conversion circuit, a 

driver circuit and a filter circuit. A full bridge rectifier will be used to convert an AC source 

(110/220V) to DC. A switch and a fuse were placed in series to prevent damage in the event of a 

power spike. In addition to regulating the power output to charge the battery, the power source 

supplies the astable multivibrator to power the driver to regulate the charging voltage. 
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2    CHAPTER 2: Architectural Description 

           The figure below describes the basic architecture features of the smart battery charger. 

The battery charger is made up of the following functional blocks: 

    2.1      Project Overview 

 

 

Figure 1: Flow Chart. 
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     2.2     Modular Breakdown 

            2.2.1   Surge Protection   

Surge protection is necessary for our product. A surge protector limits the voltage supplied to an 

electric device by blocking or shorting to ground any unwanted voltages above a safe threshold 

[7]. The charger needs to be capable of tolerating fluctuations from the outlet.  

 

 

Figure 2: Surge protection. 

 

  Functionality         Input     Output Status 

Protect against 
voltage and 
current spikes 
on the AC input 
line. 

AC from Outlet 
(110/240VAC) 

AC voltage 
without spike or 
transient 

Complete 

Table 1: Surge Protection Specification 
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2.2.2   AC /DC Conversion (Rectifier) 

The AC/DC rectifier converts 12V (RMS value) AC voltage at the transformer secondary side 

into a DC voltage. Meanwhile, it must be able to support at least 1A of current for the battery 

charging.  

     2.2.3     DC/DC Conversion  

The DC/DC converter needs to filter out the rectifier’s DC voltage output ripple and convert it 

into a clean, constant DC voltage output at the terminal of the battery. The converter must also 

be able to regulate the DC output to the desired battery charging voltage of either 3V, 6V, or 

12V. 
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3 CHAPTER 3:  Module Description and Analysis 

The figure below describes the basic architecture features of the smart battery charger. 

The battery charger is made up of the following functional blocks: an AC Input (circuit 

protection, transformer), a full bridge rectifier, a diver, and a filter which consists of an inductor 

and a load. 

 

Figure 3: Functional Block Diagram. 

        The smart battery charger is supplied by 120Vrms/240Vrms, 50/60Hz AC from the wall. It is 

protected by a MOV (metal-oxide varistor) switch in the wall outlet that conducts current to 
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ground in cause of a higher voltage [7]. A transformer steps down the voltage to 12V ACrms. 

Then a full bridge rectifier converts the voltage to a 12V rectified DC waveform. This voltage 

powers an astable multivibrator which produces a square wave. A comparator (LM311n) 

controls the duty cycle of the square wave based on the state of the potentiometer [5].  The 

output of the comparator is boosted by the BJT with the output of the BJT controlling the 

MOSFET. When the square wave input of the MOSFET switches, then it switches the change of 

current in the inductor, regulating the output voltage. 

    3.1 Transformer 

            In my pursuit for an appropriate transformer, I considered many factors such as input 

voltage, output voltage, and output current. Since the primary purpose of a transformer is to step 

down a large AC voltage to a lower AC voltage. I needed to make sure that my transformer 

would handle both 115 VAC and 230 VAC standards. For the output I needed to make sure that my 

transformer would be able to handle 24 Vrms with a current of 1A. The output requirements of the 

transformer comes directly from the input requirements of the charging circuit. For my 

application I used a Jameco #102111-R and the transformer has the following specifications [2]: 

 

Jameco #102111-R 

Specifications Values 

Primary voltage 115/230 VAC at 50 – 60Hz 

Secondary VAC 24 V at 1A 

Power Rating 24 VA 

Table 2: Transformer Specification 
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  3.2 AC/DC Converter 

 

Figure 4: AC/DC Converter Circuit. 

The transformer output, the next step in the AC/DC conversion process involves inverting the 

negative cycles of the AC input. This process requires the use of full wave rectifier Diode 

Bridge. The rectification takes place by the conduction of couples of diodes. Diodes D1 and D4 

are conducting during the positive half-wave of the voltage. Diodes D2 and D3 are conducting 

during the negative half. In each half-cycle the current flows in both directions in the secondary 

winding but always in the same direction in the load [1]. There is no DC component in the 

winding and the core can be smaller than that of a centered-tapped rectifier with the same DC 

power. I determined that our rectifier would have to be able to handle the peak voltage of 17V 

along with voltage spikes from a dirty line. The rectifier would able to handle 1A of current. The 

rectifier that I chose is the 1N4007RLG Bridge rectifier. I found that rectifier in the Digi-key 
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Online Catalog with the part number 1N4007RLGOSTR-ND [8]. The Specifications below from 

the online catalog. 

 

Specifications Values 

Voltage-Rated 1000V 

Current Rating 1A 

Package/Case D0-41 

Table 3: Rectifier Specification 

      3.3 DC/DC Converter 

DC/DC converter regulates the output voltage. The converter consists of an astable multivibrator, 

a comparator, a BJT, a MOSFET and an Inductor filter.  

 

Figure 5: DC/DC Converter Circuit. 
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For the voltage regulator to be able to handle these higher voltages, I will be using a resistor, a 

driver, a diode (1N4007RLG), a BJT, Inductor filter and power MOSFET, which essentially acts 

as a high power voltage divider.            

      3.3.1 Astable Multivibrator using LM741 OP-AMP 

An astable multivibrator is used to generate a triangular wave input to the comparator to create a 

pulse-width modulation (PWM) signal. The multivibrator functions through a capacitor, 

connected to inverting input of the LM741 OP-AMP, charging and discharging. As the capacitor 

charges, the output voltage of the OP-AMP oscillators between the positive and negative rails. 

As the output switches, the capacitor continues discharging and charging continuing to generate 

the square wave [6]. 

 

Figure 6: Timer astable circuit. 
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The measured values of the component use in this circuit is: 

R = 275 kΩ 

R1 = 92 kΩ 

R2 = 1MΩ 

C1 = 0.01 uF 

𝑓𝑓 =
1

2𝑅𝑅𝑅𝑅
 

Equation 1:  Frequency of the astable multivibrator [9]. 

Using the values of R = 275 kΩ and C1 = 0.01uF I got 181.1 Hz. 

 

Figure 7: Timer astable multivibrator output square wave. 
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The figure 7 above is the output square wave of the astable multivibrator. The square wave is 

needed to be convert to a triangular wave in order to be compare with the control voltage. 

Oscillator can also generate a wave similar to a triangular wave. 

 

Figure 8: Timer astable multivibrator capacitor voltage. 

The triangular wave produced by the capacitor could also be used to compare with the control 

voltage, but before it can be use it need to be amplify and adjust the offset. 

       3.3.2 Comparator  

The purpose of the comparator in figure (10) is to output a square wave of amplitude of 10V and 

duty cycle whose value is based on the value of Vcontrol. 
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Figure 9: Comparator. 

The output of the comparator, VSquare, supplies the switch transistors in the DC/DC converter 

with the square wave required for the switching operation. The non-inverting input is a fixed 

amplitude and frequency triangular wave, Vtriangular. The inverting input is a DC voltage, Vcontrol. 

The duty cycle increases when Vcontrol increases and decreases when Vcontrol decreases. When Vtri 

< Vcontrol, VSquare is High (10 volts) and when Vtri >Vcontrol, VSquare is Low (0 volts) [5]. 

 



22 
 

 

Figure 10: Comparator input and output waveform. Red is input, blue is control voltage 

and green is output. 

A triangular wave was compared with a control voltage to produce a square wave. This square 

wave is going to the gate of the MOSFET of the DC/DC converter. Depending on if the control 

voltage increases or decreases, the square duty cycle will change according to the change of the 

control voltage. 

   3.3.3 BJT 

The PWM from the comparator is the input to BJT which allows the MOSFET to switch. The 

BJT allows the MOSFET to switch faster by conducting a greater amount of current than that 

could be supplied by the output of the comparator. When the BJT is ON, the gate of the 

MOSFET is charged and the MOSFET turns ON [1].  
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   3.3.4 MOSFET  

An IRF520 N-Channel power MOSFET was used to control the switch of the battery charger. 

The gate of the MOSFET is being driven by a pulse – width modulated (PWM) signal to 

minimize power losses in the circuit. The duty cycle of the control signal determines the average 

DC voltage applied to the battery charger, thus controlling the switches. The diode in the circuit 

is a “feel-wheeling diode” to provide a path for the induced charger current to flow, when the 

MOSFET turn OFF. Without this diode, a high voltage spike would occur across the MOSFET 

during turn-off and would damage or MOSFET [1]. 

 

Figure 11: MOSFET and BJT 

   3.3.5 Filter Inductor  

The current in the inductor cannot change instantaneously. This property helps the inductor to 

filter out the current ripple and obtain a more constant charging current flow into the battery. In 

this project, we use part of a transformer secondary winding as the filter inductor, measured 

value of 100 mH. This results an average charging current that is 1A. 
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Figure 12: Filter inductor output 

The inductor needs to have a minimum value to result a continuous current flow. Given the 

switching frequency of the driver circuit as 1000Hz, we can use the following equation to 

calculate the minimum inductance value, 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 =
(1 − 𝐷𝐷)𝑅𝑅

2𝑓𝑓
 

Where R is the equivalent load resistance value. In this study, we have the load modeled as the 

battery voltage source in series with its internal resistance. It is necessary to account that in the 

minimum inductor value calculation. Nevertheless, the 100mH inductor will ensure the 

continuous current flow under all the possible operating conditions, both in theory as well as in 

the actual tests [1].  
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 4. CHAPTER 4: Module Simulation 

The simulation of the AC/DC conversion module consisted of a modeled AC input after 

the 10:1 transformer, a full bridge rectifier, Astable multivibrator (LM741cn and comparator 

LM311n), a BJT, a MOSFET, a filter inductor and a voltage source and a series resistor. The 

reason why I went with a 120V AC input, was to model the 120V AC wall source the model for 

the AC input consisted of 12Vrms at 60Hz, which represent the output of the transformer. I tested 

for different known values for the inductor to see how they would affect the output. The load 

current that I used in the model was determined to be 1A because that is the maximum current 

that the charging circuit will draw due to the internal current limiting of the load. 

 

 

             Figure 13: Module simulations circuit 
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 4.1 Multisim Result 

I modeled the circuit in Multisim and performed the simulation to confirm the circuit behavior. 

The rectifier simulation produced a positive polarity DC waveform of 15V. This was what I 

expected but the voltage was supposed to be 12V. The output waveform astable oscillator and of 

the comparator were measured.  The oscillator produced a triangular wave of about 0.9V peak-

to-peak and the comparator produced a square wave output of 5V. Both waves had frequencies 

of slightly less than 200Hz.   

 

 

Figure 14: Rectifier DC waveform 
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Figure 15: Oscillator and Comparator 

   4.2 PSpice Simulation  

I modeled the circuit in Pspice and performed the simulation to confirm the circuit behavior.in 

the Pspice code I used the following nodes to measure from as shown in figure 16. The Pspice 

code can be found in the Appendix A.  
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Figure 16: Pspice simulation circuit 

4.3 Pspice Result 

In the Pspice simulations, I measured the current through the inductor between nodes 1 and node 

2. The result was a triangular wave of 31mA and frequency of 1000Hz. 
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Figure 17: Simulated waveform for the current inductor. 

                            

The voltage across the inductor was a square waveform from -6.8V to +6V and a frequency of a 

1000Hz.  

 

Figure 18: Simulated waveform for voltage of the inductor 
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The voltage across the load and inductor was a square waveform from -0.8V to +12V and a 

frequency of a 1000Hz 

 

Figure 19: Simulated waveform for the voltage of the diode, inductor and the load. 

          

The voltage across the load was about 6V with a triangular volt ripple 0.003V and a frequency of 

a 1000Hz. 
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Figure 20: Simulated waveform for the voltage of the load 

The voltage across the MOSFET was a square waveform from 0V to 12.7V and a frequency of a 

1000Hz. 

 

Figure 21: Simulated waveform for the voltage of the MOSFET. 

                        

The voltage across the driver was a square waveform from 0V to 10V and a frequency of a 

1000Hz. 



32 
 

 

Figure 22: Simulated waveform for the voltage of the driver 

                          

The current between the inductor and a diode was a waveform from 0A to 30mA and a 

frequency of a 1000Hz. 

Figure 23: Simulated waveform current between diode 
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  5   CHAPTER 5: System Testing 

  The complete system will involve individual testing of each module for functionality so 

that it will work with the rest of the modules. The modules that will need to be tested will be the 

AC/DC conversion module, the driver circuit, inductor output module and battery charging 

verification. 

 

Figure 24: Smart battery charger circuit. 

       5.1 AC/DC Module Testing 

This module will need to be able to produce an acceptable DC output from both 115V and 230V 

(AC) inputs. To test this module, I needed to connect the oscilloscope to the output of the full 

bridge rectifier. The output of the rectifier is shown on Channel 1 of the figure (26) below. The 

two different polarity legs of the rectifier are shown on Channel 2 and Channel 3. The rectifier 

performed I expected. 
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Figure 25: AC/DC Module testing. 

 

Figure 26 : Measured waveform for the output rectifier and the polarity legs of the 

rectifier. 
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       5.2 Driver Circuit Testing 

The output of the oscillator and comparator were measured on the oscilloscope. The oscillator 

was shown the output of triangular waveform bounded by a sinusoidal envelope. The highest 

value of the triangular waveform seemed to be limited by the rail voltage of the op-amp. 

 

Figure 27: Measured oscillator output. 

The output of the comparator was a PWM square wave of approximately 0.8V.  

 

Figure 28: Measured comparator output. 



36 
 

       5.3 Inductor Output Testing 

The output of a full bridge converter leads to a buck converter, which consists of an inductor and 

a diode (1N4007RLG) feeding the load. A convenient aspect of this bridge driven buck topology 

is that the output stage ripple actually occurs at twice the switching frequency, making it easier 

to filter [1]. However, the smart charger will need to be able to supply a voltage at 14.8V DC or 

above, depending on the battery level. Once the battery is fully charged, 12.8 V DC is applied 

across its terminals.  

 

Figure 29: Inductor output testing. 

The inductor voltage was measured with the oscilloscope and was shown to produce a voltage 

similar to the rectified DC waveform. Because the buck converter part of the circuit was not 

functioning properly, the DC waveform was not properly regulated to a constant DC output. 
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       5.4 Final battery charging verification 

When tested the battery charger circuit did not work as expected. The output to the battery 

appeared to charge at only about 20mA and the output voltage was shown to be similar to the 

rectifier DC waveform. To determine the cause of this problem, the outputs of the astable 

multivibrator and comparator were measured, and no PWM signal was being generated. This 

was likely due to how the op-amp and comparators were being powered. The rail voltages were 

supplied by the rectified DC instead of from a constant DC source. If the rails were powered by 

DC, the driver PWM signal may have been generated properly. 

 

Figure 30: Battery charger verification 
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6 Conclusion 

        My project was a Smart battery charger to charge a sealed lead-acid battery. My goal was to 

design, simulate, and build a Smart battery charger. The circuit was simulated in Pspice to verify 

design before construction. A prototype circuit board was built and all components soldered by 

hand, including a high frequency transformer and inductor. Testing, revision, and analysis of the 

completed circuit board was performed. The result was successful.   
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Appendix A 

*Name: Seth Gyebi 

*BATTERY CHARGER  

 

V 1 0 12 

D 5 1 DIX 

.MODEL DIX D (RS=10m BV=100V) 

L 1 2 100mH IC=0 

R 2 55 0.1 

Vb 55 5 6 

VP 9 0 PULSE (0 10 0 1u 1u 0.52m 1m) 

*S 5 0 9 0 ZWK 

XQ1 5 9 0 irf520n 

*R9 6 0 1K 

.MODEL D1n4007 d 

 *Model by Symmetry Design Systems* 

 *call as follows: 

 * D1 (+) (-) D1n4007 
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 * 

 +IS=7.02767e-09 RS=0.0341512 N=1.80803 EG=1.05743 

 +XTI=5 BV=1000 IBV=5e-08 CJO=1e-11 

 +VJ=0.7 M=0.5 FC=0.5 TT=1e-07 

 +KF=0 AF=1 

 

.MODEL ZWK VSWITCH (VON=1 VOFF=0 RON=1m ROFF=10MEG) 

.SUBCKT irf520n 1 2 3 

 *Model by Symmetry Design Systems* 

 * External Node Designations 

 * Node 1 -> Drain 

 * Node 2 -> Gate 

 * Node 3 -> Source 

 * 

 * call as follows: 

 * XQ1 (drain) (gate) (source) irf520n 

 * 

 M1 9 7 8 8 MM L=100u W=100u 
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 * Default values used in MM: 

 * The voltage-dependent capacitances are 

 * not included. Other default values are: 

 *   RS=0 RD=0 LD=0 CBD=0 CBS=0 CGBO=0 

 .MODEL MM NMOS LEVEL=1 IS=1e-32 

 +VTO=2.79085 LAMBDA=0 KP=1.5946 

 +CGSO=2.79023e-06 CGDO=1e-11 

 RS 8 3 0.00043957 

 D1 3 1 MD 

 .MODEL MD D IS=8.70123e-12 RS=0.0112359 N=1.18415 BV=100 

 +IBV=0.00025 EG=1.2 XTI=4 TT=1e-07 

 +CJO=1.90917e-10 VJ=0.5 M=0.395048 FC=0.1 

 RDS 3 1 4e+06 

 RD 9 1 0.0981901 

 RG 2 7 2.49106 

 D2 4 5 MD1 

 * Default values used in MD1: 

 *   RS=0 EG=1.11 XTI=3.0 TT=0 
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 *   BV=infinite IBV=1mA 

 .MODEL MD1 D IS=1e-32 N=50 

 +CJO=4.11936e-10 VJ=0.5 M=0.519039 FC=1e-08 

 D3 0 5 MD2 

 * Default values used in MD2: 

 *   EG=1.11 XTI=3.0 TT=0 CJO=0 

 *   BV=infinite IBV=1mA 

 .MODEL MD2 D IS=1e-10 N=0.45888 RS=3e-06 

 RL 5 10 1 

 FI2 7 9 VFI2 -1 

 VFI2 4 0 0 

 EV16 10 0 9 7 1 

 CAP 11 10 9.81932e-10 

 FI1 7 9 VFI1 -1 

 VFI1 11 6 0 

 RCAP 6 10 1 

 D4 0 6 MD3 

 * Default values used in MD3: 
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 *   EG=1.11 XTI=3.0 TT=0 CJO=0 

 *   RS=0 BV=infinite IBV=1mA 

 .MODEL MD3 D IS=1e-10 N=0.45888 

.ENDS 

 

.PROBE 

.TRAN 5m 5m 0 5u UIC 

.END 

 



46 
 

 


	Worcester Polytechnic Institute
	Digital WPI
	April 2017

	Smart Battery Charger
	Seth O. Gyebi
	Repository Citation


	ACKNOWLEDGEMENTS
	ABSTRACT
	Table of Contents
	TABLE OF FIGURES
	1    CHAPTER 1: Introduction
	2    CHAPTER 2: Architectural Description
	2.1      Project Overview
	2.2     Modular Breakdown
	2.2.1   Surge Protection
	2.2.2   AC /DC Conversion (Rectifier)
	2.2.3     DC/DC Conversion


	3 CHAPTER 3:  Module Description and Analysis
	3.1 Transformer
	3.2 AC/DC Converter
	3.3 DC/DC Converter
	3.3.1 Astable Multivibrator using LM741 OP-AMP
	3.3.2 Comparator
	3.3.3 BJT
	3.3.4 MOSFET
	3.3.5 Filter Inductor


	4. CHAPTER 4: Module Simulation
	4.1 Multisim Result
	4.2 PSpice Simulation
	4.3 Pspice Result

	5   CHAPTER 5: System Testing
	5.1 AC/DC Module Testing
	5.2 Driver Circuit Testing
	5.3 Inductor Output Testing
	5.4 Final battery charging verification

	6 Conclusion
	7 References
	Appendix A

