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ABSTRACT 
 

This project involved the design and development of an operational first prototype for the IRIS 
platform – an anthropomorphic robotic hand capable of autonomously determining the shape of an 
object and selecting the most appropriate method for grabbing said object. Autonomy of the device is 
achieved through the use of a unique control system which takes input from sensors embedded in the 
hand to determine the shape of an object, the position of each finger, grip strength, and the quality of 
grip. The intended use for this technology is in the medical field as a prosthesis, though the hand could 
also be adapted to work on other robot platforms as a versatile gripper.  The advantage of our system as 
a prosthesis is that its autonomous functions allow the user to access a wide variety of functionality 
more quickly and easily than similar, commercially available products.  
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1 INTRODUCTION 

 
Every year there are about 6,000 (McGimpsey) upper limb amputations in the United States 

alone, leaving tens of thousands of individuals disabled and deformed. Aside from the discomfort 

caused by curious stares from onlookers, these injuries can greatly hinder an individual’s ability to 

perform even basic daily tasks. Past attempts at a replacement limb, referred to as a prosthetic, have 

included mechanical hooks and pincers that grant the user some functionality, but lack in versatility. 

More recent products such as the i-Limb and bebionic prosthetic hands have brought the technology far 

closer to giving amputees back the range of ability they once had, but users still find interfacing with 

these devices to be overly complicated, and limiting (“i-Limb Ultra”, 2014) (“The Hand”, 2014). 

Additionally, these new devices come with a much higher price tag than their predecessors; an expense 

that many potential users feel is not worth the increase in capabilities.  

The development of a highly versatile upper body prosthetic device that addresses the issues of 

cost and usability of today’s commercially available prostheses would enable the technology to far 

exceed the potential of its alternatives. This project provides a proof of concept prototype for the IRIS 

platform - an anthropomorphic robotic hand capable of determining the most appropriate grip for 

grasping an object and executing that grip with minimal human input. Through the implementation of 

advanced sensing technologies into the device, this project aspires to develop a prosthetic hand that is 

as natural and easy to use as a person’s organic extremity, without the need for invasive surgical 

procedures. 

The issue of usability will be primarily addressed by the implementation of a digital vision sub-

system imbedded in the prosthetic that will allow our device to determine the shape of the object the 

user is reaching for. The hand will then be able to take this information and automatically adjust to an 

appropriate grip. The end goal is that the user will only need to reach for an object and tell the device 

when to close. The process of selecting and executing a particular grip pattern will be taken care of 

automatically, much like what is done naturally in our subconscious. The issue regarding cost will be 

addressed thought the use of inexpensive materials such as plastics, and low cost manufacturing 

techniques such as laser cutting and 3D printing. 

Though this report places emphasis on the implementation of the IRIS system as a prosthetic 

device, the technology can also be applied as a versatile gripper for modular robot platforms. By using 
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our system, a robot would be able to grab a wide variety of objects without any major alterations to the 

robot. All that would be needed is a custom adaptor to mount the IRIS to the robot leads connected to 

the grab and release input ports of the IRIS controller. Additional circuitry could be included to allow the 

IRIS to communicate with a robot platform via more traditional means such as USB.  
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2 RESEARCH 
 

Before diving straight into the development phase, background research was conducted to ensure 

we were making well informed decisions. To do this, we looked into the following topics: 

 

 Prosthetic devices  

 Non-anthropomorphic prosthetic devices  

 Prosthetic hand with myoelectric sensor  

 Sensing technologies 

 Object Recognition 
 

2.1 Prosthetic devices 
 

Within the field of medicine, a prosthesis is defined as an artificial device that replaces a missing 

body part lost through trauma, disease, or congenital conditions. A prosthesis that replaces a part of the 

arm between the elbow and wrist is called a transradial prosthesis, also referred to as a “BE” prosthesis 

for below-elbow. These devices can be functional or simply cosmetic depending on their intended use. 

An amputee who does a lot of manual labor and needs a device that is durable, dependable, and strong 

may choose to have a simpler prosthesis such as a hook. On the other hand, an individual who is willing 

to sacrifice functionality for a prosthesis that looks more natural may choose to get a cosmetic 

prosthesis, also known as a cosmesis, like the one shown below in Figure 2-1. 

 

Figure 2-1: Personalized Cosmetic Prosthetic Hand by Sophie de Oliveira Barata 

 

Functional transradial prostheses are available in two main types, body powered and externally 

powered. Body powered prosthetic limbs are controlled using cables connected to a harness or strap 

mounted elsewhere on the user’s body. When the user moves their body in certain ways they pull on 
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the cables to cause motion in the prosthesis. The simple nature of these devices makes them very light 

but also means they are typically incapable of executing complex tasks. A common terminal device for 

body powered prostheses is a pincer like mechanism called a split-hook, illustrated in the diagram 

below, though many other’s exist for more specific tasks like fishing or cooking ("How Prosthetic Limbs 

Work.", 2014) 

 

Figure 2-2: Typical Body Powered Transradial Prosthesis 

 Externally powered prostheses are devices that receive their power from sources other than the 

user’s body. Usually electrically powered, modern devices are able to utilize multiple electric motors and 

other electrical components to achieve more complex grips and functionality than can be accomplished 

with a simple body powered device. The additional use of onboard microcontrollers and sensors allow 

for these prostheses to be controlled in a variety of ways.  

One common technique for controlling an externally powered prosthetic device is the switch 

control method. This method allows the user to move their prosthetic device by toggling switches or 

buttons.  A user can toggle the switches using another part of their body such as their opposite 

shoulder, or with the remaining muscle in their residual limb. Since these devices are typically able to 

perform such a wide variety of grips, the user can often use different sequences of switch toggles to 

alternate between different grip modes.  

Another, more advanced method of controlling an externally powered prosthetic device is 

through the use of electrodes. When placed on the surface of the skin, these sensors are capable of 

detecting the small electrical signals generated by muscle contractions in the user’s residual limb. In 

most applications additional software and circuitry are used to make these analog devices behave like 
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switches. The user is then able to control their device in a similar manor to the switch control method. 

Devices that utilize this technology are called myoelectric prostheses. Some examples of commercially 

available myoelectric prosthetic limbs are the Bebionic hand and the i-Limb. Each device is an advanced 

externally powered prosthetic limb and is currently considered top of the line in commercially available 

transradial prostheses ("Myoelectric Prosthetics.", 2014). 

 

2.2 Non-anthropomorphic prosthetic devices 
 

One of the most common non-anthropomorphic terminal devices used on upper body 

prostheses today is the split-hook; a simple device primarily comprises of two hooks which are jointed 

together at the base by a hinge. This design enables the hooks to open and close in a pincer like fashion 

allowing for basic grip functionality. The curved shape of this prosthesis offers a fair bit of functionality 

as well, so long as there is a hole, handle, or divot for the hook to fit into. These devices are typically 

body powered though externally powered versions are available. Relative to other more versatile 

prosthetics, what the split-hook lacks in functionality it makes up for with durability and a low cost 

("Prosthetic Devices.", 2014). 

 

 
Figure 2-3: Common Split-Hook Terminal Prosthetic Devices 

 
 

 Custom Non-anthropomorphic prostheses are also developed for more specific tasks such as 

cooking or fishing, or even for sports like basketball, climbing, or golf. It is not uncommon for an 

individual to own several functional prostheses intended for different tasks as well as a cosmesis for 

social events. 
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2.3 Anthropomorphic Prosthetic Devices 

On the other side of the transradial prosthetic spectrum are devices such as the i-LIMB and the 

bebionic hand. This new generation of externally powered robotic prostheses combines functionality 

with a natural, anthropomorphic appearance. The inclusion of an opposable thumb and four 

independently actuated fingers allows for not only more human like movement but also a wider range 

of grip patterns. Sensors in the device allow for system feedback resulting in better performance, and in 

some cases even user feedback through the use of lights, vibrating motors, or other interfaces. 

 

 The prostheses are typically myoelectric. To operate the device the user preforms combinations of 

muscle contraction that will initiate one of the preloaded grip patterns. The number of available 

patterns can vary from 14-24, depending on the model. 

    
Figure 2-4: Anthropomorphic Prosthetic Hands Showing bebionic (left),   

i-LIMB Ultra Revolution (center),  i-LIMB Cosmetic Cover 

 
 
Though these devices have a lot of advantages over earlier, simpler prosthetics, the additional 

weight caused by the onboard electronics can cause them to be uncomfortable to use for long periods 

of time.  Another drawback of these devices is their high price. Peaking at about $100,000 after fitting 

and training, it is difficult for many potential users to afford one even with insurance.  

 

2.4 Sensing Technologies 
For directly measuring force at the contact point, Force Sensitive Resistor (FSR) can be attached 

with additional hardware such as low-pass filter and amplifier. Because of its low cost and low precision, 

FSRs are mostly used for detecting pressure for buttons in portable electric devices. 
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One of more precise force sensing device was developed by Matthew M. Williamson at 

Massachusetts Institute of Technology. Williamson introduced Series Elastic Actuator (SEA), which 

corporates series elastic element in order to improve the stability in force control. There are many ways 

to implement SEA based on the motion of the actuator. Even though precision in force sensing is much 

higher than FSRs, implementation of SEA normally requires lots of space. Because of low-band width 

and high force sensing precision, SEA is used in Rethink Robotics’ Baxter Robot for sensitive 

manipulation. 

 

2.5  Human Hand Anatomy 
 

Since the IRIS hand was designed to be anthropomorphic, a fairly extensive understanding of 

human hand anatomy was required. Here we will go over the terms for the different bone and muscle 

groups as well as their primary function and physical aspects. 

 

The human hand is comprised of 29 major and minor bones a good number of which make up 

the wrist, 29 major joints, and 34 muscles 18 of which are located in the forearm. The hand comprises of 

only 22 degrees of freedom; three flexion and one abduction in each finger and thumb, and an 

additional two between the metacarpals of digits four and five that allow the palm to curl. All these 

joints are shown in Figure 2-5 below. 
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Figure 2-5: Hand Joint Diagram 

 
 The wrist and forearm add an additional three degrees of freedom; rotation about the x,y,z axis 

originating from the center of the wrist.  

 

The naming scheme of these bones follows a fairly basic naming convention. Those bones which 

make up the compound wrist joint are known as carpels. The bones that make up the palm of the hand 

are called metacarpals. The bones that make up the fingers are known as phalanges. The phalange at 

the base of the finger connected to the knucle is referred to more specifically as the proximal phalange. 

After that comes the middle or intermediate phalange, and finally the distal phalange makes up the tip 

of the finger. The thumb is different in the way that it does not have an intermediate phalange, causing 

the distal phalange to be connected directly to the proximal phalange ("Hand.", 2014). 

 

Each finger is capable of flex, extend, abduct, and adduct thought the flexion and relaxation of 

multiple muscle groups. The fingers themselves do not contain muscles but are attached by tendons to 

the muscles that power them located in the palm and forearm. Muscles located in the palm are referred 

to as intrinsic muscles and comprise of the thenar (muscles that power the thumb), hyposthenia 

(muscles that power the pinky), the dorsal and palmar interossei (muscles located between the 
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metacarpals which respectively abduct and adduct the middle three fingers), and the lumbrical muscle 

(muscles which flex the metacarpophalangeal joints and extend the interphalangeal joints). Muscles 

which have their bellies located in the forearm are referred to as extrinsic and comprise of the large 

strong muscles that enable the middle three fingers to flex and extend.  

 

For this project we decided to base the dimensions of our device off of the average human male 

hand dimensions. This was for two reasons, the first being that males tend to have larger hands then 

females which gave us more room to use for our prototype and second by using the average we would 

be able to maximize the number of potential users of the device when we are ready to go into our first 

round of testing. We were fortunate enough to find a paper written on a study in which the hand x-rays 

of 66 individuals, ranging in age from 19 to 78, were studied and their bone measurements taken 

(BURYANOV, 2010). The averages of these measurements were calculated and published in their report. 

The most relevant data form the report is included in the figure and table below. 

 

 
 

Figure 2-6: Human Hand Bones Labeling Scheme for Table 2-1 
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Table 2-1: Average Human Hand Bone Lengths 

 
 

 Though the values used on our device are not the same as the averages included here the 

measurements do fit within one standard deviation.  

 
 

2.6 Object Recognition 
 

In order to add intelligence to our system, we deduced that the use of a camera and object 

recognition is the most direct way of understand the world around our device.  Object recognition is an 

objective in the larger research field of computer vision.  Computer Vision is the use of computers to 

visualize, interpret, process, and understand the world through images to determine some numerical or 

relatable information from the image in order to make decisions.  The study of computer vision began in 

the early 60’s for the understanding of man-made environments.  Despite the nearly 50 years since its 

beginnings, computer vision still proves to be a difficult and complicated task.  However, it is a widely 

and actively researched field, especially in the last decade, which has allowed for many advancements 

and even further research into more practical applications of computer vision. 

 

In the field of computer vision, object recognition is one of the more commonly researched 

tasks.  Object recognition is the identification of specific or key objects in the image by locating features 

unique to those objects.  Human beings have little difficulty identifying specific shapes and images 

despite partial obstruction of the object, angled or faraway view, or objects presented at an irregular 

perspective.  However, object recognition is still challenging to emulate in a computer.  The major 

difficulty lies in our lack of knowledge on how human beings store memory of, identify, and search for 

objects in our vision.  Because this is such a challenging task in particular, many methods for identifying 

objects have been researched in the past.  These methods largely fall into two categories: Appearance-

based object recognition and Feature-based object recognition. 
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2.6.1 Appearance-based Object Recognition 
 
 Appearance-based object recognition is the use of example images of an object in order to 

identify the object in question.  Approaches that fall under this category often do extensive processing 

of the image in order to reduce the noise and unnecessary information in the image.  Edge matching and 

use of a model base are two widely used examples of appearance-based object recognition. 

2.6.1.1 Edge-Matching 
 
 Edge-matching is the use of edge detection techniques to find edges in a 2D image.  Once edges 

have been identified, they compare the identified edges to the edges in the example.  Then, the 

relationship between these two edge groups is measured in order to make decisions on how to identify 

the object in the scene.  Depending on the variance between images, the algorithm must be robust 

enough to correctly identify a range of possible perspectives, positions, and orientations of the object.  

More specifically, before identifying an object in an image, the image is reduced to a series of edges that 

indicate the division between two distinct areas in the image.  Then the processed image is compared to 

a series of images containing possible orientations and views of the object in question, multiple objects, 

or different objects.  Then the best image that matches the current image is selected with some 

quantifiable score relating the similarities of the current image and the selected example image.  From 

this example image and the similarity score, decisions can be made to identify the object in the original 

image. 

 

 This method can be broken down into three major parts.  The first task is to detect the edges in 

the current image and example images.  The second task is to relate these edges to the edges in each 

example.  And the third task is to consider which example image provides the best score relating the two 

images.  A common algorithm used for detecting edges is the Canny Edge Detection algorithm.  This 

algorithm, developed 1986 by John F. Canny, is used to detect a variable range of edges in an image.  

The algorithm can be essentially described as follows: 

 

1. Filter the image of noise 

a. In order to reduce noise and unnecessary information, Gaussian filters are used to 

“blur” the image.  This allows the image to be more quickly and easily processed.  

2. Determine the intensity gradient 
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a. Because an edge can point in any direction in an image, filters are used to identify likely 

gradient edges that are horizontal, vertical, and diagonal. 

3. Use non-maximum suppression (“Edge-thinning”) 

a. In order to determine the boundary between two areas of the image, pixels are given a 

gradient threshold relating it to the pixels around it.  Pixels that are distinctly directed 

similarly to the pixels around it surpass the threshold.  Pixels that do not surpass the 

threshold are reduced to a value of 0, indicating that it does not appear follow the 

general direction of the pixels around it. 

4. Tracing edges and hysteresis thresholding 

a. Through the gradient intensities identified in steps 2 and 3, the pixels with a high 

gradient intensity are identified as starting points for edges.  Pixels with a lower gradient 

intensity with directions similar to nearby pixels of higher gradient intensities are used 

to bridge the gap between the higher gradient intensity pixels to create the edges.  This 

method of having a higher and lower bound for thresholds is called hysteresis 

thresholding.  These edges can be traced throughout the image until the entire image 

consists of either edge pixels or non-edge pixels, typically shown as a completely black 

pixel. 

An example of Canny Edge Detection can be seen in Figure [] below. 

 
Figure 2-7: An example of the Canny Edge Detection algorithm 

 
As you can see in the above figure, the original image, shown on the left, has been processed to 

contain only the major edge lines that surpass the thresholds defined in the Canny Edge Detection 

algorithm.  The processed image on the right can be compared to similarly processed example images 

containing multiple views and perspectives of one or more objects.  A probability of similarity between 
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the test image and an example image is found using a probability distribution of distance from edge to 

edge in the images.  The collective probability distribution of each edge in the test image to each edge in 

the example image serves as a score to rate the similarities between the two images.  A greater 

probability denotes a potentially greater chance of correctly identifying the object in the test image as 

the same object in the example image.  By comparing the scores of each example image, a best match 

can be found, containing the greatest perceived likelihood of containing the same object. 

 

This algorithm can very efficiently identify a comparison between two images.  Because many 

steps are taken to process and minimalize the image prior to doing the comparison, the efficiency of this 

algorithm is dependent on the thresholds used on the Canny Edge Detection algorithm.  Stricter 

thresholds reduce the number of edges that qualify as acceptable, which in turn simplifies the 

comparison and reduces the operation time of the algorithm.  However, tightening these thresholds too 

much can cause the object to be potentially unidentifiable.  Depending on lighting conditions and 

specific operating environments that the system is working in, thresholds must be tuned to efficient and 

effective.  Tuning these values properly is critical to an efficient use of this algorithm.  This is because the 

edge-detection process of the algorithm is the most computationally expensive because of its 

dependence on the dimensions of the image and the number of potentially acceptable edges. 

2.6.1.2 Use of a Model Base 
 
 The use of a model base is similar in implementation to edge-fitting.  However, model base 

analysis works best with a 3D image.  The general strategy is to use some form of 3D imaging technology 

to obtain a 3D view of the object(s) in question.  Then, unidentified objects or shapes that deviate from 

some known or probabilistic pattern are isolated as potentially identifiable objects.  These objects are 

isolated from each other and individually compared to known 3D models of objects in a model database.  

Objects that closely match the form and shape of an identified 3D model in the database are categorized 

as that object. 

 As an example, the PR2, a research robot built and developed by Willow Garage, commonly uses 

a Tabletop Object Recognition package that employs model database analysis.  The PR2 is equipped with 

a Microsoft Kinect sensor, which houses an RGB camera, a depth sensor, and an infrared projector.  

Using this device, the PR2 can acquire a 3D image of the world before it.  The Tabletop Object 

Recognition package is used primarily for identifying objects on a flat tabletop-like surface.  Objects that 

protrude from this surface are isolated from the table surface.  These objects are one-by-one compared 
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to objects in the 3D model database using eigenvectors to determine position and orientation of the 

object.  Objects with a high similarity to known 3D models are compared until a certain similarity 

threshold is passed.  Once this happens, the object is identified as the same 3D model it with which it 

was matched. 

 However, this method does not work well with objects of an irregular shape or objects that do 

not match the known database. 

 This method can be a rather effective solution to the object detection.  Its effectiveness is 

limited by the number and variety of object models stored in the database, the thresholds used to 

compare objects meshes, the sensing capabilities of the 3D camera hardware and software, and the 

processing power of the device that drives it.  Also, it can only operate in specific environments that 

allow for better segmentation of potentially identifiable objects.  Additionally, 3D cameras are often 

computationally expensive to operate at a useful frame rate, requiring a computer with more significant 

processing power.  However, within it’s ideal environment and given the proper harder, with objects 

that do exist in its database, this system can reliably identify the object as well as determine its position 

and orientation relative to the camera. 

 

2.6.2 Feature-based Object Recognition 
 
 Feature-based Object Recognition is the identification of objects without the use of example 

images and templates, but rather using known or identifiable features unique to each object.  This 

method is largely used with distinctly unique object whose features allow for the objects to be easily 

distinguished from each other.  These unique features are used to search the test image.  Perspective 

and rotational transforms are commonly used to increase the likelihood of finding these features.  Many 

methods exist for identifying the object: edge-detection, corner detection, Hough transformations, 

other feature detector algorithms, and many more.  In this section, Hough transformations and the SURF 

feature detection algorithm will be discussed. 

2.6.2.1 Hough Transformations 
  

Hough transformations, originally invented in 1959 by Paul Hough, are feature extraction 

techniques used to identify geometric shapes and lines from imperfect occurrences in an image.  For 

example, when given an image, Hough transformations can be used to identify all straight lines in the 

image when given the correct parameters for the scene.  These parameters can include the tolerances 

between slopes of lines, the adjacency of qualifying points, and the frequency of lines in a similar area in 
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the image.  However, Hough Transformations can not only be used for lines (in their most basic 

instance), but also for circles and ellipses.  By tuning the parameters in each case, instances of the 

desired shape or line can be detected, quantified, and measured. 

 

 This method is commonly used along with an edge-detection algorithm (similar to the Canny 

edge-detection algorithm discussed previously) in order to simplify the image and reduce noise.  

However, with all noise-reduction and image simplification algorithms, the loss of important information 

is always uncertain.  Thus, Hough transformations work to group edges, points, or blobs into common 

artifacts.  This is done through an explicit voting procedure by which the number of points, edges, or 

blobs that comprise a single object out of a selection of other potential objects is selected. 

 

 Simply, put, a collection of two-dimensional points can be linearly fit to a number of potential 

lines or edges.  However, some of these lines contain more points than others.  Lines that consist of 

more points, or have points with a lesser average closeness to that line than the others, are selected and 

added to the collection of lines. 

 

 These potential lines are detected by analyzing each point.  By selecting a point, all adjacent 

points within a specific range are considered to be on the current line along with the previous points.  

Points that more accurately fall along the slope of a previously defined line grant a higher score to that 

potential line.  Lines with a higher score hold a greater weight when determining the likelihood that a 

line continues when analyzing the subsequent adjacent points. 

 

 Using this method, lines can be identified as vectors along with their angle, length, and start and 

end points. 

 

 The method is similar with the detection of circles.  By analyzing the positions of points adjacent 

to other points, potential locations for the center of a circle can be identified.  Groups of points that fall 

along a common edge of a suspected circle can be used to identify the location of the center of that 

circle.  The more points that fall along the edge of that circle increase the probability that that circle 

exists.  Circles with a probability exceeding some threshold are identified. 
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 The effectiveness of Hough Transformation algorithms is determined, like the others by the 

parameters supplied to it.  Tightly constrained parameters defining the length of vectors, their angle 

tolerance relative to other vectors, and their distance to other potential vectors can drastically change 

the computation time, accuracy, and usefulness of this solution.  Constraints that are too loose will 

identify fewer potential vectors or shapes than desired, often grouping too many vectors or shapes 

together or not identifying them at all.  Constraints that are too tight will identify more objects, but in 

greater frequency and each with a much smaller probability of presence in the scene.  This additionally 

increases the computation time of this algorithm considerably, as it continues to cross reference the 

likelihood of previously identified features as being connected to the currently identified feature. 

 

 Additionally, the computation time and accuracy of these transformations can be greatly 

affected by the amount of pre-processing done to the image before performing the transformations.  

Using an algorithm like Canny Edge Detection can greatly simplify the image and reduce computation 

time.  However, if the edge detection is not parameterized properly, then the Hough transformations 

because even less useful, often not properly detecting features from the misidentified edges. 

2.6.2.2 SURF Detection 
 
 SURF (Speeded Up Robust Features) Detection, developed in 2006, is a derivative of the SIFT 

(Scale-Invariant Feature Transformation) detection method developed in 1999.  SURF detection works to 

detect similarities between two images by identifying unique features.  Reference images are supplied, 

and the unique features are extracted.  These features are then searched in the test image independent 

of the poses of the features in the image.  The invariance of pose and scaling creates a very exceptional 

use of this technique, which allows the reference image to be identified in the test image along with its 

location in 2 dimensions, its potential distance from the camera, and its rotation and angle relative to 

the frame of the image. 

 

 Features are identified in the reference images by performing a series of Gaussian functions and 

detecting the differences following each subsequent Gaussian transformation.  Areas that contain little 

to no change in appearance following each transformation are not considered as features in the 

reference image.  Areas that demonstrate considerable contrast are blurred again in order to further 

determine the likelihood of features being present. 
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 These features, once identified in the original reference image, are searched for in the test 

image.  Hough transformations are used (in a manner described similarly before) to determine potential 

clusters of features.  Clusters of a specific feature with higher probabilities (determined by their location 

relative to other clusters of specific features) are granted a higher weight and likelihood of being 

present.  The greatest set of clusters, with a higher probability relative to each other cluster, is used to 

identify the object’s presence and orientation in the image.  Additionally, if the reference is image is 

scaled to a known size, the size of that reference image in the test image can be used to determine its 

distance from the camera. 

 

 From this method and the use of reference images, SURF detection can be used to identify 

known objects or images within other scenes.  When compared to SIFT detection, SURF is much more 

robust and quick.  This is largely due to the use of reference images to reduce computation time and 

increase the understanding of desired features.  This method is useful for identifying complex flat 

images with great accuracy.  However, it is not capable of understanding the 3D shape of objects given 

its 2D reference images.  The object can only be identified given the specific angle and positioning in the 

reference image.  For example, it can only understand a single perspective of a cube and has no 

understanding of what is on the other side of a cube.  As such, without another reference image to fully 

describe the other side of the cube, it would not be able to properly identify it.  In essence, this 

algorithm is heavily dependent on the presence of comprehensive reference images. 
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3 PROJECT SOLUTION 
Our solution for the previously mentioned problem is a smart robotic prosthetic hand.  The device 

will be anatomically similar to that of the average American male hand and be able to grasp complex 

shapes.  The intelligence of hand will be attained from basic object recognition for quick identification of 

generic objects.  With this added intelligence coupled with a dexterous prosthesis, we aim to simplify 

the user interface for amputees and ultimately increase their quality of life. 

 

3.1 Objectives 
 

The systems engineering approach identified stakeholders and, in turn, needs. These needs were 

combined and converted into a step-by-step general process which we call our objectives. The 

completion of the following objectives signifies the finished needs in the scope of our project. 

 
1.) Design and create a prosthetic device for anthropomorphic actuation 
2.) Identify sensors for object recognition 
3.) Design and create a system that can automatically detect the environment 
4.) Integrate the prosthetic device with object detection system 
5.) Write software to operate the prosthetic with non-predetermined object 
6.) Demonstrate assisted control through use of sensor and software 

 
 
 

3.2 Finger Design 
 

An important element in our anthropomorphic prosthetic hand design was the development of four 

human like fingers.  In order to maintain an anthropomorphic appearance the fingers not only needed to 

look human but also move in a natural, human like way. After extensive observation of hand motions, 

methods for grasping everyday objects, and anatomical restraints we discovered a common curling 

behavior that allowed the fingers to securely close around objects of varying sizes and shapes. The 

challenge however was developing a mechanism that could reproduce this motion and still fit within a 

casing that was no larger than the average male finger. The design also needed to be durable enough to 

withstand the rigors of daily use.  

Before any major design work was done we first explored a couple options of how to achieve the 

desired finger motion. Based on our own thoughts and some preliminary research we came up with two 

possible methods. The first method involved the use of cables that would be routed though the 

segments of the finger and anchored at the tip. The cables would be routed in such a way that pulling on 
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one would cause the finger to curl. This is similar to the way muscles and tendons actuate our natural 

fingers. The second method utilized a series of inverted four-bar linkage systems imbedded in the finger 

segments themselves to produce the same curling method. Below is a table of the pros and cons we 

discovered for each method. 

Cable system Linkage System 

       Pros: 

 Fewer necessary moving parts 

 Simpler design 

 Fewer Materials 

 Low Cost 

Cons: 

 Cable can stretch over time 

 Routing may be difficult 

 Possibly more friction  

       Pros: 

 Low friction 

 Rigid bodies will not stretch 

 More accurate position control 

 Simple design 

Cons: 

 Lots of moving parts allows for 
more points of failure 

 Could take a while to find the 
ideal link length 

 Link length will differ in every 
finger 

Table 2: Pros and Cons of cables and Linkage System 

 

After weighing each option we decide to use the linkage system. Though it is comparatively more 

complex and slightly more expensive we believed that the cable routing would be too difficult to work 

with and the friction it would cause in the system would lead to problems when moving the fingers. We 

also believed that the rigidity in the linkage system would allow for more accurate approximations of the 

fingertip location which would improve our motion control. There was also the concern that in order to 

fit the cables inside the fingers we would need to use such thin cable that it would be too weak to 

handle the forces acting on the finger and would break. A basic illustration of the linkage system is 

shown below in Figure 3-1. A more detailed image of the final linkage design can be found in Appendix D 

of this report. 

 
Figure 3-1: Finger Serial Inverse Four-bar Kinematic Linkage System Diagram 
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Once the proper link lengths had been determined we were able to design a finger mechanism 

capable of following the desired path. It comprised of six main parts; a tip, two middle segments, a base 

segment, and two cross bar segments which completed the four-bar mechanism. Our thought process 

for manufacturing was that the two cross bar segments could be laser cut out of a sheet of acrylic and 

the rest of the pieces could be 3D printed, and later injection molded. Our first design, shown later in 

Figure 3-2, was constructed in Solidworks. The first cross link ran through a hole cut out of the solid base 

piece connecting the middle links to the knuckle. The second cross link ran in between the middle links 

connecting the base segment to the tip segment. Finally, the two middle segments sandwiched the 

other two segments, competing the assembly. Unfortunately, the design was rejected for several 

reasons: 

 

 The solid base piece would be too difficult to later make using injection molding 

 The open middle segment would allow for items to get caught inside the finger 

 Relying on the friction of the press fit axles to hold the middle segment together would be 
too unreliable 

 It failed to meet aesthetic necessities 

 Acrylic cross links were not strong enough to handle minimal allowed forces put on the 
finger  

 

 
 

Figure 3-2: First finger Design 
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Our second iteration was able to address most of the issues we had had with our initial design. 

To address the perceived difficulty of recreating the base segment using injection molding we decided to 

split the base segment of the finger into two parts, each side of which could be easily made and screwed 

together into one piece. This also made inserting the cross bar into the base segment much easier. The 

middle components were also redesigned to touch at the middle when put into place. The pieces would 

later be glued together to prevent separation. The Tip was also slimmed down to be more anatomically 

accurate. For this iteration, we used delryn for the crosslinks instead of acrylic which made the fingers 

able to handle much greater forces. Unfortunately, we did not feel this design was still not 

anthropomorphic enough so a few more alterations were made and we finally developed our third 

iteration which included more anthropomorphic curves and a rubber tip on the end of the finger which 

improved grip and had a more natural shape. The third design was manufactured on an Objet 3D printer 

using their veroWhite Plus material. Both our second and third designs can be seen in Figure 3-3. 

 

 
Figure 3-3 Finger Design Iterations Two (Top) and Third (Bottom) 

 

3.3 Palm and Thumb Design 
 

The next important part that had to be designed was the thumb. Fortunately, the 

linkage mechanism we developed for the fingers to give them a natural curling motion was able 

to be integrated into the thumb with only a few alterations. The challenge with the thumb then 

became the design of the powered compound joint at the base of the thumb that allowed it to 

bend and move in opposition to the fingers. Since we knew there would be limited space in the 

palm for a motor, we designed the joint to contain the motor which powered the opposing 
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motion of the thumb to be inside the joint segment itself and the shaft of the motor would 

extend out into the body of the palm. An image of the thumb connected to the compound joint 

is included below in Figure 3-4.  

 
Figure 3-4: Thumb and Compound Joint 

 
  The palm was the final piece of the hand that we designed since it was the component 

that all other parts would be mounted to. The Palm was designed with five main goals in mind: 

 

1. Must be able to have the thumb mounted on it 
2. Must be able to have the fingers mounted on it 
3. Must be able to have the camera mounted in it 
4. Must be able to allow the actuation system to reach the fingers 
5. Have an anatomically accurate size and shape to the average male hand 
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Figure 3-5: Palm Design 

 
The palm was manufactured like most of our components out of veraWhite Plus on an Objet 3D 

printer. It was designed to be manufactured in two pieces to make it easier to access the camera and 

other components housed inside the hand. The camera for the device sits roughly centered in the 

bottom of the palm and peaks out through a window to detect the objects the user reaches for. The 

thumb assembly can be easily slid in and out of the bottom segment of the palm after the top is 

removed. For ease of access and repair, the “knuckles” for the fingers components were designed to be 

separate components form the palm. The interior of the palm is open to allow for the cabling to pass 

through.  
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Figure 3-6: Knuckle 

 
 
 

3.4 Forearm Design 
 
When designing the forearm, there are many things to consider.  Primarily, the size constraints 

for the proposed system restrict us from using large motors and springs and sensors.  Secondly, the 

shape must be similar to that of the average male forearm.  Thirdly, the form must be strong enough 

and large enough to not only house the motors, cables, and springs, but to also make routing, 

calibration, and assembly easier.  Given that this piece contains the majority of the electronics as well as 

the transmission system, the design must be incredibly compact. 

 

 The forearm consists mainly of three separate sections.  These include the wrist/spring module, 

the transmission/routing module, and the electronics module. 

 

 The wrist/spring section of the forearm is mostly hollow and contains two acrylic sheets.  The 

first acrylic sheet is used to separate the tubing and cabling from the palm into manageable paths for 

the series-elastic actuation system.  There must be ample spacing between the springs in order for them 

to stretch and slide past each other, yet be compact enough to fit within the arm.  The cables that 

connect to the springs are then separated via the second acrylic sheet from the second part of the 

forearm. 
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 The second part of the forearm is used to house the motors, spools, and potentiometers.  The 

transmission system must be compact and easily assembled in a way that allows for routing of the 

cables to the first part of the forearm.  The motor mounts must be strong enough to withstand the 

tension of the cables and springs as generated by the forces on the fingers and the motors.  Additionally, 

there must be ample room in the forearm for tubing and cables to move and slide back and forth.  All 

the motors are secured on the bottom half of this segment and supported by an acrylic sheet that runs 

across the top with holes for potentiometers and the motors.  This acrylic sheet helps reduce the stress 

on the motor mounts while simultaneously providing a surface for placing the pcDuino mini-PC 

platform. 

 

 The final part of the arm is used almost exclusively for storing electrical circuits, the Arduino 

microprocessor, and the remaining half of the pcDuino.  It is primarily a hollow space with two shelves 

for mounting electronics.  There is also a cover to enclose the remainder of forearm. 

 The image below shows the final design. 

 

Figure 3-7: Rendering of the forearm 
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3.5  Electronics 
The system level electronics were designed in order to: 

1) Actuate the fingers 

2) Control the fingers 

3) Embed the object recognition in the system 

4) Interface with the user 

5) Integrate the system together 

For the initial product development, priority was given to off-the-shelf components for faster 

prototyping and replacement of parts. This allows design changes to be made more flexible, and allows 

modularity for components. Although individual parts were not designed and made in more compact 

form, size was taken into consideration in design as well. Other factors like power consumption, 

performance and price were given lower priority at this point of the design. 

3.5.1 Actuating Fingers 

After calculation of required torques and speed for fingers, commercially available motors were 

compared for the final selection. The main goal was to find a motor that didn’t require a design of a 

gearbox - which would need extra space in the hand - and was to find a motor small in size while 

providing the required torque and speed. Additional factors were cost, voltage requirements, lead 

times, and weight. 

 

Pololu micro metal gearmotors, with 125 oz-in torque and 32 rpm, were chosen as the motors 

for the fingers as they are very tiny yet powerful enough for the requirements. A feature that was 

beneficial was that Pololu offers many different versions of the same motor package with different gear 

reductions. This allows easy modifications in the design when needed. For instance if there are more 

friction in the system than expected, higher torque version can easily be swapped, or different fingers 

can use different motors. Additionally, price tags of these motors are low, which made them an even 

better option. 

 

Next step was to drive the motors. As the required current and voltage to run these motors are 

much higher than a typical microcontroller can supply, a motor driver is needed as an interface between 

the microcontroller and the motors. Compared to ESC, Brush DC motor drivers from main supplier 

companies such as Allegro Microsystems, Texas Instruments and Freescale Semiconductor were listed 

and then compared, as they are relatively cheaper for same purposes. These drivers come with dozens 

of options for industrial applications such as serial communication options, different packaging, low 
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power options and sleep modes. However the main priority was given to output voltage and current 

capabilities as they are the requirements to drive the motors. Additionally, drivers with fewer pins were 

considered for simplicity in wiring in the system.   

 

DRV8835 from Texas Instruments, a dual lot voltage H-Bridge IC, was finally chosen for having 

the capability of driving 2 motors at once with only 12 pins while being able supply the required RMS 

and peak currents. Interfacing this circuit is easier as well and additionally, after the selection, it was 

found that Pololu sells the breakout boards for these ICs in a very small size, which made them even 

easier to use and test. 

                              
Figure 3-8 Motor Driver and Micro-gear Motor 

 

3.5.2 Controlling Fingers 
For position and speed control, the system needs joint angle information. The most convenient 

way to achieve it is to directly attach an encoder or a rotational potentiometer directly to the shaft of 

the rotating joints. Encoders are digital sensors and provide incremental data. The main benefit from the 

use of encoders is that they can make full 360 degree rotations without any physical limitations. On the 

other hand, calibration of these might be a challenge as they don’t provide absolute joint angles. 

Conversely, potentiometers are generally limited from full rotations.  However, as full rotations aren’t 

needed for this project, and these potentiometers provide absolute analog values, rotational 

potentiometers were selected as the sensors. 

 

The main challenge in selecting a potentiometer was the size constraint. Databases of main 

suppliers like DigiKey were searched in order to find small enough potentiometers to be embedded 

inside the joints. Finally, a hollow D-shaft potentiometer from Panasonic with a 343 degree rotation 

range was selected to be used in the project. 
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Figure 3-9 Hollow Shaft Rotary Potentiometer 

 
Additionally, force control for the fingers, by design, required measurement of motor shaft 

angles as well. The same potentiometers were decided to be used for simplicity in design. Spools and 

mounts were specifically designed for these potentiometers. 

3.5.3 Embedded Object Recognition 
In order to embed object recognition on-board rather than tethering the hand to an external 

computer through cables, miniPC platforms were compared. These platforms are Linux computers which 

run embedded versions of operating systems like Ubuntu, and have computer-like features like fast CPU 

and HDMI connections. The main consideration was given to processing speeds, graphics, and the 

amount of RAM. Other factors included price, size, storage and I/O interfaces. A final decision was made 

to select the pcDuino, which has a 1GHz ARM Cortex A8 CPU and 1GB DRAM which is higher than its 

competitors. Additionally it had Arduino-like features that allow access to GPIO like UART, PWM and 

ADC.  

 
Figure 3-10 Embedded Linux Computer – pcDuino 

 
After the selection of the embedded PC, different options were considered for camera for the 

object recognition sensor. The camera needs to communicate with the pcDuino, needs to be compatible 

with the selected software, and needs to provide enough optical detail about the environment. Initial 

work has been done to create a custom PCB and putting a small camera module in it for achieving small 

size. However, it has been decided that the level of complexity in interfacing with camera modules and 

transferring them to pcDuino was out of the scope of the project, which led to the design choices to be 

made on camera packages with built-in communication interfaces like USB. Further selection and 
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comparison was made with priority on size, optical detail, price and compatibility with pcDuino. Final 

choice was made on Logitech C525 Webcam which has 8MP of photo resolution, pcDuino compatibility 

via USB, manual and autofocus features, and small size factor. In order to fit the camera inside the palm, 

the external cover of the camera was removed. 

 
 

                 
Figure 3-11 Camera and its circuitry 
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3.5.4 Interfacing with User 
Current myoelectric hands in the market interface with sensors that incorporate 

electromyography (EMG) to read muscle signals. Users select grips, open and close hand by flexing and 

relaxing their muscles in the arm. Although this project uses object recognition to simplify the user 

interface, muscle signals are still necessary for telling the hand to open and close. However this method 

is complex with many companies and research institutions actively working on them. For this reason it 

was decided to not include EMG sensors at this stage of the project, but leave expandability in terms of 

connections in the microcontroller to incorporate them in the future. 

 

Additionally the focus in design of this project is interacting with objects as seamlessly as 

possible. For this reason only a single button is used if needed for advanced modes, similar to Apple’s 

iPhone Design. One main use for this button would be to activate teach-mode, where the user is able to 

introduce hand a new object and how it is held. This way, the user is able to make modifications to the 

hand’s configurations without the need of a smartphone or a computer connection. Consequently, in 

order to prevent errors in reading the button, the button was debounced with an RC circuit. 

 

Furthermore, to let the user know about some information like low battery or when an object is 

successfully detected, an LED is used for visual feedback on the surface of forearm, and a vibration 

motor is used for tactile feedback.  

 

3.5.5 System Integration 
In order to bring all the components together electrically and under software, a single 

microcontroller was decided to be used as the computation brain and the low level controller. Although 

the pcDuino is capable of handling both high level and low level tasks, it was left as a co-processor for 

handling object recognition with the camera. This way, the system is more modular, where a different 

smaller or faster co-processor can be replaced for the project without affecting the rest of the system. 

 

This main board doesn’t require high RAM or GPU power but it has to keep up with controlling all 

the components. The factors in choosing the microcontroller were: 

- It must be capable of supporting most common used hardware interfaces such as UART, SPI, I2C 

- preferably including PWM and ADC on board 

- having enough GPIO pins for the project 

- It must be small while incorporating other electrical components like voltage regulators. 

- support for the product 
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- Price 

- The capability to run the control loop at 50Hz 

- The capability to store the code 

- Available to buy on demand 

For their proven record in the market, and big support by the community, Arduino was chosen as 

the platform for the project, which provided many different microcontrollers in different packages. This 

is also beneficial for modularity, where a different product line can easily be swapped with the same 

code conveniently. Consequently, the choices were narrowed down to the Arduino Pro Mini that uses 

ATmega168, which runs at 16MHz, has 6 PMW outputs, 8 analog inputs, is small in size, and includes all 

the previously listed hardware interfaces while leaving room for extra GPIO connections. It additionally 

has on-board regulator, which regulates power and prevents the circuit from failing to short circuitry.  

 
Figure 3-12 Arduino Pro Mini (16MHz) 

 
The overall system can be contains 5 main parts: 

1. Main board 

2. Actuation 

3. Sensing 

4. Object Recognition 

5. User Interface 
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Figure 3-13 Electrical System Diagram 
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1. Main board: 

This consists of the main controller (Arduino Pro Mini), a multiplexer, and the PWM 

driver. As many potentiometers are needed to be interfaced with the ADC, the final design uses 

an external multiplexer that channels potentiometers through the Arduino’s internal ADC one at 

a time. It supports up to 16 analog sensors to be read. Similarly, the PWM driver is used to 

increase the number of PWM pins, which are needed to control the motor drivers. The current 

PWM driver uses 12 channels and supports up to 16 channels. 

 

Each of these circuits is powered by 5V signal level power. Multiplexer is controlled by 4 

digital outputs from Arduino for channel selection, and 1 signal wire is input to Arduino’s analog 

input for reading. PWM driver is controlled from Arduino by 2 I2C wires, and communication 

protocol is achieved by the libraries provided by the driver. 

 

    
Figure 3-14 Multiplexer and PWM Driver 

 
2. Actuation 

Each motor driver is powered by both 5V signal power and 9V motor power. 

Additionally 4 PWM lines are interfaced from the PWM driver per motor driver to control the h-

bridge in phase-enable mode. This way 2 motors are controlled per motor driver with 2 power 

wires per motor connected to the motor driver. 

 

As the motor drivers are the most sensitive circuits on the hand, they are ordered with 

their breakout boards from Pololu with regular spaced pinouts. They are wired with female to 

male header inserts so that they can be replaced anytime. 

 
3. Sensing 

All potentiometers are wired with ribbon cables to save space. They share a common 

ground and signal power. Each potentiometer’s signal line is connected to the corresponding 

multiplexer channel. 
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4. Object Recognition 

A camera is connected to the pcDuino for communication and power via USB. The 

pcDuino is powered by 5V signal power and connected to the Arduino with 2 wires for 

communication via UART. 

 
5. User Interface 

Button, LED, and vibration motor are all low power components, thus all are interfaced 

directly with Arduino without external power connections. Motor and LED is controlled by PWM 

pins and button is read with a digital input pin. 

 

3.6 Object Recognition 
 
 As discussed in previous sections, there are many methods and algorithms for determining the 

object.  These methods include, but are not limited to, Edge-Matching, Hough Transformations, and 

SURF detection.  However, the most object recognition techniques are not effective in all situations.  In 

this section, the mechanical and software limitations of the system, including limitations imposed by the 

environment, will be discussed, as well as how they relate the earlier mentioned object recognition 

techniques. 

 

The system is primarily limited on a hardware level.  Because the device we propose is rather 

small and compact, we are limited in the type of camera that can physically fit within the confines of the 

palm.  Because the camera is smaller, we are forced to use either more advanced cameras or use 

cheaper, more accessible cameras.  These kinds of cameras may include the cameras used in 

smartphones and small digital cameras as well as typical computer webcams.  The frame rate, image 

quality, and compatibility with OpenCV are also factors that determine what object recognition methods 

would be most effective.  Because these are all specifications unique to each camera involved, we are 

limited in what algorithms can be used.  Furthermore, cameras that are not compatible or usable with 

the pcDuino computing platform are not acceptable either. 

 

The system is also limited on a software level.  Regardless of the camera chosen, assuming 

OpenCV can interface with it, there are processing limitations for our mini-PC platform.  The pcDuino, 

while it is a PC running lubuntu, is not an overly sophisticated computing device.  It has limited memory 

and processing power, both of which slow down even some of the most common tasks for a standard 

PC.  Because of this, any algorithm chosen must be both memory-efficient and fast.  Algorithms that 
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consume extensive processing resources cannot be considered for this device.  Similarly, algorithms that 

are time-dependent and take more than five seconds to process are not satisfactory options. 

Additionally, any algorithms that can simplify or expedite the image processing are preferable. 

 

Of the previously mentioned algorithms and methods, we can determine how each method 

would work towards determining the object in front of the device.  The methods presented earlier are 

the use of edge-matching, Hough transformations, and SURF detection. 

 

Edge-matching object detection would require a comprehensive set of reference images to 

compare with the image from a 2D camera.  This appearance-based object recognition method would 

be useful in tightly constrained situations where the view of the object does not change and is not likely 

to vary significantly.  For this method to work, the object would have to be viewed via the camera from 

a predictable perspective.  Then, the algorithm would simplify the scene to its most essential edges and 

compare them to each of its reference images.  Images with the highest scoring match (above some 

threshold) would be selected as the image containing the matching object.  Additionally, any amount of 

preprocessing of the image to simplify the number of edges would greatly increase the likelihood of 

finding a match.  A flow-chart detailing the process can be seen below. 

 

 
Figure 3-15: Flow Chart of Edge-Matching Algorithm 

 
 Hough Transformations are also a viable option for performing object recognition.  Depending 

on the level of preprocessing done to the image, Hough Transformations, specifically for line detection, 

can be very useful.  However, this requires an understanding of the objects that are to be identified.  If a 

full understanding of the objects as a series of lines and edges is obtained, then the objects can be view 
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from any angle.  Additionally, a high level of preprocessing can be done for this.  Color segmentation for 

specifically colored objects as well as Canny Edge Detection can be used.  However, the use of color 

segmentation does make the scene somewhat lighting dependent.  Thus a range of colors should be 

expected and tuned for a variety of lighting situations.  A flowchart detailing a full process of identifying 

an object via Hough Transformations is shown below. 

 
Figure 3-16: Flow Chart of Hough Transformation Algorithm 

 
 Finally SURF detection for 2D images is analyzed.  SURF works best with flat objects, being able 

to detect the single face of the object while still remaining scale independent.  The process is rather 

simple as there are several examples of SURF working with streaming video performing object detection 

on the fly.  No pre-processing is necessary for this.  However, because SURF works best with flat objects, 

the lighting in the scene is very important.  The light that catches that flat object, despite being 

perspective and scale independent, can cause the flat object to be “washed out” for unreadable.  The 

process of analyzing the scene would simply be to open a video stream from the camera and to run the 

SURF algorithm with the stored images for searching. 

 

 Given these three methods, including any preprocessing strategies that might be used, our 

proposed solution is a combination of all three.  Because our device must be able to detect generic 

shapes and AR tags, the primary use of Hough Transformations and SURF detection is valuable.  

3.6.1 Hough Transformations for Generic Object Recognition 
 
 Because the generic objects are all an identifiable shade of green, a certain level of color 

segmentation can be performed in order to pull the object out from the background.  Then, Canny Edge 

Detection can be performed much more quickly and efficiently.  This further allows the Hough Line 

transformation to be sped up and be more directly applicable to the object of interest.  Because each of 

these algorithms increases the efficiency and accuracy of the algorithms before it, this strategy allows 

the device to quickly and predictably detect the objects. 

 

 However, several things important things must be understood and several calibrations must be 

performed before the system can recognize the object.  These include a proper calibration of the 
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segmenting colors, the dimensions of the image from the camera, and the number of Hough transform 

lines we should expect. 

 

 In order to decide the proper colors to segment from the background, many tests were 

performed in many lighting conditions to detect the particular shade of green of the generic objects.  

These lighting conditions testing in high and low light conditions, testing color and brightness in direct 

light and in a shadow, and the angle of the lighting and reflectivity.  In order to test the range of colors, 

we grab a series of images in these various light conditions then measure the RGB values for the colors 

we desire.  From these tests, we determine an average color range that includes both direct light and in 

shadow shades of green. 

 

 To isolate the green objects from their background, we must parse the image on a pixel level.  

For each pixel in the image, we identify its RGB values are within the range we defined earlier.  For all 

pixels that do not fit into that range, we set that pixel’s RGB values to 0;0;0 (black).  This color 

segmentation algorithm’s efficiency and speed is directly related to the size of the image.  However, 

since we are working with 640 by 480 pixel dimension, the calculation is fairly simple and quick to 

compute. 

 

 Once the color segmentation has properly separated the green objects, a proper calibration of 

how to reduce these objects to their edges.  By defining the specific color contrast ranges that define an 

edge, the algorithm is more likely to identify the major edges without any unnecessary information.  

This was done by repeatedly running the standard Canny Edge Detection algorithm on the color 

segmented images (which were taken in a variety of lighting scenarios) and modifying the Gaussian 

transform parameters.  Because the object in question is already isolated in the image, little adjustment 

is required to acquire the desired output from the Canny Edge Detection. 

 

 After the image is reduced to its major edges, running a series of Hough Line Transformations on 

the image will generate a set a vectors that define the object’s edges.  These vectors must be extensively 

tweaked and manipulated in order to achieve the desired output.  Ranges of angles, lengths, and the 

proximity of pixels to one another all greatly define the abundance of vectors and their usefulness.  

Ideally, each straight edge in the image will be defined by a single vector that covers its whole length.  

By manipulating the parameters to the Hough transformation function, we can achieve this result given 
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our knowledge of the camera’s dimension and distance that the device’s camera will be placed away 

from the object. 

 

 Given the object is now reduced to a list of vectors that are fully described and able to be 

analyzed, we must define each object we wish to observe.  The objects we wish to observe are a cube, a 

cylinder, and a sphere.  A table containing the information on each shape can be seen below. 

 
Table 3-3: Generic Object Descriptions 

Shape Contains Straight Lines Contains curved 
edges 

Number of parallel line groups 

Cube Yes, between 4 and 9 No < 3 

Cylinder Yes, between 0 and 4 Yes < 1 

Sphere No Yes 0 

 
 By defining these objects in this manner, it is possible to distinguish between whether a series of 

vectors are a cube, a cylinder, or a sphere.  The following decision tree can be made for evaluating these 

lines in an ideal situation. 

 
Figure 3-17: Decision Tree for Generic Objects 
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 Given our system and the information provided above, we can with some reliability identify an 

object from the image.  However, there is one scenario that is more difficult to analyze.  This scenario is 

viewing a cylinder directly from above.   

 

In the first case, a cylinder viewed directly from its top looks identical to a sphere in many ways.  

This would cause this decision tree to misidentify the object as a sphere, given that no straight lines 

were detected.  To counteract this example, further color analysis can be done to detect the gradient of 

lighting on the object.  A greater range of colors (light green in direct light to dark green in the shadow) 

would hint that the object is probably a sphere.  However, this was not incorporated, as the grasping of 

a cylinder from that angle is identical to the grasping of a sphere from any side.   

 

The pseudo code for this entire procedure can be viewed below: 
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Table 3-4: Pseudo-Code of the system 
Pseudo-code 

1. Receive image from the camera 

2. Perform color segmentation 

a. For each row 

i. For each column 

1. Is the pixel within the color range? 

a. If no, make the pixel black 

b. If yes, continue 

3. Perform Canny Edge Detection 

4. Perform Hough Line Transformation 

a. Find the number of lines 

b. Find the number of parallel lines 

c. If there are more than 10 lines total 

i. The Hough Line Transformation is not calibrated properly 

ii. The object is unidentifiable 

d. Compare the number of parallel lines to the number of total lines 

i. If more than 75% of lines are parallel with another line 

1. If there are 3 or more parallel line groups 

a. The object is a cube 

2. If there are 2 or fewer parallel line groups 

a. If the lines are approximately the same length 

i. The object is a cube 

b. If not, 

i. The object is a cylinder 

ii. If less than 75% of lines are parallel with another line 

1. Perform Hough Circle Transformation 

a. If the scene contains one or more circles 

i. The object is a sphere 

b. If not, 

i. The object is unidentifiable 

 
 This code was built using existing implementations of OpenCV examples relating to Hough Line 

Transformations and Hough Circle Transformations.  By leveraging the power of these separate open 

source code packages and implementing them together in conjunction with custom calibrations and 

settings and color segmentation algorithms, we are able to perform our own custom edge/line analysis 

in order to distinguish between the objects.  The end result of this algorithm is the name of the object 

that was identified being saved to an output file. 
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3.6.2 SURF Detection for AR Marker Tag Recognition 
 
 For the AR Marker Tag recognition, we decided to implement a SURF Detection algorithm.  The 

majority of this algorithm is from an open source code project developed by Raúl Domínguez and Arturo 

Bajuelos Castillo at the Technical University of Madrid, Spain.  This algorithm works using OpenCV’s 

Python SURF detection package and the RANSAC method to calculate homography.  It is capable of 

determining angle and distance from the camera.  For this, we implemented their program, and used it 

to detect two AR marker tags.  The code was modified to set a time limit for detecting the images as well 

as saving the last image that was viewed.  If within the five seconds duration assigned, a tag is identified, 

the name of the tag is saved to an output file. 

 

3.6.3 Software Implementation 
 

By scheduling these two algorithms, we can create a single program that accepts a single start 

commands and outputs a single object identification.  Our overall program structure is shown below: 

 
Table 3-5: High Level Scheduling of Programs 
Pseudo-code 

1. Receive image from the camera 

2. Perform color segmentation 

3. Perform Hough Transformation Identification 

a. If an object is identified, 

i. Save the name of the object to a file 

4. If not, 

a. Perform SURF Detection for AR Tags 

i. If a tag is identified, 

1. Save the name of the tag to a file 

5. Send a number corresponding to the object or tag via USART to Arduino 

 
Because the pcDuino is Arduino compatible, we are able to send a command via Universal Serial 

Asynchronous Receiver/Transmitter communication.  For each object identified, we have a single 

number we send to the Arduino.  The table below shows the relationship between each object and the 

number we send. 
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Table 3-6: Relationship between object/tag and USART command 

Object Number 

Nothing 0 

Cylinder 1 

Sphere 2 

Cube 3 

Car tag 4 

Mail tag 5 

 
The Arduino on the other end is expecting one of these 6 numbers.  Each of these numbers 

corresponds to a specific grasp.   

 

3.7 Control Architecture Analysis and Design 

3.7.1 Nomenclature 
Multiple terminologies are defined for consistency of the project as well as the documentation. 

Therefore, it is essential to understand nomenclature for the device. 

3.7.1.1 Configuration 
In order to define the motion of the device, there are two different types of configurations, 

Hand Configuration and Motor Configuration. For each configuration, there are two types of joints, 

elastic and direct-drive. Furthermore, the rotation axis of joints in the Hand Configuration is called Base 

Rotation axis. Each finger has one elastic joint for flexion, where the transmission is driven by series 

elastic actuator. For the thumb, there are one elastic joint for flexion and one direct-drive joint for 

opposition. A set of all elastic joints in Hand Configuration is denoted by  ⃑ 
  , where  ⃑ 

    . 

 ⃑ 
  consists of five joints, which ordered as follows: 

 

 ⃑ 
  [    

      
      

      
      

 ]  [    
      

      
      

      
 ] (   ) 

 

where      
  is a joint variable at the     joint of the finger,    is a joint variable of the index finger,    is a 

joint variable of the middle finger,    is a joint variable of the ring finger,    is a joint variable of the 

pinky finger, and    is a joint variable of the thumb. 

 

Similarly, a set of all elastic joints in Motor Configuration is denoted by  ⃑ 
  , where  ⃑ 

    . 

 ⃑ 
  consists of five joints, which ordered as follows: 

 

 ⃑ 
  [    

      
      

      
      

 ]  [    
      

      
      

      
 ] (   ) 
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where      
  is a joint variable at the     joint of the motor.  Since the transmission of thumb 

opposition is directly driven by a motor, there is only one direct-drive joint. This joint is denoted by     , 

where      .  

 
A full Hand Configuration is denoted by  ⃑  , where  ⃑  [ ( ⃑ 

 )     ]
 . Similarly, a full Motor 

Configuration is denoted by  ⃑  , where  ⃑  [ ( ⃑ 
 )     ]

 . A full configuration can be listed with six 

joint variables as follows: 

 
 ⃑  [                 ]  [                  ] (   ) 

 

 Since the device will have several pre-determined (desired) Hand Configuration, the     pre-

determined Hand Configuration is denoted by  ⃑    where  ⃑     
    , and   is a total number of pre-

determined Hand Configuration. When the device is at the neutral state, the desired configuration is 

said to be “Neutral Configuration”. The Neutral Configuration is denoted by  ⃑ 
 . 

3.7.1.2 Motor Control Input 
In order to drive all six degrees of freedom, six motor drivers obtain analog values from the 

microcontroller. These signals are defined as Motor Control Inputs. The control inputs are categorized 

by type of the transmission. The first type of the control input signals is the one that connected to elastic 

joints. This control input is denoted by  ⃑⃑  , where  ⃑⃑   
 . The other type of control input is the direct-

drive, which control Thumb’s opposition. This control input signal is denoted by     , where      . For 

describing a set of all motor control inputs, the signal is denoted by  ⃑⃑ , where  ⃑⃑  [( ⃑⃑ )
     ]

 . A full 

Motor Control Inputs can be listed with six individual inputs as follows: 

 ⃑⃑  [                 ]  [                  ] (   ) 
 

3.7.1.3 State Machine 
 Several processes of the device are modelled by using Finite State Machine (FSM). In order to 

fully define each process, inputs and outputs of each state need to be described. Transitions of some 

states are directly governed by the accuracy of the configuration. If the current Hand Configuration  ⃑  is 

close to the desired Hand Configuration  ⃑    , the device is considered  ⃑  to be accurate enough in 

order to execute the next process. The behavior can be mathematically described as follows: 

 

             {
      |       

 |      (  {           })
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where             is a digital signal that represents whether   ⃑  is close enough to  ⃑   
  , and     is a 

real positive quantity that described the threshold for the error in configuration.  

 

For each state, there is corresponding output that directly controls the behavior of all motors. 

This signal is denoted by                 .                 is a digital signal that tell the low-level 

control system to whether drives the motors. If                 is high, the low-level control system 

will regulate all joints to go to desired configuration. Otherwise, the low-level control system is disabled, 

so that the motors can be freely moved.  

 

Furthermore, some transitions are governed by torques that detected by the series elastic 

actuators. If the device detects large amount of torques in the system before reaching the desired 

configuration, the system is considered as failing at grabbing. The signal that describes whether the 

system detect large amount of torques is denoted by              . The behavior can be 

mathematically described as follows: 

 

               {
      |     |      (  {         })

              
 

 
where              is a digital signal that represents whether the system detects a large discrepancy 

between input torques and the measured one from the series elastic actuators.    is a real positive 

quantity that described the threshold for the error in torque.  
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3.7.2 Scheduling 
 

The scheduling of grabbing and releasing process can be modelled in the form of Finite State 

Machine (FSM). The system is divided into two state machines, Grabbing and Releasing.  

Releasing state machine represents the state machine of the device when it is moving from any 

configuration to Neutral Configuration ( ⃑      ⃑ 
 ). It can be mathematically represented as follows: 

 
       {                    } 
      {                        } 
       {               } 
              {          } 
 

      (   )  

{
 

 
(                                 )

   (                               )

(                                  )

   (                             )

 

 
There are two states in Releasing machine. When the system is started, the initial state is set to 

           state. At this point, the actuator will stop moving. And the user can decide whether to grab 

an object. If the              is triggered by the biceps (         ), the state will transit to 

         state inside the Grabbing machine. Otherwise, the system will remain in            state. 

When the processes in Grabbing machine are done, the system transits back to Releasing machine at the 

          state. The system will continue to drive all motors until the current Hand Configuration is 

close enough to the Neutral Hand Configuration (                 ).  

 

Grabbing state machine represents the state machine of the device when it grabs an object from 

the Neutral Hand Configuration. It can be described as follows: 

 
       {                    } 
      {                         } 
       {               } 
              {        } 

      (   )  

{
  
 

  
 

(                                  )

   (                              )

(                                  )

   (                )

(                                   )

   (                                             )
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 There are two states in Grabbing machine. When              is triggered from 

           state in Releasing machine, the system starts the grabbing process. Before reaching the 

desired Hand Configuration, if the system detect large amount of torques, the device will drive itself back 

to            state. Otherwise, the device will continue driving all motors until it reaches the desired 

Hand Configuration. Once it reaches, the device stabilizes the grasp and waits for the next command. At 

any state, the user can release the grip (               0), which transits the state to           

state. 

3.7.3 Force Detection using Series Elastic Actuator 
 
Series Elastic Actuator is selected to be used for detecting an object. A set of SEA is attached to 

each finger at the base joint. Therefore, there are total of 5 sets of SEAs. The only driven joint that does 

not have Series Elastic Actuator is the opposition of the thumb. 

 

         A set of Series Elastic Actuator consists of a 10-millimeter diameter spool, a high-power Pololu 

1000:1 Micro Metal High Power Gearmotor, four pieces of polyethylene cable, two extension springs, 

and two rotary potentiometers. Inside of proximal digit of each finger, there are attachment slots for two 

pieces of cable. One piece of able is anchored to the top slot, while another piece is anchored to the one 

in the bottom. Each pieces of anchored cable is individually attached to a spring. The end of each spring, 

then, individually attached to another piece of cable, which also anchored to the spool. The spool is 

rigidly attached to the shaft of a motor. A potentiometer is attached to the shaft of the motor for 

measuring an angular displacement of the spool. Another potentiometer is attached to the shaft at the 

base joint of the finger. By measuring the relative displacement between finger and the motor, the 

system can detect the external force based on Hooke's law. 

 

There are two main constraints for selecting an appropriate spring constant. The first constraint is 

based on the limitation in motion of the fingers. Transmission system of one finger consists of two 

identical linear springs, cable, spool for mounting the cable, motor, and the finger itself. Figure 3-7 

shows a basic schematic diagram of the transmission system, where the cable can be routed around 

anywhere. The spring on the top is referred as top spring. And the spring on the bottom of the figure is 

referred as bottom spring.  
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Based on displacement of the spool and the finger, force at the spring along the axial direction   can 

be calculated from Hooke’s law. 

   (     ) (   ) 

where    is a spring constant,    is a pre-tension displacement from the equilibrium position of the 

spring, and    is  an extension measured from the pretension displacement. 

 

 
Figure 3-7: Series Elastic Actuation 

 
According to Figure 3-7, if the spool moves by   

  in the positive direction, the top portion of the 

cable will move toward the spool since the end of the cable is rigidly attached to the spool. This extends 

the spring, which increases the extension   . In the other hand, if the finger is moves by    in the 

positive direction, the extension will decrease. The relationship between the total changes in the top 

spring’s displacement in term of   
  and   

  is expressed as follows: 

      
      

    (   ) 

where      is the total changes in the top spring’s displacement,    is the radius of the spool, and    

is the distance from the center of finger’s rotation and the tangential surface that contact the cable. 

 
The same principle can be applied to the bottom spring. In this case, positive displacement of the 

spool decreases the extension of the bottom spring, while positive displacement of the finger increases 

the extension. The relationship between the total changes in the bottom spring’s displacement in term 

of   
  and   

  is expressed as follows: 

       
      

    (   ) 

where      is the total changes in the top spring’s displacement. 

 

Therefore, the magnitude of the force of each spring can be written as follows: 

 

    (     
      

   ) (   ) 

    (     
      

   ) (   ) 
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where    is the force of the top spring and    is the force of the bottom spring. 

 

By applying second Newton’s law of rotation, sum of all torques around the finger’s rotation axis is 

equal to product of inertia of the finger around the axis and the angular acceleration can be expressed in 

term of torques generated by springs and external torques at the finger. 

∑      ̈ 
                (   0) 

where     is the inertia of the finger around the axis of rotation and      is the external torque at the 

finger. 

 

By substituting equation 3.8 and 3.9 into equation 3.10, a dynamic equation of the finger can be 

obtained as follows: 

   ̈ 
    (  

      
   )       (    ) 

Based on the design, the radius of the spool is equal to the distance from the center of finger’s 

rotation and the tangential surface that contact the cable. Hence, the equation 3.11 can be simplified as 

follow: 

   ̈ 
    (  

    
 )       (    ) 

where   is the radius of the spool and distance from the center of finger’s rotation and the 

tangential surface that contact the cable. 

 
When the finger makes a contact to a fix rigid body, the change in rotation of the finger is assumed 

to be zero. Also, the acceleration of the rotation is equal to zero. Then, the static torque output of the 

finger can be expressed as follows: 

        
     (    ) 

where      is the static torque output at the finger and     is  the spool’s change in displacement. 

 

For any fixed displacement of the finger  
 , the range of the spool’s change in displacement is 

between zero and      . Also, an amount of torque that the finger has to produce is set to be less than 

the actual output torque of the finger. Therefore, an inequality that represents this constraint can be 

written as follows: 

           (    ) 

where        is the maximum torque based on the design specification and      is the maximum 

amount of torque that the system can actually produce. 
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By substituting the relationship of the static output torque into the constraint equation, the 

constraint of each spring constant can be expressed as follows: 

 
         

       (    ) 

  
     

        
 (    ) 

 
Based on the constraint equation of the spring, the finger can handle the external torque up 

to      . However, the compliance of the spring can act as the low-pass filter for mechanical system. If 

the spring constant is too small, the movement of the finger might not change if one applies swift 

response to the spool that is attached to the motor. Therefore, the second constraints, mechanical 

bandwidth of the system, is needed to be analyzed in term of each spring constant. 

 

 Assuming that the initial condition of each angular displacement is equal to zero, the relationship 

between the spool’s displacement and finger’s displacement can be analyzed by taking Laplace 

transform of the dynamic equation 3.12. In this case, the analysis is performed when the external 

torques and motor input is assumed to be zero since this analysis is mainly focus on the response when 

performing position control. 

 

For this analysis, the input is said to be the motion of the spool. And the output response is the 

motion of the finger. Therefore, a transfer function in term of complex argument   can be derived from 

the dynamic equation 3.12. 

 ( )  
  
 ( )

  
 ( )

 
  
 

     
  

(    ) 

where   

   √
    

  
 

  
 ( )   {  

 } 
  
 ( )   {  

 } 
 
and    is the natural angular frequency and   ( ) is the transfer function. 

Since the movement of the finger is analyzed at steady state, all complex argument is replaced 

by   , where   is an imaginary number and   is the angular frequency. 

 ( )  
  
 

  
    

 
(    ) 
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The power ratio between the input and output can be calculated by squaring the magnitude of the 

transfer function. One can define the cut-off angular frequency of the system to be at the frequency 

when the power ratio is reduced by half. Therefore, the power ratio at the cut-off frequency can be 

expressed by the follows: 

| (  )|
  

 

 
 (

  
 

  
    

 )

 

 
(    ) 

  
  (√   )  

  (   0) 

 
where     is the cut-off angular frequency. 

In order for the finger to move quickly within the bandwidth, the cut-off frequency has to be higher 

than the bandwidth. Hence, the second constraint equation of cut-off frequency can be expressed as 

follows: 

       (    ) 
where is the calculated bandwidth of the finger based on the speed of the finger and the spool. 

By substituting equation 3.20 into the constraint equation of cut-off frequency, the second 

constraint equation of spring constant can be written as follows:  

  
     

 

   (√   )
 

(    ) 

Based on two constraint equations, a spring with appropriate spring constant can be determined.  
 

3.7.4 Position control for moving each fingers 
Iris uses position control to regulate the current Hand Configuration,  ⃑  ,to the desired Hand 

Configuration,  ⃑    . Position control requires position feedback as well as velocity feedback. However, 

velocity of each joint can be calculated based on rate of change of the position feedback. Once the 

control law is calculated, the device adjusts the motor input voltage to corresponding value. The general 

control law of the position control can be expressed as follow: 

 
 

 ⃑⃑    ( ⃑     ⃑
 )    ( ⃑   

̇   ⃑ ̇)    ( ⃑     ⃑
 )    ( ⃑

 ̇) (    ) 

 
where    is 6 by 6 diagonal matrix that represents proportional gain based on the error in configuration, 

and     is 6 by 6 diagonal matrix that represents derivative gain.  

 

Each proportional and derivative gain is determined based on both analytical and experimental 

approaches. By linearizing the dynamic model of the system and applying Laplace transformation, we 
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are able to get analytical gain for PD control. However, the gain has to be modified in the actual physical 

system due to friction and nondeterministic disturbance. The gains are tuned to achieve the design 

response time. 
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4 PERFORMANCE EVALUATION 
 

With the system fully assembled the team began final testing of various functionalities of the hand. 

While development and testing occurred simultaneously for most components to ensure correct 

operation, final testing did overall analyses and summaries of testing for each component 

 

4.1 Evaluation in overall aesthetic design 
It is difficult to quantify whether or not a device looks human, however we did design our device 

based off of the average size for and adult male. For this reason we are comfortable concluding that the 

hand has in fact met our goal of having an anthropomorphic design. 

 

4.2 Evaluation in overall movement of the hand 
We believe that the hand movement does look very natural and human like but more data will 

need to be collected from more individuals before we can consider this to be validated. The gripping 

prowess of the device has been able to complete our evaluative tests; securely grabbing and lifting a 

sphere, cylinder, and cube all roughly 3.4” in diameter. 

 

4.3 Evaluation in object recognition 
 The object recognition algorithm was tested many times in many different lighting scenarios.  

Because the overall program consisted of two smaller algorithms, we tested these both separately and 

together to varying degrees of success. 

4.3.1 Hough Transformation for Generic Objects 
 
The Hough Transformation algorithm was tested the most.  In a variety of lighting scenarios 

performed over many the course of the project, this algorithm saw many changes and iterative updates 

that saw to its proper function.  In separate tests, in different lighting conditions and given separate 

angles and randomized objects, the algorithm was able to correctly identify the objects 90%, 95%, and 

95% of the time.   

 

Each test consisted of 20 individual object snapshots independently taken with each object taken 

at random including snapshots taken without any objects in the scene.  Within the predefined operating 

range of the system (between 4 inches and 12 inches), the system saw greater success.  Snapshots 

where the object is not fully in view or too close or too far away saw much less success.  Scenes with 

very bright and very dark lighting conditions, including scenes with colored lights, saw a lower 
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performance.  However, within the predefined environment, the system worked as expected with an 

acceptable success rate. 

 

The predefined environment is a well, evenly, white-lit area within the range of 4-12 inches from 

the camera. 

4.3.2 SURF Detection for AR Marker Tags 
 

The AR Marker tag detection algorithm saw much less defined level of success.  Of the four tags 

originally planned to for use, only two saw much success in identification.  Of those two, only one tag 

was identified reliably.  For every test of the AR Marker recognition, the algorithm was able to identify 

the first marker tag 75% of the time, the second 50% of the time, the third 0%, and the fourth 0%.  We 

believe the issue is largely related to the size of the marker tag, which was reduced greatly from its 

original size.  Additionally, the streaming capabilities of the pcDuino are greatly reduced at higher video 

resolutions due to memory restrictions.  Reducing this resolution increased the speed at which the 

algorithm could identify the tags, but also reduced the frequency of proper identification. 

4.4 Evaluation in electrical hardware 
Sub modules were tested independently before system integration in order to confirm their 

performances. All of the components matched their specifications from datasheets.  

 

 The motors were able to supply the required torque. Although, stalling these motors at high 

voltages was found to damage the gearboxes. This is prevented by the controller. Additionally 

motor peak currents were matched with the datasheet specifications. 

 Motor drivers were tested with input voltage specifications, and were able to supply the control 

output at required currents. 

 PWM driver was able to update 16 channels at the required 100Hz. 

 Multiplexer was able to channel all 16 inputs without any considerable noise. 

 Potentiometers were tested to be linear and work in the specified range of 340 degrees. 

 Images acquired from the camera by the pcDuino were detailed enough for the algorithms, and 

compared to regular laptop webcams, were higher definition and lower noise in different 

environments. 

 pcDuino was tested to run many different codes and functionalities. 

 Arduino was tested and reprogrammed many times without any issues 
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 Final communication between Arduino and pcDuino was tested and confirmed to have enough 

speed and accuracy. 

 
Additionally overall system was tested as a whole.  

 System performed together according to specifications 50 times in 5 different days of test. 

 Control loop of the overall system was able to run at 200Hz, which is above 100Hz defined. 
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5 RESULTS 
 

Following the evaluation of each subsystem, we integrated these pieces into a single device.  This 

integration included the mechanical joining of the fingers, palm, and forearm pieces, the communication 

of high-level (pcDuino) and low-level (Arduino) controllers, and the storage of all components (minus 

the battery) in the frame of the device as shown in figures 5-1 through 5-4. 

 

 

Figure 5-1: The mechanically assembled device without electrical components 

 

 
Figure 5-2: Transmission System 
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Figure 5-3: The Entire Actuation System 

 

 
Figure 5-4: The Completed Hand with Camera in Palm 

 
 

The device is capable of performing multiple grasps and configurations, successfully implementing 

both force and position control.  With the exception of the battery, the device is self-contained, housing 

all electrical, mechanical, and software components within its frame.  All unique parts, like the fingers, 
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palm and forearm, were 3D-printed as shown in figure 5-4.  The device is mechanically capable of 

grasping all objects defined in the scope of the project, including several other shapes.  These different 

grasps were performed in simulation to verify functionality and are shown below in figure 5-5. 

 

Figure 5-5: Possible Grasps 

 
The device is capable of identifying objects and communicating the identification to the low-level 

controller for actuation of the fingers.  It is able to identify each of the items designated by the scope of 

this project (the cube, cylinder, and sphere) with great success.  It is also capable of identifying two AR 

marker tags with less accuracy. 
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The electrical components effectively communicate with each other and allow for the proper 

actuation and control of the motors and monitoring of sensors.  Each separate component is modular 

and easily replaced.  All motors, sensors, and controllers fit within the frame of the device.  All wires are 

routed and secured to their pin connections as shown in figure 5-2.  The system is capable of running 

the control loop at 200Hz, allowing for quick and effective control of the device. 

The PD-control is able to drive each finger independently for both force and position control.  Each 

finger is able to detect and react to forces. 

The entire device has not been fully tested for autonomously grasping objects.  All subsystems were 

verified, tested, and analyzed to confirm proper functionality separately.  Due to this, the device is 

capable of identifying objects and moving fingers to specific finger configurations.  However, complete 

implementation and integration of the software, electrical, and mechanical components of the device 

could not be finalized in time for proper testing to be performed.  With additional time and rigorous 

testing, we are confident that the device can successfully grasp an object with a single user input. 
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6 TECHNICAL DOCUMENTION 
6.1 Finger (Mechanical Drawing)  
 

 

  
 

6.2 Palm (Mechanical drawing)  
 

  
 
 
 

6.3 Forearm (Mechanical drawing)  
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6.4 pcDuino  

CPU 1GHz ARM Cortex A8    

GPU 
OpenGL ES2.0, OpenVG 1.1 
Mali 400 core  

DRAM 1GB    

Onboard Storage  
2GB Flash, microSD card (TF) 
slot for up to 32GB  

OS 
Linux3.0 + Ubuntu 
12.04Android ICS 4.0 

   

Power 5V, 2000mA    

API 

UART 
ADC 
PWM 
GPIO 
I2C 
SPI 

 

   

   

 

6.5 Microcontroller Board Specifications 
 

Microcontroller ATmega168    

Operating Voltage 5V 
 

Digital I/O Pins 14 (of which 6 provide PWM    
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output) 

Analog Input Pins 8 
 

Flash Memory 
16 KB (of which 2 KB used by 
bootloader) 

   

SRAM 1 KB    

EEPROM 512 bytes  
 

Clock Speed 16 MHz (5V model)  
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7 PROJECT EXECUTION OVERVIEW  
The team’s project goal was to design a proof of concept prototype for the IRIS platform - an 

anthropomorphic robotic hand capable of determining the most appropriate grip for grasping an object 

and executing that grip with minimal human input. The hand was able to correctly identify objects in 

varying lighting conditions and execute the appropriate grip pattern. The closing and opening of the 

hand can be controlled using only two inputs. We successfully designed and developed our device to fit 

within the size restraints of the average human adult male hand. The hand was successfully constructed 

for a cost of no more $1,800 which means that it could be sold at a much lower price than many other 

similar products.  Force sensing was successfully implemented to detect when the hand has applied 

enough force to grab an object. 

 

8 RECOMMENDATIONS & FUTURE WORK 
For future iterations of the project we would suggest using thinner cables in order to save room in 

the hand. We would also suggest the development of a custom PCB for the device, one with a small 

footprint and able to support a smaller camera. The actuation system should be redesigned to use 

torsional springs instead of linear springs in order to save room in the device. The forearm should also 

be redesigned so that the motors sit up closer to the palm and an adapter should be added to allow the 

device to be attached to a custom socket. The object recognition system should be improved to the 

point where it is able to detect objects of any color, not just green as was tested for in this project. The 

hand could also use more improved AR detection. 

9 CONCLUSION 
This project was successful at developing a proof of concept prototype for the IRIS platform.  We 

were able detect several shapes as well as a number of AR tags with the systems onboard camera. The 

hand was able to execute a variety of grips in response to detecting these objects. The hand was 

successfully designed to fit within the size restraints of the average adult male hand. The system 

functions were verified to the best our abilities. If the recommendations we made for future 

improvements were implemented this device would be able to bring a highly functional, easy to use 

transradial prosthetic to thousands of people. 
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10  APPENDICES 
 
 

Appendix A: Systems Engineering 
ID Stakeholder Description Role Method of needs 

elicitation 
Relevance to 
CC and MQP 

1 Physically 
challenged 
individual 

User, operator of the device User, operator of 
the device 

Survey or utilize 
available surveys 

TRUE 

2 Cornell Cup Competition using Intel atom boards for 
undergraduate projects 

http://www.systemseng.cornell.edu/intel/ 

Provides Intel atom 
boards 

1) Feedback on 
progress 

TRUE 

3 Other 
Roboticists 

Robotic hobbyists and professionals, including 
other smart prosthetic companies 

Use separate 
components of the 
system as part of 

their projects 

1) Blogs and popular 
robotics activity. 2) 

personal experience 

TRUE 

4 Doctor (medical 
Professional) 

Hired to evaluate and prescribe treatment to the 
user, recommends rehabilitation methods 

Evaluate and 
recommend the 

system 

1) Personal 
interaction with 

doctors 

FALSE 

5 Trainer Professionals to train operator and care takers of 
the system 

Needs to configure 
and understand 

system 

1) Project the needs FALSE 

6 Maintenance Professionals caretaker of the system itself Debugging and 
replacement of 

system components 

1) Project the needs FALSE 

7 Assembler Professionals responsible for adapting the system 
to an existing wheelchair 

assemble the 
system 

1) Project the needs FALSE 

8 Government: 
Healthcare 
regulations 

 Provides 
restrictions, 

regulations, and 
specifications for 

assistive technology 

1) Identify standards 
and regulations 
through public 

resources 

FALSE 

9 Health 
Insurance 

Companies 

insurance companies that may subsidize system Subsidize cost of 
system 

1)explore policies 
related  to existing 

assistive devices 

FALSE 

10 Property 
Insurance 
companies 

Insure damage and accident costs Insure damage and 
accident from 

system 

1)explore policies 
related  to existing 

assistive devices 

FALSE 

11 General 
population 

Anyone who interacts with the system apart 
from those previously covered 

Interact directly 
with the system 

1) Survey or utilize 
available surveys 

FALSE 
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ID Need Description Cost Source/Stakeholders Priority 

1 Anthropomorphic It shall be possible to 
use individual 

components of the 
system for other 

robotic applications 

high S1,S2,S4 2 

2 Light Weight The system shall be 
able to transport the 

LI in a household 
environment 

low S1,S2 1 

3 Manipulation of 
environment 

The system shall 
allow the use to 

manipulate common 
household objects 

high S1,S2,S4 10 

4 Safety If an individual 
component breaks 

the system shall react 
accordingly. If the 
system breaks any 

individual component 
shall switch to the 

safest mode. System 
shall be able to 
report that the 
system is not 

working. 

high S1,S2 8 

5 Semi-autonomous 
grasp 

System shall be able 
to grasp 

autonomously based 
on user input 

medium S1,S2,S4 1 

6 Payload The system should be 
able to carry *** 

object 

low S1,S2 1 

7 External Operation The system shall have 
a means to control 

the system outside of 
the LI. 

low S1,S2 3 

8 Maintainability Replacement of 
components should 

be cost and time 
effective. 

medium S1,S8 6 

9 Ease of configuration The integration of 
components to the 

system should 
minimize the 

possibility of error 

Medium S4,S9,S10 1 
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Appendix B: Decision Flowchart 

 

Figure 0-1: Overview of decision flowchart 
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Appendix C: Force Sensor Weighting Scale Example 
 

Table 0-1: Force sensor Weighting Scale Example 

Option Cost 

Effectiveness  

(0.01) 

R&D Time 

Cost  

 (0.01) 

Ease of 

Implementation  

(0.01) 

Life Cycle & 

Replacement  

(0.01) 

Aesthetics      

 

(0.01) 

Precision      

 

(0.025) 

Repeatability 

 

(0.025) 

Total 

Score 

(1.0) 

Force 

Sensitive 

Resistor 

3:  A 

collection of 

FSR for 

everything 

fingers  

6: 

Commercial 

product with 

additional 

hardware 

7: Require 

adhesive material 

to attached at the 

tip 

5: Easy to break 

under the static 

pressure 

3: Visible at the tip, 

which make it not 

anthropomorphic 

0: Cannot 

detect 

large range 

of force 

1: The 

nominal 

voltage 

change 

based on the 

deformation 

0.265 

Series 

Elastic 

Actuator 

7: Simple 

parts such as 

springs and 

cable 

3: Requires 

research in 

materials 

and modular 

design, 

manufacture 

time 

4: Required large 

space for the 

spring to move 

9: Compliant 

and easy to 

change based 

on 

implementatio

n 

10: The system can 

be hidden inside of 

forearm 

9:The 

range of 

force 

depends on 

the 

stiffness of 

the spring 

9: Assumed 

rigid 

connection. 

0.78 

Strain 

Gauge 

with stiff 

material 

9: Unit cost is 

low 

5: Requires 

research for 

linearizing 

the output 

2: Additional 

circuitry to amplify 

the signal. Stiff 

material is also 

required to put at 

the tip. 

5: The strain 

gauge can 

break under 

high pressure 

6: The stiff material 

will not make the 

device look 

anthropomorphic. 

2: Large 

gain is 

required 

for 

amplifying 

signal 

0: The 

nominal 

voltage 

change 

based on the 

deformation 

0.32 

 
NOTE: All attributes are 0-10, 0 being least feasible and 10 being most 
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Appendix D: Final Linkage System 

 

Figure 10-2: Final Finger Linkage System 

 


