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Abstract

This project aims to create automated analytical and visual tools that will aid researchers in

studying phenomena occurring in Earth’s thermosphere. The study of these phenomena, known

collectively as space weather, is of growing importance due to the adverse impacts they have

on manned space flight and communication systems. Using data recorded by the Fast Auroral

SnapshoT satellite, binned statistical models of the average downward Poynting flux were created,

assisting in the further study of space weather’s effects on Earth.
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Executive Summary

This project was the second iteration of a four year research endeavor proposed by SRI International

and funded by the National Science Foundation (NSF). The purpose of this project was to automate

the process of calculating and developing binned statistical visual models of the average downward

Poynting and kinetic energy flux as recorded by the Fast Auroral SnapshoT (FAST) satellite. These

models will ultimately serve to further the understanding of the Sun’s energy input into Earth’s

thermosphere.

Space weather, or any phenomenon that occurs in near-Earth space as a result of the solar wind

emitted from Earth’s Sun, can have many effects on the Earth including producing the aurora,

causing radio and television interferences, creating hazards to orbiting astronauts and spacecrafts,

and even triggering power grid failures; it is therefore important to have an accurate space weather

prediction system, which will account for these effects. The objective by the end of the fourth

year of this project is to produce general circulation models that will attempt to model the global

temperature, circulation, and density of Earth’s thermosphere. Doing so will further the accuracy

of space weather prediction [1].

Continuing on the progress made by the 2010 Worcester Polytechnic Institute (WPI) Major

Qualifying Project (MQP), this project (2011) sought to develop Interactive Data Language and

MATLAB functions, which enable the production of average downward Poynting and kinetic energy

flux models over a given range of orbital data collected by the FAST satellite. This MQP worked

to accomplish two main goals:

1. Automate the Poynting and kinetic energy flux processing of the FAST satellite data.

2. Develop binned statistical visual models (i.e. polar plots) of the Poynting flux and kinetic

energy flux data recorded by the FAST satellite.

Researchers at the University of California, Berkeley had already preprocessed raw data mea-

sured by the FAST satellite and made it available for general use by the public. However, in 2010

vi



EXECUTIVE SUMMARY vii

communication with Dr. Robert Strangeway of the University of California, Los Angeles revealed

that while the preprocessed positional data was correct, the electric and magnetic field data was

unreliable due to errors in calculation. Therefore, to accomplish the first goal of this project and

correctly calculate the average Poynting and kinetic energy flux, the raw FAST satellite data had

to be accessed and re-preprocessed. Using the Satellite Data Tool (SDT), a software suite that

enables fast, real-time access to data collected by various satellites, the raw FAST data was suc-

cessfully downloaded from remote servers maintained by UC Berkeley. Using updated Interactive

Data Language routines originally developed by researchers at UC Berkeley and UCLA, the FAST

data was re-preprocessed and exported into Common Data Format (CDF) files. Using the original

preprocessed positional data as a basis for comparison, the exported data was verified to be correct;

however, further verification on the accuracy of the re-preprocessed magnetic and electric field data

requires investigation.

Working under the assumption that the magnetic and electric field data were re-preprocessed

correctly, 20,000 satellite orbits worth of data were preprocessed and exported using the SDT and

IDL routines. Data exported from SDT was separated into six CDF files per orbit: positional,

magnetic field, electric field, spin-axis, electron, and ion data. These six data types exported from

SDT were represented in various coordinate systems, resolutions, and were recorded over varying

time periods. Therefore, unification of the coordinate systems, resolutions, and time ranges of all

data in each orbit was completed in MATLAB to allow for the accurate representation of the final

Poynting and kinetic energy flux calculations.

Due to a malfunctioning electric field sensor, the FAST satellite was unable to record electric

field data along its spin axis. In addition, the electric field data recorded along the magnetic field was

deemed unusable due to an excess amount of noise within the signal. By creating and analyzing

binned models of the noisy electric field data plotted against the calculated angle between the

magnetic field and the projection of the magnetic field onto the satellite’s spin plane, a noise floor

level was deduced. Theoretically, by limiting the electric field data recorded along the magnetic field

to only those values which fell above the noise floor level, recovery of the unrecorded component

was feasible through use of trigonometric functions. However, by creating several binned models

of the electric field data it was observed that for different ranges of orbits the noise floor level

appeared to change. Lacking an efficient method to determine the correct noise floor level for each
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orbit, the Poynting and kinetic energy flux was calculated with the electric field components along

the magnetic field and the satellite’s spin axis set to zero.

Continuing on the progress made by the 2010 MQP, MATLAB routines were developed that

enabled automatic calculation of the Poynting and kinetic energy flux for a given range of FAST

satellite data. These routines, which were optimized to efficiently work with nearly 20,000 orbits

worth of valid FAST data, automatically preprocess and unify the FAST data before completing

the Poynting and kinetic energy flux calculations. Using these routines, a database of Poynting

and kinetic energy flux for all valid orbits of FAST data can be created.

The data calculated in completion of the first goal of this project was used to create visual

binned statistical models that will aid in analyzing the data recorded by the FAST satellite and

complete the overall objective of this project. Two independent functions were developed to create

these models: “histograms” and “3D polar plots”. The histograms function creates binned bar

graphs, which provide a means to observe outliers that occur in the electric and magnetic field

data recorded by the FAST satellite. By determining and removing outlier data, the Poynting

and kinetic energy flux calculations will become more reliable. The 3D polar plots function creates

polar plots, which display the final calculated average intensities of the Poynting and kinetic energy

flux over a given range of orbits, magnetic local time, magnetic latitude, altitude, and ap index

(a planetary index for measuring the strength of a disturbance in the Earth’s magnetic field [2]).

As previously stated, these models will ultimately serve to further the understanding of the Sun’s

energy input into Earth’s thermosphere.

In the final two years of this project, different WPI MQP groups will work towards developing

analytical models based on spherical harmonics, which will be used to develop physical interpreta-

tions and estimates of the spatial spectrum of the fluxes [1].
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Chapter 1

Introduction

Space weather, which collectively describes phenomena that occur within near-Earth space, has

become an increasingly popular field of study due to the adverse effects it has on Earth. Space

weather is mainly caused by the interaction between solar winds, or streams of charged particles

emitted by the Sun, and Earth’s atmosphere. This interaction can have many effects such as:

causing power grid failures, interfering with radio communications, exposing people traveling in

high altitude spacecrafts to radiation, and even creating the colors of the aurora. This project

aims to model the Sun’s energy input into the Earth’s thermosphere, quantified by observing the

downward Poynting and kinetic energy flux along the Earth’s magnetic field lines, so that such

space weather phenomena can be correctly characterized. Such characterization can lead to further

improvements in the accuracy of ground and air navigation systems, design of manned spacecrafts

to reduce radiation exposure, and radio communication systems.

Previous models, which have attempted to quantify the thermosphere have been insufficient

due to their basis on probabilistic calculations of “electric field variability”, which prevents the use

of electric field models for quantification [1]. These calculations are in no way sufficient for real-

world interpretations because they neglect the influence of wave heating. As a consequence of using

probabilistic models the calculated Poynting and kinetic energy flux are at best approximations of

the actual value. Currently the computation of the atmospheric heating rate uses electric potential

(φm), ionospheric Pedersen conductance (ΣPm), and precipitating particle energy-flux (Φm) as

inputs; however, these parameters are for ideal situations and accordingly introduce large biases

when used in the previous, insufficient models [1]. This project will attempt to rectify this problem

by fitting a model directly to the thermosphere from data gathered by the Fast Auroral SnapshoT

satellite.

1



CHAPTER 1. INTRODUCTION 2

Over the four years of the project, groups from Worcester Polytechnic Institute (WPI) complet-

ing their Major Qualifying Projects (MQP) at SRI International will develop analytical models,

which will aid in the quantification of the Sun’s energy input into the thermosphere. This research

will work to further the understanding of space weather prediction, the global temperature, circu-

lation, and density of the Earth’s thermosphere [1]. It will also explore the energy conversion from

electromagnetic energy to particle kinetic energy that takes place in the auroral acceleration region

(AAR) of Earth’s atmosphere which creates the aurora [1].

The first year of this project (2010) was completed by two WPI students who worked with SRI

researchers Dr. Russell Cosgrove and Dr. Hasan Bahcivan to create a groundwork for calculating

the Poynting and kinetic energy flux for a limited number of FAST satellite orbits [1]. Their main

goal was to inspect individual samples of preprocessed FAST data for quality and validity, and to

apply necessary algorithms to correctly calculate the Poynting and kinetic energy flux for those

valid samples [1]. The final product of the 2010 MQP was a series of MATLAB routines, which

they used to manually process the Poynting and kinetic energy flux for individual FAST satellite

orbits.

The second year of this project (2011) involved three new WPI student researchers working

with Dr. Cosgrove and Dr. Bahcivan to create a framework for downloading, preprocessing, quality

screening, and calculating the Poynting and kinetic energy flux for all FAST satellite orbits up

to January 1, 2000 [1]. Continuing off of the work completed by the 2010 MQP, the 2011 MQP

group optimized the MATLAB routines to efficiently process and calculate the Poynting and kinetic

energy flux for large batches of FAST satellite orbits [1]. The final product of the 2011 MQP was

the creation of MATLAB functions, which automatically created a binned statistical model of the

average Poynting and kinetic energy flux over a specified number of FAST satellite orbits.

The third year of this project (2012) will involve three new WPI student researchers. Using

tools developed by the previous two years, they will–with the help of SRI advisors – replace the

binned statistical model created by the 2011 MQP group with an analytical model of the Poynting

and kinetic energy flux based on spherical harmonics [1].

The fourth and final year of this project (2013) will be completed by SRI researchers Dr.

Russell Cosgrove and Dr. Hasan Bahcivan and may include WPI students if it is deemed necessary

[1]. The SRI researchers will compile all information and observations obtained throughout the
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previous three years of the project to develop physical interpretations of the Sun’s energy input

into Earth’s thermosphere [1].

The final goal of this four-year project will be to create analytical models of both the Poynting

and kinetic energy flux incident on the atmosphere from data collected by the FAST satellite to aid

in the development of an improved quantification of the Earth’s thermosphere [1]. These models are

needed to drive general circulation models (GCMs), which are physics-based space weather models

that attempt to describe the global temperature, circulation, and density of the thermosphere [1].

The two proposed models are in space and spatial frequency. The space frequency models involve

spatial maps of the average energy input, for particular values of the model parameters [1]. The

spatial-domain models will provide energy input as a function of scale size (in two dimensions) for

particular values of the model parameters, which will result in a greatly improved specification over

electric potential models on the energy input from the solar winds [1].

This project was proposed by SRI International and funded by the National Science Foundation

(NSF). The sponsor of this project, SRI International, is an internationally recognized nonprofit

research and development firm. Although its main headquarters are located in the heart of Silicon

Valley in the City of Menlo Park, California, SRI International employs a staff of over 1,700 em-

ployees worldwide, with facilities branching across the United States and internationally, including

offices in Tokyo, Taiwan, and Korea [3]. SRI International conducts client-sponsored research and

development for numerous organizations including government agencies, commercial businesses,

and various foundations. Through the years, SRI has had a long history of innovating technologies

in its various focus areas, which include communications and networks, computing, engineering sys-

tems, materials and structures, and robotics. The engineering and systems division of the company

focuses on conducting research and development in areas such as sensing, signals and electronic

intelligence, wireless communications, and ionospheric and space research. This project falls within

the engineering and systems division of the company and was completed at SRI International’s

main headquarters in Silicon Valley.

This report chronicles the methods and results completed during the second year of the four

year project. Continuing the progress made by the 2010 WPI MQP, this project (2011) sought

to develop Interactive Data Language and MATLAB functions, which enabled the production of

average downward Poynting and kinetic energy flux models over a given range of orbital data



CHAPTER 1. INTRODUCTION 4

collected by the FAST satellite. This MQP worked to accomplish two main goals:

1. Automate the Poynting and kinetic energy flux processing of the FAST satellite data.

2. Develop binned statistical visual models (i.e. polar plots) of the Poynting flux and kinetic

energy flux data recorded by the FAST satellite.

Communication with Dr. Robert Strangeway of the University of California, Los Angeles re-

vealed that the preprocessed FAST satellite data provided by the University of California, Berkeley

was processed incorrectly; however, Dr. Strangeway also disclosed that new processing routines

have been created that address this issue. Therefore, the first goal of this project involved using

the Satellite Data Tool (SDT), created by researchers at UC Berkeley, and new Interactive Data

Language (IDL) routines to re-preprocess and prepare all valid (recorded before January 1, 2000)

FAST satellite data for further calculation of the Poynting and kinetic energy flux in MATLAB.

Working off of the results calculated in the first goal, the second goal of this project was to

create binned statistical visual models of the average Poynting and kinetic energy flux of data

collected by the FAST satellite. These models will aid in the effort to characterize the heating of

the atmosphere caused by auroral processes, which is an important input parameter for modeling

the temperature, density, and circulation of the upper thermosphere. The final two years of the

project will work towards the completion of the remaining goals set by the NSF proposal.



Chapter 2

Background

To provide context for the discussion of this project, background information on the atmosphere,

space weather, Fast Auroral SnapshoT (FAST) satellite, and the data collected by the FAST

satellite is provided. Additionally, procedures for the calculation of Poynting and kinetic energy

flux are discussed.

2.1 Earth’s Atmosphere

Earth’s atmosphere, which consists mainly of nitrogen and oxygen molecules with many other trace

elements, is divided into five main layers. Listed from the lowest to highest elevations, these five

layers are known as the troposphere, stratosphere, mesosphere, thermosphere, and exosphere [4].

The divisions between these layers can be determined by their relative elevation from sea level and

their average temperatures, which vary due to atmospheric heating [5].

The ionosphere, a part of the atmosphere that is particularly important with regards to this

project because it encapsulates the thermosphere;the ionosphere is not one of the five standard

layers of the atmosphere mentioned previously [5]. It resides in a region on the very edge of the

mesosphere and extends through the last two layers of the atmosphere: the thermosphere and

exosphere.

While there is still speculation on the specifics of its range, it is commonly believed that it exists

between 70 and 1,000 km above the Earth’s surface [6]. The ionosphere derives its name from the

high concentration of ions – particles that have either gained or lost electrons – that are contained

within its boundaries.

5
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Figure 2.1: Earth’s Ionosphere has multiple layers of interest. [7]

It has been observed that the heating events occurring in the ionosphere can influence radio

waves, even causing destructive interference on certain frequencies [6]. The ionosphere is composed

of three main layers: the D layer, the E layer and the F layer [6].

The D layer exists within 70 to 90 km above the surface of Earth [6]. During Earth’s night cycle,

the number of free electrons in the D layer is greatly reduced allowing radio waves to propagate

through the D layer with relatively little signal strength reduction. However, during Earth’s day

cycle it has been proven that radio waves are reflected by the D layer due to the emergence of more

free electrons in this region [6].

The E layer extends from 90 to 160 km above the surface of Earth [6]. In both the day and

night cycles ionization of free electrons exist in this region causing radio waves of low frequencies

to be reflected [6].

The F layer extends from 160 km to the end of the ionosphere region [6]. It has a large
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concentration of free electrons and is mainly responsible for the heating in our atmosphere, as the

majority of the thermosphere is contained within this region. This layer is able to reflect all signals

lower than 30 megahertz [6].

The region above the ionosphere, known as the magnetosphere, is the region surrounding a

planet where the natural magnetic field of the planet interacts with, and often deflects, solar winds

and other charged space particles [8]. The pressure on the Earth’s magnetosphere from the flux of

charged particles emitted from the Sun (the solar wind), compresses the magnetosphere and gives

it a tail-like shape that stretches behind the Earth as seen in Figure 2.2 [9].

Figure 2.2: Earth’s Magnetosphere, Tail Shape Created by Solar Wind [9]

The charged particles that are not deflected and manage to pass through the Earth’s magne-

tosphere collide with oxygen and nitrogen atoms in the upper atmosphere. These collisions knock

electrons away from their atoms, leaving ions in an exited state. The resulting ions emit radiation

at various wavelengths, creating the colors of the aurora [10]. The region at which this occurs is

known as the auroral acceleration region (AAR) [11].
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Figure 2.3: Auroral Acceleration Region [11]

2.2 Space Weather and its Effects on Earth

Space weather, which includes solar winds, is the general name for conditions in space that are

caused by the Sun [12]. Magnetic storms, a part of space weather, are a series of geospace distur-

bances. These storms can cause many effects such as the aurora, radio and television interferences,

hazards to orbiting astronauts and spacecrafts, and even power grid failures [13].
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Figure 2.4: Earth’s Ionospheric Phenomena [14]

Figure 2.4 displays various effects caused by ionospheric currents in Earth’s atmosphere. Due

to the increasing number of satellite information systems, high altitude spacecraft travel, and the

expansion of electric power grids, society is becoming increasingly susceptible to the effects of space

weather.

The National Space Weather Program (NSWP) is an initiative founded to “achieve an active,

synergistic, inter-agency system to provide timely, accurate, and reliable space weather warnings,

observations, specifications, and forecasts” [13]. To develop a prediction system, the NSWP uses

models of the global temperature, circulation, and density of the thermosphere. However, modeling

the density and circulation of the thermosphere requires knowledge of the energy inputs from solar

winds, which have not yet been quantified. This four-year project proposes to take steps toward

solving this problem and quantifying the Sun’s energy input to the thermosphere by fitting a model

directly to measurements of the energy input as recorded by the FAST satellite.
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2.3 Fast Auroral SnapshoT (FAST) Satellite

The Fast Auroral SnapshoT (FAST) Explorer was launched on August 21, 1996 into a 350 km

by 4175 km elliptical orbit, inclined 83◦ [1]. While traveling along its orbit, the FAST satellite

continuously spun in a reverse cartwheel direction along its spin axis. It crossed through the

auroral zones four times per orbital period, which lasted 133 minutes [15]. The FAST satellite

successfully recorded date until its instruments began to fail on January 1, 2000.

Passing through four auroral zones each orbit, the FAST satellite collected various types of data

relevant to the study of the micro-physics of space plasma and accelerated particles, which cause

the aurora [16]. The FAST satellite, which can be seen in Figure 2.5, was equipped with various

instruments including magnetic sensors (flux-gate magnetometer and search coil magnetometer),

electric field detectors (Langmuir Probes, generally in pairs), and ion and electron analyzers [17].

Upon launch one of the electric field detectors failed to deploy correctly preventing data from being

recorded along the spin-axis of the satellite.
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Figure 2.5: FAST Instruments [15]

These instruments, which collected measurements in real-time, allowed the satellite to measure

the electric and magnetic fields, plasma waves, energetic electrons and ions, ion mass composition,

and thermal plasma densities and temperatures in the auroral regions.

In addition to data collection, the instruments on-board the FAST satellite also served to keep

the satellite along its required orbit. Nominally the satellite should spin in a reverse cartwheel

direction on its spin axis while traveling in an elliptical orbit around the Earth. To ensure that the

satellite remained on its elliptical orbit, the attitude control systems of the FAST satellite would

alter the orientation of the satellite to match its desired orbital path.

High resolution data collection on the FAST satellite was triggered by the detection of high

fluctuations of either the electric or magnetic field, such as density cavities or ion beams. When

an event was detected, the sampling rate of the data collection was switched from a slow survey

to high-speed burst memory mode in order to allow for adequate data sampling while avoiding
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overflowing the memory with non-consequential samples [16]. Normally burst mode had a higher

sampling rate (approximately 16kHz) compared to survey mode which was generally 1-2 orders of

magnitudes slower [17].

The FAST satellite was able to measure various fields such as electric potential, magnetic field

data, and ion and electron flux. The data measured by the FAST satellite was in the form of raw

unprocessed data.

2.4 Accessing FAST Satellite Data

The data collected by the FAST satellite was initially transmitted to the NASA Goddard Space

Flight Center where it was then routed to the Science Operation Center (SOC) at the University of

California, Berkeley [17]. The SOC is the main center for scientific analysis of the data collected by

FAST. It is also responsible for serving as an online database for all FAST data, allowing researchers

the ability to access various recorded data such as magnetic and electric field. Using the Satellite

Data Tool and Interactive Data Language routines it is possible to access the FAST satellite data

remotely from the SOC servers.

Satellite Data Tool

The Satellite Data Tool (SDT) is a program created by UC Berkeley engineers that enables remote

access to the servers at the SOC [17]. Developed in the mid-1990s, SDT was created to enable fast

access of data collected by various satellites in real-time. This software was originally designed to

work under UNIX or Linux, but was later ported over to Solaris systems – which was used at SRI.

The SDT enables access to data obtained from the FAST, Polar, Cluster, Geotail, THEMIS, ISEE,

and CRRES missions [17].
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Figure 2.6: SDT Software Design Diagram [17]

The SDT is used as a medium to obtain the raw data collected by the FAST satellite during

the course of its many thousands of orbits. Once data from a desired orbit is downloaded from the

SOC, SDT’s telemetry decoder decommutates the data and stores it into a shared memory buffer

that can then be accessed by Interactive Data Language routines [17]. At the time of this writing

only a single user can have access to the same install of the SDT on a machine at a time.
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Interactive Data Language

Interactive Data Language (IDL) is a programming language used primarily for data analysis.

IDL is dynamically typed and specialized for vector operations, which makes it very efficient for

processing large amounts of data. It takes constructs from both FORTRAN and C, but more closely

resembles the syntax of FORTRAN.

IDL was originally intended to be used in conjunction with SDT to offer scientists the flexibility

of being able to build their own data analysis tools without having to directly manipulate the SDT

software. Once the data is downloaded from the SOC remote servers and stored in the SDT shared

memory buffer, IDL can access its contents by using a function call that points to the specific fields

data. This fields data is referred to as a Data Quantity Definition (DQD).

There are two stipulations for the correct data to appear in IDL from SDT: the plots of the

desired data must first be displayed in SDT and the time-span of the data must be specified correctly

so that reasonable data is outputted. Once the data is extracted, it is either preprocessed in SDT

using IDL routines or directly exported to a Common Data Format file.

Common Data Format

Once exported from the SDT using IDL routines, the prepocessed FAST data is saved to Common

Data Format (CDF) files. CDF files have built-in support for data compression and can support

large file sizes. This format was introduced by NASA to allow for the easy storage and access of

multidimensional data. The structure of a CDF file is essentially a multidimensional matrix that

stores each data component within a column of the matrix, with each element of the matrix having

the capability to store multiple data values as seen in Figure 2.7.
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Figure 2.7: Conceptual View of CDF Files [18]

Each row of data stored in a CDF file needs to be time stamped with an Epoch or UNIX Time

for the data to be considered valid. The primary motivation behind exporting the data in CDF

files is to allow for ease of interfacing with MATLAB, which has efficient built in functionality to

read in CDF files.[19].
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2.5 Coordinate Systems Represented by the FAST Data

The FAST satellite data that is exported using the SDT and IDL routines is separated into six

main CDF files corresponding to the six main data types collected by FAST: positional, magnetic

field, electric field, spin axis, electron energy flux, and ion energy flux. Although these six files

contain all of the data necessary to calculate the Poynting and kinetic energy flux, the data types

within each file are represented with respect to one of the following three different coordinate

systems: Geocentric Equatorial Inertial Coordinate System, Equatorial Coordinate System, or

Data Coordinate System 2. In order to work with the data, the data in each file must first be

converted into a single unified coordinate system. To interpret the Poynting and kinetic energy

flux calculations with respect to the Earth, the Geocentric Coordinate System (GEO) was chosen

as the unifying system. In total, four unique coordinate systems were handled throughout the

entirety of this project. For additional information on these as well as other relevant coordinate

systems and their transformations, please refer to the 2010 SRI MQP report [20].

Geocentric Equatorial Inertial Coordinate System (GEI)

The geocentric equatorial inertial (GEI) coordinate system is a Cartesian coordinate system de-

signed to map out areas around and outside the Earth’s atmosphere with respect to the Earth’s

position in space. In the GEI coordinate system the rotation of the planet has no influence on the

coordinates of objects in free space; however, the rotation does influence the coordinates of objects

resting on the surface of the Earth. Figure 2.8 shows the orientations of the X Y and Z-axes.
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Figure 2.8: Geocentric Equatorial Inertial Coordinate System (GEI) [20]

The origin of the GEI system is located at the center of the Earth. The Z-axis is positive

through the Earth’s geographic North Pole and the X-axis points positively toward the first star in

the Aries constellation through the Earth’s equator. The Y-axis is the cross product of the X and

Z-axes and projects out of the equator [20].

Equatorial Coordinate System (ECS)

The Equatorial Coordinate System (ECS) is the spherical version of the GEI coordinate and consists

of two angles, which map the spin axis of the satellite: the right ascension angle and the declination

angle. The right ascension angle begins at the Vernal equinox, also known as the location of

Earth’s orientation that points to the first star of Aries, and increases eastward. The declination

angle begins at the equator and points to the North celestial pole [17]. Figure 2.9 shows a visual

representation of these spin axis components.
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Figure 2.9: Equatorial Coordinate System (ECS) [21]

.

To convert from ECS to GEI (and eventually to GEO), a simple Cartesian to spherical trans-

formation can be completed.

Data Coordinate System 2 (DCS2)

The Data Coordinate System is a Cartesian coordinate system centered at the FAST satellite. The

Y-axis of the system goes through the spin-axis of the satellite and is positive to the right of its

velocity vector from a perspective of where the satellite once was and the Earth is “down”. The

Z-axis is the spin plane projection of the magnetic field onto the spin plane of the satellite. The

X-axis of the system is the cross product of the Y and Z-axes and is generally along the velocity

vector of the spacecraft.
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Figure 2.10: Data Coordinate System 2 (DCS2)

DCS2 is an alternative version to the original Data Coordinate System (DCS) used by the 2010

MQP. The main difference between the two versions is that the Y-axis in DCS was positive with

relation to the westward direction of the Earth. This caused the X and Y-axes to flip polarities

whenever the satellite crossed the north and south poles, which does not occur in DCS2 [20].

Geocentric Coordinate System (GEO)

The geographic geocentric (GEO) coordinate system is very similar to the GEI coordinate system.

Both GEI and GEO are Cartesian coordinate systems with origins located at the center of the Earth

and their Z-axes positive through the geographic North Pole. The primary difference between the

two systems is that the X-axis for each system points to a different location. The GEO coordinate

system rotates along with the surface of the Earth whereas the GEI coordinate system remains

stationary as the Earth rotates. The Greenwich Hour Angle, or the angle between the X-axis of
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both systems, can be used to convert between the GEI and GEO coordinate systems [20].

Figure 2.11: The Geocentric Coordinate System (GEO) [22]

The X-axis in the GEO coordinate system is positive through the intersection of the equatorial

plane and the prime meridian (0◦ longitude). The Y-axis of the coordinate system is obtained by

taking the cross product of the Z and X-axis. [20]

2.6 Poynting and Kinetic Energy Flux

Processes that occur in Earth’s auroral region are primarily due to the effects of Joule heating.

Joule heating, which can be described as the product of the electric field and the height-integrated

current density (E · J ( W
m2 )), is a high-altitude phenomenon that occurs when the drift energy of

the ionospheric ions turns into thermal and kinetic energy due to particle collisions [23]. Joule

heating in Earth’s ionospheric region can be quantified by estimating the field-aligned Poynting

flux; however, there is evidence to suggest that in the auroral acceleration region (AAR), the

Poynting flux is redistributed across field lines and is partially converted to kinetic energy flux.

This relationship can be seen in Figure 2.12, which shows data measured by a rocket passing
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through Earth’s ionosphere.

Figure 2.12: Complementarity nature of Poynting and kinetic energy flux as observed by a rocket

flying under the boundary of the auroral arc [1]

Thus, in order to obtain the Joule heating factor in the AAR, the Poynting and kinetic energy

flux need to be calculated. The four-year proposal of this project aims to model the relative spatial

distribution of Poynting and kinetic energy flux below the AAR [1].

Poynting Flux The Poynting vector is used as a common measurement of the rates of flow of

energy and momentum in electromagnetic waves (e.g. in analysis of electromagnetic radiation) and

is used to calculate the energy flux ( W
m2 ) of an electromagnetic field. The general formula is defined

as [1]:

S|| =
(E⊥ × δB)

µ0
(2.1)

For ionospheric measurements B represents the sum of the main geomagnetic field. The per-

turbation of the geomagnetic field, δB (Tesla), is the difference between the measured geomagnetic

field and a modeled geomagnetic field known as the International Geomagnetic Reference Field

(IGRF). These fields lines are predominantly horizontal [24]. Due to its orthogonality to the main
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geomagnetic field, the electric field, E⊥( volts
meter ), is primarily perpendicular to B [24]. The value µ0

is the permittivity of free space. Finally, the resulting value S|| is the calculated Poynting flux,

which is in a direction parallel to the geomagnetic field that the satellite is traveling along known

as B0 [1].

Figure 2.13: The Poynting vector and Magnetic Field Lines, Respective to Altitude

The Poynting flux represents the flow of energy through an area. The direction that the vector

points to corresponds to the direction of the energy flow and the magnitude corresponds to the

intensity (flux). Thus the Poynting flux ( W
m2 ) can be described as the total amount of energy held

by an electromagnetic wave traveling through a surface [25]. This is useful for quantifying the

amount of heat that is dissipated in Earth’s ionosphere due to Joule and particle heating [1].

Kinetic Energy Flux The total kinetic energy flux of electrons and ions can be calculated

by taking the summation of the kinetic energy for all up-going (from the magnetosphere to the

ionosphere) and down-going (from the ionosphere to the magnetosphere) electrons and ions [20].

The kinetic energy flux is used to describe the rate of energy transfer by ions or particles through

an area and is also measured in ( W
m2 ).
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2.7 Geophysical Parameters

This year’s project worked to develop functions, which produce binned statistical models of the

average Poynting and kinetic energy flux. These models can be limited based on the following

geophysical parameters [1]: altitude, magnetic local time, invariant latitude, and the Kp and ap

index. These limiting parameters can be set by the user of the function to allow for analysis of

specific occurrences of Poynting and kinetic energy flux in Earth’s atmosphere.

Altitude

The Poynting flux calculations were completed using the assumption that the electric field is gen-

erally perpendicular to the magnetic field; however, at high altitudes this assumption does not

hold true. Therefore, altitude is used as a limiting parameter for the binned statistical models to

account for the higher chance of error in the Poynting flux calculations present at higher altitudes.

Magnetic Local Time

Magnetic local time (MLT), which is longitude with respect to Earth’s magnetic poles (magnetic

longitude) measured in hours instead of degrees, provides a perspective of the Earth that is relative

to the position of the Sun. For example, the point of magnetic longitude that is directly facing

the Sun at any given time is always considered 12:00 pm MLT. This is an appropriate limiting

parameter for the binned statistical models because the intensity of the Poynting flux is dependent

on the position of the Sun. During MLT daytime hours, when the intensity of the Poynting flux

is generally the highest, the Sun shines directly on the electron and ion particles in the F layer of

Earth’s ionosphere and causes an increase in Joule heating.

Invariant Latitude

Invariant latitude (ILAT) is latitude with respect to Earth’s magnetic poles, or magnetic latitude,

mapped to the surface of the Earth. ILAT is used as a parameter in the binned statistical models

to provide insight into the locations around the Earth at which the highest instances of Poynting

and kinetic energy flux occur. For example, a higher intensity of Poynting and kinetic energy flux

should be visible in the AAR, which is located in areas of high north and south magnetic latitudes.
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aP and Kp Indexes

The Kp index is a measure of geomagnetic disturbances calculated by taking the mean of the values

recorded at thirteen substations near the auroral region. The Kp index is measured in three-hour

intervals and increases as a function of the observed geomagnetic disturbance. As seen in Figure

2.14, the Kp index is not represented in integer values.

Figure 2.14: Kp index with matching ap index [2]

The ap index directly corresponds to the Kp index; however, unlike the Kp index it is the

defined as a integer value. As with the Kp index the ap index measures the amount of geomagnetic

disturbance in the auroral region. The ap index is used as a parameter for the final polar plot

visualization to allow for the specific viewing of the Poynting flux during periods of high or low

geophysical disturbances in Earth’s atmosphere.
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Methodology and Implementation

Below (Figure 3.1) is a block diagram that illustrates the inputs and outputs of the system imple-

mented. Each of these blocks will be fully detailed in later sections.

Figure 3.1: Top Level Block Diagram

The automation of Poynting and kinetic energy flux processing (Goal 1) required download-

ing preprocessed data compiled by the University of California, Berkeley and performing further

calculations in MATLAB to obtain the Poynting and kinetic energy flux for each orbit.

Due to an error in the preprocessed electric and magnetic field components contained within the

UC Berkeley data, several steps were taken to re-calculate and re-preprocess the electric and mag-

netic field components. This required downloading the raw satellite data from remote servers hosted

by UC Berkeley using the Satellite Data Tool (SDT) and completing the required preprocessing

with a new set of Interactive Data Language (IDL) routines.

An additional complication in processing the Poynting and kinetic energy flux arose with ac-

counting for a missing electric field component that was not recorded as a result of sensor on the

25
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FAST satellite that failed to deploy. Recovery of the missing component was attempted as it would

offer a more accurate measurement of the average Poynting and kinetic energy flux.

The final statistical models (Goal 2) were created through a process of binning and averaging

the Poynting and kinetic energy fluxes calculated in completion of the first goal of this project. The

models were limited by series of geophysical parameters to allow for analysis of specific occurrences

of the Poynting and kinetic energy flux within Earth’s atmosphere.

3.1 Automate the Processing of Poynting and Kinetic Energy

Flux

In completion of the first goal of this project, five main steps were accomplished. The block diagram

in Figure 3.2 shows the progression of these steps.

Figure 3.2: Goal 1 Top Level Block Diagram

Researchers at the University of California, Berkeley preprocessed raw data measured by the

FAST satellite and made it available for general use by the public. However, in 2010 communica-

tion with Dr. Robert Strangeway of the University of California, Los Angeles revealed that while

the preprocessed positional data was correct, the electric and magnetic field data was unreliable

due to errors in calculation. Therefore, to accomplish the first goal of this project and correctly

calculate the average Poynting and kinetic energy flux, the raw FAST satellite data had to be

accessed and re-preprocessed. Using the Satellite Data Tool (SDT), a software suite that enables
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fast, real-time access to data collected by various satellites, the raw FAST data was successfully

downloaded from remote servers maintained by UC Berkeley. Using updated Interactive Data Lan-

guage (IDL) routines originally developed by researchers at UC Berkeley and UCLA, the FAST

data was re-preprocessed and exported into Common Data Format (CDF) files. Using the original

preprocessed positional data as a basis for comparison, the exported data was verified to be correct;

however, further verification on the accuracy of the re-preprocessed magnetic and electric field data

is currently pending.

Working under the assumption that the magnetic and electric field data were re-preprocessed

correctly, 20,000 satellite orbits worth of data were preprocessed and exported using the SDT and

IDL routines. Data exported from SDT was separated into six CDF files per orbit: positional,

magnetic field, electric field, spin-axis, electron, and ion data. These six data types exported

from SDT were represented in various coordinate systems, resolutions, and were recorded over

varying time periods. Additionally, the electric and magnetic field data contained many outliers,

which could potentially skew and calculated results. Therefore, outlier removal and unification of

the coordinate systems, resolutions, and time ranges of all data in each orbit was completed in

MATLAB to allow for the accurate representation of the final Poynting and kinetic energy flux

calculations.

Due to a malfunctioning sensor, the FAST satellite was unable to record electric field data along

its spin axis. In addition, the electric field data recorded along the magnetic field was deemed

unusable due to an excess amount of noise within the signal. By creating and analyzing binned

models of the noisy electric field data plotted against the calculated angle between the magnetic

field and the projection of the magnetic field onto the satellite’s spin plane, a noise floor level was

deduced. Theoretically, by limiting the electric field data recorded along the magnetic field to

only those values which fell above the noise floor level, recovery of the unrecorded component was

feasible through use of trigonometric functions. However, by creating several binned models of the

electric field data it was observed that for different ranges of orbits the noise floor level appeared

to change. Lacking an efficient method to determine the correct noise floor level for each orbit,

the Poynting and kinetic energy flux was calculated with the electric field components along the

magnetic field and the satellite’s spin axis set to zero.

Continuing on the progress made by the 2010 MQP, MATLAB routines were developed that
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are able to automatically calculate the Poynting and kinetic energy flux for a given range of FAST

satellite data. These routines, which were optimized to efficiently work with nearly 20,000 orbits

worth of valid FAST data, automatically preprocess and unify the FAST data before completing

the Poynting and kinetic energy flux calculations. Using these routines, a database of Poynting

and kinetic energy flux for all valid orbits of FAST data can be created.

Finally, to verify that the Poynting and kinetic energy flux had been correctly calculated, the

results were compared against data collected by the Sondrestrom radar located in Kangerlussuaq,

Greenland. Due to the limited time frame of this project, only a select number of orbits were

compared against the radar data. The results from these limited comparisons indicated that the

calculated Poynting flux data looks promising; however, final verification is currently pending.

The methods used to complete the five main steps of Goal 1 are described in further detail in

the following sections.

3.1.1 Export and Preprocess Raw FAST Satellite Data

The first step in completing Goal 1 of this project was to correctly export and preprocess raw FAST

satellite data from the Satellite Data Tool (SDT) using Interactive Data Language (IDL) routines.

Figure 3.3: Goal 1 Block Diagram, Step 1

At the time of this publication the Satellite Data Tool can only be installed on a Solaris or

UNIX/Linux server machine. In order to access SDT on a non-Solaris or UNIX/Linux server

machine, a Secure Shell (ssh) can be used. This project was completed on Windows machines,
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which required the use of a program called Xming to launch a Secure Shell connection. Once

connected to a machine, SDT and IDL can be launched from the command-line interface. SDT

must be launched prior to launching IDL so that data can be loaded into the shared memory buffer.

The raw FAST data was downloaded from SDT in two ways: individual and batch. When

downloading FAST satellite data on an individual orbit basis, the Data Manager Tool program was

used to send data retrieval requests to the SOC remote servers, and subsequently download the

data directly to the user’s local disk. When using the Data Manager Tool, the machine sending

the data retrieval request must be certified by the SOC remote servers in order to download the

data. When downloading FAST satellite data on a batch scale the Network Data Facility was used

to download the files for a specific orbit range without requiring certification. Figure 3.4 shows an

example of the interface of the Network Data Facility.

Figure 3.4: Network Data Facility [17]

To preprocess and export the downloaded FAST data, graphs of the raw δB, electric field,

orbital, and spin-axis data for the desired orbit had to be displayed in the SDT user interface.

Once all of the required data was present, IDL routines were run to preprocess the raw FAST data.

Preprocessing consisted of de-spinning the magnetic and electric field data and adjusting it for

output. Figure 3.5 shows the raw un-spun magnetic field data displayed in the SDT user interface.
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Figure 3.5: SDT Raw Magnetic Field Data

The main IDL routine used to accomplish the preprocessing was batch processing.pro, which

called upon several other IDL routines (ucla mag despin.pro, fa fields despin.pro, get fa orbit.pro,

get fa attitude.pro) already included in the SDT IDL library. The batch processing.pro routine

preprocessed the electric and magnetic field data and exported it, along with the raw orbital and

spin axis data, into Common Data Format files saved into an output directory.

It took approximately five minutes to preprocess and export a single FAST orbit from SDT.
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Accordingly, it would have taken nearly twenty-eight full days to effectively process the twenty-

thousand orbits needed for this research project given that a single server operated at maximum

efficiency and without stall. This was not practical for the scope of this project given its limited

time duration and was deemed the bottleneck. To maximize the speed in which the orbits were

preprocessed and exported through SDT and IDL, multiple servers were used to effectively speed

up the procedure. Separate and unique installations of SDT were installed on each of the three

available servers to account for the fact that only one copy of SDT can be running on a single server

at a given time by any user.

The electron and ion data used for the calculation of the kinetic energy flux were obtained

through different means. Contact with Dr. James McFadden of UC Berkeley revealed that the

previously preprocessed electron and ion data were correctly calculated and thus could simply be

downloaded through IDL routines, without using SDT.

By running SDT and IDL on all three servers and re-downloading the electron and ion data

through solely using IDL, approximately 20,000 orbits of FAST satellite data were successfully

preprocessed and exported. This data was saved in a directory called “FAST Data” on a hard

drive that was presented to Dr. Russell Cosgrove and Dr. Hasan Bahcivan at the completion of this

project.

3.1.2 Unify the Preprocessed FAST Satellite Data

The next step in completing Goal 1 of this project was to unify the preprocessed FAST satellite

data exported from SDT by removing outliers and unifying their coordinate systems, resolutions,

and time ranges.



CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 32

Figure 3.6: Goal 1 Block Diagram, Step 2

Six main data types were preprocessed and exported from SDT to be used in the calculations of

the Poynting and kinetic energy flux: positional data, magnetic field data, electric field data, spin

axis data, electron data, and ion data. Due to the way the instruments on-board the FAST satellite

recorded the data and the way the IDL routines preprocessed the data, all six data types were

recorded in various resolutions, time ranges, and coordinate systems. Additionally, the electric and

magnetic field data contained many outliers, which could potentially skew the calculated Poynting

and kinetic energy flux results. Therefore, before calculating the Poynting and kinetic energy flux,

the following processes and transformations were performed on the preprocessed FAST satellite

data to ensure that all data types were uniform:

1. Outlier Removal

2. Coordinate System Transformations

3. Correlation of Data Time Ranges and Resolutions

The following sections describe these methods, which were used to unify the preprocessed FAST

satellite data.

Outlier Removal

Outlier removal was attempted on a single signal and full orbit basis. For single signal outlier

removal, individual outlier data points were removed from an otherwise valid orbit of FAST data;
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however, full orbit outlier removal worked to remove outlier orbits whose total data was deemed

corrupted and invalid.

Single Signal Outlier Removal The preprocessed electric and magnetic field data exported

from SDT was generally very noisy and retained some noticeable outliers as seen in the top plot of

Figure 3.7. The cause of these outliers was determined to be primarily due instrumental glitches.

In order to remove these outliers an algorithm outlined in “Radar detection of a localized 1.4 Hz

pulsation in auroral plasma, simultaneous with pulsating optical emissions, during a substorm”, by

Dr. Russell Cosgrove, et. al. was used (refer to Appendix A.1).

Figure 3.7 shows an example of the effectiveness of the outlier removal function when used on

a sample of magnetic field data. The top plot shows the original magnetic field signal, while the

bottom plot shows the magnetic field signal with outliers removed.
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Figure 3.7: Example of Outlier Removal

Orbit Outlier Removal To account for orbits that contained corrupted or invalid data that

would not be accurately removed by single signal outlier removal, a function that created histograms

was developed to screen for these occurrences. This function allowed for better determination of

what data within a range of orbits should be considered outliers; it also aided in the final analysis

of trends within the entire orbit range data set. The histogram function is able to take in a series

of limiting parameters including a time range, latitude range, longitude range, and altitude range.

Based on these input parameters, histogram plots are created representing all data which met the
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desired requirements. Through analysis of these histograms a realistic range of acceptable data

averages can be determined and outlier orbits with averages that do not fall within this range can

be identified.

Figure 3.8 shows a histogram created for the Y-axis δB data of all latitude, longitude and

altitude ranges over a three day period. As seen below, the data is centered around 0 nT; however,

outliers are present towards the outer edges of the plot.

Figure 3.8: Example of Histogram

Individual orbits that have a large occurence of values tending to not follow the normal trend

of their respective binned histogram models have a higher likelihood of being considered an outlier

orbit. These orbits can then be omitted from the final average Poynting and kinetic energy flux

calculations.

Coordinate System Transformations

The data was exported from the SDT in one of three coordinate systems: Geocentric Equatorial

Inertial Coordinate System (GEI), Data Coordinate System 2 (DCS2), or Equatorial Coordinate

System (ECS). To allow for the interpretation of the calculated Poynting and kinetic energy flux

with respect to the Earth, all six data types were converted into the Geocentric Coordinate System
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(GEO). For more information on these coordinate systems please refer to Section 2.5 of this report.

Table 3.1 shows the breakdown of the coordinate systems for each data type.

Data Type Coordinate System

Positional GEI

Magnetic Field GEI

Electric Field DCS2

Spin Axis ECS

Electron Energy Flux GEO

Ion Energy Flux GEO

Table 3.1: Data Types and Their Respective Coordinate Systems

Based on Table 3.1, there were three main transformations that needed to be completed: GEI

to GEO, ECS to GEO, and DCS2 to GEO.

GEI to GEO The 2010 MQP was able to develop a MATLAB function, which completed the

transformation between GEI and GEO. However, based on the results of several tests, it was

concluded that this function could not be used reliably. An alternative was found: Onera, the

French Aerospace Lab, provides an open source MATLAB library package that was able to complete

the transformation from GEI to GEO coordinates [26].

ECS to GEO As described in Section 2.5, the ECS coordinate system is composed of two angles

which represent the spherical version of the GEI coordinate system. Trigonometric identities seen

in equations (3.1) to (3.3) were used to convert from ECS to GEI, where RA represents the right

ascension angle and D represents the declination angle of the FAST satellite.

xgei = sinRA cosD (3.1)

ygei = cosRA cosD (3.2)
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zgei = sinD (3.3)

Onera libraries were used to convert from the newly determined GEI coordinates to the GEO

coordinate system.

DCS2 to GEO Conversion from DCS2 to GEO coordinates required the calculation of the

projection of the magnetic field onto the spin plane (spB) and the perpendicular projection of the

magnetic field onto the spin plane (spBp). Equations (3.4) and (3.6) show the required calculations

where B is the model magnetic field (IGRF) in the GEO coordinate system.

x̂dcs2 = spBp = norm(spinaxisgeoxyz ×Bgeoxyz) (3.4)

ŷdcs2 = norm(spinaxisgeoxyz) (3.5)

ẑdcs2 = spB = norm(spBp× spinaxisgeoxyz) (3.6)

The projection of the magnetic field onto the spin plane (ẑdcs2) serves as the normalized DCS2

Z-axis vector. The perpendicular projection of the magnetic field onto the spin plane (x̂dcs2) serves

as the normalized DCS2 X-axis vector, and the normalized spin axis vector serves as the normalized

DCS2 Y-axis vector. By multiplying the X-axis in DCS2 by the X-axis represented in GEO, the Y-

axis in DCS2 by the Y-axis represented in GEO, and the Z-axis in DCS2 by the Z-axis represented

in GEO, individual GEO coordinate components are obtained (as seen in equations 3.7 to 3.9).

Axyz = (xdcs2)(x̂dcs2) (3.7)

Bxyz = (ydcs2)(ŷdcs2) (3.8)

Cxyz = (zdcs2)(ẑdcs2) (3.9)
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The X-axis in GEO coordinates is equal to the sum of the X components of each of the previ-

ous multiplications (equation (3.10)), the Y-axis in GEO coordinates is equal to the sum of the Y

components of each of the previous multiplications (equation (3.11)), and the Z-axis in GEO coor-

dinates is equal to the sum of the Z components of each of the previous multiplications (equation

(3.12)).

xgeo = Ax +Bx + Cx (3.10)

ygeo = Ay +By + Cy (3.11)

zgeo = Az +Bz + Cz (3.12)

Correlation of Data Time Ranges and Resolutions

Due to the sampling rate variability of the instruments on-board the FAST satellite, the data

collected was not recorded uniformly. In addition, samples of the various data types were often

only recorded when an interesting event took place or in only the Northern or Southern hemisphere

(approximately ±65◦ to ±90◦ latitude). Therefore, the six data types collected for each orbit were

recorded at different sampling resolutions over different time periods.

Table 3.2 outlines the data types used in the Poynting flux and kinetic energy flux calculations.

Poynting Flux Data Types Kinetic Energy Flux Data Types

Positional Positional

Magnetic Field Electron Energy Flux

Electric Field Ion Energy Flux

Spin Axis

Table 3.2: Data Types Used in the Poynting and Kinetic Energy Flux Calculations

As seen in Table 3.2, the magnetic field, electric field, and spin axis data are used exclusively

for the Poynting flux calculation. Furthermore, the electron and ion energy flux data are used
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exclusively for the kinetic energy flux calculation; however, the positional data is used in both

calculations. To account for this, two copies of the positional data were made: one to be unified to

the time range and resolution of the Poynting flux data types, and one to be unified to the time

range and resolution of the kinetic energy flux data types.

To resolve the time range differences between the data types used in both the Poynting and

kinetic energy flux calculations, the data for one orbit was limited down to the shortest time span

of the recorded data for that orbit. This was done separately for the data used in both the Poynting

and kinetic energy flux calculations. If any of the data types for a single orbit were not recorded

in a time span that overlapped with the time spans of the other data types, then that orbit was

rejected as invalid and was not processed.

To match the resolutions of the data used in the Poynting flux calculation, the magnetic and

electric field data were first passed through the single signal outlier removal function described

previously, then smoothed and down-sampled to their common lowest resolution (typically the

resolution of the magnetic field). The two data types were then interpolated to ensure that both

sets of data had matching time columns. The spin axis and positional data used in the Poynting flux

calculation were then interpolated up to the common resolution of the magnetic and electric field

data. Interpolating data up to a higher resolution was used sparingly to avoid creating artificial

data. However, because both the spin axis and positional data followed defined trends, accurate

interpolation was possible.

The electron and ion data were recorded by the same instrument on the FAST satellite and

were therefore sampled at the same rate. As a result, to match the resolutions of the data used in

the kinetic energy flux calculations, the positional data was simply interpolated to the resolution

of the electron and ion data.

Figure 3.9 shows a mock example of the results of matching the time ranges and resolutions of

the data used in both the Poynting and kinetic energy flux calculations.
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Figure 3.9: Example of Time Range and Resolution Unification of Data Types

3.1.3 Calculate the Missing Electric Field Component

Due to a malfunctioning sensor the FAST satellite was unable to collect electric field data along

its spin plane axis (Y-axis DCS2). In addition, the data recorded for the electric field component

along the magnetic field (Z-axis DCS2) was heavily corrupted by noise; however, through a series

of calculations it is possible to determine a noise floor level that could be used to regain use of the

noisy signal and approximate a reasonable value for the missing component.
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Figure 3.10: Goal 1 Block Diagram, Step 3

The process of approximating a value for the missing electric field component was split into

several steps:

1. Subtract the Electric Current Generated by the FAST Satellite

2. Calculate the Angle between the Magnetic Field and Spin Plane Projection

3. Determine the Noise Floor Level in the Z Component of the Electric Field (DCS2)

4. Approximate Values for the Missing Electric Field Component

Based on the analysis of several sets of noise floor data it was observed that the noise floor level

for all FAST orbits did not remain consistent. Without a confirmed noise floor level for all FAST

orbits, the noise could not be eliminated from the noisy signal and an approximate value for the

missing component could not be developed. However, it was determined through testing that the

DCS2 Y-axis did not greatly affect the final Poynting flux calculation, and was therefore set to zero

for all calculations contributing to the final binned statistical models.

The methods for approximating the value of the missing electric field component detailed below

can be used for further research in future years of this project.
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Subtract the Electric Current Generated by the FAST Satellite

According to Dr. Russell Cosgrove, the generated electric current offsets vary by the magnitude of

the angle between the magnetic field and the spin plane. Therefore, the offsets must be subtracted

from the electric field components in order to find the noise floor.

Much like how an electric current going through a loop can induce a magnetic field (Figure

3.11), a magnetic field can induce an electric current through a moving body.

Figure 3.11: A Generated Electric Current [27]

As the FAST satellite moved across the Earth’s magnetic field it produced an electric current–

defined by the Lorentz Force Law, which created an offset in the data collected by the electric field

sensors. This value was subtracted from the actual electric field measurement obtained from the

preprocessed data. Detailed below are the steps to obtain the V ×B contribution.

Calculation of the ẑ and x̂ components of the magnetic field in the DCS2 coordinate system

were completed using equations (3.13) to (3.14):

ẑdcs2 = norm(Bgeoxyz − (Bgeoxyz · spinaxisgeoxyz) ∗ spinaxisgeoxyz) (3.13)
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x̂dcs2 = norm(spinaxisgeoxyz × ẑdcs2) (3.14)

The external electric field contribution can be found by taking the dot product of the previous

two equations (3.13 and 3.14) with the cross product of the velocity and model magnetic field

(IGRF):

EzV×B = −(Vgeoxyz × (Bgeoxyz) · ẑdcs2) (3.15)

Similarly for ExV×B :

ExV×B = −(Vgeoxyz × (Bgeoxyz) · x̂dcs2) (3.16)

The new calculated Edcs2z and Edcs2x components of the electric field can be determined by

subtracting these offsets:

Edcs2z = Edcs2z − EzV×B (3.17)

Edcs2x = Edcs2x − ExV×B (3.18)

An example of the V × B contribution with its respective electric field can be seen in Figure

3.12. Correcting the electric field measurements enables calculation of downward Poynting flux

measurements pertaining only to atmospheric effects.



CHAPTER 3. METHODOLOGY AND IMPLEMENTATION 44

Figure 3.12: Observed Generated Electric Current Offset

Calculate the Angle between the Magnetic Field and Spin Plane Projection

Using the original Poynting flux calculations used by the 2010 MQP, the Y-axis and Z-axis of the

electric field components were set to zero. Due to the variability in the magnetic field across the

orbital path of the satellite, the angle between the magnetic field and the projection of the magnetic

field onto the satellite’s spin plane changes over time.

As the angle increases, the X-axis electric field component more accurately represents the total

electric field. Therefore a smaller angle creates a larger error in the final Poynting flux results

calculated when using the original 2010 MQP calculations whereby the Y-axis and Z-axis of the

electric field are set to zero.

The angle between the magnetic field and the projection of the magnetic field onto the satellite’s

spin plane is calculated using equation (3.19). The calculated value θ is the angle between the

magnetic field and the projection of the magnetic field , B is the model magnetic field (IGRF),

and ẑdcs2, calculated in equation (3.13), is the projection of the magnetic field onto the satellite’s

spin plane.
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θ = 90− arccos(B × ẑdcs2) (3.19)

Determine the Noise Floor Level in the Z Component of the Electric Field (DCS2)

After successfully removing the generated electric current (V × B contribution) from the electric

field data, it was possible to create binned plots using the calculated angle between the magnetic

field and the spin plane projection. By plotting the Z component of the electric field data against

θ (equation 3.19), models were created which were used to determine the threshold at which the

Z-axis of the electric field data was unaffected by noise and was therefore considered usable. Those

electric field values that fell beneath the value of the noise floor level would be rejected.

Each generated model was a plot of the root mean squared value of all electric field data within

a 0.01◦ range of the angle between the magnetic field and its spin plane projection known as θ.

The overall angle range was set between ±20◦ to include all calculated values of the angle.

Data from various orbit ranges were used to determine the noise floor. Figures 3.13 and 3.14

show the binned empirical models created for two different ranges of FAST satellite orbits. Figure

3.13 indicates a noise floor level of approximately 3 mV/m while Figure 3.14 indicates a noise floor

level of approximately 8 mV/m.

Figure 3.13: Noise Floor Level for Orbits 3000-3600: Approximately 3 mV/m
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Figure 3.14: Noise Floor Level for Orbits 4000-5000: Approximately 8 mV/m

Approximate Values for the Missing Electric Field Component

As described, due to the variability in the noise floor level a method for calculating the appropriate

noise floor level for all FAST orbits was necessary. Due to the limited time frame of this project,

such a method was never fully developed and thus the electric field data for the Y-axis was not

recovered. However, for future projects attempting to calculate an appropriate noise floor level

for all FAST orbits, the previous sections can be used to aid in the approximation of the missing

electric field component.

3.1.4 Optimize and Automate the 2010 MATLAB Routines to Calculate the

Poynting and Kinetic Energy Flux

The 2010 MQP was focused on developing MATLAB routines that could calculate the Poynting

and kinetic energy flux for a given individual orbit of the FAST satellite. Working off of these

routines, optimized routines that were able to complete these calculations for approximately 20,000

orbits worth of valid FAST data were developed.
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Figure 3.15: Goal 1 Block Diagram, Step 4

Additionally, these optimized routines were tailored to work with the unified FAST data devel-

oped through methods described in Section 3.1.2.

Described in Appendix A.2, the Poynting flux was calculated by taking the cross product of the

unified electric field and δB data, and dividing by the permeability of free space (equation (2.1)).

To obtain the Poynting flux data mapped down the magnetic field, the final Poynting flux values

calculated from data recorded in the Southern hemisphere were negated. For each valid FAST

orbit, the Poynting flux was calculated in both GEI and GEO coordinate systems and saved to two

separate MATLAB files. These files were stored onto a hard drive in a folder labeled “Processed

Data”. This folder contained already processed Poynting flux calculations which made it faster for

plotting using the “histograms” and “3D Polar Plots” functions. At the end of this year’s project,

the hard drive was given to Dr. Russell Cosgrove and Dr. Hasan Bahcivan to use in the future years

of this project.

The electron and ion files that were exported from IDL and unified in MATLAB contained the

ion and electron energy flux mapped to an altitude of 100 km. By taking the summation of these

two parameters the kinetic energy flux could be determined. Although the data required for the

calculations of the kinetic energy flux were unified in the final MATLAB routines, due to time

limitations the final kinetic energy results were not completed.

To allow for the future accurate analysis of the Poynting flux data with the kinetic energy flux

data, the Poynting flux results were mapped to an altitude of 100 km. To complete the mapping
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the Poynting flux results were multiplied by the ratio of the magnetic field mapped to 100 km and

the unmapped magnetic field. Both the mapped and unmapped magnetic fields were parameters

that were exported directly from the SDT and IDL routines.

3.1.5 Verify the Calculated Poynting Flux

Before developing the binned statistical visual models of the Poynting flux values developed in the

previous steps of Goal 1, the calculated Poynting flux values had to be verified.

Figure 3.16: Goal 1 Block Diagram, Step 5

To verify the calculated Poynting flux, the values were compared against data recorded by radar

located at the Sondrestrom Research Facility in Kangerlussuaq, Greenland. The comparisons were

made using Poynting flux data calculated from measurements recorded by the FAST satellite while

it was within ±1◦ latitude and ±2.5◦ longitude of the Sondrestrom Research Facility. Over the

20,000 valid FAST orbits, there were approximately 200 incidents of FAST satellite recording data

within the appropriate latitude and longitude range. Of these 200 incidents, there were only

approximately twenty overlaps of time when the radar was also recording data.

The majority of the comparisons made revealed measured magnitudes that were too small

to be used for accurate verification. Based on the limited number of viable comparisons, it was

determined that although the Poynting flux values have not been verified, the results look promising

and should be investigated further in future years of this project.
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3.2 Develop Binned Statistical Visual Models

Interpretation of the calculated Poynting and kinetic energy flux still needed to be accomplished;

however, data interpretation is better done through the use of visual models, such as plots. The

second goal of this project aimed to create such visual tools that would aid researchers in better

understanding the previously calculated data.

Figure 3.17: Goal 2 Block Diagram

3.2.1 3D Polar Plots

In order to understand the various effects of Poynting flux visual interpretation was required. The

function “POLAR3D.m”, written by J. M. De Freitas, was used in order to create the 3D polar

plot of the binned statistical Poynting flux average [28]. This function was available for public

use on the MATLAB Exchange by The Mathworks, Inc. The geophysical parameters (altitude,

ap index, invariant latitude, and magnetic local time) were used to bin the data. Based on these

geophysical parameters the Poynting fluxes that fell within the range were binned appropriately

using a weighted average scheme. A function was created that would be able to find the average

Poynting fluxes that fell within each bin and weight it based on the number of occurrences:

Stotalavg =
Savg1N1 + Savg2N2...+ SavgnNn

N1N2...Nn
(3.20)

Where n is equal to the number of orbits that fell within a certain bin, S was the average of

the Poynting fluxes of an individual orbit that fell within a certain bin, and N was equal to the
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number of points in each orbit that fell within a certain bin. This was calculated for each bin of

the polar plot function to create a mass binned statistical model.



Chapter 4

Results

The main goal of this project was to develop MATLAB routines that automatically created binned

statistical models of the average Poynting flux based on several geophysical parameters. The binned

statistical models created were in the form of polar plots, which displayed average Poynting flux

values plotted against magnetic local time and invariant latitude. The magnetic local time is

displayed around the circumference of the plot and the invariant latitude is displayed along the

radius of the plot. Figures 4.1 and 4.2 are examples of the polar plots that were created.

Figure 4.1: Average Poynting Flux in the Northern Hemisphere
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Figure 4.2: Contributing Crossings to the Average Poynting Flux in the Northern Hemisphere

Figure 4.1 is a polar plot of the average Poynting flux from 55◦ to 90◦ invariant latitude, 300-1000

km altitude, and all ap index values. This plot is created using approximately 3,000 orbits worth

of FAST satellite data collected over a time period of 15 months. Figure 4.2 is a plot of the number

of FAST orbital crossings that contributed to the average Poynting flux values displayed in Figure

4.1. Crossings plots (Figure 4.2) can be used for more accurate analysis of the average Poynting

flux values calculated. The greater the number of contributing crossings for a certain segment of

Poynting flux intensity, the greater the validity of that data due to more orbits contributing to

the average calculated Poynting flux. For example, in Figure 4.1 the high Poynting flux intensity

recorded at 55◦, 14:00 MLT has very few contributing crossings as seen in Figure 4.2. Therefore,

this value is likely an outlier value and can be disregarded.

The highest instances of Poynting flux intensity in Figure 4.1 occur at approximately 6:00 and

18:00 MLT as the Sun is rising and setting. The latitude values for both instances occur between

approximately 60◦ and 70◦ invariant latitude, which fall within the latitude range of the auroral

acceleration region. Based on this preliminary analysis, the generated plots indicated reasonable

instances of high Poynting flux intensity.
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To verify the results obtained, comparisons against preexisting statistical models were made.

Figure 4.3 shows a side-by-side comparison of the polar plot presented in Figure 4.1 against a polar

plot presented by Deng et al. in an article published in the Journal of Geophysical Research [29].

Figure 4.3: Verification of Calculated Average Poynting Flux [29]

In both plots the highest instances of Poynting flux occur at comparable latitude ranges at

approximately 60◦ and 70◦. Both plots were created using data collected at comparable altitudes

(1000 km for Deng et al.) and over all Kp index values. Figure 4.3 does not provide a direct

comparison. The Deng et al. model is plotted against solar magnetic time, not magnetic local time;

however at lower altitudes the solar magnetic time is relatively similar to that of magnetic local

time. The Deng et al. model also represents data recorded over only the summer season, compared

to all seasons represented in the model produced as a result of this project – this comparison does

indicate that the results obtained look very promising and should be investigated further in future

years of this project.



Chapter 5

Recommendations

During the completion of this project, areas of research were unable to be addressed due to time

limitations. As such, it is recommended that the 2012 MQP group continue from where the 2011

MQP group left off.

• Verify the validity of all re-preprocessed data for each orbit. It is advised that they should

verify all data files for each orbit and remove those orbits whose data is deemed invalid.

Alternatively they could work to develop error checking algorithms that will accurately elim-

inate outlier orbits. While a significant amount of outliers were removed in each data set –

in addition to rejecting all orbits that did not have available data for all six files – there is

still reason to believe that there may be some invalid data that was not eliminated from the

binned statistical models.

• Adjusting the existing electric field processing code work with user inputted altitude ranges.

Near the end of the project, Dr. Bahcivan and Dr. Cosgrove expressed interest in analyzing

altitude specific electric field binned data in order to obtain more precise data plots for

specified regions of the atmosphere. Unfortunately, there was not enough time left in the

project at the time of its suggestion and as such the task was not met.

• Further investigation into the validity of the newly preprocessed and exported magnetic and

electric field data sets. Confirmation was sought with Dr. Strangeway from the University of

California, Los Angeles but due to the time limitations a consensus was not reached.

• Recalculate the electric field noise floor and ensure it’s validity. Upon doing so attempt to

recover the missing electric field component.
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Conclusion

This project was the second iteration of a four year research endeavor proposed by SRI International

and funded by the National Science Foundation (NSF). The purpose of this year’s project was to

automate the process of calculating and developing binned statistical visual models of the average

downward Poynting and kinetic energy flux as recorded by the Fast Auroral SnapshoT (FAST)

satellite. These models will ultimately serve to further the understanding of the Sun’s energy input

into Earth’s thermosphere.

Continuing on the progress made by the 2010 MQP, this project worked to accomplish two main

goals:

1. Automate the Poynting and kinetic energy flux processing of the FAST satellite data.

2. Develop binned statistical visual models (i.e. polar plots) of the Poynting flux and kinetic

energy flux data recorded by the FAST satellite.

To accomplish the first goal of this project, Interactive Data Language routines were used

to re-preprocess approximately 20,000 orbits of FAST satellite data from remote servers at the

University of California, Berkeley. The preprocessed data was exported into six separate Common

Data Format (CDF) files per orbit and saved to a single directory stored on an external hard

drive. Each CDF file contained a different data type that was used in calculating the Poynting and

kinetic energy flux. MATLAB routines were created to unify the preprocessed data by completing

outlier removal, coordinate system transformations, and matching the time ranges and resolutions

of the different data types used in both the Poynting and kinetic energy flux calculations. Although

the data for the calculation was prepared, due to time limitations the kinetic energy flux was not
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calculated as a part of this project. However, MATLAB routines to automatically and efficiently

calculate the Poynting flux for all valid orbits of unified FAST data were successfully developed.

Using the calculated Poynting flux results obtained in completion of the first goal, MATLAB

functions were developed that automatically create binned statistical visual models of the average

Poynting flux over a given range of geophysical parameters. The statistical models were compared

against preexisting statistical models published by researchers Deng et al. in the Journal of Geo-

physical Research. Preliminary comparisons suggest that the statistical models created as a final

result of this project look promising and should be further analyzed in future years of this project.

The final two years of this project will work toward developing analytical models that will serve

as physical interpretations of the Sun’s energy input into Earth’s thermosphere. These interpreta-

tions will aid in the effort characterizing space weather effects, ultimately leading to improvements

in spacecraft and communication systems design.



Appendix A

Algorithms and Calculations

A.1 Outlier Removal Algorithm

The following equations are used to figure out which data points within a sample signal may be

considered outliers. Using a zero-mean Gaussian probability density function (pdf) it is known

that:

f(y = |V |2) =
1

2πσ2
e(

−y2

2σ2
) (A.1)

Where |V | is the absolute value of the original input signal. To find the value for σ, the formula

is integrated with respect to y given that f(y = |V |2) is set to be a 50% chance that a single data

point will exceed the threshold. The bounds of the integral will be 0 to the median of the signal

squared which will be called x. Thus equation (A.1) integrates to:

∫ x

0

1

2πσ2
e(

−y2

2σ2
) dy =

1

2
= −e(

−y
2σ2

)∣∣x
0

(A.2)

Solving for the equation (A.2) yields:

−e(
−x
2σ2

) + 1 =
1

2
(A.3)

Taking the natural log of both sides in equation (A.3):

x

2σ2
= ln(2) (A.4)

Setting x = median(|V |2) the equation can be solved for the value of σ:
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σ =

√
median(|V |2)

2ln(2)
(A.5)

The likelihood that a window of length n data points would exceed a given threshold is given

by:

1

2
= 1− (1− α)n (A.6)

Where 1
2 is set to be a 50% chance that a point will exceed the threshold. Thus α is the

likelihood that at least one point out of n will exceed the threshold. Solving for α:

α = 1− (
1

2
)
1
n (A.7)

The variable α is now set to equal equation (A.2), except the integral from a certain threshold,

which will be labeled as S, to infinity, may now be solved.

α =

∫ ∞
S

1

2πσ2
e(

−y2

2σ2
) dy = −e(

−y
2σ2

)∣∣∞
S

(A.8)

Solving for equation (A.8) we have:

α = 0 + e(
−S
2σ2

) = 1− (
1

2
)
1
n (A.9)

Simplifying equation (A.9) the threshold value S can be found:

S = −2σ2ln(1− (
1

2
)
1
n ) (A.10)

The threshold value S must be calculated for each window of the signal. In order to obtain an

accurate σ value, a best fit m-polynomial is fitted to the windowed curve of the signal such that

values that exceeded the certain threshold S on the polynomial fit would effectively be discarded.

A.2 Poynting Flux Calculations

All calculations below are matrix operations and in standard SI units, unless otherwise specified.
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The spin-axis data must first be in the GEI coordinate system for any further calculations to

be completed:

xgei = sinRA cosD (A.11)

ygei = cosRA cosD (A.12)

zgei = sinD (A.13)

Wher RA and D are the right ascension and declination angles of the spacecraft given in ECS

coordinates. Changing from GEI to GEO coordinates is a simple transformation as it relies on the

Greenwich Hour Angle outlined in (Coordinate systems conversions background section).

Before any calculations for Poynting flux are made, the electric field (E) offsets contributed by

V ×B needed to first be calculated:

First the ẑdcs2 component needed to be calculated:

ẑdcs2 = norm(Bgeoxyz − (Bgeoxyz · spinaxisgeoxyz) ∗ spinaxisgeoxyz) (A.14)

Where Bgeoxyz os the model B field (IGRF), spinaxisgeoxyz is the calculated spin-axis from the

right ascension and declination angles of the spacecraft. Then the x̂dcs2 offset is found to be:

x̂dcs2 = norm(spinaxisgeoxyz × ẑdcs2) (A.15)

Thus to find the V ×B contribution of each component (row wise operation to create a single

column matrix):

EzV×B = −((Vgeoxyz ×Bgeoxyz) · ẑdcs2) (A.16)

Similarly for ExV×B :

ExV×B = −((Vgeoxyz ×Bgeoxyz) · x̂dcs2) (A.17)
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Where Vgeoxyz is the velocity of the spacecraft in GEO coordinates. The new calculated Edcs2z

and Edcs2x components of the electric field can be determined by subtracting these offsets:

Edcs2z = Edcs2z − EzV×B (A.18)

Edcs2x = Edcs2x − ExV×B (A.19)

Once the electric field offsets are corrected, transformation from the DCS2 coordinate system

to GEO coordinate system is necessary. It is determined that the DCS2 unit vector components

are:

x̂dcs2 = spBp = norm(spinaxisgeoxyz ×Bgeoxyz) (A.20)

ŷdcs2 = norm(spinaxisgeoxyz) (A.21)

ẑdcs2 = spB = norm(x̂dcs2 × spinaxisgeoxyz) (A.22)

Where spB is the spin plane projection of the magnetic field (B) and spBp is the perpendicular

spin plane projection of the magnetic field (B). Now multiplying each by actual DCS2 values:

Axyz = x̂dcs2 ∗ Edcs2x (A.23)

Bxyz = ŷdcs2 ∗ Edcs2y (A.24)

Cxyz = ẑdcs2 ∗ Edcs2z (A.25)

Taking each x, y, and z components creates the GEO coordinate components of the electric

field:
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Egeox = Ax +Bx + Cx (A.26)

Egeoy = Ay +By + Cy (A.27)

Egeoz = Az +Bz + Cz (A.28)

Now that the electric field data is in GEO coordinates, calculation of the Poynting flux can be

done. When the satellite is in the northern hemisphere the Poynting flux (S) is calculated as:

S =
(Egeo × δBgeo) · B̂geoxyz

µ0
(A.29)

Where δBgeo is the perturbation caused by the difference between the model and measured

magnetic field and B̂geoxyz is the normalized unit vector of the model magnetic field. When the

satellite is in the southern hemisphere the equation to calculate the Poynting flux is:

S =
−(Egeo × δBgeo) · B̂geoxyz

µ0
(A.30)

It is multiplied by a negative to make the Poynting flux point downwards towards Earth. Then

taking into account that the electron and ion data is mapped to 100 km, the Poynting flux also

needs to be mapped to that reference altitude for comparisons. This is done by taking the ratio of

the magnetic field at 100 km and at the reference altitude of the data point (ALT):

S100km =
B̂100km

B̂ALT

SALT (A.31)
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Tutorials

C.1 SDT and IDL

Written By: Steven Chen

3/4/11

googly.bear@gmail.com

Due to unforeseen circumstances, some of the data files might not have been

created. This is partly due to either invalid data, or no data being recorded

for a certain DQD - "Data Quantity Descriptor". This tutorial will attempt to

guide a new user through how to use SDT and IDL on-site at SRI.

*******************************Poynting Flux Data*******************************

Accessing SDT on llama:

1. Start off by starting up Xming XLaunch.

2. Select "One window" -> Next

3. Select "Open session via XDMCP" -> Next

4. Check "Connect to host" and in the empty box insert: llama.sri.com

5. Press next once more.

6. For the username input: nicole

7. For the password input: *******

8. To launch SDT, with the correct configuration files while logged in as nicole

type in the terminal window:
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llama [~]> cd fast

llama [~]> sdt &

(Ctrl+C in the terminal window will get you a new command prompt)

9. Select "Configuration Files" and scroll to down to find UIcfg.wpi5716, you

may also create your own plots, but I suggest sticking with the one that

displays all needed data.

10. Select it and click "without raw data". This will open up several plots and

the SDT user interface.

11. If you want to view a certain orbit right click in an empty space not within

a plot, and select DataFromNetwork.

12. Type in the orbit of interest and press "Okay".

13. Most times files will be downloaded, if so press "Download all files and

plot".

14. Give the server some time to plot as they take time. The DQDs shown in the

SDT user interface are all the required fields needed to process the

magnetic field, electric field, spin axis angle, and the orbital data.

15. You can also run IDL routines from the terminal window. Type:

llama [~]> idl -32

IDL>batch_processing

This will automatically process all of the data relevant to the orbit

selected.

The data will be stored in a different processed data directory, which is

listed below (see below -unique to each server).

Other routines of interest are:
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ucla_mag_despin

fields_despin

These are the routines responsible for despining the magnetic and electric

field data.

16. Now to quit out of SDT, click the [-] button and close, or just simply

select the window and ALT+f4.

17. Sometimes you need to make sure that SDT is actually closed, so check by

issuing a command to the shell window:

llama [~]> env |grep sdt| more

(CTRL+z to suspend)

llama [~]>kill -9 *proccessid*

or just simply type in the terminal:

llama [~]> cleanup

Accessing SDT on ISR:

1. Same as steps 1-7 as above.

2. In the terminal window type:

llama [~]> ssh schen@isr.sri.com

Password : *******

3. We are now on the ISR server. Due to authentication issues the schen

account does not have a valid .Xauthority cookie, so type:

isr [~]> cp /home/nicole/.Xauthority .

This will copy nicole’s .Xauthority cookie allowing emacs and SDT to show up
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correctly.

4. You do not need to switch directories as this account was made specifically

for batch processing. So launch SDT:

isr [~]> sdt &

5. The same commands and instructions for LLAMA apply for ISR as well for usage

of IDL routines.

Accessing SDT on VIPER:

1. Same as steps 1-7 as above.

2. In the terminal window type:

llama [~]> ssh schen@viper.sri.com

Password : *******

3. We are now on the VIPER server. Due to authentication issues the schen

account does not have a valid .Xauthority cookie so type:

viper [~]> cp /home/nicole/.Xauthority .

This will copy nicole’s .Xauthority cookie allowing emacs and SDT to show up

correctly.

4. You do not need to switch directories as this account was made specifically

for batch processing. So launch SDT:

viper [~]> sdt &

5. The same commands and instructions for LLAMA apply for VIPER as well for

usage of IDL routines.
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********************************** Batch Mode **********************************

Batch mode does not require the SDT user interface to be open in order to

process the data and export it.

Running sdt_batch requires you to be in the home folder.

>cd $HOME

Once there type:

>sdt_batch sdt_test.batch

Where the test batch is the configuration file used in SDT batch mode. You may

alter this file to process a different range of orbits. Refer to the included

files about SDT batch within the man-pages of SDT. Batch_processing of orbits

1-20000 have been completed. Orbits 5000-5549 have different file formats,

resulting in one less data column (B_MODEL_GEO). There is not conflict with the

MATLAB side as we read in the B_MODEL_GEI and do transformations to get the GEO

form.

Log for errors that occur while running batch mode are contained in the following

files in the same directory that issued SDT:

errUI

errdqh

errfast

errscm

outUI

outdqh

outfast

outscm
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Files that display information for the IDL error are (for Llama):

outIDL.batch_go.pro

errIDL.batch_go.pro

For VIPER and ISR:

outIDL.batch_go.pro

errIDL.batch_go.pro

outIDL.timeout_go.pro

errIDL.timeout_go.pro

Access to SDT is limited to a single server, therefore one copy running on a

machine at a given time.

Due to conflicts with VIPER and ISR not being able to issue an SQL query to the

fast DB, the coding for obtaining the current orbit number while in batch mode is

a bit different. It grabs the orbit data from get_fa_orbit, rather than

using what_orbit_is().

Llama is unaffected and can use what_orbit_is(). Speculation leads to Berkeley

servers not being able to authenticate the server upon connection.

Below are listed files and folders of importance:

Llama:

username: nicole

password: *******

local config directory : /home/nicole/fast

location of sdt_test.batch : /home/nicole/sdt_test.batch

sdt directory : /home/nicole/software/sdt_releases/sdt
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idl directory : /home/nicole/software/sdt_releases/sdt/idl

fast config directory : /disks/fast/software/config

processed data directory : /mnt/barracuda/sdt_releases/data

folder cleanup script : /home/nicole/folders.c

compile command : gcc folders.c -o folders, run with ./folders

VIPER:

username: schen

password: *******

local config directory : /mnt/barracuda1/schen

location of sdt_test.batch : /mnt/barracuda/schen/sdt_test.batch

sdt directory : /mnt/barracuda1/schen/fast/software/sdt

idl directory : /mnt/barracuda1/schen/fast/software/sdt/idl

fast config directory : /mnt/barracuda1/schen/fast/software/sdt/sdt_config

processed data directory : /mnt/barracuda1/schen/processeddata

folder cleanup script : /mnt/barracuda1/schen/folders.c

compile command : gcc folders.c -o folders, run with ./folders

ISR:

username: schen

password: *******

local config directory : /home/schen/

location of sdt_test.batch : /home/schen/sdt_test.batch

sdt directory : /home/schen/software/sdt/sdt_releases/sdt

idl directory : /home/schen/software/sdt/sdt_releases/sdt/idl

fast config directory : /home/schen/software/sdt/sdt_config

processed data directory : /home/schen/processeddata

folder cleanup script : /home/schen/folders.c
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compile command : gcc folders.c -o folders, run with ./folders

IDL files that were modified (located in the idl directory):

make_efields_cdf.pro

make_all_cdf.pro

get_fa_attitude.pro

batch_processing.pro

batch_go.pro

***********************Kinetic Energy Flux Information**************************

The kinetic energy flux data is obtained independently of the Poynting flux data.

1. Open IDL on a windows machine.

2. You must have the "fast_software" and "ssl_berkeley" library folder

installed. This can be obtained through asking me through E-mail or contacting

Dr. James McFadden.

3. Then by creating a script with the IDL routine fa_k0_load you can download

both the ’ies’ and ’ees’ data.

fa_k0_load,’ees’,orbit=i, version = ’04’

fa_k0_load,’ies’,orbit=i, version = ’04’

This will load orbit number ’i’ and save that data to C:\Data by default.

4. Inclusion of such a script can be found within one of the workspaces on the

SRI machine.

If there are any questions please do not hesitate to ask me at

googly.bear@gmail.com.

-Steven Chen
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C.2 MATLAB Code

Please refer to the the MATLAB top level function process orbit.m for a complete tutorial on how

to run all necessary sub-functions.
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