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Abstract 

 

 This Major Qualifying Project used data collection on how study participants played 

Pokémon Go to perform analysis and classify the enjoyment of Exergames. Using an Android 

app developed for this project, data about how users played the game was gathered and then 

uploaded for analysis. Descriptive statistics and analyses were performed using Plot.ly, while 

classification and classification result analysis were performed with MATLAB. 

  



 

 

3 

Table of Contents 

Abstract…………………………………………………………………………………………………..2 

Table of Contents………………………………………………………………………………………..3 

1 Introduction…………………………………………………………………………………………....5 

1.1 The Importance of Physical Activity……………………………………………………………..5 

1.2 Lack of Exercise in the United States…………………………………………………………….5 

1.3 First Console Exergames Promote Physical Activity…………………………………………….6 

1.4 Declining Interest in Console Exergames………………………………………………………...7 

1.5 Exergames Move to Mobile Devices……………………………………………………………..7 

1.6 Geocaching and Exergame Enjoyment…………………………………………………………...8 

1.7 Why do Players Quit Exergames? ……………………………………………………………….9 

1.8 The Goal of this MQP…………………………………………………………………………….9 

2 Background……………………………………………………………………………………………11 

2.1 History of Mobile Games………………………………………………………………………...11 

2.2 History of Exergames in the Video Game Industry………………………………………….......13 

2.3 Android Development…………………………………………………………………………....16 

2.4 Phone Sensors………………………………………………………………………………...….19 

2.3.1 Android Sensors……………………………………………………………………………20 

2.3.2 Google Fit…………………………………………………………………………...……..22 

2.3.3 Shimmer……………………………………………………………………………………22 

2.5 Drobox………………………………………………………………………………...……..24 

2.6 Machine Learning……………………………………………………………………..…………25 

3 Methodology……………………………………………………………………………...……………28 

3.1 Study Design Summary…………………………………………………………...……….……..28 

3.2 Pokémon GO………………………………………………………………………….…………..29 

3.3 Data Collection……………………………………………………………………....…………...29 

3.3.1 Data to Collect……………………………………………………………………………..29 

3.3.2 Pre-Questionnaire…………………………………………………………....……………..31 

3.3.3 Exergame Enjoyment Questionnaire…………………………………………...………….32 

3.3.4 Data Collection Methodology………………………………………………………...……35 

3.4 Pilot Studies………………………………………………………………………………………36 

3.4.1 Design Pilots……………………………………………………………………………….36 

3.4.2 Data Collection Pilots……………………………………………………………………...37 

3.5 Study Recruitment………………………………………………………………………………..37 

3.6 Analysis………………………………………………………………………………………….38 

4 Implementation………………………………………………………………………………………...40 

https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.rz4j9vq58w63
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.6uj39zhwb676
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ogl7nztg1r9o
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.2eyoikuvngyg
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.2bzq6or0vzly
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ibaay3iz1m7y
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.kejp7ynzsivr
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ar7buzkazkc3
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.d89urjtt7tak
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.pln8qijaz38e
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.9an9txerqzf1
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.nnsxststyn4v
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ptdzgd7svgeg
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.5pxia35ny5o8
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.t6lvnfd4dcig
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.7lvjsakrn08k
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.c8zfeemvscrl
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.dy4paorwvcqc
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.fzle0zb4ww48
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.xlnhhzvbjkzu
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.icvl0dbzthl
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.wukcev47mfb2
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.flul48l2v67d
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.pbj54xkigehy
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.l8failz1sqz8
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.n4q2kiyy4xx8
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.xd3hxyb12vhq
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.9f4okzruhgf3


 

 

4 

4.1 Exergame Monitor Application Implementation……………………………………………….40 

4.2 Python Script to Extract Features……………………………………………………………….45 

4.3 Feature Derivation………………………………………………………………………………48 

4.4 Software/API Versions………………………………………………………………………….50 

4.5Patch Cycle………………………………………………………………………………………51 

5 Results………………………………………………………………………………………………...52 

5.1 Demographics ……………………………………………....…………………………………..52 

5.2 EEQ Distribution………………………………………………………………………………..54 

5.3 Gameplay Statistics……………………………………………………………………………..56 

5.4 Feature Selection………………………………………………………………………………..61 

5.5 Data Processing and Classifiers………………………………………………………………...63 

5.5.1 Data Processing…………………………………………………………………………..63 

5.5.2 Classifiers Utilized……………………………………………………………………….64 

5.5.3 Confusion Matrices and Cohen’s Kappa…………………………………………………66 

5.5.4 Classification Results…………………………………………………………………….68 

6 Conclusion…………………………………………………………………………………………....72 

6.1 The Model……………………………………………………………………………………....72 

6.2 Study Limitations……………………………………………………………………………….73 

6.3 Future Steps…………………………………………………………………………………….74 

6.3.1 Longer Duration Study ………………………………………………………………….74 

6.3.2 Collect more data to get a representation of what entails a lower EEQ…………………75 

6.3.3 Look at the rate of change of a user’s EEQ ……………………………………………..75 

6.3.4 Pokémon Go Integration ………………………………………………………………...75 

References……………………………………………………………………………………………..77 

Appendix………………………………………………………………………………………………81 

1 Exergame Enjoyment Questionnaire…………………………………………………………….81 

2 Pre-Questionnaire………………………………………………………………………………..82 

3 Confusion Matrices ……………………………………………………………………………. 82 

3.1 Bin Size 20 ………………………………………………………………………………..82 

3.2 Bin Size 10………………………………………………………………………………...93 

3.3 Bin Size 5 …………………………………………………………………………………99 

3.4 Median Bin……………………………………………………………………………….110 

3.5 Mean Bin…………………………………………………………………………………121 

4 Feature Distribution…………………………………………………………………………….134 

4.1 Descriptive Table………………………………………………………………………...134 

4.2 Feature Histograms………………………………………………………………………135 

4.3 Feature CDF……………………………………………………………………………...140 

https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.u0i05xtnzwn3
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.roz4qzdcbf1h
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.qt6vrvs6mtn3
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.8l0o3n6bsoj5
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.dpe8bpcvuhct
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.rk40gyp2f72j
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.mlfz6rvwfa3j
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.r7xhnjl95vj8
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.yu7isqaipxyd
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.8w7qt68w5uqj
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.r5rbdhgfmbhe
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.olctm917vr0g
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ff7nz09dbj2g
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.dqh7bnxuttdi
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.1kmcjpord2b4
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.6dz49sfnm095
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.twztfosmc8sc
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.7lcwjaz67nba
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ex7qgswulprp
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.k2pep88ycck4
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.smhctrt4dttp
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.hiy8pnae7nq8
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.s60b8mfr7hs5
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ux1qfrgj78ye
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.mzu0c3c4cwnq
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.tjnmlybf67jm
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.fvu0dyqp1fv
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.slnp94g9i283
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.dbxpvnmf487q
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ob623xl3izbz
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.ky3fb674983o
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.x2bkfn9dcau3
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.4ka0rcrd56pe
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.gp2u1mupvgqb
https://docs.google.com/document/d/1xk8clR4e333JvgS0wcOb4rmORGulLP7X7mPJksRfpNc/edit#heading=h.vvktgci2zega


 

 

5 

 

1 Introduction 

1.1 The Importance of Physical Activity 

Physical inactivity and a lack of exercise have become increasingly prevalent in modern 

societies. Inactivity has been shown to be linked to many conditions, including obesity, 

cardiovascular disease and some cancers, and is a major contributing factor to many of the major 

health concerns in the United States. It plays a role in heart disease, high blood pressure, 

diabetes, metabolic syndrome and stroke. [1].   

1.2 Lack of Exercise in the United States 

According to the Centers for Disease Control and Prevention, less than 52 percent of 

Americans aged 18 and over currently meet the government’s physical activity guidelines for 

aerobic physical activity, meaning they don’t get the required 150 minutes of moderate exercise 

(brisk walking) and 75 minutes of intense exercise (swimming or jogging) recommended in a 

week. Even worse, only 22 percent of the same group meet the physical activity guidelines for 

both aerobic and muscle-strengthening activity [2]. Statistics for the youth population in this 

country are not any better. The latest National Youth Fitness Survey, which took place in 2012, 

had alarming findings for the rate of physical activity in the U.S for youth between the ages of 

12-15. It found that only 25 percent of this population performed moderate-to-vigorous physical 

activity for at least 60 minutes each day [3].   
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1.3 First Console Exergames Promote Physical Activity 

With physical activity decreasing, and the use of technology for fun and entertainment 

increasing, exergames present an opportunity to address this problem in a unique way.  Since 

their origin, video games have typically been a sedentary activity. However, there are many 

games — exergames — that require movement and physical activity 

Exergames are one way in which game developers have changed and are still changing 

the video game entertainment industry from an inactive one to one which puts the player in the 

position to get some much-needed exercise. The American College on Sports Medicine uses the 

following definition when classifying an activity as an exergame: 

 Exergaming is defined as technology-driven physical activities, such as video game 

play, that requires participants to be physically active or exercise in order to play the 

game.These game based physical activities go beyond simple hand finger movements as 

the primary interface and require the user to apply full body motion to participate in virtual 

sports, in group fitness exercise or other interactive physical activities. [4] 

A well-known example of an exergame is the Nintendo Wii. The Wii, one of the first 

platforms designed to promote the playing of exergames, was released over 10 years ago, in 

2006. It featured a unique remote controller that could detect players’ movements. For the first 

several years after its release, many games were developed for the console, such as Wii Sports, 

Wii Fitness, and Just Dance, all of which were widely popular and got players moving and off of 

the couch. 
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1.4 Declining Interest in Console Exergames  

 However, after several years of record breaking Wii sales, Nintendo announced that it 

was stopping production of the console in 2013. Wii sold over 100 million units, appealing to a 

broad audience, ranging from children to families to seniors. No exergame, or video game for 

that matter, had appealed previously to these different demographic groups. In a last, failed 

attempt to reinvigorate the brand, Nintendo launched the Wii U in 2011. Third party support 

weakened, placing Nintendo in an impossible position. With few new games for the console, 

sales of the consoles plummeted.  The end of a gaming phenomenon was over. 

 In addition to weakened third party support, there was another underlying problem 

affecting the Wii’s popularity in the long run. Games such as those developed for the Wii require 

a level of activity and stimulation that many users could not keep up with. Games such as Just 

Dance Two require the ability to jump, process moving components on a screen in different 

colors, and perform precise steps [5]. Many users did not have the ability to continuously play 

these high intensity games, and so other alternatives became popular. 

1.5 Exergames Move to Mobile Devices  

As time has gone on and mobile smart devices have become commonplace, the mobile platform 

has started to support its own exergames. In recent years, mobile exergame applications have 

increased. In 2016, Pokémon GO was announced and it became a huge success. The game 

brought together the concepts of exergaming and augmented reality and the public loved it. To 

play the game, players interact with the real world. Pokémon Go had millions of people run 

around with their mobile devices outside, trying to find and capture the characters that are part of 
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the game [6]. Even in April of 2017, almost a year after its release, Forbes reported that it still 

had nearly 65 million monthly users [7].  

1.6 Geocaching and Exergame Enjoyment 

 A different type of exergame that has experienced a rapid increase in popularity are those 

that feature Geocaching. Geocaching is typically an outdoor activity that has players use some 

type of GPS receiver (the mobile device) to play a game resembling a blend of hide-and-seek and 

treasure hunting.  Items are placed in specific locations, are marked by GPS coordinates, and 

then players try to find them. Geocaching in exergames is an example of location-based games 

that try to move the players from behind a screen into the real world [8].  In the Geocaching 

Motivations IQP, it was found that people geocached for multiple reasons. These include things 

such as, friendly competition, exercise, and being able to explore outdoors [9]. 

 Geocaching has proved to be an entertaining form of exercise that also provides players 

with other benefits. The U.S. National Institute of Health conducted a study of geocaching in 

2015[10]. It interviewed participants and asked them questions about how and why they use 

geocaching. The study found that most had geocached for more than five years and had done so 

with a consistent frequency, at least once a week. The reasons given for their interest in 

geocaching as recreation were “being outdoors, social interaction, physical activity, and 

relaxation.” Individuals described geocaching as “being part of a community.” Players made 

friends and felt a connection with other players, because of their shared interest [10].  
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1.7 Why do Players Quit Exergames? 

There are numerous reasons for people to want to play exergames. These range from the 

exercise you get from it, to the friendly competition you can create with it. However, even 

though exergames have been shown to provide a multitude of benefits, players often quit these 

games prematurely and without warning, nearly 85% of players quitting after a day, and 95% 

within 3 months [1]. This is puzzling. Why does this happen and how can exergames be designed 

for long term enjoyment?  

1.8 The Goal of this MQP 

 Technology has become more and more pervasive throughout the past decades, and 

continues to do so. With the advent of wearables and the increasing prevalence of smartphones, 

it becomes more and more possible for us to gather data on how people are playing games. 

Through studying these games, we can utilize machine learning to look at the data collected. 

Here, we can attempt to make sense of the data collected. In this projects example, we can 

attempt to have participants play exergames with their apps, and determine whether or not they 

are enjoying the game. With this information, we could proceed in different ways, 

recommending different types of games if they aren’t enjoying it, and recommending similar 

games if they do. 

The goal of this project is to look at these questions and determine what traits can be used 

to maximize the long-term enjoyment of exergames by their users. This project’s focus will be 

to: 

● Develop a list of potential features that will help determine a player’s level of 

exergame enjoyment. 



 

 

10 

● Develop and deploy a test application in a study to see how well we can collect 

these features. 

● Utilize classifiers to calculate and quantify the player's enjoyment. 
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2 Background 

2.1 History of Mobile Games 

 In 1972, the Magnavox Odyssey was released. The Magnavox unit was the first video 

game console designed for use in the home environment. One of the 28 games made for the 

Magnavox system was a ping pong game. This game inspired the creation of Pong, which 

became one of the first popular arcade games from Atari. Pong’s popularity circled back to feed 

the popularity of the Magnavox console.  

The success of the Odyssey unit showcased the potential that video games had in the 

technology industry as household products. Since the early days of video games, users from 

around the globe have been drawn to play. Players range in age from young to old and are both 

male and female. The average age of those playing these games ranges from 18 to 49, and even 

though the stereotypical gamer might be considered by many to be male, the number of females 

playing these games is almost equal to the number of males, according to the Entertainment 

Software Rating Board(ESRB) in 2015 [11]. Also, according to the ESRB, the number of 

females playing video games continues to grow. 

 These statistics show that although the video game industry started out as a niche form of 

entertainment, the industry has boomed into a pervasive part of our culture, with more and more 

diverse groups of people participating. Initially, the industry was based on arcade game systems. 

With these, companies could expect to sell hundreds of thousands of copies that would be shared 

in public spaces. With the success of Magnavox, developers started to realize that video games 

appealed to the masses and had the potential to sell millions of consoles for home entertainment 

[12]. 
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 In the past, to play a game such as Pong, players needed to purchase a console and the 

game cartridges or CD’s. In modern times, however, games are always “an arm’s length away” 

[11]. As mobile phones have grown in popularity and are now a standard fixture in our everyday 

lives, the potential for users to play an electronic game without the need to purchase additional 

hardware, and for a fraction of the cost, exists. The electronic gaming market has exploded and, 

today, users can simply use their mobile phones to access the application hub and find thousands 

of free games to play. Electronic games are now accessible 24/7, right at a player’s fingertips.   

Within the last several years, a majority of the most popular video games have been 

designed for mobile devices. Games such as Angry Birds, Clash of Clans, and Pokémon Go have 

been downloaded by millions of users from all over the world. With their non-existent starting 

cost, users can quickly and efficiently get into a game and begin enjoying it. This easy access has 

helped make these games very popular. The most popular games have even become cultural 

phenomenon’s. 

 The accessibility of mobile games has brought new users from parts of the world that 

console games simply were not designed to reach [11]. Real world features, such as locations, 

are largely unattainable or irrelevant in console video games. Location-based exergames games 

such as Ingress, which also uses augmented reality, was released in 2012 by Niantic Labs, a 

company that was spun-off from Google. Games such as Ingress allow users to be engaged in a 

game on their phone, which they already have on their person a majority of the time, while also 

allowing the user to interact with the real world as part of the game. 
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2.2 History of Exergames in the Video Game Industry 

The origin of exergames can be traced back to the release of the Joyboard for the Atari 

2600 in 1980[13]. It is interesting to note that during this same year, Atari planned the release of 

the Atari Puffer, which would have been one of the first examples of an exergame in the video 

game industry. Sadly though, the system wasn’t released due to financial reasons [13]. 

The Atari Puffer featured a more simplistic design for exergame systems than what we 

see now. The entirety of the system was designed to be essentially a stationary bicycle. The 

bike’s handles had buttons on them to control navigation and the wheel would control how fast 

the user would go in the game [14]. Developers came to realize the best types of games for this 

system were those where pedaling and braking were the primary focus of the game. 

 

The Atari Puffer 
 https://kotaku.com/5009577/atari-puffer-the-wii-fit-of-1982 

Games such as Jungle River Cruise and Tumbleweeds demonstrate how this technology 

was featured [14]. Jungle River Cruise turned out to be a largely successful test, as the 

controlling actions on the bicycle were very intuitive. Users would pedal and brake to avoid 

crashing into obstacles while going down a river. In contrast, Tumbleweeds had a more difficult 
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time. The games features were similar to Asteroids, and users found the controls non-intuitive, 

leading to numerous playing issues [14]. Developers learned that simple intuitive game design 

was necessary for mass appeal.   

Several years after the bankruptcy of Atari, Nintendo came out with the next innovation 

in exergames, the Power Pad. In 1988, this mattress-like invention contained twelve sensors [13]. 

These sensors were activated when users stepped on them. Soon after its launch, the game Dance 

Aerobics released, utilizing the same type of sensor, becoming one of the first exergames to 

make it to a commercial stage [13]. The Power Pad set off the dancing game revolution of the 

90’s with games such as Dance Dance Revolution being introduced [13]. This series of games 

remained highly popular throughout the early 2000’s and continues to be played today. The 

Dance Dance Revolution product group has been hugely successful and has had staying power, 

much more than most other exergames up until now.  There have been many arcade releases, as 

well as home video game console releases, over the years, with a new release as recent as 2016.  
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The Nintendo Power Pad 

https://www.amazon.com/Nintendo-NES-Power-Pad-Entertainment-

System/dp/B002W4JN9Q/ref=sr_1_1?ie=UTF8&qid=1521765402&sr=8-1&keywords=nintendo+power+pad 

From the early 2000’s to now, the popularity of exergames has grown tremendously. In 

2006, Nintendo launched the Wii console, which experienced huge success. The Wii launched in 

November 2006 and by the following August it had sold over 250,000 units, eclipsing game 

systems like Sony’s PlayStation 3’s 80,000-unit sales that same month [15].  

In the years to follow, more and more consoles have been released, such as the Wii U, 

PlayStation Move, and Xbox Kinect.  As time has gone on, this type of platform has been 

extremely popular, promoting exercise and prompting users to get up and off of their couches 

along the way. While none of these systems became the sensation that the original Wii was, they 
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have sold millions of units and made their companies a lot of money by continuously improving 

their features and, thus, the user experience. 

The most recent frontiers of these games include mobile devices. In 2016, Niantic 

launched Pokémon GO. This exergame combined geocaching and augmented reality and turned 

into an overnight sensation. Pokémon GO seemed to become a seemingly overnight sensation 

and created a media frenzy.  The popularity of this game was enough to crush the networks it 

was running on. While the system was designed to support an anticipated four and a half million 

users, the game was estimated to have peaked at over 45 million daily users [16].  

2.3 Android Development 

Android is the operating system market leader in mobile devices. In the third quarter of 

2016, Android reached a milestone by capturing a whopping 88% of the worldwide market, 

according to Strategy Analytics. During the same time frame, Apple’s iOS operating system fell 

from a 13.6% market share to 12.1% compared to the prior year. What is behind Android’s 

popularity and will it continue? In figure 2.3.1 it can be seen how Android's market share has 

been on a slight rise since 2013. While apple has started to show losses in market share, Android 

has continued to rise, never decreasing since 2014. 

https://www.strategyanalytics.com/strategy-analytics/news/strategy-analytics-press-releases/strategy-analytics-press-release/2016/11/02/strategy-analytics-android-captures-record-88-percent-share-of-global-smartphone-shipments-in-q3-2016
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Figure 2.3.1: Smartphone Market Share [17] 

 

 

 

Figure 2.3.2: Market Share Growth Rate [17] 
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The main reason Android has been so successful is that it partners with many companies that are 

continuously releasing new phones at a variety of relatively high and low-price points. This 

explains why Android practically owns the market in developing countries, such as India, Africa 

and the Middle East, where many consumers cannot afford the latest iPhone. While Android 

owns 97% of the market share in India today, just seven years ago it had less than five percent of 

the global market. Android’s success is coming at the expense of its competitors, both new and 

old, such as the Windows phone and the Blackberry. Consumers who are “moving from 

declining platforms are mostly moving toward Android,” says Neil Mawston, executive director 

of Wireless Device Strategies (WDS) at Strategy Analytics [17].   

Android faces major challenges as it continues to grow. The biggest challenge is the issue 

of fragmentation. Android developers have to create software that is compatible with many 

different devices from dozens of manufacturers. This presents a multitude of complications that 

Apple does not have to work through.  Another challenge is that Android is open source. This 

means that manufacturers can revise and adjust code as they see fit. This leads to the 

fragmentation problem mentioned above, as well as a problem with updates, since Google can't 

push Android to devices because of modifications that might have been made.  

What does the future hold for Android? No one is sure, but enhancements will surely be 

developed.  Late in 2016, rumors started to circulate that Google might be working on a future 

Android operating system that would solve the fragmentation issue and be able to operate 

effortlessly across all devices. It would also be able to get regular updates, as the iPhone does. 

However, one of the first projects to address this issue, the Andromeda project, was scrapped in 

the summer of 2017.  Currently, a separate project, Fuchsia, is being talked about. Fuchsia 

supposedly won’t be a hybrid operating system to bring existing mobile and desktop efforts 
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together, but a completely brand-new platform that would function across devices from phones 

to tablets and laptops. Even though Fuchsia is not certain, one can be certain that new 

developments for the Android operating system will be coming [18]. 

2.4 Phone Sensors 

Today’s mobile phones are equipped with sensors to automate many functions to provide 

a satisfying user experience. Sensors can identify and track just about anything that is physical in 

nature.  They are built into the phone and work in the background, without the user being aware 

of them. Examples of sensors present in most mobile phones are:  

● Accelerometer - detects the movement of the phone and its orientation, which enables 

features such as changing music by shaking the phone 

● Ambient light sensor - extends battery life of the phone by adjusting the screen’s 

brightness based on the level of available light 

● Barometer - measures air pressure and provides altitude data that helps the phone’s GPS 

chip identify a location faster  

● Digital compass - locates the North direction, to enable mapping and navigation 

applications to function 

● Global Positioning System - connects with multiple satellites and calculates the phone’s 

location based on the angles of intersection 

● Gyroscope - works along with the accelerometer to detect rotation of the phone, which is 

needed for features such as tilting the phone to play certain games 

● Image sensor - takes photos using technology that produces quality images with smaller 

pixels 



 

 

20 

● Magnetometer - measures magnetic fields and works with the digital compass to identify 

North and which way the map should be oriented on the phone  

● Proximity sensor - locks the screen so that accidental touch commands are disabled when 

the phone comes close to the ears during a call 

Sensors have become a more and more relevant way of having a phone interact with the 

world around us. In the past, phones were limited in the interactions they could have with the 

world, being unsure of the conditions their users were facing. As sensor technology continues to 

develop, more and more exciting things will be able to be accomplished with our mobile devices.  

2.3.1 Android Sensors 

Android provides a plethora of phone sensors that are available to developers. Sensors are used 

to locate and track just about anything that is physical in nature.  Using these phone sensors, 

developers are able to process what is happening in the world around the end user, and try to 

more accurately create a picture of what has, is, or will happen. Android sensors available on the 

Google Pixel 2 include: [19] 

● Active Edge™ 

● Proximity / Ambient light sensor 

● Accelerometer / Gyrometer 

● Magnetometer 

● Pixel Imprint: Back-mounted fingerprint sensor for fast unlocking 

● Barometer 

● Hall effect sensor 

● Android Sensor Hub  

● Advanced x-axis haptics for sharper/defined response 
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 Developers must deal with the challenges presented by Android’s sensors, since different 

phone models present different sensors. Phones such as the Google Pixel 2 feature Android’s 

sensor hub, a secondary processing unit. This processor performs low level operations, allowing 

developers to get data much more easily. Things such as step count or which activity (running, 

jogging, or walking) the user is doing, are computed on the chip from other sensors. However, in 

other older devices, some of the features found in the Android sensor hub are not present and 

must be calculated from other sensor data. 

This project deals with this issue, because the application includes a user’s step count. 

Phones such as the Samsung Galaxy S5 and the Nexus 5 both have this sensor available, but 

users on older phones do not have these sensors available. 

 Although step count is accepted as a sensor and is used as such, it is not a raw sensor, 

such as the accelerometer and barometer. An accelerometer in a mobile device tracks and 

measures movement. In contrast, this sensor relies on the phone having the Android sensor hub 

present. On the Android sensor hub, the step count is computed from this data, however, without 

it, the data must be calculated externally through machine learning using data from another 

source, such as the accelerometer. 

 In addition to the difference in sensors available on phones, the way developers use 

Android sensors have changed drastically over time. During the early days of Android sensor 

programming, calls were made specifically to the driver for the necessary sensor. Now, users 

make a call to a sensor Manager, where users interact with sensors in one standard way, and just 

state which sensors they want to utilize. 

Because of these issues, there are currently multiple ways to get sensor data through your 

phone and third-party Application Programming Interfaces (API’s). Sensor features such as step 
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count have been integrated into Android devices running with sensor hub hardware, as well as 

third party API’s such as Fitbit, Jawbone’s UP, and Misfit. Utilizing these, developers can get a 

better understanding of the characteristics of the environment their users are exposed to, as well 

as the users themselves. 

2.3.2 Google Fit 

 Google Fit is an app which allows users to monitor their physical wellbeing. Alongside the app, 

Google introduced an API of the same name which allows developers to monitor the features the user 

grants permission to. Things such as how long you’ve been active in a day, how much you’ve walked, 

and weight tracking are all available through the API and app. 

Google Fit primarily operates in two ways, via REST and Android API calls.  REST 

stands for “Representational State Transfer.” REST is an architecture for designing networked 

applications. It utilizes a client-server, cacheable communications protocol, which is usually 

HTTP. 

The point of Google Fit is to attempt to bridge the hardware limitations of the various 

Android phones. Since some devices do not contain the hardware necessary for certain sensors 

such as step count, applications had difficulty dealing with a wide variety of devices. An 

application made with the pure Android sensor would work on one phone, and then another 

version that utilized machine learning would be required on another phone. 

2.3.3 Shimmer 

 Open mHealth describes Shimmer in this way: “Shimmer is an application that makes it 

easy to pull health data from popular third-party APIs like Runkeeper and Fitbit. It converts that 
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data into an Open mHealth compliant format, letting your application work with clean and 

clinically meaningful data.” [20] 

 Shimmer currently supports the following APIs: Fitbit, iHealth, Jawbone UP, Misfit, 

Moves, Runkeeper and Withings and has announced plans to work with FatSecret, Ginsberg, 

iHealth and Strava in the future. It is made up of three different components: shims, a resource 

server and a console. Shims are libraries that interface with one of the third-party API’s for 

authentication and mapping purposes, ultimately generating data points. The resource server 

allows enables the API to retrieve the data points. The server handles API requests by assigning 

them to the correct shim. The console provides a simple web interface that helps users interact 

with the resource server. It is necessary for authentication and requests data using date pickers 

and drop downs. 

With Shimmer, developers can consolidate various API’s, from fitbit to Google Fit to 

iHealth, into a single REST API and have the server handle the authentication for each API. 

From here, the data is stored into a single normalized format, as opposed to multiple conflicting 

formats. This allows developers to more rapidly create software without having to worry about 

various API overheads.  

The upside to this system is that it greatly speeds up the development process and allows 

for a more diverse group of subjects to survey. When looking at standard sensor calls, mobile 

applications such as iHealth or Android’s built in sensor API require that the user be on a 

specific type of hardware. When using Shimmer, this becomes less important. 

 It is worth noting that although Shimmer is a useful tool for collecting data from a 

large variety of devices, the devices themselves may not support the same types of information. 

For example, Google Fit, which is present on Android by default, utilizes sensors available via 
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Open mHealth’s API, including geographic position, step count, speed, activity, and body 

weight. Meanwhile, Fitbit supports sleep duration, sleep episode, step count, and physical 

activity. While there is overlap in what is available to users, the system cannot pull everything 

from all API’s. To illustrate this further, a user with a Fitbit, but not Google Fit, can access sleep 

information, but won’t be able to get location information, while a user with Google Fit, but not 

a Fitbit won’t be able to get sleep information. 

In the end it was decided not to use shimmer. The reasoning for this, is that the target 

audience for the study was Android devices, and step count was the only health feature used. The 

point in time I believe it would become practical to start using Shimmer would be when you start 

targeting alternative phone platforms such as IOS, or wish to implement other alternatives for 

data collection such as Fitbits wearables. 

2.5 Drobox 

Dropbox, which launched in 2007, is a platform that stores files and automatically keeps 

files synced and backed up online. Like Google Drive and One Drive, it is a standard storage 

system with an easy-to-use API.  It creates a folder on the user’s computer and then synchronizes 

the contents to its servers and other devices. Dropbox provides several services: storage in the 

cloud, automatic file synchronization across all devices, and a personal cloud The Drobox app is 

available for Windows, Apple OS and Linux operating systems. It offers a mobile app for 

Windows mobile devices, iOS and Android devices.  Dropbox offers free service with 2 

gigabytes of storage or a premium version with 1 terabyte of storage and additional features for 

$9.99 monthly. Currently it has over 500 million customers. 
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For this project, Dropbox will be utilized as the means of remote file storage. The app 

will create .csv files containing all of the sensor data collected and send it to Dropbox every day.  

The alternative to cloud storage such as Dropbox would be dedicated storage. The 

disadvantage of this, is that it is much harder to scale. When dealing with small amounts of data 

space such as happened in this study, it is unneeded to have a large Database to store the data. 

Similarly, the system is much simpler to set up for simple file storage.  

Even as scale continues to increase, it is good to have the flexibility and reliability of a 

third party such as Dropbox to keep track of files. If you get to the point at which you end up 

using a server to manage data, you can still use Dropbox to handle files created by a phone, and 

use the server for data processing as opposed to storage. 

2.6 Machine Learning 

 As humans, much of how we process information and learn comes from our prior 

knowledge and experiences. As we move forward, we look at the past and create new ideas and 

expectations about what happens around us. This is also what machine learning seeks to 

accomplish. Machine learning is an application of artificial intelligence (AI) that provides 

systems the ability to automatically learn and improve from experience without being explicitly 

programmed [21]. Through machine learning, computer programs access data and use it to learn 

for themselves. Statistics and Statistical Learning, Pattern Recognition, Signal and Image 

Processing and Analysis, Computer Science, Data Mining, Machine Vision, Bioinformatics, 

Industrial Automation, and Computer-Aided Medical Diagnosis are all well-established fields 

which have used similar techniques for many years [22]. 
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Today’s machine learning has evolved to where it can automatically apply sophisticated 

mathematical calculations to big data. In recent years, the general population has come to enjoy 

its capabilities in applications like the online recommendations provided by Amazon and Netflix, 

the self-driving car and fraud detection programs. These are all everyday applications of machine 

learning.  

The role of machine learning in exergames is to use the data collected by the movements 

of the user via the smartphone’s sensors to determine the enjoyment of the game. By utilizing 

these techniques, one can attempt to classify a user's enjoyment of an activity. 

Much of what this project seeks to accomplish falls under the category of game analytics. 

A big part of the video game production process is looking into popular trends in video games 

and then analyzing their player retention rate and how players interact with them. Much of what 

this project seeks to accomplish is closely related to published papers about how to retain users 

in other genres of video games. This project’s methodology is relatively similar; however, some 

of the data, as well as the data collection methods, will be different. 

One example of a work that had a similar objective was “Predicting Disengagement in 

Free-to-Play Games with Highly Biased Data.” [23] This paper sought to do something similar to 

us. Just as exergames have a high turnover rate in participation, so to do free-to-play games. 

Here, the paper’s authors looked at variables such as the frequency of playing games, how often 

players participated with others, and how often players spent money on the app, among other 

things. [23].  
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 They used the data they collected to run multiple models, such as decision trees, vector 

machines, and logistic regression. [23] They chose to name the approach they utilized “trend 

over varying dates.” This was a methodology they took to create classes of data as accurately as 

possible, improving over time as the study progresses. Part of what they found was that to 

maintain a balanced distribution of classes, rather than using explicit values for cut offs, it was 

more accurate to use a function that varied the cutoffs as time went on. 

 This paper served as inspiration for this project’s design and methodology. Although this 

project will look at different data, the overarching concept behind why the data is being collected 

and how it will be analyzed is like what is described in the paper, but with different data points. 

Features that are relevant to look at, such as if a player expands the game by inviting more 

people and others noted above, are examples of data points that this study will also examine.  
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3 Methodology 

3.1 Study Design Summary 

To begin the study, participants were required to download an application called 

ExergameMonitor developed for this study and available via the Google Play Store. Using the 

email provided, a link was sent out to users with the option to opt in to a beta for the application 

on the Google Play Store for Android phones. From here, users downloaded the application on 

their phone through the Play Store. 

For this study, users played the game for one week. At the beginning of the week, users 

were asked to fill out a pre-study questionnaire. This contained information such as the 

participant's email, their experience level with exercise games, whether they enjoyed them or not, 

how much they’ve played them, and whether they’ve played a game utilizing Geocaching before. 

After filling out this form, the user played the exergame for one week. During this time, 

the user had the ExergameMonitor running. While doing so, the application collected GPS 

locations the player frequented and locations they visited while playing the exergame. It also 

recorded the temperature every hour, as well as the step count, while they played the exergame.  

In addition, users were asked to fill out the Exergame Enjoyment Qualifier once a day. In 

this daily survey, players were asked to rate their experience playing the exergame on that day. 

This survey featured a Likert- based scale, where values are weighted with a score of 1 to 5, with 

one being “strongly disagree” and 5 being “strongly agree.” A week after the initial survey was 

completed, the application communicated that the study was complete. After this point, machine 

learning was employed using classifiers to evaluate the enjoyment level of a participant. 
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3.2 Pokémon GO 

 Pokémon Go was the game that was determined to be best for this study. The reason for 

choosing this as opposed to Geocaching, is that it had a much more mainstream appeal due to its 

peak in popularity. Because of this, it was easier to find participants who would sign up to play a 

game they’d heard of before. In addition, more people have played the game before, and there 

are more resources for those who need help with the game. This meant I could focus more so on 

the data collection and analysis, and less time working out a participant’s logistics with playing 

the game. 

 In Pokémon Go, the user travels around the real world with their phone. Certain locations 

in the real world correspond to even triggers in the game. As you approach a location various 

events occur from going to catch a Pokémon by swiping to throw a poke ball at it, to getting to a 

poke stop where you can stock up on resources such as poke balls and eggs. While playing, the 

player builds up better and better resources through the acquisition of things such as better poke 

balls, and the user seeks to raise the level and as collect as many Pokémon as they can. 

3.3 Data Collection 

3.3.1 Data to Collect 

 Three pieces of data were collected on the user’s phone of the course of the study. From 

this data, multiple features can be derived. The first piece of data was gaps data. This was used to 

calculate where the user was for weather information, as well as movement statistics in the game. 

The second piece of data was weather data collected from OpenWeatherMap, this returns 

numerous features such as wind, temperature, and rainfall. These were important pieces of 
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information, because when talking about outdoor activities, weather can largely influence what 

happens. Precipitation can be reason for event cancellations and humidity and temperature are 

things which can highly effect how one exercises. The third piece of data was step count, 

provided by GoogleFit, and the final data stream was the times Pokémon Go was opened. 

 

For this study, several features were identified that were believed to be relevant in 

determining if the player would enjoy the game and the level of his or her engagement with the 

game. These features largely concern the conditions participants are willing to endure while 

playing a game, as well as how frequently they are willing to undergo these various conditions. 

These features include: 

1. Step count while playing the exergame 

2. Step count the day of the exergame 

3. Average temperature the day of the exergame 

4. Average humidity level on the day of the exergame 

5. Average precipitation on the day of the exergame 

6. Average wind conditions on the day of the exergame 

7. Earliest time the application was opened 

8. Latest time the application was opened 

9. Average lag time between exergame sessions 

10. Number of times the application was started 

11. Distance traveled while playing the exergame 

12. Furthest distance from home when playing the exergame 

13. Average length of session 
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14. Prior experience playing the exergame (response on a Likert scale) 

15. Total time the exergame was played on that day 

  

 Although some of these features were raw system data, others are items that required 

extrapolation from the device. For example, step count is created by making an API call. For 

distance from home, the decision had to be made “what exactly is home” and then proceed from 

there. Distance from home was defined by the user. During the initial survey, the user was asked 

to provide an address to be used as the home location. 

 For data collection, the time a session started was defined as the time the application was 

first opened. The end time was a little less precise. When playing a game or using an application 

in general, users often minimize applications or put their phone to sleep while walking around. 

Because of this, data in this study continued to be collected until the user went into the 

application manager and exited out of the process. This study identified when the application 

was or wasn’t in the foreground, but continued to gather data either way until the application was 

closed.  

3.3.2 Pre-Questionnaire 

The pre-questionnaire was used to collect information’s on the demographics that would 

participate in the study. This asked which address they wanted to use so that I could establish 

their home location for GPS, as well as demographics questions. The questionnaire can be seen 

in figure 3.3.2.1. 
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What is your Gender? 

What is your Age? 

What address would you like to be your home? 

How much exercise would you say you get in a typical week? 

Have you ever played a video game before? 

Have you ever played a game on your phone before? 

Do you consider yourself as having played an exercise game before? 

Have you played PokemonGO before? 

If you have, how long did you play? 

 Figure 3.3.2.1: Pre-Questionnaire 

3.3.3 Exergame Enjoyment Questionnaire 

To have data to compare experiences across all players, participants in the study 

completed the Exergame Enjoyment Qualifier (EEQ) at the end of each day.  This study asked 

the user about their experience with the exergame throughout the day. The study was developed 

during the Run For Fun Measuring Exergame Enjoyment IQP completed at WPI. This 

questionnaire is based on several Likert scales, such as the Immersive Experience, Game 

Engagement, and Physical Activity Enjoyment questionnaires [24]. Questions include things 

such as how excited you were about the exercise, and did the exercise make you feel good. 

On this Likert type scale, each response is given a score of 1 to 5. On a question where a 

high agreeance would be a bad thing, a value of 1 would go to highly agree, while a score of 5 
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would go to disagree. On the opposite side, if something is beneficial and they highly agree, it 

would be scored as a 5, versus disgrace a 1. To figure out a response total EEQ, you add the sum 

of the values of the responses.  
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Question Response Values 

I felt excited about the physical activities in 
the game. 

1-2-3-4-5 

The exercise in this game made me feel 
good. 

1-2-3-4-5 

I felt like I lost track of time while playing 1-2-3-4-5 

I felt that it was difficult to understand how the 
game works. 

5-4-3-2-1 

I was focused on the game. 1-2-3-4-5 

I felt that the game would have been more 
enjoyable without physical activity. 

5-4-3-2-1 

I felt that it was easy to familiarize myself with 
the game controls. 

1-2-3-4-5 

I felt emotionally attached to the game. 1-2-3-4-5 

I consider playing the game “exercise”. 1-2-3-4-5 

I felt that the physical activity was too intense 
for me. 

5-4-3-2-1 

I did not feel a desire to make progress in the 
game. 

5-4-3-2-1 

I felt a strong sense of being in the world of 
the game to the point that I was unaware of                 
my surroundings 

1-2-3-4-5 

I would rather not be exercising, even though 
the exercise was accompanied by game 
elements. 

5-4-3-2-1 

I felt that playing the game was beneficial for 
my physical well-being. 

1-2-3-4-5 

I felt that this game provided an enjoyable 
challenge. 

1-2-3-4-5 

I felt a sense of accomplishment from playing 
the game. 

1-2-3-4-5 

I felt that the game reacted quickly to my 
actions. 

1-2-3-4-5 
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.I did not feel like I wanted to keep playing. 5-4-3-2-1 

I would prefer that this physical activity was 
not accompanied by game elements. 

5-4-3-2-1 

I felt in control of the game. 1-2-3-4-5 

Figure 3.3.3.1: Exergame Enjoyment Questionnaire 

3.3.4 Data Collection Methodology 

 To collect the data, an application that monitored all this information was created. The 

application had two components: the user interface and a background service. 

 The user interface is where all the information the user needs to participate in, such as the 

surveys and the help page was stored. Here, there are several pages. When the user first 

downloaded the application, they were presented with a survey for basic information. This 

included information such as email address and questions involving their experience with 

exergames. 

 After the initial questionnaire, the application’s user interface was broken up into several 

pages. The first was where the EEQ was located. Here, users could fill out the questionnaire. The 

second tab provided a help page, which contained information about what they were expected to 

do throughout the study, as well as further disclosure of the type of information being collected.   

The background services recorded all this information, storing it and transferred it to 

Dropbox. Each service ran for a different data type required, collecting its own data. Every day 

at midnight, a final service that extracted all the data from the phones database and uploaded it to 

Dropbox. 
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3.4 Pilot Studies 

3.4.1 Design Pilots 

 In the initial stages of planning the study, the primary focus was to decide what types of 

surveying techniques users would be comfortable with (how often they would agree to complete 

the survey, etc.). This included users’ preferences on user interface design and how consistently 

they would answer surveys. If you ask the user to fill out a survey every time they open the app, 

its highly unlikely they will answer the survey every time, as well as sometimes the survey 

wouldn’t provide much.  

 The first pilot study was to see how users reacted to different forms of installation of 

applications. The two methods the study asked them to try were to install the application 

Androsensor via an APK file emailed to them and via the Google Play Store beta program. Users 

strongly preferred downloading the application via the Google Play Store. 

 Because of this, the study used Google’s dev console to distribute the application. With 

Google’s dev console, a beta list containing email addresses was created from a .csv. After 

uploading this, a link was sent out to the email distribution list so that players who clicked the 

link were taken to the application under a beta section on the Google Play Store. The users then 

went to the beta section of the Play Store and simply downloaded the application from there and 

were provided with an email containing contact information in case any issues arose. As more 

people were added to the survey, we simply added them to the beta list.  

 During the study design process, a group of ten college students was asked about their 

survey preferences. They were asked how often they would fill out the questionnaire and 

whether they knew how to fully exit out of an application. They all knew how to exit out of an 
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application fully. The consensus was that participants would reliably fill out the survey once a 

day. It was believed that asking for more than one survey per day to be completed would not 

produce accurate results, as participants would tire of the process and not spend time to think 

about their answers and answer questions accurately.     

3.4.2 Data Collection Pilots 

 The goal of the second round of pilots was to test how data collection worked. There 

were two initial studies of the data: a one-day test to see how the data was being formatted 

(which files were being written, where were they written to, what was there format, how large 

did they get) and a second weeklong test to see if the data was being integrated with Dropbox 

properly. 

 For the first round, a college student used the application for one day. During this time, 

the only data that was collected by the application was the step count data. The data was used to 

test whether the application properly formatted in CSV and wrote to the same file in a consistent 

readable manner. 

 The second pilot study took place during a break in the fall. At this point in time, the 

application did not have all the data types present, but did have the storage and upload 

mechanism complete. The goal of this pilot was to determine if there was any difference in the 

way the data collection process worked for one day versus many. 

3.5 Study Recruitment 

 For this study, the objective was to get 60 participants. Study recruitment came from two 

primary sources: friends, and online forums and communities. Using these different populations 

ensured a diverse, representative pool of people. 
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 Both populations introduced participants from different backgrounds into the study, with 

different motivations for why they would play the game.  Friends would be willing to go out of 

their way to help with the project. They most likely would play the game on their own time and 

possibly for a longer period of time than other participants and not be in a rush to finish it as 

quickly as possible. They might have limited knowledge of the game, but would earnestly give it 

a try. There was also diversity within the friend group. Some friends were less motivated to 

participate in the study, but agreed to because they were already playing the game as a company 

activity, and participating in the study was easy to do and simply expanded upon how they play 

the game. 

 Online forums were the more interesting group to ponder. Websites like Neoseeker and 

Gohub are filled with people who play the game regularly on their own time. Unlike the other 

two groups, these people are more diverse geographically and feature more experienced players. 

Other online forums used for recruitment were the WPI Pokémon GO group, as well as the 

Worcester Pokémon GO Discord server. Students seeking class credit on SONA were not 

selected for the study as their motivation might affect the study’s results.   

3.6 Analysis 

 The first type of analysis was done using Plot.ly [25]. Using this tool, data was uploaded 

into a spreadsheet (.csv) format and then analyzed. From here, analyses were generated, such as 

simple regression on data, mean, and maximums/minimums of data points. Using linear 

regression, data was analyzed to uncover trends. Because of the descriptive information, general 

traits contained in the data could be analyzed that would help to more accurately determine 

predictions of outcomes. 
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 Plot.ly also facilitated the development of graphs. Different graphs were generated using 

scatter plots, box plots and contour plots. These different options allowed the data to be 

accurately represented in a formal, cohesive and visual manner. 

 The second type of analysis was focused on shallow learning. This was primarily done 

via MATLAB. Through MATLAB’s classifier learner, various classifiers were applied to the 

data. These included, among others, Naive Bayes classifiers and Decision Trees [26].  

4 Implementation 

4.1 Exergame Monitor Application Implementation 

 Exergame Monitor is the name of the application developed to collect the data required 

for all the features, as well as to upload to Dropbox. The application itself was written in Java for 

the Android platform. The application was developed using Android SDK version 26(Oreo), and 

was targeted at version 26, but will work with a minimum version of 19(KitKat). 

 The largest functional area of the application is the services. The application services are 

broken up into the four pieces of data that needed to be gathered (weather, play statistics, step 

count and GPS) and then a final service uploaded the files. How the data was collected varied 

from service to service. For location, Android's built-in GPS manager was utilized, as it is nearly 

ubiquitous throughout all Android devices now. Although this doesn’t work indoors, it was used 

because the assumption that they would not travel too much distance while playing indoors.  

 Game play statistics were found via the activity manager. Through here, statistics were 

available on which processes were currently being run on the phone. Game play statistics were 

implemented to gather data by scanning the phone every five seconds. If the application was 
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within the activity manager’s list of processes, it was active on the phone. This then marked the 

time the user opened the application and wrote it to the game statistics csv. Once the application 

left the activity manager’s list, it was assumed the application had been closed and recorded the 

closure to csv.  

 Step count and the weather service worked differently from each other, but were both 

third party API calls and required a third-party authentication key. 

 In order to provide the step count, Google Fit was utilized. This is an API shipped inside 

Google Play services. Using Google Fit, calls were made within Android to Google’s packages 

and collected health statistics about the user, including step count. 

 The weather service was implemented with OpenWeatherMap’s REST API. With this, 

weather data is collected at a given time or recalled from its history for any given GPS location. 

This method was utilized, because it collected more weather data than Android sensors support. 

Data such as humidity, precipitation, and wind speeds are not available via Android sensors. 

Figure 4.1.1 shows the data from OpenWeatherMap used. 

 

Data Unit 

Temperature Kelvin 

Precipitation Qualitative 

Humidity Percent 

Wind MPH 

 

Figure 4.1.1: OpenWeatherMap Data Used 

As far as scalability with OpenWeatherMap is concerned, the company limits calls made 

per minute. The maximum number of free calls per minute is 60. Because of the scale of this 
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project, the application itself made these calls directly to OpenWeatherMap at the start and end 

of each session. If the scale of the project had been even larger, including thousands of people, it 

would have been necessary to create a web server to act as a middle man and cache these calls to 

eliminate extraneous calls. 

 Using the Android ambient temperature sensor was initially considered, but ultimately 

rejected, because it had fewer features. Via the Android ambient temperature sensor, a listener 

can be created to record the temperature whenever it changes. While it lacks many features, the 

upside to this system was that continuous updates are received as temperatures change and it 

does not rely on cellular data. 

 The activity was created in a TabView. The first view showed the pre-questionnaire, and 

disappeared after the participant responded. the second provided daily EEQ survey, and the third 

presented an information page. The page showing the pre-questionnaire EEQ were implemented 

using a WebView. The view simply directed the user to a Qualtrics page showing the study, 

however, any website with the questionnaire could have been used. Originally it was decided to 

have a configuration page, but it took up screen page and during pilot studies it was found people 

didn’t utilize it to change the time their phone uploaded. 

 To display the proper views, shared preferences was utilized. Shared preferences are 

accessible key-values stored in a File by android for each app. The preference was initially set to 

false, indicating first launch. When set to false, only the final tab displayed, but the others were 

set up as well. After being started, the flag set to true and, on subsequent launches, it was hidden.  



 

 

42 

 

 Choosing Google Fit Account                  EEQ View                                   Help View 

 The uploading of files was done via Dropbox. For this process, Dropbox API v2 was 

used. Other builds were available through Dropbox’s Github at 

https://github.com/dropbox/dropbox-sdk-java. It is worth noting that the actual Dropbox website 

features Dropbox API v1, which has been deprecated as of the timing of this report.  

Dropbox was also used to obtain participant ID numbers. If a subfolder within the 

ExergameMonitor remote folder did not exist, the participant was given the ID 1. After this, 

subsequent participants were given incremental names based on existing folders.  

Although Dropbox did not get its own service, it was created as an AsyncTask. 

AsyncTasks are an android class for starting threads that aren’t intended to run for extended 

periods of time. See A service ran and, at 11:59:59 P.M. or when the user told it to via the info 

https://github.com/dropbox/dropbox-sdk-java
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tab view, executed this task. The task then proceeded to upload all files in the directory to the 

Dropbox folder, while not having to wait for each individual file one by one. 

All file writing was handled by the individual services. The services had access to a csv 

write class that implemented opencsv. This is a csv library for Java that can be downloaded from 

Sourceforge. Using opencsv, rather than having to worry about how to format data and File IO, 

you simply tell it which file name you want and the datatype and values. 

The only service which did not do this was the weather service. OpenWeatherMap 

returned all data as a json string and these strings were simply saved as is with a timestamp. 

They were later processed and turned into csv formats by scripts on a computer. 

 

Figure 4.1.1: Service Interaction Diagram  
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4.2 Python Script to Extract Features 

 All the data for the process of shallow learning was written and uploaded to the remote 

Dropbox location via the implemented ExergameMonitor application. The script written in 

Python 2.7.1 for the second portion of the project transformed the data into usable features and 

formats. 

 The first portion of the script collected the data from Dropbox. This was done via the 

Dropbox API. This could either be installed to Python via pip with the command “pip install 

dropbox,” or could be built from source on Dropbox’s Python SDK page located at 

https://github.com/dropbox/dropbox-sdk-python. Another potential method that was not used, 

but would have also worked, was the Dropbox REST API. The script would have cloned all of 

the files in the remote ExergameMonitor folder to a directory of the same name nested in the 

directory of the script. If the script was run multiple times, it would have cleaned the folder of all 

content and rewritten it from scratch. 

 One process that could be examined further in the future would be to check whether or 

not the file had been updated within the remote folder since the last update. This is possible with 

Dropbox’s getmetadata functionality; however, this study did not examine this. If this were 

found to have worked properly, the process could simply check which files had been updated or 

created since the last local update, and only update these. 

 After the data was backed up on the local directory, the next step taken by the script was 

to decrypt it. As the files were encrypted in AES, PyCrypto, the Python Cryptography Toolkit 

was used. Although this package has been dropped and hasn’t been updated since 2014, it 

features multiple cryptography functions such as SHA256, AES, DES, and RSA. Using this 

https://github.com/dropbox/dropbox-sdk-python
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package and the key used in the encryption, the data was decrypted.  Installation and basic usage 

information can be found on PyCrypto’s Github page at https://github.com/dlitz/pycrypto. 

 Once the data was decrypted, feature extraction was the next step. At this point, feature 

extraction is simple algebra to extract any desired features using Python addition. Variables such 

as how much time the user plays each day were figured out by subtracting start times from end 

times and then summing all of these up throughout the day. This type of methodology holds true 

for all features. 

 Example pseudocode of the script is: 

  For each User: 
   For Each Feature: 
    DecryptFile(); 
    ExtractFeatureFromData(); 
    WriteFeatureToUserCSVFile(); 
  For each UserCSVFile(): 

AddEachRowToMasterCSVFile(); 
 

In order to find distances covered, the Haversine formula is used. The haversine formula 

is used to calculate the distance between two points on a sphere.  

 

    

     Where φ is latitude, λ is longitude, r is radius, and d is distance between the points. 

This tries to accommodate the spherical nature of the earth, since the distance from 

latitude A to latitude B is not necessarily equal to the distance from latitude C to latitude D, even 

if A-B equals C-D.  Here is an example of the implementation of the Haversine function:   

def haversine(lon1, lat1, lon2, lat2): 

    # convert decimal degrees to radians  

https://github.com/dlitz/pycrypto
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    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) 

    # haversine formula  

    dlon = lon2 - lon1  

    dlat = lat2 - lat1  

    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 

    c = 2 * asin(sqrt(a))  

    # Radius of earth in kilometers is 6371 

    km = 6371* c 

    return km 

 

The purpose of using the haversine function, as opposed to the standard Euclidean 

distance formula, is to consider the difference in distance between points on the globe. Distance 

between longitudes and latitudes are not uniform throughout the globe and this methodology 

accommodates that. 

The final step of the script was the compilation of all the features into several sets of csv 

files. The first set was a list of features per day. Each row corresponded to a day, and each 

column to a feature. Each file was named participant#_featuresummary.csv. Each row from 

every participant’s file was then added to a master_featuresummary.csv file. This contained all 

the rows from all of the individual participant files, including an extra column containing the 

participant’s ID number. Like the data files, these feature files were deleted and recreated on 

recurrent runs of the script. 
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4.3 Feature Derivations 

Note: For all the following equations, x is a data point, i is its index in the dataset, Φ is latitude, 

and λ is longitude. 

 

• Daily Step Count 

 

The sum of changes in step count given that the data is from today. 

 

 

• Playing Step Count 

 
The sum of changes in step count given that the data is from today and the user  

is playing during xi. 

 

 

• Distance Traveled 

 
The sum of the haversine between all points, and their next point given the user is playing 

Pokémon GO at the time. 

 

 

• Maximum Distance from Home 

 
The maximum haversine between data point x and home, given the user is playing while data 

point xi occurs. 

 

 

• Temperature 

 
The average of temperature data points xi. 
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• Humidity 

 
The average of humidity data points x. 

 

 

• Wind 

 
The average of wind data points x. 

 

 

• Precipitation 

 
The last precipitation points xi where the user is playing. 

 

• Open Count 

 
 

The count of data points where status = open. 

 

 

• Earliest Open 

 
The min of data points where status = open. 

 

 

• Latest Close 

 
The max of data points where status = close.  
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• Average Lag Time 

 
The sum of start-end times divided by the count of status changes given that the status changed 

to open. 

 

4.4 Software/API Versions 

 There were several changes made to API’s throughout the app development. Early on, 

Dropbox v1 was used, but as the project progressed, Dropbox deprecated v1, and the app was 

migrated to v2. Table 4.3.1 has the API and Software versions utilized. 

 

MATLAB 2017a https://www.mathworks.com/

company/newsroom/mathwor

ks-announces-release-2017a-

of-the-matlab-and-simulink-

pro.html 

Plot.ly D.O.A: Dec-Feb 2018 Plot.ly 

Dropbox API v2 https://www.dropbox.com/de

velopers/documentation/http/

documentation 

OpenWeatherMap Free, DOA: November-Feb 

2018 

https://openweathermap.org/a

pi 

Cohen’s Kappa 1.3 https://www.mathworks.com/

matlabcentral/fileexchange/15

365-cohen-s-kappa 

 

Figure 4.4.1: Final API Versions 
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4.5 Patch Cycle 

Several Patches occurred throughout the apps development cycle. Early on, bugs were 

detected. Things such as excessive file io were reduced, and SQLite was implemented for data 

storage until upload time to reduce the need for multiple CSV files containing similar data on the 

user’s phone. Even things such as how the users played the game forced us to change certain 

definitions in the game. Figure 4.4.1 is a table of the various changes made throughout the 

development process.  

.1 Beta Versions (Just testing data collection) 

1.0 All Data Collection implemented 

1.1 Reduced location polling frequency to reduce 

write frequency 

1.2 Implemented Local Data Storage in SQLite, 

to reduce excess csv generation.  

1.3 Add the python script functionality at upload 

time for app to reduce need for large python 

script 

1.4 (Final) Redefined “Playing the game” as actively in 

the app 

 

Figure: 4.5.1: Patch Cycle 



 

 

51 

5 Results 

5.1 Demographics 

 

Figure 5.1.1: Gender Distribution of Participants 

 

In figure 5.1.1, we can see the distribution of gender in the study. Of the 39 subjects who 

participated in this study, 9 were female and the remaining 30 were male.  
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Figure 5.1.2: Prior Experience Distribution of Participants 

 

 

Figure 5.1.12 shows the distribution of Exergame Experience. For this study, a majority 

(59%) of the participants had either never played the game before or had only played it once or 

twice. Included in this group, 13, or 33%, reported that they had never played the game and 10, 

or 26%, responded that they had played in the past, but only intermittently when they just tried it 

or played with a friend. 5, or 13% of participants responded that they had played the game for at 

least a week, while the smallest category was made up of 2 people (5%) who had played 
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regularly for longer than a month. The largest category for regular players was made up of 9 

players, representing 23% of the total group who reported playing for regularly for longer than 2 

months.   

Only broad conclusions can be drawn based on the demographic data. First, most 

participants were not regular players of the game. Second, of the 41% of players who reported 

they were regular players, the most (23%) reported being a regular player for more than 2 

months.   

5.2 EEQ Distribution 

 

 In theory, the possible range of EEQ scores is from 20 to 100. In the data we collected, 

the observed minimum was 45, with a maximum of 90. The observed mean demonstrated by our 

sample was around 71. 

 
 

Figure 5.2.1: EEQ Scores CDF Plot 
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Figure 5.2.2: EEQ vs. Prior Experience 

 

 

It’s interesting to look at the relationship between the prior experience of participants and 

how they answer the EEQ. The mean EEQ of those who responded they had played for at least a 

month was 77, the highest EEQ.  This makes sense, since a higher EEQ signifies enjoyment of 

the game and it makes sense that the more a player enjoys the game, the more likely he or she 

would play it regularly.  It is also interesting to compare the medians for each category of 

regularity of play.  In figure 5.2.1 we can see that as the experience of play increases, so too did 

the median EEQ. The only exception was in the jump to over 2 months played. 
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5.3 Gameplay Statistics 

 The first section of features looked at to see how users were playing Pokémon Go was 

step count. In our data, the mean daily step count was 5,559.5. The data showed two peaks: 

participants who were less active and players who were very active. The low activity users 

tended to hover below the 5,000-step mark, sometimes going over it. On the other hand, the high 

activity users achieved a little over 7,000 steps a day. Very infrequently the data showed players 

exceeding the 10,000 steps a day that are commonly recommended for a healthy lifestyle. 

 

 
Figure 5.3.1: Daily Total Step Count 

 

 

 

High Activity Peak Low Activity Peak 



 

 

56 

 

 Figure 5.3.2: Daily Total Step Count vs Playing Step Count 

 

It is interesting to note that the daily total steps is closely mapped to the steps you take 

while playing the game, showing a correlation of .6459. One initial impression I had was that 

there would be a cap on daily step count. I thought if you were more active during the game, this 

simply meant you would be less active at other times in the day.  This tended not to be the case 

though with both increasing together. As you increase the playing steps, it simply adds to the 

total steps without a clear cap. 

 Precipitation was one feature that didn’t present much in this study. This is largely 

because it didn’t rain. Only 12 out of the 274 feature sets had it have some form of precipitation, 

and this was largely just light rain. To get quantitative data for this I simply used the values 

returned by openweathermap as a metric. Light rain was given as the value of 1, rainfall 2, and 

heavy rain 3. 
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 One thing noted during the study was the difference between how people traveled while 

playing the game. When looking at all the distance traveled data we see a large cluster of low 

data, with a skew to the right of those whose distance traveled is drastically larger. When asking 

participants who had larger skews about this, they informed me that they utilized Pokémon Go 

Plus. Pokémon GO Plus is a wearable that allows the user to be notified when they’re close to a 

Pokémon and catch Pokémon without having to go into their phone. Using this, they could play 

the game while driving to work and other locations because they didn’t have to look at their 

phone. This resulted in a much different play style. Although people without this would drive 

some distance, it was a drive and then once they got their they started actively playing the game. 

This had a similar effect on time played, where the median was 99.5 minutes and the mean was 

220 minutes, simply because they didn’t exit the app while they did their daily routines. This 

resulted in the decision to re-define what “playing” Pokémon Go constitutes. Before the idea was 

that if the app was open, the user might exit out of it but still be playing games. After collecting 

data, it is updated to be if a player is in the Pokémon Go app, or the last thing their phone was on 

sleep was in the app. 
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Figure 5.3.3: Playing Step Count 

 

 

 

Feature Mean Median Standard Deviation 

EEQ 72.0476 72 10.3042 

Daily Total Steps 

 

5595.2124 5181 1881.3048 

Playing Steps 

 

1389.2527 1265 679.7110 

Distance Traveled 

 

0.2064 0.016 0.2978 

Distance Traveled 

From Home 

 

0.3242 0.31 0.1129 

Temperature 

 

46.2868 41 12.2171 

Precipitation 0.0732 0 0.3757 

Wind 7.7271 8.1 5.8683 

Humidity 55.4835 60 12.0213 
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Times App Opened 13.8095 14 3.0503 

Time Played 72.9871 73.14 12.2478 

Average Session 

Length 

19.6520 20 2.9895 

Earliest Open 10.2733 10.2982 0.9496 

Latest Close 19.2417 19.2556 1.1461 

Average Lag Time 178.4018 194.0182 27.8192 

 

Figure 5.3.4: Feature Statistics 

 Figure 5.3.4 allows us to see the distribution of all the statistics. This allows us to see the 

interesting results of some the results of our data. Using this, we can see how it’s hard to use a 

feature such as precipitation due to its mean being a value of 0. This means that at least 50% of 

the data points indicate no precipitation. This is further illustrated by figure 5.3.5. 

 
Figure 5.3.5: Precipitations CDF 
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5.4 Feature Selection 

 Ron Kohavi defines features interchangeably with attributes. He says an attribute is “A 

quantity describing an instance. An attribute has a domain defined by the attribute type, which 

denotes the values that can be taken by an attribute” [27]. As a hypothetical, if a model was to be 

trained to determine whether a day was going to have rain or not, you could use the time of year 

and what the humidity is as features. 

 

When conducting a study, some data collected can be found to be irrelevant. These 

features simply add noise to any models produced, resulting in the possibility of less accurate 

results being acquired. Because of this, it is necessary to prune out the features that are found to 

be statistically insignificant. 

During this study, a total of 15 features were collected. To determine which of these 

features are relevant, we utilized the P value collected from using the t-test. The cap on those 

values which are believed to be statistically significant is .05. Features with values lower than 

this are considered statistically significant, which means that they can predict the EEQ, while 

those with higher values than this are not and, thus, cannot be used to predict the EEQ. 

Feature P Value Correlation Coefficient 

Daily Total Steps <.00001 -.6153 

Playing Steps <.00001 .5512 

Distance Traveled <.00001 .5654 

Distance Traveled From 

Home 

<.00001 .4451 

Prior Experience <.00001 .7012 

Time Played <.00001 .2318 



 

 

61 

Times App Opened .02830 .6889. 

Average Session Length .04210 .2481 

Latest Close .17820 -.4210 

Average Lag Time .3162 -.2132 

Earliest Open .3817 .0041 

Precipitation .20173 -.1386 

Temperature .49377 .1937 

Wind .88421 -.0701 

Humidity .96650 .0083 

Table 5.3.1: Feature Correlation to Exergame Enjoyment Score 

 

Those features that are found to not be statistically significant are not included as classification 

features.  

 It is interesting to look at which features ended up being statistically significant. Features 

which end up directly correlating to how the game functions were found to be statistically 

significant. For example, if you look at something such as how much distance is traveled by the 

players, this can be mapped to how much a player would have to move to get to a gym or poke 

stop. Daily total steps are similar to steps while playing because in general the steps people take 

while playing map to daily total steps in addition. Normally playing steps added to total steps, 

they did not subtract from it. 

 To the contrast, some other features about how they played it didn’t really show any 

relationship. For example, some people chose to play it on and off throughout the day, others 

chose to just do one longer session after work or classes. This is mostly how it could be fit into 

their schedule as opposed to how much they enjoyed the activity. 
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5.5 Data Processing and Classifiers 

5.5.1 Data Processing 

 In a study such as this, we are attempting to predict how highly a user rates their 

enjoyment playing the game on any given day. These results are represented by the EEQ value, a 

number ranging between 20 and 100. In order to classify this data, you must break it up into bins 

that categorize these scores. 

 For example, one metric would be to use the median value as a bin. EEQ’s below the 

median score would represent a day that the player did not enjoy the game and higher EEQ’s 

would signify a greater level of enjoyment if the classifier was perfectly accurate. 

 When running analysis, bins of various sizes were chosen to be used as our classes or 

groupings. The initial two bins divided the data up along the mean and median of the EEQ 

scores. Scores below the median EEQ score of 72 would be put into bin ‘A’, and those above 

would be put into bin ‘B.’  

 Various bin sizes were tried in the utilization of classifiers. One way we chose to break 

the data up was along the mean and median. Here a score of below the mean would be put into 

bin ‘A’ and the scores above would be in bin ‘B’. Bins of set sizes were also used. For example, 

a bin of size 20 would have the EEQ scores below 20 in bin ‘A’, between 20 and 40 would be in 

bin ‘B’, etc. 

 Utilizing the features deemed statistically significant, we aim to create a model that can 

predict which bin the subject should go into as accurately as possible. If bin ‘D’ is set at the EEQ 
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score range of 60-80, and a person’s survey responses determine an EEQ of 67, they should be 

classified as being in bin ‘D’ by our model. Figure 5.5.5.1 has the final bins used. 

 

Bins Used 

Mean 0-71, 71-100 

Median 0-72, 72-100 

Bin 20 0-20, 20-40, 40-60, etc. 

Bin 10 0-10, 10-20, 30-40, etc. 

Bin 5 0-5, 5-10, 10-15, 15-20, etc. 

Figure 5.5.5.1: Bins Used 

5.5.2 Classifiers Utilized 

 For us to utilize MATLAB and run the classifier for results, there were two primary parts 

used: the classification learner and scripts used to evaluate things such as Cohen’s Kappa, a 

measure of how well our model agrees with the true answer. 

 The classification learner comes with numerous built-in classifiers that we can use in 

order to train a model. These include methods such as decision trees, discriminants, and support 

vector machines.  In addition, it also provides variations on different classification models, such 

as linear, quadratic, and cubic svm’s. Utilizing these classifiers, we can build a model which 

attempts to predict the correct class based on their features, as well as to see how the model 

performed in a confusion matrix. 

 The second part of data analysis came when determining Cohen’s kappa, as well as other 

measures of how well the classifier performed. These came from a MATLAB function created 

by Giuseppe Cardillo[28]. We could run this function on the confusion matrix generated by the 

https://www.mathworks.com/matlabcentral/profile/authors/870394-giuseppe-cardillo
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classifier and view how the classifier performed. The data produced by this function is in figure 

5.4.2.1. 

 

Returned Value 

Observed Agreement Proportion of classifications agreed upon 

Random Agreement How likely the two are to randomly agree. 

Agreement due to True Concordance How much you agree that’s not random. 

Residual not Random Agreement 1-Random agreement 

Cohen’s Kappa One of the various kappa statistics, showing 

the agreement of two classifications. 

Kappa Error The standard error of kappa 

Kappa C.I. The confidence interval for kappa 

Maximum Possible Kappa Upper bound of kappas confidence interval 

K observed as proportion of maximum 

possible 

What the observed is compared to the 

maximum on it’s confidence interval 

Variance Variance found for kappa 

Accept Null Hypothesis Whether or not the agreement is accidental 

 

Figure 5.4.2.1: Giuseppe Cardillo’s Matlab Kappa Function Output 

5.5.3 Confusion Matrices and Cohen’s Kappa 

 A confusion matrix is a table that shows the visualization of how well a classifier has 

performed on a set of data. It summarizes the performance of a classification algorithm.  Each 

column in the table corresponds to a value predicted by the model. Each row in the table 

corresponds to what the true value should be. Utilizing both of these, we can see how well the 

model correctly predicted the classes for the data set given.  
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Similarly, we can use this matrix to calculate Cohen’s kappa, a quantitative measure of 

how well two models compare to each other. Cohen’s kappa measures the agreement between 

variables. It can be used to compare how well different raters classify subjects into groups.  

Jacob Cohen was troubled using percent agreement, because it did not account for chance 

agreement. So, in 1960 he developed the Cohen’s kappa to consider the possibility that raters 

guess on some variables due to uncertainty.  

Figure 5.4.3.1 illustrates an example of a confusion matrix. Here, we can see that the 

model predicted 2 values as D, when they should be C, 2 as E that should be D, and 7 as D that 

should be E. In this, class C indicates a score of 40-60, class D a score of 60-80, and class E a 

score of 80-100. 

 



 

 

66 

 
Figure 5.4.3.1: Sample Confusion Matrix 

  

After finding the confusion matrix, it is possible to calculate Cohen’s kappa. The purpose 

of the kappa statistic is to see how closely two different observers of a set of data will classify 

that data. In the case of our classifiers, we are looking to see how closely our model agrees with 

the true value. A kappa of 1 would indicate that they agree perfectly, while a kappa of 0 would 

imply they don’t agree. A kappa of -1 would indicate the two were in complete disagreement. 
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5.5.4 Classification Results 

 

Median Bin 

Classification Model Correctly Classified Kappa Statistic 

Fine Tree 61.2% 0.2240 

Course Tree 63.4% 0.2605 

Linear Discriminant 50.9% 0.0120 

Linear SVM 52.0% 0.0316 

Quadratic SVM 53.5% 0.0656. 

Cubic SVM 57.5% 0.1483 

Fine Gaussian SVM 55.7% 0.0931 

Fine KNN 49.8% -0.0062 

Course KNN 52.0% 0.0234 

Boosted Trees 61.9% 0.2360 

Bagged Trees 62.3% 0.2449 

 

 

Mean Bin 

Classification Model Correctly Classified Kappa Statistic 

Fine Tree 63.7% 0.2646 

Course Tree 65.9% 0.3115 

Linear Discriminant 57.5% 0.1183 

Linear SVM 54.2% 0.0523 

Quadratic SVM 59.7% 0.1767 

Cubic SVM 60.8% 0.2119 

Fine Gaussian SVM 55.7% 0.0431 

Fine KNN 58.6%  0.1374 
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Course KNN 54.6% -0.0181 

Boosted Trees 64.8% 0.2802 

Bagged Trees 66.3% 0.3149 

 

 

Bin size 20 

Classification Model Correctly Classified Kappa Statistic 

Fine Tree 65.2% 0.1899 

Course Tree 71.8% 0.2235 

Linear Discriminant 72.5% .1494 

Linear SVM 72.9% 0 

Quadratic SVM 71.1% .1648 

Cubic SVM 58.6% .0321 

Fine Gaussian SVM 72.5% -.0066 

Fine KNN 57.5% -.0584 

Course KNN 72.9% 0 

Boosted Trees 73.6% .2789 

Bagged Trees 74.4% .2602 

 

 

Bin size 10 

Classification Model Correctly Classified Kappa Statistic 

Fine Tree 41.8% 0.1378 

Course Tree 48.0%  0.2136 

Linear Discriminant FAILED% FAILED 

Linear SVM 37.7% 0.0527 

Quadratic SVM 41.8% 0.1186 

Cubic SVM 35.9% 0.0538 
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Fine Gaussian SVM 35.9% 0.0686 

Fine KNN 34.4% 0.0417 

Course KNN 39.6% 0.0452 

Boosted Trees 42.9% 0.1473 

Bagged Trees 45.8% 0.1872 

 

 

Based on the results in all bin sizes, besides bin size 10, it becomes evident that Bagged 

Trees is a solid baseline for us to use as a model for classifying the users’ enjoyment of the 

game. It demonstrated the highest percent of accurate classifications of any of the classifiers for 

both the mean, median, and bin size of 20. It peaked in accuracy with a bin size of 20, giving it a 

correct classification rate of 74.4%. 

It is interesting to note that feature selection cleans up the models produced in our 

figures. When looking at the bin size of 20, for example, the prediction accuracy of Bagged 

Trees drops from 74.4% to 70.0%. 

Bin size was also an important decision when looking at relevant data. Smaller bin sizes 

were attempted however after the bin size of 10, the accuracy became miniscule with values in 

the .05 to .2 range.  

It is also important to note that although the kappa value indicates there is not random 

agreement between Bagged Trees and the true value, it is only of fair strength. The kappa 

statistic peaked at .31, falling into the .2 to .4 bracket. Those in this range can be interpreted as a 

fair agreeance. Ideally though, you would see a value of near .6 or higher, which would indicate 
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a substantial agreement between the two.

 

Figure 5.4.4.1: Bin size 20, Bagged Tree Confusion Matrix 

C = 40-60, D = 60-80, E = 80-100 
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6 Conclusion 

 The goal of the CyPRESS (Cyber Physical Recommender System) project is to identify 

the variables that affect the enjoyment of people playing exergames, with the goal of helping the 

retention of people playing exergames. People in the United States do not get enough physical 

activity and this is causing numerous health problems, such as heart disease and diabetes.  

Exergames are a way to increase physical activity using mobile technology.   

However, statistics tell us that there is a massive issue with the drop off in players of 

exergames such as Pokémon GO. Very often, players stop playing after a period. Core to fixing 

this issue is determining if a player is likely to stop playing the game by identifying the variables 

associated with that behavior. Based on this study’s results, it is possible to use features collected 

to attempt to predict where along the chain of retention users are. 

6.1 The Model 

 Based of the results of this study, bagged trees turned out to be the most efficient at 

classifying the data under multiple scenarios. With bins split around the mean, median, and with 

bin size of 20, it proved to be the most accurate classifier. Bagged trees peaked with a bin of size 

20, where it could accurately predict 74.5% of the bins correctly. Because of this, I believe 

bagged trees to be the most suitable model to use as a baseline. However, there are some 

considerations one must make. 

When classifying this data, it is important to consider what the bin size is for every 

classifier. If the bin size is too granular the model will overfit the data. This results in the model 
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accounting too much for noise in the present data set and becoming overly complicated based on 

current data. Similarly, we want to allow enough bins to break up the data into. This was clearly 

demonstrated by the results of testing various bin sizes. With the mean and median as the cutoff 

for bins, the results were less accurate than with a bin of size 20. On the other hand, as the bin 

size decreased from 20 to 10 to 5, the results of the classifiers became more and more inaccurate. 

This is useful in determining to what degree a user is enjoying a game. You may break up the 

EEQ into different levels of enjoyment, but it must be certain that there is no over creation of 

levels of enjoyment. 

6.2 Study Limitations 

There were two primary issues I had with this study. These were: 

● The lack of duration an individual participated in the study 

● The lack of demographics to target the study 

 

 One issue with this study is that it takes place over the course of a single week. Looking 

at data over this short time period does not necessarily allow us to predict player behavior over 

much longer periods of time. Because the purpose of the study is to impact player retention over 

the long term, this is certainly a limitation. In past studies, as well as in this study, it was found 

that most participants played less than a week. Understanding the retention problem requires 

studying subjects over a longer period. Some subjects may decide to stop playing after a duration 

of a week and a half, and this study doesn’t account for that.  
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Similarly, some features which were initially expected to have a correlation, do not vary 

much within a single week period. For example, the feature of humidity typically does not 

change much over one week in the winter, but may affect results in the summer. 

Another change that would make this study more insightful would be to match up the 

participants of the study to the actual demographics of those who play Pokémon GO. Knowing 

traits of all Pokémon GO players, such as the level of physical activity they get, would be useful 

to pair up with and set more concise recruitment guidelines. It is important to recruit members 

who fit the target demographic for the game itself. As an extreme example if we recruit people 

completely outside of the games target demographics, such as those with agoraphobia who we 

wouldn’t expect to go outside to play the game, it’s hard to get data on the player base. They 

may rate it much lower than the average player would, and although this is good information to 

know, misses the general trends of users. 

6.3 Future Steps 

  

6.3.1 Longer Duration Study 

To make the study as accurate as possible, extending the time period to one year would 

be ideal. A longer period would better capture player’s behavior.  Currently the study is fast with 

a participant only participating for a week. Although this is a good tool for creating a 

methodology, it is a rather limited time to see how participants exhibit changes in behavior. By 

using a longer-term study, we could see data on events such as when a user quits, and if they do 

quit what’s the likelihood they start playing again, if they do start playing again how is it 

different, etc. 
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6.3.2 Collect more data to get a representation of what entails a lower EEQ 

It would also be interesting to get more data on people who do not enjoy the game. 

During this study, the lowest EEQ score given was a 45, while the theoretical lowest on the 

questionnaire is 20. It would be interesting to accommodate for the data in this dead zone of 20-

45, where there is currently no data. 

6.3.3 Look at the rate of change of a user’s EEQ   

Currently this study sought to see if we could implement something to classify the data 

into various bins. One area it lacks on is seeing how this data changes over time. What sorts of 

data to look at to see how one user moves from one classification to the next would be invaluable 

in future studies. 

6.3.4 Pokémon GO Integration 

 Something that would be interesting to implement are data features within the app to 

track Pokémon GO accomplishments. In addition to the real-world effects (virtual reality) of a 

Pokémon GO type game, part of what determines how much a player likes an exergame are the 

things that occur in the game. For example, it would be interesting to note things such as how 

many Pokémon the players caught, if they played with others or alone, or how often they went to 

the gym. Similarly, in other games such as Just Dance, you could look at how often a player 

improves his or her high score on a song as a feature.  
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Appendix 

1 Exergame Enjoyment Questionnaire 

 

I felt excited about the physical activities in the game. 

The exercise in this game made me feel good. 

I felt like I lost track of time while playing 

I felt that it was difficult to understand how the game works. 

I was focused on the game. 

I felt that the game would have been more enjoyable without physical activity. 

I felt that it was easy to familiarize myself with the game controls. 

I felt emotionally attached to the game. 

I consider playing the game “exercise”. 

I felt that the physical activity was too intense for me. 

I did not feel a desire to make progress in the game. 

I felt a strong sense of being in the world of the game to the point that I was unaware of                 
my surroundings 

I would rather not be exercising, even though the exercise was accompanied by game 
elements. 

I felt that playing the game was beneficial for my physical well-being. 

I felt that this game provided an enjoyable challenge. 

I felt a sense of accomplishment from playing the game. 

I felt that the game reacted quickly to my actions. 

.I did not feel like I wanted to keep playing. 

I would prefer that this physical activity was not accompanied by game elements. 

I felt in control of the game. 
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2 Pre-Questionnaire 

 

What is your Gender? 

What is your Age? 

What address would you like to be your home? 

How much exercise would you say you get in a typical week? 

Have you ever played a video game before? 

Have you ever played a game on your phone before? 

Do you consider yourself as having played an exercise game before? 

Have you played PokemonGO before? 

If you have, how long did you play? 

 

 

 

3 Confusion Matrices 
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3.2 Bin Size 10 
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3.3 Bin Size 5 
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3.4 Median Bin 
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3.5 Mean Bin 
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4 Feature Distribution 

4.1 Descriptive Table 

 

Feature Mean Median Standard Deviation 

EEQ 72.0476190476 72 10.3042330915 

Daily Total Steps 

 

5595.2124542124 5181 1881.3048309487 

Playing Steps 

 

1389.2527472527 1265 679.7110826660 

Distance Traveled 

 

0.2064761904 0.016 0.2978601098 

Distance Traveled 

From Home 

 

0.3242747252 0.31 0.1129791448 

Temperature 

 

46.2868131868 41 12.2171189159 

Precipitation 0.0732600732 0 0.3757034843 

Wind 7.7271062271 8.1 5.8683666203 

Humidity 55.4835164835 60 12.0213753188 

Times App Opened 13.8095238095 14 3.0503078797 

Time Played 72.9871794871 73.14 12.2478997419 

Average Session 

Length 

19.6520146520 20 2.9895675701 

Earliest Open 10.2733808840 10.29820944 0.9496682880 

Latest Close 19.2417529170 19.25568834 1.1461834431 

Average Lag Time 178.401828302 194.018282931 27.819283904 
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4.2 Feature Histograms 
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4.3 Feature CDF 
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