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Abstract 

This project is about how we created a website for students in the Computer Science 

Department at Worcester Polytechnic Institute (WPI).  For this project, we gathered information 

about the process of finding a Major Qualifying Project.  We researched how to develop a 

system that would allow students to interact with each other to find and form project groups.  We 

then constructed a system using PHP, the CodeIgniter framework, a MySQL database, 

Javascript, HTML, and CSS.  We set up our project to work with the Central Authentication 

Service that WPI provides, in order to allow users to login to the website we created.  We 

conducted user tests and a heuristic evaluation in order to analyze and improve our project.  We 

made our project available to the members of the Computer Science department so that it could 

be used to coordinate groups for projects. 
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Terminology 

WPI: Worcester Polytechnic Institute, a four-year private university in Worcester, 

Massachusetts, USA 

MQP: Major Qualifying Project, a project done at WPI, usually completed in a student’s senior 

year. It is in the student’s major field, and must be completed prior to graduating. [WPI, 2014] 

CS: Computer Science 

HTML: Hypertext Markup Language, a markup language that is used to display content on the 

web. [WC3, 2014] 

Front-End: The forward facing part of a website. This is what most users will see. 

Back-End: Management pages of the website. This is what administrators of the website will 

see. 

Database: a collection of data organized in such a way that helps developers access the data that 

they store. [Wikipedia, 2014] 

SQL: Structured Query Language. A Language that is used to interface with the database. 

[Encyclopedia Brittanica, 2013] 

MVC: Model View Controller, a way to organize and design programs in an object-oriented 

fashion. [EllisLab Inc., 2014] 

Model: Handles the data structures of an MVC Application. The model usually only interacts 

with the Database. 

View: Handles the information being presented to the user. Considered to be the “front-end 

code” that generates a display that the user will see.  The views in this system are represented as 

webpages. 

Controller: Code that communicates between the view and the models to generate dynamic 

content. 

Dynamic: Values or content that changes based on differing scenarios.  

Static: Values or content that stays the same consistently throughout a system. 

Git: A form of distributed source control, released in 2005. 

SVN: A centralized form of source control, released in 2000. 

Repository: A place where a large amount of source code is stored.  

Source-Control: Records changes to files so that changes can be recalled at a later date. 

[Chacon, 2009] 

Distributed: In the context of source control, this is a method of source control that allows 

developers to code without being connected to a central point. 
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Centralized: In the context of a source control system, a method of source control where all 

developers work off of and add their code to a singular, connected codebase. 

Linux: Free and open source operating system, initially released in 1991. Based on Unix. 

[LINFO, 2006] 

Production Code: Finalized code. Code that is considered to be finished and able to be shipped. 

Developer: A person who designs, writes and tests software. 

Refactoring: changing already-functioning code to be more flexible and maintainable 

Branch: A movable pointer to a specific commit in Git [Chacon, 2009]. 

Pointer: In the computer, a point in memory, expressed as a value, that represents the location of 

another value.  

Commit: In a version control system, a commit is a specific set of changes made to a code base. 

Schema: A formal representation of a database, its tables, and how they are interconnected 

[Oracle, 2014] 

Object-Oriented: A programming paradigm where items are represented as objects. Objects are 

generally composed of self-contained values and functions that describe and access the features 

of the object. 

Web Server: Special hardware and/or software that handles serving web pages over the internet. 

Apache: A common, open source web server application [Apache Contributors, 2014] 

Server: Hardware and software that handles requests over a network.[Wikipedia, 2014] 

Webspace: The section of a webserver specially allocated for a specific web site. 

Sandbox: A sectioned off space that separates programs for security purposes. 

HTTP: HyperText Transfer Protocol. Protocol for application level data transmission over the 

internet [Fielding et. al, 1999] 

HTTPS: Hypertext Transfer Protocol Secure. Protocol for secure, application level data 

transmission over the internet 

Codebase: Code written for a project, typically stored in a repository. Generally only refers to 

code that has been written by a developer, not code that is generated by a program. [Wikipedia, 

2014] 

Directory: A folder in a file system. A specific location on a hard drive where files are stored. 

[LINFO, 2006] 

Root: The starting point of a file system in a computer [LINFO, 2007] 

Data-Type: In computer programming, a way of describing what a collection of data represents. 
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For instance, 1 as a Boolean represents true, but 1 as an integer represents the number 1. 

Boolean: data-type representing only true or false 

Single Sign-On Protocol: System where a user uses a single username and password to access 

many different applications that may or may not be related. [James, 2007] 

Design Pattern: A solution to a problem that occurs frequently that is reusable. A formalized 

method that is considered the best way to solve a problem. 

High-Level: A programming language that is easily understood, usually utilizing elements of 

natural language and automation of areas in a programming language. Typically runs above 

system and procedural level. [Wikipedia, 2014] 

SQL Queries: Commands sent to an SQL database. 

LAMP stack: Stands for Linux, Apache, MySQL, PHP. A commonly used mixture of tools used 

to serve web pages. 
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1 Introduction 

 Our goal in completing this project was to develop a system for users to find their Major 

Qualifying Projects.  Specifically, we wanted this system to promote student-to-student 

interaction for group-forming, whereas the current process focuses mainly on student-to-advisor 

group-forming.  Our target audience was students in the Computer Science department at 

Worcester Polytechnic Institute; namely students in their third, or junior, year.  We named our 

system ProjectSpot because it would be a place for students to “spot” and coordinate projects. 

 

1.1 Problems with the MQP-Finding Process 

 The Computer Science Department at WPI holds a session every year to tell students 

about the MQPs that the professors in the department would like to advise.  This “MQP-pitch 

session” is one of the main events the department does to inform students about the MQP-finding 

process. 

From our initial data collecting, we found that most students in the department do not 

attend the MQP-pitch session.  This is a problem, because the department considers this session 

to be one of the primary ways to inform students about MQP opportunities with 

professors.  From our data, we found that the main way that RBE, CS, and IMGD students find 

projects is by contacting professors directly and asking them to be their advisors.  This current 

process is not student-facing, which many of the students we surveyed expressed interest in. 

 Some students did not know their advisors before they signed up to do an MQP with 

them.  Students we surveyed said that this was intimidating to them, and considered to be a 

risk.  However, students stated that having a professor with a similar subject interest was 

important enough for them to work with an unfamiliar advisor. 

 We saw the need to provide students with more opportunities and more information in 

regards to finding an MQP.  Our primary concerns were to change the process to focus on the 

students’ interests and goals. 

 

1.2 Problem Statement 

The goal of this project is to develop an online service for WPI students in the Computer 

Science Department to easily form and find groups for MQP projects. Through working with the 
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Computer Science Department and the students at WPI, we will determine what students need in 

order to find an MQP for their senior year.  Our system, ProjectSpot, will address the biggest 

concerns and problems that students have when looking for an MQP.  ProjectSpot will be 

flexible and robust, allowing for future changes and possible expansion into other departments at 

WPI.  As a result of this project, students in the Computer Science Department will have a tool 

that will allow them figure out their MQP through other students. 

 

1.3 Requirements 

 Our requirements for the system we set out to create would all be focused on what would 

make the process more robust for students.  The system (ProjectSpot) would have to allow for a 

way for students to login, making sure that only members of the WPI community could access 

it.  Advisors would also need a way to login to the system; as they could post their own projects 

here that students may be interested in.  This would allow for a centralized way of containing all 

MQP opportunities in the department.   

ProjectSpot would need a way for students to browse all available MQPs in the 

system.  Students would need to be able to differentiate between projects offered by student 

groups and projects offered by advisors.  Students should also be able to browse other students in 

the system who do not yet have MQPs.  This is important because students may want to form 

project-groups with these other students, or a group of students may be using ProjectSpot to look 

for additional group members. 

Every user of ProjectSpot, namely students, project groups of students, and advisors, 

would all need to be able to create a profile with some basic information.  This would be useful 

for those searching for information on potential projects, partners, or advisors.  Every profile will 

have a description in text of the project, student, or advisor, and “tags” of the area(s) of computer 

science that the profile pertains to.  These tags will be pre-defined terms that users can add to 

their profiles to better-define what they are interested in and what they are looking for.  Each 

profile will always have at least one contact email, so that project groups can be coordinated.  

Every profile will have the option to include a picture, so that users of the system will be able to 

better-recognize fellow users.  

There will be additional requirements for the different types of profiles.  For a project 
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group, this information would also include the project title, a description of the project, the 

names and possibly profiles of the other group members, and the advisor(s) for the project if any. 

For project groups, the terms that the MQP will be offered should also be included if known.  For 

an individual student, the information would also contain a name, a link to the student’s MQP 

group if he or she has one, and the student’s basic skills and experience.  For an advisor, there 

would be the advisor’s name, and there would be a link to the advisor’s website, where his or her 

MQPs are usually listed.  There would also be links to the MQPs the advisor is currently 

planning to advise. 

Other requirements of ProjectSpot would include a way to search all projects, students, 

and advisors—filtering these down to a narrower set of results.  Users would also need to be able 

to search by tags, or specific terms that pertain to their specific interests.  Our system would also 

need to have links to other useful resources for finding MQPs.  This would include links to the 

MQP registration page, the Global MQPs page, and the list of available projects as offered by 

professors.  There will be a section of the system for important dates; such as the date of the 

Computer Science Department’s MQP-pitch session. 

The goal of our system is to bring users together so they can coordinate MQP groups.  

For this reason, another requirement of the system was to generate potential matches of students, 

groups, and advisors, and have a way of suggesting them to each other.  To do this, we had to 

design a matching, or recommender system that would use our different pre-defined tags to 

suggest projects, advisors, and students to other students and project groups.  This would provide 

a fast and simple way for users to find exactly what they are looking for in ProjectSpot, without 

having to do any searching or browsing. 
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2 Background 

In order to design a system that would allow users to form groups, we had to research 

other similar systems and the approaches that they took to match users together.  We also had to 

study our target area of users for the system so that we could create an application that matched 

their needs.  For this, we had to consider the way that the current MQP-finding process works at 

WPI, and determine what could be improved.  Since we chose to create a web-application to 

fulfill the requirements for such a system, we needed to examine the current technologies and 

tools we could use.  In order to coordinate ProjectSpot with the current MQP-finding process at 

WPI, we had to work with the school to allow students to login to our system with their WPI 

credentials. 

 

2.1 The MQP at WPI 

To graduate from Worcester Polytechnic Institute, every student must complete a Major 

Qualifying Project (MQP) [WPI Gordon Library, 2013].  The MQP is a project that focuses on 

the student’s major.  Based on what a student’s major is, the process varies from department to 

department.  This report mainly focuses on what Computer Science (CS), Robotics (RBE), and 

Interactive Media & Game Development Majors (IMGD) have to do in order to obtain an 

MQP.  All three of these majors are part of the Computer Science department at WPI. 

2.1.1 The Current Process 

 Students in the Computer Science department at WPI have to find an advisor, project 

group, and a project to have an MQP.  For IMGD students, student teams must create and pitch 

an MQP idea on their own, and projects are not provided by advisors like they often are for CS 

and RBE majors. 

 Computer Science, Robotics, and IMGD majors also have the opportunity to go abroad 

and complete their MQPs at an off-campus project center in one or more terms.  When students 

go abroad for MQP, they often do not get to select their project groups, advisors, or projects.  

Off-campus MQPs usually have sponsors.  These sponsors can be companies that fund the 

project, in order to obtain research or work for their company. 

 Students who choose to stay on campus can complete their MQPs in one, two, three, or 

occasionally four terms.  On average, a student will take three terms to complete his or her 
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MQP.  It is essential to plan-ahead, and find an MQP at least one term beforehand.  If a student 

waits too long to choose an MQP, he or she will not be able to graduate on-time, and will have to 

stay at WPI until the MQP is completed. 

2.1.2 What Resources Exist 

To find MQPs, students in the Computer Science department can attend an annual MQP-

pitch session that is held by the professors in the department.  The professors in the Computer 

Science department present short descriptions of the projects that they have chosen to advise for 

the upcoming year.  Some of the professors at the pitch session will also pitch projects that have 

a tie-in to robotics that RBE majors can do.  There is no such pitch day for IMGD students.  

Some of the projects that are presented at this event have outside sponsors that work with 

advisors and students to complete a project to the sponsor’s specifications.  

If a student wants to go abroad for MQP, there are different information sessions for each 

site that a student can attend.  From these sessions, students can get a general idea of the types of 

projects they may be working on.  They also learn about the sponsors that are involved in the 

MQPs at that site. 

There are some online resources that students can access to help them find MQPs. The 

most prevalent system is the listing of projects available to students, maintained by the WPI 

Projects Program [WPI, 2013].  This system contains a listing of various proposed projects by 

professors, as well as information about these projects.  This information includes a list of the 

majors the MQP will service and whether or not the MQP is open or closed to additional 

students.  Users are able to search for projects by discipline and keyword, and users can indicate 

if they are interested in a project by clicking a button on a specific project’s description 

page.  The system is held behind a login wall, and can only be accessed with a valid WPI 

computer account.   

Alternatively, some professors will list the projects that they want to advise on their 

personal web pages.  Students can contact those professors individually in order to find a project. 

 

2.2 Recommender Systems 

Recommender systems are a type of information filtering system that are used to help 

predict what items a user would like to see.  This prediction is based upon previously gathered 
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information about the user.  This information could include a list of items the user has liked and 

a history of previously purchased items.  This information is then compared to that of other 

users, in order to predict what the current user might like.  For example, if User A had purchased 

widgets 1, 2 and 3, and User B had purchased widgets 1, 2, 3 and 4, the recommender system 

would then suggest widget 4 to the user. 

 These systems are commonly used in various online stores, such as Amazon or other 

services like Netflix and Facebook.  These systems are very effective at providing relevant 

information to the user and do so in various ways. We can use the concepts of recommender 

systems in our product in order to provide more relevant search results to users. 

Netflix uses a collaborative approach for its recommendation system.  Netfix is a 

subscription service that lets users watch shows, documentaries, and movies.  Users will be 

recommended items similar to items they have already viewed.  Netflix uses user ratings in order 

to construct a profile of the user and then give the user recommendations.  This process of 

collaborative filtering does not rely solely on ratings, either. It can be expanded to include 

metrics as such previously viewed items and the time a user spends on a page, along with other 

pieces of data.  The downside to these types of collaborative filtering systems is that they require 

a user to be proactive in order to work effectively.  Few users will rate things, as rating is a time-

consuming process, and when a user is relatively new, these systems have very little to base their 

filtering on. 

2.2.1 Algorithms Used in Content-Based Filters 

Another approach to recommending items to a user is to use a content-based filter. 

Content-based filtering relies on information about a specific item and uses that to find similar 

items based on various criteria [Meteren et. al., 2013].  While collaborative filtering uses a 

many-to-one approach, content-based filtering relies on one to many.  Eventually these systems 

will grow to be many-to-many systems, but when first starting out there is little to go on in both 

directions.  Because of the nature of our project, a content-based filter would be more 

appropriate than a recommender system, due to the fact that we will not have time to construct a 

sophisticated, in-depth user profile. 

 The most effective content-based filters use various classification algorithms, such as 

decision trees. Decision trees have proven to be useful in various online storefronts at providing 

users with related products [Kim et. al., 2013].  By creating a number of decision trees at various 
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levels of the system when users are searching for projects, we can use then filter these trees out 

until we have a valid set, providing the users with relevant search results. These can be assisted 

further by applying weights to various metrics, based upon the needs of the system.  For 

instance, if a user were to be looking for a project and has networking listed as an area of 

interest, we can use that to weight projects that have a focus on networking.  

2.2.2 Content-Based Filtering  

 A content-based filter will organize search results based on a weighting-system that 

determines the relevance of results.  Separate weights can be applied to each result in a search.  

In systems where some information is previously known about the user, content-based filtering 

can be used along with the user’s information in order to provide him or her with relevant search 

results.  In this proposed system, a user could search for a specific item, and the results presented 

would be ordered by relevance to his or her interests.  Suppose a user indicates in his or her 

profile that he or she is quite fond of cheese.  This user then searches for the term “Vermont.”  

Because the system knows that he or she likes cheese, it would then prioritize any products listed 

as cheese, so one of the first results in the search would likely be “Vermont Cheddar.”  In 

practice, there would be many more weights involved in such a search, making the system more 

applicable. 

 

2.3 Matching Systems 

 By studying matching systems, we can obtain data that can help us design the interface 

and functionality for our system.  Matching systems are generally used in order to match people 

together based upon certain criteria. The most common uses for these are with online dating or 

multiplayer video games. These systems rely on information about the user in order to pair them 

with similar people. This information can be based on user preferences, user performance, or a 

mixture of both. 

2.3.1 Concerns with Matching Systems 

 The main focus of matching systems is to make sure that matches are compatible. 

Depending on the type of matching system, compatibility can mean a number of things.  For 

instance, in a matchmaking service used for dating, compatibility is based on numerous factors, 

from personal quirks to something as simple as eye color [Goldman, 2013].  In the case of 
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multiplayer games, however, matches are a bit easier.  Typically, players are matched together 

based upon a ranking of skill.  This ranking is traditionally calculated by analyzing a player’s 

skill and comparing that to other players, matching players together with the goal of having an 

equal amount of wins when compared to losses. These systems are usually based on number 

rankings, and as such, are much easier to match together. 

2.3.2 Matching System Algorithms 

 Many matching services consider their algorithms intellectual property and keep them 

secret.  However some matching services are much more open about how they match people 

together.  One popular dating service, okcupid, reveals that it relies on survey questions that 

users fill out in order to match people together.  When comparing two people, okcupid looks at 

three things: the answer the user provides, the answer the user would like from somebody, and 

how important the question is to the user [okcupid, 2013].   Point values are then assigned to 

questions, ranging from 0 to 250, based on how important the questions are to the user.  The 

system then scores each person based upon questions they both have answered. For instance, if 

person A indicates that something is important, and Person B provides a suitable answer for that 

question, then Person B gains points.  The points each person receives from answering questions 

that are similar to the other person’s answers are then added together.  This summation is done 

for both Person A’s and Person B’s question-and-answer matches.  Person A’s total is then 

divided by the maximum amount any person can receive if he or she answered all of person B’s 

questions the same, and vice versa.  These two quotients are then multiplied together and the 

resulting product is squared, ending with the final match percentage.  This match percentage 

indicates how satisfied the user would be with the other person. 

Many popular online games, most notably Massively Multiplayer Online (MMO) games, 

rely largely on group-based content, where players are to work together towards a common 

goal.  Because of this, many games have implemented various group-finder features that have, 

over time, been refined. 

In the popular MMO game World of Warcraft, there is a version of a group-finding 

interface named the dungeon finder.  Here, users can flag themselves as looking for a group, or 

flag their groups as looking for players. The former is a simple checkbox while the latter uses a 

flag, as well as an input box, where a group can write down what they need for their group. 

 Another tool allows users to look for guilds, which are big collections of players used for 
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various purposes. A guild officer can put his guild into the guild finder, listing various traits 

about the guild, such as usual playtimes, guild goals, and a description of the guild. Users can 

then browse the guilds listed, searching based on various parameters, and then apply to a guild 

they like. 

2.3.3 Group Finding Tools for Finding an MQP 

 While the dungeon finder tools in World of Warcraft are good to look at while thinking 

about designing the project, an automated tool would not suit us well. Ultimately, an automated 

tool would take control away from users and have a high risk of error, especially with so many 

variables that need to be accounted for.  While it works in a game where there are only three 

skillsets to fulfill that are clearly defined, an MQP can include many different skillsets and needs 

to be more dynamic.  Instead of focusing on an automated tool, we can take notes from other, 

manual tools inside the game and draw inspiration from them.  For ProjectSpot, we can emulate 

the World of Warcraft guild finder tool, which has the inclusion of group descriptions via a 

simple textbox.  Including descriptions is useful to the guild finder and to ProjectSpot, because it 

allows users to state exactly what they need in a custom textbox, in order to prevent ambiguity. 

 

2.4 Web Development – Tools & Technologies Used 

In order to build a system that will be accessible from the web, the developer has to use a 

certain set of tools and technologies. 

2.4.1 Model View Controller (MVC) 

Model-View-Controller is a high-level design pattern that allows for the abstraction of 

the data in the system, apart from the interface of the system, separated from the functionality of 

the system [EllisLab Inc., 2014].  Model-View-Controller is popular because it allows for the 

interface of a system to be developed in an environment that is isolated from the system’s 

functionality, while still having the ability for the two parts to interact and communicate to be a 

fully-working system. 
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Figure 1: Model-View-Controller Design Pattern [CodeProject.com, 2008] 

 

The MVC design pattern was allegedly invented in Xerox park in the 1970s 

[Cunningham, 2012].  Its first noted use was in the purely object-oriented language Smalltalk-80.  

The goal of MVC at the time was to use it to create better Graphical User Interfaces (or “GUIs”) 

for applications.  With a more efficient programming environment, the developer is given the 

opportunity to focus on developing a better user-experience for the user; less than where the 

developed user interface is limited by the constraints of the system’s architecture.   

Today, the MVC design pattern is used in many web applications.  This is mainly 

because of the structure of the web.  The browser serves the user a webpage.   This webpage is 

given to the browser by a server.  The browser then parses the HTML of the webpage, to display 

content to the user.  The server that provides the website can be thought of as the “back-end”, 

and the browser that displays the website can be thought of as the “front-end”.  All websites are 

made available through this process.  The front-end is the “View” in the MVC paradigm; and the 

back-end is the “Model”.  The “C” part of MVC here (being the “Controller”) is the code that 

allows the back-end and the front-end to communicate with each other.  This allows the back-end 

to send information to the front-end, and the front-end to display information from the back-end.  
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Since the MVC design pattern is so highly-integrated with the web, and because it is a powerful 

concept that allows for a well-organized system, we chose to follow MVC design principles in 

implementing ProjectSpot. 

2.4.2 Client Side – HTML, CSS, Javascript 

All web-based systems have a front-facing component.  This is often referred to as the 

“client side”.  In the client-server relationship, there is a back-end that serves the requested 

information to the client, and the client deals primarily with the front-end of the application.  In 

order to display the information that has been sent from the server, the client must use HTML in 

some way.  W3Schools explains HTML as “a language for describing webpages,” [W3Schools, 

2013].  HTML allows the system to display content on the screen.  HTML ties in closely with 

CSS.  CSS (Cascading Style Sheets) is a mark-up language that allows for the specified styling 

of the content that appears on the web.  HTML provides the structure of the content with no 

styling.  CSS then adds attributes to the content provided by the HTML to change its appearance.  

HTML and CSS deal with static data and content.  The dynamic part of web-based 

system comes from scripting languages.  Javascript is a scripting language that is used to update 

content on the client-side.   

Other scripting languages such as PHP and Python deal with accessing the stored data or 

database for the application.  This is known as the “back-end”, whereas client-side is considered 

to be the “front-end”.  The client-side does not generally deal with data-retrieval or manipulation, 

and is only concerned with updating the front-end of the application—the part that the user sees. 

2.4.3 Server Side – PHP 

PHP, also known as PHP: Hypertext Processor, is a server side scripting language that is 

used mainly for web development. As of January of 2013, PHP is in use on over 244 Million 

sites around the world [Ides, 2013]. The main attraction of the language is that it is free to use, 

and can be installed on almost any computer. Documentation is largely handled by the PHP 

Group, and the core build of PHP contains a number of free, open source modules, that are 

mainly devoted to dealing with problems that face web developers, such as support for accessing 

databases, as well as handling file uploads, amongst many others. 

While the language is quite robust, and has been around for some time, there are a 

number of issues plaguing it. To start with, it is generally considered to be insecure. Upon 
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searching the Common Vulnerabilities and Exposures system, maintained by MITRE, around 

29% of all vulnerabilities in code are linked to PHP [Coelho, 2014]. More often than not, this is 

linked to sloppy developers not following standards, leading to insecure code. At the same time, 

the language has been developed rather organically, leading to functions being named 

inconsistently, as well as many built in functions that most programs simply do not need. 

Despite the drawbacks of the system, there are a number of benefits for using PHP.  First, 

it is rather easy to learn.  It is a dynamically typed programming language that has a lot of 

flexibility and power.  In addition, most of the documentation for PHP is handled by the 

community, and tends to be thorough.  Chances are, if a developer is having a problem, the 

solution is readily accessible with a few Google searches.  Finally, PHP is everywhere and can 

be installed on anything.  While the language of PHP may not be consistent with regards to 

standard naming conventions, PHP itself is still relatively lightweight and can be easily expanded 

upon to add more functionality.  Couple this with the plethora of frameworks that can be utilized 

with PHP, and you have one of the most powerful languages designed specifically for handling 

web applications. 

2.4.4 CodeIgniter 

CodeIgniter is a PHP framework, developed by Ellis Labs, that focuses on making web 

developers’ lives easier [EllisLabs Inc., 2013]. Common tasks, such as interfacing with 

databases, handling form submissions, amongst other things, are achieved through the use of a 

robust set of libraries. This allows developers to focus on coding the larger parts of their web 

applications, instead of the more tedious tasks that plague PHP developers. 

Compared to other available frameworks, CodeIgniter does not take long to set up.  

CodeIgniter is very flexible, allowing developers to have full control of the system.  While the 

framework has a standardized way of doing things, modeled after the Model-View-Controller 

design pattern, developers are able to ignore these guidelines if they prefer. The CodeIgniter 

framework has even been lauded by the creator of PHP, Rasmus Lerdorf, saying that compared 

to other frameworks, CodeIgniter is the one that is “least like a framework” [Peterson, 2008]. 

Because CodeIgniter does not contain many additional features in its system, and because 

it focuses on extensibility, CodeIgniter proves to be a powerful framework on which to base a 

web application.  It is rather easy to use, and is extremely well-documented.  With CodeIgniter, 

the functionality of the system itself is not dependent on the CodeIgniter framework.  For this 
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reason, the developers are not confined by the constraints of the framework, and the system 

remains flexible. 

 

2.5 Databases 

Databases are collections of organized data.  There are a number of database systems 

available to developers, which differ in ways from the method for data storage to the 

organization and retrieval of data.  Generally, most databases are accessed by a specific 

language, such as Structured Query Language (SQL).  Each type of database has its own set of 

pros and cons, and many different programming languages work well with specific database 

systems.  Many PHP web applications rely on what is called a LAMP Stack.  A LAMP Stack 

simply means a Linux system, with an Apache webserver, using a MySQL database, hosting 

PHP for the back-end of the web site. 

2.5.1 Types of Databases 

There are many different types of design philosophies available when deciding how to 

organize and build a database’s table structure, all with their own strengths and weaknesses. 

Some databases are designed with speed in mind, while others are designed under the 

assumption that lots of data will be handled by the database. Regardless of how a database is 

organized, there really is no answer that will satisfy everybody, so programmers tend to need to 

choose a database design that best suits their needs.  One of the bigger points of contention 

concerning database design is a problem that faces many programmers when choosing what 

programming language to use: the issue of strongly typed languages versus weakly typed ones. 

 A strongly typed programming language is one that has its syntax rigidly defined 

[Hanenburg, 2010]. One of the most prevalent distinctions of a strongly typed programming 

language is enforcing data types.  For instance, if you were to have a variable that represented an 

integer, you would need to explicitly state that this variable was an integer.  In addition, only 

certain kinds of operations can be performed on that variable, because it is of type integer. While 

this can make code verbose, it helps to reduce ambiguity in code.  This helps developers when 

trying to ascertain what exactly a function is doing, allowing them to get to work faster. 

 On the other hand, a weakly typed language is one that is a lot more flexible with what 

can be done with variables. Traditionally, most weakly typed languages do not have explicitly 
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stated data types. Instead, the data type is inferred at run time. For instance, in some languages, if 

you were to issue the command “1 + ‘1’”, some languages would infer that you would like to do 

number addition, and return the number 2. Other languages might instead infer that the desired 

result is string concatenation, and instead return the string “11.” While this makes coding a bit 

easier, code can become rather ambiguous, making it hard for code to be maintained. In addition, 

it is harder to figure out where some bugs may be, due to syntactically valid code not working 

the way it is expected to. 

 With regards to databases, and how they are structured, a database that is organized like a 

weakly typed language, with lots of inferring of data types, can be quite flexible, depending on 

how you organize it. For instance, the popular blogging tool, Wordpress, has a rather weakly 

typed database, in order to allow developers to easily expand on the database without having to 

change the database schema at all [Wordpress, 2013]. On the other hand, this leads to a database 

being somewhat slower with searches, due to all of the various data types for each module in the 

system being contained in a single table. Splitting modules up into separate tables allows a new 

developer of the system to see exactly where things are stored, at the cost of having to change the 

database schema when models need to be expanded. These factors are ones we needed to 

consider when deciding how we wish to organize our database structure. 

2.5.2 Structured Query Language (SQL) 

 Structured Query Language, or SQL is a programming language designed specifically for 

interfacing with relational databases. SQL allows users to insert, update, delete, and query a 

relational database, as well as modify the database’s schema and other aspects of the database. 

Originally designed in 1970 by IBM, it was created to replace the current ‘standing processes’ 

that required programmers to create specially designed programs whenever data needed to be 

stored [Microsoft, 2013]. 

Relational Databases are a specific type of database that consists of tables containing 

data.  A set of data in a table is known as a relation.  Each table requires at least one column be 

used as a unique identifier for each row of data.  This allows users or other entries in the database 

to point to specific entries in the database, eliminating the need for duplicated data.  Relational 

databases can even be further refined in various ways in order to increase flexibility as well as 

performance. 

The most common operations handled by SQL are queries.  These are performed using 
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the “SELECT” command.  These commands do not modify the database, but simply initiate a 

search within the database for information they wish to find.  The most basic queries are quite 

simple, telling the program to search for values within specific fields and then return (“select”) 

the data from rows with values matching the search.  Generally, the user selects a specific table 

from several within the database. These queries can be expanded upon, allowing the user to filter 

out things they do not need, sort the results, or even expand or limit the result set using data from 

other tables through joins.  Queries can even be recursive—meaning that they can contain 

queries inside of them, allowing the language to be quite flexible. 

There are many other commands that can be issued through SQL, such as adding, 

removing, or editing existing entries, adding entire new tables, changing the structure of existing 

tables, or even dropping an entire table from the database.  This much versatility means that SQL 

is an extremely powerful but potentially dangerous tool and developers must exercise care when 

issuing commands, especially when dealing with user input. 

2.5.3 Database Structure Approaches 

WordPress is a highly popular, open source blogging tool and Content Management 

system, developed using the scripting language PHP and a MySQL database.  The attraction of 

this system is its extensibility and flexibility in design, allowing developers to tear down the 

system and rebuild it to suit their needs.  This has led to it being the most widely used blogging 

system on the World Wide Web, with more than 60 million websites using the framework as of 

August of 2012 [Colao, 2012]. 

            One of the major benefits of WordPress is its database design, which is a big factor in 

how extensible it is.  Every object in WordPress is considered a “post”, where a post is the term 

given to any collection of data that is stored [WordPress, 2013].  While each post has its own set 

of attributes, the beauty of the system is how it handles custom entries.  Suppose, for example, 

that you are running an online store using WordPress.  Each product that you sell is a post with a 

special post type of “product.”  While each product can have a description and a name, which is 

handled by the post, extra values that might not be used in a blog post, such as price, are stored 

in a separate table, containing metadata.  This table contains only four attributes, the id of the 

metadata, the id of the post it belongs to, the key of the value, and the actual value.   Because of 

how this is set up, developers can easily add another field to the product without having to 

modify the database’s schema.  This saves development time and reduces the chance of data-loss 
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when adding new attributes to a data-type. 

            This flexibility comes some drawbacks in terms of efficiency.  It may be helpful that 

attributes are centralized in one flexible place, but with this schema, everything is always saved 

as a block of text, even if it is something as simple as a checkbox on a form.  Some items can be 

as simple as a Boolean data-type but would still be stored as plain text in the database.  This 

leads to data taking up more space than it actually needs in some situations.  This also runs into 

the issue of the database being “tall”; as opposed to being spread out over more tables, inflating 

search time.  On top of this, comparisons of strings are much slower than comparisons of 

integers in a MySQL database, due to differences in size. 

For these reasons, it important to consider other database structures aside from those 

proposed by Wordpress.  We studied another database design that is more commonly used in 

web development, basing it off of the Boyce-Codd Normal Form for databases [Wikipedia, 

2014].  The data is normalized, which means that redundant values are never stored.  If values 

need to be updated, they are only updated in one place.  With this database structure, each type 

of data, such as groups and user profiles, has its own database table that is strictly defined.  

While some tables may have shared fields, it is easier to see where data is stored and how it is 

structured.  Instead of having to look through the code, a developer can simply look at the 

database schema in order to figure out how the database is laid out.  At the same time, we can 

have the database enforce properly structured data, because we can explicitly state what data 

types are needed and where.  With this structure, we can refuse data that is malformed, thus 

increasing security and stability with our system. 

The only real drawback to this design is that if a developer wanted to add a new field to a 

table, he or she would need to go in and change the database’s schema.  This is a problem with 

many databases.  While changing a database’s schema sounds rather complicated, if done 

correctly, it is a simple process.  Developers that work in databases are already familiar with this 

process.  Because of how standardized it is, we elected to go with this design based on the 

Boyce-Codd Normal Form for databases. 

 

2.6 Source Control - Git 

 Source control, also called version control, is a system that tracks changes to files.  With 

source control, multiple people are able to work on the same code base, while different 
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developers make changes to the code on different machines [Chacon, 2009].  This allows 

programmers to maintain one organized code base.  There are different types of source control 

such as SVN and Git [Chacon, 2009].  The most important difference to note is that Git is a form 

of distributed source control and SVN is a centralized form of source control.  This means that 

with Git you can have one or more versions of the main code base that exist locally on your own 

computer.  With SVN, you must always be connected to the server with the main code base to 

save any changes.  

With source control, you can have multiple versions of the main code base that can be 

merged back in.  This is used frequently with Git, but not as much so with SVN, because with 

SVN any change made will always affect the centralized code base. We chose to use Git because 

of our familiarity with the tool, as well as for its efficiency, speed, reliability, and flexibility  

Git was developed in 2005 by the Linux community to be a fully-distributed form of 

source/version control that would be able to handle large projects [Chacon, 2009].  Some of the 

best aspects of Git is that it is fast and highly flexible. 

 

 

 

 

Figure 2: A Distributed Source Control Code Base 

[Chacon, 2009] 

 

Figure 3: A Centralized Source Control Code Base 

[Chacon, 2009] 
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Git works in a tree-system with different “branches” on the tree. The main branch is 

traditionally called “master” and can be thought of as the “trunk” of the tree. The master branch 

is often the production code, and is kept in a bug-free state at all times if possible. Then, any 

number of developers can create child branches off of the master branch. When a developer 

creates a child branch, that branch starts out as a clone of the master branch. Then the developer 

can “commit” changes to the new branch without affecting the master branch. 

With Git, the developer can work remotely; meaning he or she does not have to be 

connected to a main server to work off of the main code base.  By working remotely, developers 

can have their own versions of the code base on their computers.  Whenever a developer wants to 

update his or her local repository with the latest version of master, one only needs to “pull” the 

code from the remote server via an internet connection. 

         Git works well because master can be updated at any time by any developer.  The way 

that code is added when using Git is through a process called “merging”.  What happens is that 

once a developer makes a new branch off of master, that developer will code on that branch in 

order to make changes.  When a developer adds code, he or she can be writing new features for 

the software, fixing bugs, or refactoring the code.  Once a developer is satisfied with the changes 

made, she can “merge” her branch into the master branch, and those changes will be seamlessly 

added into master.  This can be thought of as replacing the old code in master with the new code 

of the developer’s branch. 

         One frustrating thing when dealing with source control is merge conflicts. A merge 

conflict occurs when two developers change the same lines of code on different branches, and 

then both developers try to merge that new code into the same location.  What happens is that Git 

does not know which version of the altered code is correct, so it cannot add either.  The 

repository remains in an almost “paralyzed” state until one of the developers can resolve the 

issue.   

The more developers working on a single code base, the more frequently merge conflicts 

will occur.  However, if the developers are careful and remember to keep master up-to-date by 

pulling from the remote repository on a frequent basis, much of this can be avoided.  A good 

rule-of-thumb is to always pull master right before you attempt to merge your branch into it.  It is 

also important to not work off of another developer’s branch without his or her permission. 
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2.7 Central Authentication Service (CAS) 

For WPI authentication, WPI uses a service called Central Authentication Service, or 

CAS.  It is a single sign-on protocol that has been developed for a number of years, and has been 

rolled out to nearly every WPI web service that uses a user account.  The major benefit of using 

CAS is that it has already been written, and is in use all around WPI.  A user from WPI would 

already know how to use such a system, and this helps make the ProjectSpot feel more official. 

By using CAS, we avoid the issues that come with choosing or writing an authentication service.  

With CAS, we do not have to worry about protecting user data or securing passwords, as it is 

already handled for us.   
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3 Methodology 

 Our goal was to design a system that would allow students to find MQPs. We collected 

user data that would allow us to determine the needs of the users for the system.  We organized a 

list of user tasks and subtasks from the collected data.  We took our list of tasks and subtasks and 

figured out how a user would want to move between processes in the system.  With that 

determined, we designed a flow diagram that would describe the user’s steps through the 

software in correlation with the user’s mental model.  From our flow diagram, we designed a 

potential user interface via wireframes that we tested on WPI students for usability.  From the 

success in our studies, we implemented the designed user interface.  We designed a back-end 

that would complement this user interface and work in a Model-View-Controller design pattern. 

 

3.1 Collecting User Data 

We collected data from six students in our target area.  We focused on senior WPI 

students in the Computer Science Department who had already found their MQPs, whether they 

had completed them or not.  We asked them questions that would help us to learn what features 

they would need in an MQP-matching system.  The data collection was structured in an 

interview format.  Each student interviewee signed a Consent Form.  The interviews were held 

privately and with discretion.  The Institute Review Board was not used.  The data collection was 

conducted in a calm and generally quiet setting.  The interviewer would ask the student each 

question, and then have the student elaborate when necessary.  The interviewer would type up 

the student’s response as he or she was talking.  Some of the questions asked had the students 

rate something on a scale from 1 to 10.  The questions asked can be seen in Appendix A. 

 

3.2 Designing the Interface (based on User Data) 

We took the students’ needs into consideration when designing the user interface for 

ProjectSpot.  We based our design on the survey data that we had collected (this data is available 

in Appendix B).  Most students expressed the need for viewing a list of all available projects, 

advisors, and students in a list.  We made this the layout of our main screen for searching the 

system in ProjectSpot . 
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3.3 Designing the System 

 We had to design a system that would be robust and extendable. This was important 

because our goal was to have the WPI Computer Science Department adopt ProjectSpot after we 

graduated. If the school were ever to incorporate ProjectSpot as part of the MQP-finding process, 

then our system would have to allow future system administrators to make changes.  That notion 

drove many of the design decisions for ProjectSpot. 

In order to have this system used by WPI, we had a number of requirements we needed to 

meet.  One such requirement was that our application had to be flexible.  We had to account for 

the fact that somebody would inherit this project after us, and we wanted to make sure it was 

something that person could use and understand.  In addition, we needed something that was safe 

and secure, as we had to handle user data.  We did not want anybody to be able to break into our 

system and get that data.  While the data we obtained for each user was already publicly visible 

in WPI’s system, we still wanted to keep our system as secure as possible.  Finally, we wanted 

our system to be fast and efficient, in case WPI as a whole, and not solely the Computer Science 

Department, eventually wanted to use ProjectSpot.  We needed to be able to handle a large 

number of users accessing ProjectSpot all at the same time. 

3.3.1 CodeIgniter: Choosing a Framework 

We thought long and hard about what framework we wanted to use at the core of our 

project.  We considered using many different frameworks, including one that was an offshoot of 

the CodeIgniter project.  Ultimately, we felt that CodeIgniter was the best choice for us.  One of 

the main reasons for us choosing CodeIgniter was that we wanted to design our project with 

MVC in mind, which CodeIgniter was built around.  We also wanted something fast and flexible, 

and when compared to other frameworks, CodeIgniter has consistently ranked higher in many 

different tests on speed [Kujawa, 2013]. 

            Another point of contention was that we wanted our system to be extensible, so by proxy, 

our framework needed to be flexible as well.  Because it is built with MVC in mind, and comes 

with a rather extensive set of documentation, CodeIgniter was a good fit.  This is coupled with 

the fact that the framework has been around for a number of years, and includes a rather robust 

community that is generally very helpful when running into issues.  We did not want to create 

extra work for ourselves or any future developers, so we needed something that was rather 

mature, and solidly developed. 
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            Finally, we wanted something that had a feature set that would suit our needs.  

Specifically, we needed something that would interface with a database and handle MVC well.  

Not only does CodeIgniter do all this, it also has libraries that handle stored sessions, improving 

security, and automatically sanitizes user input, so we do not have to worry about SQL 

injections.  Finally, the framework has a number of security features that protect against other 

attacks, such as Cross Site Scripting (XSS) attacks already enabled, saving us a lot of time.  

3.3.2 Database 

When designing our system’s database, we had to keep a number of things in mind.  Our 

biggest issues were mainly making sure we were able to handle lots of data effectively, as well as 

making sure when another team picks up the project, they will be able to easily modify and work 

with it.  This wasn’t a simple task, and our database went through a number of design changes, 

before we settled on one that suited our needs.  In the end, we came up with two designs that 

would suit our needs, and after analysis, we decided on the one that would allow for the most 

flexibility and scalability, as well as being the most clear. This proved to be useful, as through 

the development of the system, some changes needed to be made for adding new features, and 

our organization of the database made it quite simple to do so. 

 

3.4 Implementing the Interface 

 We implemented the interface based on our designs.  We created a template for the 

header and footer of the website, so that each page could have the same top and bottom, but have 

different content. 

 We created blank content pages for each required screen of the system.  We then created 

content for each screen using HTML.  Some information on the screens was generated by pulling 

data from the database using PHP and SQL queries.  The content of each page was styled using 

CSS.  Different themes were used to keep aspects of the site such as buttons, headings, and 

hyperlinks consistent. 

 We designed the system around the design for the interface, and we implemented the 

interface in accordance with the structure of our system. 
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3.5 Implementing the System  

When implementing the system the fact that we were using an MVC design pattern 

helped us build the application.  We were able to work on the views and models at the same time 

separately, before working on each individual controller.  In this case, we will look at how the 

groups system was designed. 

To start, the model was created with a straightforward approach.  We started with four 

pieces that would be core functionality, getting a single group by its id, getting all the groups in 

the system, adding a new group, and updating an existing group.  

At the same time, the interface was being developed for the various pages being served 

by the groups section.  Once these pages were built, we would know how the information would 

be displayed, and know exactly what the controller needed to do. 

Once the models and views were finished, we were able to focus on the controllers, 

where most of the processing of data takes place.  The controllers are what communicate 

between the views and the models, asking models for the data needed, processing it, and then 

presenting it to the view in a way it can be processed.  Building these was relatively simple.  

Each view had its own function in the controller, allowing us to keep things separate and 

organized.  Each of these functions were organized in the same way, starting with retrieving the 

data we needed, formatting it in such a way that the views could process it, and then passing that 

information to the views.  The views would then parse that data, and then present it to the user.  

We added functionality to the controllers as we went on, if the need for extra functionality was 

warranted. 

 

3.6 Implementing CAS (Central Authentication Service) 

To implement CAS to work with our system, we had to work closely with the Computer 

Science Department’s system administrator, Michael Voorhis.  Mike configured our server and 

set-up our system so that it was compatible with CAS.  Mike created a directory for our project 

in the Computer Science Department’s webspace.  In our webspace, Mike set-up a sandbox so 

that we could run Apache on our server.  This allowed us to use our development tools such as 

PHP and Git, while still using the department’s servers.  WPI then required us to change 

ProjectSpot from HTTP to HTTPS so that it would be more secure.  Mike set this up for us.  
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Through his hard work, one of the biggest, most challenging pieces of our project was made 

easy, which saved us a lot of development time. 

 

3.7 Making Improvements 

 After implementing all the components of ProjectSpot, we continued working to improve 

aspects of the site such as the interface and the architecture.  

3.7.1 Heuristic Evaluation 

 After our system was implemented so that we could go through the system acting as a test 

user, we conducted a heuristic evaluation with an expert to make sure a user could navigate 

through the system.  Notes were taken at this session, and the comments that the evaluator made 

were written down.  After the heuristic evaluation, changes were made to the system to improve 

the flow, and the look-and-feel of ProjectSpot. 

3.7.2 User Study of Tasks through the Interface 

 We tested the interface on six users.  We documented the path each user took through the 

interface to complete a task that was given to him or her.  We had each user fill out a 

questionnaire after each session.  The user ranked different parts of the interface on a 1-5 scale.  

The users were asked to describe difficulties they had with the system, and they were asked to 

point out which parts of the system they thought worked well.  This data was evaluated and used 

to make improvements to the interface. 

 

3.8 Group User Study of Functioning System and Marketing ProjectSpot 

 Once CAS was in place, we conducted a user study with groups of WPI students logging 

into ProjectSpot with their real WPI credentials.  Now with CAS, the system was able to pull the 

student user’s actual data.  The users were then told that they were in an MQP group together, 

and that they had to use the system.  This final user study had three main goals.  The first goal 

was to evaluate the improvements we made to the system from the last study.  The second goal 

was to observe the practical application of ProjectSpot with groups of students working together, 

and collect information for our final evaluation of ProjectSpot.  The third goal was to show 

students the potential of our system, and in a way, market it to students for future use. 
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 We wanted to incorporate ProjectSpot with the Computer Science Department at WPI, so 

we decided that this user study would be the beginning of marketing our project to students.  We 

also created a “Group” for ProjectSpot in the system, in the hopes that a future group of students 

would continue the project and improve it, in order to make ProjectSpot even more useful to the 

school. 
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4 Analysis of the Requirements 

 Before we could design ProjectSpot, we had to figure out what our users’ main needs 

would be.  To do this, we figured out what the current MQP-finding process in the Computer 

Science Department at WPI was lacking.  Then we interviewed students from our target audience 

and asked those students questions to better understand their needs.  Once we had collected data 

from these users, we analyzed that data to come up with a set of design requirements for the 

interface of ProjectSpot. 

 

4.1 Evaluating the Current Process 

 We felt that the MQP-finding process could be improved by making the process more 

student-facing.  By student-facing, we mean that students should be able to see what projects are 

available (namely MQP-groups formed by other students), rather than just going to a Professor 

and asking him or her to be an advisor. 

 We recognized the current system for finding an MQP is for students to approach 

professors to obtain a project, but in order to improve it we had to find out what users in our 

target area needed for a better system.  For this reason, we conducted a study of users in our 

target area. 

 

4.2 Collecting Initial User Data 

 To thoroughly assess the needs of the users in our target area, we set up private 

interviews with six WPI seniors in the CS department.  The student users contained a mix of CS, 

RBE, and IMGD-tech majors.  Each student was asked a series of questions (found in Appendix 

A).  One student had plans to go abroad for MQP, one student had not yet found an MQP, and 

the other four students were all currently in their respective MQPs. 

 Each student’s responses were typed up, and then analyzed to come up with a set of 

requirements for the system. 

 

4.4 Design Requirements 

 From the initial data that we collected, we were able to determine what users would need 
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from our system.  Our initial data allowed us to come up with a set of requirements and design 

our system around those requirements.  We created a diagram of how the users would navigate 

through our system’s interface.  This allowed us to see the different tasks and subtasks that 

would play into our design. 

 

 

 

Figure 4: Flow Diagram of ProjectSpot's Tasks 

 

 

4.3 List of Requirements 

 We came up with this list of requirements for our system: 

 View students without projects yet 

 View currently-formed project groups 

 View projects offered by advisors 
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 Coordinate groups with other users 

 View the topics an MQP is on before joining it 

 View the interests a user has before forming a group with that user 

 Provide links to WPI resources on the MQP 

 Provide information about important dates pertaining to the MQP (such as the Project 

Pitch Session the Computer Science Department holds) 

 Be coherent with the theme of WPI’s webpages  
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5 Design 

 As we discussed in our Methodology, a good design was essential for our project if we 

ever wanted ProjectSpot to be adopted for practiced use.  Our design for the Interface, 

Architecture, and Database of our system was thought out with care, and implemented according 

to our models, diagrams, sketches, and plans. 

 

5.1 Interface Design 

 The interface design of our system went through many versions.  To create all the 

functionalities that our system needed to be useful to its users, ProjectSpot had to contain a 

certain list of components.   

First, we wanted our system to be cohesive with the current theme of WPI’s webpages.  

For this reason, we decided to use the same font as on www.wpi.edu, which is “trebuchet ms”.  

To stay with the WPI theme, we also chose to use black text on a white background for our 

content, which stayed with a theme of simplicity.  We decided that the principle colors in our site 

would be red and gray; the main colors of WPI. 

In order to make navigating the site easy for users, we created a top-banner with links to 

the primary parts of the site: Dashboard, Find, Profile, Group, Invitations, and Logout.  From our 

diagrams of the user’s tasks through the system, we deduced that it would be important for users 

to have quick and easy access to these pages, which is why we included them in the banner. 

For ProjectSpot, we had two main task scenarios that we had to account for.  The first 

was that our users would be students without MQPs.  These users would need to start-from-

scratch and would use ProjectSpot to find whatever information they could.  These users would 

look for already-formed MQP groups, and they may also look for other students and advisors 

without MQPs to enlist in a group. 

         Our second scenario was that our users would be groups of students in already-formed 

MQP groups.  These users would be looking for other students to join their group.  They also 

might be interested in finding one or more advisors to advise their group. 

         For both of our main task scenarios, we determined that all users of ProjectSpot would be 

interested in knowing what areas of Computer Science the other users were interested in.  We 

also had to design for professors who would want to create multiple projects that they wanted to 

http://www.wpi.edu/
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advise.  We also had to design for system administrators who would need to update the system. 

         After going through many different scenarios, we came up with all the different pages we 

would need in ProjectSpot.   

5.1.1 Landing Page 

 Before logging in, users would need access to some basic information about ProjectSpot.  

For this purpose, we created a landing page, which would let users know that they needed to 

login with their WPI credentials to get into ProjectSpot. 

 

 

Figure 5: ProjectSpot Landing Page 

  

The main goal of the landing page is to let users know that ProjectSpot is the application 

that they are about to access.  It is also a way to give users some preliminary information about 

ProjectSpot so that they are better-equipped to begin using the system before they login.  This 

helps us adjust the user’s mental-model from the start to be in-line with the model that we 

designed ProjectSpot around. 

After clicking the login button, users are redirected to the CAS server, which prompts 

users to login with their WPI credentials.  This CAS page is one that WPI community members 

are familiar with, which made it an important part of our design.  Users would know that our 

system is not only secure, but is affiliated with the school.  This will help us gain the trust of our 
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users.  After users fill out the form on the CAS login page, CAS handles the authentication, and 

if the user information is valid, the user is redirected to the dashboard.  

5.1.2 Dashboard 

 We eventually came up with the need for a dashboard in our design.  In the design we 

settled on originally for the User Interface, there was no concept of a “dashboard”.  We had the 

“Find page” as the main screen of our system, since finding other students, MQP groups, and 

advisors is the most important aspect of ProjectSpot. 

 After some thought, we realized that immediately presenting users with the Find page did 

not make much sense.  If this were the case, users would not know about any other aspects of the 

system.  By being presented with the Find page right-away, it would be difficult for users to 

realize that there are other aspects of ProjectSpot, such as filling out one’s profile and creating a 

group.  Now by first showing the Dashboard page, we can give the user a ToDo list of tasks to 

complete in ProjectSpot; which better alerts the user to the different aspects of the site.  By 

having the ToDo list on the Dashboard, users have a better chance of completing their respective 

tasks successfully; whether that means finding a group, more group members, or an advisor. 

 We also decided that we needed the Dashboard page to give the user a way to get to any 

WPI MQP-resources (namely, MQP-related websites), as well as to show any upcoming MQP-

related events on-campus.  System administrators can change the WPI resources and add 

important dates to ProjectSpot.  These will then be on the Dashboard page for every user.  

Important dates can be anything from the last day of the term, to the day of the project-pitch 

session held by the Computer Science Department.  It is helpful to have extra information like 

this in ProjectSpot, because it helps students with finding their MQPs; and the Dashboard is the 

perfect place to put that information.  This was worked into the design also because the header 

on each page in ProjectSpot was beginning to have too many items on it.  We needed links to the 

Dashboard, the user’s Profile, the Group page, the Find page, and the Invitations page from all 

locations in the system.  Adding Important Dates and WPI Resources would make the banner 

cluttered and much too large. 
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Figure 6: ProjectSpot Dashboard 

  

In the current version of ProjectSpot, the first thing the user sees when he or she logs in is 

the Dashboard.  This provides an informative “buffer” to the rest of the site that improves work-

flow and aids the user in completing his or her tasks in ProjectSpot. 

5.1.3 Profile Page 

 

Figure 7: The Profile Page for a User 
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Each user needs an individual profile to display the user’s skills, interests, and general 

information to other users.  To serve this purpose, we designed the “profile” page.  The profile 

page starts out with some general information provided by WPI on the user whose page it is.  

This information comes from WPI’s records and cannot be changed by the user.  This 

information is the user’s name, major(s), WPI email, and graduation year.  We believe that the 

user should not be allowed to modify this information with false data; which is already accurate 

since it comes from WPI.  If this information was ever incorrect, the user would need to correct it 

through WPI, not ProjectSpot.  

 

 

Figure 8: The Edit Profile Page for a User 
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         The user can also indicate his or her gender on the profile page.  If the user is in an MQP 

that is on ProjectSpot, that MQP will appear on the user’s profile page.  On the profile page, each 

user can customize his or her interests.  There is a separate “edit interests” page that the user can 

get to when editing his or her profile page.  The edit interests page allows the user to check or 

uncheck boxes that indicate specific interests in various areas of computer science.  A list of 

these interests is available in Appendix I.  The user can also add a description of his or herself if 

desired. 

 By having a profile page for each user, we make it easier for other users in the system to 

find out basic information on each person in ProjectSpot.  This allows users to make more-

informed decisions about who they work with on their MQPs, which will hopefully lead to more 

effective, better-matched MQP groups.  This is the main goal of ProjectSpot. 

5.1.4 Group Page 

         Since ProjectSpot is based around finding project groups, we decided we needed a main 

group profile page for each user.  This page would be called “group”.  The Group page appears 

differently to each user based on several different scenarios.   

The first scenario is when a user is already part of a group in ProjectSpot.  When this user 

navigates to the Group page, he or she will view the group to which that specific user belongs.  

The next scenario is for when a user is not yet part of a group on ProjectSpot.  When the user 

goes to the Group page in this situation, the user is presented with a page with two options.  

Here, the user can either create a Group page from scratch, or the user can go to the Find page to 

browse through other groups in ProjectSpot.  The last case that can appear for the Group page, is 

in the scenario where the user is an advisor.  Then, this user is shown a list of the groups that he 

or she is a part of, along with the option to create a new group.  
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Figure 9: Initial Group Page for a Student User 

 

 

Figure 10: Group Page for an Existing Group 
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Student users in ProjectSpot may only belong to exactly one MQP group, or not be in a 

group at all.  However, advisor users can be a part of no MQP groups, or they can advise any 

number of MQP groups.  This required a Group page for advisors with multiple groups that 

allows these types of users to see all the MQP groups that they are a part of at a glance.  From 

this version of the Group page, the user can then click on any one of the groups on this page, and 

then be directed to the more “traditional” Group page for that specific group. 

  On a traditional Group page, the user will see the name of that group, its members, a 

description of the project, what new members the group is looking for, and the areas of 

Computer Science that that project pertains to.  There will also be a contact email for the group 

listed.  From the Group page, a user can click on the names of all the members of the group to 

view those users’ user-profiles. 

 

 

Figure 11: Edit Group Page for a Group 
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5.1.5 Invitations Page 

 We decided that we needed a page where users could see which groups they were invited 

to join, and see which users they had invited to their groups.  This stemmed from the requirement 

of users needing the ability to use ProjectSpot to coordinate project groups with other users.  To 

fulfill this requirement, we created the Invitations page.   

The main reason for creating the Invitations page was that we needed a way for already-

existing group members to form their groups in ProjectSpot’s system.  We needed some form of 

regulation.  If any user could simply add any other user to a group in ProjectSpot, users would be 

added to groups against their will constantly.  This would be a major problem, because 

ProjectSpot only lets a user be a part of one MQP group at a time to prevent confusion.  For this 

reason, ProjectSpot does not allow users to be added to more than one group at a time.  This is 

the motivation for having our invitations system. 

 A user in a group can request a ProjectSpot user to join his or her group; provided that 

that user is not part of another group.  Conversely, a user without a group can request to join any 

group in ProjectSpot.  The key factor here, is that a student must accept an invitation to join a 

group, or a group must accept a request for a student to become a group member in ProjectSpot.  

The same goes for requesting to join and sending invitations for advisors.  User can also reject 

invitations from groups that they do not wish to join.  Group members can reject invitations from 

users that they do not want to be in their group.  This provides a suitable buffer between users 

and groups.  The buffer allows for this process to be regulated in a manner where the user is in 

control. 

 Other members in a group can revoke invitations that a member has sent out.  Students 

and advisors can also revoke requests to join that they have sent to groups.  This is so that actions 

are “un-doable”; and since every member in a group is considered to be on the same level, each 

group member needs full-control over all group actions. 
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Figure 12: Invitations Page for a User in a Group 

5.1.6 Find Page 

Arguably the most important page in the ProjectSpot web-app is the Find page.  From 

here, users can view all users (both students and advisors) and all MQP groups in ProjectSpot’s 

system. 

Users can then further refine the content of this page, which initially displays all of the 

information in ProjectSpot’s system.  There are checkboxes on this page that allow the user to 

filter the information by category: Students without MQPs, Students with MQPs, Advisors, and 

MQPs.  Users can refine results even more by typing into the filter “search bar”.  The text the 

user types is matched-up automatically, and the information is filtered to show only results that 

match what the user has typed.  All of this happens instantly, so as soon as the user types a 

character in the search bar, the list of results is updated.
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Figure 13: The Find Page in ProjectSpot 

 

  

 All of the user names and group names in ProjectSpot are hyperlinks.  Because of this, 

the Find page makes it easy to see all the users and groups and click on whichever one the user 

wishes to explore.  The user can easily get to all of the different profiles in ProjectSpot, giving 

the user the ability to learn more about the available options when searching for an MQP. 

5.1.7 Admin Pages 

 The final pieces of ProjectSpot are the admin pages, where users who are flagged as 

administrators can make modifications to the system, such as adding new upcoming dates, 
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important links, as well as promoting users to admin status, and removing users who are no 

longer needed. These are all simple forms that insert data into the database, and act as a layer of 

abstraction from modifying the database directly.  Screen shots of each Admin page in 

ProjectSpot can be found in Appendix I. 

 

5.2 Architecture Design 

 The main goal of the design for our system architecture was to allow for an efficient way 

to communicate between our user interface and our database.  Because we used CodeIgniter as 

our framework, most of the basic functionality and security for ProjectSpot was provided for us.   

When the user visits the site, the system will process the URL.  Using this data, it routes 

to the proper controller, and then the proper function inside that controller.  Once inside the 

controller, the URL and any sessions stored hold all the information needed in order to obtain 

data from the models.  This has been designed in such a way to limit how many database calls 

are needed to be done.  In addition, joins are used so that instead of having to constantly query 

the database to build the data structure the view needs, we can limit it as much as we can. 

Once all the data required is obtained, the controller will then process it, forming an array 

(which can be thought of as a “list” of data) that the view can then use when displaying the data, 

as specified by CodeIgniter’s documentation.  Once the data has been fully processed and 

organized, we pass it on to the view, which then processes that information, displaying it to the 

user. 

 

5.3 Database Design 

 Our initial database design was based on how Wordpress organizes their database.  In this 

design, everything revolved around one core table, the profile table.  Because the core data 

structures of our system were all different types of profiles, we would use a single table that 

holds all those profiles.  Each data entry in this table would contain information that every 

profile needed, such as a name, a description and other attributes.  In addition, each item would 

contain a unique id, as well as an identifier of what type of profile that entry was.  This would 

then be connected to a secondary table, which would hold any other attributes a profile might 

have. Each entry in this table would represent a specific piece of data about the item it is tied to. 
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They would include the id of the item it describes, what piece of data the entry specifically refers 

to, and the data itself. This would allow programmers who inherit the project to be able to 

quickly and easily add different types of profiles to the system, while also allowing them to add 

more fields to existing models, without having to change the database schema.  On the other 

hand, the system would quite possibly run into issues when it started handling more users than 

our initial estimates, because every single profile attribute is stored in a single table.  On top of 

that, because everything was contained in one table, organization of our data structures could 

very easily become confusing, and maintainability would become an issue. 

            Our final design was one that was based on how databases are traditionally designed. 

Each profile type, currently user profiles and group profiles, would have their own tables, with 

explicitly defined attributes. It also would follow the Boyce-Codd Normal Form, where the 

database is normalized. A normalized database is one that does not include redundant data. This 

means that when something is changed, it only needs to be changed in one place. This prevents 

orphaned data from remaining in the database when something is deleted, and makes entering 

data into the database simpler. Each type of data, such as a group, or a profile has its own table, 

with columns describing it explicitly defined. 

With the database more rigidly defined, future system administrators of the project would 

be able to quickly look at the schema and know exactly where things were located in the 

database.  In addition, because type checking would be done on the database side, rather than 

client or server side, security would be increased, as the system would refuse data that was 

deemed unacceptable.  Searching would also be much faster, because string matching is much 

slower than other types of matching in a MySQL database, and the previous design was made 

entirely of strings.  Unfortunately, this would make our system harder to expand upon, as any 

changes to models would require the database to be refactored, increasing the chance of data loss 

if done incorrectly. 

            In the end, we decided on using the second database design for our system. While this 

would make our system less flexible when being extended, the pros far outweigh the cons. The 

first database design, while flexible, was a little bit over-engineered.  We do not expect future 

system administrators to make many large changes to the database, other than adding new tables; 

and as long as backups are made before making any changes, the chance of data loss would be 

greatly reduced.  In addition, we decided that it would be better if developers were able to clearly 
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see how the system is designed when they inherit the project.  Finally, we wanted our system to 

be fast, which the second design assists with.  We decided that the first design solved one 

problem while making three others, while the second design caused one problem and solved 

three others.  For the sake of clarity, having a database that was slightly more rigid in its design 

would be an acceptable tradeoff.   It would also be faster when the system started handling more 

users.   
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6 Implementation 

 Since we stayed true to MVC (Model-View-Controller) in the implementation of 

ProjectSpot, we were able to separate-out the main components of our system and implement 

them in environments that were isolated from one-another. 

 

6.1 Implementing the Interface 

 The interface for ProjectSpot was implemented piece-by-piece.  First, pages were made 

for each of the main parts of the system.  HTML mockups and wireframes were made for group 

profiles, student profiles, and advisor profiles.  Then, pages were made that would allow the user 

to edit each of these pages.  Once all of these worked and functioned according to the interface 

designs, they were uploaded to the ProjectSpot server and placed in the appropriate directories.  

 In the file structure of our system, we followed the MVC design pattern.  This means, 

that we have folders for models, views, and controllers in our system.  All of the pages for the 

interface are in the views folder.  The views folder is set-up to work with the CodeIgniter 

framework, and it has separate folders for the main parts of the interface, such as group, invites, 

and profile.  This works well because users need to access different pages depending on where 

they are in the system.  CodeIgniter knows to pull the correct template page out of each folder 

and show it to the user correctly in these situations.  This also keeps our code and file structure 

organized in a way in which it is easy to do development. 

 The main process of implementing the interface was to get the basic pages working with 

the back-end of the system, and then go back and write the CSS that would alter the appearance 

of the site into a cohesive theme.  All of the CSS (or styling) for our site, is kept in the 

“stylesheets” folder that is one level down from our root directory.  All of the views in the view 

folder access the CSS files in the stylesheets folder, in order to obtain the appropriate styling 

when displayed to the user. 

 

6.2 Implementing the System’s Architecture 

The core of our program’s architecture is the CodeIgniter Framework.  CodeIgniter 

comes preconfigured to handle an MVC design paradigm, which greatly sped up development 

time for features. Because everything was already organized how we were going to organize it, 
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we did not have to worry about inheritance and including proper files. When we needed load 

another module, it was handled by a function call native to CodeIgniter. 

The models of our system were handling data manipulation.  Most of the models only 

handled getting, adding, setting, or deleting data in the database. When CodeIgniter loads, it 

loads the various configuration files, and retrieves information for connecting to the database. 

This way, we can use the included functions to interface with the database, instead of connecting 

to the database manually. 

Specifically, CodeIgniter comes preconfigured with a library called ActiveRecord, which 

handles database interactions. Instead of having to manually write out SQL queries, we can call 

functions to build them for us. Once a query is built, it is sent to the database, where it is 

executed and the result is returned.  One of the best features of ActiveRecord is that it 

automatically sanitizes data that gets put into the database, increasing security and saving time. 

The controllers are the largest part of our program, and they were coded with a specific 

pattern that each controller shares.  Every main section of the site, such as the dashboard and 

group profiles, has its own controller.  These controllers are designated to each view to control 

the dynamic content that is displayed in that view.  Inside each controller are functions that 

handle specific actions, such as viewing a specific group, or adding a new one.  These functions 

largely share the same structure.  Initially, we load any models or helper functions that we need 

for obtaining data.  After that, we make queries to the models in order to retrieve any information 

that is needed.  For instance, when displaying a specific group to the user, a function is called 

that takes in the id of the group being viewed.  This function then retrieves of all the information 

about that group.  Once obtained, that information is stored in an array that is correctly formatted 

so that the view can use that data.  The array in question is an associative array that is sectioned 

off by each piece of data.  In this case, the array has an index called ‘group_item’, which is 

where the information is stored about the specific group being viewed.  Once the array is fully 

built, it is passed to the view, where it can be processed. 

The views are what the users will see, and as such, are mostly HTML markup.  We 

wanted to try and keep as much PHP out of the views as we could, as the MVC paradigm 

dictates.  In theory, the code for a view should not do any operations that require more 

computation than that for accessing the information in an array.  When the array from the 

controller is passed to the view, it is processed and each root index is converted into its own 
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variable for the view to use.  

 

6.3 Implementing the Database 

The design of our database is quite simple, and it follows a design schema that many web 

applications use. Traditionally, PHP web applications are hosted on what is called a “LAMP 

Stack” which stands for Linux running an Apache web server, with a MySQL database, serving 

pages using PHP.  It is standardized, so we know it works, and many web developers will know 

how to work in such an environment.  Because of this, we knew we wanted to use a MySQL 

database from the beginning of the project, due to its ease of use, and how widespread it was. It 

also was suitable for our needs, in terms of speed and how much data we would be holding, 

which, compared to other commercial web applications, is not that much. 

One thing we had to keep in mind with our database design was how extendable it was. 

One of the initial designs we considered was built around there being one large table where we 

stored every piece of data the system used.  This would have been simpler to expand upon when 

adding new features, as developers would not have to modify the database schema.  

Unfortunately, it proved to be inefficient, and if something needed to be changed, it would prove 

to be rather complicated for someone not familiar with the system to understand.  In the end, we 

decided to go with a design where every different collection of data, such as groups, users, etc. 

would have their own tables.  If features needed to be added, new tables would have to be made, 

or existing tables would need to be modified. 

With that in mind, each table in our database has an id field that will automatically 

increase as new data is entered, so that we can always access specific pieces of data.  The largest 

tables are “ps_groups” and “ps_users.”  As expected, these hold the data for groups and users 

respectively. Contained within these tables are values that represent the various attributes tied to 

those sections of the web application, such as descriptions, user images, and other bits of data. 

We also have a few smaller tables, “ps_tags” and “ps_majors,” that hold the values for interests 

and majors. 

In order to tie these types of data together, we have a number of relational tables that 

allow us to have one to many connections between types. For instance, if you wanted to invite a 

user “Jimmy” to the “Spongification” MQP group, you would add an entry to 

“ps_group_user_rel” table, consisting of the group id, user id, as well as his invitation status. 
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Tying majors and interests to users and groups happen much in the same way. 

 

6.4 Implementing CAS (Central Authentication Service) 

In order to handle authentication with users, we had a number of options at our disposal. 

We could have written an authentication system ourselves, but due to the nature of software 

security, it is considered bad form to write something custom.  It is better to utilize a system that 

is already proven to be secure.  At the same time, it would be confusing for users to have a 

separate login for a WPI service. After discussing with the System Administrator in the WPI CS 

department, we figured out a way to utilize WPI User Accounts with our system, all with a small 

amount of coding. 

Setting up the authentication was a simple process. The codebase was set up with a 

landing page outside of our web application. This page would be accessible to everyone.  One 

directory down from the root is protected by an .htaccess file, which requires that a user be 

authorized first.  If the user is not authorized, he or she is redirected to the CAS server.  The user 

is presented with the CAS login page, where he or she must enter a username and password. 

While the actual steps needed in order to implement CAS were quite small, ultimately 

being only three lines of code, we encountered many issues with getting it to work. There was a 

great deal of interaction between us and the department handling CAS.  The amount of 

interaction required was a source of much frustration.  Ultimately, through the use of a .htaccess 

file, we were able to enable user authentication with our system.  Once the authentication was 

working, the system was able to retrieve the user name of the authenticated individual and look 

up the correct information in order to populate that user’s ProjectSpot account.  
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7 Results & Analysis (Design Evaluation) 

 After ProjectSpot was implemented to the point where all the basic functionality was in 

place, we conducted a user study to ensure that users could make their way through our system.  

We wanted to verify that the user’s mental model lined up with the user interface that we had 

created.  It was also important to make sure our project’s goal was attainable to our users: find 

information on projects, students, and advisors in the Computer Science Department at WPI. 

 By observing users in these studies, and by collecting data from those users, we were able 

to evaluate the effectiveness of our design.  We were also able to come up with a set of metrics 

that users could rank different segments of our design with.  These metrics provided us some 

insight into the usefulness of our system, as we were able to analyze the data obtained through 

the use of those metrics.  The details of this analysis are presented below. 

 

7.1 Interface and Usability 

After designing the interface based on user needs from our first study, and then 

conducting the heuristic evaluation on our completed interface, we were ready to test the 

interface on potential users in order to understand the path that users would take through the 

system to complete their tasks. 

 A total of six users participated in the study. There were two scenarios that we chose to 

test on students.  The first scenario was based on a persona “Test User” who was looking for an 

MQP group.  The second scenario was based on the persona “Test User” who, this time, had one 

groupmate and was looking for an additional groupmate as well as an advisor. 

Out of the six users, three users were evaluated while they acted out case one. The 

remaining three users were evaluated while they acted out case two. These are the two cases 

presented to users: 

 

CASE 1: 

You will be playing the role of a fictional student in this scenario. Test User is a WPI 

junior Computer Science major.  Test User has no idea what to do for his/her MQP at 

WPI.  Test User likes Databases, Graphics, and Web Design.  Test User does not know 

much about ProjectSpot, but wants to use it to find an MQP group. 
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Your job is to act as Test User. Login to the system, create a profile for Test User, and 

see if you can find out how to find an MQP. 

 

CASE 2: 

You will be playing the role of a fictional student in this scenario. Test User is a WPI 

junior Computer Science major. Test User and his/her friend Chelsea Fishwall have 

already formed an MQP group called “Android App Maker”.  Test User and Chelsea 

want to find one other student that knows about java.  They also want to find an advisor 

for their project. Test User does not know much about ProjectSpot, but wants to use it to 

find an advisor and team member for his/her MQP group. 

  

Your job is to act as Test User. Login to the system, create a profile for Test User, and 

create a group profile for Android App Maker.  Try to use the system to find an advisor 

and a team member. 

 

 The users were studied as they navigated through the system. They were asked to simply 

explain what they were doing as they were doing it and to think out loud if they felt comfortable 

doing so.  At the end of each user session, the participating user was asked to fill out a 

questionnaire; allowing them to rank various parts of the interface on a 1-5 scale.  There were 

also some open-response questions at the end of the study.  This questionnaire along with the 

open-response questions can be found in Appendix E. 

 

7.2 Results of User Study of Tasks 

 From our user study, we received useful suggestions from users, as well as some raw data 

that came from the users ranking different parts of ProjectSpot’s interface.  This data was then 

put into Microsoft Excel so that it could be analyzed.  All of this raw data can be seen in its 

entirety in Appendix F. 

 Since each part of the interface was ranked on a 1-5 scale (where in every case, “1” was 

considered “worst” interface and “5” was considered “best” interface), it can easily be seen by 

the data how “good” the users felt each part of the system was. 
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 The overall feeling toward ProjectSpot was positive.  Users ranked the system highly in 

all categories.  For this reason, our study became less about finding out what was drastically 

wrong with the system, and more about where were the minor areas that needed to be tweaked. 

 

7.3 Final User Study 

Before we concluded our project, it was important to do our final user study to determine 

the feasibility of ProjectSpot being adopted by the WPI Computer Science Department.  We 

designed a user study in which groups of three students would work together to create one Group 

in ProjectSpot that they all must join.  Similar to our previous user study, users were given a 

specific task scenario.  They were also given a list of tasks that they needed to complete.  

However for this study, users were able to login with their real WPI credentials, so each user’s 

experience was customized to him or her.  The previous user study had been performed with 

each user using the same test account, whereas this study gave us a better idea of the real 

scenario for a user using ProjectSpot.  This also allowed us to see users login to ProjectSpot with 

CAS, and observe how the final system worked. 

The users were told to work together and communicate with each other as they used the 

system, in order to emulate how group-forming with ProjectSpot would likely work in a practical 

application.  Below is the scenario and task list that users were presented with: 

 

You are friends. You all need an MQP and have decided to work together. You have 

come up with an idea for an MQP (you may change this if you like). You want to build 

an application that will measure the performance of any software. You have decided to 

call it “The Performance Calculator”.  

 

Tasks (in any order): 

 Create a group in ProjectSpot for your group idea (The Performance Calculator) 

 Update your group page to reflect information on the project 

 Each of you must Login to ProjectSpot and update your user profiles 

 Have all group members listed as a part of this project group 
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Users were told that they could spend as long as they desired looking through the system.  The 

users were asked to indicate when they felt that they had finished completing the tasks that were 

given to them. 

We studied two groups, each with three users.  Each user was asked to do a separate 

analysis of his or her experience with the study in the form of a questionnaire (see Appendix G).  

We then took the questionnaires from each of our six users and analyzed the results.  Again, we 

elected to use a ranking system on a 1-5 scale in combination with an open-response section at 

the end.  Although the questions asked for the ranking part of the questionnaire were different 

from those asked in our previous user study, the open-response questions (Did anything 

overwhelm you? What was straightforward? What was not straightforward? What did you like? 

What could have been better?) remained the same, as we felt they provided valuable feedback in 

all situations. 

 

7.4 Results of Final User Study 

 From our final user study, we found that groups were able to work together to create 

project groups in ProjectSpot’s system.  While we recognize that there is room for improvement, 

we deduced from this study that ProjectSpot provides the necessary functionality for its users to 

form project groups.  Both of the groups we studied were able to create a Group page in the 

system and have all of the users join the group.  The process made sense to the users, and users 

even got excited when they saw the other users’ “requests to join” appear on their respective 

invitations pages.  

Five out of the six users ranked a 4 or a 5 for “Did the process of creating a group make 

sense?”.  This result was the same for the question “Did the process of adding members to the 

group make sense?”. Users also ranked ProjectSpot highly for questions pertaining to whether or 

not users enjoyed using the system, and questions that asked users to indicate how likely they 

would be to use ProjectSpot if it was available for use.  This makes us confident that users will 

understand the system well enough to use it successfully, which, in turn, will help the students in 

the Computer Science Department coordinate MQPs.  The full results of this study can be found 

in Appendix H.  
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8 Conclusions 

8.1 Future adoption by the Computer Science Department 

 We based our project around the need for a system that would allow for students to 

better-coordinate their senior projects.  Since the MQP is such an important capstone of one’s 

educational experience at WPI, finding the right project with the best-suited group and advisor is 

vital.  When we began our project, we believed that students should be given the chance to 

review all their options for an MQP in order to make an informed decision about who they will 

be working with for the majority of the academic year. 

 We studied users, we designed the system, we implemented the system, and we studied 

users again. We set-out to create the best possible system within our time constraints of three 

terms to fill this need.  However, none of this would directly benefit any of the students in the 

department unless we obtained the Computer Science Department’s commitment to ProjectSpot 

after our graduation.  This is why we told the department head and the professor in-charge of 

coordinating Computer Science MQP groups about our project.  Our goal was to get their 

approval for the department to adopt ProjectSpot as a tool available to students. 

 

8.2 Future Work 

 In three terms, we were able to create a fully-functioning system that users could login to 

and look for project groups, students, and advisors.  However, if we had an unlimited amount of 

time, there are many more features we would have added to the system.  There are also several 

improvements we would have made.  This is why we feel that this project could be continued by 

future groups at WPI.  In this section, we aim to discuss future work for ProjectSpot.  We hope 

that our remaining, unfinished goals will eventually be made a reality by another group. 

8.2.1 Recommender System 

When searching for an MQP group, it would be useful to use a weighting system where 

certain results are displayed first, driven by information held in the various profiles, to help sort 

search results. A similar system can be used when searching for more people to add to a group. 

When a user is searching for something in the system, he or she should be able to choose to filter 

in different ways, including this weighted search. For instance, say a user has indicated in the 
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individual profile that he or she is skilled in web development and database design.  In this 

scenario, two projects are in the system.  Both are web development projects, but one focuses on 

databases, while the other focuses on interface design.  When the user sorts his or her search 

results by this specific algorithm, the system will see what skills the user has, rank the two 

projects according to those skills, and then present the user with the two projects in the system, 

with the project focusing on databases in a higher spot than the project focusing on interface 

design. 

8.2.2 Improved Notification System 

 Originally we had wanted to incorporate ProjectSpot with email.  We had even thought 

about creating a messaging system in ProjectSpot, where users could send messages back and 

forth.  We thought that this would be especially useful to students without MQPs who wanted to 

coordinate with individual students in the system; instead of just students coordinating with 

project groups, which is how the system currently works. 

In user studies, users have mentioned that if they were to use ProjectSpot, they would 

likely not login every day to check their invitations.  They indicated that having ProjectSpot send 

them an email as soon as an invitation was received would be useful.  Future groups that work on 

this project should consider implementing this, as it may encourage users to keep returning to 

ProjectSpot.  It will also help users coordinate projects in a faster, more efficient manner.  

However it is important to remember, that the overuse of email is becoming a burden on many 

people.  So despite the advantage of immediate notification, it is important to consider the 

disadvantage of email overload and people ignoring any emails sent from the system.  It is 

important to find a suitable balance between sending email notifications, and not sending any 

emails at all. 

8.2.3 The Cycle of ProjectSpot 

 One of the most important parts of any system, especially one in education, is that it 

remains up-to-date.  Since students cycle through college every four years or so, and thus it is 

necessary to remove these students from the system.  Also, since ProjectSpot has project groups 

that end after a year, these groups need to either be removed, or updated for new members to 

take them on.  Currently in place are “Admin Pages” that will allow system administrators to 

delete both users and groups from the system.  Unfortunately, we did not have time to design and 
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implement a sophisticated system that would update groups and users in ProjectSpot 

automatically.  One of the most important things for the next group to work on this project would 

be to develop an intelligent way to clear out old groups and old users. 

 This is a delicate issue, since not every MQP group is the same.  It would be dangerous to 

have the system automatically clear out old groups at the end of the academic year.  Some MQPs 

will be active for three terms, but some may go over this and even take more than a year to 

complete.  There is also the opposite problem where a group may only be active for one term, 

and then it sits idle in the system for the remainder of the year.  This could confuse students that 

wanted to join the group.  Students would request to join the group in ProjectSpot, and never 

hear a response for the project would already be over.   

There is a similar problem for students in the system.  Even though students normally 

graduate in four years, some make take five years or even more to get their degrees.  There is 

also currently no way to “close” a project group.  The group members should be able to indicate 

that they do not want any new members to join.  Groups can be deleted once all members of the 

group leave, but we thought it might be an important for ProjectSpot to have a state where 

groups can be archived.  This way, groups could be re-opened if new member wanted to join in 

subsequent years, or if the current group members decided to change the project. 

If this situation is not dealt with in a suitable manner, it could mean the downfall of 

ProjectSpot.  While the system may work well now as there is no information yet in the system 

(new or old), after this year it could be cluttered with old projects and graduated students if the 

system administrators do not remove them.  It is unrealistic to have the system depend so much 

on the system administrator for this, which is why this issue should be carefully evaluated and 

solved by the next project group. 

 

8.3 Our Experience with the Project 

 For the past year, we have committed ourselves to this project.  As we have said from the 

beginning, we wanted to leave a system behind that would help our fellow students in the 

Computer Science Department.  That is why we set out to develop this piece of software that 

became ProjectSpot.  It took a great deal of time and effort, but we now have a completed system 

that is fully functional.  In order to reach this great achievement, we had to apply many of the 

skills that we learned here during our time here at WPI.  We also gained new skills through the 
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process of researching, evaluating, and creating ProjectSpot. 

8.3.1 Skills and Tools Used 

 From our Computer Science courses here at WPI, we learned about the importance of 

design patterns, and with that, the importance of developing software in a structured, organized, 

and well-documented manner.  Since we were both working on the codebase multiple times a 

day, we had to make sure the code was well-structured and understandable to all who would see 

it. 

 One important skill that we applied to this project was the use of source control.  Source 

control is so important, because it tracks the changes to the system so developers can experiment 

with new features without having to jeopardize the working version of the system. It also 

allowed both of us to work on the codebase at the same time, which was crucial to the success of 

our project.  By use of our previous knowledge, we were able to set up a git repository and have 

it hosted on GitHub.  This initial set up of source control was one of the fundamental skills we 

exercised when working on this project.  

8.3.2 Skills and Tools Learned 

We learned that it is important to understand what requirements you have for a system 

before you begin to build it.  We found this when we designed our entire system around a 

database that followed the Wordpress database structure.  Once we found this would not suit our 

needs, we had to stop our project to redesign a new database.  While it was interesting to try out 

a novel database design structure, it would have been better if we had just followed the 

conventional methods for designing a database from the start. 

From our Advisor, Professor David C. Brown, we learned the importance of obtaining 

measurable information from users.  While asking users questions such as “What was not 

straightforward [about the system]?” (See Appendix E) gave us good information, questions that 

had users rank the software on a 1-5 scale really gave us the most useful information.  By 

analyzing these results, we could determine which parts of the system we needed to focus on 

improving.  We learned that user study questionnaires were much more than just a series of 

questions.  We had to spend a great deal of time planning and thinking out our questions.  We 

learned a very important fact: decide exactly what you want to learn from users. Then plan the 

study.  Everything has to be based around what information you want to learn.  This knowledge 
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will help us in our careers when assessing the needs of our customers. 

With this experience, we learned how to work on a large-scale software project.  It was 

important for us to communicate effectively and work together.  There were many different 

pieces that went into this project, and we had to keep a schedule throughout the course of the 

year so that we had enough time to complete everything.  It was definitely difficult to divide the 

work equally between us with such a large scope of tasks we needed to accomplish.  We learned 

about effective time management skills, and we learned how to force ourselves to adhere to strict 

deadlines. 

 

8.4 Access and Use of the System 

The system is currently available for use.  It is hosted at the domain 

https://projectspot.cs.wpi.edu/.   

All of the code for ProjectSpot is available from GitHub.  It can be accessed from 

https://github.com/irreama/ProjectSpot.  The code can also be accessed by logging into 

projectspot from the cs.wpi.edu servers. 

New members should add themselves to the alias projectspot@wpi.edu for maintenance 

of the system.  This alias will be accessible through Michael Voorhis, the System Administrator 

and Lab Manager of the Computer Science Department at WPI. 

  

https://projectspot.cs.wpi.edu/
https://github.com/irreama/ProjectSpot
mailto:projectspot@wpi.edu


65 

 

9 References 

Apache Contributors (2014), "Frequently Asked Questions," 

http://wiki.apache.org/httpd/FAQ#What_is_Apache.3F, Accessed 2/28/2014 

 

S. Chacon (2009), “1.1 Getting Started - About Version Control”, Pro Git, http://git-

scm.com/book/en/Getting-Started-About-Version-Control, Accessed 2/28/2014 

 

S. Chacon (2009), “1.2 Getting Started - A Short History of Git”, Pro Git, http://git-

scm.com/book/en/Getting-Started-A-Short-History-of-Git, Accessed 2/20/14 

 

S. Chacon (2009), "About," Pro Git, http://git-scm.com/about/distributed, Accessed 2/28/2014 

 

S. Chacon (2009), "What a Branch Is," Pro Git, http://git-scm.com/book/en/Git-Branching-

What-a-Branch-Is, Accessed 2/28/2014 

 

CodeProject.com (2008), “Simple Example of MVC (Model View Controller) Design Pattern for 

Abstraction”, http://www.codeproject.com/Articles/25057/Simple-Example-of-MVC-Model-

View-Controller-Design, Accessed 2/21/14 

 

F. Coelho, “PHP-related vulnerabilities on the National Vulnerability Database”, 

Coelho, http://www.coelho.net/php_cve.html , Accessed 2/15/2014 

 

J.J. Colao (2012), “With 60 Million Websites, WordPress Rules The Web. So Where’s The 

Money?”, Forbes, http://www.forbes.com/sites/jjcolao/2012/09/05/the-internets-mother-tongue/, 

Accessed 10/17/13 

 

Cunningham (2012), “Model View Controller History”, 

http://c2.com/cgi/wiki?ModelViewControllerHistory, Accessed 2/21/14 

 

EllisLab Inc., “CodeIgniter at a Glance,” http://ellislab.com/codeigniter/user-

guide/overview/at_a_glance.html, Ellis Labs, Accessed 11/26/2013 

 

EllisLab Inc., "Model-View-Controller," EllisLab, inc., http://ellislab.com/codeigniter/user-

guide/overview/mvc.html, Accessed 2/28/2014 

 

Encyclopedia Brittanica (2013), "SQL," 

http://www.britannica.com/EBchecked/topic/569684/SQL, Accessed 2/28/2014 

 

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee (1999), 

"Hypertext Transfer Protocol -- HTTP/1.1," http://tools.ietf.org/html/rfc2616, Accessed 

2/28/2014 

 

A. Goldman, The Heart of the Matter, http://alumni.berkeley.edu/news/california-

magazine/winter-2010-inside-out/heart-matter, Accessed 10/15/13 

 

http://wiki.apache.org/httpd/FAQ#What_is_Apache.3F
http://git-scm.com/book/en/Getting-Started-About-Version-Control
http://git-scm.com/book/en/Getting-Started-About-Version-Control
http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git
http://git-scm.com/book/en/Getting-Started-A-Short-History-of-Git
http://git-scm.com/about/distributed
http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is
http://git-scm.com/book/en/Git-Branching-What-a-Branch-Is
http://www.codeproject.com/Articles/25057/Simple-Example-of-MVC-Model-View-Controller-Design
http://www.codeproject.com/Articles/25057/Simple-Example-of-MVC-Model-View-Controller-Design
https://exchange.wpi.edu/owa/redir.aspx?C=yTOpraejKkWl02i-EPtoB1q9W0Qf_9AIeGaIcmwxhDsiDoYxIbEUUFbmXzDP2C-ddHWwYygpyVI.&URL=http%3a%2f%2fwww.coelho.net%2fphp_cve.html
http://www.forbes.com/sites/jjcolao/2012/09/05/the-internets-mother-tongue/
http://c2.com/cgi/wiki?ModelViewControllerHistory
http://ellislab.com/codeigniter/user-guide/overview/at_a_glance.html
http://ellislab.com/codeigniter/user-guide/overview/at_a_glance.html
http://ellislab.com/codeigniter/user-guide/overview/mvc.html
http://ellislab.com/codeigniter/user-guide/overview/mvc.html
http://www.britannica.com/EBchecked/topic/569684/SQL
http://tools.ietf.org/html/rfc2616
http://alumni.berkeley.edu/news/california-magazine/winter-2010-inside-out/heart-matter
http://alumni.berkeley.edu/news/california-magazine/winter-2010-inside-out/heart-matter


66 

 

S. Hanenburg (2012), An Experiment About Static and Dynamic Type Systems, 

https://courses.cs.washington.edu/courses/cse590n/10au/hanenberg-oopsla2010.pdf, Institute for 

Computer Science and Business Information Systems, Accessed 11/26/2013 

 

A. Ide (2013), “PHP Just Grows & Grows”, Netcraft, 
http://news.netcraft.com/archives/2013/01/31/php-just-grows-grows.html, Accessed 2/15/2014 

 

S. James (2007), "Web Single Sign-On Systems," http://www.cs.wustl.edu/~jain/cse571-

07/ftp/websso/, Accessed 2/28/2014 

 

J. Kim & S. Lee & H. Lee, Decision Tree Induction Techniques for E-Commerce 

Recommendation Systems, http://isi.cbs.nl/iamamember/CD2/pdf/440.PDF, Accessed 10/15/13 

 

L. Kujawa (2013), “Performance benchmark of popular PHP frameworks”, 

 http://systemsarchitect.net/performance-benchmark-of-popular-php-frameworks/ , 

Systemsarchitect, Accessed 2/22/2014 

 

LINFO (2006), "Directory Definition," http://www.linfo.org/directory.html, Accessed 2/28/2014 

 

LINFO (2006), "Linux Definition," http://www.linfo.org/linuxdef.html, Accessed 2/28/2014 

 

LINFO (2007), "Root Directory Definition," http://www.linfo.org/root_directory.html, Accessed 

2/28/2014 

 

P. Melville & V. Sindhwani, Recommender Systems, http://www.prem-

melville.com/publications/recommender-systems-eml2010.pdf, Accessed 10/14/13 

 

R. Meteren & M. Someren, Using Content-Based Filtering for Recommendation, 

http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf, Accessed 10/14/13 

 

Microsoft, “Structured Query Language (SQL)”, http://msdn.microsoft.com/en-

gb/library/windows/desktop/ms714670(v=vs.85).aspx, Accessed 10/15/13 

 

okcupid, “Match Percentages”, http://www.okcupid.com/help/match-percentages, Accessed 

10/15/13 

 

Oracle, "MySQL Glossary," 

http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_schema, Accessed 2/28/2014 

 

D. Peterson (2008), “Rasmus Lerdorf: PHP Frameworks? Think Again.”,  

Sitepoint, http://www.sitepoint.com/rasmus-lerdorf-php-frameworks-think-again/ , Accessed 

2/16/2014 

 

E. Rescorla (2000), "HTTP Over TLS," https://tools.ietf.org/html/rfc2818, accessed 3/1/2014 

 

 

https://courses.cs.washington.edu/courses/cse590n/10au/hanenberg-oopsla2010.pdf
https://exchange.wpi.edu/owa/redir.aspx?C=yTOpraejKkWl02i-EPtoB1q9W0Qf_9AIeGaIcmwxhDsiDoYxIbEUUFbmXzDP2C-ddHWwYygpyVI.&URL=http%3a%2f%2fnews.netcraft.com%2farchives%2f2013%2f01%2f31%2fphp-just-grows-grows.html
http://www.cs.wustl.edu/~jain/cse571-07/ftp/websso/
http://www.cs.wustl.edu/~jain/cse571-07/ftp/websso/
http://isi.cbs.nl/iamamember/CD2/pdf/440.PDF
https://exchange.wpi.edu/owa/redir.aspx?C=AbQV8rrNgUKaSTrsxWDSzOqglo6fBNEIsxkIy9LHT7k5nY6CfAIyncAhC91_TmabStjCCeeoBPg.&URL=http%3a%2f%2fsystemsarchitect.net%2fperformance-benchmark-of-popular-php-frameworks%2f
http://www.linfo.org/directory.html
http://www.linfo.org/linuxdef.html
http://www.linfo.org/root_directory.html
http://www.prem-melville.com/publications/recommender-systems-eml2010.pdf
http://www.prem-melville.com/publications/recommender-systems-eml2010.pdf
http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf
http://msdn.microsoft.com/en-gb/library/windows/desktop/ms714670(v=vs.85).aspx
http://msdn.microsoft.com/en-gb/library/windows/desktop/ms714670(v=vs.85).aspx
http://www.okcupid.com/help/match-percentages
http://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_schema
https://exchange.wpi.edu/owa/redir.aspx?C=yTOpraejKkWl02i-EPtoB1q9W0Qf_9AIeGaIcmwxhDsiDoYxIbEUUFbmXzDP2C-ddHWwYygpyVI.&URL=http%3a%2f%2fwww.sitepoint.com%2frasmus-lerdorf-php-frameworks-think-again%2f
https://tools.ietf.org/html/rfc2818


67 

 

Wikipedia contributors (2014), “Codebase,” Wikipedia, the Free Encyclopedia, 

http://en.wikipedia.org/w/index.php?title=Codebase&oldid=585720865, Accessed 3/7/2014 

 

Wikipedia contributors (2014), “Database,” Wikipedia, The Free Encyclopedia, 

http://en.wikipedia.org/w/index.php?title=Database&oldid=598462722, Accessed 3/7/2014 

 

Wikipedia contributors (2014), “Database normalization,” Wikipedia, The Free 

Encyclopedia,http://en.wikipedia.org/w/index.php?title=Database_normalization&oldid=595742

341, Accessed 3/7/2014 

 

Wikipedia contributors (2014), “High-level programming language,” Wikipedia, the Free 

Encyclopedia, http://en.wikipedia.org/w/index.php?title=High-

level_programming_language&oldid=5980366866, Accessed 3/7/2014 

 

Wikipedia contributors (2014), “Server (computing),” Wikipedia, the Free Encyclopedia, 

http://en.wikipedia.org/w/index.php?title=Server_(computing)&oldid=598383715, Accessed 

3/7/2014 

 

WordPress, “Database Description”, http://codex.wordpress.org/Database_Description, Accessed 

10/17/13 

 

WPI, "Major Qualifying Project," http://www.wpi.edu/academics/ugradstudies/mqp.html, 

Accessed 2/28/2014 

 

WPI, “Project Program”, http://www.wpi.edu/academics/Projects/available.html, Accessed 

10/15/13 

 

WPI Gordon Library, “IQP and MQP Reports”, https://www.wpi.edu/academics/library/find/iqp-

mqp.html, Accessed 10/6/13 

 

W3C, "HTML & CSS," http://www.w3.org/standards/webdesign/htmlcss, Accessed 2/28/2014 

 

W3Schools, “HTML Introduction”, http://www.w3schools.com/html/html_intro.asp, Accessed 

10/15/13 

 

 

 

  

http://en.wikipedia.org/w/index.php?title=Codebase&oldid=585720865
https://exchange.wpi.edu/owa/redir.aspx?C=voWoCE8oWE24Z75I_elhIRnmFCbiDdEIQpFFQEYChVRCNtomo45-XJfURWfPp66X_-JQ46C25Pk.&URL=http%3a%2f%2fen.wikipedia.org%2fw%2findex.php%3ftitle%3dDatabase%26oldid%3d598462722
https://exchange.wpi.edu/owa/redir.aspx?C=iXECNc3qM0CBgBwMeP_uvbxXf7CUDtEIt9nfSgCwd0ynIelbMmz-KkeLzc5BXu2stttoL-pR-uQ.&URL=http%3a%2f%2fen.wikipedia.org%2fw%2findex.php%3ftitle%3dDatabase_normalization%26oldid%3d595742341
https://exchange.wpi.edu/owa/redir.aspx?C=iXECNc3qM0CBgBwMeP_uvbxXf7CUDtEIt9nfSgCwd0ynIelbMmz-KkeLzc5BXu2stttoL-pR-uQ.&URL=http%3a%2f%2fen.wikipedia.org%2fw%2findex.php%3ftitle%3dDatabase_normalization%26oldid%3d595742341
http://en.wikipedia.org/w/index.php?title=High-level_programming_language&oldid=5980366866
http://en.wikipedia.org/w/index.php?title=High-level_programming_language&oldid=5980366866
http://en.wikipedia.org/w/index.php?title=Server_(computing)&oldid=598383715
http://codex.wordpress.org/Database_Description
http://www.wpi.edu/academics/ugradstudies/mqp.html
http://www.wpi.edu/academics/Projects/available.html
https://www.wpi.edu/academics/library/find/iqp-mqp.html
https://www.wpi.edu/academics/library/find/iqp-mqp.html
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3schools.com/html/html_intro.asp


68 

 

Appendix A: Initial Survey Questions 

● What is your Major? 

● Are you going away for MQP? 

● What resources did you use to find your MQP? 

● Did you find you Project, Group,  or Advisor first? 

● Did someone refer you to your group, project, advisor & who? 

● Who came up with the Project? (You, Advisor, Group/member, Company) 

● How many people are in your MQP group? 

● How did you find them & How did they find you? 

● Are you working with any different majors/what are their majors? 

● Was your partner(s) skill set important information to you? 

 

● Rank how important it was to know your partner(s) skill sets before joining group 

o 0 - didn’t matter --- 10 - super important 

 

● What resources did you use to find your advisor? 

● Did you know your advisor before the project? 

● Did your other group members (# & how many) know the advisor before the project? 

● Why/based on what criteria did you choose your advisor? 

 

● Was your advisor’s subject interest important to you (rank) 

o 0 - didn’t matter --- 10 - super important 

 

● Did you attend the CS MQP projects day last year by the advisors? 

 

● Rate the usefulness of that day with regards to finding an MQP 

o 0 – not useful --- 10 – super-useful 

 

● How would you rate the MQP-finding experience 

o 0 - no effort/ easy --- 10 - difficult/almost didn’t find an MQP 
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● Name 3 reasons you chose to go away for MQP/Name 3 reasons you chose to stay on 

campus for MQP 

● What would have made the process easier? (easy to find a project, knowing  group, better 

skill sets in group, etc.) 
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Appendix B: Initial Survey Responses 
 

 What is your Major 

User 1: CS 

User 2: IMGD-tech 

User 3: RBE/CS 

User 4: CS 

User 5: CS 

User 6: CS 

 

 What resources did you use to find your MQP 

User 1: mostly emails from faculty saying where centers were 

User 2: outlook email, personal networking (knowing people on campus) 

User 3: looked on website a little, but wasn’t much info, mostly just emailed out to 

professors looking for projects (didn’t have any ideas) RBE project website is really out 

of date (when to 3 different professors, looking for kinds of project they would have) 

User 4: talked to a professor (only one), went to prof. proj. presentation day 

User 5: went to global fair, MQP in Budapest 

User 6: currently in the process of looking for one (no advisor, no project, potential 

partner), have been looking on prof websites, decided I would need to come up with own 

projects, want to find something related to programming language theory (no profs 

around), freaking out about grad school admissions, talking to profs 

 

 Did you find you Project, Group,  or Advisor first 

User 1: advisor 

User 2: group 

User 3: advisor 

User 4: advisor 

User 5: advisor (apply MQP process) 

User 6: partner 

 

 Did someone refer you to your group, project, advisor & who 

User 1: No, the advisor sent an email to all the majors (Finkel) 

User 2: Yes, [student: name omitted], first partner helped [student: name omitted] find 

others 

 (group as a whole decided on proj and advisors) 

User 3: A few different people told me I should talk to my advisor (wanted to focus more 

on RBE + software), just friends/other professors (academic advisor) 

User 4: both talked to same professor, set us up, knew we wanted to work together, gave 

us some project options 

User 5: previous academic advisor [advisor: name omitted] 

User 6: knew him from outside CS, don’t remember, just talking about MQPS and he 

didn’t have one, a friend 

 

 Who came up with the Project? (You, Advisor, Group/member, Company/Sponsor) 

User 1: Don’t have a project yet, probably by the company, typical with project center 
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User 2: a group member (pitched idea), were other ideas as well 

User 3: [advisors: names omitted] Advisor had an idea for a project, wasn’t concrete until 

A Term (was away D Term on IQP) – robot learns to play wack-a-mole 

User 4: Our advisor had the basics of what we wanted (continued past MQP), picked a lot 

of details ourselves w/ general ideas, formed MQP to our interests 

User 5: the Budapest people 

User 6: don’t know how to find an MQP-sized problem in this field, posted on forum 

looking for project ideas, going to email [advisor: name omitted] (lambda-the-

ultimate.org) community of programming language researchers 

 

 How many people are in your MQP group 

User 1: (not sure) 3? 

User 2: 5 (including) 

User 3: 2 (including) (other is RBE/IMGD) 

User 4: 2 (including) 

User 5: 2 (including) – didn’t like that person 

User 6: probably 2, maybe 3, advised against one by self 

 

 How did you find them & How did they find you 

User 1: they were also going away 

User 2: I know a guy who knows a guy…some people who were just looking for group 

that were referred, accidentally added to someones mqp email, [name omitted] offered 

her a spot, just people knowing other people in the program 

User 3: they also went to the same advisor separately [name omitted] advisor asked if you 

knew him, met up  

User 4: found each other through professor, knew each other from soft eng, but didn’t 

think of working together until professor suggested it 

User 5: you apply, the only two who went (only 4 spaces, usually more people go) 

User 6: friend, know each other, both looking for MQP, his previous proposed MQP fell 

through 

 

 Are you working with any different majors/what are their majors 

User 1: (not sure) ECE majors are going, don’t know if in group 

User 2: IMGD-CS double majors (some art some tech) 

User 3: RBE/IMGD double major (tech) 

User 4: just CS 

User 5: CS 

User 6: CS 

 

 Was your partner(s) skill set important information to you? 

User 1:  Not in the decision, because going away, didn’t pick group, would be reassuring 

(would have requested one who is sure of skills to be in group) 

User 2: Yes, because most IMGD projects need a mix of tech and art (wanted it to be 

even) 

User 3: it’s important in our process of doing the project, felt a little nervous because 

signed up on the project w/ advisor w/o a team or idea. you didn’t know who you’d be 
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working with, felt a little scary. (thought might be a good partner b/c like professor c.) 

had had some classes with him before 

User 4: Yes, but not extremely so. Knew already that he was more organized & had 

strengths I didn’t have; good to have balance in a group (didn’t need 2 people coding 

constantly) 

User 5: of course 

User 6: sort of, been in some classes before, had a feeling he’s pretty good, area of 

specialization isn’t the same as mine, both looking for something, so he would do in my 

area. would have liked to work with someone else in PL research, those people don’t 

exist! 

 

 Rank how important it was to know your partner(s) skill sets before joining group  

0 - didn’t matter --- 10 - super important 

User 1: 8 (important in planning/doesn’t want to have to do all the work) 

User 2: 8 

User 3: 2.5 

User 4: 6 

User 5: 10 think it’s really important 

User 6: fairly good programmer, 3 

 

 What resources did you use to find your advisor 

User 1: email, IQP advisor is the ECE advisor going, helped provide info [advisor: name 

omitted] 

User 2: I didn’t actually find our advisor, discussed as a group who would be “top-picks”, 

sent emails to those, whoever responded first was your advisor. 3/4 (1 no, too many other 

groups, 2 yes) 

User 3: emailed them & word of mouth told him who/who to email (skyped from 

Australia) 

User 4: had classes with him (knew he would be a good professor to work with), just 

went to him 

User 5: only one advisor (one WPI, one Budapest) 

User 6: aren’t a whole lot of professors maybe [professors names omitted] 

 

 Did you know your advisor before the project 

User 1: Did not, just knew name 

User 2: Knew of him, hadn’t had any classes with either beforehand 

[advisor: name omitted] 

User 3: Not really, no (didn’t have a class with her before) 

User 4: Yes, took multiple classes (knew each other fairly well) 

User 5: No 

User 6: yes, taken courses with both [professors names omitted] 

 

 

 Did your other group members (# & how many) know the advisor before the project 

User 1: maybe? 

User 2: both art students knew the art advisor beforehand, and one tech knew tech advisor 
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beforehand  

User 3: I’m not sure, but he had a summer internship with her, got to know her better 

User 4: Yes, both met him in the same class 

User 5: No [advisor: name omitted] 

User 6: not sure 

 

 Why/based on what criteria did you choose your advisor 

User 1: he was the only prof going to silicon valley, heard good things, if it was a professor 

I’d heard of who was bad I wouldn’t have good 

User 2: chose it on the criteria that he teaches a lot of CS courses. knew that he had technical 

experience, has done MQPs before, knew what he was doing, Art kids really liked art guy 

User 3: her project ideas & research areas seemed interesting 

User 4: Knew he was easy to work with, got along well, knowledge in areas wanted to do 

project in, knew he had a list of projects (from presentation) that I would be interested in. 

User 5: didn’t get to choose, chose project center oversea research experience 

User 6: that they would advise the kind of project that I wanted to have, deciding the project, 

then building the project around that (why didn’t want to go off campus bc forced to work on 

that) 

 

 Was your advisor’s subject interest important to you, specific area of cs (rank) 
0 - didn’t matter --- 10 - super important 

User 1: nice to know, wouldn’t have affected decision, 7 

User 2: 6.5 (more important that knew how to run an MQP) !# of mqps done!! 

User 3: 7 (was important factor) 

User 4: 8 (yes!) 

User 5: Yes 10 

User 6: 7 ultimate criteria was willingness 

 

 

 Did you attend the CS MQP projects day last year by the advisors  

User 1: No (would have gone but couldn’t) 

User 2: no (got email & deleted) 

User 3: No (don’t even know when that was) Knew that most of the CS projects wouldn’t 

apply to RBE, really needed an RBE project (no idea when the RBE’s is, RBE dept sucks 

at doing things on time/organizing & planning) 

User 4: Yes (when I was junior) 

AL : No 

User 6: No, scheduling conflict 

 

 Rate the usefulness of that day with regards to finding an MQP  
0 – not useful --- 10 – super-useful 

*IMGD HAVE to come up with own project pitch to professor 

User 4: 5 

 

 How would you rate the MQP-finding experience  
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0 - no effort/ easy --- 10 - difficult/almost didn’t find an MQP 

User 1: 3 (thinks MQP are easy to find/come up with, a lot of opportunities) 

User 2: 5 (once had a foot in the door, it was easier to accrue ppl, getting the process 

started was the hardest part, finding the initial person/group) 

User 3: 6 (hate the process for finding things, hard to make decisions, wasn’t necessarily 

hard to find MQPs to begin with) would be easier to make a decision if more upfront info 

on the options! (like numbers, they mean something! statistics) 

User 4: 6 

User 5: 0 (really easy, wasn’t hard to find) 

User 6: 9 this has been pretty hard! doing the way has been hard, hard to find who would 

work on it  

 

 Name 3 reasons you chose to go away for MQP 

/Name 3 reasons you chose to stay on campus for MQP 

User 1: 1.) cost/subsidized housing 2.) location, being able to go and explore different 

part of the country 3.) networking opportunities (going into the CS mecca out there) 

User 2: 1.) Money 2.) didn’t know Japanese, might of wanted to go to Silicon 3.) 

Girlfriend 4.) courses need to graduate (only offered one per term) 

User 3: 1.) Had already gone away for IQP/cost 2.) Wanted to have the time to spend w/ 

friends after being gone, wanted 4 terms 3.) Cost 

User 4: 1.) already went away for IQP 2.) knew there were really cool projects on campus 

(word of mouth) you can do CS anywhere & it’s still the same 3.) didn’t want to lose 

whole term of classes/do ID2050 again 

User 5: 1.) want new perspective from oversea experience 2.) graduate school at end of 

year, wanted to have MQP on application for apply 3.) wanted to travel 

TB 1.) wanted to choose what I would get to work on (nothing else mattered) 

 

 

 What would have made the process easier 

o easy to find 

o know them 

o skill sets 

User 1: When I was attempting to pitch my own MQP, I wished there was an MQP-

checklist form (this is my advisor, this is what I’m doing, abstract, partners, have 

someone sign it) 

User 2: A central place where everyone in the major could go “looking for group”, flurry 

of email is ridiculous, forum, email alias to send to find others who aren’t in a group yet. 

Electronically would be easier than important, meeting night might work, but be harder 

for people to go and have to worry 

User 3: Would have made it better would be a unified place (like a website or something) 

WPI’s/RBEs websites suck, some way to find unified list of all projects, ideas that 

advisors have, ideas that students have or just looking for a group (instead of spamming 

undergrads at cs.wpi.edu!) a big list! something that everyone would actually use it 

would be the key thing (especially advisors) is a page for RBE professors to put their 
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MQPs, but don’t usually post it, and rarely post it early enough 

User 4: it would have been nice if after the presentation there was a centeralized list of all 

projects, because no way to see them after that day (luckily my partner wrote them all 

down) – I didn’t have time to write them down. (Centralized listing overall). Couldn’t 

“see” what projects, always had to talk to someone. I got lucky with a partner. Would 

have been nice to see who was available/looking for MQPs (students) : MQP seems like 

this ambiguous thing that you just have to DO. would be easy if you had a list to look at 

and compare. 

User 5: project pitch day, good idea, should market it more, should be on the website 

(didn’t know about it).; would have been better to pick a partner, picking a partner can be 

really hard. sometimes you know the ppl, but don’t always know what they’re good at. 

better to pick a working partner, not just a friend 

User 6: some sort of resource how to find a project in your sub-field, having Professor 

[name omitted] on campus 

COMMENTS: 

-can’t make money off of what you do –Professor [name omitted] going away, deterred 

from choosing own MQP –difficulty worried about finishing –worried about finding 

people to do it with (wasn’t sure if people would want to do, foundations area/turring 

machine simulator, type of state machine) wanted to give it to TAs, feels like would have 

had trouble finding partners & didn’t want to work alone, search by types of interests, 

have to had taken the certain classes to want to work with! (foundations!), partner is what 

makes/breaks MQP experience, they should at least like what they’re doing so they’ll do 

work 

-overwhelming thing I’ve heard, (I’m going into academia) HOW DO YOU GET 

STARTED how do you start doing research – find a mentor (what I’ve been told), not a 

lot of resources for finding, networking researchers don’t have problems finding mentors. 

searching online for advise, friend in academia 
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Appendix C: Database Designs 
 

 

Figure 14: ProjectSpot's Database Structure 

 

 

 

This diagram represents the final design of our database. 
  
Each large box represents a table in the database. 
Every value inside the box represents a field in that database. 
The lines connecting the boxes signify a relation between those tables. 
For example, ps_users  has a relation between itself and the ps_user_tag_rel table. 
which has a relation between itself and the ps_tags table. 
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Appendix D: UML Sequence Diagrams 
 

 

Figure 15: UML Diagram for Editing a Group 
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Figure 16: UML Diagram for Creating New Group 

 

 

 

 

Figure 17: UML Diagram for Viewing a Group 
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Figure 18: UML Diagram for Editing and Viewing a Profile 
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Appendix E: User Study on Tasks in Interface Questionnaire  
 

[This was a printout for each user to fill-in by hand. Some of the formatting here was changed] 

 

Questionnaire 

User:  ______________________________ 

Case:  ______________________________ 

 

You may look at the interface while you answer these questions.  

 

Rank the following parts of the site (in your opinion) for layout/organization, use of color, ease 

of understanding, and usefulness to your objective on the following scale: 

1 – cluttered/confusing layout, disliked/confusing color, couldn’t understand, not useful 

2 – a bit better, but overall was poor 

3 – no opinion, indifferent, was OK 

4 – good overall 

5 – well-spaced/understandable layout, good use of color, very understandable, useful to user 

 

Dashboard 

Layout/Organization: 1  2  3  4  5 

Use of Color:   1  2  3  4  5 

Ease of Understanding: 1  2  3  4  5 

Usefulness to Objective: 1  2  3  4  5 

 

Profile 

Layout/Organization: 1  2  3  4  5 

Use of Color:   1  2  3  4  5 

Ease of Understanding: 1  2  3  4  5 

Usefulness to Objective: 1  2  3  4  5 

 

 

Group 

Layout/Organization: 1  2  3  4  5 

Use of Color:   1  2  3  4  5 

Ease of Understanding: 1  2  3  4  5 

Usefulness to Objective: 1  2  3  4  5 

 

 



81 

 

Find 

Layout/Organization: 1  2  3  4  5 

Use of Color:   1  2  3  4  5 

Ease of Understanding: 1  2  3  4  5 

Usefulness to Objective: 1  2  3  4  5 

 

 

Banner 

Layout/Organization:  1  2  3  4 

 5 

Use of Color:    1  2  3  4 

 5 

Ease of Understanding:  1  2  3  4 

 5 

Usefulness to finding MQP:  1  2  3  4 

 5 

 

Impression of the Website overall 

Layout/Organization:  1  2  3  4 

 5 

Use of Color:    1  2  3  4 

 5 

Ease of Understanding:  1  2  3  4 

 5 

Usefulness to finding MQP:  1  2  3  4 

 5 
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In terms of the Banner; 

 How do you feel about the number of items on the banner? 

o no opinion 

o it’s fine 

o too sparse 

o too crowded 

o it’s perfect 

 

 

 

 

In terms of the “Find” page; 

How time consuming was the process to find what you needed? 

took too long    average time spent             was quick to find 

1   2   3   4   5 

Did filtering work the way you expected? 

no, was confusing       not sure        exactly as expected 

1   2   3   4   5 

Was the layout of the “Find” page useful to you? 

needs a better layout           not sure           great layout for use 

1   2   3   4   5 

Did viewing other profiles (user and group) from the Find page make sense? 

no, was confusing    not sure         made perfect sense 

1   2   3   4   5 

Was viewing the interests of other users useful to your objective? 

no, wasn’t useful       indifferent        was the most useful 

1   2   3   4   5 

 

 

 

In terms of the “Edit Profile” page; 

How time consuming was the process to find what you needed? 

took too long    average time spent   was quick to find 

1   2   3   4   5 

Was the layout of the “Edit Profile” page useful to you? 

needs a better layout           not sure         great layout for use 

1   2   3   4   5 

Did uploading a picture work the way you expected? 

no, was confusing       not sure        exactly as expected 

1   2   3   4   5 
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Did adding interests make sense? 

no, was confusing       not sure         made perfect sense 

1   2   3   4   5 

Did you find it useful to have interests listed as part of your profile? 

no, wasn’t useful       indifferent             was very useful 

1   2   3   4   5 

 

 

 

 

 

 

 

 

 

General Notes/Comments: 
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Open-Ended Questions 

User:  ______________________________ 

Case:  ______________________________ 

 

 

 Did anything overwhelm you? 

 

 

 

 

 

 

 

 

 What was straightforward? 

 

 

 

 

 

 

 

 

 What was not straightforward? 

 

 

 

 

 

 

 

 

 What did you like? 

 

 

 

 

 

 

 

 

 

 What could have been better? 
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Appendix F: Results from User Study of Tasks through the System 
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Notes:             

Most users did not like the gray buttons. Felt they looked "disabled"    

        

Many users in Case 2 were confused about adding their group member to the group. Felt the 

"Edit Group" page needed an option for adding members      

      

Users overall did not like the way that uploading a photo worked. The word "avatar" was 

confusing, and there were 2 buttons to click.        

    

Users generally liked the banner         

   

Most users did not like the LOOK of the Dashboard, but almost all found it very useful. (In 

studying users they all used links on the Dashboard before anything else)    

        

Users in Case 1 overall didn't have negative comments about the system. Users in Case 2 had 

more negative comments and a harder time navigating the system     

       

All 6 users were able to complete their respective tasks.      

      

Feedback on the system was positive overall        

    

One user stated that "Invites" should be called "Notifications" instead    

        

Limits on the Photo upload should be clearer        
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Appendix G: Group User Study Questionnaire 

[This was a printout for each user to fill-in by hand. Some of the formatting here was changed] 

 

Questionnaire 

User:  ______________________________ 

Case:  ______________________________ 

 

You may look at the interface while you answer these questions.  

 

How difficult was it for you and your partners to create a group for your project?  

impossible        neither easy nor difficult         extremely easy 

1   2   3   4   5 

 

Did the process of creating a group make sense?  

made no sense    made some sense        made perfect sense 

1   2   3   4   5 

 

How difficult was it to get all partners listed as members of the group?  

impossible        neither easy nor difficult         extremely easy 

1   2   3   4   5 

 

Did the process of adding members to the group make sense?  

made no sense    made some sense        made perfect sense 

1   2   3   4   5 

 

How difficult was it to use the Invitations page?  

impossible        neither easy nor difficult          extremely easy 

1   2   3   4   5 

 

Did the process of using the Invitations page make sense?  

made no sense     made some sense      made perfect sense 

1   2   3   4   5 

 

Did you enjoy using the system? 

disliked using it   using it was ok    loved using it 

1   2   3   4   5 

 

If you needed an MQP, how likely would you be to use the system for real to find a group? 

unlikely    somewhat likely       very likely 

1   2   3   4   5 

 

If you were in an MQP, how likely would you be to use the system for real to find project 

partners? 

unlikely    somewhat likely       very likely 

1   2   3   4   5 
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How likely would you be to use the system for real to find an advisor for a project? 

unlikely    somewhat likely       very likely 

1   2   3   4   5 

 

 

 

 

In terms of the “Find” page; 

How time consuming was the process to find what you needed? 

took too long    average time spent           was quick to find 

1   2   3   4   5 

Did filtering work the way you expected? 

no, was confusing       not sure                  exactly as expected 

1   2   3   4   5 

Was the layout of the “Find” page useful to you? 

needs a better layout           not sure                  great layout for use 

1   2   3   4   5 

Did viewing other profiles (user and group) from the Find page make sense? 

no, was confusing       not sure                   made perfect sense 

1   2   3   4   5 

 

 

 

 

In terms of the “Edit Group” page; 

How time consuming was the process to find what you needed? 

took too long    average time spent   was quick to find 

1   2   3   4   5 

Was the layout of the “Edit Group” page useful to you? 

needs a better layout         not sure         great layout for use 

1   2   3   4   5 

Did adding interests make sense? 

no, was confusing       not sure         made perfect sense 

1   2   3   4   5 

Do you find it useful to have interests listed as part of your group profile? 

no, wasn’t useful       indifferent             was very useful 

1   2   3   4   5 
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In terms of the “Edit Profile” page; 

How time consuming was the process to find what you needed? 

took too long    average time spent   was quick to find 

1   2   3   4   5 

Was the layout of the “Edit Profile” page useful to you? 

needs a better layout           not sure         great layout for use 

1   2   3   4   5 

Did adding interests make sense? 

no, was confusing       not sure         made perfect sense 

1   2   3   4   5 

Do you find it useful to have interests listed as part of your profile? 

no, wasn’t useful       indifferent             was very useful 

1   2   3   4   5  
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Open-Ended Questions 

User:  ______________________________ 

Case:  ______________________________ 

 

 

 Did anything overwhelm you? 

 

 

 

 

 

 

 

 

 What was straightforward? 

 

 

 

 

 

 

 

 

 What was not straightforward? 

 

 

 

 

 

 

 

 

 What did you like? 

 

 

 

 

 

 

 

 

 

 What could have been better? 
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Appendix H: Results from Group User Study 
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Appendix I: Available Interests for Users and Groups 

Algorithms 

Networks 

Network Security 

Operating Systems 

Programming Languages 

Artificial Intelligence 

Java 

Javascript 

pHp 

Python 

Ruby 

C/C++ 

Web Development 

Human-Computer Interaction 

Software Security 

Computation 

Databases 

Theoretical Computer Science 

Applied Computer Science 

Graphics 

Visualization 

Architecture 

Software Engineering 

Parallel Systems 

Concurrent Systems 

Distributed Systems 

Code Theory 

Data Structures 

Formal Methods 

Cryptography 
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Compilers 

Pattern Recognition 

Machine Learning 

Evolutionary Computation 

Natural Language Processing 

Data Mining 

Image Processing 

Information Security 

Information Retrieval 
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Appendix J: Screen Shots of Admin Pages 
 

 

Figure 19: Admin Panel Main Page 

 

 

 

Figure 20: Page for Adding and Removing System Administrators 
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Figure 21: Admin Page for Deleting Users 

 

 

 

Figure 22: Admin Page for Deleting Groups 
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Figure 23: Admin Page for Managing Resources Listed in ProjectSpot 

 

 

 

Figure 24: Admin Page for Editing a Resource 

 

 

 

Figure 25: Admin Page for Adding a New Resource 
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Figure 26: Admin Page for Managing Important Dates in ProjectSpot 

 

 

Figure 27: Admin Page for Adding a New Important Date 

 

 

Figure 28: Admin Page for Editing an Existing Important Date 
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