
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2017

Visualizing Contextual Information for Network
Vulnerability Management
Andrew Jack Mokotoff
Worcester Polytechnic Institute

Barrett Mitchell Wolfson
Worcester Polytechnic Institute

Zachary Reid Robbins
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Mokotoff, A. J., Wolfson, B. M., & Robbins, Z. R. (2017). Visualizing Contextual Information for Network Vulnerability Management.
Retrieved from https://digitalcommons.wpi.edu/mqp-all/3032

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3032&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3032?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3032&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Visualizing Contextual Information for
Network Vulnerability Management

Major Qualifying Project

Advisor:

PROFESSOR L. HARRISON

Written By:

ANDREW MOKOTOFF
ZACHARY ROBBINS
BARRETT WOLFSON

A Major Qualifying Project Report submitted to the Faculty
of the WORCESTER POLYTECHNIC INSTITUTE in partial

fulfillment of the requirements for the Degree of Bachelor of
Science in Computer Science.

DATE: MARCH 24TH, 2017

ABSTRACT

The threat of data breach rises every day, and many organizations lack the resources to patch
every vulnerability they might have. Yet, these organizations do not prioritize what vulnerabilities
to patch in an optimal way, in part due to a lack of context needed to make these decisions. Our
team proposes the Vulnerability Visualization (VV) tool, a web visualization dashboard for
increasing analyst prioritization capabilities through visualization of context for network scans.
Evaluations demonstrate that the VV tool enhances the vulnerability management (VM) process
through augmenting the discovery and prioritization of vulnerabilities. We show that adding
context to the VM process through visualization allows people to make better decisions for
vulnerability remediation.

i

TABLE OF CONTENTS

Page

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Analyzing Modern Security Trends . 1

1.2 Defining Effective Vulnerability Management . 6

2 Background 10
2.1 Vulnerability Identification . 11

2.1.1 Analysis of Currently Used Tools . 11

2.1.2 More on Limitations of Current Tools . 13

2.2 Vulnerability Management, Analysis, and Response 13

2.2.1 Vulnerability Management . 15

2.3 Vulnerability Prioritization . 16

2.3.1 Probabilistic Attack Graphs . 16

2.3.2 Common Vulnerability Scoring System (CVSS) 16

2.4 Data Visualization . 19

2.4.1 Visualization in Security . 20

2.4.2 Hierarchical Visualization . 22

3 Fundamental Challenges in Vulnerability Management 25
3.1 Investigation and Research . 26

3.1.1 Background Research . 26

3.1.2 Survey Vulnerability Management Professionals 26

3.1.3 Interview NIST . 27

3.1.4 Attend IEEE VizSec 2016 Symposium . 30

3.2 Research Results and Project Direction . 32

3.2.1 Challenges with Context . 33

4 Building a Tool to Visualize Context 36

ii

TABLE OF CONTENTS

4.1 Project Design . 36

4.1.1 Technology Design Decisions . 36

4.1.2 Development Practices . 38

4.2 Project Results . 38

4.2.1 Zoomable Treemap . 39

4.2.2 Graphs . 41

4.2.3 Vulnerability List . 41

5 Evaluation 44
5.1 Case Study: VV vs. NV . 45

6 Conclusion 50
6.1 Future Work . 51

6.1.1 More Sources of Context . 51

6.1.2 Discover What Views are Most Useful . 51

6.1.3 Expand Functionality of Vulnerability List 52

Appendix A: Vulnerability Management Survey i

Bibliography ix

iii

LIST OF TABLES

TABLE Page

1.1 Number of security incidents with confirmed data loss in 2016. Incidents are broken

down by industry type and size of organization [1]. As can be seen, finance is much

more likely to be targeted than other organization types. 3

2.1 Comparison of vulnerability identification tools [2]. All currently available tools share

very similar functionality. Using a combination of these tools is often the most reliable

way to get an accurate reading of vulnerabilities in a system. 14

3.1 The FIPS 199 Security Categorization methodology in table format [3]. While there is

no one-stop solution to categorizing risk in information security, many frameworks

have been proposed that when applied can improve vulnerability management. FIPS

199 is NIST’s proposed standards for security categorization, and boasts usability

through simplicity. With three security objectives per information system, each with

three potential impact levels, FIPS 199 is a great starting point for vulnerability

management teams who are trying to build a prioritization and/or remediation pro-

cess. This categorization system influenced development of our final approach to

prioritization in this project. 29

iv

LIST OF FIGURES

FIGURE Page

1.1 The percent of breaches per threat actor motive over time [1]. While there was a steep

dip in 2012 in favor of espionage, finances has been the biggest motive of breaches

in the last few years. Despite how much technology has evolved over the years, the

motivations behind breaches have remained relatively constant. 2

1.2 The impact of 16 factors on the per capita cost of data breach (measured in US dollars)

[4]. Positive values mean a reduction of cost is the result of the factor being active

in a data breach situation. Therefore, factors like having an incident response team

mitigate the cost of a data breach, whereas a lost device makes a data breach cost more. 4

1.3 Time to compromise and exfiltration during a data breach [1]. In about 93% of data

breaches, compromise of the targeted system happened in minutes or less. Additionally,

in nearly all cases, exfiltration of targeted data occurred in days or less. 5

1.4 Mean time to identify and contain data breach incidents [4]. On average, most data

breach incidents remain undiscovered for 201 days, and once discovered, take 70 days

to contain/remediate. Considering almost all exfiltration happens in under a few days

(Figure 1.3), this paints a bleak picture for current vulnerability management tactics. 5

1.5 Graph of CVEs successfully exploited in 2015 [1]. The vast majority of successfully

exploited vulnerabilities are from years before 2015, with most occurring about 4-8

years prior. Clearly, focusing on only the most recently discovered vulnerabilities is an

ineffectual vulnerability management strategy by itself. 7

1.6 Diagram of effective prioritization. While prioritization plans differ from organiza-

tion to organization, generally they all aim to create a remediation plan through

consideration of situational factors and multiple information sources. 8

2.1 An example network configuration and probabilistic attack graph [5]. Probabilistic

attack graphs give analyst more information to help triage vulnerabilities and make

better decisions than using CVSS alone. These attack graphs show the likelihood of

each vulnerability in a chain to be exploited, useful for getting a better idea of the big

picture threat facing a system. 17

v

LIST OF FIGURES

2.2 CVSS Metrics and Equations [6]. A CVSS score is first calculated by aggregating all

base metrics, then subtracting temporal and environmental metrics. A high severity

exploit that is very old for instance, poses less threat than one that is newer (and thus

less likely to have patch out for). Only the base metrics are needed to create a CVSS

score, the temporal and environmental metrics should be added when the information

is available. 18

2.3 The visualization process [7]. The main purpose of visualization is to display raw data

in a manner that allows a user to gain insight from it. This insight can be transformed

into raw data and the process restarted, allowing for even deeper observations to be

made. 21

2.4 Common hierarchical visualization styles. On the left, a sunburst diagram with it’s

equivalent tree (node-link diagram) to compare. On the right, a treemap, with it’s

equivalent tree (datavizcatalogue.com). 23

2.5 Overview of proposed tool function. The tool will facilitate efficient analysis and

prioritization of vulnerabilities through use of context. This is in contrast to simply

just choosing which vulnerability to patch via CVSS score alone. 24

3.1 From left to right, the Basic Information section and Vulnerability Management

section. These sections helped us characterize the type of each company that completed

the survey and give us an overview of the methods and processes each company used

in their vulnerability management, respectively. 27

3.2 Sample questions from the last two sections of the security survey: Security Resources

and General Questions. The Security Resources section helped characterize how

companies deal with discovered vulnerabilities and prioritize remediation, while the

General Questions section gave our group some additional direction for reach goals in

our project. 28

3.3 In October of 2016, our group attended the IEEE Symposium on Visualization for

Cyber Security (VizSec) where we sat in on a number of speakers share the latest

research in the field. 30

3.4 The Vulnerability Management Life Cycle as defined by the CDC [8]. The circles

outlined in red represent steps in the life cycle that are augmented by the VV tool.

These steps are directly integrated into the vulnerability management process through

use of the VV tool. 34

4.1 Example of VV in action. The treemap is shown in the top left, with the various

contextual graphs surrounding it. 39

4.2 Example of VV’s Zoom Out during an animation. In this example, we are exiting the

top right square and returning to the initial tree before it. However, since the square

still has colored and numbered squares, it is easy to see where we came from. 40

vi

LIST OF FIGURES

4.3 Example of VV’s graphs displaying the additional contextual information. This infor-

mation includes exploit presence, the means of exploit if one is available, and how

many vulnerabilities in the scan are a Qualys Top 10 Exploit. 41

4.4 Example of VV’s graphs displaying the CVSS metrics. Both Base and Temporal CVSS

Metrics are extracted from their respective CVSS vector strings in each vulnerability

report item from a .nessus scan. 42

4.5 Example of what VV’s Vulnerability List page looks like with a fairly large vulnerabil-

ity scan. The Vulnerability List feature is best suited for analysts that are looking for

specific vulnerabilities that they already know some information about. Multi-column

sorting and filtering functionality makes it easy to do this. 43

5.1 Comparison of the new VV tool versus the previous NV tool. Advantages are marked

in green, standard functionality is marked in blue, and disadvantages are marked in

red. As can be seen, much of the functionality from NV was preserved in VV, with new

helpful features like context charts added. 46

5.2 Side-by-side comparison of the main treemap view of the NV tool (top) and VV tool

(bottom), separated by the red line. The NV tool and VV tool share very similar

functionality treemaps, albeit with different color schemes. The NV tool has a few bar

charts indicating distribution of holes, notes, and vulnerability type/severity in the

scan below the treemap. The VV tool has it’s contextual information contained within

a number of small charts surrounding the treemap. 48

5.3 Side-by-side comparison of a deep level treemap view of the NV tool (top) and VV tool

(bottom), separated by the red line. At this point, the NV treemap cannot descend any

further. The NV tool shows all the vulnerabilities for the given port, and details can

be viewed via mouseover. The VV tool goes one level deeper, and allows viewing of a

single vulnerability, where details are shown in the treemap box. Also, context charts

update to represent the data currently in view for the VV tool. The NV tool bar charts

do not change in this manner. 49

vii

C
H

A
P

T
E

R

1
INTRODUCTION

The world of information security is the setting of intense warfare, one where threats move

quickly, stealthily, and intelligently. Breaches in the information security sector are a constant

threat faced by organizations of all varieties, regardless of size or industry. With technology

advancing at a blistering pace, those with malicious intent have an ever expanding arsenal with

a potential only limited by the creativity of the wielder. With such unpredictable enemies, those

tasked with defending from breaches can often only make best guesses on how to approach zero-

day threats that have never been exploited before. Most importantly, the internet’s increasingly

cheap and widespread access opens up new channels for infiltration into an ever-growing number

of vulnerable systems.

1.1 Analyzing Modern Security Trends

One of the best windows into the overall state of the information security sector is the Verizon

Data Breach Investigations Report (DBIR), an annual summary of the major trends, motivations,

and demographics surrounding the data breaches of that year [1]. The 2016 report offers insights

from big data, and is an invaluable tool in characterizing the threats organizations should expect

to face. For instance, breaches driven by a financial or espionage motive constituted 89% of all

breaches in 2016. These two motivations can be found alongside a few others in Figure 1.1, where

we can see that financial motivation is unsurprisingly far above the rest.

As more companies move sensitive information to modern servers and databases for scalability

and efficiency, it can open the door to data breaches. The public sector, financial, and information

industries continue to be the most heavily affected by security incidents which resulted in

confirmed data loss. Table 1.1 shows the number of security incidents with confirmed data loss

by victim industry and organization size according to the 2016 Verizon DBIR. While there are

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The percent of breaches per threat actor motive over time [1]. While there was a steep
dip in 2012 in favor of espionage, finances has been the biggest motive of breaches in the last few
years. Despite how much technology has evolved over the years, the motivations behind breaches
have remained relatively constant.

certainly industries that are inherently more at risk to falling prey to a data breach, this data

shows that the problem of malicious data acquisition is a far-reaching one.

The cost of data breaches is one of the biggest motivating factors to bolstering one’s defenses

against them. The IBM 2016 Cost of Data Breach study reveals trends that match up with

Verizon’s report, and further show the widespread problem malicious exploitation poses. IBM’s

2016 study sampled 383 companies from 12 countries, finding that the average cost of data breach

has raised 29% since 2013 to $4 million [4]. Over the years this report has been conducted, a few

major trends have been identified:

1. The cost of data breach is a relatively constant cost that organizations must be prepared to

deal with

2. The biggest financial consequence from a data breach comes from lost business and customer

trust

3. The longer it takes to identify and resolve a data breach, the higher the cost it incurs

4. Improving data governance practices helps reduce the cost of breach

5. Investing in data loss prevention services like endpoint security and encryption helps

prevent breaches

2

1.1. ANALYZING MODERN SECURITY TRENDS

Table 1.1: Number of security incidents with confirmed data loss in 2016. Incidents are broken
down by industry type and size of organization [1]. As can be seen, finance is much more likely to
be targeted than other organization types.

3

CHAPTER 1. INTRODUCTION

Figure 1.2: The impact of 16 factors on the per capita cost of data breach (measured in US dollars)
[4]. Positive values mean a reduction of cost is the result of the factor being active in a data breach
situation. Therefore, factors like having an incident response team mitigate the cost of a data
breach, whereas a lost device makes a data breach cost more.

In Figure 1.2, we see what factors organizations should concentrate on bolstering or mitigating

to reduce the cost of a breach should one occur. For instance, the best ways to reduce breach cost

include a dedicated response team, dedicated encryption use, and employee training, whereas

data breaches become more of a financial threat when third parties become involved, cloud

migration is overdone, or devices are lost/stolen. Unsurprisingly, there isn’t a single solution to

nullifying the potential impact of a breach, but rather a myriad of factors that must be balanced

based on an organization’s needs and resources.

A facet of data breaches that cannot be overlooked is the rapid timeline over which they occur.

Unfortunately, once a breach occurs data exfiltration happens extremely quickly, often before

vulnerability analysts even detect the breach. In fact, the deficit between time to compromise

and time to analyst discovery has been consistently growing over the past decade [1]. On average,

compromise of a system almost always happens in days or less (if not minutes), and exfiltration

of the compromised data happens within days after compromise. In contrast, identification and

containment of a breach took on average two orders of magnitude more time to complete [4].

In many cases, a successful infiltrator will extract all the information they desire long before a

breach is even suspected by the victim. This data is shown in Figures 1.3 and 1.4.

Both Verizon and IBM’s broad impact studies lead towards the same conclusion: data breaches

4

1.1. ANALYZING MODERN SECURITY TRENDS

Figure 1.3: Time to compromise and exfiltration during a data breach [1]. In about 93% of data
breaches, compromise of the targeted system happened in minutes or less. Additionally, in nearly
all cases, exfiltration of targeted data occurred in days or less.

Figure 1.4: Mean time to identify and contain data breach incidents [4]. On average, most
data breach incidents remain undiscovered for 201 days, and once discovered, take 70 days to
contain/remediate. Considering almost all exfiltration happens in under a few days (Figure 1.3),
this paints a bleak picture for current vulnerability management tactics.

5

CHAPTER 1. INTRODUCTION

are a constant threat that will always remain, and preventing data breach is preferable to

remediating one. It is therefore in the interest of companies/organizations to follow security best

practices, train their employees, and use the latest defensive technologies to preemptively stop

breaches before they occur. One of the best defenses an organization can provide is a strong

vulnerability management protocol, in which a team of dedicated analysts diligently monitor and

patch any security holes on the network. This is far preferable to something such as remediation

after a breach, which will cost significantly more in resources and lost business than preventing

the breach in the first place. Thus, in the next section we will delve into what exactly constitutes

an effective vulnerability management protocol.

1.2 Defining Effective Vulnerability Management

Preventing data breaches often relies on effective vulnerability management, in which potential

holes in system security are identified, and then remediated to prevent exploitation. A vulner-

ability by definition is “a weakness of an asset or group of assets that can be exploited by one

or more threats” [9]. Vulnerability scanning is a subtask of vulnerability management where a

computer program is used to scan a system or network for known vulnerabilities. Organizations

often use these scanners, but they are only part of an effective vulnerability management process,

and should not be used exclusively. There is no one consensus among researchers what the ideal

vulnerability management process should look like, so we chose to define an effective process

as a mix between a number of well-known definitions. Our working definition of an effective

vulnerability process is as follows [10][11][12][13]:

Vulnerability Management Process

1. Preparation (define scope of assets to protect and threats anticipated)

2. Scan for Vulnerabilities (typically using automated vulnerability scanners like Tenable’s

Nessus)

3. Identification and Prioritization (review the results of the scan(s) and categorize/rank the

vulnerabilities discovered, deciding which to tackle first)

4. Remediation (implement the patch fix over an agreeable timeframe)

5. Rescan (restart cycle, scan again to confirm vulnerabilities are successfully neutralized and

check for new ones)

The very nature of information security means that security analysts are always on the

defensive, and closing every potential hole is by no means an easy task. Many analysts and

information security industry professionals regard vulnerability management as both an ex-

tremely laborious and frustrating task. The number of vulnerabilities almost always overwhelms

6

1.2. DEFINING EFFECTIVE VULNERABILITY MANAGEMENT

Figure 1.5: Graph of CVEs successfully exploited in 2015 [1]. The vast majority of successfully
exploited vulnerabilities are from years before 2015, with most occurring about 4-8 years prior.
Clearly, focusing on only the most recently discovered vulnerabilities is an ineffectual vulnerability
management strategy by itself.

the resources available to mitigate them, and with such a wide array to tackle, many security

analysts default to tackling the biggest and newest threats they find. Unfortunately, this leaves

many systems wide open to exploitation from smaller legacy vulnerabilities that flew under the

radar. This pattern is displayed in Figure 1.5, which shows the count of Common Vulnerabilities

and Exposures (CVE) exploited in 2015 by CVE publication date [1].

According to the Verizon DBIR, a cohesive patching strategy which emphasizes coverage

at the expense of speed is recommended. This isn’t to say that quickly implementing patches

isn’t important, however. The report also states that “Half of all exploitations happen between

10 and 100 days after the vulnerability is published, with the median around 30 days. This

provides us with some general guidelines on which software vulnerabilities to prioritize along

with some guidance on time-to-patch targets” [1]. In addition, there are a relatively low amount of

vulnerabilities that hackers tend to exploit. There are ten top vulnerabilities accounting for 85%

of successful exploit traffic. These are extremely high priority, and then the other 15% consists of

over 900 other distinct vulnerabilities. This provides a decent starting point for organizations

who many not have a robust vulnerability management process to vastly decrease their chances

of being targeted and breached.

We have established that vulnerability management is a viable solution to controlling and

7

CHAPTER 1. INTRODUCTION

Figure 1.6: Diagram of effective prioritization. While prioritization plans differ from organization
to organization, generally they all aim to create a remediation plan through consideration of
situational factors and multiple information sources.

preempting security breaches before they can occur. The question is, how do we address how

to best utilize what are often limited resources for vulnerability management? It boils down

to one overarching issue: people do not prioritize what they patch in an optimal way. Many

organizations fall prey to the natural instinct to patch as many things as possible as quickly as

possible. Not only is this a bad approach to vulnerability management, it is often infeasible, as

there are simply too many vulnerabilities and too few resources to handle them [14][15][16][17].

Effective prioritization requires good situational awareness, knowing the value of your assets,

thinking like an attacker, multiple tools and information sources, and frequent vulnerability

scanning. CVSS alone is not enough to determine priority [14][16]! Imagine there is a server with

a “critical” vulnerability on it, but it’s not connected to a network. There is no threat exposure

in this case. However, a low criticality vulnerability exposed to the internet, and that took a

backseat to this critical server vulnerability, could be the undoing of your assets. Figure 1.6 shows

what effective prioritization looks like.

As a result of our research and tool development, we reach the conclusion that effective

prioritization needs context. Context includes information about your assets, your threat ex-

posure, your environment, and many other variables that vary drastically for each organiza-

tion/company/entity. Unfortunately, many of the tools currently available to vulnerability analysts

for scanning and management lack the context needed to allow for correct prioritization. Thus,

8

1.2. DEFINING EFFECTIVE VULNERABILITY MANAGEMENT

in this project our team’s goal was to consolidate multiple sources of contextual information

regarding vulnerabilities into a single view, allowing analysts to quickly sift through greater

amounts of meaningful information to improve their patching process. As a result of our work,

we were able to accomplish the following:

• Gathered valuable industry opinions on the shortcomings of modern vulnerability manage-

ment software and desired qualities in ideal vulnerability management software.

• Confirmed that the need for context for effective prioritization is one of the biggest chal-

lenges facing the vulnerability management field.

• Created a modern web application tool - the Vulnerability Visualization (VV) tool - using

React + D3 for vulnerability analysts, based on a proven-effective existing tool, Nessus

Visualization (NV).

9

C
H

A
P

T
E

R

2
BACKGROUND

Research in the space of computer security has become increasingly robust as society continues

to ramp up its reliance on digital information. The risk of network vulnerabilities from a security

standpoint has lead to a substantial amount of research on the topic of enterprise vulnerability

management.

In 2005, one of the most reputable technological leaders of the United States, the National

Institute of Standards and Technology (NIST), created a step-by-step process for integrating an

effective security patching and vulnerability management process into any organization [18].

This is by no means a simple feat, and quickly after, many companies began designing automated

vulnerability scanners in order to make the vulnerability management process less strenuous on

the time and resources of organizations. Companies such as Rapid7, Nessus, Qualys, and many

others all design network scanners with this capability.

Additionally, there has also been research conducted to evaluate the effectiveness of vulner-

ability scanning [2]. Automated scanners have received criticism for not capturing the entire

picture or context of a computer network. Some research has begun to emerge targeting the

contextual risk of vulnerabilities as well as prioritization in the patching process [19]. It’s possible

this research will be able to target some of the weaknesses in automated scanning.

Even data visualization has been applied to this problem. However, the security visualization

tools developed have mostly focused on a specific subset of the security picture such as port-based

events [20], netflow [21], attack graphs [22], and many others [23].

Our project attempts to apply a broader data visualization approach to compensate for the

shortcomings of automated scanners. We hope this will allow security analysts to begin to better

understand the state of the networks they are protecting and draw more meaningful intuition

about patch solutions.

10

2.1. VULNERABILITY IDENTIFICATION

2.1 Vulnerability Identification

2.1.1 Analysis of Currently Used Tools

There are a plethora of vulnerability scanners available to security analysts that make vulnera-

bility management a lot less daunting. Vulnerability scanners essentially scan and traverse a

network and automatically search for vulnerabilities in the network. Once these scanners find

a vulnerability they will report back information about the vulnerability, including IP address,

port, operating system, and other basic information about the source. Once the scanner finds and

reports these vulnerabilities, it will compare the information it found with third-party databases

including CVE1, OVAL2, OSVDB3, and more.

2.1.1.1 Tenable Nessus

Tennable Nessus is the worlds most popular vulnerability scanner. In 2005, Tennable reported

that it was used by over 75,000 organizations worldwide. Nessus scans for the following type of

vulnerabilities:

1. Vulnerabilities that allow a remote hacker to gain access to sensitive data on a system

2. Misconfigurations in systems, including missing patches, open mail relays, and etc.

3. Checking for default and weak passwords

4. Denial of Service attacks by using malformed packets

5. Preparation for PCI DSS4 audits

The results of the scan can be reported in various formats. They include plain text, XML,

HTML, and LaTeX. Tennable also performs vulnerability checks daily. This allows the scanner to

constantly have the updated vulnerabilities that have been released.

2.1.1.2 QualysGuard

Qualys is one of the first vulnerability scanners to enter the market. They were founded in

1999, and successfully launched QualysGuard in 2000. Qualys now has multiple products that

are available for organizations to purchase. One of them is called the QualysGuard Intranet

1CVE: Common Vulnerabilities and Exposures, a dictionary of common names for publicly known information
security vulnerabilities.

2OVAL: Open Vulnerability and Assessment Language, a community effort to standardize how to assess and
report upon the machine state of a computer.

3OSVDB: Open Sourced Vulnerability Database, a database to provide accurate, detailed, current, and unbiased
technical information on security vulnerabilities.

4PCI DSS: Payment Card Industry Data Security Standard, a proprietary information security standard for
organizations that handle branded credit cards from major card schemes.

11

CHAPTER 2. BACKGROUND

Scanner which is a product that automatically scans corporate LANs for vulnerabilities and

searches for available patches. In 2008, Qualys introduced Qualys Guard Policy Compliance,

which allowed the scanner to collect IT compliance data across an organization to be linked to

policies to document compliance for auditing. Finally, in 2010, Qualys introduced Qualys Browser

Check which is a service that scans web browsers and plugins for potential vulnerabilities.

2.1.1.3 Rapid7 Nexpose

Nexpose is Rapid7’s vulnerability management product. Nexpose has a large amount of inter-

esting features. One of the features is Advanced Exposure Analytics, which essentially finds

vulnerabilities and prioritizes them based on what will be exploited first, so you can avoid the list

of stale alerts. In addition, it has live monitoring of exposures, which essentially is an automatic

alerts to changes and exposures to to the network, giving it a live view into the vulnerabilities

as they happen. Nexpose Adaptive Security automatically detects new devices as they enter the

network and identifies which devices have critical vulnerabilities as soon as they are released.

Furthermore, it has liveboards which allow the analyst to see the score from compliance to

progress. It takes exposure data and translates it into detailed visualizations so it is easily view-

able. Finally, it is integrated with Metasploit5 for exploiting vulnerabilities to help determine

priorities and for testing purposes.

2.1.1.4 Core Impact

Core Impact is another vulnerability management solution for assessing and testing security

vulnerabilities throughout a network. This product has multi-vector testing which allows you

to replicate attacks that traverse across systems, devices, and applications which can allow the

analysts to understand how chains of exploitable vulnerabilities open paths to secure systems. It

also claims to test more common vulnerability exploits than the competition. Finally, you can

perform complex attacks with a simple interface. It gathers network information and performs

attacks to test the systems ability to identify and remediate.

2.1.1.5 SAINT

Security Administrator’s Integrated Network Tool (SAINT) is another product used for scanning

vulnerabilities in a network. The SAINT scanner investigates every live system on a network.

For all the systems running, it launches probes designed to detect anything that could allow an

attacker to gain unauthorized access, create a DOS attack, or gain sensitive information about

the network. The SAINT scan operates in four steps:

1. SAINT screens all live systems for TCP and UDP services

5Metasploit: A tool for developing and executing exploit code against a remote target machine.

12

2.2. VULNERABILITY MANAGEMENT, ANALYSIS, AND RESPONSE

2. For each live system, probes are launched to detect any malicious activity

3. Scanner checks for vulnerabilities

4. When vulnerabilities are detected, the results are categorized in several ways, allowing

customers to target the data they find most useful.

SAINT groups vulnerabilities according to severity, type, or count. It describes each vulner-

ability by referencing CVE, CERT advisories, and IAVA. This allows them to describe ways to

correct the vulnerabilities.

2.1.1.6 OpenVAS

The Open Vulnerability Assessment System (OpenVAS) is a framework of services and tools

offering a comprehensive and powerful vulnerability scanning and vulnerability management

solution.

2.1.2 More on Limitations of Current Tools

As seen above, there are many vulnerability identification tools already in use. The following

lays out some of the most commonly used scanners on the market today and compares them

using qualitative properties such as ability to detect software flaws, ability to detect configuration

errors, ability to detect vulnerabilities, ability to perform network sniffing, ability to validate

discovered vulnerabilities against possible exploits, and a few others [2]. Table 2.1 gives a side-

by-side comparison of the top scanning tools on the market, and how they stack up against each

other.

Despite this imperfect picture, it’s extremely important for the output from a vulnerability

scanner to be interpreted with care. It’s the goal of all vulnerability scanners to provide the

decision maker with information that helps remediate and manage vulnerabilities. Subsequently,

it’s of huge importance that the scanner is seen as easy to use [2]. Part of our goal in this study is

to visualize the output of the Nessus Vulnerability scanner in a way that allows the output to be

more carefully interpreted and more easily utilized.

2.2 Vulnerability Management, Analysis, and Response

Patch and vulnerability management is a practice within cybersecurity that is designed to

proactively prevent the exploitation of vulnerabilities that may exist within an organization’s

network. This proactive approach of managing the vulnerabilities of a network will significantly

reduce the probability of exploitation, which in turn leads to massive reduction of time and effort

required to prevent a successful attack.

13

CHAPTER 2. BACKGROUND

Table 2.1: Comparison of vulnerability identification tools [2]. All currently available tools share
very similar functionality. Using a combination of these tools is often the most reliable way to get
an accurate reading of vulnerabilities in a system.

Patches are additional segments of code that are developed to fix an unexpected problem of

the original software. They often times will add functionality to the software or address security

concerns within the program. Vulnerabilities are flaws that can be exploited by a malicious

entity to gain greater access or privileges than it is authorized to have on a network. Since

vulnerabilities do not all have related patches that address them, it is necessary for system

administrators to be aware of applicable vulnerabilities, available patches, and other methods of

remediation including device or network configuration changes and etc.

Fixing security flaws in a network in a timely manner is imperative to maintaining the

operational availability, confidentiality, and integrity of a network. However, this is much easier

said than done. Lack of an adequate vulnerability management system is a very common issue

for many organizations and often leads to them dealing with a much worse situation after an

attack. New patches are released daily, and this makes it very difficult for organizations to stay

up to date on them. Performing a patch will often require downtime. This makes it hard for

organizations to constantly perform the patches. With that being said, when new patches are

released, attackers will often make a concerted effort to reverse engineer the patch and identify

the vulnerability so they can try and attack a system that hasn’t been patched yet. Furthermore,

the time after the release of a patch is an extremely vulnerable moment for the organization due

to the time lag in obtaining, testing, and deploying a patch.

14

2.2. VULNERABILITY MANAGEMENT, ANALYSIS, AND RESPONSE

2.2.1 Vulnerability Management

2.2.1.1 Patch and Vulnerability Groups (PVG)

This complicated environment requires that organizations have a sophisticated system in place

with sufficient documentation and accountability that manage exposures to vulnerabilities

through timely deployment of patches. These systems are often managed by a Patch and Vul-

nerability Group (PVG) to facilitate the identification and distribution of patches within the

organization. These groups are often responsible for:

1. Inventory the organization’s IT resources to determine which hardware equipment, operat-

ing systems, and software applications are used within the organization

2. Monitor security sources for vulnerability announcements, patch and non-patch remedi-

ations, and emerging threats that correspond to the software within the PVG’s system

inventory

3. Prioritize the order in which the organization addresses remediation vulnerabilities

4. Create a database of remediations that need to be applied to the organization

5. Conduct testing of patches and non-patch remediations on IT devices that use standardized

configurations

6. Oversee vulnerability remediation

7. Distribute vulnerability and remediation information to local administrators

8. Perform automated deployment of patches to IT devices using enterprise patch management

tools

9. Configure automatic updates of applications whenever possible and appropriate

10. Verify vulnerability remediation through network and host vulnerability scanning

11. Train administrators on how to apply vulnerability remediations

2.2.1.2 Automated Patch Management Tools

Manually patching networks has become ineffective as networks expand and the number of

needed patches exponentially increases. The solution of choice is a tested and integrated patching

process that makes use of automated patching technology. Most medium-sized to large organiza-

tions use automated patching tools for the majority of their network. However, these tools must

be used very carefully. If a hacker were able to break into the automated patch management

system, it would be a very easy way for the hacker to distribute large amounts of malicious code.

15

CHAPTER 2. BACKGROUND

2.2.1.3 Standardized Configurations for IT Resources

It is imperative that organizations follow a standardized configuration within the enterprise, as

it will reduce the labor related to patch and vulnerability management. It is possible that the

PVG will find it difficult to effectively test patches if devices use nonstandard configurations. In

addition, patch management tools may be ineffective if devices are configured uniquely, because

the side effects of the various patches on the different configurations will be unknown.

2.2.1.4 Attack Graphs

When networks grow exceptionally large it becomes harder to preempt all possible attacks from

malicious sources, as the number of vulnerabilities in a network often grows with the number

and diversity of endpoints in that network. Additionally, attackers launch more complex attacks

each day, often combining multiple steps and hosts with the goal of incrementally penetrating

the target network [24]. One of the most useful tools in a security analyst’s arsenal is the attack

graph, which Jha, Sheyner, and Wing (2002) define as “a succinct representation of all paths

through a system that end in a state where an intruder has successfully achieved his goal” [25].

Therefore, attack graphs are well-suited at displaying chain vulnerabilities, where multiple small

exploits performed in a certain order can lead to a major breach. Additionally, thanks to their

simple visual representation, attack graphs quickly communicate the causal relationship between

vulnerabilities to viewers.

2.3 Vulnerability Prioritization

2.3.1 Probabilistic Attack Graphs

While certainly useful for high level analysis of a network’s vulnerabilities, attack graphs lack the

granular information that analysts need to make decisions on which vulnerabilities to direct their

efforts at first. Probabilistic attack graphs - which include the likelihoods of each vulnerability in a

chain to be exploited - were developed to satisfy this need. Drawing upon already existing metrics

such as CVSS base and temporal score to model exploit likelihood, probabilistic attack graphs

give analysts more information to help triage vulnerabilities and thus make better decisions [5].

An example network configuration and associated probabilistic attack graph is depicted in Figure

2.1. Much work has gone into improving the efficiency and robustness of probabilistic attack

graph generation, making them attractive for use even in enterprise networks [24].

2.3.2 Common Vulnerability Scoring System (CVSS)

Many security analysts and information security professionals consult some form of standardized

vulnerability scoring system with the intent of simplifying and standardizing their vulnerability

16

2.3. VULNERABILITY PRIORITIZATION

Figure 2.1: An example network configuration and probabilistic attack graph [5]. Probabilistic
attack graphs give analyst more information to help triage vulnerabilities and make better
decisions than using CVSS alone. These attack graphs show the likelihood of each vulnerability in
a chain to be exploited, useful for getting a better idea of the big picture threat facing a system.

management process. The most commonly used scoring system is the Common Vulnerability

Scoring System (CVSS).

CVSS is a public framework created by the Forum of Incident Response and Security Teams

(FIRST) which is used by many organizations in an attempt to quantify the severity of known

software vulnerabilities. This allows responders and analysts to prioritize threats and respond

accordingly with patch solutions to their systems. In it’s lifetime to date, FIRST has rolled out

two versions of CVSS and currently has specifications for an updated version 3. While many

organizations utilize CVSS and the information it provides in their vulnerability management

process, it certainly still has it’s drawbacks. Attempting to quantify the risk and severity of

software vulnerabilities with ever-growing networks and system complexities into a scale between

zero and ten is no easy task. Most of the criticism and feedback towards CVSS is a result of

this challenge. A brief summary of the score calculation process is included below, followed by

descriptions regarding the areas of improvement for CVSS [6].

17

CHAPTER 2. BACKGROUND

Figure 2.2: CVSS Metrics and Equations [6]. A CVSS score is first calculated by aggregating all
base metrics, then subtracting temporal and environmental metrics. A high severity exploit that is
very old for instance, poses less threat than one that is newer (and thus less likely to have patch
out for). Only the base metrics are needed to create a CVSS score, the temporal and environmental
metrics should be added when the information is available.

2.3.2.1 CVSS Calculation Process

A score between zero and ten is assigned based off of three metric groups: base, temporal,

and environmental. The base metric group represents innate qualities of the vulnerability

itself independent of the user’s system. There are two metric groups within the base metric

group: exploitability metrics, and impact metrics. Exploitability metrics aim to characterize

the vulnerable component of a system and include attack vector, attack complexity, privileges

required, and user interaction. Impact metrics aim to characterize the confidentiality, integrity,

and availability implications of penetrating the system via the vulnerable component. The

temporal metric group attempts to add into the score information about how the characteristics

of the vulnerability could change with time by observing exploit code maturity, remediation level,

and report confidence. Finally, the environmental group represents qualities that are unique to a

specific user’s environment. Figure 2.2 illustrates score calculation via these metrics [6].

2.3.2.2 Criticisms and Areas of Improvement

After announcing the proposal for CVSS version 3 in 2013, the Open Security Foundation wrote an

open letter to FIRST delineating all of version 2’s shortcomings. The problems mentioned include:

lack of granularity, limitations of Access Complexity and Access Vector, and authentication

scoring. The underlying themes across these areas of improvement which are most pertinent to

this project and paper are ones of context-dependence and downfalls of attempted uniformity

[26].

With the CVSS score being based off of a 3-level scoring system (None, Partial, Complete)

for Impact metrics, the scenario arises where very different vulnerabilities end up receiving the

18

2.4. DATA VISUALIZATION

same score. This can lead to misinformed perceptions about the risk of certain vulnerabilities

and may lead to poorly allocated resources in terms of implementing a patch solution. An

interesting example of this laid out in the letter is the case of uncertainty with respect to

software application privileges. CVSS recommends analysts to assume a default configuration

or a most commonly used configuration when looking at privileges of certain applications. The

problem here is the configuration isn’t always obvious due to bundling and customized execution.

The decision between classifying a vulnerability as either ‘Complete’ or ‘Partial’ confidentiality

becomes quite convoluted. The impact in context in this example comes between a hypothetical

server administrator who does everything with root privileges vs. a user who only acts within the

context of their own account. The same vulnerability has very different implications for each of

these people [26].

The second big problem voiced against CVSS version 2 was the weakness of the Access

Complexity abstraction. This metric is designed to account for level of user interaction required

to exploit the vulnerability which could come in the form of social engineering, visiting certain

websites, taking actions on the websites, etc. The National Vulnerability Database stores examples

of Man-in-the-Middle attack vulnerabilities with Access Complexity scores ranging from low,

to medium, to high, due to the subjectivity of this category, excessive room for interpretation,

and lack of support for context-dependent attacks. Analysts sometimes even specifically tweak

the Access Complexity score because it’s so malleable in an attempt to account for some context-

dependence and to ensure different resulting scores [26].

The next area of improvement for CVSS was the Access Vector which also breaks down into

three components: Local, Adjacent Network, and Network. The problem with this three-pronged

approach is there’s no distinction made between the requirement of an account on the system

and a true physical attack - both are scored as Local. Additionally, context-dependent attacks are

similarly grouped as Network (true direct remote attacks). This can be misleading in cases where

a direct Denial of Service attack’s severity is much greater than a context-dependent Denial of

Service attack [26].

Finally, the strongest criticism against CVSS surrounds the dichotomy of authentication it

imposes: a user either authenticates once or twice. The definition fails to include cases where

not only the hacker, but also the target need to be authenticated for a certain vulnerability to be

exploited. Additionally, the Authentication metric fails to account for permission levels granted

via authentication. A vulnerability which requires authenticating for administration-level access

is much more severe and this should be reflected through CVSS [26].

2.4 Data Visualization

We live in a world that has become overrun with massive amounts of data. By the end of 2015,

more data had been produced in the previous two years than in the entire preceding history

19

CHAPTER 2. BACKGROUND

of the human race. The rate of production is rising exponentially; it is estimated that around

1.7 megabytes of new information will be produced every second for every human on earth [27].

Frequently, one of the biggest challenges is displaying the data in such a way that trends become

evident and meaningful conclusions can be drawn. In fact, one survey revealed that 62% of

marketers felt overwhelmed by the volume of incoming data, and 85% felt that they could not

extract the full value of the information coming from these sources [28]. Data visualization,

which aims to communicate data through visual representations, is one strategy that has seen

increasing use as a means to make sense of large datasets.

The most concise way to describe data visualization is a method of transforming data into

useful information that can be used to gain insight into a process we are interested in. Many

times, an individual can draw new conclusions or focus on key features more easily from data

when it is arranged in a more pleasing and/or informative format, which is the motivation

behind visualizing data. If a visualization is neither usable or actionable, than it likely holds no

advantages over the raw data. It is important to strike a balance between a practical interface

and one that is visually pleasing, as one that emphasizes one aesthetics too much will fail to

capture the user’s attention and effectively deliver information. Telea (2008) asserts that an

effective visualization will often be more effective than raw text data for the following reasons [7]:

1. Will allow the user to draw perceptual inferences quickly rather than struggling to draw

difficult logical inferences from dense data

2. Will take the user less time to search for the information they are interested in or need to

complete the task at hand

The actual application that performs the visualization is only a part of the entire visualization

process, as diagrammed in Figure 2.3. This process details the role a user plays in visualization,

which is to not only view (and interact, if possible) with the application, but to also search for

novel information - i.e. insight - that may be revealed from the data in it’s visualized format.

Analyzing and quantifying this information can allow it to be visualized as well, furthering the

process to gain greater knowledge.

With so many factors to balance in order to produce an effective visualization, it should come

as no surprise that there isn’t a one-size-fits-all graph or diagram that can convey insight from

every possible set of raw data. Significant preparatory research and testing should be performed

when deciding how to visualize a given data set to solve a problem, as this will lead to more

effective visualizations and greater insight into the data.

2.4.1 Visualization in Security

One useful area of application of data visualization is in the field of security and vulnerabil-

ity management. There is much potential for visualization in security, as analysts often find

themselves overwhelmed with large amounts of vulnerability data in the form of text or other

20

2.4. DATA VISUALIZATION

Figure 2.3: The visualization process [7]. The main purpose of visualization is to display raw
data in a manner that allows a user to gain insight from it. This insight can be transformed into
raw data and the process restarted, allowing for even deeper observations to be made.

low-level representations, which can be hard to see patterns in. Indeed, this is where visualization

shines, as “by carefully crafting graphical windows into data to exploit the high-bandwidth visual

recognition capability of humans, we can see patterns and anomalies as well as detect malicious

activity that would be impossible to detect using traditional computing techniques or text” [29].

Especially on the enterprise level, gigabytes of data can be generated a day for a single

organization, and the task of making sense of this data is quickly becoming an intractable

problem. Analysts must be able to distinguish between useful security data and noise of legitimate

operations, a task made harder when one can barely keep up with just being able to see the

most recent alert. With too much information to process effectively, and immense amounts of

discouraging false positives, analysts may begin to start ignoring security alerts, which opens the

door for real vulnerabilities to slip past unnoticed.

One of the most important contexts of security visualization is large networks. As a network

grows - whether the nodes be single machines or something else - so too does the number of

possible vulnerabilities. Complex networks not only have the greatest likelihood of being exploited

due to their immensity, but also can suffer the greatest possible loss. Tremendous amounts of

security data raises the chances of an analyst missing an important vulnerability. As time goes

on, networks face a greater number of exploits at a higher level of complexity. Greater number of

nodes in the network create a greater number of entry points for possible exploits. And successful

exploits affect a far greater number of people/assets than that of a small network. This is where

data visualization can make a difference. Harrison and Lu explored recently developed tools for

security visualization and general network visualization, finding that both categories of tools

21

CHAPTER 2. BACKGROUND

have downfalls, yet when combined, could provide all-purpose solutions satisfying scalability,

accuracy, and effectiveness at conveying important information [23].

There are many ways to visualize security data, and the method chosen is often suited best

for one or more specific contexts. For instance, an attack graph may provide a powerful bird’s eye

view of vulnerable pathways to exploitation in a network, but be absolutely useless when applied

to a single machine in the network. In the remainder of this section we will explore different

prominent methods of security visualization, while making note of the context they are most

useful in, if applicable.

2.4.2 Hierarchical Visualization

Complicated networks often have countless nodes, each of which can have many subnodes, each

of which may have their own substructure, and so on. One visualization technique - known as

hierarchical visualization/graphing - is built to effectively represent data with this architecture.

Hierarchical visualization excels displaying data such as file systems, store inventory, and stock

portfolio allocation, for instance. The most common implementations of hierarchical visualization

include but aren’t limited to: sunburst diagrams, tree diagrams, dendrograms, and treemaps. A

couple examples of these are detailed in Figure 2.4.

Oftentimes, when visualizing hierarchical data one requires some concept of relative weights

between nodes to most accurately represent the dataset. For instance, displaying the contents of a

file system conveys more useful information to a user when the visualization clearly communicates

the different sizes of files. This is where treemaps, designed by Ben Shneiderman in 1991, really

shine. Treemaps were developed to utilize 100% of the space they are placed in, a novel approach

to conveying as much information as possible given the available space [30]. Additionally, they

take much less space to display large hierarchies as compared to a standard node-link tree

diagrams. Combine this with their easy understandability from a user standpoint, and treemaps

become one of the best choices for displaying large data sets. With the option to see all elements

of the hierarchy in one overview, and differing color schemes amongst nodes, treemaps can

effectively display sets of data with high-dimensionality and multiple levels if used correctly.

There is a wide array of studies focused on treemaps and related hierarchical visualization

styles, and we chose to list a few of the most pertinent to our work here. Landesberger, et. al

(2011) conducted research into the current state of large graph visualizations in 2011. The key

findings of this research can be summarized as such [31]:

1. The need for scalable graphs that remain readable, especially in the case of hierarchical

data, increases each year as datasets of interest grow larger.

2. In recent years, the variety of available graph types as increase substantially, especially in

the categories of dynamic and compound graphs.

22

2.4. DATA VISUALIZATION

Figure 2.4: Common hierarchical visualization styles. On the left, a sunburst diagram with it’s
equivalent tree (node-link diagram) to compare. On the right, a treemap, with it’s equivalent tree
(datavizcatalogue.com).

3. Although more frequently a problem in the field of visual analytics, finding methods to

effectively deal with graph uncertainty - and how to best represent that - is an ongoing

topic in visualization research.

4. The effectiveness of a graph/visualization in conveying useful information to a user is

strongly dependent on human perception ability. As more research is done into human

perception, visualization methods will need to change to best take advantage of new

findings.

5. The ability to interact with graphs is a feature with rising popularity, especially techniques

that take advantage of structural properties of the graph to enable navigation of the data.

Wang, Teo, & Ma performed a study in 2006 to determine if tree visualization systems were

more effective at enabling knowledge discovery (i.e. gaining insight into the data) than traditional

directory-style structures. They determined that when asked to perform exploration tasks on

the same data set via a node-link representation, treemap representation, and file directory

representation, users found it easier to both navigate and extract information when using the

node-link or treemap diagram [32].

23

CHAPTER 2. BACKGROUND

Figure 2.5: Overview of proposed tool function. The tool will facilitate efficient analysis and
prioritization of vulnerabilities through use of context. This is in contrast to simply just choosing
which vulnerability to patch via CVSS score alone.

Finally, Harrison, et. al (2012) formed the foundation for our project with their tool NV.

Described in their paper, NV: Nessus vulnerability visualization for the web, this tool takes

vulnerability scan output from Tenable Security’s Nessus network scanning program, and maps

the results to the network structure via a treemap visualization [33]. The researchers involved in

the project took the flat data output of Nessus and inferred a hierarchical structure, a novel idea

that allowed NV to present a unique way to gain insight into Nessus data. This interactive visual-

ization is meant to support the vulnerability discovery, analysis, and management performed by

security analysts and network administrators. NV is ideal for quickly locating and triaging the

most severe vulnerabilities in a network, something that is far harder to achieve when observing

the raw Nessus text output alone.

In contrast to what has been done so far - as described in the papers listed in this section -

we are specifically designing a tool to improve the prioritization capabilities of analysts. Using

visualization is highly effective for conveying trends and patterns to viewers, so transforming

context of a network into easily viewable trends in the form of visualizations is how we are

planning to improve prioritization. This strategy is especially helpful for users that do now

know what they are looking for in a network scan and/or have never attempted to prioritize

vulnerabilities before. Figure 2.5 lays out the key features of our tool: analysis and prioritization

utilizing contextual information.

24

C
H

A
P

T
E

R

3
FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

Prior to building a tool that could improve the vulnerability management process, our team needed

to gain an understanding of the current challenges facing the industry. By identifying challenges,

we would be able to much more effectively direct our efforts towards building something that

would both provide value and prevent repetition of previous approaches.

Our steps to identifying challenges were as follows:

• Background Research: We began by gathering general info on vulnerability/risk man-

agement through our literature review and general research. This established a solid

foundation upon which we could launch other info-gathering methods.

• Survey Vulnerability Management Professionals: Next, our team employed a number

of direct information gathering techniques to further narrow our focus. The first of these

techniques was sending out a survey to a number of security analysts from different

companies to learn more about the best-practices used by these professionals, and what

sort of difficulties they may face in their day-to-day work.

• Interview NIST: We also had the opportunity to interview a member of the National In-

stitute of Standards and Technology (NIST), which further influenced our project direction.

• Attend IEEE VizSec 2016 Symposium: Finally, in order to make sure our project would

be relevant to current proceedings in the vulnerability management industry, our team

attended the IEEE VizSec 2016 Symposium to take notes on the most recent research in

the field.

With this research methodology, we were able to not only establish a strong working knowledge

of the entire field of vulnerability management, but also gain relevant, precise details on the

25

CHAPTER 3. FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

subfields of cybersecurity and security visualization. This helped us take the numerous challenges

we identified along the way and narrow them down to the one we wished to tackle with our tool:

the necessity of contextual information to effectively prioritize remediation of vulnerabilities.

3.1 Investigation and Research

3.1.1 Background Research

Before we spoke with any vulnerability management professionals, our team wanted to have

a decent background in the field itself. Thus, we read through a number of prominent papers,

which we summarize in our literature review. We came across numerous articles and sources

that frequently expressed frustration with and/or attempted to improve the one-size-fits-all

approach of vulnerability management into more specialized approaches for different situations.

We also gained a greater understanding of the most common processes, best practices, and tools.

Using what we learned from this preliminary research, we went into our subsequent information

gathering methods (e.g. interviews) with confidence and armed with the most pertinent questions

to make the most of all participants’ time.

3.1.2 Survey Vulnerability Management Professionals

Following our preliminary research, we constructed a survey to be taken by knowledgeable

individuals from the vulnerability management and threat mitigation community. Our goal was

to use answers from the survey to help gain a further understanding of how different types of

companies perform vulnerability management, narrow down the scope of our project, and make

sure that our work had true value to it. Our first course of action was to create a survey. Our

goal was to get a better understanding of how different types of companies perform vulnerability

management. We targeted firms from a variety of industries that have sophisticated security

practices such as finance, government, software security, and consumer electronics.

Our survey starts by collecting basic information about the company, including type of

industry, size, and amount of resources dedicated to security. This allowed us to better categorize

the data further in the survey. Next, we gather some information about how the company

performs vulnerability management. We look for a description of the workflow of the vulnerability

management process to get an understanding how standard the processes are. We also have them

describe the size of the network and what tools/software they use to scan and/or manage their

vulnerabilities. After they describe to us how they generally scan for vulnerabilities, we ask for

their opinions on the best tools, and how they currently feel about their process as of now. These

first two sections can be seen in Figure 3.1 below.

Next, we investigate how they plan and prioritize fixes for their discovered vulnerabilities.

This gives us a good framework for future design choices in our tool. In addition, we ask them to

describe the information they gather when they investigate context when they are performing an

26

3.1. INVESTIGATION AND RESEARCH

Figure 3.1: From left to right, the Basic Information section and Vulnerability Management
section. These sections helped us characterize the type of each company that completed the survey
and give us an overview of the methods and processes each company used in their vulnerability
management, respectively.

analysis on a vulnerability. We also ask how they prioritize two vulnerabilities and what data

they gather, if they have two similar vulnerabilities with similar severities on separate parts of

the network. Next, we get into the frequency and time frame of their vulnerability scans. We ask

them to elaborate on how often they run their scans and if they scan certain parts of the network

more than others. Then they explain how long it takes to identify these vulnerabilities and how

they schedule the patching of them. We conclude the vulnerability management section by asking

them how they incorporate CVSS into their analysis, and if there are any other features that

their current toolset lacks that would make vulnerability management easier.

In the final part of the survey, we ask some general questions to help us with our project. We

ask the security analysts to describe their picture of an ideal vulnerability scanning tool. They

also tell us about their experience with data visualizations and the extent to which they exist in

the tools they already use now. Finally, we briefly ask them about attack graphs and machine

learning techniques and if they apply to any of their strategies. Sample questions from this final

section and the third section (security resources) can be seen in Figure 3.2.

3.1.3 Interview NIST

Our next course of action in information gathering was interviewing a computer scientist from

the National Institute of Standards and Technology (NIST) in the Cyber Security Division.

Additionally, this employee had plenty of familiarity with the National Vulnerability Database,

27

CHAPTER 3. FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

Figure 3.2: Sample questions from the last two sections of the security survey: Security Resources
and General Questions. The Security Resources section helped characterize how companies deal
with discovered vulnerabilities and prioritize remediation, while the General Questions section
gave our group some additional direction for reach goals in our project.

and could give us an in-depth explanation of the purpose of CVSS, it’s limitations, and ways to

prioritize risk outside of just CVSS scores.

In our conference call, the employee highlighted many topic areas that would be good areas

of research for our team. They mentioned that it would be very helpful for someone to draw a

connection between exploits that are being used and vulnerabilities, as well as highlighting a

dire need of standardization of context across different organizations. NIST’s current approach to

solve the standardization problem is FIPS 199 [3]. FIPS 199 provides a mechanism to determine

relative importance of an information system (low, moderate, high). This rating is based off of

confidentiality, availability, and integrity of the system. A breakdown of these three security

objectives, along with the potential impact levels of each, is shown in Table 3.1. As of now it is

quite difficult to identify risk of a system, and we can only identify the severity of vulnerabilities.

Thus the problem that arises is how to establish a set of questions to characterize a system

and identify the common characteristics between vulnerabilities. This standard has to be made

without enforcing a particular viewpoint and not be too revealing of the organization’s attributes.

Later, our contact talked about the secure automation team. The secure automation team

aims to automate processes so humans can concentrate on more important things. They try to

develop frameworks to allow computers to understand the context of the problems they are trying

28

3.1. INVESTIGATION AND RESEARCH

Table 3.1: The FIPS 199 Security Categorization methodology in table format [3]. While there
is no one-stop solution to categorizing risk in information security, many frameworks have been
proposed that when applied can improve vulnerability management. FIPS 199 is NIST’s proposed
standards for security categorization, and boasts usability through simplicity. With three security
objectives per information system, each with three potential impact levels, FIPS 199 is a great
starting point for vulnerability management teams who are trying to build a prioritization and/or
remediation process. This categorization system influenced development of our final approach to
prioritization in this project.

29

CHAPTER 3. FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

Figure 3.3: In October of 2016, our group attended the IEEE Symposium on Visualization for
Cyber Security (VizSec) where we sat in on a number of speakers share the latest research in the
field.

to solve. They want to use FIPS or other framework/methods to describe a system they are trying

to protect, so that it is understandable by other computers. They want to avoid having to describe

the context of every instance on different systems of the same vulnerability. They are currently

in the process of creating an ontology that will hopefully allow for machine learning to pre-score

vulnerabilities.

We concluded the conference call with some ideas to concentrate our project on. The employee

gave us some background on their work on the CVSS standard, it’s purpose, and it’s pitfalls. They

highly discouraged sole use of CVSS to characterize a vulnerability, and that above all context of

the vulnerability was crucial for establishing situational risk.

3.1.4 Attend IEEE VizSec 2016 Symposium

In October of 2016, we attended the IEEE Symposium on Visualization for Cyber Security

(Figure 3.3). The symposium took place in Baltimore, Maryland. The primary purpose of the

symposium was to bring together researchers and practitioners in information visualization and

security to address the specific needs of the cyber security community through new and insightful

visualization techniques.

3.1.4.1 Visualization of Actionable Knowledge to Mitigate DRDoS Attacks

One of the main panels at the symposium was about using visualizations to mitigate DRDoS1

attacks. A DRDoS attack is essentially a UDP based-amplification for Reflective Denial of Service

(RDoS) attacks. The issue at hand from the point of view of an ISP, is that malicious traffic uses

bandwidth and decreases quality of service for real users, and costs the ISP a lot of money. ISPs

would like a way to block the malicious traffic only.

1DRDoS: Distributed Reflected Denial of Service, a type of Reflective Denial of Service (RDoS) attack where
spoofed packets are sent to amplifiers that multiple the response up to 500 fold.

30

3.1. INVESTIGATION AND RESEARCH

The tool proposed in this panel was a visualization tool for the ISP to detect and mitigate

DRDoS attacks. By using Qatar Cyber Security Platform (QaCIP) architecture, this visualization

can collect massive amounts of data, perform real time processing, perform indexing, and provide

visualizations and analytics.

The data source of this software will be the packets of data captured on a network. Actionable

attributes of the packets (the headers) will provide lots of information about the origins and

intent of the data. In addition, there is additional information from informational attributes from

the enrichment process.

This software can block attacker packets by filtering packets that match malicious packets like

a regex. However, filtering is very difficult to design. They require expert knowledge, evaluation

of impact, and comparison skills. To combat the difficulty, we can use VizFilt to design a visual

analytic interface to assist us in designing filters. VizFilt is an original modeling technique that

combines qualities of stacked bar charts, parallel sets, and treemaps.

3.1.4.2 Context of Network Traffic Alerts

This panel was all about understanding the context of network traffic alerts. On the topic of

Advanced Persistent Threats (APTs) it is important to be able to understand and detect the

infiltration, expansion, and the type of sabotage. A common data source that can explain context,

is the data packets over the network. By using Wireshark, you can capture network traffic on the

network and perform deep packet inspection.

The motivation for learning more about context is to find attacks that happen over a longer

period of time by using historical tracking. We can look at exploration of the traffic as well. By

analyzing if alerts have connections to past alerts, if messages explain context of alerts, and

making widgets for attributes for better analysis, it can lead to a much better understanding of

context. More specifically, profile traffic vs time using graphing techniques by individual IPs and

conversations between IPs can provide a large amount of the context.

To conclude, the project has many strengths. These include dynamic exploration which

essentially provides visual querying, saving intermediate results, and the ability to be expressive

through interaction. The main weakness is that it does not scale well. You can only analyze up to a

million messages. The future of the project is up to their ability to scale it to larger environments.

This project is a fantastic look into the use of context to give a greater understanding of the

threat a system faces, and bolstered our team’s interest in researching the subject further.

3.1.4.3 Visualizing Malicious Logins

Another panel at the symposium was about detecting malicious logins on enterprise networks by

using visualization. This was motivated by how difficult it is to identify an Advanced Persistent

Threat (APT). Each year, APTs steal and destroy massive amounts of data from companies. For

example, Target had 40 million credit card accounts taken from an APT attack.

31

CHAPTER 3. FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

The panelists called the visualization "APT-Hunter". By providing a visualization, the users

are able to discover login rules, express login rules, and detect suspicious logins. In their initial

tests, it was found to be moderately successful, as around 50% of malicious logins were detected

from the visualization.

3.1.4.4 V3SPA

The final panel of note was about visually analyzing security enhanced Linux security policies.

Security enhanced Linux implements mandatory access control, where access to files must be

granted explicitly by an administrator. This results in less damage of compromised processes.

81% of Android devices use security enhanced Linux for Android. Security enhanced Linux Tresys

reference policy consists of around 94,000 access rules. Changing these manually is tedious and

results in frequent errors. This is usually modified using vim and emacs.

With that being said, policy graph clustering and grouping has been implemented in order

to try and combat this problem. In addition, policy protection comparison, security enhanced

Linux attack log analysis, Gephi, and NodeXL graphing have all been created in order to try and

combat this problem.

V3SPA tries to combat this by visualizing use cases of policies. V3SPA has a policy explorer

view which dramatically helps the user understand the policy structure on the system. In addition,

the policy differ view helps the user understand policy difference, which essentially allows you to

see the implication of changing a setting.

V3SPA is not very computationally expensive. It uses caching, so it can use parsed versions

of data. In addition, it uses JSONH for its data compression. Finally, it optimizes the graph

encoding since it has such a large effect on the size.

3.2 Research Results and Project Direction

From our information gathering methods - background research, industry professional survey,

NIST employee interview, and IEEE Symposium - we uncovered a plethora of challenges that

hindered effective vulnerability management. We have summarized the four biggest challenge

areas below:

• A Sisyphean Task: There are almost always more threats than can be solved with the

resources available, and attackers always have the “zero-day” advantage. Analysts are

always on the defensive - as is the nature of the security field - which puts them at a

disadvantage.

• Finding the Right Net to Cast: Many automated vulnerability scanners are set to con-

figurations that are too strict or too lenient, leading to constant false positive vulnerability

32

3.2. RESEARCH RESULTS AND PROJECT DIRECTION

alerts or low-profile vulnerabilities slipping through, respectively. Lowering both false

positive and slip-through rates are fundamental challenges in vulnerability management.

• Lack of Context: Vulnerability analysts need context of a vulnerability to make the most

informed decision on how to approach it. Context is an extremely hard thing to generalize,

as it is specific to the organization/situation in which it exists. Gathering context often

involves considering the environment, the value of assets, and the timeframe.

• The Need for Multiple Sources: Drawing upon multiple information sources is a critical

component in correctly characterizing a vulnerability and it’s risk to an organization. Hav-

ing to draw from many information sources means having to switch between many different

applications/screens, which can greatly impact time-to-response and overall concentration

as an analyst.

The largest commonality between our research results was the critical importance of con-

textual information in order to prioritize effectively. Without context of the situation posed by

a vulnerability - such as type of vulnerability, presence of an exploit, lifetime in the system,

size of the company, etc. - analysts were making decisions on how to prioritize remediation

based off a single number: CVSS score. This practice of only using CVSS score leaves decisions

woefully under-informed, and can result in the vulnerabilities that pose the greatest threat to an

organization flying under the radar until it’s too late. These concerns were echoed by results from

our survey and discussions with industry members at the symposium, as well as underlying many

of the papers we investigated. Out of the four above, this was the challenge with the farthest

reaching implications. With this in mind, our team decided our focus for this project would be on

context. Specifically, we would develop a tool that could consolidate multiple sources of contextual

information regarding vulnerabilities into a single visualization dashboard, allowing analysts to

find and prioritize vulnerabilities in a more time-efficient and knowledgeable manner. A standard

vulnerability management life cycle is depicted in Figure 3.4, with red circles around the steps of

the process that are easier to perform when using VV to provide contextual information.

3.2.1 Challenges with Context

Soon after choosing context to be the focus of our project, we were faced with a number of new

challenges. As mentioned above, context is already hard to generalize, however we soon realized

that we would also have to fetch, integrate, and show context in a robust, repeatable manner for

our tool to be useful.

To begin, we had to define the context we wished to include in the tool, and by extension,

determine the sources we would fetch the context from. As the goal of our project was to demon-

strate the usefulness of a tool that utilized context, rather than aggregate every single possible

source of context that could be of use to an analyst, we settled for using a few sources. These

sources are:

33

CHAPTER 3. FUNDAMENTAL CHALLENGES IN VULNERABILITY MANAGEMENT

Figure 3.4: The Vulnerability Management Life Cycle as defined by the CDC [8]. The circles
outlined in red represent steps in the life cycle that are augmented by the VV tool. These steps are
directly integrated into the vulnerability management process through use of the VV tool.

• CVSS Base + Temporal Metrics (extracted from CVSS vector strings in .nessus scans)

• Exploit Presence + Exploit Distribution (extracted through .nessus scan info and Metasploit

API)

• Presence in Qualys Top 10 Vulnerabilities List for a given year (extracted from Qualys

website)

We believe that these sources of context effectively demonstrate the added usefulness of contextual

information in prioritization as opposed to using CVSS score alone.

We next had to determine how we would integrate and show the context we had chosen in

our tool. Visualization was the natural choice for this project, as linked visualizations offered

an option for a strong, easily-understandable visual for analysis purposes. To make the tool as

34

3.2. RESEARCH RESULTS AND PROJECT DIRECTION

seamless as possible - and drawing from the strengths of the NV tool - we decided to design

the treemap and added context to all fit on a single page. The treemap would be surrounded

by smaller charts representing the context data that corresponds to the current state of the

treemap. Therefore, as an analyst navigates through the treemap, the context charts would

update accordingly, giving new insight into each level of a network scan.

One drawback of using purely visualization for network scan exploration is the loss of data

granularity. Visualization is ideal for showing trends in data, but sacrifices the details and

attributes about each data point to accomplish that. To combat this disadvantage, we included

a separate page in our tool called the Vulnerability List page. As the name suggests, this page

contains a list of all the vulnerabilities detected in the chosen scan, and allows the user to filter

and sort items based on multiple attributes. This portion of the tool is best suited to an analyst

that is looking for a certain vulnerability, and already knows a few attributes about it.

We explore the implementation of these design choices in the following chapter.

35

C
H

A
P

T
E

R

4
BUILDING A TOOL TO VISUALIZE CONTEXT

4.1 Project Design

NV - Nessus Visualization - is where this project evolved from. NV is a client-side web application

built in Node.js, Backbone.js, and D3.js, among a few other frameworks. NV originally would

accept version 1 output from Tennable Nessus’ scans. The application would parse the output

of the scan, and the build it into an intuitive interface. More specifically, using the power of

D3.js, the output is embedded into a multi-layer treemap interface. The user has the ability to

change how the layers are ordered, but by default it starts at IP address, goes to ports, and then

it displays all the vulnerabilities under that specific IP and Port. In addition, the treemap sizes

and color codes the blocks based on either severity, criticality, or count.

Despite all of its great features, NV does not have any functionality to convey context-based

risk behind specific vulnerabilities. Our research has shown that security analysts primarily

value vulnerability context and the vulnerability’s life cycle. Our goal was to modify the existing

project and add functionality to convey context and add flexibility to align it with vulnerability life

cycles. In addition, NV cannot support and effectively visualize over ten thousand vulnerabilities.

Due to these large requirements, it became clear that it would require a redesign of the web

application in order to be possible.

4.1.1 Technology Design Decisions

Since a redesign was necessary, we decided to take advantage of this situation and migrate

to modern frameworks. Modern frameworks offer improved performance, more flexible design

options, and a more active support community.

36

4.1. PROJECT DESIGN

4.1.1.1 Front End

The front-end JavaScript framework was our first major design decision. We were torn between

Backbone.js, Angular2.js, and React.js. We decided to reject Backbone.js because it was used

in the previous project, its community is decreasing, and it is outperformed by more modern

frameworks.

Angular2.js is a modern framework created by Google and has gained a lot of popularity

recently. It is extremely powerful and yields some of the best performance possible for web

applications. However, Angular2.js has an extremely large learning curve because it is very close

to being a fully-fledged framework. It is packaged with almost every tool that you could possibly

need to build a web application. In addition, Angular2 has very “angular-specific syntax” which

contradicts common and known design strategies. Angular2 is written in typescript, which is a

superset language of JavaScript that was developed by Microsoft. It was created to provide new

data structures and object oriented design concepts, with the intention of making the code easier

to read and maintain when compared to original JavaScript. Recent versions of typescript have

used arrow and other ES6 specific notation, which has caused it to start to resemble JavaScript.

Due to the extensive learning curve and the tedious configurations required, we decided

to reject Angular2. We then decided to do some research into Facebook’s React.js JavaScript

framework. React is very different from Angular but provides almost all of the same benefits of

Angular. React is far more dynamic than Angular2. Instead of being given a large library of tools,

you are given almost nothing and are required to import packages that the developer would like

to use. This is favorable because you only need to import what is necessary and can omit the

large packages that Angular2 may not use.

Furthermore, React uses JSX (Java Serialization to XML), which is a XML type extension

that renders JavaScript and HTML. The syntax and structure are far more similar to JavaScript

than typescript. In addition, within the HTML markup, JSX allows the mixing of variables and

JavaScript data structures. Due to these similarities, learning React will have stronger long term

effects on our team’s JavaScript skills as opposed to learning a specialized language that may

disappear in the future.

Finally, React.js proved to work well with D3.js due to its ability to easily reference the

DOM. In addition, React provides a specific method that is called after the DOM is ready for

manipulation. Since D3.js is entirely done on the DOM, it made integration with React possible.

4.1.1.2 Back End

The backend framework decision was also important to project success. We considered Python,

Java, Go, and Node.js. Python can be a great language for backends. It is mature and has

extensive library support. It has many advanced web APIs and is extremely portable. However,

due to its low latency and slow performance, developers have been recently moving away from it.

In addition, in large code bases, explicit declarations can be a nightmare to navigate.

37

CHAPTER 4. BUILDING A TOOL TO VISUALIZE CONTEXT

Java can also be a very powerful backend, but due to its age and lack of modern features, it

would increase development time. Since our project does not require a lot of speed at an enterprise

level, we would not harness the benefits associated with using Java.

Albeit not as common, Go can also be a very powerful language and a great language to use

for large systems. Due to its poor dependency management, cumbersome type systems, difficult

memory management, we would again not harness the benefits associated with using Go.

Node.js is widely used and has extensive support from the community. Since it is in JavaScript,

it would result in the entire project being written in one language. This includes the client, the

server, and the database. This would allow the transfer of JSON objects to be trivial. In addition,

it also has the Node Package Manager (NPM) which allows for easy installation of third party

packages, version management, and dependency management. It allows you to keep packages

isolated from other projects, so that you can avoid version conflicts.

Finally, Node.js is a JavaScript runtime that uses the V8 engine created by Google for use

in Google Chrome. V8 is very fast because it compiles JavaScript into native machine code. In

addition, it has the event loop, which sends asynchronous tasks with callback functions, so that

the server can continue to execute the program. Traditional backends spawn parallel threads

that consume extensive memory and are very difficult to program.

4.1.2 Development Practices

Our team consisted of three developers all working on different parts of the project. Zach primarily

focused on the backend, Barrett was focused on the interface and parts of the frontend, and

Andrew was focused on the D3.js visualizations and their integrations into the front end.

We would meet weekly and Scrum at the beginning of every meeting. We would each present

the work we accomplished in the past week and whether we completed the assigned tasked items.

This structure allowed us to collaborate, stay up to date on the other parts of the project, and

hold us accountable for deliverables.

We held numerous work sessions where we would schedule three hour segments and develop

the entire time. This allowed us to perform project merges and effectively work on sections that

required help from another team member.

4.2 Project Results

In our completed project, we successfully created an interactive visualization that allows the user

to investigate a vulnerability scan output and its relevant context. The Vulnerability Visualization

(VV) tool compares the output data to Qualys Top 10, Metasploit presence, and CVSS Vector

String constituent factors. We provide the results of this context in the form of graphs on our

interface in Figure 4.1.

38

4.2. PROJECT RESULTS

Figure 4.1: Example of VV in action. The treemap is shown in the top left, with the various
contextual graphs surrounding it.

As you click on a spot on the treemap, it will descend to the next level and update the graphs

accordingly. For example, if you clicked the 854 (port) box, it would zoom in and show all of the

respective vulnerabilities with that port. It would also update all of the graphs for only that port.

4.2.1 Zoomable Treemap

Implementing a zoomable treemap in React.js was tricky for a of couple reasons. The treemap

in D3.js is completely rendered on the DOM. So as the page is loaded, technically the page

does not contain the treemap. But shortly after the page is loaded, JavaScript functions will

manipulate the DOM and animate it immediately. If any clicks occur, all of the zooming is done

by manipulating the DOM in real time. This proves difficult in React because React uses a virtual

DOM to massively improve performance and simplicity of large systems.

React modifies the virtual DOM by calling render when state variables are changed and/or

the forceupdate() function is called. This made it difficult to implement zoom because a typical

D3 treemap would start with a null state and then build itself after it was rendered. Since we

had to render the tree immediately, it required us to design the treemap a little differently.

In addition to the DOM issues, in React, if you click on a component, regardless of the children

below, it will only call back to the component that was clicked. In our design, the Treemap

component is the entire treemap, with children square components directly below. Since we had a

39

CHAPTER 4. BUILDING A TOOL TO VISUALIZE CONTEXT

Figure 4.2: Example of VV’s Zoom Out during an animation. In this example, we are exiting
the top right square and returning to the initial tree before it. However, since the square still has
colored and numbered squares, it is easy to see where we came from.

hard time finding the location of the clicks and zooming to the right square, we decided to create

children components to represent all of the squares underneath.

To summarize our design, our treemap component creates the treemap and receives the data

from our parser. It then builds a grandparent component, followed by treemap children, and then

sets up the SVG properly. So, once the initial treemap is made, if you click a location, we send that

child component back to the treemap via callbacks, and use that child’s data as a new treemap.

Using that new data we can build the treemap that is directly below, simulating a "zoom". Each

component also saves the data of its parent, so by leveraging the parent data, when grandparent

is clicked, we use a callback to treemap, and use the parent as the new data. Once that data is

changed, the state changes as well causing React to re-render the page.

Finally, since we are simulating the zoom by building a new treemap with the child data, we

lost the zoom and unzoom D3 transitions. This was a unique feature of the NV treemap that

allowed the user to easily see where he/she traveled to and from. This was a difficult problem

to solve in React because render() simply builds the entire frame at once when data changed.

We got around this by using a framework called FlipMove, which essentially investigates the

previous state (before zoom) and the new state (after zoom) and simulates an animation of the

previous state morphing into the new state. Fortunately, due to this framework, we were able to

restore the zoom animation feature, as is displayed in Figure 4.2.

40

4.2. PROJECT RESULTS

Figure 4.3: Example of VV’s graphs displaying the additional contextual information. This
information includes exploit presence, the means of exploit if one is available, and how many
vulnerabilities in the scan are a Qualys Top 10 Exploit.

4.2.2 Graphs

Surrounding our treemap we have graphs for contextual information, base CVSS metrics, and

temporal CVSS metrics. These all provide valuable insight to the security analysts investigating

vulnerabilities. All of these graphs are aggregate totals on all of the vulnerabilities in the currently

visible level of the treemap. They provide a good way to see the distribution of specific attributes

of the vulnerabilities. You can see the graphs in Figures 4.3 and 4.4.

When the treemap is traversed (you move to another level) the aggregate totals are updated

for only the vulnerabilities currently in the treemap. For example, if you were at a specific IP

address and then clicked a port, the graphs would update for only the vulnerabilities with that

specific port. This allows analysts to see the distribution of these data values in specific groups of

vulnerabilities.

4.2.3 Vulnerability List

In addition to our main page, for convenience you can go to the "Vulnerability List" page by

clicking the menu in the top left corner. This page provides a large table of all the vulnerabilities.

Not only can you view all of the vulnerabilities, but you can see all of their attributes in each

column. A screenshot of the Vulnerability List page can be seen in Figure 4.5.

Similar to Excel, if you click on a column header, you have the option of sorting all of the

vulnerabilities by the specific attribute. In addition, as seen in the figure, the user can search

for vulnerabilities by attribute. On an attribute (column) there is filter input with the options of

"contains", "equals", "not equals", "starts with", and "ends with". This allows security analysts to

quickly find specific vulnerabilities they need information about. This feature was intended to

compensate for the lack of granular data searching that visualization incurs. In the next chapter,

we dive deeper into the VV tool through evaluation of its capabilities.

41

CHAPTER 4. BUILDING A TOOL TO VISUALIZE CONTEXT

Figure 4.4: Example of VV’s graphs displaying the CVSS metrics. Both Base and Temporal CVSS
Metrics are extracted from their respective CVSS vector strings in each vulnerability report item
from a .nessus scan.

42

4.2. PROJECT RESULTS

Figure 4.5: Example of what VV’s Vulnerability List page looks like with a fairly large vulnera-
bility scan. The Vulnerability List feature is best suited for analysts that are looking for specific
vulnerabilities that they already know some information about. Multi-column sorting and filtering
functionality makes it easy to do this.

43

C
H

A
P

T
E

R

5
EVALUATION

After completing the build phase of our tool, we evaluated it’s effectiveness through a number

of methods. Our main goal for this project was to use context to address the issue of ineffective

prioritization that expends valuable analyst time. Thus, when evaluating our tool we kept this

goal in mind, and looked for functionality that supported it. As one survey respondent described,

“[Vulnerability] management is a terrible process to have to do. It is broken and inefficient but

is required. Creating an easier way would be worth its weight in gold.” This project was just

that: an attempt to make vulnerability management easier through more accurate and intuitive

prioritization.

To begin our evaluation, we judged the general effectiveness of our VV tool based on its overall

usability and features included that were requested in the survey and found in our other research

methods. For one, the tool is still very easy to navigate like the original NV tool. All visualizations

are kept in a single page view with almost no scrolling needed. Every visualization is clearly

labeled and drawn with bold colors that make them easy to distinguish, and each visualization

provides tooltips (or in the case of the treemap, a functionally equivalent description page at

the deepest level of each vulnerability) for greater description of the quantitative attributes

being viewed. The website was designed with simplicity in mind, so that the analyst spends

as little time as possible trying to figure out where the information they needed is. As much of

our research indicated, a speedy response is absolutely key to mitigating the potential damage

caused by a vulnerability.

Many of the survey respondents indicated that they would use visualizations to help illustrate

trends and metrics in the vulnerability data, therefore we included visualizations to facilitate

just that in our project. In particular, the context charts included around the treemap all default

to displaying data from all vulnerabilities found in the current scan. This allows users to see

44

5.1. CASE STUDY: VV VS. NV

the overall trends of things such as CVSS base and temporal metric distribution, means of

exploitation and/or presence of exploit kits, and labeling as a Qualys Top 10 Exploit for a given

year. Additionally, context was repeatedly mentioned in the materials we investigated during

our preliminary research, by the people we surveyed, and at the IEEE Symposium - another

compelling reason for us to include the context charts with the original treemap to help improve

analyst prioritization.

Finally, a large portion of this project that can be easily overlooked is our foray into new

technologies during our design and build phases. While the original NV tool was built using

Backbone.js, and easily could have been expanded upon, we decided to start from the ground

up using React.js. While described in more detail in the previous chapter, we determined that

React works very well when combined with D3, as React effectively modularizes complex D3

visualizations (like the zoomable Treemap) into simple, reusable pieces. This makes our tool’s

visualizations very extensible and the subject of future improvement.

5.1 Case Study: VV vs. NV

To better judge our tool’s performance, we evaluated the use of both the NV and VV tools to

visualize the same network scan data. The data file we used was the testNetworkOpen.nbe data

file, the same file used as the default for the online NV web tool. This scan contained multiple

hosts with a wide variety of data, and thus was a good average case scan to test a wide swath of

each tool’s functionality. As the VV tool was developed to work with Nessus V2 file types (.nessus

files), and NV uses V1 (.nbe files), we built a converter to transform testNetworkOpen.nbe into a

.nessus file that could be used by the VV tool. One limitation of this method is that the V2 file

type contains more information about each vulnerability than V1 files do, so even after converting

it, the testNetworkOpen file will not be able to utilize the full functionality of the VV tool. For

instance, testNetworkOpen does not include any CVSS temporal vector strings or exploit presence

information.

VV was designed to include much of the core functionality of NV that made it useful to

analysts (e.g. zoomable treemap, vulnerability details, etc.), but also to include the context that

would help with prioritization. A high level view of the features preserved and added when

comparing the two tools is presented in Figure 5.1.

When loading the file into NV, the following is a likely order of actions an analyst might take:

1. Analyst is on a time limit and needs to find the most important vulnerabilities to their

particular organization and remediate them.

2. Analyst loads data into NV tool with default settings.

3. Analyst uses treemap to find boxes with darkest coloring (indicating highest CVSS score by

default).

45

CHAPTER 5. EVALUATION

Figure 5.1: Comparison of the new VV tool versus the previous NV tool. Advantages are marked
in green, standard functionality is marked in blue, and disadvantages are marked in red. As can
be seen, much of the functionality from NV was preserved in VV, with new helpful features like
context charts added.

4. Analyst mouses over darkest boxes to read descriptions of high threat vulnerabilities and

takes note of them.

5. Analyst can use hierarchy reorganization pills above treemap and/or aggregate CVSS/vuln/hole/hote

bar charts below treemap to reorganize treemap into different hierarchies based on the

their priorities.

When loading the file into VV, the following is a likely order of actions an analyst might take:

1. Analyst is on a time limit and needs to find the most important vulnerabilities to their

particular organization and remediate them.

2. Analyst loads data into VV tool with default settings.

3. Analyst uses treemap to discover boxes with the largest size indicating high CVSS score.

4. Analyst looks to the charts to the right of the treemap indicating aggregate CVSS base

metrics and temporal metrics for the current treemap scope.

5. Analyst looks to the charts below the treemap indicating a number of contextual variables

(e.g. exploit presence) relating to the current treemap scope.

46

5.1. CASE STUDY: VV VS. NV

6. Using the context variables provided, analyst can more intelligently navigate through

treemap to find vulnerabilities of interest (which may not necessarily have the highest

CVSS score).

7. Analyst can read details of a vulnerability upon reaching the bottom depth of a treemap

box.

8. Analyst can reorganize hierarchy of treemap as needed, like in NV.

9. If the analyst finds that rather than observe/explore trends through visualization, they

need to find a specific type of vulnerability (e.g. certain CVE), they can use the Vulnerability

List page to filter/sort all vulnerabilities from the scan.

Obviously, this is just an assumption of the likely actions a user may take; an analyst’s

priorities - and therefore actions - may differ vastly from what is described here. However, the key

takeaway is that use of the context charts in VV greatly augments the prioritization capabilities of

an analyst than using the standard treemap alone. We explore this further by doing side-by-side

analysis of the two tools.

We first compare the main treemap views of both tools in Figure 5.2. Both treemaps are

functionally similar, and allow for navigation of the hierarchical data in an almost identical

fashion. The major difference between the two views are the smaller charts surrounding the

treemap. The NV tool includes four small bar charts below the treemap that show the distribution

of vulnerability CVSS score, vulnerability type, top holes, and top notes. These charts can be

clicked on to rearrange the treemap respectively. The VV tool lacks these charts, and instead

includes charts for contextual data. Instead of clicking on the each chart to rearrange the treemap,

the context charts update to display data of the currently displayed treemap level. For instance,

when at the highest treemap level, the context charts show data for the entire scan. Then, when

the user clicks on a box to zoom in on within the treemap, the context charts update to show data

for only that box. We believe that seeing how the distribution of contextual variables change at

different levels of the treemap is very useful for an analyst.

The second comparison of the two tools is shown in Figure 5.3. Here we show the lowest level

view of the NV treemap, in other words, the treemap cannot descend any further. The NV tool

stops at the port level, and will show all the vulnerabilities associated with that port. The VV

tool can go one level deeper, and allows display of a single vulnerability. While the user must

mouse over the vulnerability they wish to view details for in the NV tool, the VV tool displays

details when viewing the lowest level, as shown above. Additionally, it is worth noting how the

bar charts in the NV tool portion of Figures 5.2 and 5.3 are exactly the same, whereas the context

charts in the VV tool portion have changed between the two pictures.

This comparison between the two tools helps highlight the additional functionality the VV

tool has which allows it to offer greater assistance to analysts for prioritization of vulnerabilities.

47

CHAPTER 5. EVALUATION

Figure 5.2: Side-by-side comparison of the main treemap view of the NV tool (top) and VV tool
(bottom), separated by the red line. The NV tool and VV tool share very similar functionality
treemaps, albeit with different color schemes. The NV tool has a few bar charts indicating distribu-
tion of holes, notes, and vulnerability type/severity in the scan below the treemap. The VV tool has
it’s contextual information contained within a number of small charts surrounding the treemap.

48

5.1. CASE STUDY: VV VS. NV

Figure 5.3: Side-by-side comparison of a deep level treemap view of the NV tool (top) and VV tool
(bottom), separated by the red line. At this point, the NV treemap cannot descend any further. The
NV tool shows all the vulnerabilities for the given port, and details can be viewed via mouseover.
The VV tool goes one level deeper, and allows viewing of a single vulnerability, where details are
shown in the treemap box. Also, context charts update to represent the data currently in view for
the VV tool. The NV tool bar charts do not change in this manner.

49

C
H

A
P

T
E

R

6
CONCLUSION

The goal of this project was to combine multiple sources of contextual information regarding

vulnerabilities into a single, cohesive view that would allow analysts to quickly sift through

greater amounts of meaningful information to improve their prioritization and remediation

process. While there were plenty of challenges uncovered through our research work, we chose to

tackle the problem of context due to its far-reaching implications on the security of organizations

of all sizes. Contextual information of a vulnerability is key to making informed decision on how

to deal with it; with only a simple CVSS score, analysts often incorrectly prioritize how they

should deal with vulnerabilities in their systems.

Over the course of this project, our team successfully accomplished the key milestones we set

out to complete since we began this undertaking. These achievements are:

• Gathered valuable industry opinions on the shortcomings of modern vulnerability manage-

ment software and desired qualities in ideal vulnerability management software.

• Confirmed that the need for context for effective prioritization is one of the biggest chal-

lenges facing the vulnerability management field. Researched, identified, and utilized

contextual variables for the purpose of more effective prioritization of security vulnerabili-

ties.

• Created a modern web application tool using React + D3 for vulnerability analysts, based

on a proven-effective existing tool, NV. Our application uses a single page to communicate

all pertinent information of the vulnerabilities present in a scanned system to the analyst,

reducing navigation time. The main focal point of the tool is a treemap visualization to

effectively represent the hierarchical data of network scanning software output, with

contextual charts on the sides to augment it.

50

6.1. FUTURE WORK

Through the achievements above, we believe that our team has made a strong foray into

finding an extensible, flexible, and robust solution to the ubiquitous problem of vulnerability

context scarcity. However, our tool has plenty of room to improve before it can fill the substantial

role of a one-stop solution. We detail these areas for improvement in the next section.

6.1 Future Work

Much was accomplished during our limited project time period, yet much more can still be done

to improve upon our work. We have identified a number of areas of improvement:

6.1.1 More Sources of Context

In the VV tool, our team decided to draw from a few different sources to provide the contextual

information next to the treemap chart. Our first source of context is the Qualys Top 10 Vulnerabil-

ity List for 2016, a list of the top 10 most critical vulnerabilities of 2016 as decided by Qualys. Our

second source is querying the Metasploit database to determine if the vulnerability in question is

registered and/or has an available exploit kit. We also check for the vulnerability’s presence in

other exploit databases to provide a more comprehensive picture of exploitability. Finally, our last

source is the constituent metrics used to calculate the CVSS score of a vulnerability, in particular

the 6 base metrics and 3 temporal metrics. These metrics are often abstracted away by other

programs to provide the CVSS score for vulnerabilities, but they provide valuable contextual

information that can be of great use to analysts.

Time constraints prevented us from providing as large a suite of context as we would of liked.

With the prototype dashboard now functional, however, future teams who may work on this can

leverage the powerful React + D3 framework and simply add in more context once they discover

it. Future work should focus on spending time surveying and researching more information to

discover new, useful sources of context. This could include discovering more research/technical

papers, interviewing analysts from the industry, and/or user studies.

6.1.2 Discover What Views are Most Useful

What is more useful, a single page with the treemap and 3 context bar charts? One large page

with just the treemap and another page with all the context charts? One large scrolling page with

the treemap and context? These are the questions that still need to be answered, as our team did

not have enough time to test multiple view types and determine which was most effective.

Future work would include doing a deep dive into UX/UI of the application we developed

to discover what is the most effective layout for communicating the information that analysts

are interested in knowing. As discussed before, two of the challenges facing the industry are

working quickly but also having access to multiple sources of information. Finding a way to tackle

both of these challenges at the same time could be the subject of much future work. Allowing a

51

CHAPTER 6. CONCLUSION

customizable dashboard (where context are widgets you can drag and drop) could be a very useful

addition that allows analysts to arrange things as they see fit. Since every company is different,

this customizability helps account for the differing needs of each analyst.

6.1.3 Expand Functionality of Vulnerability List

The vulnerability list is the portion of the application that lists every individual vulnerability

discovered in the chosen scan. It is presented as a scrollable table with each vulnerability and

every attribute known about it. This feature was added to the application to give users a more

granular view of the vulnerabilities in each scan, as well as have greater search/sort functionality

that the visualizations could not offer.

Currently, there is a lot of information made available by the list feature to comb through,

and it doesn’t differentiate itself much from the raw scan report other than being in a table view.

There are very powerful sort-by-column and filtering capabilities, but it would be helpful to users

to offer preset filters and sorts (e.g. sort by severity, then filter by solution available, then sort by

date found). Allowing users to save presets themselves would also be a welcome addition. This

would save users time and headache trying to find the right combination of filters and sorts to

find what they are looking for. Another addition to consider is offering export options into new

files (e.g. csv, original json file, rich text, etc.). These downloaded files could optionally retain the

applied sorts and filters. Finally - and this holds true for the other portions of the VV tool as well

- a UI upgrade could make information more readable.

52

APPENDIX A: VULNERABILITY MANAGEMENT SURVEY

THIS PAGE IS INTENTIONALLY LEFT BLANK.

i

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 1 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

Cyber Vulnerability and Data Visualization Survey
Your responses to these questions will remain anonymous, and will help our research into
vulnerability management.

Please take the time to answer all questions honestly and to the best of your ability.

Thank you!

* Required

1. How would you categorize the size of your company? *
Mark only one oval.

 small (under 300)

 medium (under 2000)

 large

2. Briefly describe how many resources your company dedicates to security. This could be
number of people/departments, overall percentage of workforce, etc. *

3. What industry is your company a part of? *

4. Do you have a vulnerability management process? *
Mark only one oval.

 Yes Skip to question 5.

 No Skip to question 21.

Vulnerability Management

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 2 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

5. What role do you play in the incident response process?
Mark only one oval.

 analyst/engineer

 team/shift manager

 executive in charge of the process

 Other:

6. Briefly describe the workflow of your vulnerability management process. *

7. Approximately how many endpoints/servers
does your organization scan for
vulnerabilities? *

8. Does your organization scan subsets of networks? *
Mark only one oval.

 Yes

 No

9. What tools and software do you use to scan and/or manage vulnerabilities? *
Network Scanners Include: Nessus, OpenVAS, Nexpose, QualysGuard, Core Impact, SAINT, etc.
Feel free to list any other tools that you may use that don't necessarily fall into the Network
Scanners category.

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 3 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

10. Do you prefer the use of one scanning tool over another? Why? *

11. Do you consider the number of vulnerabilities in your organization large and difficult to
manage/prioritize? *
Mark only one oval.

 Yes

 No

12. Describe how you plan and prioritize fixes for discovered vulnerabilities? *

13. When analyzing a vulnerability scan, describe the information you bring in to contextualize
your analysis. *
Examples include websites with detailed vulnerability information, business / users of the affected
IPs, etc.

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 4 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

14. If two vulnerabilities, with similar severity, are present on different parts of the network,
how do you decide which to pursue first? What data do you look for to make this decision?

15. How often does your organization run vulnerability scans in general? *
Mark only one oval.

 Daily

 Weekly

 Monthly

 Annually

16. Does your organization scan high risk areas with valuable assets more often than other
network locations? *
Mark only one oval.

 Yes

 No

17. How long does it typically take your analysts to identify vulnerabilities they intend to patch
after running a scan? *
Mark only one oval.

 Less than a day

 Less than a week

 Less than a month

 Less than a year

18. Do you use CVSS scores in your analysis? If so, how do you use these scores in your
vulnerability management process? Do you use any other indicators of severity? *

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 5 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

19. What features does your current toolset and vulnerability management workflow lack that
you would like to have? *

20. Do you have a designated technical team specifically focused on vulnerability
management? *
Mark only one oval.

 Yes

 No

Security Resources

21. Where do you get information on security threats or vulnerabilities that your company
faces? *
Mark only one oval.

 Traditional Media/News

 Social Media

 Consortium/ISAC

 Personal network

 Vendors

 Coworkers

 Other:

22. Why don't you employ vulnerability management? (choose all that apply) *
Check all that apply.

 Too expensive

 Too time consuming

 Not enough man power

 Don't know where to begin

 Don't have any knowledge on vulnerability management

 Other:

General Questions

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 6 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

23. What would an ideal vulnerability scanning tool do for you? What features does it have?
How does it display results? *

24. Do you use data visualizations (bar charts, line graphs, etcetera) in any of your
vulnerability management tools or processes? If so, how do you use visualization? *

25. Have you ever used an attack graphs or topological graph to visualize threats to your
systems? If so, how do you use these tools? *

26. Have you considered using ai/machine learning techniques to identify likely attack paths?
Why or why not? *

11/2/16, 21'25Cyber Vulnerability and Data Visualization Survey

Page 7 of 7https://docs.google.com/forms/d/1Yzjhgcm6l_51_PLyGNEhOkJKvHAe-DDbJTbxEJhiSDE/printform

Powered by

27. Is there anything else about vulnerability management you'd like to share with us? Feel
free to also share your comments on the survey and/or why you answered a question the
way you did.

BIBLIOGRAPHY

[1] J. Supra, “Alert: 2016 verizon data breach investigations report,” 2016.

[2] H. Holm, T. Sommestad, J. Almroth, and M. Persson, “A quantitative evaluation of vul-

nerability scanning,” Information Management & Computer Security, vol. 19, no. 4, pp.

231–247, 2011.

[3] D. Evans, P. Bond, and A. Bement, “Fips pub 199 standards for security categorization of

federal information and information systems,” The National Institute of Standards and

Technology (NIST), 2004.

[4] P. Institute, “2016 cost of data breach study: Global analysis,” Ponemon Institute, Tech.

Rep., June 2016. [Online]. Available: http://www-03.ibm.com/security/data-breach/

[5] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, An Attack Graph-Based Probabilistic

Security Metric. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 5094, pp.

283–296.

[6] “Cvss v3.0 specification document.” [Online]. Available: https://www.first.org/cvss/

specification-document

[7] A. Telea and Safari Books Online, Data visualization: principles and practice, 2nd ed. Boca

Raton: CRC Press, Taylor & Francis Group, 2015.

[8] CDC, “Vulnerability management life cycle,” accessed: 2017-03-21. [Online]. Available:

https://www.cdc.gov/cancer/npcr/tools/security/vmlc.htm

[9] O. I. de Normalización, ISO/IEC 27005: Information technology-Security techniques

-Information security risk management. ISO, 2008. [Online]. Available: https:

//books.google.com/books?id=K1HbZwEACAAJ

[10] W. Shanks, “Building a vulnerability management program - a

project management approach,” SANS, techreport, March 2015. [On-

line]. Available: https://www.sans.org/reading-room/whitepapers/projectmanagement/

building-vulnerability-management-program-project-management-approach-35932

ix

http://www-03.ibm.com/security/data-breach/
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document
https://www.cdc.gov/cancer/npcr/tools/security/vmlc.htm
https://books.google.com/books?id=K1HbZwEACAAJ
https://books.google.com/books?id=K1HbZwEACAAJ
https://www.sans.org/reading-room/whitepapers/projectmanagement/building-vulnerability-management-program-project-management-approach-35932
https://www.sans.org/reading-room/whitepapers/projectmanagement/building-vulnerability-management-program-project-management-approach-35932

BIBLIOGRAPHY

[11] T. Palmaers, “Implementing a vulnerability management process,” SANS, techreport,

March 2013. [Online]. Available: https://www.sans.org/reading-room/whitepapers/

threats/implementing-vulnerability-management-process-34180

[12] W. Kandek, Vulnerability Mangement for Dummies, 2nd ed. John Wiley & Sons, Ltd, 2015.

[Online]. Available: https://www.qualys.com/docs/vm-for-dummies-2nd-edition.pdf

[13] S. A. Merrell and J. F. Stevens, “Improving the vulnerability management process,”

EDPACS, vol. 38, no. 1, pp. 13–22, 2008. [Online]. Available: http://dx.doi.org/10.1080/

07366980802138673

[14] E. Bellis, “Common vulnerability management mistakes to avoid,” ac-

cessed: 2017-02-06. [Online]. Available: https://www.kennasecurity.com/resources/

common-vulnerability-management-mistakes/

[15] O. Rochford, “Prioritizing vulnerability prioritization,” August 2013,

accessed: 2017-02-06. [Online]. Available: http://www.securityweek.com/

prioritizing-vulnerability-prioritization

[16] AlienVault, “Vulnerability management: Think like an attacker to prioritize risks,”

2014. [Online]. Available: http://bluekarmasecurity.net/wp-content/uploads/2014/09/

AlienVault_Vulnerability-Management_Think-Like-An-Attacker-To-Prioritize-Risks_

whitepaper.pdf

[17] D. Kelley, “Remediating it vulnerabilities: Quick hits for risk prioritiza-

tion,” September 2011. [Online]. Available: http://searchsecurity.techtarget.com/

tip/Remediating-IT-vulnerabilities-Quick-hits-for-risk-prioritization

[18] P. Mell, T. Bergeron, and D. Henning, “Creating a patch and vulnerability management

program,” NIST Special Publication, vol. 800, p. 40, 2005.

[19] Z. Khalil and M. Elammari, Vulnerability Scanning & Management: An Approach to Man-

aging the Risk Level of a Vulnerability, 2015.

[20] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Christensen, “Portvis:

A tool for port-based detection of security events,” in Proceedings of the 2004

ACM Workshop on Visualization and Data Mining for Computer Security, ser.

VizSEC/DMSEC ’04. New York, NY, USA: ACM, 2004, pp. 73–81. [Online]. Available:

http://doi.acm.org/10.1145/1029208.1029220

[21] K. Lakkaraju, W. Yurcik, and A. J. Lee, “Nvisionip: Netflow visualizations of

system state for security situational awareness,” in Proceedings of the 2004

ACM Workshop on Visualization and Data Mining for Computer Security, ser.

x

https://www.sans.org/reading-room/whitepapers/threats/implementing-vulnerability-management-process-34180
https://www.sans.org/reading-room/whitepapers/threats/implementing-vulnerability-management-process-34180
https://www.qualys.com/docs/vm-for-dummies-2nd-edition.pdf
http://dx.doi.org/10.1080/07366980802138673
http://dx.doi.org/10.1080/07366980802138673
https://www.kennasecurity.com/resources/common-vulnerability-management-mistakes/
https://www.kennasecurity.com/resources/common-vulnerability-management-mistakes/
http://www.securityweek.com/prioritizing-vulnerability-prioritization
http://www.securityweek.com/prioritizing-vulnerability-prioritization
http://bluekarmasecurity.net/wp-content/uploads/2014/09/AlienVault_Vulnerability-Management_Think-Like-An-Attacker-To-Prioritize-Risks_whitepaper.pdf
http://bluekarmasecurity.net/wp-content/uploads/2014/09/AlienVault_Vulnerability-Management_Think-Like-An-Attacker-To-Prioritize-Risks_whitepaper.pdf
http://bluekarmasecurity.net/wp-content/uploads/2014/09/AlienVault_Vulnerability-Management_Think-Like-An-Attacker-To-Prioritize-Risks_whitepaper.pdf
http://searchsecurity.techtarget.com/tip/Remediating-IT-vulnerabilities-Quick-hits-for-risk-prioritization
http://searchsecurity.techtarget.com/tip/Remediating-IT-vulnerabilities-Quick-hits-for-risk-prioritization
http://doi.acm.org/10.1145/1029208.1029220

BIBLIOGRAPHY

VizSEC/DMSEC ’04. New York, NY, USA: ACM, 2004, pp. 65–72. [Online]. Available:

http://doi.acm.org/10.1145/1029208.1029219

[22] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack graph generation,”

in Proceedings of the 13th ACM conference on Computer and communications security.

ACM, 2006, pp. 336–345.

[23] L. Harrison and A. Lu, “The future of security visualization: Lessons from network visual-

ization,” IEEE NETWORK, vol. 26, no. 6, pp. 6–11, 2012.

[24] A. Singhal, X. Ou, N. I. of Standards, and T. (U.S.), “Security risk analysis of enterprise

networks using probabilistic attack graphs,” U.S. Dept. of Commerce, National Institute

of Standards and Technology, Tech. Rep., 2011.

[25] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack graphs,” vol. 2002-. IEEE,

2002, pp. 49–63.

[26] C. Eiram and B. Martin, “An open letter to first.”

[27] B. Marr, “Big data,” 2015. [Online]. Available: http://www.forbes.com/sites/bernardmarr/

2015/09/30/big-data-20-mind-boggling-facts-everyone-must-read/#622c8b7c6c1d

[28] 2016. [Online]. Available: http://review.content-science.com/2016/07/

2016-big-and-small-data-fact-sheet/

[29] G. Conti, B. I. P. Collection, E. A. Complete, and I. Books24x7, Security data visualization:

graphical techniques for network analysis. San Francisco: No Starch Press, 2007.

[30] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling approach to the visualization of

hierarchical information structures.” IEEE Computer Society Press, 1991, pp. 284–291.

[31] T. v. Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. . J. Wijk, van, J. Fekete,

and D. Fellner, “Visual analysis of large graphs : state-of-the-art and future research

challenges,” Computer Graphics Forum, vol. 30, no. 6, pp. 1719–1749, 2011.

[32] Y. Wang, S. T. Teoh, and K.-L. Ma, “Evaluating the effectiveness of tree visualization systems

for knowledge discovery,” 2006.

[33] L. Harrison, R. Spahn, M. Iannacone, E. Downing, and J. Goodall, “Nv: Nessus vulnerability

visualization for the web.” ACM, 2012, pp. 25–32.

xi

http://doi.acm.org/10.1145/1029208.1029219
http://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggling-facts-everyone-must-read/#622c8b7c6c1d
http://www.forbes.com/sites/bernardmarr/2015/09/30/big-data-20-mind-boggling-facts-everyone-must-read/#622c8b7c6c1d
http://review.content-science.com/2016/07/2016-big-and-small-data-fact-sheet/
http://review.content-science.com/2016/07/2016-big-and-small-data-fact-sheet/

	Worcester Polytechnic Institute
	Digital WPI
	March 2017

	Visualizing Contextual Information for Network Vulnerability Management
	Andrew Jack Mokotoff
	Barrett Mitchell Wolfson
	Zachary Reid Robbins
	Repository Citation

	List of Tables
	List of Figures
	Introduction
	Analyzing Modern Security Trends
	Defining Effective Vulnerability Management

	Background
	Vulnerability Identification
	Analysis of Currently Used Tools
	More on Limitations of Current Tools

	Vulnerability Management, Analysis, and Response
	Vulnerability Management

	Vulnerability Prioritization
	Probabilistic Attack Graphs
	Common Vulnerability Scoring System (CVSS)

	Data Visualization
	Visualization in Security
	Hierarchical Visualization

	Fundamental Challenges in Vulnerability Management
	Investigation and Research
	Background Research
	Survey Vulnerability Management Professionals
	Interview NIST
	Attend IEEE VizSec 2016 Symposium

	Research Results and Project Direction
	Challenges with Context

	Building a Tool to Visualize Context
	Project Design
	Technology Design Decisions
	Development Practices

	Project Results
	Zoomable Treemap
	Graphs
	Vulnerability List

	Evaluation
	Case Study: VV vs. NV

	Conclusion
	Future Work
	More Sources of Context
	Discover What Views are Most Useful
	Expand Functionality of Vulnerability List

	Appendix A: Vulnerability Management Survey
	Bibliography

