Design and Demonstration of a Heat Exchanger for a Compact Natural Gas Compressor

Andrew T. Nelson
Worcester Polytechnic Institute
Bradford R. Marx
Worcester Polytechnic Institute
Calvin K. Lam
Worcester Polytechnic Institute
Christopher Joseph O'Brien
Worcester Polytechnic Institute
Jessica Kristin Holmes
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation

Nelson, A. T., Marx, B. R., Lam, C. K., O'Brien, C. J., \& Holmes, J. K. (2012). Design and Demonstration of a Heat Exchanger for a
Compact Natural Gas Compressor. Retrieved from https://digitalcommons.wpi.edu/mqp-all/246

Design and Demonstration of a Heat Exchanger for a Compact Natural Gas Compressor

Major Qualifying Project Report submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the Degree of Bachelor of Science of MECHANICAL ENGINEERING

Submitted by:
Jessica Holmes
Calvin Lam
Bradford Marx
Andrew Nelson
Christopher O'Brien

Project Advisor:
Prof. Simon Evans

Project Sponsor:
OsComp Systems

Project Website: https://sites.google.com/site/oscompmqp/
Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been prepared according to the fair use guidelines and are restricted from further use.

Acknowledgements

Our team would like to express our most sincere appreciation to the following individuals. Without their knowledge, enthusiasm, and dedication, the success of our project would never have been possible.

Professor Simon Evans, WPI - For all his advice, guidance, and organization throughout the entirety of this project.

Andrew Nelson, OsComp Systems - For all of his excellent suggestions and guidance throughout the project. His strong work ethic and high expectations were what drove our team to succeed.

Pedro Santos, OsComp Systems - For providing us the opportunity and resources to work on a real-world problem and utilize our knowledge obtained here at WPI.

Neil Whitehouse, WPI - For assisting us with the manufacturing aspect to the project and taking the time to provide us with knowledge and assistance whenever we asked.

Adam Sears, WPI - For allowing us to use lab space in the Washburn Shops building and providing us with any resources we needed to achieve our objectives.

Greg Overton, WPI - For assisting us with machining our copper parts, which played an essential role in completing the project.

Mike Beliveau, Aavid Thermalloy - For assisting us with obtaining heat pipes in a timely manner and alleviating the cost of our project.

Serena Lin, Enertron Inc. - For providing us with the necessary information on heat pipes, which was required to design our model, as well as her patience in order to do so.

Barbara Furhman, WPI - For assisting the team with obtaining all necessary parts and equipment to complete our project.

Abstract

Natural gas is an important fossil fuel. In order to optimize the transportation of natural gas from the source to the consumers, it must first be compressed. As natural gas is compressed, the temperature increases significantly and must be cooled before it can be processed further. However, current heat exchangers for this application are large and inefficient for a natural gas compression skid. As these devices must operate in locations where there is a limited amount of space, such as offshore oil platforms, it is crucial to reduce the footprint as much as possible. The goal of this project was to design a more efficient and compact heat exchanger to be used in conjunction with OsComp's rotary, positive-displacement natural gas compressor. The design incorporated heat pipes as a means to improve the efficiency of the overall heat transfer. The design has a total footprint of $0.871 \mathrm{~m}^{\wedge} 2$, which is 21.5% smaller than an industry standard heat exchanger of the same specification $\left(1.1 \mathrm{~m}^{\wedge} 2\right)$. To demonstrate the feasibility of a heat-pipe forced convection cooler; a scaled-down test stand was manufactured and tested.

Table of Contents
Acknowledgements 1
Abstract 2
List of Figures 5
List of Tables 6

1. Introduction 7
2. Background 8
2.1 Thermodynamic and Heat Transfer Concepts 8
3. 2 Compressors 11
2.3 Heat Exchangers 11
2.3.1 Heat Transfer Process 11
2.3.2 Construction 13
2.3.3 Heat Transfer Mechanisms 15
2.4 Heat Pipes 16
2.4.1 Types of Heat Pipes 17
4. Methodology 19
3.1 Design Requirements 19
3.2 Design Process 19
3.2.1 Concepts Considered 20
3.2.2 Decision Matrix 28
3.3 Final Design 30
3.4 Manufacturing 31
5. Testing 34
4.1 Heat Pipe Experiments 34
4.2 Scale Model Experiments 37
4.2.1 Assembly of Demonstrator 37
4.2.2 Assembly of Test Apparatus 39
4.2.3 Experimental Setup 41
4.2.4 Scaling Procedure 41
6. Analysis 44
5.1 Performance 44
5.1.1Temperature Profiles 44
5.1.2 Heat Pipe Performance 48
5.1.3 Cooling Performance 52
5.1.4 Scaling Analysis 52
5.1.5 Demonstrator Analytical Analysis 53
5.2 Cost 55
7. Conclusions 56
8. Recommendations 57
7.1 Heat Pipe Selection 57
7.2 Manufacturing 58
7.3 Conducting Experiments 58
9. References 60
Appendices 61
Appendix A - Authorship 61
Appendix B - Properties Used 61
Appendix C - Budget 62
Appendix D-CAD Drawings and Pictures 63
Appendix E - Experimental Setup Pictures 66
Appendix F - LabView Setup for Data Acquisition 69
Appendix G-Mathcad Calculations 71
G. 1 Fin Analysis and Optimization 71
G. 2 Scaling Calculations 74
G. 3 Cradle Heat Pipe Design Analysis 79
G. 4 Demonstrator Analytical Analysis. 85
Appendix H-Quotes 91
H. 1 Quote - Current Cooler Competitor 91
H. 2 Aavid Thermalloy Quote - Heat Pipes 95
H. 3 ACT Quote - Heat Pipes 96
H. 4 Enertron Inc. Heat Pipe Quote (Unofficial) 97
H. 5 Noren Products Heat Pipe Quote (Unofficial) 97
Appendix I-Contacts 98
I. 1 WPI 98
I. 2 OsComp Systems 98
I. 3 Heat Pipe Manufacturers 99
List of Figures
Figure 1: Thermal resistance for a tube 9
Figure 2: Heat exchanger classification according to transfer process 12
Figure 3: Plate heat exchanger 14
Figure 4: Shell-and-tube heat exchanger 15
Figure 5: Heat Pipe Operation (Gilmore, 2002) 16
Figure 6: Flat Heat Pipes 17
Figure 7: Variable-Conductance Heat Pipes 18
Figure 8: Spiral heat exchanger (Cesco, 2011) 20
Figure 9: Two section heat exchanger 21
Figure 10: Thermoelectric Cooler Operation (TE Technology Inc., 2010) 22
Figure 11: Sample Thermoelectric Cooler (Snake Creek Laser, 2011) 23
Figure 12: Compact cooler 24
Figure 13: Deployable radiator preliminary concept (Gilmore) 25
Figure 14: "Panels with heat pipes" preliminary concept 26
Figure 15: "Panels with heat pipes" preliminary design concept, inside view 26
Figure 16: Thermacore's heat exchangers (Thermacore, 2009) 28
Figure 17: Full Model 30
Figure 18: Cradle with Heat Pipe 31
Figure 19: Cradle (ideal) 32
Figure 20: Cradle (modified) 32
Figure 21: Heat pipe experimental set-up 34
Figure 22: Thermal resistance vs. Heat Pipe Length (Enerton, 2011) 35
Figure 23: Average heat load vs. thermal resistance of a heat pipe 36
Figure 24: Thermal resistance over time 36
Figure 25: CAD model of demonstrator 37
Figure 26: 7 Cradle Demonstrator Layout 38
Figure 27: 14 Cradle Demonstrator Layout. 39
Figure 28: Final Demonstrator 40
Figure 29: Temperature Profile - Fan off, 7 heat pipes 45
Figure 30: Temperature Profile - Fan off, 14 heat pipes 46
Figure 31: Temperature Profile - Fan off, 7 pipes, increased flow rate 46
Figure 32: Temperature Profile: Fan on, 7 heat pipes 47
Figure 33: Temperature Profile: Fan on, 14 heat pipes 47
Figure 34: Temperature Profile - Fan on, 14 heat pipes, long duration (33 minutes) 48
Figure 35: Temperature Change across heat pipe 1 for the 7 heat pipe demonstrator. 49
Figure 36: Temperature Change across heat pipe 3 for the 7 heat pipe demonstrator 49
Figure 37: Performance of Heat Pipe 1 for the 7 heat pipe demonstrator 50
Figure 38: Performance of Heat Pipe 3 for the 7 heat pipe demonstrator 50
Figure 39: Performance of Heat Pipe 3 for the 14 heat pipe demonstrator 51
Figure 40: Performance of Heat Pipe 14 for the 14 heat pipe demonstrator 51
Figure 41: Preliminary design model, using heat pipe concept 63
Figure 42: Preliminary design drawing, using heat pipe concept 63
Figure 43: Preliminary demonstrator model 64
Figure 44: Cradle drawing 64
Figure 45: Demonstrator drawing 65
Figure 46: Close up picture of heat pipe 66
Figure 47: Securing copper for machining 66
Figure 48: Exhaust outlet connecting to cooler 67
Figure 49: Final setup of demonstrator 1 67
Figure 50: Final setup of demonstrator 2 68
Figure 51: LabView Virtual Instrument 69
Figure 52: LabView Block Diagram 70
Figure 53: Fin Optimization 73
List of Tables
Table 1: Decision matrix 28
Table 2: Heat load vs. thermal resistance of heat pipes 35
Table 3: Outlet temperature for each experiment 52
Table 4: Scaling Analysis 53
Table 5: Equipment and materials cost breakdown 55
Table 6: Project Budget 62
Table 7: Fin Optimization 1 72
Table 8: Fin Optimization 2 72

1. Introduction

Natural gas is found in oil or gas wells and consists primarily of methane (85% to 95% by volume) in addition to trace amounts of other gases. Natural gas is used in many applications such as power generation and running industrial equipment. Compression of this gas is necessary to maximize the amount that can be stored and transported. Traditional natural gas compression systems require multiple compression and cooling stages to achieve high pressure ratios and reduce the temperature increases caused by compression, respectively. Since the gas is at different pressures after each stage, multiple pieces of equipment are required which greatly increases the amount of space the equipment occupies. If the natural gas could be compressed in fewer cycles, the size of the compression platform could be greatly reduced. This is particularly important on oil rigs and other locations where space is limited.

OsComp Systems, founded in 2009 by Pedro Santos, has created a new compressor that uses a single stage to achieve pipeline pressures at higher efficiency and energy density, leading to a smaller size. Their compressor uses dynamic liquid injection to achieve near-isothermal compression. Since the gas is cooled within the compressor, the entire compression can be done in one cycle, and this allows the compressor to be packaged on a smaller frame.

Currently, the largest component on the compressor platform is the cooler. The compressor skid holds the compressor and all other components required to keep it running. The cooler is used to cool the engine fluids, from the engine running the compressor, the natural gas coolant, and the natural gas itself. Current industry standard coolers are approximately $7 \times 3 \times 4$ meters [$84 \mathrm{~m}^{3}$ in volume] and have a flow rate of 378 SCFM. If the cooler could be redesigned as a more efficient component, the size could be reduced, allowing for a smaller compression skid. This is important because transporting the heavy, bulky skids is expensive and difficult. This becomes even more important in off-shore and under-sea applications where optimizing
footprint is of the utmost importance. The goal of this project is to design a cooler that is more efficient and compact than industry standard to be used in conjunction with OsComp's rotary, positive-displacement natural gas compressor. The objective of our project is to design a working cooler section and to build a test model. This test model will be a scale version of the full unit.

2. Background

2.1 Thermodynamic and Heat Transfer Concepts

The two main modes of heat transfer associated with this cooler are convection and conduction. Convection refers to heat transfer between a surface and a moving fluid (Atlas Copco, 2010). Here, a fluid can be considered either a gas or a liquid. This type of heat transfer is characterized by a convection coefficient h. Conduction is heat transfer through the direct contact of particles, whether it is a solid or a stationary fluid (Atlas Copco, 2010). It is characterized by a thermal conductivity k. Each type of heat transfer provides a thermal resistance, which is helpful in calculating the amount of heat that is transferred in a system.

In a heat exchanger, heat is first transferred from the hot fluid to the tube or pipe wall by convection. Next, heat is transferred through the wall by conduction. Finally, through convection, heat is transferred from the wall to the cold fluid (Cengel et al., 2008). Using the subscript i to identify variables inside the tube and the subscript o to identify variables outside the tube, the thermal resistance for all three modes of heat transfer taking place can be defined, along with an equivalent thermal circuit shown in Figure 1. The equations for each thermal resistance are described in Equations (1) through (3). Equation (4) is the equivalent resistance for the entire tube.

Figure 1: Thermal resistance for a tube

$$
\begin{gather*}
R_{i}=\frac{1}{h_{i} \times A_{i}} \tag{1}\\
R_{\text {wall }}=\frac{\ln \frac{D_{o}}{D_{i}}}{2 \times \pi \times k \times L} \tag{2}\\
R_{o}=\frac{1}{h_{o} \times A_{o}} \tag{3}\\
R_{\text {total }}=R_{i}+R_{\text {wall }}+R_{o}=\frac{1}{h_{i} \times A_{i}}+\frac{\ln \frac{D_{o}}{D_{i}}}{2 \times \pi \times k \times L}+\frac{1}{h_{o} \times A_{o}} \tag{4}
\end{gather*}
$$

The thermal resistance for convection is dependent on the convection coefficient h and the surface area A, on which the heat transfer is to occur. For the inner surface area of circular tubes, $A_{i}=\pi \times D_{i} \times L$, where D_{i} is the inner diameter of the tube and L is the length of the tube. Similarly, for the outer surface area of a tube, $A_{o}=\pi \times D_{0} \times L$. The thermal resistance for conduction is a function of the thermal conductivity k, the length of the tube L, and the ratio between the outer and inner diameters, $\frac{D_{o}}{D_{i}}$. Since the heat transfer modes act in series, the total thermal resistance is equal to the sum of these three resistances. From this resistance, the rate of heat being transferred in this process can be determined, using equation (5).

$$
\begin{equation*}
Q=\frac{\Delta T}{R_{\text {total }}}=U \times A \times \Delta T \tag{5}
\end{equation*}
$$

In Equation (5), ΔT is the temperature difference between the outlet and inlet, and U is the overall heat transfer coefficient. To simplify calculation of the overall heat transfer coefficient, the thermal resistance in the wall may be approximated as zero, since the thickness of the wall is very small. The inner and outer surface areas of the pipe are also considered to be
equal. As a result, the overall heat transfer coefficient can be calculated from the two convection coefficients:

$$
\begin{equation*}
\frac{1}{U}=\frac{1}{h_{i}}+\frac{1}{h_{o}} \tag{6}
\end{equation*}
$$

The values of the overall heat transfer coefficient will range from approximately 10 $W / m^{2} *{ }^{\circ} \mathrm{C}$ for gas-to-gas heat exchangers to approximately $10,000 \mathrm{~W} / \mathrm{m}^{2} *{ }^{\circ} \mathrm{C}$ for heat exchangers that involve phase changes (Cengel et al., 2008).

Because heat exchangers are made to operate for long periods of time without any change in their operating conditions, they can be analyzed as steady-flow devices, where the mass flow rate in each fluid will remain constant (Cengel et al., 2008). Fluid properties including temperature and velocity at inlets or outlets will also remain constant. Fluid streams experience little to no change in velocities or elevations, meaning that both kinetic and potential energy can be considered negligible.

The first law of thermodynamics states that energy cannot be created nor destroyed; therefore energy must be conserved in a closed system (Atlas Copco, 2010). For a heat exchanger, this means that the rate of heat transfer from the hot fluid must be equal to the rate of heat transfer to the cold fluid. Using c as a subscript to describe the cold fluid and the subscript h as an indicator for the hot fluid, the following equations can be written for the rate of heat transfer for the system. Using the mass flow rates, \dot{m}, the specific heats, c_{p}, and the inlet and outlet temperatures, $T_{\text {in }}$ and $T_{\text {out }}$:

$$
\begin{align*}
& \dot{Q}=\dot{m} \times c_{p, c} \times\left(T_{c, \text { out }}-T_{c, \text { in }}\right) \tag{7}\\
& \dot{Q}=\dot{m} \times c_{p, h} \times\left(T_{h, \text { in }}-T_{h, \text { out }}\right) \tag{8}
\end{align*}
$$

Equations (7) and (8) can be rewritten and simplified in terms of the heat capacity rate C. The heat capacity rate is the product of the mass flow rate and the specific heat of the fluid. It
represents the rate of heat transfer required to change the temperature of a fluid stream by $1^{\circ} \mathrm{C}$. In a heat exchanger, fluids with a large heat capacity rate will experience a smaller temperature change (Cengel et al., 2008). Conversely, there will be a larger temperature change in fluids with a small heat capacity.

2. 2 Compressors

Various techniques for compression are used in products on the market today. Cooling liquid-injected compression, which is utilized by OsComp Systems, is the process of injecting liquid into a gas during compression. The coolant absorbs heat generated during the compression process, sometimes evaporating as a result. This cools the gas during compression, allowing for high pressure ratios in a single stage and eliminating the need for inter-stage cooling sections in the system. This is different from industry standard natural gas compressors or reciprocating piston compressors, as they will fail catastrophically when liquids are included in the gas stream. OsComp's compressor utilizes a novel design which uniquely allows for liquid injection and wet gas compression.

2.3 Heat Exchangers

A heat exchanger is a device that is used to transfer thermal energy between two or more fluids. Heat exchangers are classified according to the heat transfer process, number of fluids, construction, surface compactness, flow arrangements, and heat transfer mechanisms. Two fluids are commonly used in heat exchangers, with one fluid being cooled and another fluid acting as a coolant. However, "as many as twelve fluid streams have been used in some chemical processes (e.g., air separation systems and purification/liquefaction of hydrogen) (Shah 2003)."

2.3.1 Heat Transfer Process

Heat exchangers can be classified as devices that transfer heat either directly or indirectly. A direct contact heat exchanger transfers energy directly from one fluid to another,
usually separated by a barrier. Indirect contact heat exchangers utilize an intermediate medium to transfer the thermal energy between fluids. There are also different classifications within each of these types of exchangers, as illustrated below in Figure 2.

Figure 2: Heat exchanger classification according to transfer process
There are three arrangements within the indirect-contact heat exchanger: direct transfer, storage, and fluidized bed. In the direct transfer setup, heat is transferred continuously from the hot fluid to a dividing wall and from the dividing wall to the cold fluid. Although two (or more) fluids flow simultaneously, the fluids never mix because each fluid is flowing in a separate passage. Examples of direct-transfer heat exchangers are tubular, plate-type, and extended surface (fin) exchangers. "In the storage type exchanger, both fluids flow alternatively through the same flow passages, creating intermittent heat transfer. In a fluidized-bed heat exchanger, one side of a two-fluid exchanger is immersed in a bed of finely divided solid material, such as a tube bundle immersed in a bed of sand or coal particles." (Shah 2003)

In direct-contact heat exchangers, the fluids come into direct contact when transferring heat. The fluid types associated with these heat exchangers can be two immiscible fluids, a gas and a liquid, or a liquid and a vapor. Typical applications involved heat and mass transfer, such as in evaporative cooling. It is rare that applications only involve sensible heat transfer. With respect to indirect- contact heat exchangers, direct-contact can achieve very high heat transfer
rates, are relatively inexpensive, and do not suffer from fouling since there is no wall between the two fluids (Shah 2003).

2.3.2 Construction

There are four main construction types of heat exchangers: tubular, plate-type, extended surface (fin), and regenerative. There are other constructions available that may be classified as one of these types but have some unique features compared to the conventional type of exchanger.

Tubular heat exchangers are generally built of circular tubes. However, elliptical, rectangular, and round/flat twisted tubes can also be used. There is considerable flexibility in this design as the core geometry can be varied easily. This is done by changing the tube diameter, length, and arrangement. These exchangers can be designed for high pressures relative to the environment as well as high pressure differences between fluids. Primary heat transfer applications include liquid-to-liquid and liquid-to-phase change (condensing or evaporating).Tubular heat exchangers can be used for gas-to-liquid and gas-to-gas heat transfer applications when the operating temperature and/or pressure is very high, or if fouling is a severe problem on at least one fluid side. (Shah 2003)

The plate heat exchanger, shown in Figure 3 below, is often used for two liquid streams. This type of exchanger consists of many individual plates that are stacked together, refer to Figure 3. The plates are corrugated, forming flow channels between the adjacent plates. This type of heat exchanger is compact and easy to disassemble for cleaning. It is also relatively easy to increase or decrease their size as needed by adding or removing plates.

Figure 3: Plate heat exchanger

Fins are used to increase the heat exchanger surface area. They are usually "placed on the gas side of a gas-to-liquid configuration, compensating for the low convection heat transfer coefficients that are typical for forced convection with a gas (Nellis 2009)." The fin configuration can vary depending on the application. The most common applications are for automobile radiators and heat sinks for computers.

A shell-and-tube heat exchanger has one fluid flowing through a bank of tubes, which is inside a larger shell. The cooling fluid flows within the shell and around the outer surface of the tubes. Baffles, interior plates used to deflect or regulate flow, are usually added in the shell to force the shell-side flow to pass across the tubes, in a serpentine pattern (Figure 4).

Figure 4: Shell-and-tube heat exchanger

2.3.3 Heat Transfer Mechanisms

The basic heat transfer mechanisms incorporated in heat exchangers are single-phase convection, two-phase convection, and combined convection and radiation heat transfer. The convection can either be free or forced in any case. Any of these mechanisms can be active on each fluid side of the heat exchanger, either individually or in combination, depending on the configuration (Shah, 2003).

2.4 Heat Pipes

Heat pipes are used to transport large quantities of heat from one location to another without the use of electricity. Utilizing a closed, two-phase, fluid cycle with a hot interface (evaporator) and a cold interface (condenser), heat pipes utilize the properties of gravity or capillary action, provided by a wick, and pressure differential to transport liquid and vapors. Heat pipes are extensively used for cooling systems in spacecraft and for cooling various modern computer system components, including central and graphical processing units.

Figure 5: Heat Pipe Operation (Gilmore, 2002)
As illustrated above in Figure 5, a heat pipe consists of a wick and a vapor space. The wick contains the liquid phase and the vapor space contains the vapor phase, where both are at saturation. At the evaporator, the incoming heat raises the temperature inside and the liquid evaporates, travelling to the other end. This lowers the pressure in the evaporator end because less liquid remains. The local vapor pressure at the condenser end raises, as it must remain in saturation with the heated liquid. This pressure difference is sufficient enough to draw liquid from the condenser toward the evaporator, while the heated vapors in the evaporator flow toward the condenser, which is now at a lower pressure. The vapors then condense when they come in contact with the condenser's lower surface temperature. This cycle is repeated to transfer heat (Gilmore, 2002).

2.4.1 Types of Heat Pipes

There are various types of heat pipes available, ranging from constant-conductance heat pipes and diode heat pipes to variable-conductance heat pipes (VCHPs) and hybrid systems. Constant-conductance heat pipe designs are among the most basic and are categorized according to their 4 types of wick structure: groove, which has many small slots around the inside of the pipe to carry liquid back; mono-groove, which uses one larger groove instead of many smaller grooves; composite, which layers material around the inside of the pipe to carry the liquid back; and artery \& tunnel, which provides one or more extra unrestricted liquid flow paths in addition to composites.

Figure 6: Flat Heat Pipes
Heat pipes do not need to have a conventional cylindrical shape; they can also be designed as flat plates as seen above in Figure 6 (Gilmore, 2002). Diode heat pipes are similar to constant-conductance heat pipes, except they only operate in one direction. The three most common diode heat pipes are: liquid trap, which uses a reservoir next to the evaporator to block
vapor travel; liquid blockage, which uses a reservoir by the condenser which fills and empties with liquid to block vapor travel; and gas blockage which also uses a reservoir next to the evaporator, but is filled with a non-condensable gas to block vapor travel (Gilmore, 2002). Variable-conductance heat pipes, as shown in Figure 7 below, utilize gas reservoirs.

Figure 7: Variable-Conductance Heat Pipes

These reservoirs are filled with a non-condensable gas to control the operating area of the condenser based on the evaporator temperature. The benefit of this type of heat pipe is to reduce the volume of control gas and open up more area of the condenser for heat pipe operation (Gilmore, 2002). Hybrid systems are extensions of capillary-pumped loop designs. Coolant is vaporized as part of this, and major benefits of this system are its ability to be operated without a separate driving unit and being suitable for light-weight miniaturized electronics (Gilmore, 2002).

3. Methodology

3.1 Design Requirements

With the goal of the project to design a more efficient and compact heat exchanger to be used in conjunction with OsComp's rotary, positive-displacement natural gas compressor, the next step was to create a list of design specifications and requirements to follow as initial design ideas took shape. After speaking with our sponsor and examining their natural gas compressor, we learned that the temperature of the natural gas entering our heat exchanger is 104° Celsius and the desired exit temperature is $60^{\circ} \mathrm{C}$. The design must handle the pressure of the compressed natural gas at 10.55 MPa and be able to continuously run for months at a time. The natural gas flows at a rate of $0.473 \mathrm{~m}^{3} / \mathrm{sec}$ and has a density of $53.33 \mathrm{~kg} / \mathrm{m}^{3}$. Our sponsor is interested in seeing innovative or novel ideas, encouraging us to stay away from more traditional designs such as shell-and-tube and plate heat exchangers. Finally, the design is desired to be smaller than commercial natural gas heat exchangers currently available on the market. For comparison, we used an industry standard after-cooler section quote, given to us by our sponsor, which has a total volume of $0.55 \mathrm{~m}^{3}$, broken up into a length of 1.619 m , a width of 0.343 m , and a height of 0.991 m.

3.2 Design Process

Each member of the design team came up with a preliminary design for a more compact method of cooling natural gas. These concepts were each analyzed in great detail to help determine which concepts we would continue to explore. First, we used a decision matrix to narrow our design options down to two concepts. Then, we conducted further analysis to compare both final concepts and make a decision on which path to pursue. We started with five unique designs, detailed below, and ended up pursuing a heat pipe based design with copper cradles.

3.2.1 Concepts Considered

Spiral Heat Exchanger

Spiral heat exchangers feature two fluids in counter flow. In this set-up, the hot fluid is cooled by a colder fluid. They are often used in paper processing and refineries, and are beneficial due to their anti-fouling designs and compact design. Some challenges with using spiral heat exchangers are that they can only cool one fluid, and that the coolant flow must be a forced flow. We chose not to use a spiral heat exchanger due to the lack of scalability and the fact that only one fluid can be cooled in each heat exchanger. A diagram of the spiral heat exchanger model is shown in Figure 8.

Figure 8: Spiral heat exchanger (Cesco, 2011)

Two Section Heat Exchanger

Figure 9: Two section heat exchanger
A two section heat exchanger, shown in Figure 9, was developed as another possible cooler design. Made out of aluminum, this design operates by running the hot gas through the yellow sections and coolant through the blue sections. The pipe bends back and forth to create a stacked, staggered pattern in order to reduce the overall size. Baffles within the blue section of the tube help support the yellow section and direct the flow of coolant. In order to manufacture, wire EDM or aluminum extrusion should be considered. The advantages of this design are that the multiple passes allow for longer duration of contact with coolant and provide a large heat transfer surface area. However, this design was not chosen for further analysis because it became apparent that the length needed to sufficiently cool the natural gas would make the design too large.

Thermoelectric Cooler

An additional method for cooling the natural gas that was considered was the use of thermoelectric coolers. These coolers utilize the thermoelectric effect (also known as the Peltier effect), in which an induced voltage between two different metals creates a temperature
difference. Although they contain no moving parts, thermoelectric coolers are characterized by poor efficiency ratings (Avallone, 2007). Ultimately, we did not continue with the thermoelectric concept for our design because of the high amount of electrical energy required to operate it, the relatively high cost for individual coolers, and its poor scalability. Mounting the coolers to a cylindrical pipe would also be challenging, especially with a large heat sink attached to each cooler. Figure 10 and Figure 11 below show how a thermoelectric cooler operates and a sample thermoelectric cooler, respectively.

Schematic of a Thermoelectric Cooler

Figure 10: Thermoelectric Cooler Operation (TE Technology Inc., 2010)

Figure 11: Sample Thermoelectric Cooler (Snake Creek Laser, 2011)

Compact Heat Exchanger

When exploring the different types of heat exchanger, there was one particular classification that seemed to fit well for our application. The idea of a compact heat exchanger was intriguing because of the ability to cool a fluid over a large heat transfer surface area while occupying a relatively small amount of space. They are commonly used in applications that have limitations on weight and volume.

The original compact cooler concept, inspired by a thermal-fluid textbook, Fundamentals of Thermal-Fluid Sciences by Y.A. Cengel, R. H. Turner, and J.M. Cimbala, consists of multiple tubes passing through a large amount of thin plates. Air is forced through the plates using a fan. The plates increase thermal conductivity, meaning that the greater number of plates used in a design, the greater the amount of heat can be removed from the system. After several iterations, the final compact cooler design that was developed featured one tube that is looped back and forth between each end of the cooler, with each pass going through thin aluminum plates. This configuration results in a tube length long enough so that the natural gas can be cooled to the necessary temperature. At the same time, by looping the tube, size and footprint are both minimized. Figure 12 shows the configuration of the model with the looped tubes.

Figure 12: Compact cooler
This concept presented several manufacturing challenges, and after further analysis, it was realized that this design, even with the pipe looped back and forth, would still have to be quite large if it were to cool the natural gas to the desired temperature. Due to these reasons, we ultimately did not further pursue this design concept.

Deployable Radiator

Another concept we developed was inspired by the deployable radiators found on the International Space Station. Our initial background research confirmed that aircraft and spacecraft required compact thermal control devices since they had limited space available.

Fig. 6.8. Space Station deployable radiator.

Figure 13: Deployable radiator preliminary concept (Gilmore)
In order to reduce the large footprint of a typical heat exchanger, we modified the deployable radiator concept, shown in Figure 13 to be used on Earth. The base would provide a smaller footprint and have numerous panels extend upwards. Each panel would be equipped with heat pipes to further increase the heat transfer rate. The panels themselves help increase the surface area available to mount the heat pipes as well as dissipate larger amounts of heat. The panels also would have the ability to retract when not in use, which would make transportation and instillation easier. However, we learned from OsComp that this feature was not necessary or very beneficial.

Panels with Heat Pipes

The deployable radiator concept was further modified to improve the structural integrity as well as ensure an easier manufacturing process. The panels would be mounted horizontally and stacked vertically. Each panel would have heat pipes mounted on its surface, with the condenser region extending off the edge of the panel. The compressed natural gas would enter
and exit at the base of the cooler and would snake through the panels. Schematics of this design are described below in Figure 14 and Figure 15.

Figure 14: "Panels with heat pipes" preliminary concept

Figure 15: "Panels with heat pipes" preliminary design concept, inside view

Similar to the deployable radiator concept, the panels are meant to increase the surface area and allow the heat pipes to be mounted to them. However, this design had a few potential issues. First, there was concern with the pressure loss in the system from the natural gas pipes snaking within the panels. Second, there would be a significant masking effect due to the panels and heat pipes being stacked directly over each other. This would not allow the cooler to be as effective. Lastly, it would cost a significant amount of money to manufacture due to the intricate piping throughout the heat exchanger.

Thermacore's Heat Exchangers

The team researched current heat exchangers on the market to determine if they could somehow be integrated in our design concepts. Thermacore Thermal Management Solutions' air-to-air heat exchangers presented a few concerns. The primary concern was that the heat exchanger had to be mounted in such a manner where the natural gas flows through the lower half of the heat exchanger. This presented a challenge in terms of manufacturing our design concept. Also, the heat exchangers are not meant for compressed natural gas, which meant that corrosion could occur over time. Lastly, the unit's performance was insufficient for our application. Thermacore's liquid-to-air heat exchanger also could not handle the volumetric flow rate required for the coolant. Refer to Figure 16 for examples of Thermacore's current air-to-air and liquid-to-air heat exchangers.

Figure 16: Thermacore's heat exchangers (Thermacore, 2009)

3.2.2 Decision Matrix

After the deployable radiator concept was discontinued, our five remaining preliminary designs were evaluated using the following decision matrix (Table 1). From this, we were able to eliminate the spiral heat exchanger, two section heat exchanger, and thermoelectric cooler from final design contention.

Table 1: Decision matrix

RATINGS		Compact Heat Exchanger	Thermoelectric Cooler	Spiral Heat Exchanger	Two Section Heat Exchanger	Panels with Heat Pipes
Size	4	3	4	2	4	
Footprint	4	4	5	2	5	
Power Consumption	4	2	4	3	5	
Manufacturability		5	5	4	4	3

Since the compact heat exchanger and the panels with heat pipes had the two highest scores, they were the two designs we selected for further analysis. The conclusion of this analysis was that a heat pipe based approach would be the least expensive, most innovative, and best way to reduce size and increase efficiency for a natural gas cooler model. Figure 41 and Figure 42, in Appendix D - CAD Drawings and Pictures, are drawings of our preliminary design featuring heat pipes in cradles, which is the same concept used in our final design.

3.3 Final Design

Using the heat pipe in cradles concept for our final design, the heat pipes we used are 8 mm in diameter and 150 mm long, utilize a sintered-powder wick, and are filled with water as their working fluid. At the top of each heat pipe are 18 aluminum fins, 20 mm long by 25 mm wide and 0.4 mm thick with a space of 2.5 mm between each fin. The stainless steel gas pipes are connected in parallel with each other and the natural gas flows through the pipes simultaneously. Forced air convection is used to cool the heat pipes by means of a fan blowing across the three rows of pipes. Below in Figure 17 is a picture of the full design.

Figure 17: Full Model
Utilizing heat pipes spread out along multiple 5-ft long sections of steel pipe, each heat pipe is inserted into a copper cradle, which is attached around the gas pipe. Thermal grease is applied between the heat pipe $\&$ cradle, and the cradle \& steel gas pipe to enhance the heat transfer between the separate parts. Figure 18 below is a picture of the cradle with the heat pipe and steel gas pipe inserted.

Figure 18: Cradle with Heat Pipe
There are a total of 419 cradles and heat pipes in the full design and forty-two 5 -ft section gas pipes; with 10 cradles and heat pipes on each. These gas pipes are arranged in 3 columns of 14 rows to minimize the masking effect caused by the heat pipes blocking each other as the fan blows across. The length of the design is 1.524 m and the width of the design is 0.572 m , resulting in a footprint of $0.871 \mathrm{~m}^{2}$. The height of the design is 2.393 m , which results in a total volume of $2.084 \mathrm{~m}^{3}$.

3.4 Manufacturing

To run our experiment, we constructed a scale demonstrator. There was one component, the copper cradles, which we had to manufacture ourselves and another, the heat pipes with fins, which we had to have an outside company manufacture for us.

Figure 19: Cradle (ideal)
Our original design, illustrated above in Figure 19, was designed for curved heat pipes and to minimized weight. We discovered that the heat pipes could not be bent the way we wanted and had to change the design to utilize straight heat pipes. The design was also changed to minimize manufacturing time as opposed to weight. These changes resulted in the final design shown below in Figure 20. Our final design is not the ideal size as the stock was purchased before the design changes so it was made using 1.5 -in square stock instead of $5 / 8$-in square stock.

Figure 20: Cradle (modified)

Each cradle is made of two pieces of 1.5 -in square stock and mated around the natural gas pipes as shown in Figure 20. All the cradles were machined on a HAAS VF4 CNC machine. There are two different milling methods that we could have tried to make our cradle pieces, drilling and surfacing. We used the drilling method, which uses only drilling operations, to make the cradles for our test unit. The other method is surfacing, which slowly removes material off the surface of the part. Although we did not use this method because it is slower, it could have allowed us to use fewer drill bits and is slightly more reliable.

There are many challenges to milling copper. The major challenges are that copper is soft, has a low melting point, and work-hardens. Work-hardening is when a material gets stronger and more resistant to deformation as it is deformed or worked. This means that any material removal tool will not last as long as it would with a non-work-hardening material. Due to those challenges and the costs of copper, it is recommended to look into various forms of casting. Casting would reduce material waste, and for a full heat exchanger, could greatly reduce costs.

4. Testing

4.1 Heat Pipe Experiments

Figure 21: Heat pipe experimental set-up
In order to verify the capabilities of a heat pipe, we set up an experiment. A sketch of the set up for our heat pipe experiments, with the heat pipe in a vertical orientation, is shown above in Figure 21. We filled a beaker with water and placed it on a hot plate. One thermocouple was placed in the water, while the other thermocouple was attached to the end of a heat pipe. The heat pipe was then placed in the water, and thermocouple readings were taken for one minute using a LabView virtual instrument. From these readings, we were able to determine the temperature drop between the two ends of the pipe. By determining the conduction through the water, we determined the thermal resistance of the heat pipe.

Table 2, shown below, compares the thermal resistances of the $10 \times 140 \mathrm{~mm}$ heat pipe with various applied heat loads.

Table 2: Heat load vs. thermal resistance of heat pipes

q_avg (W)	R_avg $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
4.11	2.71
6.88	3.03
8.12	3.06
10.16	3.36
10.33	3.49
11.86	3.61
12.66	3.29
13.70	3.34

According to data, shown in Figure 22, provided by Enerton, a heat pipe manufacturer, a 6-mm diameter heat pipe with an applied heat load of 10 W in a vertical orientation should have a thermal resistance of approximately $3^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 22: Thermal resistance vs. Heat Pipe Length (Enerton, 2011)
($Q=10 \mathrm{~W}$, Diameter $=6 \mathrm{~mm}$, Vertical Orientation)
Figure 23 plots the experimental average resistances found at certain heat loads. These results were compared to the expected resistance of $3^{\circ} \mathrm{C} / \mathrm{W}$ for a 6 -mm pipe with a heat load of 10 W . The results here suggest that as diameter increases, thermal resistance also increases.

Figure 23: Average heat load vs. thermal resistance of a heat pipe (Diameter $=10 \mathrm{~mm}$, Vertical Orientation)

Figure 24 shows the thermal resistances of the $10 \times 140-\mathrm{mm}$ pipe with an average applied heat load of 10.2 W over a one minute interval. The downward slope suggests that with time, the thermal resistance of the heat pipe decreased. This trend was consistent throughout each of our experimental trials. After about 50 seconds, the thermal resistance approached a steady state of about $3^{\circ} \mathrm{C} / \mathrm{W}$.

Figure 24: Thermal resistance over time

4.2 Scale Model Experiments

Due to the availability of fluid sources, limited access to manufacturing facilities, and time constraints, a full-scale cooler could not be produced. We constructed a demonstrator to test the cooling capacity for a small section of pipe to compare to the full-scale cooler.

Figure 25: CAD model of demonstrator

4.2.1 Assembly of Demonstrator

The following steps were used to construct the demonstrator:

1. Steel piping with a diameter of $5 / 8$ inches was used to carry the hot fluid.
2. 90° elbow pipe connections were used to attach two piping segments for a parallel flow, and T-style pipe connections were attached between the parallel pipe segments to divide and later combine the inlet and outlet flows for the demonstrator.
3. The length of the demonstrator was $41 \frac{1}{2}$ in (including the 90° elbow connections on each end).
4. Fourteen copper cradles (shown in Figure 18 above) (two pieces each) were manufactured to attach the heat pipes to these steel pipes.
5. Thermal grease was applied between the steel pipes and these copper cradles as well as between the heat pipes and the cradles to improve heat transfer in these regions.
6. The spacing between cradles along the sections of the cooler ranged from 2 inches to $4 \frac{1}{2}$ inches, and the two cradle pieces for each were clamped together around the steel pipe to hold them in place.

Diagrams of the demonstrator cradle layouts are shown in Figure 26 and Figure 27 below. The initial tests consisted of 7 heat pipes and cradles in total, while 14 heat pipes and cradles were used for the tests after additional cradles were manufactured. Figure 26 shows the demonstrator arrangement with 7 cradles and heat pipes (all dimensions in inches), while Figure 27 shows the demonstrator arrangement with 14 cradles and heat pipes.

Figure 26: 7 Cradle Demonstrator Layout

Figure 27: 14 Cradle Demonstrator Layout
7. Seven cradles with heat pipes were attached to each parallel section of steel pipe.
8. The heat pipes were inserted into a hole in each cradle and allowed to rest on a wooden support beneath the cradles.
9. The heat pipes were mounted in a vertical orientation.

4.2.2 Assembly of Test Apparatus

The experiments were conducted in the welding shop of Washburn Shops to provide sufficient ventilation for the internal combustion engine. The following steps were used to set up the test assembly:

1. A Briggs and Stratton 675 series engine mounted on a lawnmower (with the blade removed) was used for the hot fluid source for the testing.
2. The test assembly was mounted on a table, and the lawnmower was clamped to the table for stability.
3. The muffler of the engine was removed to improve flow, and a fitting was welded to attach the engine exhaust (at 7/8 inches) to the demonstrator inlet (at $5 / 8$ inches).
4. A wooden frame was built to support the demonstrator piping sections during the experiments.
5. A 3-foot diameter Utilitech industrial fan (Model Number HVD-36A), operated on the "Low" setting, was placed 23 inches away from the demonstrator to match the air flow velocity (approximately 4.5 mph) of the full-scale cooler.
(120V AC
60 Hz
3.8A
420W)

The final demonstrator setup is shown in Figure 28 below. Additional pictures of the demonstrator setup may be found in Appendix E - Experimental Setup Pictures.

Figure 28: Final Demonstrator

4.2.3 Experimental Setup

1. The computer software LabView was used to create a data acquisition instrument for the test. Screenshots of the software setup may be found in Appendix F - LabView Setup for Data Acquisition.
2. Samples were taken at a rate of 6 Hz .
3. 11 Type-K thermocouples were mounted along the test apparatus to measure temperature changes
a. 1 thermocouple was mounted at the engine exhaust to measure the temperature at the cooler inlet. This thermocouple could not be soldered because the temperatures at the exhaust were high enough to melt the solder, so the leads were twisted together to form a connection.
b. 1 thermocouple was mounted at the demonstrator outlet after the flows were combined.
c. 7 thermocouples were mounted on the bases of heat pipes on alternating cradles.
d. 1 thermocouple was mounted at the top of the second heat pipe in the row closest to the fan.
e. 1 thermocouple was mounted at the top of the final heat pipe in the second row.
4. 1 Hedland (MFG H671A-150) flow meter was mounted on the demonstrator outlet to measure the flow rate through the demonstrator.

4.2.4 Scaling Procedure

After performing our experiments, we needed to interpret our results and determine how to compare them with the full scale cooler model. Essentially, we must know the requirements needed for our model to able to cool natural gas to a desired temperature. We developed a
method in which we can determine the length of the natural gas pipe and the number of heat pipes that would be necessary in order to effectively cool the gas to a temperature of $60^{\circ} \mathrm{C}$.

1. First, we ran each experiment using our demonstrator and evaluate the average change in temperature (ΔT) between the beginning and the end of the pipe. We also determined a density for the fluid from the inlet temperature. Flow rate for the working fluid and the air across the fins will remain constant throughout the entire experiment.
2. Using our thermal resistance model, we calculated the total thermal resistance of the demonstrator using exhaust properties. This thermal resistance was called $R_{e x}$.
3. Next, we applied the same thermal resistance model to our full scale analytical model. The length and number of heat pipes were changed in the calculation to match the parameters determined from our analytical model. The resulting thermal resistance was labeled as $R_{\text {full }}$.
4. To compare the theoretical and experimental heat loads, we created a ratio R in which $R=R_{\text {ex }} / R_{\text {full }}$. This ratio will allow a comparison between the thermal resistance from the demonstrator and our analytical model.
5. We then calculated the thermal resistance for our demonstrator once again, only this time, we used the parameters of natural gas as the hot fluid. This resistance was named $R_{n g 1}$.
6. Using the ratio R, which was previously calculated, we found the thermal resistance that would be required for a full size model to be able to cool the natural gas. This final thermal resistance was called $R_{\text {ngfinal }}$, and was solved using the equation $R_{n g f i n a l}=R_{n g 1} / R$.
7. Two of the variables associated with our thermal resistance model that we can control are the total length of the cooler and the number of heat pipes being used. We created a table comparing both values, analyzed their effect on the total thermal resistance, and then found the minimum
values which can yield the proper change in temperature. The appropriate length and number of heat pipes were arranged in a fashion so the size and footprint of the cooler would be minimized.

5. Analysis

5.1 Performance

Eight different experiments were performed using our demonstrator, with engine exhaust from a lawnmower as our hot fluid. Each experiment had variations in number of heat pipes and cradles, type of convection (free or forced), flow rate, and time duration. The eight different experiments run with the demonstrator were:

1. Without heat pipes and with the fan off (free convection)
2. Without heat pipes and with the fan on (forced convection)
3. With 7 heat pipes and with the fan off
4. With 7 heat pipes and with the fan on
5. With 7 heat pipes, the fan off, an increased flow rate
6. With 14 heat pipes and with the fan off
7. With 14 heat pipes and with the fan on
8. With 14 heat pipes and with the fan on over a long duration

The long-duration test was run for 33 minutes, while the rest were run for approximately 7-8 minutes. Flow rate, measured at $0.002 \mathrm{~m}^{3} / \mathrm{s}$, was kept constant for all tests except one in which the throttle was adjusted to increase the flow rate. The throttle was adjusted, but the flow meter used was unable to measure the flow and failed catastrophically, likely due to the highly unsteady flow produced by the lawnmower at this higher flow rate.

5.1.1Temperature Profiles

For the six experiments which were run with heat pipes, thermocouples were utilized to gain a temperature profile across the cooler. For the 7 heat pipe set up, a thermocouple was placed on every cradle, and additional thermocouples were attached to two of the heat pipes. This allowed us to monitor how the heat pipes were performing. For the 14 heat pipe set up, a
thermocouple was placed on every other cradle. Again, additional thermocouples were used to evaluate the performance of two of the heat pipes in the model. The temperature at each cradle was determined by averaging the thermocouple readings taken after 200 seconds up until 700 seconds had elapsed.

Figure 29: Temperature Profile - Fan off, 7 heat pipes
Figure 29 above shows the temperature profile from the test run with the fan off and 7 heat pipes utilized. The x -axis in this figure represents the distance each cradle location is from the demonstrator's inlet. We can see here that the exhaust is being cooled continuously as it flows along the gas pipe. However, the first row is being cooled at a faster rate than the second row. The reason for this is not clear, since the fan was not turned on. The results from the experiments run with the fan off and 14 heat pipes, shown below in Figure 30, as well as the experiment with the increased flow rate, shown in Figure 31, verify this conclusion.

Figure 31: Temperature Profile - Fan off, 7 pipes, increased flow rate
For the first and second row, the temperatures and slopes in Figure 30 are close, which was what we expected. When the flow rate was increased, temperature profile in Figure 31 is opposite to that of Figure 29, with the second row experiencing a sharper decrease in temperature. Also, the temperatures with the increased flow rate were higher than the experiments at lawnmower's normal flow rate.

As we turned the fan on for the tests, we expected that the temperature profile for the first row would be lower than the profile for the second row, since the first row is closer to the fan.

However, the first test ran with the fan on, which featured 7 heat pipes, did not exhibit any significant temperature changes between the two rows until the exhaust reached the end of the pipe, where, contrary to what was expected, the second row experienced the drop in temperature. These results are shown below in Figure 32.

Figure 32: Temperature Profile: Fan on, 7 heat pipes
When the same test was run with 14 heat pipes, the difference in temperature that we were anticipating was experienced. The results for this experiment are shown below in Figure 33.

Figure 33: Temperature Profile: Fan on, 14 heat pipes

Overall, the results from the experiments with 7 heat pipes were inconsistent and led to a lot of uncertainty. The results from the experiments with 14 heat pipes were more consistent, like the ones in Figure 30 and Figure 33, and therefore more meaningful.

The temperature profile for the long duration test is shown below in Figure 34. This temperature profile was significant because it best showed the difference the fan has on cooling. The temperatures for the first row were, on average, about $6^{\circ} \mathrm{C}$ cooler than the temperatures for the second row. The averages were taken after 200 second up until 33 minutes had elapsed.

Figure 34: Temperature Profile - Fan on, 14 heat pipes, long duration (33 minutes)

5.1.2 Heat Pipe Performance

For each experiment that included heat pipes, two heat pipes were hooked up to thermocouples. For these two heat pipes, one thermocouple was attached to the base of the heat pipe, while the other was attached to the top of the heat pipe. The intent is to determine the performance of the heat pipes and observe how much heat they remove from the exhaust. From the temperature readings, we were able to see how the heat pipes performed under the variety of conditions provided in our tests. For the 7 heat pipe demonstrator, temperature readings were taken from Heat Pipes 1 and 3 (refer to Figure 26). For the 14 heat pipe demonstrator, temperature readings were taken from Heat Pipes 3 and 14 (refer to Figure 27).

Figure 35 shows the performance of Heat Pipe 1 during the three experiments ran with the 7 heat pipe demonstrator. The performance of Heat Pipe 3 is shown in Figure 36. In general, Heat Pipe 3 experienced a larger temperature difference, implying that the heat pipes at the end of the demonstrator remove more heat.

Figure 35: Temperature Change across heat pipe 1 for the 7 heat pipe demonstrator

Figure 36: Temperature Change across heat pipe 3 for the 7 heat pipe demonstrator
Figure 35 and Figure 36 also suggest that as the base temperature of the heat pipe increases, the temperature change across the heat pipe increases. To better evaluate the
performance of each heat pipe under different conditions, we found the ratio between the change in temperature across the heat pipe to the base temperature of the heat pipe. This variable is labeled as $\Delta \mathrm{T} / \mathrm{T}$ _base in Figure 37, which shows this performance for Heat Pipe 1, and Figure 38, which shows this performance for Heat Pipe 3.

Figure 37: Performance of Heat Pipe 1 for the 7 heat pipe demonstrator

Figure 38: Performance of Heat Pipe 3 for the 7 heat pipe demonstrator
The results shown in Figure 37 and Figure 38 confirm that the heat pipes perform better when exposed to higher temperature, since the base temperature for the test with increased flow rate was almost $10^{\circ} \mathrm{C}$ higher than the other two tests. We can also see from the results of the two
experiments run with the regular flow rate that the heat pipes appear to perform slightly more effectively with the fan turned on.

The results from the analysis of Heat Pipes 3 and 14 on our 14 cradle demonstrator gave us further confirmation on our findings from analyzing the 7 cradle demonstrator. The results from the 14 cradle demonstrator showed that the heat pipes nearest the outlet removed the most heat. Also, as with the 7 cradle demonstrator, when the temperature at the base of the heat pipes increases, the change in temperature across the heat pipes also increased. These results are displayed below in Figure 39 and Figure 40.

Figure 39: Performance of Heat Pipe 3 for the 14 heat pipe demonstrator

Figure 40: Performance of Heat Pipe 14 for the 14 heat pipe demonstrator

5.1.3 Cooling Performance

The ultimate goal of the demonstrator is to cool the exhaust passed through it. For each test, an average outlet temperature was averaged over the 200s to 700 s time interval (with the exception of the long duration trial, in which the outlet temperature was averaged from 200s to the full 33 minutes). These calculations are found below in Table 3, arranged from the highest to lowest temperature. The average inlet temperature for the experiments was $420.9^{\circ} \mathrm{C}$.

Table 3: Outlet temperature for each experiment

EXPERIMENT	OUTLET $\left({ }^{\circ} \mathrm{C}\right)$
increased flow rate	131.8
7 heat pipes, no fan	47.7
no heat pipes, no fan	44.9
no heat pipes, with fan	42.4
7 heat pipes, with fan	38.4
long duration	28.9
14 heat pipes, no fan	26.7
14 heat pipes, with fan	24.6

The first conclusion that can be reasoned from these results is that increasing the flow rate of the hot fluid will decrease the cooler's ability to cool the fluid. This is logical, as the faster the fluid moves, the less time it will have to be exposed to the heat pipes and convection across the pipes. Speaking of convection, another inference that we can make is that forced convection slightly improves the cooler's performance. On average, the addition of the fan lowered outlet temperature by $4.6^{\circ} \mathrm{C}$. The most significant conclusion we can draw here is that as the number of heat pipes increase, the cooler performance also increases, a conclusion which we expected to be able to make.

5.1.4 Scaling Analysis

The final step in the analysis of our data was to scale our results to determine the minimum length and number of heat pipes our design must feature in order to sufficiently cool
the natural gas. The gas must be cooled from $105^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, a change in temperature of $45^{\circ} \mathrm{C}$ (or 45 K). Table 4 below shows a comparison between results calculated with our analytical model, our scaled experimental results, and the industry standard for natural gas coolers. The calculations used for our analytical model analysis are shown in Appendix G. 3 Cradle Heat Pipe Design Analysis, the calculations for our scaled experiment are shown in Appendix G. 2 Scaling Calculations, and the properties used to make such calculations are listed in Appendix B Properties Used.

Table 4: Scaling Analysis

	Analytical Model	Scaled Experiment	Industry Standard
Length (m)	64	42	Could not be determined
Number of Heat Pipes	419	275	N/A
Footprint $\left(\mathrm{m}^{2}\right)$	0.871	0.871	1.1
Volume $\left(\mathrm{m}^{3}\right)$	2.084	1.445	1.1

From our scaling analysis, we were able to shorten our cooler length by 34%, decrease the number of heat pipes by 34%, and shrink the cooler's volume by 31%, in comparison to our analytical model. The footprint remained the same because, as with the analytical model, there would be three columns of tubes, with the tubes remaining at a length of 5 feet. We will also keep the same distance between the heat pipes. However, with this arrangement, we would be able to decrease the height of the cooler. A possible reason for the overestimate in our analytical model may be because we neglected the convective heat transfer from the gas and heat pipes.

5.1.5 Demonstrator Analytical Analysis

In order to support and verify our demonstrator's data, we constructed an analytical model of the demonstrator to compare the experiment's results against. To provide the most accurate comparison as possible, we focused on the 14 heat pipes experiment with the fan running and defined certain variables such as:

- Number of heat pipes $=14$
- Number of fins on each heat pipe $=18$
- Measured distance of the setup
- Inlet and outlet temperature of the experiment $=420.9 \mathrm{C}$ and 24.6 C respectively
- Specific Heat of engine exhaust $=1.327 \mathrm{~kJ} / \mathrm{kg} * \mathrm{~K}$
- Thermal Conductivity of engine exhaust $=0.034 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$
- Viscosity of engine exhaust $=2.17 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~s}$
- Molecular Weight of engine exhaust $=30 \mathrm{~g} / \mathrm{mol}$

These defined variables allowed us to construct a model which would tell us two things, the required maximum resistance of the demonstrator for this experiment, and the calculated resistance of the demonstrator. To calculate the maximum required resistance of the demonstrator involved defining the number of fins and their size, the number of heat pipes, the entrance and exit temperature of the demonstrator and the overall size and dimensions. Calculating the conductive and convective resistance through the demonstrator gave us the required resistance of $60.035 \mathrm{~K} / \mathrm{W}$. To find the calculated resistance of the demonstrator, we defined the specifications of the test engine and the fan, such as the flow rate, the specific heat of the engine exhaust, the viscosity, and the thermal conductivity of the exhaust. Solving for the thermal resistance of the complete system resulted in a calculated resistance of $62.61 \mathrm{~K} / \mathrm{W}$. By comparing these two resistances, we can gauge the accuracy of the experimental data against the analytical data, and thus verify the accuracy of the full model analysis. If the analytical model of the demonstrator were completely accurate, then the required maximum resistance and the calculated resistance would be equivalent. As such, this means that there is an error of 4.11% between the experiment's data and the analytical model's results. Refer to Appendix G. 4 Demonstrator Analytical Analysis for the full calculation.

5.2 Cost

Based on the sizing calculated for our scaling model, a full heat exchanger unit would cost an estimated $\$ 27,725$ if made using the drilling method, and $\$ 32,593$ if made using the surfacing method. These estimates assume a machinist rate of $\$ 100$ per hour. The materials cost is $\$ 15,230$. The machining time for the cradles requires 109 hours for drilling, and 166 hours for surfacing. The time is the deciding factor between which method is more expensive. However, both methods are more expensive than the competitor quote of $\$ 24,269$. These cost estimates are based on the two milling methods we explored. It is likely that using casting would reduce the overall manufacturing cost making it more competitively priced. Table 5 below shows the full breakdown of the equipment and materials costs of these two methods. Refer to Appendix C Budget for a complete breakdown of the project budget.

Table 5: Equipment and materials cost breakdown

Cost Category	Drilling	Surfacing
Equipment		
8 mm drill bits	$\$ 157.96$	$\$ 157.96$
$5 / 8$ in drill bits	$\$ 999.46$	$\mathrm{~N} / \mathrm{A}$
\#7 drill bits	$\$ 25.95$	$\$ 25.95$
$10-24$ tap	$\$ 523.25$	$\$ 523.25$
$1 / 4$ ball EM	N / A	$\$ 101.29$
$3 / 16 \mathrm{EM}$	N / A	$\$ 81.48$
Total	$\$ 1,706.62$	$\$ 889.93$
Materials		
Copper	$\$ 947.92$	$\$ 947.92$
Steel Pipe	$\$ 845.88$	$\$ 845.88$
Connectors	$\$ 3,843.84$	$\$ 3,843.84$
Heat Pipes	$\$ 9,465.75$	$\$ 9,465.75$
Screws	$\$ 24.99$	$\$ 24.99$
Total	$\$ 15,128.38$	$\$ 15,128.38$
Total	$\$ 16,835.00$	$\$ 16,018.31$

6. Conclusions

From our scaling analysis, we were able to conclude that our model will have a significantly smaller footprint (21.5%) compared to the current cooler on the market. This proves that the design is a viable solution for OsComp Systems. However, we would recommend conducting further experiments with the following considerations to further validate our findings.

The ventilation fan in the welding lab appeared to be much stronger than the flow rate presented by our fan. This may explain why the fan had an insignificant effect on the cooler performance. This judgment was simply made by comparing to the strengths of the fans by placing our hand close to the duct and behind the fan we used in our experiment. Due to WPI's safety regulations, we were required to have the ventilation fan on at all times during the experiments. This means that we cannot accurately estimate the effect of the forced convection on the system.

An additional conclusion we can draw here is that as the number of heat pipes increase, the cooler performance also increases, a conclusion which we expected to be able to make. Simply stated, the increase in the number of cradles and heat pipes allowed for more heat to be removed from the exhaust.

7. Recommendations

7.1 Heat Pipe Selection

There are many factors that affect the performance of a heat pipe. The material, working fluid, and wick structure should remain the same for this application, which is copper, water, and sintered powder metal. However, there are additional parameters that could be adjusted to yield a higher performance. Increasing the diameter of the heat pipe would allow for greater power carrying capacity. Increasing the lengths of the evaporator and condenser regions would also improve the heat removal capabilities since this would increase the surface area for the heat to pass through and dissipate.

A heat pipe performs at its best when gravity is assisting the device. Therefore, we recommend the heat pipes stay at 90 degrees, which is in the vertical position with respect to the ground. Also, a higher operating temperature will allow a greater maximum heat removal from the system. We also recommend keeping the heat pipe completely straight. Although heat pipes can still function with bends, this decreases the performance of the device and could bring about leakage problems.

Lastly, we recommend looking into the fin analysis further. Our calculations were based on the fundamental equations found in any heat transfer textbook; refer to Appendix G. 1 Fin Analysis and Optimization. However, they seem a little too small compared to the typical heat sinks on the market. We would recommend increasing the length and width of the fins as long as the efficiency is greater than 70%. The fin thickness and spacing should remain the same, as they reflect the industry standard. The number of fins required per heat pipe is dependent on the length of the condenser region and would therefore be adjusted accordingly.

7.2 Manufacturing

Casting the cradles instead of milling them may reduce equipment cost. It will also reduce material use, as less material will be thrown out as chips. It also means the material can be bought in the cheapest form not as the appropriately sized stock. Finally it will be easier to get a better weight balance with casting as curved sections do not significantly increase production difficulty.

Since copper is a soft material, it is possible that the threads on the inside of our design will pull out during practical use. If that is an issue, helicoils could be installed in the holes, or the holes could be changed to through holes and have a nut on the other side. However, we would also recommend looking into other materials for the cradle pieces, possibly a grade of aluminum. Copper was chosen for its strong heat transfer properties but is not an ideal metal to machine.

7.3 Conducting Experiments

Since compressed natural gas is not a safe fluid to work with in an academic setting, we were forced to seek alternative heat sources. However, using CNG would yield more accurate results. The \% error would be reduced since the calculations to scale the properties of engine exhaust to CNG would no longer be required in the analysis. We would also recommend using a more consistent fluid source, in terms of its flow rate. The lawnmower engine we used to conduct our experiments has a pulsing flow, which doesn't reflect the ideal conditions for our application.

The unsteadiness in the flow turned out to be stronger than we anticipated, introducing substantial vibrations into the system. Adding fixtures, such as brackets, to securely mount the steel pipes and heat pipes to the base support would reduce this effect. Also, using a higher
quality flow meter would yield more accurate results. Between the intermittent flow rate and the vibrations present in the system, our flow meter failed shortly after our initial experiments.

Lastly, increasing the size of the scale model would give a better indication of the cooler's performance. Having additional sections, steel pipes with heat pipes mounted onto them, would allow for the stacking and masking effects to be tested. These alternative test setups would be critical in testing the design further.

8. References

Atlas Copco 2010, Compressed Air Manual, Atlas Copco Airpower NV, Belgium.
Avallone, E.A., Baumeister, T. \& Sadegh, A.M. 2007, Marks' Standard Handbook for Mechanical Engineers, 11th edn, McGraw-Hill. Chapter 19.

Cengel, Y.A., Turner, R.H. \& Cimbala, J.M. 2008, Fundamentals of Thermal-Fluid Sciences, 3rd edn, McGraw-Hill, New York, NY.

Cesco. 2011. "All-welded Spiral Heat Exchangers". Retrieved on October 2011 from http://www.gocesco.com/all_weldedspiralheatexchangers.html.

Choi Mun-cheol. 2005. Capillary pumped loop system. Retrieved October 5, 2011 from http://www.google.com/patents?hl=en\&lr=\&vid=USPAT6880625\&id=4t8TAAAAEBAJ \&oi=fnd\&dq=Capillary+pumped+loop+system\&printsec=abstract\#v=onepage\&q\&f=fals e

Enerton. 2011. "Designing with Heat Pipes" Retrieved on January 2011 from http://www.enertron-inc.com/enertron-products/heat-pipe-design.php.

Gilmore, D.G. Spacecraft Thermal Control Handbook, Volume 1-Fundamental Technologies (2nd Edition), American Institute of Aeronautics and Astronautics/Aerospace Press.

Kazama, T. \& Totten, G. 2006, "Compressors and Vacuum Pumps" in Handbook of Lubrication and Tribology CRC Press, pp. 1-61.

Nellis, G. \& Klein, S. Heat Transfer, Cambridge University Press. 2009. Chapter 8. Available:http://www.knovel.com/web/portal/browse/display? EXT_KNOVEL_DISPL AY bookid=3703

Shah, R.K., Sekulić, \& , D.P. Fundamentals of Heat Exchanger Design, John Wiley \& Sons. 2003. Chapter 1. Available:http://www.knovel.com/web/portal/browse/display? EXT_KNOVEL_DISPLAY_bookid=3007

Snake Creek Lasers. 2011. "Laser Subcomponents". Retrieved on October 2011 from http://www.snakecreeklasers.com/products/laser-subcomponents.aspx

TE Technology, Inc. 2010. "How does a thermoelectric module work?" Retrieved on October 2011 from http://www.tetech.com/FAQ-Technical-Information.html.

Thermacore. 2009. "Heat Exchangers and System Level Cooling Products". Retrieved on October 2011 from http://www.thermacore.com/documents/system-level-coolingproducts.pdf.
"Wet compression adds power, flexibility to aeroderivative GTs", 2005; Power, vol. 149, no. 4, pp. 52-52.

Appendices

Appendix A - Authorship

Section	Peer Reviewers	
Abstract	Team	Team
$1,3.2 .1,3.4,5.2$	Jess	Calvin \& Brad
$2.1,3.2 .0,4,8,4.1,4.2 .4,5.1$	Brad	Andy \& Chris
$2.2,3.2 .3,4.2 .0-3$	Andy	Chris \& Jess
$2.3,3.2 .5-7,6,7$	Chris	Jess \& Calvin
$2.4,3.1,3.2 .2,3.3,5.1 .5$	Calvin	Brad \& Andy

Appendix B - Properties Used

The following assumptions were made in our calculations and analysis of our designs:
CNG pipes:

- Material: Aluminum alloy 2024
- 100% heat transfer efficiency from CNG pipes to heat pipes
- Used only for cooling CNG
- Thermal conductivity: $143 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$

Air Properties:

- \quad Density $=1.185 \mathrm{~kg} / \mathrm{m}^{3}$
- \quad Specific Heat $=1.005 \mathrm{~kJ} / \mathrm{kg} * \mathrm{~K}$
- Viscosity $=1.983 \times 10^{-5} \mathrm{~kg} / \mathrm{m} * \mathrm{~s}$

CNG Properties:

- Density $=53.334 \mathrm{~kg} / \mathrm{m}^{3}$
- Flow rate $=0.473 \mathrm{~m}^{3} / \mathrm{s}$
- \quad Specific Heat $=2.26 \mathrm{~kJ} / \mathrm{kg} * \mathrm{~K}$
- Thermal Conductivity $=0.035 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$
- Viscosity $=1.1 \times 10^{-5} \mathrm{~kg} / \mathrm{m} * \mathrm{~s}$
- Molecular Weight $=16.044 \mathrm{~g} / \mathrm{mol}$

Exhaust Properties:

- \quad Specific Heat $=1.327 \mathrm{~kJ} / \mathrm{kg} * \mathrm{~K}$
- Thermal Conductivity $=0.034 \mathrm{~W} / \mathrm{m} * \mathrm{~K}$
- Viscosity $=2.17 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~s}$
- Molecular Weight $=30 \mathrm{~g} / \mathrm{mol}$

Appendix C - Budget

Table 6: Project Budget

Vendor	Quantity	Item	Individual Price	Total Price
Enertron	2	Heat Pipes	26.82	53.64
MSC Direct	1	Copper Bar, 7 ft	669.01	669.01
MSC Direct	1	Screws, box of 100	31.38	31.38
OnlineMetals	2	Steel Rod, 5ft	30.21	60.42
MSC Direct	1	Copper Bar, 1 ft	114.21	114.21
MSC Direct	1	Male Connector	24.28	24.28
MSC Direct	1	Thermalcouple wire	89.97	89.97
MSC Direct	1	Flowmeter	318.52	318.52
Northern Tools	1	Motor (Returned S\&H)	20	20
Aavid Thermalloy	15	Heat Pipes w/ fins	54.09	811.35
MSC Direct	6	Jobber Drill Bits	3.59	21.54
MSC Direct	2	Thermal Paste, 80 tube	27.3	54.6
MSC Direct	4	Flute Taps	14.75	59
McMaster-Carr	4	5/8" 90 degree elbows	21.89	87.56
McMaster-Carr	2	5/8" T-connectors	26.62	53.24
McMaster-Carr	1	1 1" to $1 / 2^{\prime \prime}$ reducer	90.41	90.41
McMaster-Carr	1	$1 / 2^{\prime \prime}$ to 5/8" reducer	37.76	37.76
OnlineMetals	1	1 " OD pipe , 1ft	13.2	13.2
OnlineMetals	1	1/2" OD pipe, 1 ft	5.08	5.08
OnlineMetals	1	5/8" OD pipe, 2 ft	15.26	15.26
MSC Direct	6	5/8in Jobber Drill Bits	23.68	142.08
MSC Direct	4	5/8in Drill Bits	28.71	114.84
MSC Direct	3	5/8in TG collet	24.69	74.07
Total Price				2961.42

Appendix D-CAD Drawings and Pictures

Figure 41: Preliminary design model, using heat pipe concept

Figure 42: Preliminary design drawing, using heat pipe concept

Figure 43: Preliminary demonstrator model

Figure 44: Cradle drawing

Figure 45: Demonstrator drawing

Appendix E-Experimental Setup Pictures

Figure 46: Close up picture of heat pipe

Figure 47: Securing copper for machining

Figure 48: Exhaust outlet connecting to cooler

Figure 49: Final setup of demonstrator 1

Figure 50: Final setup of demonstrator 2

Appendix F - LabView Setup for Data Acquisition

Figure 51: LabView Virtual Instrument

Figure 52: LabView Block Diagram

Appendix G - Mathcad Calculations

G. 1 Fin Analysis and Optimization

$\mathrm{d}:=8 \mathrm{~mm}$	diameter of heat pipe
$\mathrm{L}_{1}:=2 \mathrm{~cm}$	Length of fin
$\mathrm{w}:=2.5 \mathrm{~cm}$	width of fin
$\mathrm{t}:=0.4 \mathrm{~mm}$	thickness of fin
$\mathrm{T}_{\mathrm{b}}:=150^{\circ} \mathrm{C}=423.15 \mathrm{~K} \quad$ Base temp of the fin	
$\mathrm{k}:=134 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad$	thermal conductivity of fin (aluminum, pure @ 150C, which is 300F) http://www.engineeringtoolbox.com/thermal-conductivity-metals-d 858.html

$\mathrm{T}_{\text {infinity }}:=50^{\circ} \mathrm{C}=323.15 \mathrm{~K} \quad$ Temp. of the fluid (air)
$\mathrm{h}:=100 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad$ Convection coefficient of fluid (air)
a) convection heat transfer

$$
\begin{aligned}
& \mathrm{P}:=2 \cdot \mathrm{w}+2 \cdot \mathrm{t} \quad \text { fin perimeter } \quad \theta_{\mathrm{b}}:=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\text {infinity }}=100 \mathrm{~K} \\
& \mathrm{~A}_{\mathrm{c}}:=\mathrm{w} \cdot \mathrm{t} \quad \text { cross sectional area of fin } \\
& A_{f}:=P \cdot L_{1}-2 \pi \cdot\left(\frac{d}{2}\right)^{2}+2 w \cdot t \quad \text { surface area of the fin } \\
& \mathrm{M}:=\sqrt{\left(\mathrm{h} \cdot \mathrm{P} \cdot \mathrm{k} \cdot \mathrm{~A}_{\mathrm{c}}\right)} \cdot \theta_{\mathrm{b}}=8.251 \mathrm{~W} \\
& \mathrm{~m}_{1}:=\sqrt{\frac{(2 \cdot \mathrm{~h})}{\mathrm{k} \cdot \mathrm{t}}}=61.085 \frac{1}{\mathrm{~m}} \\
& \mathrm{q}_{\mathrm{f}}:=\mathrm{M} \cdot \frac{\left[\sinh \left(m_{1} \cdot \mathrm{~L}_{1}\right)+\left(\frac{\mathrm{h}}{m_{1} \cdot k}\right) \cdot \cosh \left(m_{1} \cdot L_{1}\right)\right]}{\cosh \left(m_{1} \cdot L_{1}\right)+\left(\frac{h}{m_{1} \cdot k}\right) \cdot \sinh \left(m_{1} \cdot L_{1}\right)}=6.961 \mathrm{~W} \\
& \text { Fin heat transfer rate } \\
& \eta_{f}:=\frac{q_{f}}{\left(h \cdot A_{f} \cdot \theta_{b}\right)}=0.744 \quad \text { fin efficiency } \\
& \varepsilon_{\mathrm{f}}:=\frac{\mathrm{q}_{\mathrm{f}}}{\mathrm{~h} \cdot \mathrm{~A}_{\mathrm{c}} \cdot \theta_{\mathrm{b}}}=69.611 \quad \text { fin effectiveness } \\
& \mathrm{R}_{\mathrm{tf}}:=\frac{\theta_{\mathrm{b}}}{\mathrm{q}_{\mathrm{f}}}=14.366 \frac{\mathrm{~K}}{\mathrm{~W}} \quad \text { thermal resistance of fin } \\
& T_{1}:=\theta_{b} \cdot\left[\frac{1}{\cosh \left(m_{1} \cdot L_{1}\right)+\left(\frac{h}{m_{1} \cdot k}\right) \cdot \sinh \left(m_{1} \cdot L_{1}\right)}\right]+T_{\text {infinity }}=376.834 K \quad \text { temp. at the tip of fin }
\end{aligned}
$$

Given Data:

diameter of heat pipe	8	mm
Length of heat pipe	150	mm
thickness of fin	0.4	mm
fin spacing	2.5	mm

Assumptions:

Fin material
thermal conductivity of fin (k)
convection coeffcient of fluid (h)
Base Temp (T.b)
Temp. of fluid (air - T.infinity)
Length of condenser region
Length of evaporator region
Number of fins

Variables:
Length of fin
Width of fin
aluminum, pure

134	$\mathrm{~W} / \mathrm{mK}$	http://www.engineeringtoolbox.com/thermal-
100	$\mathrm{~W} / \mathrm{m}^{\wedge} 2 \mathrm{~K}$	conductivity-metals-d 858.html
150	C	
50	C	forced convection
60	mm	
45	mm	
20		Lc/(spacing+thickness)

Lc/(spacing+thickness)

Table 8: Fin Optimization 2

Length (cm)	Width (cm)	Efficiency	Effectiveness	
2	1	0.871	70.428	
2	1.25	0.824	70.157	
2	1.5	0.796	69.975	Potential fin arrangements,
2.25	1	0.785	73.66	above line (>70\% efficiency)
2	1.75	0.777	69.845	
2	2	0.763	69.748	
2	2.25	0.752	69.672	
2.25	1.25	0.749	73.376	
2	2.5	0.744	69.611	
2	2.75	0.738	69.561	
2	3	0.732	69.52	
2.25	1.5	0.726	73.186	
2.5	1	0.712	76.13	
2.25	1.75	0.711	73.05	
2.25	2	0.7	72.948	
2.25	2.25	0.692	72.869	
2.25	2.5	0.685	72.805	

2.5	1.25	0.684	75.836
2.25	2.75	0.68	72.753
2.25	3	0.676	72.71
2.5	1.5	0.666	75.64
2.5	1.75	0.654	75.499
2.75	1	0.651	77.999
2.5	2	0.645	75.394
2.5	2.25	0.638	75.312
2.5	2.5	0.633	75.246
2.75	1.25	0.628	77.699
2.5	2.75	0.628	75.192
2.5	3	0.625	75.147
2.75	1.5	0.613	77.498
2.75	1.75	0.603	77.354
3	1	0.598	79.405
2.75	2	0.596	77.246
2.75	2.25	0.59	77.161
2.75	2.5	0.586	77.094
2.75	2.75	0.582	77.039
3	1.25	0.579	79.099
2.75	3	0.579	76.993
3	1.5	0.567	78.895
3	1.75	0.558	78.748
3	2	0.552	78.638
3	2.25	0.547	78.552
3	2.5	0.544	78.484
3	2.75	0.541	78.247
3	3	0.538	78.381

Figure 53: Fin Optimization

G. 2 Scaling Calculations

Demonstrator Geometry
 $$
\mathrm{kJ}:=1000
$$

Inner Diameter $\quad \mathrm{D}_{\mathrm{i}}:=13.38 \mathrm{~mm} \quad$ Outer Diameter $\quad \mathrm{D}_{\mathrm{O}}:=15.875 \mathrm{~mm}$
Inner Radius $\quad r_{i}:=\frac{D_{i}}{2}=6.693 \times 10^{-3} \mathrm{~m} \quad$ Outer Radius $\quad r_{o}:=\frac{D_{\mathrm{o}}}{2}=7.938 \times 10^{-3} \mathrm{~m}$

Length $\quad L_{\text {demo }}:=52 \mathrm{in}=1.321 \mathrm{~m}$
Cross sectional of Area $\quad \mathrm{A}_{\text {cross }}:=\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{i}}^{2}=1.407 \times 10^{-4} \mathrm{~m}^{2}$

Surface Area of Pipe
$\mathrm{A}_{\text {Ldemo }}:=\pi \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{L}_{\text {demo }}=0.056 \mathrm{~m}^{2}$

Full Size Model Geometry

Diameter and cross-sectional area is the same

Length $\quad L_{\text {full }}:=64.008 \mathrm{~m}$
Surface Area $\quad \mathrm{A}_{\text {Lfull }}:=\pi \cdot \mathrm{D}_{\mathrm{i} \cdot} \cdot \mathrm{L}_{\text {full }}=2.692 \mathrm{~m}^{2}$

Determining the density of the exhaust \quad gas constant: $\quad \underset{\mathrm{sk}}{\mathrm{R}}:=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Measured Parameters:
Inlet Temperature $\quad \mathrm{T}_{1}:=402 \mathrm{~K}$

Outlet Temperature $\quad \mathrm{T}_{2}:=29 \mathrm{~K}$

Outlet Pressure $\quad \mathrm{P}_{2}:=10132 . \mathrm{P}_{\mathrm{c}}$
Measure Outlet Flow rate \quad Flow $_{S C F M}:=40 \frac{\mathrm{ft}^{3}}{\min }=0.019 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Guess $\quad \rho_{1}:=0.912 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

$$
\rho_{2}:=\rho_{1}
$$

Standard Pressure	$\mathrm{P}_{\text {Std }}:=10132 \mathrm{~Pa}$
Standard Temperature	$\mathrm{T}_{\text {Std }}:=273.15 \mathrm{~K}$
True Outlet Flow rate	$\text { Flow }_{2}:=\frac{\mathrm{P}_{\mathrm{Std}} \cdot \mathrm{Flow}_{\mathrm{SCFM}^{\mathrm{T}}}^{2}}{} \mathrm{P}_{2} \cdot \mathrm{~T}_{\mathrm{Std}} \quad=2.004 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Inlet Viscosity	$\mu_{1}:=2.17 \cdot 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}$
Mass flow rate	mass $_{\text {flow }}:=\rho_{2}$. Flow $_{2}=1.828 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}$
Inlet Flow rate	$\text { Flow }_{1}:=\frac{\text { mass }_{\text {flow }}}{\rho_{1} \cdot \mathrm{~A}_{\text {cross }}}=14.242 \frac{\mathrm{~m}}{\mathrm{~s}}$
Average Density	$\rho_{\mathrm{avg}}:=\frac{\rho_{1}+\rho_{2}}{2}=0.912 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Average Velocity	$\mathrm{V}_{\mathrm{avg}}:=\frac{\text { Flow }_{1}+\frac{\text { Flow }_{2}}{\mathrm{~A}_{\text {cross }}}}{2}=14.242 \frac{\mathrm{~m}}{\mathrm{~s}}$
Reynolds number	$\mathrm{Re}_{\mathrm{D}}:=\frac{\rho_{\mathrm{avg}} \cdot \mathrm{~V}_{\mathrm{avg}} \cdot \mathrm{D}_{\mathrm{i}}}{\mu_{1}}=8.012 \times 10^{3}$
Surface roughness	ε cime $=0.01510^{-3} \mathrm{~m}$
Friction factor	For $\quad \operatorname{Re}_{\mathrm{D}}=8.012 \times 10^{3} \quad$ and $\quad \frac{\varepsilon}{\mathrm{D}_{\mathrm{i}}}=1.121 \times 10^{-3}$
	$\mathrm{f}:=\frac{1.325}{\left(\left(\frac{\frac{\varepsilon}{\mathrm{D}_{\mathrm{i}}}}{3.7}+\frac{5.74}{\mathrm{Re}_{\mathrm{D}}^{0.9}}\right)\right)^{2}}=0.035$
Friction loss	$\mathrm{h}_{\mathrm{f}}:=\mathrm{f} \cdot \frac{\mathrm{~L}_{\mathrm{demo}}}{\mathrm{D}_{\mathrm{i}}} \cdot \frac{\mathrm{~V}_{\mathrm{avg}}{ }^{2}}{2 \cdot \mathrm{~g}}=35.358 \mathrm{~m}$
Inlet Pressure	$\mathrm{P}_{1}:=\mathrm{h}_{\mathrm{f}} \cdot \rho_{\text {avg }} \cdot \mathrm{g}+\mathrm{P}_{2}=1.016 \times 10^{5} \mathrm{~Pa}$

Inlet Density	$\rho_{1 \mathrm{~mol}}:=\frac{\mathrm{P}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}}=30.411 \frac{\mathrm{~mol}}{\mathrm{~m}^{3}}$	
Molecular weight	$\text { MW }:=0.030 \frac{\mathrm{~kg}}{\mathrm{~mol}}$	
Inlet Density	$\rho_{l l}:=\rho_{1 \mathrm{~mol}} \mathrm{MW}^{\mathrm{MW}}=0.912 \frac{\mathrm{~kg}}{2} \quad$ iterate until density matches	
	Exhaust Characteristics	Natural Gas Characteristics
Density	$\rho_{\mathrm{ex}}:=\rho_{1}=0.912 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	$\rho_{\mathrm{ng}}:=53.334 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Flow rate	$\mathrm{V}_{\mathrm{ex}}:=\text { Flow }_{2}=2.004 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$	$\mathrm{V}_{\mathrm{ng}}:=0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Mass flow rate	$\mathrm{m}_{\mathrm{ex}}:=\rho_{\mathrm{ex}} \cdot \mathrm{~V}_{\mathrm{ex}}=1.829 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~s}}$	$\mathrm{m}_{\mathrm{ng}}:=\rho_{\mathrm{ng}} \cdot \mathrm{~V}_{\mathrm{ng}}=25.227 \frac{\mathrm{~kg}}{\mathrm{~s}}$
Specific Heat	$c_{\text {pex }}:=1.327 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$	$c_{\text {png }}:=2.26 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
Thermal Conductivity	$\mathrm{k}_{\mathrm{ex}}:=0.034 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}$	$\mathrm{k}_{\mathrm{ng}}:=0.035 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}$
Viscosity	$\mu_{\mathrm{ex}}:=\mu_{1}=2.17 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}$	$\mu_{\mathrm{ng}}:=1.1 \cdot 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}$
Prandtl Number	$\operatorname{Pr}_{\mathrm{ex}}:=\frac{\mathrm{c}_{\mathrm{pex}} \cdot \mu_{\mathrm{ex}}}{\mathrm{k}_{\mathrm{ex}}}=0.847$	$\operatorname{Pr}_{\mathrm{ng}}:=\frac{\mathrm{c}_{\mathrm{png}} \cdot \mu_{\mathrm{ng}}}{\mathrm{k}_{\mathrm{ng}}}=0.71$
Reynolds Number	$\operatorname{Re}_{\mathrm{ex}}:=\operatorname{Re}_{\mathrm{D}}=8.012 \times 10^{3}$	$\operatorname{Re}_{\mathrm{ng}}:=\frac{\rho_{\mathrm{ng}} \cdot \mathrm{~V}_{\mathrm{ng}} \cdot \mathrm{D}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{cross}} \cdot \mu_{\mathrm{ng}}}=2.181 \times 10^{8}$
Nusselt Number	$\mathrm{Nu}_{\mathrm{ex}}:=0.023 \mathrm{Re}_{\mathrm{ex}}{ }^{0.8} \cdot \operatorname{Pr}_{\mathrm{ex}}{ }^{0.3}$	$\mathrm{Nu}_{\mathrm{ng}}:=0.023 \mathrm{Re}_{\mathrm{ng}}{ }^{0.8} \cdot \operatorname{Pr}_{\mathrm{ng}}{ }^{0.33}$
	$\mathrm{Nu}_{\text {ex }}=29.046$	$\mathrm{Nu}_{\mathrm{ng}}=9.631 \times 10^{4}$
Convection Coefficient	$\mathrm{h}_{\mathrm{ex}}:=\frac{\mathrm{Nu}_{\mathrm{ex}} \cdot \mathrm{k}_{\mathrm{ex}}}{\mathrm{D}_{\mathrm{i}}}=73.775 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$	$\mathrm{h}_{\mathrm{ng}}:=\frac{\mathrm{Nu}_{\mathrm{ng}} \cdot \mathrm{k}_{\mathrm{ng}}}{\mathrm{D}_{\mathrm{i}}}=2.518 \times 10^{5} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}}$
Change in temp	$\Delta \mathrm{T}_{\mathrm{ex}}:=\mathrm{T}_{1}-\mathrm{T}_{2}=373 \mathrm{~K}$	$\Delta \mathrm{T}_{\text {full }}:=45 \mathrm{~K}$

Thermal Resistance Model: Demonstrator with exhaust

$$
\begin{array}{ll}
\text { Convection } & \mathrm{R}_{\text {convex }}:=\frac{1}{\mathrm{~h}_{\mathrm{ex}} \cdot \mathrm{~A}_{\text {Ldemo }}}=0.244 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Conduction } & \mathrm{R}_{\text {condex }}:=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{~L}_{\text {demo }} \cdot \mathrm{k}_{\mathrm{ex}}}=0.604 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Number of heat pipes } & \mathrm{n}_{\mathrm{hp}}:=14 \\
\text { Number of fins } & \mathrm{n}_{\text {fin }}:=1 \varepsilon \\
\text { Heat Pipe Resistance } & \mathrm{R}_{\mathrm{hp}}:=3 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Fin resistance } & \mathrm{R}_{\text {fin }}:=12.293 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Total HP Resistance } & \mathrm{R}_{\text {fintot }}:=\frac{\mathrm{R}_{\text {fin }}}{\mathrm{n}_{\text {fin }}}=0.683 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Tototex }:=\frac{1}{\mathrm{n}_{\mathrm{hp}}} \frac{\mathrm{n}_{\mathrm{hp}}}{\mathrm{R}_{\mathrm{hp}}}=0.04 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\mathrm{R}_{\text {fintot }}
\end{array}
$$

Thermal Resistance Model: Full size model with exhaust
Convection

$$
\mathrm{R}_{\text {convfull }}:=\frac{1}{\mathrm{~h}_{\mathrm{ex}} \cdot \mathrm{~A}_{\text {Lfull }}}=5.036 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

$$
\mathrm{R}_{\text {condfull }}:=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{~L}_{\text {full }} \cdot \mathrm{k}_{\mathrm{ex}}}=0.012 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Number of heat pipes

$$
n_{\text {hpfull }}:=41 \mathrm{c}
$$

Number of fins

$$
\mathrm{n}_{\mathrm{fin}}=18
$$

Heat Pipe Resistance

$$
\mathrm{R}_{\mathrm{hp}}=3 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Fin resistance

$$
\mathrm{R}_{\mathrm{fin}}=12.293 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

$$
\mathrm{R}_{\text {fintot }}=0.683 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Total HP Resistance

$$
\mathrm{R}_{\text {hptotfull }}:=\frac{1}{\frac{\mathrm{n}_{\text {hpfull }}}{\mathrm{R}_{\mathrm{hp}}}+\frac{\mathrm{n}_{\text {hpfull }}}{\mathrm{R}_{\text {fintot }}}}=1.328 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Total Resistance

$$
\mathrm{R}_{\text {full }}:=\mathrm{R}_{\text {convfull }}+\mathrm{R}_{\text {condfull }}+\mathrm{R}_{\text {hptotfull }}=0.019 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Ratio between demonstrator and full size model $\quad \underset{\text { s. }}{\mathrm{R}}:=\frac{\mathrm{R}_{\mathrm{ex}}}{\mathrm{R}_{\text {full }}}=47.155$
Thermal Resistance Model: Demonstrator with natural gas

$$
\begin{array}{ll}
\text { Convection } & \mathrm{R}_{\text {convng }}:=\frac{1}{\mathrm{~h}_{\mathrm{ng}} \cdot \mathrm{~A}_{\mathrm{Ldemo}}}=7.149 \times 10^{-5} \cdot \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Convection } & \mathrm{R}_{\text {condng }}:=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{~L}_{\text {demo }} \cdot \mathrm{k}_{\mathrm{ng}}}=0.587 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Number of heat pipes: } & \mathrm{n}_{\mathrm{hpng} 1}:=\mathrm{n}_{\mathrm{hp}}=14 \\
\text { Number of fins: } & \mathrm{n}_{\text {fin }}=18 \\
\text { Heat Pipe Resistance } & \mathrm{R}_{\mathrm{hp}}=3 \cdot \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Fin resistance } & \mathrm{R}_{\text {fin }}=12.293 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\text { Total HP Resistance }=0.683 \frac{\mathrm{~K}}{\mathrm{~W}} \\
\mathrm{R}_{\mathrm{hptotng}}:=\frac{\mathrm{n}_{\mathrm{hpng} 1}}{\mathrm{R}_{\mathrm{hp}}}+\frac{\mathrm{n}_{\mathrm{hpng} 1}}{\mathrm{R}_{\text {fintot }}} \\
\text { RESISTANCE FOR FULL MODEL WITH NATURAL GAS } \\
\text { Total Resistance } & R_{\mathrm{ngginal}}:=\frac{R_{\mathrm{ng} 1}}{\mathrm{R}}=0.04 \frac{\mathrm{~K}}{\mathrm{~W}}
\end{array}
$$

With 42 meters in length and 275 heat pipes, the thermal resistance of our model would be $0.013 \mathrm{~K} / \mathrm{W}$

G. 3 Cradle Heat Pipe Design Analysis

Unit definition	$\mathrm{kJ}:=1000$
Inside/Outside Diameter of natural gas	$\mathrm{D}_{\mathrm{O}}:=15.875 \mathrm{~mm}=0.625 \mathrm{in} \quad \mathrm{D}_{\mathrm{i}}:=13.38 \mathrm{~mm}=0.527 \cdot \mathrm{in}$
Tube	
Wall Thickness	$\mathrm{T}_{\mathrm{p}}:=1.27 \mathrm{~mm}=0.05 \cdot \mathrm{in}$
Total Length of Gas Pipe	$\begin{array}{ll} \mathrm{L}_{\mathrm{i}}:=64.008 \mathrm{~m}=210 \mathrm{ft} & \text { Forty-two tubes at } 5 \mathrm{ft} \text { for } 210 \mathrm{ft} \\ \text { total. } 3 \text { rows of } 14 \text { pipes stacked } . \end{array}$
Breakdown of Design	$\mathrm{L}_{\text {tube }}:=1.524 \mathrm{~m}=5 \cdot \mathrm{ft}$
	$\mathrm{W}_{\text {tube }}:=.2286 \mathrm{~m}=0.75 \cdot \mathrm{ft} \quad \mathrm{H}_{\text {tube }}:=2.32932 \mathrm{~m}=7.642 \mathrm{ft}$
Surface area of inside of pipe	$\mathrm{A}_{\mathrm{in}}:=\pi \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{L}_{\mathrm{i}}=2.692 \mathrm{~m}^{2}$
inner/outer pipe radius	$\mathrm{r}_{\mathrm{i}}:=\frac{\mathrm{D}_{\mathrm{i}}}{2}=6.693 \mathrm{mn} \quad \mathrm{r}_{\mathrm{O}}:=\frac{\mathrm{D}_{\mathrm{O}}}{2}=7.938 \mathrm{mn}$
Temperature of Natural Gas In/Out	$\mathrm{T}_{\text {gasin }}:=377.928 \mathrm{~K} \quad \mathrm{~T}_{\text {gasout }}:=333.15 \mathrm{~K}$
Flow Rate of Gas	$\text { Flow }_{\text {gas }}:=0.005459 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Gauge pressure of water in heat pipe	$\mathrm{P}_{\mathrm{g}}:=20.265 \mathrm{kPa}=0.02 \cdot \mathrm{MPa}$
Standard Pressure	$\mathrm{P}_{\mathrm{S}}:=101.32 \mathrm{kP} \mathrm{\varepsilon}$
Absolute pressure of	$\mathrm{P}_{\mathrm{a}}:=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{g}}=0.122 \mathrm{MPa}$
water in heat pipe Gas Constant, Methane	$\underset{\mathrm{M}}{\mathrm{R}}:=518.3 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
http://www.engineer	groolbox.com/individual-universal-gas-constant-d_588.html
Standard volumetric flow rate of gas	$\mathrm{V}_{\mathrm{scfm}}:=870 \frac{\mathrm{ft}^{3}}{\min }=0.411 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Standard Pressure	$\mathrm{P}_{\text {std }}:=10132 \mathrm{~Pa}=0.101 \cdot \mathrm{MPa}$
Standard Temperature	$\mathrm{T}_{\text {std }}:=273.15 \mathrm{~K}$
Natural Gas Volume Flow	$\mathrm{V}_{\text {actual }}:=\frac{\left(\mathrm{P}_{\text {std }} \cdot \mathrm{V}_{\text {scfm }} \cdot \mathrm{T}_{\text {gasin }}\right)}{\mathrm{P}_{\mathrm{a}} \cdot \mathrm{T}_{\text {std }}}=0.473 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$

Gauge Pressure from competitor cooler $\quad \mathrm{P}:=1515 \mathrm{psi}=10.446 \mathrm{MP} \varepsilon$
Absolute Pressure from competitor cooler $\mathrm{P}_{\mathrm{ap}}:=\mathrm{P}+\mathrm{P}_{\mathrm{s}}=10.547 \cdot \mathrm{MPa}$
Universal Gas Constant $\quad \underset{\mathrm{R}}{\mathrm{R}}:=8.3144126 \frac{\mathrm{~J}}{\mathrm{moleK}}$
http://en.wikipedia.org/wiki/Gas_constant

Molecular Weight of Methane
$\mathrm{M}:=16.044 \frac{\mathrm{gm}}{\mathrm{mol}}$
http://www.engineeringtoolbox.com/methane-d_1420.html

Density of Compressed
$\mathrm{d}_{\mathrm{in}}:=\frac{\mathrm{P} \cdot \mathrm{M}}{\mathrm{R} \cdot \mathrm{T}_{\text {gasin }}}=53.334 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Natural Gas at Enter (Calc):
Density of Compressed Natural Gas at $\quad \mathrm{d}_{\text {out }}:=\frac{\mathrm{P} \cdot \mathrm{M}}{\mathrm{R} \cdot \mathrm{T}_{\text {gasout }}}=60.502 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Exit (Calc):

Chosen Density of CNG	$\rho_{\mathrm{g}}:=\mathrm{d}_{\mathrm{in}}$
Mass Flow Rate	mflow $_{\mathrm{NG}}:=\rho_{\mathrm{g}} \cdot \mathrm{V}_{\text {actual }}=25.249 \frac{\mathrm{~kg}}{\mathrm{~s}}$
Specific Heat of Gas	$\mathrm{C}_{\mathrm{pNG}}:=2.226 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

http://www.engineeringtoolbox.com/methane-d_1420.html
Viscosity of natural gas

$$
\mu_{\mathrm{NG}}:=0.00011 \text { 甲oise }=1.1 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}
$$

http://www.engineeringtoolbox.com/methane-d_1420.html
Thermal Conductivity of Gas

$$
\mathrm{k}_{\mathrm{gas}}:=0.035 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
$$

http://www.engineeringtoolbox.com/methane-d_1420.html
Thermal Conductivity of Stainless

$$
\mathrm{k}_{\mathrm{m}}:=30 \cdot \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
$$

Steel http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
Thermal Conductivity of Copper

$$
\mathrm{k}_{\text {cradle }}:=401 \cdot \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
$$

(estimated)
Cradle Specification
http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

$$
\mathrm{L}_{\text {cradle }}:=63.5 \mathrm{~mm}=2.5 \cdot \mathrm{in} \quad \mathrm{H}_{\text {cradle }}:=63.5 \mathrm{~mm}
$$

$$
\begin{gathered}
\mathrm{W}_{\text {cradle }}:=38.1 \mathrm{~mm}=1.5 \cdot \mathrm{in} \\
\mathrm{~T}_{\text {cradle }}:=\left(2 \mathrm{~L}_{\text {cradle }}:=38.1 \mathrm{~mm}\right. \\
\left.\cdot \mathrm{H}_{\text {cradle }}\right)+\left(2 \mathrm{H}_{\text {cradle }} \cdot \mathrm{W}_{\text {cradle }}\right)+\left(2 \mathrm{~L}_{\text {cradle }} \cdot \mathrm{W}_{\text {cradle }}\right)=0.018 \mathrm{~m}^{2}
\end{gathered}
$$

Prandtl Number	$\operatorname{Pr}:=\frac{\mu_{\mathrm{NG}} \mathrm{C}_{\mathrm{pNG}}}{\mathrm{k}_{\mathrm{gas}}}=0.7$
Reynolds Number	$\mathrm{Re}_{\mathrm{D}}:=\frac{4 \cdot \mathrm{mflow}_{\mathrm{NG}}}{\pi \cdot \mathrm{D}_{\mathrm{i}} \cdot \mu_{\mathrm{NG}}}=2.183 \times 10^{8} \quad \text { Turbulent if }>2300$
Masking Effect	
distance along pipe	$\mathrm{S}_{\mathrm{T}}:=1.524 \mathrm{~m} \quad 1.524$ meters $=5 \mathrm{ft}$
distance across pipes	$\mathrm{S}_{\mathrm{L}}:=1.067 \mathrm{~m} \quad 1.067 \mathrm{~mm}=3.5 \mathrm{ft}$
tube diameter	D : $=5.875 \mathrm{mn}$
dimensionless longitudinal distance	$\mathrm{s}_{1}:=\frac{\mathrm{S}_{\mathrm{L}}}{\mathrm{D}}=181.617$
dimensionless tangential distance	$\mathrm{s}_{\mathrm{t}}:=\frac{\mathrm{S}_{\mathrm{T}}}{\mathrm{D}}=259.404$
Nusselt Number	$\mathrm{Nu}:=0.023 \mathrm{Re}_{\mathrm{D}}{ }^{0.8} \cdot \mathrm{Pr}^{0.33}=9.59 \times 10^{4}$
Heat Transfer Coefficient of Gas	$\mathrm{h}_{\mathrm{NG}}:=\frac{\mathrm{k}_{\mathrm{gas}}}{\mathrm{D}_{\mathrm{i}}} \cdot \mathrm{Nu}=2.507 \times 10^{5} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$
convective resistance from NG to pipe	$\mathrm{R}_{\mathrm{ng}}:=\frac{1}{\mathrm{~h}_{\mathrm{NG}} \cdot \pi \cdot \mathrm{D}_{\mathrm{i}} \mathrm{~L}_{\mathrm{i}}}=1.482 \times 10^{-6} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
conductive resistance through the pipe	$\mathrm{R}_{\mathrm{pipe}}:=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{i}}}=1.413 \times 10^{-5} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
conductive resistance through cradle	$\begin{aligned} \mathrm{R}_{\text {cradle }}:= & \frac{\mathrm{T}_{\text {cradle }}}{\mathrm{A}_{\text {cradle }} \cdot \mathrm{k}_{\text {cradle }}}=5.355 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}} \\ & \text { http://en.wikipedia.org/wiki/Thermal_conductivity } \end{aligned}$
FIN DESIGN	
fin thickness	$\begin{array}{lcc} \hline \text { thickness }:=.4 \mathrm{mn} & \mathrm{t}:=\text { thickness } \quad \text { assume square fins } \\ & .4 \mathrm{~mm}=0.016 \mathrm{in} \quad \frac{1}{16} \mathrm{in}=0.063 \mathrm{in} \end{array}$
gap between fins	gap $:=2.5 \mathrm{mn} \quad 2 \mathrm{~mm}=0.079 \mathrm{ir} \quad \frac{1}{8} \mathrm{in}=0.125 \mathrm{ir}$

thermal conductivity of air	$\begin{gathered} \mathrm{k}_{\mathrm{air}}:=0.0278 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad \text { Taken at a temperature of } 50 \mathrm{C} \\ \text { http://www.engineeringtoolbox.com/air-properties-d_156.html } \end{gathered}$
cross sectional area of fin	$\mathrm{A}_{\mathrm{c}}\left(\mathrm{w}_{\mathrm{f}}\right):=\mathrm{w}_{\mathrm{f}} \cdot \mathrm{t}$
specific heat of air	$\begin{aligned} & \quad \mathrm{C}_{\mathrm{pNGair}}:=1.005 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ & \text { http://www.engineeringtoolbox.com/air-properties-d_156.html } \end{aligned}$
Viscosity of air	$\mu_{\text {air }}:=2.02910^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \quad$ Taken at a temperature of 325 K
http://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html	
density of air	$\rho_{\text {air }}:=1.097 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ Taken at a temperature of 50 C
	http://www.engineeringtoolbox.com/air-properties-d_156.html
volumetric flow rate of air	uncorrectedflow air $:=59933 \frac{\mathrm{ft}^{3}}{\min }=28.285 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
flow rate correction factor (based on heat load)	$\text { flow }_{\text {correction }}:=\frac{176}{1969+483+650+119+419+176}=0.046$
flow rate correction factor (based on area of flow)	$\mathrm{Cr}_{\text {area }}:=\frac{14}{92+56+65+23+56+14}=0.046$
corrected volumetric flow rate of air	flow $_{\text {air }}:=$ uncorrectedflow $_{\text {air }} \cdot \mathrm{Cr}_{\text {area }}=1.294 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
based on area of flow Volumetric flow rate ratio	Flowrate $_{\text {ratio }}:=\frac{\text { flow }_{\text {air }}}{\text { uncorrectedflow }_{\text {air }}}=0.046$
Uncorrected fan power	fanpower uncorrected $:=57.2 \mathrm{hp}=42.654 \mathrm{~kW}$
Corrected fan power	Fan $_{\text {power }}:=$ fanpower $_{\text {uncorrected }} \cdot$ Flowrate $_{\text {ratio }}=1.951 \cdot \mathrm{~kW}$
	Fan $_{\text {power }}=2.617 \mathrm{hp}$
Fan Size Estimate	$\mathrm{L}_{\text {fan }}:=63.75 \mathrm{n}=5.312 \mathrm{ft}$
From competitor After Cooler	$\mathrm{H}_{\text {fan }}:=43.125 \mathrm{n}=3.594 \mathrm{ft}$
Quote mass flow rate of air	$\text { mflow }_{\text {air }}:=\rho_{\text {air }} \cdot \text { flow }_{\text {air }}=1.42 \frac{\mathrm{~kg}}{\mathrm{~s}}$
ambient air temp	

$$
\mathrm{T}_{\mathrm{inf}}:=(273.15+50) \mathrm{K}=323.15 \mathrm{~K}
$$

Prandtl number

$$
\operatorname{Pr}_{\mathrm{air}}:=\frac{\mathrm{C}_{\mathrm{pNGair}} \mu_{\mathrm{air}}}{\mathrm{k}_{\mathrm{air}}}=0.734
$$

average gas temp at

$$
\mathrm{T}_{\text {surf }}:=\frac{\mathrm{T}_{\text {gasin }}+\mathrm{T}_{\text {gasout }}}{2}=355.530 \mathrm{~K}
$$

surface of pipe

$$
\mathrm{A}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=\mathrm{n} \cdot\left(\mathrm{w}_{\mathrm{f}} \cdot \mathrm{gap}\right)
$$

air contact perimeter

$$
\mathrm{p}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=\mathrm{n} \cdot\left(2 \cdot \mathrm{w}_{\mathrm{f}}+\mathrm{gap}\right)
$$

hydraulic diameter

$$
\mathrm{D}_{\text {hair }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=4 \cdot \frac{\mathrm{~A}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)}{\mathrm{p}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)}
$$

air contact surface area

$$
\operatorname{Re}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=\frac{4 \cdot \mathrm{mflow}_{\text {air }}}{\pi \cdot \mathrm{D}_{\text {hair }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right) \cdot \mu_{\text {air }}} \quad \quad \text { turbulent flow }
$$

Reynolds number

$$
\mathrm{F}_{\mathrm{a}}:=1+0.1 \cdot \mathrm{~s}_{1}+\frac{0.34}{\mathrm{~s}_{\mathrm{t}}}=19.163
$$

Nusselt number of Air

$$
\mathrm{Nu}_{\text {air }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=0.023 \operatorname{Re}_{\text {air }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)^{0.8} \cdot \operatorname{Pr}_{\text {air }}{ }^{0.33} \cdot \mathrm{~F}_{\mathrm{a}}
$$

with Correction Factor
Convective heat transfer coefficient
of air

$$
\mathrm{h}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=\frac{\mathrm{k}_{\mathrm{air}}}{\mathrm{p}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)} \cdot \mathrm{Nu}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)
$$

perimeter of fin

$$
\mathrm{p}_{\mathrm{fin}}\left(\mathrm{w}_{\mathrm{f}}\right):=2 \cdot \mathrm{w}_{\mathrm{f}}+2 \cdot \mathrm{t}
$$

corrected fin length

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{fin}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right):=\sqrt{\frac{2 \cdot \mathrm{~h}_{\mathrm{air}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right)}{\mathrm{k}_{\mathrm{air}} \cdot \mathrm{t}}} \\
& \mathrm{~L}_{\mathrm{c}}\left(\mathrm{~L}_{\mathrm{f}}\right):=\mathrm{L}_{\mathrm{f}}+\frac{\mathrm{t}}{2}
\end{aligned}
$$

thermal resistance of fin $\mathrm{R}_{\text {fin }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{L}_{\mathrm{f}}, \mathrm{n}\right):=\frac{1}{\sqrt{\mathrm{~h}_{\text {air }}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right) \cdot \mathrm{p}_{\text {fin }}\left(\mathrm{w}_{\mathrm{f}}\right) \cdot \mathrm{k}_{\text {air }} \cdot \mathrm{A}_{\mathrm{c}}\left(\mathrm{w}_{\mathrm{f}}\right) \cdot \tanh \left(\mathrm{m}_{\mathrm{fin}}\left(\mathrm{w}_{\mathrm{f}}, \mathrm{n}\right) \cdot \mathrm{L}_{\mathrm{c}}\left(\mathrm{L}_{\mathrm{f}}\right)\right)}}$
with convection off end
for fin with convection off end, p695

Rate of heat transfer out of natural $\mathrm{Q}_{\text {ratemax }}:=\operatorname{mflow}_{\mathrm{NG}} \cdot \mathrm{C}_{\mathrm{pNG}}\left(\mathrm{T}_{\text {gasin }}-\mathrm{T}_{\text {gasout }}\right)=2.517 \cdot \mathrm{MW}$ gas required
Maximum resistance to achieve required heat $\mathrm{R}_{\text {tmax }}:=\frac{\mathrm{T}_{\text {surf }}-\mathrm{T}_{\text {inf }}}{\mathrm{Q}_{\text {ratemax }}}=1.287 \times 10^{-5} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
transfer

$$
\mathrm{AA}:=10 \mathrm{R}_{\mathrm{tmax}}=1.287 \times 10^{-4} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

$$
\mathrm{BB}:=\mathrm{R}_{\mathrm{ng}}+\mathrm{R}_{\text {pipe }}+\mathrm{R}_{\text {cradle }}=5.371 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

Using These to check

$$
\mathrm{AA}-\mathrm{BB}=-5.242 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}
$$

number of heat pipes

$$
\mathrm{n}_{\mathrm{hp}}:=41
$$

16 heat pipes per gas pipe
with 15.5 gas pipes
resistance of one heat pipe

$$
\mathrm{R}_{\mathrm{ihp}}:=0.18 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

maximum allowable total fin $R_{\text {finmax }}:=\left[42 \cdot R_{\text {tmax }}-\left(R_{n g}+R_{\text {pipe }}+R_{\text {cradle }}\right)\right] \cdot n_{h p}-R_{\text {ihp }}=-2.204 \frac{\mathrm{~K}}{\mathrm{~W}}$ resistance
resistance of single fin
$\mathrm{R}_{\text {ifin }}(\mathrm{n}):=\mathrm{n} \cdot \mathrm{R}_{\text {finmax }}$
fin width $\quad \mathrm{w}:=2.5 \mathrm{~cm} \quad 127 \mathrm{~mm}=5 \mathrm{in}$
fin length $\quad \underset{A M A}{L}:=2 \mathrm{~cm} \quad$ resistance independent of L
number of fins per bank

$$
\mathrm{n}_{\mathrm{fin}}:=17
$$

maximum resistance of fins
calculated resistance per fin, make less than Rifin

$$
\begin{aligned}
& \mathrm{R}_{\text {ifin }}\left(\mathrm{n}_{\text {fin }}\right)=-37.467 \frac{\mathrm{~K}}{\mathrm{~W}} \\
& \mathrm{R}_{\text {fin }}\left(\mathrm{w}, \mathrm{~L}, \mathrm{n}_{\text {fin }}\right)=93.246 \frac{\mathrm{~K}}{\mathrm{~W}}
\end{aligned}
$$

logic statement to help optimize design and reduce potential for human error
current $:=\operatorname{if}\left(\mathrm{R}_{\mathrm{ifin}}\left(\mathrm{n}_{\text {fin }}\right)<\mathrm{R}_{\text {fin }}\left(\mathrm{w}, \mathrm{L}, \mathrm{n}_{\text {fin }}\right)\right.$, "more" , "less" $)=$ "more"
smaller $:=\operatorname{if}\left(\mathrm{R}_{\mathrm{ifin}}\left(\mathrm{n}_{\text {fin }}-1\right)<\mathrm{R}_{\text {fin }}\left(\mathrm{w}, \mathrm{L}, \mathrm{n}_{\text {fin }}-1\right)\right.$, "smallest" , "fewer" $)=$ "smallest"
if(current = "less" \wedge smaller = "smallest" , "end" , "iterate") = "iterate"

Required condenser region length condenser length $:=\mathrm{t} \cdot \mathrm{n}_{\text {fin }}+\mathrm{gap} \cdot\left(\mathrm{n}_{\text {fin }}-1\right)=46.8 \cdot \mathrm{~mm} \quad 50 \mathrm{~mm}$ max
Design Footprint \quad Footprint $:=\left(\mathrm{L}_{\text {tube }}\right) \cdot\left(\mathrm{W}_{\text {fan }}+\mathrm{W}_{\text {tube }}\right)=0.871 \mathrm{~m}^{2}$
Design Volume
Volume $:=$ Footprint $\cdot \mathrm{H}_{\text {tube }}=2.029 \mathrm{~m}^{3}$

G. 4 Demonstrator Analytical Analysis

Demonstrator Experiment Analysis

Universal Gas Constant	$\begin{aligned} \mathrm{R}:=8.3144126 \frac{\mathrm{~J}}{\mathrm{~mole} \mathrm{~K}} \\ \text { http://en.wikipedia.org/wiki/Gas_constant } \end{aligned}$
Molecular Weight of Engine Exhaust	$\mathrm{M}:=30 \frac{\mathrm{gm}}{\mathrm{~mol}}$ http://www.engineeringtoolbox.com/methane-d_1420.html
Density of Compressed Natural Gas at Enter (Calc):	$\mathrm{d}_{\text {in }}:=\frac{\mathrm{P} \cdot \mathrm{M}}{\mathrm{R} \cdot \mathrm{~T}_{\text {gasin }}}=54.316 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Density of Compressed Natural Gas at Exit (Calc):	$\mathrm{d}_{\text {out }}:=\frac{\mathrm{P} \cdot \mathrm{M}}{\mathrm{R} \cdot \mathrm{T}_{\text {gasout }}}=126.645 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Chosen Density of CNG	$\rho_{\mathrm{g}}:=\mathrm{d}_{\text {out }}$
Mass Flow Rate	$\text { mflow }_{\mathrm{NG}}:=\rho_{\mathrm{g}} \cdot \mathrm{~V}_{\text {actual }}=110.082 \frac{\mathrm{~kg}}{\mathrm{~s}}$
Specific Heat of Gas	$\mathrm{C}_{\mathrm{pNG}}:=1.327 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$ http://www.engineeringtoolbox.com/methane-d_1420.html
Viscosity of engine exhaust	$\mu_{\mathrm{NG}}:=2.17 \cdot 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}$ http://www.engineeringtoolbox.com/methane-d_1420.html
Thermal Conductivity of engine exhaust	$\mathrm{k}_{\mathrm{gas}}:=0.034 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}$ http://www.engineeringtoolbox.com/methane-d_1420.html
Thermal Conductivity of Stainless Steel	$\mathrm{k}_{\mathrm{m}}:=30 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}$
http://ww	ww.engineeringtoolbox.com/thermal-conductivity-d_429.html
Thermal Conductivity of Copper (estimated)	$\mathrm{k}_{\text {cradle }}:=401 \cdot \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}$
http://www	w.engineeringtoolbox.com/thermal-conductivity-d_429.html
Cradle Specification	$\mathrm{L}_{\text {cradle }}:=60.96 \mathrm{~mm}=2.4 \cdot \mathrm{in}$ $\mathrm{H}_{\text {cradle }}:=45.72 \mathrm{~mm}$ $\mathrm{~W}_{\text {cradle }}:=35.5 \mathrm{~mm}=1.4 \cdot \mathrm{in}$ $\mathrm{T}_{\text {cradle }}:=35.5 \mathrm{~mm}$
$\mathrm{A}_{\text {cradle }}:=\left(2 \mathrm{~L}_{\text {cradle }} \cdot \mathrm{H}_{\text {cradle }}\right)+\left(2 \mathrm{H}_{\text {cradle }} \cdot \mathrm{W}_{\text {cradle }}\right)+\left(2 \mathrm{~L}_{\text {cradle }} \cdot \mathrm{W}_{\text {cradle }}\right)=0.013 \mathrm{~m}^{2}$	
Prandtl Number	$\operatorname{Pr}:=\frac{\mu_{\mathrm{NG}} \mathrm{C}_{\mathrm{pNG}}}{\mathrm{k}_{\mathrm{gas}}}=0.847$

Reynolds Number	$\mathrm{Re}_{\mathrm{D}}:=\frac{4 \cdot \mathrm{mflow}_{\mathrm{NG}}}{\pi \cdot \mathrm{D}_{\mathrm{i}} \cdot \mu_{\mathrm{NG}}}=4.825 \times 10^{8} \quad \text { Turbulent if }>2300$
Masking Effect	
distance along pipe	$\mathrm{S}_{\mathrm{T}}:=\mathrm{L}_{\text {tube }}$
distance across pipes	$\mathrm{S}_{\mathrm{L}}:=\mathrm{W}_{\text {tube }}$
tube diameter	$\mathrm{D}:=5.875 \mathrm{mn}$
dimensionless longitudinal distance	$\mathrm{s}_{1}:=\frac{\mathrm{S}_{\mathrm{L}}}{\mathrm{D}}=39.991$
dimensionless tangential distance	$\mathrm{s}_{\mathrm{t}}:=\frac{\mathrm{S}_{\mathrm{T}}}{\mathrm{D}}=224.817$
Nusselt Number	$\mathrm{Nu}:=0.023 \operatorname{Re}_{\mathrm{D}}{ }^{0.8} \cdot \operatorname{Pr}{ }^{0.33}=1.926 \times 10^{5}$
Heat Transfer Coefficient of Gas	$\mathrm{h}_{\mathrm{NG}}:=\frac{\mathrm{k}_{\mathrm{gas}}}{\mathrm{D}_{\mathrm{i}}} \cdot \mathrm{Nu}=4.893 \times 10^{5} \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}$
convective resistance from NG to pipe	$\mathrm{R}_{\mathrm{ng}}:=\frac{1}{\mathrm{~h}_{\mathrm{NG}} \cdot \pi \cdot \mathrm{D}_{\mathrm{i}} \mathrm{~L}_{\mathrm{i}}}=1.84 \times 10^{-5} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
conductive resistance through the pipe	$\mathrm{R}_{\text {pipe }}:=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{\mathrm{m}} \cdot \mathrm{~L}_{\mathrm{i}}}=3.425 \times 10^{-4} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
conductive resistance through cradle	$\begin{aligned} \mathrm{R}_{\text {cradle }}:= & \frac{\mathrm{T}_{\text {cradle }}}{\mathrm{A}_{\text {cradle }} \cdot \mathrm{k}_{\text {cradle }}}=6.738 \times 10^{-3} \cdot \frac{\mathrm{~K}}{\mathrm{~W}} \\ & \mathrm{http}: / / \text { en.wikipedia.org/wiki/Thermal_conductivity } \end{aligned}$
FIN DESIGN	
fin thickness	thickness $:=.508 \mathrm{mn} \quad \mathrm{t}:=$ thickness \quad assume square fins
gap between fins	gap : $=2.5 \mathrm{mn}$
thermal conductivity of air	$\mathrm{k}_{\text {air }}:=0.0278 \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad$ Taken at a temperature of 50 C p://www.engineeringtoolbox.com/air-properties-d_156.html
cross sectional area of fin w:	25.mn $\quad A_{c}:=w \cdot t$

specific heat of air	$\begin{aligned} & \quad \mathrm{C}_{\mathrm{pNGair}}:=1.005 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ & \text { http://www.engineeringtoolbox.com/air-properties-d_156.html } \end{aligned}$
Viscosity of air	$\mu_{\text {air }}:=2.02910^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \quad$ Taken at a temperature of 325 K
http://www.engineeringtoolbox.com/air-absolute-kinematic-viscosity-d_601.html	
density of air	$\rho_{\text {air }}:=1.097 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad$ Taken at a temperature of 50 C
	http://www.engineeringtoolbox.com/air-properties-d_156.html
volumetric flow rate of air	uncorrectedflow air $:=59933 \frac{\mathrm{ft}^{3}}{\min }=28.285 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
flow rate correction factor based on heat load	$\text { flow }_{\text {correction }}:=\frac{176}{1969+483+650+119+419+176}=0.046$
flow rate correction factor based on area of flow	$\mathrm{Cr}_{\text {area }}:=\frac{14}{92+56+65+23+56+14}=0.046$
corrected volumetric flow rate of air based on area of flow	flow $_{\text {air }}:=$ uncorrectedflow $_{\text {air }} \cdot \mathrm{Cr}_{\text {area }}=1.294 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
Volumetric flow rate ratio	Flowrate $_{\text {ratio }}:=\frac{\text { flow }_{\text {air }}}{\text { uncorrectedflow }_{\text {air }}}=0.046$
Uncorrected fan power	fanpower uncorrected $:=420 \mathrm{~W}=0.42 \cdot \mathrm{~kW}$
Corrected fan power	Fan $_{\text {power }}$:= fanpower uncorrected \cdot Flowrate $_{\text {ratio }}=0.019 \mathrm{~kW}$
	Fan $_{\text {power }}=0.026 \mathrm{hp}$
Fan Used for Testing Size Estimate	$\mathrm{L}_{\text {fan }}:=12 \mathrm{in}=1 \cdot \mathrm{ft}$
	$\mathrm{H}_{\text {fan }}:=36 \mathrm{in}=3 \cdot \mathrm{ft}$
	$\mathrm{W}_{\text {fan }}:=36 \mathrm{in}=3 \cdot \mathrm{ft}$
mass flow rate of air	$\text { mflow }_{\mathrm{air}}:=\rho_{\mathrm{air}} \cdot \text { flow }_{\mathrm{air}}=1.42 \frac{\mathrm{~kg}}{\mathrm{~s}}$
ambient air temp	$\mathrm{T}_{\mathrm{inf}}:=(273.15+50) \mathrm{K}=323.15 \mathrm{~K}$
Prandtl number	$\operatorname{Pr}_{\mathrm{air}}:=\frac{\mathrm{C}_{\mathrm{pNGair}} \mu_{\mathrm{air}}}{\mathrm{k}_{\mathrm{air}}}=0.734$
average gas temp at surface of pipe	$\mathrm{T}_{\text {surf }}:=\frac{\mathrm{T}_{\text {gasin }}+\mathrm{T}_{\text {gasout }}}{2}=495.75 \mathrm{~K}$

air contact surface area
air contact perimeter
hydraulic diameter

$$
\mathrm{A}_{\mathrm{air}}(\mathrm{n}):=\mathrm{n} \cdot(\mathrm{w} \cdot \mathrm{gap})
$$

$$
\mathrm{p}_{\mathrm{air}}(\mathrm{n}):=\mathrm{n} \cdot(2 \cdot \mathrm{w}+\mathrm{gap})
$$

$$
\mathrm{D}_{\mathrm{hair}}(\mathrm{n}):=4 \cdot \frac{\mathrm{~A}_{\mathrm{air}}(\mathrm{n})}{\mathrm{p}_{\mathrm{air}}(\mathrm{n})}
$$

Reynolds number

$$
\operatorname{Re}_{\mathrm{air}}(\mathrm{n}):=\frac{4 \cdot \mathrm{mflow}_{\mathrm{air}}}{\pi \cdot \mathrm{D}_{\mathrm{hair}}(\mathrm{n}) \cdot \mu_{\mathrm{air}}}
$$

Correction/arrangement factor

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{a}}:=1+0.1 \cdot \mathrm{~s}_{1}+\frac{0.34}{\mathrm{~s}_{\mathrm{t}}}=5.001 \\
& \mathrm{Nu}_{\text {air }}(\mathrm{n}):=0.023 \mathrm{Re}_{\mathrm{air}^{(n)}}{ }^{0.8} \cdot \operatorname{Pr}_{\text {air }}{ }^{0.33} \cdot \mathrm{~F}_{\mathrm{a}}
\end{aligned}
$$

Nusselt number of Air
with Correction Factor

Convective heat transfer coefficient of air
perimeter of fin

$$
\underset{\sim}{w}:=25 \cdot \mathrm{mn}
$$

$$
\mathrm{L}:=20 \mathrm{mn}
$$

$$
\mathrm{p}_{\mathrm{fin}}:=2 \cdot \mathrm{w}+2 \cdot \mathrm{~L}
$$

$$
\mathrm{m}_{\mathrm{fin}}(\mathrm{n}):=\sqrt{\frac{2 \cdot \mathrm{~h}_{\mathrm{air}}(\mathrm{n})}{\mathrm{k}_{\mathrm{air}} \cdot \mathrm{t}}}
$$

thermal resistance of finR $_{\text {fin }}(\mathrm{w}, \mathrm{L}, \mathrm{n}):=\frac{1}{\sqrt{\mathrm{~h}_{\mathrm{air}}(\mathrm{n}) \cdot \mathrm{p}_{\mathrm{fin}} \cdot \mathrm{k}_{\mathrm{air}} \cdot \mathrm{A}_{\mathrm{c}}} \cdot 2 \cdot \tanh \left(\mathrm{~m}_{\mathrm{fin}}(\mathrm{n}) \cdot \mathrm{L}\right)}$
with convection off end
for fin with convection off end, p695

Rate of heat transfer out of natural $\mathrm{Q}_{\text {ratemax }}:=\left[\right.$ mflow $\left._{\mathrm{NG}} \cdot \mathrm{C}_{\mathrm{pNG}}\left(\mathrm{T}_{\text {gasin }}-\mathrm{T}_{\text {gasout }}\right)\right]=57.891 \cdot \mathrm{MW}$
gas required
Maximum resisance to achieve required heat $\mathrm{R}_{\text {tmax }}:=\frac{\mathrm{T}_{\text {surf }}-\mathrm{T}_{\text {inf }}}{\mathrm{Q}_{\text {ratemax }}}=2.981 \times 10^{-6} \cdot \frac{\mathrm{~K}}{\mathrm{~W}}$
transfer
number of heat pipes
$\mathrm{n}_{\text {hap }}:=14$
resistance of one heat pipe (average)

$$
\mathrm{R}_{\mathrm{ihp}}:=3.236 \frac{\mathrm{~K}}{\mathrm{~W}}
$$

maximum allowable total Rinnax $_{\text {man }}:=-1\left[\left[2 \cdot R_{\text {tmax }}-\left(R_{n g}+R_{\text {pipe }}+R_{\text {cradle }}\right)\right] \cdot n_{h p}-R_{\text {ihp }}\right]=3.335 \frac{\mathrm{~K}}{\mathrm{~W}}$
resistance
resistance of single fin

$$
\mathrm{R}_{\mathrm{ifin}}(\mathrm{n}):=\mathrm{n} \cdot \mathrm{R}_{\mathrm{finmax}}
$$

fin width

$$
\underset{\sim}{W}:=25 \mathrm{mn} \quad 25 \mathrm{~mm}=.984 \mathrm{in}
$$

fin length
number of fins per bank

$$
\begin{aligned}
& \mathrm{L}:=20 \mathrm{mn} \\
& \mathrm{n}_{\mathrm{fin}}:=1 \varepsilon \\
&
\end{aligned}
$$

Maximum resistance of fins
calculated resistance per fin, make less than Rifin

$$
\begin{aligned}
& \left|R_{\text {ifin }}\left(\mathrm{n}_{\text {fin }}\right)=60.035 \frac{\mathrm{~K}}{\mathrm{~W}}\right| \\
& \mathrm{R}_{\text {fin }}\left(\mathrm{w}, \mathrm{~L}, \mathrm{n}_{\text {fin }}\right)=62.61 \frac{\mathrm{~K}}{\mathrm{~W}}
\end{aligned}
$$

logic statement to help optimize design and reduce potential for human error

$$
\begin{aligned}
& \text { current :=if }\left(\mathrm{R}_{\text {ifin }}\left(\mathrm{n}_{\text {fin }}\right)<\mathrm{R}_{\text {fin }}\left(\mathrm{w}, \mathrm{~L}, \mathrm{n}_{\text {fin }}\right) \text {, "more" , "less" }\right)=\text { "more" } \\
& \text { smaller }:=\operatorname{if}\left(\mathrm{R}_{\mathrm{ifin}}\left(\mathrm{n}_{\mathrm{fin}}-1\right)<\mathrm{R}_{\mathrm{fin}}\left(\mathrm{w}, \mathrm{~L}, \mathrm{n}_{\text {fin }}-1\right) \text {, "smallest" , "fewer" }\right)=\text { "smallest" } \\
& \text { if(current = "less" } \wedge \text { smaller = "smallest" , "end" , "iterate") = "iterate" } \\
& \text { Required condeser region length } \\
& \text { condenser }{ }_{\text {length }}:=\mathrm{t} \cdot \mathrm{n}_{\text {fin }}+\mathrm{gap} \cdot\left(\mathrm{n}_{\mathrm{fin}}-1\right)=51.644 \mathrm{~mm} \\
& \text { Design Footprint } \\
& \text { Footprint }:=\left(\mathrm{L}_{\text {tube }}\right) \cdot\left(\mathrm{W}_{\text {fan }}+\mathrm{W}_{\text {tube }}\right)=1.518 \mathrm{~m}^{2} \\
& \text { Volume }:=\text { Footprint } \cdot \mathrm{H}_{\text {tube }}=0.228 \mathrm{~m}^{3}
\end{aligned}
$$

Appendix H-Quotes

H. 1 Quote - Current Cooler Competitor

February 14, 2012
Sent Via e-mail
anelson@oscomp-systems.com (4-Pages Total)

Attn: Andrew Nelson
Re: Case 1 Redesign - Electric Motor Drive; Single Stage
Proposal 120082A / Model 36VVF
Dear Andrew:
Following is a description and list of equipment for AXH air-coolers' proposal for your referenced inquiry.

Proposal 120082A; Case 1 - Redesign / Rating Basis $\mathbf{1 2 2}^{\circ} \mathrm{F}, \mathbf{2 5 0 0 f t}$ Elevation
Model 36 VVF forced draft, horizontal air discharge, vertical coils, and motor driven per the attached specification sheet and including:

1932\# MAWP AC Section, rated for 870SCFM, cooling from $220.6^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$, 316L stainless steel headers,
316L stainless steel welded tubes,
standard paint system for structure and headers,
Direct Drive by (1) 2HP, 1200RPM, 460/60/3, TEFC, Class I, Div. 2, Grp. D motor, One hour charted hydro-test,
Automatically controlled louvers by (1) Durastroke Model 60 actuator, Temperature control by (1) Kimray T12 with thermowell, Rigid metal bug screens with self tapping screws.

Pricing: Quoted pricing is valid for 30 days and firm for shipments through the end of August 2012.

Delivery: Please confirm delivery requirements at time of purchase. Current lead time is approximately 8-10 weeks after receipt of order. Delivery is also subject to the availability of raw materials.

Terms \& Conditions: 50% at time of order placement with remaining 50% prior to shipment of completed cooler.

Sincerely,

70 Commercial Street, Suite 200
Concord, NH 03301 USA
(603) 224-9988

Customer:

Worcester Polytechnic Institute
Attn: Christopher O'Brien
100 Institute Rd
Worcester, MA 01609

Quote Number	Date	Page
3142012	March 14, 2012	1 of 1

Quoted by:

Michael Beliveau
Phone: (603) 223-1810
e-mail: beliveaum@aavid.com

Contact:

Christopher O'Brien
ciobrien@wpi.edu
781-738-0862

Program	Quote Expiration Date
WPI MQP - Heatpipe with Fins	March 23,2012

WE ARE PLEASED TO SUBMIT THE FOLLOWING QUOTATION FOR YOUR APPROVAL

STANDARD TOLERANCES:
*Standard commercial extrusion tolerances apply to extruded dimensions (by Aluminum Association of America).

* Low usage extrusion may require a minimum order amount or a set-up charge dependent on material availability at time of order.
* Aavid's typical shipping tolerances may be up to $+/-10 \%$; primarily for custom product
* Unless otherwise specified, visual criteria per Aavid Thermalloy specification QC-500

ADVANCED COOLING TECHNOLOGIES, INC.
 ISO9001 \& AS9100 Innovations in Action Certified

Prepared for:

Christopher O'Brien
Worcester Polytechnic Institute '12
Mechanical Engineering

Quotation

cjobrien@WPI.EDU
Number: 20-0922
Date: 3/12/12
Customer number: 00393
Validity period: 30 days from 3/12/12
Division: EP

We deliver according to the following conditions

Terms of payment:	NT30
Terms of delivery:	FOB Factory
Currency:	USD

Item	Description	Quantity	Price	Price unit	Value
0010	8 mm diameter x 150 mm Copper / Water Heat pipe	15	\$100 USD	Each	\$1,500 USD
0020	8 mm diameter x 150 mm Copper / Water Heat pipe, with Al. Fins	15	\$780 USD	Each	\$11,700 USD
0030	NRE Heat Pipes Only	1	\$750 USD	Each	\$750 USD
0040	NRE for heat Pipes and Fins	1	\$1,250 USD	Each	\$1,250 USD

Delivery: HPs Only 3 Weeks ARO, HPs and Fins 6 Weeks ARO

Prepared by: Scott Garner
Vice President
Sales and Marketing
Ph: (717) 295-6088
Fax: (717) 295-6064
cc:

Authorized by:

H. 4 Enertron Inc. Heat Pipe Quote (Unofficial)

Hi Chris,

1. 20 fins with $35 \times 35 \mathrm{~mm}$ size is manufacturable and recommended.
2. Quote: Total $\$ 2,000$ including heat pipes, fins, assembly labor, NRE Tooling, for 15 heat pipe assemblies.

Leadtime: 5~6 weeks;
Paid in full upfront;
FOB Enertron Taiwan factory.

Let me know if you have any questions. Thanks

Serena Lin
Thermal Application Engineer
ENERTRON, Inc.
P 480-649-5400 Ext 210
F 480-649-5434
www.enertron-inc.com

H. 5 Noren Products Heat Pipe Quote (Unofficial)

Hi Calvin,

I have a couple of questions before we can move forward with a quote for you .
1)we use mesh wick not a sintered powder wick .Do you need a sintered powder wick ?
2)this may be expensive in manufacturing around $\$ 245$ dollars each .Small quantity .
3)We can do best effort to reach 123 watts that would bring the price down some .
4) we will need to expand the heat pipe to hold the fins .If we solder now we add a plating cost .

After you answer my questions I can give you a better quote .Let me know how you want to proceed?
Thank you for the opportunity.

Regards
Eric Gaillant
Production Sales Engineer

Appendix I - Contacts

I. 1 WPI

- Simon Evans - Mechanical Engineering Professor
- Email: sevans@wpi.edu
- Office: (508) 831-5462
- Bio: http://www.me.wpi.edu/People/Evans/
- Neil Whitehouse - Lab Machinist II, Higgins Shops
- Email: nrw@wpi.edu
- Office: (508) 831-5219
- Barbara Furhman - Administrative Assistant VI, Purchasing
- Email: bfurhman@wpi.edu
- Office: (508) 831-6046
I. 2 OsComp Systems
- Andrew Nelson - Mechanical Engineer
- Email: ANelson@oscomp-systems.com
- Mobile: (617) 544-7208
- Pedro Santos - CEO
- Email: psantos@oscomp-systems.com

I. 3 Heat Pipe Manufacturers

- Mike Beliveau - Sales Engineer, Aavid Thermalloy
- Email: beliveaum@aavid.com
- Office: (603) 223-1810
- https://www.aavidthermalloy.com/
- Serena Lin - Thermal Application Engineer
- Email: serena.lin@enertron-inc.com
- Office: (480) 649-5400 ext 210
- http://www.enertron-inc.com
- Ray Balardo - Sales Manager, Noren Products
- Email: rayb@norenproducts.com
- Office: (650) 322-9500 ext 213
- http://www.norenproducts.com/
- Scott Garner - Vice President, Advanced Cooling Technologies Inc.
- Email: Scott.Garner@1-act.com
- Office: (717) 295-6088
- Mobile: (717) 799-6084
- http://www.1-act.com
- Walter John Bilski - Senior Engineer, Thermacore Inc.
- Email: w.j.bilski@thermacore.com
- Office: (717) 519-3139
- http://www.thermacore.com/

