
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2016

Designing a Pseudo Tire Pressure Monitoring
System Transmitter using Software Defined Radios
Adriana M. Reyes
Worcester Polytechnic Institute

Felicia M. Gabriel
Worcester Polytechnic Institute

Stella Banou
Worcester Polytechnic Institute

Syed Shehroz Hussain
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Reyes, A. M., Gabriel, F. M., Banou, S., & Hussain, S. S. (2016). Designing a Pseudo Tire Pressure Monitoring System Transmitter using
Software Defined Radios. Retrieved from https://digitalcommons.wpi.edu/mqp-all/2864

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2864?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


 

 

 

Designing a Pseudo Tire Pressure 

Monitoring System Transmitter using 

Software Defined Radios 
Major Qualifying Project completed in partial fulfillment of the Bachelor of Science 

degree at Worcester Polytechnic Institute 

Advisor: 

           Professor Alexander Wyglinski 

 

Authors: 

Stella Banou                                     ______________________ 

Felicia Gabriel                                   ______________________ 

Adriana Reyes                                  ______________________ 

Syed Shehroz Hussain                     ______________________ 

 

MQP AW1-CPS1 

Submitted on: March 4, 2016 

 

 

 

This report represents the work of WPI undergraduate students submitted to the faculty as 

evidence of completion of a degree requirement. WPI routinely publishes these reports on its 

website without editorial or peer review. For more information about the projects program at 

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html. 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | ii 

Abstract     
The purpose of this project is to create a software defined radio based transmitter that 

can mimic the signals of the Tire Pressure Monitoring System (TPMS) sensors. The team used 

an amplifying receiver to read signals as well as decode data. The transmitter was built using a 

USRP N210 software defined radio running MATLAB code. The team conducted a series of 

tests to verify the functionality of the pseudo transmitter using both computer simulation and 

over-the-air and with a real vehicle. The results of the tests verified that the pseudo transmitter 

can communicate properly with the receiver of the previous project as well as a real TPMS 

receiver in a vehicle. The results of this project are useful in identifying breaches in the TPMS 

security and offering data for developing a more secure tire pressure monitoring system. 
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Executive Summary 

Today’s vehicles include more digital components than ever before in order to improve 

comfort and safety [1]. Examples include infotainment systems, electric windows, key fobs, and 

even on board Wi-Fi [1]. With such electronic systems as well as an increase in the focus on 

self-driving vehicles, the threat of hacking these vehicles has increased due to vulnerabilities 

provided by different access points into the vehicle’s electronic network [2]. The most vulnerable 

access points are the wireless components since they can be intercepted from a distance using 

the right equipment.  

The Tire Pressure Monitoring System (TPMS) is an example of how electronic systems 

are making vehicles safer. The TPMS consists of four sensors, one on each tire, that send 

wireless signals to a receiver connected to the vehicle’s computer system and provide tire 

pressure and temperature information. Therefore, the TPMS is one wireless access point to the 

vehicle’s network. Thus, this project aims to expose its vulnerabilities by replicating and 

decoding the TPMS signal and constructing a Pseudo TPMS Transmitter. 

Besides TPMS, the team looked into other potential wireless access points in vehicle’s 

electronic network like the radio data system, key fob technology, in-car Wi-Fi connectivity, and 

global positioning system. Upon analysis of these potential wireless access points, the team 

chose the TPMS technology for this project due to the available literature and prior art, ease of 

testing, sufficient universality, and lack of encryption. 

In this project, the team “listened” to the signals transmitted by a TPMS sensor, 

constructed a fake signal based on the structure of the real signal, and transmitted the 

mimicked signal using the proposed Pseudo TPMS Transmitter. Initially, the team used 

a Benchmark SDR (Software Defined Radio) TPMS Receiver constructed by a previous 

MQP team at WPI in order to eavesdrop on the communication of the TPMS. The team 

performed a few updates and modifications to the receiver to make it more efficient. The 
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Benchmark SDR TPMS Receiver used a N210 USRP connected to a computer with the 

receiver MATLAB code. The signal from this eavesdropping was received through the 

USRP and decoded in MATLAB to understand the structure of the TPMS signal. After 

eavesdropping the signal, a thorough analysis was performed to reach some 

conclusions on the structure of the TPMS signal. For example, the TPMS signal is 

encoded using Manchester Encoding and transmitted using either ASK or FSK 

modulation. The team focused on FSK modulation for this project. The knowledge from 

this analysis of the signal structure was used to create the proposed Pseudo TPMS 

Transmitter. The purpose of the transmitter is to construct and transmit a “fake” TPMS 

signal. Ideally that signal would be able to mimic the TPMS signal of an actual vehicle. 

The signal construction in the Pseudo TPMS Transmitter is shown in Figure A. 

 
Figure A Representation of the construction of the transmitted signal. 

 
The same N210 USRP was used to transmit the signal which was constructed, 

encoded and modulated using MATLAB on a computer attached to the USRP. Figure B 

shows the setup of the Pseudo TPMS Transmitter and the Benchmark SDR TPMS 

Receiver. 
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Figure B Schematic and in lab setup for communication of the Pseudo TPMS Transmitter with Benchmark SDR TPMS Receiver 
testing with USRPs. 

Some conclusions that could be drawn from the results of this project were that the 

Pseudo TPMS Transmitter built by the team was successful in communicating with the 

Benchmark SDR TPMS Receiver. The Pseudo TPMS Transmitter can send a signal mimicking 

a real TPMS sensor and that message can be received and decoded by a Benchmark SDR 

TPMS receiver as shown in Figure C.  



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | xvii 

 

 
Figure C Shows the signal transmitted and the signal values received, demodulated and decoded. 

 
The same module was tested successful in receiving and decoding an actual TPMS 

signal as seen in Figure D, proving that the signal sent by the Pseudo TPMS Transmitter is very 

similar to the “real” signal. 

 
Figure D Inputted values for pressure (32), temperature (75), and sensor ID ('8178E561') transmitted using the Pseudo TPMS 

Transmitter. 
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The same signal was tested on an actual vehicle after triggering the TPMS warning light, 

but it was concluded that the signal construction is manufacturer dependent. Due to this the 

Pseudo TPMS Transmitter was not able to deactivate the TPMS warning light on the test 

vehicle’s dashboard. Completing the test of successfully sending a Pseudo TPMS signal is a 

continuation of this project that the team proposes for the future.  

To conclude, an important finding of this project related to the TPMS overall is that the 

wireless communication between sensors and receiver can be intercepted and decoded by 

using a setup of a USRP with MATLAB code. This fact should be taken into consideration by 

vehicle manufacturers when designing protection for the electronic systems of a vehicle. If this 

project managed to decode and recreate a TPMS signal, someone with more advanced 

equipment and more time and knowledge could take this a step further and insert malicious 

information in the vehicle’s electronic system through the TPMS.  
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1 Introduction 
With the introduction of computers into vehicle technology, vehicles have become more 

automated and safer. Since their creation, vehicles have been crucial for transportation but 

nowadays their functionality goes well beyond that. The design of vehicles includes more digital 

components than ever before. Since vehicles were created, engineers have been finding ways 

of integrating digital technology into them. Figure 1 shows the growth of the automotive 

electronic components being integrated into vehicles from 1970 to present day [1]. As seen in 

Figure 1, the use of electronic components has grown significantly since the 1970s. 

 

Figure 1 Automotive electronic components integrated into vehicles from 1970 to present day [1]. 

One of the most important purposes of the added technology in vehicles is the increase 

of safety while driving. The Tire Pressure Monitoring System (TPMS) is a great example of how 

technology in vehicles has increased their safety. September 1, 2008 was the last deadline set 

by the Department of Transportation for car manufacturers to include TPMS in all vehicles 

released by that date [3]. Undetected low tire pressure was a common factor in 535 fatal 

accidents between 1995 and 1998 [4]. In 2001, during a study performed by the National 
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Highway Traffic Safety Administration (NHTSA) in gas stations across the nation, 36% of 

passenger cars were found with a tire pressure lower than 20% of the required value [4].  In 

studies performed by the NHTSA, there was a clear correlation between stopping distance 

when braking and tire pressure [5]. Vehicles with a tire pressure of 30 - 32 psi had the smallest 

stopping distance in all road materials and conditions tested by the NHTSA. These results 

showed that accidents can be avoided when vehicles have adequate tire pressure monitoring 

since their braking stopping distance is directly affected by it.  

TPMS uses wireless communication to send pressure and temperature readings from 

the tires to the vehicle’s computer network. Besides TPMS there are a series of systems that 

use wireless communication in vehicles. Some examples of wireless systems commonly found 

in vehicles today are Bluetooth, GPS, RDS, OnStar, power locking, and on-board Wi-Fi.  

TPMS and the systems mentioned above are great examples of the advancements of 

vehicle technology. In addition to wireless systems, a recent innovation in electronics includes 

self-driving cars, such as those from Google [6] and Tesla [7]. Although the introduction of high-

end technology enhances the driving experience, it exposes the vehicle to vulnerabilities. The 

potential access points to the vehicle’s computer created by such electronic components could 

allow a hacker to take control of a modern vehicle. The purpose of this project is to explore 

possible threats through the TPMS in an effort to gain a better understanding of the vulnerability 

of such vehicles. 

1.1 Current State of the Art 

With proper equipment the CANbus can potentially be accessed and manipulated by 

external sources. This became evident when there was a vehicle hack attempt on a Jeep 

Cherokee when researchers Miller and Halasek took control of multiple components in the 

vehicle wirelessly through its entertainment system, including control over the radio, air 

conditioner, wipers, accelerator, and more [8]. TPMS is another potential access point into the 

vehicle’s CANbus. The TPMS uses sensors to transmit a wireless signal to a receiver, which 
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can alert the user of low tire pressure [9]. There exists previous literature on accessing a 

CANbus through the TPMS sensors. For instance, a group of students from Rutgers University 

performed analyses of the TPMS and they managed to spoof signals in order to send mimicked 

data [9].  

In addition, Worcester Polytechnic Institute (WPI) students Alexander Arnold and 

Stephanie Piscitelli created a TPMS receiver that communicated with a real TPMS sensor as 

part of a previous Major Qualifying Project (MQP) [11]. The resulting receiver provides a tool to 

eavesdrop the wireless signals between the TPMS sensors on the tires and the receiver located 

in the vehicle from 18 feet away [11]. However, there was not yet an external transmitter 

capable of sending a TPMS signal to the vehicle that would replace the actual signals from the 

vehicle’s sensors. Arnold and Piscitelli’s receiver provides a foundation for this project to build 

upon. 

1.2 Project Contributions 

This project focused on creating a TPMS transmitter that could mimic a tire pressure 

reading and send it to a vehicle’s TPMS receiver. The team built a transmitter by using a 

Universal Software Radio Peripheral (USRP) and coded it using MATLAB software. The 

transmitter is intended to communicate directly with a vehicle’s TPMS receiver and override the 

real TPMS sensors’ transmission. The receiver created by Arnold and Piscitelli was used as a 

tool to understand the TPMS signal and reverse engineer a transmitter. Once this is achieved 

the team would be able to send faulty signals that can trigger the tire pressure warning light on 

the dashboard. The concept diagram in Figure 2 illustrates how the transmitter of this project as 

well as Arnold and Piscitelli’s receiver [11] communicate with a vehicle’s TPMS. 
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Figure 2 This image is a concept diagram describing the project. There is a transmitter trying to communicate with a real TPMS 
receiver located in a vehicle's glove box and also Arnold and Piscitellil's receiver picking up signals from real TPM sensors. The 

image shows the location of the TPM sensors in each wheel, CANbus, TPMS receiver, and ECU. 

The project’s ultimate goal is to be able to trigger the tire pressure warning light on the 

dashboard of a vehicle indicating a faulty tire. By accomplishing this, the team would be able to 

prove that the TPMS sensor wireless technology can be compromised by external forces. 

Although triggering the warning light does not pose a significant threat to the vehicle’s security, 

it does indicate that other parts of the vehicle’s internal network can potentially be accessed. 

The contributions of this project include:  

 Extended research on the communication between an external transmitter and the 

Tire Pressure Monitoring System of a vehicle. 

 A real-world TPMS transmitter. 

 A clear understanding of the structure of a TPMS signal.  

This project could lead to future research on how to improve TPMS sensor technology in 

order to prevent external attacks. 

1.3 Report Organization 

     This Section outlines the structure of this report. This report includes the whole process 

of completing the project such as the research conducted before starting to build the transmitter, 
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the implementation of the transmitter itself as well as a discussion of the results, thoughts on 

future work on the topic and conclusions. Chapter 2, immediately following the Introduction, 

goes over all the background information on different parts of the vehicle electronic systems that 

the team collected in order to obtain an understanding of the possible paths the project could 

follow. Chapter 3 discusses the team’s proposal for the project as well as an in depth analysis of 

the potential access points considered. After finalizing the proposed methodology the team went 

on to the implementation phase of this project. The details of this implementation and the 

subsequent technical challenges can be found in Chapter 4. The results of the team’s 

implementation are presented and extensively discussed in Chapter 5. Following the results, 

conclusions are drawn and future work is proposed on the topic of automotive cyber security in 

relation to TPMS in Chapter 6. References and appendices containing the transmitter and 

modified receiver code are attached at the end. 
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2 Information and CANbus Fundamentals 

The purpose of this Section is to provide background information in order to be able to 

understand the contents of this report. This Section covers topics such as CANbus operation, 

On Board Diagnostics System, potential wireless access points, and software defined radio.  

The complexity of the vehicle’s communication network inner makings has changed 

since the first computers were added. All the digital components of a modern vehicle 

communicate through the Controller Area Network (CANbus). At first computers were added to 

vehicles in order to make carburetors and fuel injection computerized and hence easier to 

manage [12]. Today, a CANbus communicates with about 70 computers that manage a plethora 

of digital components [13]. The CANbus was first introduced to vehicles in 1987 and before 

CANbus technology automakers had to interconnect every electronic component through wires 

as illustrated by Figure 3 [14]. The CANbus allows for all electronic components to be 

interconnected, without the need for much wiring as seen in Figure 4 [14]. 

 
Figure 3 This figure illustrates how automakers had to 

interconnect every electronic component through wires 
before CANbus technology [14]. 

 
Figure 4 This figure illustrates how the CANbus allows for 
all electronic components to be interconnected, without 

the need for much wiring when compared to Figure 3 [14]. 



 

The different computers found in vehicles are called Electronic Control Units (ECU). 

These ECUs manage different digital components including power windows, dashboard warning 

messages, and cruise control. These components are mostly meant to monitor and analyze the 

mechanical functions of the vehicle and prompt the user of any impending problems [15], 

although with the advancement of computers some digital components also have control over 

the accelerator, airbags, steering, and more [16]. 

As the CANbus technology evolves, more components use wireless technology to 

communicate with their designated ECUs. Although the introduction of wireless digital 

components allows for the reduction of wires and more efficient communication, wireless 

technology creates vulnerabilities. Introducing wireless digital components to vehicles has made 

hacking of vehicles popular. The hacking of a vehicle’s CANbus can be worrisome due to the 

control that a person can have of the vehicle’s digital components.  

One downside to wireless communication is that it creates a potential access point to a 

vehicle’s CANbus [17]. Accessing the CANbus could be dangerous if digital components in the 

vehicle are altered, thus compromising the safety of the operator. This issue has become more 

prominent with the introduction of wireless digital components in vehicles and action needs to 

be taken to understand the technology and find ways to protect vehicles from unauthorized 

access. 

The CANbus operation Section covers the information needed to understand how the 

CANbus functions and discusses the different frames used in it. The On Board Diagnostics 

System Section discusses how this protocol works and goes into why it is useful to many 

mechanics and automakers. The potential wireless access points Section provides information 

on the tire pressure monitoring system, radio data system, key fobs, in-car Wi-Fi connectivity 

and satellite. Finally, the software defined radio Section covers how such radios work and also 

why it would work for the purpose of this project. 
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2.1 CANbus Operation 

    CAN Bus (controller area network) is a vehicle bus standard for specialized internal 

communications network which interconnects different components inside a vehicle. It allows 

microcontrollers and devices to communicate with each other without a host computer. CAN bus 

is a message-based protocol designed originally to replace the complex wiring harness with just 

a two-wire bus [17].  

     The CAN Bus protocol was developed by BOSCH and officially released at the Society 

of Automotive Engineers (SAE) congress in Detroit, Michigan, in 1986. Philips and Intel were 

the first ones to develop the first CAN controller chips, which were made available to the market 

in 1987. In 2008, SAE required all vehicles sold in USA to use the CAN Bus protocol [14]. The 

CAN specifications by BOSCH are readily available for free while the ISO standard for CAN has 

to be bought from ISO. 

     ISO 11898-1 standard defines the CAN bus data link layer (DLL) protocol and ISO 

11898-2 standard defines the CAN bus physical layer protocol. ISO-11898-3 was released later 

and provides standard for the CAN physical layer for low-speed, fault-tolerant CAN [18]. The 

layered ISO 11898 standard architecture can be seen in Figure 5. 

 
Figure 5 This image shows the layered ISO 11898 Standard Architecture [17]. 

Following is a summary of the CAN bus protocol defined by ISO 11898-1 standard: 

 The physical layer uses differential transmission on a twisted pair wire. 
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 A non-destructive bitwise arbitration is used to control access to the bus. 

 The messages are small (at most eight data bytes) and are protected by a checksum. 

 There is no explicit address in the messages, instead, each message carries a numeric 

value which controls its priority on the bus, and may also serve as an identification of the 

contents of the message. 

 An elaborate error handling scheme that results in retransmitted messages when they 

are not properly received. 

 There are effective means for isolating faults and removing nodes from the bus [18]. 

     In a CAN bus, there are nodes which can be ECUs or microprocessors connected 

together through two wires. Messages are broadcasted on the bus which go to all nodes and all 

nodes pick up all transmission traffic. A message cannot be sent to just a specific node but the 

CAN hardware filters the incoming messages to only react to certain messages. There are four 

different types of messages according to the CAN standard: the Data Frame, the Remote 

Frame, the Error Frame and the Overload Frame. A scheme of bit-wise arbitration is used to 

control access to the bus and each message is prioritized [18]. 

The most common message type is the Data Frame. It has several parts to it including 

the arbitration field, data field, CRC field, and the acknowledgement slot. Figures 6 and 7 show 

the standard CAN data frame and the extended CAN data frame, respectively. The Arbitration 

Field determines the priority of the message when more than one node is broadcasting 

message to the bus. The Data Field contains up to 8 bytes of data. The CRC Field has a 15-bit 

checksum for error detection in the message. Finally, the Acknowledgement Slot is the 

acknowledgement bit sent at the end of a message when a message is received successfully. If 

the bit is missing, the message is retransmitted [19]. 
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Figure 6 This image shows the standard CAN Data Frame [19]. 

 
Figure 7 This image shows the extended CAN Data Frame [18]. 

     The difference between a Remote Frame and a Data Frame is that the Remote Frame is 

marked as a Remote Frame by making the Remote Transmission Request (RTR) bit in the 

Arbitration Field as recessive. There is also no Data Field in the Remote Frame. The Remote 

Frame’s purpose is to request for a certain Data Frame corresponding to the Remote Frame. 

This is like a Request-Response type of bus communication [19]. Figure 8 shows a CAN remote 

frame. 

 
Figure 8 This image shows a CAN Remote Frame [18]. 

     When a node detects a fault, the Error Frame is transmitted on the bus and will cause all 

other nodes to detect a fault thus, the other nodes will send Error Frames as well. A CAN error 

frame can be seen in Figure 9. In this case, the transmitter then tries to transmit the message 

again. It is important to note here that there is a mechanism in place which does not allow the 

node to ruin the bus traffic by constantly sending Error Frames. There is a 6-bit Error Flag inside 

an Error Frame with 8 recessive bits of Error Delimiter. When the first Error Flag is detected, the 

other nodes on the bus can send their Error Flags in the space provided by the Error Delimiter 
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[19]. The Overload Frame is not used very often. In format, it is very similar to the Error Frame 

and is transmitted by a node when that node is too busy [20]. 

 
Figure 9 This image shows a CAN Error Frame [19]. 

2.2 On Board Diagnostics System 

     The On Board Operating System, better known as OBD-II, is a system used for 

monitoring emissions and verifying faults occurring in the vehicle. Since January of 1996 it has 

been mandated that all vehicles have an On Board Diagnostics (OBD-II) system installed in 

order to meet the emission standards of the Environmental Protection Agency (EPA). OBD-II 

provides a more universal approach for all manufacturers and technicians to follow. It sets the 

standards that were approved by the Environmental Protection Agency and the Society of 

Automotive Engineers to allow for minimum pollution from vehicles. OBD-II provides almost 

complete engine control while monitoring many different parts of the vehicle including its 

diagnostic control network through sensors readings [21].  

     The Environmental Protection Agency required all light duty vehicles and trucks made 

for sale everywhere in the United States to have OBD-II equipped. They are currently working 

towards having all vehicles, including heavy duty, to have OBD-II systems equipped. OBD-II 

allows for monitoring of almost all components that affect the emission performance of a 

vehicle. It also makes diagnosing and fixing engine control problems easier for technicians. If 

there is a problem detected, a light will turn on alerting the driver to check the engine [22]. 

     The OBD-II system is a protocol used for reading vehicle parameters and fault codes 

that provide information on the state of the vehicle. OBD-II is a subset of Unified Diagnostic 

Services (UDS), which is used by manufacturers and technicians to provide services for 
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calibration, diagnostics, and flashing firmware. OBD-II uses the First Frame Structure of UDS to 

send short messages that fit in more than 6 bytes worth of data [23].  

OBD-II has 5 different protocols for communication including ISO 9141, SAE J1850 

Variable Pulse Width Modulation, SAE J1850 Pulse Width Modulation, and CAN Protocols. 

Most vehicles will have an OBD-II J1962 connector that you can access the monitored data 

through. This connector has 16 pins and the different protocols can be read through this 

connector through different pin configurations. The image and list in Figure 10 illustrate the pin 

numbering of the OBD-II connector and where the metallic contacts should be for each type of 

connection [24].  

 
Figure 10 This is an image of the OBD-II connector and it illustrates the locations and sequential order of the 16 pins used to read 

data [24]. 

Since 2008, most vehicles follow the CAN communication protocol with their OBD-II 

systems. An OBD-II CAN connector should have metallic contacts located at pins 4 - Chassis 

Ground, 5 - Signal Ground, 6 - CAN High, 14 - CAN Low, and 16 - Battery Power. These are the 

types of connectors the team wants to be reading monitored signals from, particularly those 

related to the Tire Pressure Monitoring System. OBD-II CAN signals are the same that would 

trigger an engine light to turn on if something was wrong within the vehicle. Through the data 

gathered through the connector it is easy to determine exactly where the problem is in the 

vehicle therefore saving time and money when diagnosing a vehicle. Dealership technicians use 

the same OBD-II port for diagnostic read-outs including service codes for ignition voltage, 

cylinder misfires, transmission shift points, and brake conditions [24].  
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OBD-II was mandated in order to maintain air quality around the world. The California Air 

Resources Board (CARB) were requiring the use of OBD equipment in vehicles since 1991. By 

1994 they had declared that all vehicles 1996 or older will be required to have OBD-II 

equipment with the Society of Automotive Engineers standards incorporated into it [25].  

     There are many devices that can connect to an OBD-II port and display the raw codes 

that indicate the type of problem the vehicle has. Some sort of reference guide for the codes 

would be needed in order to decipher it. Some devices store the data and it can be transferred 

to a computer afterwards. The OBD-II port is also being used for other applications such as 

economy fuel meters and performance computers to access the data being sent by the vehicle 

during use [26].  

2.3 Automotive Wireless Technologies 

As mentioned previously, several wireless access points of a vehicle are discussed in 

this Section, including the tire pressure monitoring system, radio data system, key fobs, in car 

Wi-Fi connectivity and satellite. The team viewed each one of these as a potential method of 

hacking into the vehicle and chose the TPMS from amongst them as the most ideal. 

2.3.1 Radio Data System 

One of the new technologies that create a wireless access point to vehicles is the TMC 

(Traffic Message Channel) channel of the RDS (Radio Data System). The RDS is the system 

where all the information displayed on the FM radio are transmitted. Such information includes 

track name, radio station name, artist name and more. One of the channels, the TMC, includes 

information on the traffic and accidents that are displayed in the navigation system. Since the 

information on the RDS are transmitted wirelessly using Radio Frequency [27], it is a possible 

path for hackers to attack a vehicle. The five steps describing how the RDS system works are 

shown in Figure 11. 
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Figure 11 This Figure is a diagram explaining the five steps of how an RDS system works [28]. 

Such a task was presented in the CanSecWest seminar in 2007 by two Italian hackers 

[28]. In the presentation, the two hackers from Italy, Barisani and Bianco, talk about how they 

managed to decode and transmit to the TMC of the RDS system. In the beginning they give 

some details about how the RDS works (1187.5 bps speed). It is the system that most 

prominently shows FM channel name, track songs, and other details. It is also used for alternate 

frequencies, news override and more. It uses frequencies around 57 kHz. TMC uses RDS but 

can also be transmitted over DAB (digital audio broadcasting) or satellite radio.     

Their first step was to sniff a “raw” signal using the FM1216 module by Philips. Then 

they decoded the RDS subcarrier using a TDA7330B RDS demodulator and a Peripheral 

Interface Controller. The system then provided them with the binary information of the RDS 

signal. They managed to decode it using software that they built and managed to find out what 

bit sequence corresponds to what traffic message. Then they created a transmitter that 

transmitted their own messages that they coded using the results of the decoded signal. 

The two hackers also published a blog post on phrack.com with more detail on their 

hack [26]. In the post, they go into detail about the structure of the RDS signal (4 blocks of 26 

bits each, sampling frequency of ~1118 Hz). They managed to identify in what type of block the 
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TMC information is stored. In order to translate bits to messages, the Satellite Navigation 

systems use lookup tables stored in each vehicle’s system [27].  

The article continues to go over the “sniffing circuit” whose components are: an FM radio 

with MPx output (PCI video card), an RDS signal demodulator, and an RDS protocol decoder. 

They use the circuit to read the sequence of bits on their computer and to figure out the series 

of bits. The bits contain information about the location, the type of message at the location, the 

direction and more. In the article they publish how each group of bits looks like for many 

different types of messages. 

Barisani and Bianco were not the only ones that encrypted the TMC. One more 

anonymous hacker claims they have performed the same task in a blog post on windytan.com 

[29]. The writer of the post explains how the TMC signals are decoded. The messages consist 

of numerical references to a database with preset sentences and locations. The database is 

freely available online. The encryption depends on one of 31 keys that changes randomly every 

night. The key’s ID number is transferred in the signal. Then there is an easy algorithm that 

decodes the bits to a 4-digit number. The way to find the key is by observing persistent 

messages over days and figuring out how the key changes.  

A similar system to RDS is the UConnect, which has also been hacked by Charlie Miller 

and Chris Valasek in July 2015 [8]. The “Jeep Cherokee hack” caused some controversy since 

the hackers managed to leverage the UConnect entertainment system, to send commands to 

mechanical functions of the Jeep, such as the breaks and the engine. They managed to turn off 

the vehicle, disengage the brakes and perform other more miniscule tasks such as changing the 

radio station and turning on the windshield wipers. They did all that while the writer of an article 

on wired.com was inside the vehicle, proving how accessible the Uconnect entertainment 

channel is. 
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Overall, TMC-RDS and UConnect have been proven to be wirelessly accessible by 

hackers that have managed to send messages through them that can cause significant 

alteration to a vehicle’s functionality.  

2.3.2 In-Car Wi-Fi Connectivity 

     Wi-Fi has become a necessity in most American households, workplaces, hotels, 

restaurants, stores, and more [30]. It was only a matter of time until vehicle manufacturers 

would seek after introducing Wi-Fi connectivity in vehicles. In-car Wi-Fi has two main functions: 

personal use of the passengers through their smartphones, laptops and tablets and most 

important, keeping the car infotainment system up to date. In cases such as Tesla’s model S, 

Wi-Fi is essential for the software updates that keep the electric car running. Manufacturers 

have introduced built in Wi-Fi capabilities in their newer models, including Audi and GM. Figure 

12 shows a visual of a sample screen displaying the Wi-Fi options in an Audi Q5. However, 

there are more ways to make a vehicle a portable Wi-Fi hotspot, as mentioned in Doug 

Newcomb’s article in the Edmunds website [31].  

 

Figure 12 Sample screen with Wi-Fi settings options in an Audi Q5 vehicle that is currently on the market [31]. 

     The three ways of introducing Wi-Fi in a vehicle are the following: manufacturing a built-

in Wi-Fi system, introducing a system that connects in other Wi-Fi networks and uses that 

connection to create a Wi-Fi hotspot, and connecting a modem that uses cellular networks to 
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create a Wi-Fi hotspot in the vehicle. The first manufacturer that created vehicles with Wi-Fi 

capabilities was Audi in 2011 [32]. Their most recent A3, A4, A5, A6 and A7 2016 sedans come 

with the ability to buy a data plan, similar to that of a smartphone or tablet, that allows for 

internet connectivity on-the-go using AT&T’s 4G LTE network. GM introduced their own Wi-Fi 

vehicles, followed by Chrysler, therefore opening a whole new market of automotive Wi-Fi 

connectivity [31]. The second type of Wi-Fi connectivity in vehicles was introduced by Ford and 

requires the vehicle to be parked somewhere within the range of a Wi-Fi router. The third type is 

a cellular network to Wi-Fi modem, which is being produced by several manufacturers, can be 

added in any vehicle’s USB or OBD-II port to provide Wi-Fi in the vehicle. 

2.3.3 Key Fob 

Key fobs are portable devices that allow the operator of vehicles to remotely unlock, lock 

or open the trunk by pressing buttons located on the fob. Figure 13 shows what a typical key fob 

looks like. Each key fob contains a controller chip which uses a rolling code. A rolling code 

means that for each time the receiver and transmitter communicate with each other, there is a 

different code that is used in order to authenticate that particular transmitter with the receiver in 

the vehicle. In this particular case, the key fob is the transmitter which contains a bit code stored 

in the controller chip’s memory. This is the same bit code stored in the receiver’s controller chip 

[33]. 
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Figure 13 Example image for what a key fob looks like [34]. Usually these have the standard buttons for unlocking and locking 
doors, opening the trunk, and panic button. 

When the user pushes one of the buttons on the fob, the bit code from the memory in 

the controller chip is sent to the receiver along with the code telling the receiver what to do 

(unlock, lock, open trunk, alarm). If the bit code that is sent to the receiver matches the bit code 

stored in the receiver’s controller chip then the vehicle will do whatever the user pressed on the 

key fob. Once the key fob sends the bit code, a new bit code is chosen by a pseudo random 

number generator which is then stored in the controller chip’s memory. The receiver also uses a 

pseudo random number generator to store a new bit code in the memory of the controller chip 

[33].  

If the communication between the key fob and receiver is successful, both will have the 

same new bit code. However, if the key fob is too far away from the receiver, the key fob will get 

a new bit code because it transmitted a signal even though the communication with the receiver 

was not successful. To avoid this problem, the receiver will accept any of the next 256 bit codes 

produced by the pseudo random number generator. The constant changing of codes provides a 

great deal of security for vehicles. This is due to the fact that hackers would not be able to 

record one bit code being sent to the receiver and retransmit it to access and unlock the vehicle 

[33].  
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Some key fob technology also utilizes passive entry which allows the operator to use the 

function of unlocking the vehicle wirelessly without physically pressing any of the buttons on the 

fob. Passive entry systems use a combination of low frequency and radio frequency signals for 

communication between the key fob and the receiver in the vehicle. The antennas that receive 

the low frequency signals are located in multiple places on the vehicle including the outside 

mirrors, door handles, or sometimes on the interior of the vehicle. If the key fob is within two 

meters of the antennas and the user touches the door handle, the doors will be unlock. This is 

because when the passive entry ECU receives the message that the user has touched the door 

handle, the ECU then sends a low frequency challenge signal to the key fob to authenticate it. 

The key fob then sends a radio frequency signal back to the ECU which if successfully 

recognized by the antennas, will unlock the doors. This entire communication between the key 

fob and ECU can be completed within 200 milliseconds [34]. 

           Although rolling codes make it difficult for others to hack into a vehicle through key fobs, 

it has been proven to be possible. One example of this was done by a digital security 

researcher, Samy Kamkur. In his experiment, he uses a device called RollJam that is capable of 

copying the coded signal from the key fob when a button is pressed. This device can be placed 

under the vehicle so that when the signal is sent from the key fob the device can jam the signal 

and copy the code. By jamming the signal, the vehicle will not respond to the command from the 

key fob. This will prompt the user to press the button again. This time the device will record the 

second signal and send the first one that it had recorded. As a result, the vehicle will respond to 

the key fob button and the device will still have a valid signal saved so that the hacker can 

retransmit it later and gain access into the vehicle [35].  

2.3.4 Global Positioning System - Satellite Navigation 

GPS (Global Positioning System) is a space-based radio positioning system that can 

offer information about its location in 3 dimensions in real time [36]. It is a wireless technology 

that has recently been included as part of many vehicles for navigation purposes. Since it uses 
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wireless technology, it has a wireless access point to the vehicle similar to the ones discussed 

in this Section. With car manufacturers including GPS technology as an integrated part of the 

vehicle, and many drivers using it on their phones, it has become a technology targeted by 

hackers that worked to improve its safety in information transmission. 

     A team from Chinese Internet Security firm Qihoo 360 led by Lin Huang managed to 

create a GPS emulator that could transmit their own data to GPS systems in phones and 

vehicle navigation systems [37]. As the team leader presented in a DefCon conference, the 

team used inexpensive equipment, such as a Software-Defined Radio, open source code and a 

HackRF board, a small and cheap board having the capability to interchange between various 

radio frequencies as well as read and transmit data to a wide range of radio frequencies. 

    Using the equipment, the team was successful in spoofing the GPS location, showing the 

wrong location or directing the vehicle to the wrong place. This obviously causes risk hazards 

for drivers that use GPS since their navigation can be controlled by external transmitters, such 

as the one designed by Huang’s team.  

A similar “attack” was performed by Todd Humphreys’ team at the University of Texas. 

They used slightly more costly equipment, including a $3,000 GPS spoofer, a laptop and some 

antennas [38]. The team managed to take control of a 210-foot luxurious yacht sailing in the 

Mediterranean by spoofing the on-board GPS with inaccurate information. It was the first time 

that hackers managed to take control of the GPS driven vehicle and not just interfere with the 

signal. There is great concern about terrorist attacks that could result from such GPS spoofs. In 

the same article where Humphreys’ spoofing technique is presented, it is discussed that the 

possibility of controlling vehicles, such as drones which use GPS, would be hazardous for 

national security.  

2.3.5 Tire Pressure Monitoring System 

One possible wireless access point into a vehicle is the Tire Pressure Monitoring 

System. The purpose of the Tire Pressure Monitoring Sensor is to warn the operator if one or 
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more tires are significantly deflated [39]. In the late 1990’s, there was a problem with vehicles 

that had Firestone tires. When these tires became underinflated, the friction created so much 

heat that they blew out. The blown out tires caused many vehicles to rollover, which resulted in 

many fatalities and injuries [21]. In response to this problem the Transportation Recall 

Enhancement Accountability and Documentation Act was passed as well as a requirement of 

having a tire pressure monitoring system on all vehicles after 2007 [40]. 

Tire pressure monitoring sensors are located in each of the four tires of a vehicle and 

are responsible for monitoring the air pressure in each tire [40]. The diagram in Figure 14 

illustrates the location of the tire pressure sensors, emergency light, CANbus, ECU, and the 

TPMS receiver. When a sensor detects low tire pressure it causes a light to turn on warning the 

driver of the low readings. The illuminating light is a result of the last steps in the process of an 

indirect or direct TPMS [39].  

      This process adheres to the following order of operations: 

1.     The sensor gathers temperature and pressure readings and communicates these to 

the TPMS receiver once per minute. 

2.     The TPMS receiver passes on the data to its designated ECU. 

3.     The ECU communicates the data to the CANbus. 

4.     The CANbus analyzes the data and triggers the tire pressure warning light on the 

vehicle’s dashboard if a low tire pressure reading was recorded. 
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Figure 14 This image is a commented concept diagram describing the TPMS system and the location of its components. It shows 
the location of the TPMS receiver, TPM sensors in each wheel, CANbus, tire pressure warning light, and ECU. 

Indirect TPMS uses speed sensors that are already a part of the Anti-Lock Braking 

System (ABS) system in a vehicle to analyze whether or not the vehicle’s tires have low 

pressure. As a tire loses air pressure, the diameter of that tire will decrease which will then alter 

the speed of that tire. These sensors then compare the speed of each tire to each other to 

determine if the warning light needs to be activated [39]. 

This approach is cheaper than direct TPMS and causes fewer problems. Another 

advantage of using indirect TPMS is that when the tires need to be either changed or rotated, 

there are no special service procedures that are required in order to get the sensors to function 

properly [41]. One disadvantage to this method is that tire size needs to be taken into 

consideration every time they are purchased, since consistency is preferred and readings may 

become inaccurate otherwise [39]. In addition, these sensors are less sensitive than direct 

TPMS meaning it would take longer for a decrease in tire pressure to trigger the warning light on 

the dashboard. 

Direct TPMS uses pressure monitoring to alert the driver of low tire pressure. In contrast 

to indirect TPMS, direct TPMS gathers real time data from each of the four tires regarding their 

precise pressure readings and reports the information as it is gathered [42]. Data is sent from 
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the sensors to a centralized control module, in other words the TPMS receiver, and once it’s 

analyzed if any tire has low pressure it transmits a signal to turn on the engine light [39]. This 

data is transmitted wirelessly. Figure 15 shows what a TPMS sensor looks like as well as its 

location on the tire. 

 

Figure 15 Commented representation of what a TPMS sensor looks like and its location on the tire [41]. 

Some advantages to using direct TPMS are that this approach is more accurate than 

indirect TPMS, the battery lasts longer, and it measures actual pressure readings of the tires 

therefore it’s not prone to inaccuracies [39]. Also it is widely preferred by consumers when given 

the choice between direct and indirect TPMS [42]. The larger preference for direct TPMS makes 

the chances of a vehicle containing direct TPMS higher, which is more beneficial for the team to 

explore since there are more vulnerable vehicles with direct TPMS. The main disadvantage to 

direct TPMS is that it can be very expensive [39].  

2.4 Software Defined Radio 

An important tool used in Arnold and Piscitelli’s TPMS receiver is the software defined 

radio (SDR). In a software defined radio some or all of the physical layer functions are software 

defined and its communication technology is based on software defined wireless communication 

protocols [43]. The SDR cuts down on maintenance costs by making hardware better through 

software updates instead of physical intervention [44]. A SDR has the following advantageous 

characteristics: 
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1. Multifunctional to handle multiple types of radio functions on the same platform. 

2. Globally mobile in the sense that it is not confined to standards. 

3. Compact and power efficient as it can support several communication standards. 

4. It can be easily manufactured because baseband functions are not implemented in 

the hardware layer. 

5. Firmware updates on the SDR platform enable upgrades to support new 

communication standards [45]. 

     Inside an SDR, several complex interdependent tasks are performed simultaneously for 

transmitting and receiving data. Figure 16 shows the components of a communication system 

where you can see that certain components are programmable for a SDR. 

 

Figure 16 Illustration describing some of the important components that constitute a modern digital communications system 
[45]. 

This radio makes the communication between the transmitters and receivers possible 

and also allows the team to use the 315MHz frequency used for transmitting TPMS signals. 

Since TPMS involves radio frequency, a real-time spectrum analyzer (RTSA) could be used as 
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a tool for radio frequency measurements [46]. The RTSA is used to measure and analyze the 

modulation rate and quality between the transmitter and receiver [46].  

For the purpose of this project, an Ettus Research USRP (Universal Software Radio 

Peripheral) N200 was used with a WBX daughterboard with a frequency range of 50-2200 MHz. 

This frequency range works for the team’s interaction with the TPMS working frequency of 

315MHz. The USRP is interfaced with MATLAB on a computer to program the USRP as per the 

requirements of the application. Figure 17 shows the basic setup of SDR interfaced with a 

computer with an ethernet port connected to both hardwares. 

    To use the USRP with MATLAB, follow these steps: 

1. Download Matlab 

2. Download the “Communications System Toolbox” which includes the support for USRP 

3. Connect the USRP to the computer through Ethernet cable 

4. Change the computer’s IP address to correspond to the USRP’s IP address. For 

example, if the USRP’s IP address is 192.168.10.2 then the computer’s IP address 

should be 192.168.10.X where X is any number but 2. 

5. In MATLAB, give the command “findsdru” to check if it detects the connected USRP.  

 
Figure 17 This image is a basic setup of SDR interfaced with a computer through the Ethernet port of both hardwares. 

     The successful USRP setup will allow for the manipulation of all the important variables 

of wireless communication. Such variables include gain, center frequency, decimation factor, 

interpolation factor, IP address, samples per frame, frame length, etc. A USRP is a flexible tool 
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that can be used for any project regarding wireless signals and can act as a transmitter, a 

receiver, or both simultaneously. 

2.4.1 Modulation 

Modulation refers to the translation of a binary signal to an analog wave in order for it to 

be transmitted through a channel. In wireless communications, the channel is always the air and 

therefore the last step of the transmission will always need to be in the form of an analog wave, 

even though the majority of the processing is nowadays digital. In order to use the USRPs for 

wireless communication, one has to have a good understanding of modulation and its different 

forms.  

 The most common modulation forms are Amplitude Shift Key (ASK) modulation, 

Frequency Shift Key (FSK) modulation and Phase Shift Key (PSK) modulation. What 

differentiates those three modulations is the physical quality of the waveform that changes 

according to the binary bit sequence. In ASK, different combination of bits translate to different 

amplitude levels in the wave. In FSK modulation, different frequencies are used to depict the 

combinations of bits. Finally, PSK uses phase shift in order to translate bits [48]. Figure 18 

graphically demonstrates how a sequence of bits is translated in a sine wave using amplitude, 

frequency or phase shift key modulation. 
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Figure 18 Graphical representation of ASK, FSK, and PSK modulation [49]. 

Using Figure 18 as an example, as a result of ASK modulation, a sine wave is created 

where “1” is translated to a specific amplitude and “0” to a wave with an amplitude of 0. FSK 

modulation uses two different frequencies to create a waveform that translates “1” with a higher 

frequency wave form than “0”. Finally, PSK uses a waveform where amplitude and frequency 

are constant and the phase changes when the binary input changes from “1” to “0” or vice 

versa.  

Transmitters can be designed using BPSK (Binary Phase Shift Key) modulation instead 

of other modulation techniques, such as ASK and FSK, which are typically used by radio 

frequency identification technologies. BPSK is a form of phase shift keying, which uses two 

phases that are separated by 180° as seen in Figure 19.   
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Figure 19 A BPSK modulated signal is displayed in this image for a serial binary data [50]. 

2.5 Chapter Summary 

     This chapter contains background information to facilitate the understanding of certain 

aspects of this project. Car hacking has increased significantly alongside the rapid development 

of vehicle technology and more specifically the introduction of wireless communications. While 

researching the wireless access points to determine the one that is the most appropriate for this 

project, the team encountered a number of attacks that have been mentioned in previous parts 

of this paper. The attacks are summarized in Table 1. 

Table 1 Summary of wireless attacks on different systems of vehicles. 

Wireless Access Point Attack 

TPMS Rouf et al. , Rutgers University 
[10] 

RDS Barisani and Bianco [28] 

Jeep Cherokee Entertainment System Miller and Valasek [8] 

GPS  Lin Huang [37] 

GPS Todd Humphreys [38] 

The internal electronics of a vehicle are interconnected through a communication 

network utilizing the standard called CANbus. The CANbus employs a message-based protocol 
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without a host with a two-wire bus. The CAN standard specifies four different types of 

messages: the Data Frame, the Remote Frame, the Error Frame and the Overload Frame. The 

OBD-II system is a protocol used for reading vehicle parameters and fault codes that provide 

information on the state of the vehicle. OBD-II is a protocol used to monitor emissions, read 

vehicle parameters and determine fault codes of a vehicle. Most vehicles’ OBD-II systems are 

compatible with the CAN communication protocol since 2008. This chapter also discussed 

wireless access points within a vehicle’s communication network. Some of the potential access 

points are the Tire Pressure Monitoring System (TPMS), the Radio Data System (RDS), In-car 

Wi-Fi Connectivity, Key Fob and Global Positioning System (GPS). A basic understanding of the 

Software Defined Radio (SDR) was presented in this chapter, in which software is used to 

define some or all of the physical layer functions. Finally, the chapter briefly outlines a basic 

understanding of the most common modulation forms: Amplitude Shift Key (ASK) modulation, 

Frequency Shift Key (FSK) modulation and Phase Shift Key (PSK) modulation. The team 

utilized the information presented in Chapter 2 to design the methodology and implement the 

project.  
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3 Proposed Design  
     This Section outlines the team’s proposal for the project. It covers topics such as the 

analysis of potential access points and the logistics of the project. The team’s ultimate goal is to 

identify a wireless access point that can allow communication with a vehicle’s CANbus. In order 

to identify the most suitable technology, the team analyzed advantages and disadvantages of all 

the wireless access points discussed in chapter 2 (TPMS, RDS, Key fobs, In-Car Wi-Fi and 

GPS). In the end of this chapter, the logistics Section covers the team’s proposed testing phase 

for the chosen wireless access point.  

3.1 Analysis of Potential Access Points 

     This Section discusses the pros and cons of each of the potential access points. These 

access points all communicate wirelessly with the vehicle CANbus, which is why they were 

chosen as the potential access points to be evaluated. The access points include TPMS, RDS, 

key fob, In-Car Wi-Fi connectivity, and GPS.  

3.1.1 Tire Pressure Monitoring System  

     The tire pressure monitoring system was considered as a potential access point 

because of the large amount of research available on the topic. Several studies have been 

made available since the tire pressure sensors were made mandatory for all vehicles stating 

that it is possible to send messages to the CANbus through these sensors. There are known 

ways of reading TPMS signals using software defined radios, antennas, and surface acoustic 

wave (SAW) filters. Researchers in Rutgers University and University of South Carolina have 

achieved spoofing already [9]. The team theorizes that sending a mimicked signal to the 

CANbus might be possible if the mimicked signal is stronger than the signal being sent by the 

tire pressure sensor in the tires. Through this method they would be communicating with the 

CANbus wirelessly. 

TPMS works with radio frequency at a frequency of 315MHz [41], which the team can 

use the available software-defined radio for. These sensors communicate directly with the ECU 
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which in turn communicates with the CANbus, making these sensors a viable way of achieving 

the project’s end goal of sending a signal to the CANbus. In the schematic below, one can see 

the layout of the TPMS communications between the sensors, the receiver and the display in 

the dashboard of the vehicle. 

 
Figure 20 TPMS architecture with receiver at the back of the vehicle [51]. 

In order to intercept the signal demonstrated in figure 20, the team can build upon Arnold 

and Piscitelli’s TPMS receiver to create a working transmitter. 

However, the team believes that the length of the TPMS signals might be too short to 

allow for complete access to a vehicle’s ECU, let alone CANbus. This technology is mandatory 

for all vehicles but not everything about it is universal. There are many different types of sensors 

to account for. The team would have to take into account the hundreds of variations in TPMS 

protocol in order to create a universal technique that would work for all vehicles. The technique 

chosen for the project might not work for other vehicles or sensors apart from the one that the 

team programs for. 

3.1.2 Radio Data System  

The radio data system (RDS) was considered a potential access point because longer 

signals could be injected into the CANbus than through TPMS or key fobs. As mentioned in the 

background Section, RDS works over FM broadcast. Since RDS uses FM broadcast the team 

could gain access into the system by using a frequency that is not currently being used by a 

radio station in that specific area. The software defined radio needed to achieve this is available 

for the team to use. Another approach to hack into the RDS would be to go through an 
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unencrypted traffic message channel (TMC) [27]. From prior work done by Barisani and Bianco 

the team knows that it is possible to change information in the navigation system of a vehicle 

[27]. For example, Barisani and Bianco managed to display their own custom made messages 

in the navigation system of a vehicle they performed tests on as seen in Figure 21. 

 
Figure 21 Barisani and Bianco's "fake" alert about air raid [28]. 

Their work shows that it would be possible to hack into the navigation system but it is 

unclear whether it is possible to gain access to other systems. 

While researching RDS there were some concerns with the idea of choosing it as the 

access point. Some of the problems with RDS are that there is less literature available for 

research, fewer experiments have been conducted compared to TPMS and key fobs, and only 

newer vehicles have RDS TMC. Since only newer vehicles have RDS TMC, they would be the 

only ones that could be sent wrong traffic information.  

3.1.3 Key Fob  

Key fob technology works with radio frequency. They work in several low frequency 

bands depending on the manufacturer, which the team can use the available software-defined 

radio for. The technology has an authentication protocol where the receiver sends a challenge 

signal, which is authenticated by the paired fob [33]. The key fob then sends back another 

signal to complete the authentication. The authentication process works with rolling codes, 

which means each interaction is different in terms of codes [33]. This technology is quite 

universal in terms of the frequency they use and the way they work in different vehicles. 
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           While researching prior work related to hacking through key fob, it was found that 

generally people have been able to unlock the vehicle doors for many vehicle manufacturers. 

There is a paper from Netherlands on Megamos Crypto, a main key-fob component used by 

major car manufacturers, which mentions how the researchers decrypted the codes for many 

popular manufacturers [52]. The Megamos Crypto transponder chip can be seen in Figure 22. 

 
Figure 22 The Megamos Crypto transponder chip picks up the key fob signal and decodes it [54]. 

The team would have to sniff the interaction between a vehicle and the key fob and then 

be present near the vehicle in order to send all possible combinations of the codes until 

eventually one works. A researcher from Australia successfully used this technique with 

software-defined radio and equipment costing less than a $1000 [53].  

Although the technique is pretty universal, such techniques have been used to only 

unlock the doors of a vehicle but not hack it. The team decided not to pursue this method. The 

rolling codes are an issue due to their difficulty of decrypting. This method takes time to 

complete and the hacker, along with the equipment, needs to be near the vehicle when the 

owner is locking or unlocking the vehicle. The past literature shows that the vehicles are only 

being unlocked to be stolen with this access point and not hacked. 

3.1.4 In-Car Wi-Fi Connectivity  

     In-Car Wi-Fi connectivity can be offered in three different ways, as explained in chapter 

2. The three ways are by having a built-in Wi-Fi system, by connecting to Wi-Fi hotspots in the 

surroundings and transforming those to their own hotspot, and by using the cellular network and 

creating a Wi-Fi hotspot for inside the car. As one can imagine, connecting a vehicle’s electronic 

system to the internet, whether that is through the cellular network or through another Wi-Fi 
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network, opens up ways for external manipulation of the vehicle. The Radio Data System 

(RDS), using 3G cellular network, has already been compromised by Barisani and Bianco [27], 

proving that any connection of a vehicle to a cellular network can make the vehicle vulnerable. 

In addition, the case of the Jeep Cherokee hacking through their infotainment system [8], also 

connected to the cellular network, confirms the danger with using cellular networks to connect to 

the internet in a vehicle.  

     There has not been research conducted in the vulnerability of cars with built-in Wi-Fi 

capabilities to show whether that system is prone to hacking or not. The reason is that there are 

few manufacturers selling cars with built-in Wi-Fi and those are very recent (after 2011). If this 

wireless access point was to be chosen to explore in this project, the team would have to test on 

a very new and possibly expensive vehicle. Additionally, the literature on the specific wireless 

access point is very limited. The method of connecting to Wi-Fi networks in the surroundings is 

also very immature and lacking literature reviews. For all the reasons stated above, the team 

decided not to pursue in-car Wi-Fi connectivity as a wireless access point for this project.  

3.1.5 Global Positioning System - Satellite Navigation  

  The global positioning system (GPS) was considered a potential access point because 

these systems communicate wirelessly with vehicles through satellite. There is some research 

available on the topic of hacking through GPS. A team from a Chinese Internet security firm 

created a GPS emulator that could transmit their own data to GPS systems in phones and 

vehicle navigation systems [37]. Also, a team of students from the University of Texas achieved 

a similar attack. The team of students was successful in spoofing the GPS location [38].  

Although the technique has some documentation behind it proving that it is possible it 

may not be the best option available for the team. One downside to this method is that most 

GPS users use this technology on their phones. Data has been released stating that the sale of 

Garmin navigation systems has decreased by 5% in 2014 alone and had been on a steady 

decrease since 2009 [55]. This means that the team’s attack would only work for vehicles that 
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have a GPS system integrated into them. Apart from this, the team would need to do more 

research in order to understand how hacking through GPS is achieved in order to have a better 

foundation to build a project upon. 

3.2 Access Point Selection for MQP 

After analyzing the different wireless access points available, the team decided that the 

most feasible one for this project is the tire pressure monitoring system. The team found that the 

other access points such as RDS, key fob, GPS, and In-Car Wi-Fi had deficiencies that would 

be more difficult to address. For instance in TPMS the communication is not encrypted unlike for 

key fobs, thus making it easier to create a transmitter. Although RDS technology seemed as a 

great possibility for this project there is not sufficient literature available for the topic unlike for 

TPMS technology. The lack of literature meant the team would have to invest more time trying 

to understand the technology as opposed to jumping into the project. GPS technology has 

shifted towards cellphones as opposed to in vehicle systems, therefore not compromising 

enough cars. Finally, In-Car Wi-Fi connectivity is very new and only available for a few cars on 

the market, therefore there is not enough literature on the topic and very few vehicles could be 

affected if this technology was compromised. Table 2 summarizes the advantages and 

deficiencies of the 5 evaluated access points. 
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Table 2 Considered access points advantages and deficiencies. 

Access 
Point 

Advantages Deficiencies 

TPMS 
 Previous literature 

 Non-encrypted signal 

 Short signal 

RDS 
 Previous work has accomplished hack  Only applicable in very 

new vehicles 

GPS 
 Documentation shows that it is possible  Most people use their 

phones for GPS 

Key Fob 
 Works for several low frequency bands 

 Universal 

 Encrypted signal 

 Rolling codes 

In-Car Wi-Fi 
 Sometimes uses the cellular network, 

which has been hacked (RDS) 
 Only applicable in very 

new vehicles 

 No previous literature 

 

The reasoning behind choosing TPMS was mostly influenced by the vast amounts of 

research available on the topic. Also, since Arnold and Piscitelli have already built a working 

TPMS receiver, the team feels there is a good foundation for the creation of a TPMS transmitter 

using MATLAB software. TPMS is present in a vast majority of vehicles today, thus making it a 

serious vulnerability if the TPMS technology were to be compromised. 

3.3 Project Logistics 

  The following chapter describes in detail the implementation of the project. This Section 

outlines the tests the team performed to assess the Pseudo TPMS Transmitter’s functionality 

and capacity of interfacing with a vehicle’s TPMS Rx. 

The team used the structure of Arnold and Piscitelli’s TPMS receiver (MQP Rx) [13] in 

order to reverse engineer a TPMS transmitter (Pseudo TPMS Transmitter). Upon successful 

completion of building the Pseudo TPMS Transmitter, the team could then begin testing. The 

first test that was executed was between the Pseudo TPMS Transmitter and the MQP Rx. This 

test was done to ensure that the signal being transmitted using the Pseudo TPMS Transmitter 
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could be properly decoded when received by the MQP Rx. The following test was between the 

Pseudo TPMS Transmitter and Rx with a USRP interface. In this test, the team would 

essentially replicate the first test but using two USRPs as the transmitter and receiver. Next, the 

team would run a test between the MQP Rx and a real TPMS sensor (TPMS Tx). Within this 

test, the team would alter the MQP Rx so that it could successfully decode a real transmitted 

signal from the TPMS Tx. Finally, the team used the Pseudo TPMS Transmitter and a real 

TPMS receiver (TPMS Rx) to attempt to successfully use the team’s transmitter to communicate 

with a TPMS Rx in a sample vehicle.  

Table 3 Project Logistics Timeline 

Date Milestone Deliverable by Date 

August 29, 2015 Team formation  

September 15, 
2015 

Decision on TPMS topic Project Proposal Mid-Term Presentation 

October 13, 
2015 

Preliminary Pseudo TPMS 
Transmitter Design, 
Simulation Test Successful 

Project Proposal Presentation and Draft 

October 28, 
2015 

Beginning of testing   

November 24, 
2015 

Test with USRP Interface 
Successful 

Testing Mid-Term Presentation 

December 11, 
2015 

Test with TPMS Tx in tire 
Successful 

 

December 15, 
2015 

Final Transmitter Design 
Final Receiver Design 

Final B Term Presentation 

December 17, 
2015 

 Tests Implementation and Results Draft 

January 14, 
2016 

Start Final Paper writing  

January 26, 
2016 

 Introduction, Background, Proposal Drafts 
for Final Paper  

February 3, Field Test I with Ford Fiesta  
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2016 

February 16, 
2016 

 Implementation, Results, Conclusion 
Drafts for Final Paper 

February 20, 
2016 

Field Test II with Ford Fiesta  

February 26, 
2016 

Field Test III with Ford Fiesta  

February 27, 
2016 

 Final Paper Draft Submission 

March 2, 2016 Field Test IV with Subaru  

March 4, 2016  Final Paper Submission 

 

3.4 Chapter Summary 

This chapter discusses the team’s reasoning behind picking the tire pressure monitoring 

system as the access point into a vehicle as well as the logistics of this project. Possible access 

points such as RDS, TPMS, key fob, GPS, and In-Car Wi-Fi connectivity were analyzed. The 

testing goals stated in this chapter were used to assess the functionality and capacity of the 

TPMS transmitter created. 
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4 Implementation of a Pseudo TPMS Transmitter 
This chapter discusses the construction and testing of the proposed Pseudo TPMS 

transmitter. The first Section focuses on the team’s analysis and understanding of Arnold and 

Piscitelli’s TPMS receiver implementation (Benchmark SDR TPMS Receiver) [11]. The team 

then uses the results of this analysis to reverse engineer the Pseudo TPMS Transmitter. The 

third Section covers the different tests performed during the second term of the project. These 

tests are essential in evaluating the functionality of the design of the pseudo TPMS transmitter. 

This Section includes the testing of the Pseudo TPMS Transmitter and Benchmark SDR TPMS 

Receiver, Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with USRP 

Interface, replicating results from the Benchmark SDR TPMS Receiver and the TPMS sensors, 

and testing the transmission from Pseudo TPMS Transmitter to an actual TPMS receiver.  

4.1 Benchmark SDR TPMS Receiver  

     In [11], Arnold and Piscitelli created a TPMS Receiver using MATLAB software and an 

SDR platform that can read TPMS signals being transmitted by TPMS sensors. Their 

Benchmark SDR TPMS Receiver possessed six main steps that it performed in order to decode 

the data being received. Figure 23 illustrates a block diagram for the Benchmark SDR TPMS 

Receiver, which consists of the six main blocks: concatenating, reformatting, creating waveform, 

demodulation with FSK or ASK, and decoding. 

 
Figure 23 This is an image of a block diagram for the Benchmark SDR TPMS Receiver. It has 5 main blocks, these being: 

concatenate, transverse signal, extract waveform, demodulate with either FSK or ASK, and decode. 

     The first block is labeled ‘Concatenate’, this means that the receiver takes the input and 

concatenates a multidimensional array into a single dimension. The concatenation takes place 

by calling the TPMS_concat() function, found in Appendix A, Section 7.8. The function takes as 
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input the signal in form of a multidimensional array, and after a series of commands transforms 

it to a single dimension array without losing any of the information. This step is essential 

because the rest of the processing requires a different format of the signal, which starts from 

converting it to a single dimension array. 

After the signal has been concatenated into one line, the next step is to transverse 

through the received signal. The purpose of this step is to identify the TPMS signal for further 

processing. This process is performed using power thresholds defined in the beginning of the 

code based on the bandpower of the received signal. The signal is broken down to sets of 10 

points at a time and bandpower of those is compared to the power threshold. If their bandpower 

is high enough, they are recognized as part of the TPMS signal; otherwise the receiver moves 

on to the next 10 points. The MATLAB code for this can be found in Section 7.2 of Appendix A. 

The next block, ‘Extract Waveform’, also serves to identify the signal of interest out of 

the received signal. At this point, the received signal is a modulated waveform. The purpose of 

this block is to extract the parts of the waveform that correspond to the TPMS signal from the 

noise that was also received at the same time. Once it extracts the signal, it creates a waveform 

like the one seen in Figure 27. This process can be found in Section 7.1 of Appendix A. 

Creating the waveform is essential in recognizing the modulation of the signal in the next block.  

     The creation of the waveform allows the receiver to move into the demodulation block. In 

this block the receiver can choose to demodulate using FSK or ASK techniques. To choose 

between FSK and ASK demodulation the program first takes the Fourier transform of the signal 

in order to determine the maximum values in the signal. Then it checks to see how many peaks 

there are in the signal and saves their index values. An FSK signal has two distinct peaks in its 

waveform, whereas an ASK signal has only one. The peaks of FSK and ASK waveforms can be 

seen in Figures 38. Once it checks for the peaks, it calculates whether or not the peaks are 

within range of each other. If two peaks are found within range of each other, the code will 
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choose FSK demodulation otherwise it will choose ASK. Finally, whether the program chooses 

FSK or ASK demodulation, it will down sample.  

The team focused on FSK demodulation due to the Benchmark SDR TPMS Receiver’s 

capability of only demodulating an FSK signal in MATLAB. For the Benchmark SDR TPMS 

Receiver, Arnold and Piscitelli looked at the time domain of the FSK signal from the TPMS 

sensor. As FSK encodes information in the signal using frequency changes, there were two 

frequency peaks in the frequency domain of the received signal. The two peaks were at  -

35.645 KHz and 38.089 KHz from the center frequency. The signal was manipulated to make 

decoding easier by shifting the received signal’s frequency to the right to bring the negative 

frequency to 0 Hz of DC frequency. This resulted in a frequency-domain signal shown in Figure 

24 and time-domain signal shown in Figure 25. This gives a signal where the 1 bits are 

represented by high frequency 73.73 KHz and 0 bits are represented by 0 Hz frequency [11]. 

All this work is done by the demodulation block of Figure 23. This block finds the 

frequency separation between the two peaks along with number of samples per symbol and 

sample rate, and demodulates it into bits using the predefined MATLAB function fskdemod(). 

Then, this block down samples based on repetitive bits and move on to the last phase of the 

Benchmark SDR TPMS Receiver which is decoding.  

In the decoding block, the receiver takes the Manchester encoded signal and converts it 

into data. Manchester encoding is when data is encoded into a two bit symbol for transmission. 

There is a negative to positive transition in the middle of a bit period, which indicates a binary 1, 

while a positive or negative transition indicates a binary 0 [56]. This block also determines the 

Cyclic Redundancy Check (CRC) pattern of the signal and outputs packets of data accordingly 

based on the number of the pattern. The CRC pattern is a technique for error detection during 

the data transmission and allows to group a number of characters together into a frame. The 

bits within the frame are combined to give a checksum, which has already been appended 
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during the transmission. If the checksum calculated in the receiver is different from the one 

transmitted, the receiver knows that there was an error in the transmission [56]. 



 

 
Figure 24 This figure shows the result of shifted FSK spectrum. The blue arrow indicates that the signal was shifted right. The red circle shows that negative signal was shifted to 

exactly 0.0 Hz. The green circle shows the left signal was shifted to 73.73 kHz. Marked in the purple circle are power and frequencies of the two peaks [10]. 



 

 
Figure 25 This figure is the time domain spectrum of the frequency shifted FSK signal. This type of waveform is much easier to visually decode by hand. The ones are shown as 

high frequency signals while the zeros are low frequency. The alternating red and blue rectangles indicate each separate bit. Lastly although the signal use Manchester encoding 
the green box shows that there are three ones followed by three zeros. It was later determined that this was part of the preamble and therefore it was not included in the 

Manchester encoding [10]. 



 

This receiver’s design and methodology influenced the design of the Pseudo TPMS 

Transmitter. Knowing that the Pseudo TPMS Transmitter had to to take the temperature, 

pressure and ID values as inputs, the first step would have to be to convert all the information 

into binary. Since the Benchmark SDR TPMS Receiver decodes the CRC and Manchester 

encoded data, the transmitter would require a CRC to be generated and added to the data as 

well as that data to be Manchester encoded. Following the Manchester encoding, a preamble 

needed to be added to the beginning of the waveform since the Benchmark SDR TPMS 

Receiver uses the preamble to locate the beginning of the data packet. Using the Benchmark 

SDR TPMS Receiver as a reference, the next step of the Pseudo TPMS Transmitter was to 

FSK modulate the data since in the receiver the data is demodulated. The transmitter only 

includes FSK modulation and not ASK because the receiver only successfully worked with FSK 

demodulation. Finally, it was decided to transmit the FSK modulated multiple times in a 

multidimensional array because when the signal is received by the Benchmark SDR TPMS 

Receiver, the first thing that occurs is that a multidimensional array is concatenated into a single 

array. Therefore, the Benchmark SDR TPMS Receiver serves as a solid foundation for the 

design and implementation of a transmitter that can communicate with it. The code for the 

Benchmark SDR TPMS Receiver can be found in Appendix A. 

4.2 Building a TPMS Transmitter 

     The Pseudo TPMS Transmitter was designed after understanding the flow and logic of 

the Benchmark SDR TPMS Receiver. The following block diagram shown in Figure 26 outlines 

the process of the proposed Pseudo TPMS Transmitter which ultimately constructs an FSK 

modulated signal that can be transmitted to the Benchmark SDR TPMS Receiver. 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | 46 

 
Figure 26 This is an image of the block diagram for the Pseudo TPMS Transmitter created in MATLAB software. It has 6 main 
blocks, these being: convert temperature, pressure, and ID into binary; generate CRC; concatenate; Manchester encode; add 

preamble; FSK modulate. 

     The transmitted signal contains a packet which includes two elements, the first being the 

preamble and the second being data. To begin, the data of the packet must be constructed, 

which will include information such as the temperature, pressure, TPMS sensor ID, cyclic 

redundancy check (CRC), and flags. The constructed signal is illustrated in Figure 27. 

 
Figure 27 Representation of the construction of the transmitted signal. 
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The transmitter function accepts 3 inputs from the user: the temperature, pressure and 

TPMS Sensor ID of the tire. Temperature and pressure are inputted as decimal values while the 

TPMS sensor ID is inputted as a hexadecimal value. Since the signal must be transmitted as a 

binary sequence, all of these inputs must then be converted into their corresponding binary 

values. Next, eight binary bits of both the CRC and flags are required to complete the formation 

of the packet data. The CRC (Cyclic Redundancy Check) code was created by using a 

predefined function in MATLAB that generates the code based on a specified polynomial. The 

purpose of adding the code is to check for errors introduced during transmission. For these 

testing purposes, the flags code was defined as the same 8 bit binary sequence that was used 

in Arnold and Piscitelli’s MQP report [10].  

After all elements of the data were created and converted into binary, they were 

concatenated to form an array consisting of one row, which was subsequently Manchester 

encoded. The next step was to create the preamble, which was done by using a Barker Code 

generator. However, the Barker Code consisted of the values -1 and 1, which is problematic 

since the whole packet needed to consist of the values 0 or 1. To avoid this problem, a function 

was created that would change the values of -1 to 0 in the Barker generated code. the function 

is called fix_preamble() and can be found in Appendix B, Section 8.6. The corrected Barker 

code, or the preamble, was then added to the beginning of the Manchester encoded data, 

finishing the assembly of the packet.  

This packet was FSK modulated, duplicated multiple times, and stacked on top of one 

another. As a result, there would now be a multidimensional array that would be transmitted, as 

seen in Figure 28.  

 



 

 

Figure 28 Representation of final construction of the pseudo TPMS signal. 



 

Having a multidimensional array as an output to the transmitter function was necessary 

because the Benchmark SDR TPMS Receiver is programmed to accept and decode incoming 

signals that have multiple rows as opposed to a single row array. The Pseudo TPMS 

Transmitter code can be found in Appendix B. 

4.3 Testing  

     This Section discusses the different test that the team performed in order to assess the 

functionality of the Pseudo TPMS Transmitter. Such tests include Pseudo TPMS Transmitter 

with Benchmark SDR TPMS Receiver with MATLAB Simulation, Benchmark SDR TPMS 

Receiver with TPMS Tx, Benchmark SDR TPMS Receiver with Pseudo TPMS Transmitter with 

USRP Interface, and Pseudo TPMS Transmitter with TPMS Rx. 

4.3.1 Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with MATLAB 

Simulation 

The first step the team wanted to take was making sure that the signal being transmitted 

through the Pseudo TPMS Transmitter is equivalent to that of a real TPMS sensor. The team 

looked at the way the Benchmark SDR TPMS Receiver decoded the received signals from a 

TPMS sensor and decided to reverse engineer how to create the mimicked signal, as described 

in Section 4.2. To test if this signal was built correctly, the team simulated transmission through 

only one computer, without the use of the USRP hardware. The schematic in Figure 29 

illustrates the simulation.  

 

Figure 29 Schematic of MATLAB simulation tests. The yellow blocks represent the transmitter’s actions, while the blue blocks 
represent the receiver’s actions. 
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The data is inserted in decimal values for temperature and pressure, and hexadecimal 

for the TPMS ID. The steps that follow on the transmitter part of Figure 29 correspond to the 

different blocks of the pseudo TPMS transmitter created. The final transmitted signal is then 

passed on to the receiver, with the blue blocks in Figure 29 representing the different steps of 

decoding and processing as described in Section 4.1. By running the code for the transmitter 

and saving the output in MATLAB, the team would then feed that output to the receiver and 

ensure that the decoded values from the Benchmark SDR TPMS Receiver match the inputted 

values from the Pseudo TPMS Transmitter. 

     To perform the first test, the team selected two arbitrary values for a pressure and 

temperature reading as well as a TPMS sensor ID. For the purpose of the example presented 

below, the temperature was equal to 75 degrees Fahrenheit, pressure equaled 32 psi, and the 

ID was hex value ‘ABCDEF12’. In MATLAB’s command window, the team called on the function 

that runs the Pseudo TPMS Transmitter, TPMS_transmitter(), and saved the two outputs under 

the names TPMS_signal and unmodulated_signal. The output TPMS_signal was necessary 

because that was the multidimensional array that would be transmitted and used as the input to 

the Benchmark SDR TPMS Receiver. It is the signal illustrated in Figure 28 in Section 4.2. The 

output unnmodulated_signal was used to ensure that the data including the preamble was 

constructed correctly before being FSK modulated. The next step was to extract the signal 

transmitted and place it in the middle of an array with 50,000 zeros. The reason why the signal 

needs to be extracted is because the Benchmark SDR TPMS Receiver needs to receive 

information formatted into multiple rows. The team had only created one packet formatted into a 

single row and stacked the same packet repeatedly into the input provided to the Benchmark 

SDR TPMS Receiver. Since there is a delay from when the signal is transmitted and received, 

the padding of zeros ensures that the receiver does not miss the beginning of the signal. The 

previously described steps can be seen in Figure 30. 
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Figure 30 This image shows the first three steps for running the team's TPMS transmitter. These being calling on 
TPMS_transmitter(), placing signal in the middle of an array with 50,000 zeros, and extracting the signal. 

The following step is to receive the transmitted signal into the Benchmark SDR TPMS 

Receiver using the TPMS_receiver() function. This command runs the receiver code created by 

Arnold and Piscitelli and generates a plot of the magnitude of the received signal’s Fourier 

transform. This plot can be seen in Figure 31. Since this plot shows two peaks, the receiver will 

use FSK demodulation. As mentioned in Section 4.1, the received FSK modulated signal has 

peaks at two frequencies, around center frequency, which represent 0 and 1. The whole signal 

is then shifted to have the lowest peak at 0 and then the highest peak moves further. For this 

reason, the plot in Figure 31 has one peak close to 0 and one at 6000, since the initial peaks 

were at -3000 and 3000 Hz. 
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Figure 31 The top image is of a plot generated when running the Benchmark SDR TPMS Receiver with the Pseudo TPMS 

Transmitter and shows the magnitude of the received signal's Fourier transform as well as a zoomed in look of the further left 
peak. The bottom image is of the same signal but plotted using log scale for the magnitude showing the peaks of the same two 

frequencies in the linear graph. 
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The next step was inverting the output of the receiver, since the first bit to reach the 

receiver is the last bit of the transmitted signal. The MATLAB command to do this step is shown 

in Figure 32. The final step of this test is to prove that the transmitted signal is equivalent to the 

received signal. By calling the function TPMS_decode_by_ID_second() the team can validate 

the results in MATLAB’s workspace window. Figure 32 shows the command used to validate the 

results. 

 

Figure 32 This image shows the command typed into MATLAB's command window in order to verify that the signal transmitted 
was equivalent to the signal received. The team is checking that the values for the preamble, ID, pressure, temperature, flags, 

CRC, and packet are the same 

The TPMS_decode_by_ID_second() function was created by Arnold and Piscitelli and 

can be found in Appendix A, Section 7.3. The function call takes as input the expected ID and 

the received signal, ready to be decoded. This function is for TPMS signals that have the ID 

after the temperature and pressure values. Then, within TPMS_decode_by_ID_second(), the 

function find_ID() is called, which correlates a binary version of the ID inputted to the function 

with the signal to locate the starting point of the ID. Then, the function separates the bits as 

follows: 

 Bits 1 to 8 : Pressure 

 Bits 9 to 16: Temperature 

 Bits 17 to 48: ID 

 Bits 49 to 56: Flags 

 Bits from 57 to the end: CRC packet 

The function finally converts the bits for each of those parameters to decimal or string 

and outputs it to the workspace. 
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4.3.2 Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with USRP 

Interface  

Based on Arnold and Piscitelli’s work [10], as well as the previous literature on wirelessly 

accessing vehicles, the team decided to use a software defined radio as the hardware part of 

the Pseudo TPMS Transmitter. As mentioned in Chapters 2 and 3, SDRs are a very useful tool 

since they can be programmed to have the exact characteristics of a transmitter and receiver 

needed. The team’s acquired knowledge of MATLAB coding also made them the best candidate 

for this project. Throughout the project, the USRP N210 SDR was used since it was already 

available to the team in the university’s laboratories. In order to use the USRP, its library was 

loaded on MATLAB and was connected successfully to the hardware through a Gigabit ethernet 

cable, as shown in Figure 33. Using the findsdru() command in MATLAB, the software and 

hardware interface was confirmed to work properly: 

 
Figure 33 findsdru() function in MATLAB finds the radio connected to the computer and gives information relating to the 

platform, IP address, serial number, and status of the connection. 

The overall setup of the test was two laptops connected to two USRPs; one acting as 

the Pseudo TPMS Transmitter and one as the Benchmark SDR TPMS Receiver, as shown in 

Figure 34.   
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Figure 34 Schematic and in lab setup for communication of the Pseudo TPMS Transmitter with Benchmark SDR TPMS Receiver 
testing with USRPs. 

Having set up the hardware correctly, one of the team’s goals was to replicate the 

Pseudo TPMS Transmitter to Benchmark SDR TPMS Receiver transmission, this time through 

the USRP Interface. Essentially, the same signal with a specific temperature, pressure and ID 

would be transmitted and received by the receiver but instead of using commands to code the 

transmission on one computer, the transmission would be wireless between two URSPs; one 

acting as the Pseudo TPMS Transmitter and one as the Benchmark SDR TPMS Receiver. 

Successful communication between the two would mean that the software and hardware of the 

Pseudo TPMS Transmitter are interacting effectively and the team can continue by testing it 

with the actual TPMS. 

In order to test the Pseudo TPMS Transmitter and the Benchmark SDR TPMS Receiver 

with the USRP interface, the team had to create a real-time receiver function that could call on 

the USRP radio and receive data. This real-time receiver function defined the radio’s arguments 

USRP N210 
Radios 

MATLAB software 
running receiver code 

MATLAB software 
running transmitter code 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | 56 

such as platform, IP address, center frequency, burst mode, output data type, decimation factor, 

sample rate, gain, frames, and frame length. Definitions for these arguments can be seen in 

Table 4. Another radio was defined similarly in the transmitter code and called on to transmit the 

created TPMS signal. The arguments of the transmitting radio had to be compatible with those 

of the receiving radio.  

Over the span of the testing phase, various modifications had to be made to the real-

time receiver being used to collect data. Also, the team collaborated with Alex Arnold and 

implemented some changes to his Benchmark SDR TPMS Receiver in order for it to 

accommodate both the Pseudo TPMS Transmitter and the real TPMS sensor signals. The team 

identified that one of the main challenges was the synchronization of the two radios. The 

previous version of the Benchmark SDR TPMS Receiver ran for a specified amount of time, 

which was tailored to the length of data being received. The main limitation of that receiver was 

that its duration was not sufficient to successfully synchronize with the Pseudo TPMS 

Transmitter. After increasing the Benchmark SDR TPMS Receiver receiving period to a large 

number, the team concluded that the best chance of successful communication would be when 

the Benchmark SDR TPMS Receiver is receiving continuously. For this reason the team 

decided to alter the receiver so that it continuously searches for a signal in the desired 

frequency of 315MHz and over the designated power threshold value. The modified real-time 

receiver code was embedded in Benchmark SDR TPMS Receiver code, found in Appendix A. 

Once the code was ready, the team tried to transmit the mimicked signal from the Pseudo 

TPMS Transmitter to the Benchmark SDR TPMS Receiver via the USRP radios.  
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Table 4 Definitions of radio arguments [56]: Platform, IP Address, Center Frequency, Burst Mode, Output 
Data Type, Decimation Factor, Sample Rate, Gain, Frames, and Frame Length . 

Argument Definition 

Platform Usually refers to the basic hardware and software elements (e.g. computer, 
operating system, relational database) on which an application program is built. 

IP Address The address used to differentiate users on the Internet. The Internet is 
designed to use an addressing system based on 32 bits.  

Center 
Frequency 

The frequency used for broadcasting. This normally refers to a radio or 
television broadcast and the frequencies are tightly regulated to prevent 
interference between transmitting stations. 

Burst Mode The transmission of data in large continuous bursts, the transmitting terminal 
occupying the whole channel during the period of the transmission. 

Output Data 
Type 

Refers to the type of the output data (e.g. double, precision-floating point, 
single-precision floating point, 16-bit signed integer). 

Decimation 
Factor 

An integer or a rational fraction greater than one, which is multiplied by the 
sampling time. This information is used to down convert the Intermediate 
Frequency (IF) signal to complex baseband. 

Sample Rate The number of samples taken in a unit of time. 

Gain A measure of signal amplification. It is usually given by the ratio of the output 
amplitude of a signal to its input amplitude. 

Frames A group of bits and bytes which are collected together in a recognized format 
for transmission. 

Frame Length The number of bits that are found within a frame. 

 

The team performed several trials in order to identify the adequate values for the radio 

gain and power threshold. There are two types of power thresholds in this configuration that are 

important for the functionality of the receiver. The real-time receiver threshold is the average 

band power of the first few samples received by real-time receiver multiplied by a constant, k, as 

seen in Figure 35. The purpose of this multiplication is to set a power threshold so that the 

receiver will be able to differentiate the received signal from noise. Similarly, the decoder 

threshold is the value that the receiver will use to select the desired portion of the signal to be 

decoded. 
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Figure 35 Visual for how the threshold is calculated for both the decoder and the real time receiver. 

The first few trials were essential in identifying the errors and malfunctions of the 

transmitter and receiver code and making the required changes to achieve successful 

transmission between the Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with 

USRP interface. The main issue initially was setting the power threshold for identifying the 

presence of the signal. In the first few trials, the result was a “no signal was detected” error, 

which led the team to believe that the power threshold was too high to identify the Pseudo 

TPMS Transmitter signal. Figure 36 shows the resulting error message when no signal is found. 

After decreasing the value of bandpower, the signal received had too much noise to be decoded 

correctly. By trial and error, the team managed to successfully identify the bandpower value that 

would not be too high to get the “no signal detected” error or too low to get a received signal 

with too much noise. Figure 37 shows a received noisy signal. 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | 59 

 
Figure 36 Resulting error message when no signal is found during testing of the Pseudo TPMS Transmitter and Benchmark SDR 

TPMS Receiver with USRP Interface. 

 
Figure 37 Signal received during testing with noise present. 

     In a similar fashion, the gain factor of the receiving radio was initially set to 32, then 8 

and finally to 16 where the successful communication was achieved. The gain of the transmitter 

and receiver are equal in this test, however that is not necessary. The reason those values were 

chosen is because 16 is the minimum gain factor for which the Benchmark SDR TPMS 

Receiver was able to detect the signal sent by the Pseudo TPMS Transmitter. 
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After testing with modified values for power thresholds, gain factors and synchronization 

techniques, the team noted the ones that led to a successful communication between the 

Pseudo TPMS Transmitter and Rx. The alterations that were made fixed the synchronization 

issue. The term “real-time receiver” refers to the receiver created by the team to pick up the 

signal and the term “decoding receiver” refers to the modified Benchmark SDR TPMS Receiver 

used to further process the received signal. The modifications that worked successfully for the 

Pseudo TPMS Transmitter can be seen in Table 5.  

Table 5 Successful parameter modifications for Pseudo TPMS Transmitter and Benchmark SDR TPMS 
Receiver. 

Variable Modification 

Pseudo TPMS Transmitter Gain 16 

Benchmark SDR TPMS Receiver Gain 16 

Real-Time Receiver Threshold 50 * band power 

Decoder threshold 100 * band power (or 20 * band power) 

Synchronization Rx continuously looking for signal. 
Tx transmits for 5 seconds. 

 

The first step in decoding the signal correctly is for the decoding receiver to identify the 

correct modulation scheme (FSK or ASK). As seen in Figure 31, the decoder shows a graph of 

the modulation identified in the signal. The signal transmitted is FSK modulated in the Pseudo 

TPMS Transmitter, therefore all signals decoded should show FSK modulation. However, in 

some cases when one of the values shown in Table 5 was not correct the receiver would 

identify the signal as being ASK modulation and would not be able to continue decoding. Figure 

38 shows a plot of what an ASK modulated signal would look like after the receiver incorrectly 

identifies the modulation scheme in comparison to an FSK modulated signal. 
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Figure 38 This image shows the difference between an ASK (blue) and FSK (red) signals. A resulting ASK modulation scheme is 

when the receiver does not properly identify the scheme due to one of the values shown in Table 5 being incorrect. 

As long as the modulation scheme is identified correctly, the receiver should be able to 

move onto correlation. Within the function to find the TPMS sensor ID, find_ID(), the MATLAB 

function for correlation, xcorr(), is used. This function takes as input the signal and the ID in 

binary format, and locates the index where the two signals are identical. The output of the 

function is an array of indices and their respective arbitrary linear correlation values. The highest 

the correlation value, the closest the two signals are at being identical at that index. A figure 

visualizing correlation is outputted by the receiver. In that figure, a high correlation value is 

obtained at the index of the first bit of the correlated sequence. If the receiver is not able to 

correlate, a plot like the one shown in Figure 39 is outputted by the receiver. 
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Figure 39 Unsuccessful correlation of transmitted signal's bits with the TPMS ID. 

    If the signal is received and decoded correctly, the correlation should be successful with 

a distinct peak that shows the beginning of the TPMS ID, as shown in Figure 40.  

 
Figure 40 Successful correlation of transmitted signal's bits with the TPMS ID. The peak indicates the first position (index) where 

the correlated signal begins. 

After correlating the signal, the receiver locates the maximum correlation value and its 

index to locate the beginning of the ID. The index for the beginning of the ID can be used to 

extract other parameters from the signal. Obtaining a graph of proper correlation in this test is 

an indication of the correct implementation of the communication between the Pseudo TPMS 

Transmitter and Benchmark SDR TPMS Receiver with USRP interface.  
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4.3.3 Replicate Benchmark SDR TPMS Receiver with TPMS Tx 

Having a functional Benchmark SDR TPMS Receiver, the team proceeded to test the 

receiver with a TPMS sensor. This test was run almost simultaneously with the Pseudo TPMS 

Transmitter - Benchmark SDR TPMS Receiver test to ensure that the receiver was functional for 

both the mimicked signal and the real TPMS sensor signal. The team replicated the results from 

Arnold and Piscitelli’s project [11] using the Benchmark SDR TPMS Receiver to receive the 

signal transmitted by the TPMS sensor. Using the Benchmark SDR TPMS Receiver, the team 

verified that the implementation of the communication of Benchmark SDR TPMS Receiver with 

the Pseudo TPMS Transmitter was successful. The test was conducted in a laboratory to 

ensure maximum control. A photograph of the setup for this test can be found in Figure 41. 

 
Figure 41 Schematic and in lab setup for communication of the TPMS Tx with Benchmark SDR TPMS Receiver testing with a 

USRP. 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | 64 

The TPMS sensors used were two DORMAN TPMS modules, part numbers 974-063 

and 974-026, one with ASK modulation and the other with FSK modulation for control purposes. 

A photograph of the FSK modulation sensor (part number 974-063) is shown in Figure 42.  

 
Figure 42 DORMAN TPMS module, ID number 8178E561. 

This is the sensor that was installed in the tire from Figure 41a. The TPMS sensors were 

placed on top of the USRPs and then activated using the ATEQ VT15 activator. This activator 

has two buttons, one to begin activating the sensors and one to cancel the activation. By 

pointing the activator at the sensor and pushing the activation button, the sensor will then begin 

transmitting TPMS signals. The signal transmitted by the TPMS sensors were read by the 

USRP and analyzed using the Benchmark SDR TPMS Receiver MATLAB program. 

The next step was to test the transmission of a TPMS sensor from inside an actual tire. 

To run this test, the team installed the FSK TPMS sensor into a tire to read live pressure and 

temperature values. The real-time receiver needed to be run in MATLAB such that the team 

could activate the TPMS sensor using the activator. The real-time receiver would continue to 

collect data until it detected a signal. It then called on the Benchmark SDR TPMS Receiver to 

decode the detected signal. If the decoded values were representative of the surrounding 

temperature and actual pressure value (in kPa), then the team would have replicated the results 
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of the previous MQP correctly and would have an Benchmark SDR TPMS Receiver that works 

for both the Pseudo TPMS Transmitter signal and real TPMS sensor signal.  

Within the first few trials it became clear that the threshold and gain values used to 

receive the Pseudo TPMS Transmitter signal were not appropriate for receiving the TPMS 

sensor signal. In an attempt to explain that, the team assumed that one explanation could be 

the lower amplitude of the TPMS signal, that did not allow it to get picked. In order to prove that 

the low amplitude was the issue, the team increased the values for gain and lowered the power 

threshold, until the signal was successfully transmitted and received. For this reason, the values 

for gain and power thresholds were altered to those mentioned in Table 6.  

Table 6 Successful parameter modifications for the Benchmark SDR TPMS Receiver when testing with the 
TPMS sensor. 

Variable Modification 

Benchmark SDR TPMS Receiver Gain 8 

Real-Time Receiver Threshold 50 * band power 

Decoder Threshold 20 * band power 

Synchronization Rx continuously looking for signal 

 

As one can notice from Table 6, the Benchmark SDR TPMS Receiver can only decode 

the TPMS sensor signal when its decoder threshold is 20*band power, which is significantly 

lower than the one used for the Pseudo TPMS Transmitter with Benchmark SDR TPMS 

Receiver communication. The reason is because the TPMS sensor signal has a lower amplitude 

and therefore, when there is a threshold of above 20 multiplied by the average band power, the 

decoder does not identify the signal to be decoded. Figure 43 shows the difference in amplitude 

between a real TPMS sensor signal and the Pseudo TPMS signal. 
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Figure 43 This image shows the difference in amplitudes between a signal from a real TPMS sensor (red) and the Pseudo TPMS 

Transmitter signal (blue). 

     Similar to the challenges faced in implementing the Pseudo TPMS Transmitter - 

Benchmark SDR TPMS Receiver communication in Section 4.3.2, the team also experienced 

issues in this testing phase that led to “no signal found” error, wrong modulation used in 

decoding, or errors in correlation. Those were attributed again to synchronization issues, which 

were present if the sensor activator button was not pressed at the correct time. In order to 

overcome the synchronization issues again, the team used the same Benchmark SDR TPMS 

Receiver as in the previous test, which received continuously so that the timing of pressing the 

activator button would not matter. 

4.3.4 Transmit using Pseudo TPMS Transmitter to TPMS Rx 

The project’s goal is to communicate with a vehicle’s CANbus through the Pseudo 

TPMS Transmitter. To corroborate this, the team purchased a TPMS Rx to see if 

communication with it was possible with the Pseudo TPMS Transmitter. Following that, it was 

necessary to investigate the layout of the receiver, gain more insight on how it works and how 

the information from the transmitter is received and propagated to the rest of the CANbus [57]. It 

was discovered that the TPMS Rx relies on multiple specific messages that prompt it to 

communicate with the TPMS sensors. The team does not have access to such messages in 

order to determine whether or not the Pseudo TPMS Transmitter communicated effectively with 
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the TPMS Rx. Therefore, the team reached the decision to perform the test between the 

Pseudo TPMS Transmitter and TPMS Rx on a vehicle. 

For this test, the Pseudo TPMS Transmitter was taken outdoors to be tested on a real 

vehicle. The vehicle used for this test was a 2012 Ford Fiesta. In order to implement this test, 

the TPMS sensor IDs of the vehicle needed to be known. The car was taken to a mechanic to 

read the tire IDs. Figure 44 shows the values read through the OBD-II port of the tires in the 

Ford Fiesta. Table 7 shows the tire IDs converted from decimal to hexadecimal of each tire in 

the Ford Fiesta. 

 

Figure 44 Tire IDs read through OBD-II port of the Ford Fiesta used for testing. 

Table 7 TPMS IDs for each of the tires on the Ford Fiesta converted into Hexadecimal. 

Tire Position TPMS ID (in HEX) 

Front left (LF) 34E128F3 

Front right (RF) 34E1AD4D 

Rear left (LR) 34E1A956 

Rear right (RR) 34E1AD6B 

 

When it was time to physically test on the Ford Fiesta, the first step was to shield the 

front-left tire using a metal sheet to disable the communication of the TPMS with the vehicle’s 

receiver to trigger the TPMS light to turn on. The metallic shielding used for this purpose is 
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Cobaltex Near Field Magnetic and Electric Shielding Fabric which is a nickel, copper and cobalt 

plated polyester. The team acquired 5ft x 3.5ft of the metallic shielding fabric from Amazon. This 

metallic fabric provides RF shielding in the range of 30 MHz to 1 GHz which encompasses our 

TPMS communication at 315 MHz. To confirm that the metallic shielding provided by this fabric 

worked properly, the team wrapped a cellphone with this fabric and called that cellphone. The 

wrapped cellphone did not receive any calls.  

After covering the vehicle’s tire with this metallic shielding fabric, the vehicle was kept 

with the ignition on for 25 minutes but the TPMS light never turned on. The setup and schematic 

for the test is demonstrated in Figure 45. 

 

 

Figure 45 Schematic and setup for Pseudo TPMS Transmitter and TPMS Rx test using a metallic fabric to shield the tire. 

Team Member 
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It was speculated that maybe the vehicle needs to be driven to activate the TPMS light 

to turn on. For this purpose, the front of the car was raised using two car jacks, put on the e-

brake and made sure that the front-right tire is fully covered with metal sheet. One of the 

teammates slowly pressed the gas pedal to make the front tires rotate. This was done for ten 

minutes but the TPMS light still did not turn on. Therefore, the test was not completed in the first 

attempt either because the metal shielding was not blocking the TPMS sensor signal 

appropriately, or the sensors needed to activated by actually driving the car for a few miles 

instead of having the wheels rotate in the air for a few minutes.  

Since the TPMS light did not turn on, the team decided to send a signal from the Pseudo 

TPMS Transmitter with a low pressure value to trigger the TPMS light to turn on. The chosen 

tire’s ID was inserted in the TPMS_transmsitter() function as well as the desired values for 

temperature and pressure. This approach still did not turn on the TPMS warning light. 

The second attempt was to take more drastic measures and remove the front left tire 

completely so that the TPMS sensor is not in range. In order to be able to drive the car and 

activate the TPMS, the spare tire was installed, which was assumed not to have an activated 

TPMS sensor. The team concluded that the spare tire did not have an activated TPMS sensor 

because when the sensor IDs were read, it did not return an ID for the spare tire. The reason 

behind removing a tire with the TPMS sensor was that the TPMS receiver would trigger the 

TPMS warning light if it is not receiving any signal from a TPMS sensor. Figure 46 shows the 

Ford Fiesta with the spare tire installed, right before it was driven around. 
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Figure 46 Schematic and setup for the second attempt of testing with Pseudo TPMS Transmitter on a car. Installation of the 
spare tire to activate the TPMS light on the dashboard. 

While driving with the spare tire on, waiting for the TPMS light to turn on, one USRP was 

connected to the cigarette lighter of the car using an inverter and the Benchmark SDR TPMS 

Receiver was run on it to collect data of the TPMS sensors in the car. Unfortunately, the light did 

not turn on after 50 minutes of driving with the spare tire. The signal in Figure 47 was a false 

reading of either a signal or noise, while Figure 48 shows two of the signals received that has 

the expected shape of a TPMS signal. The signals in Figure 48 are speculated to have come 

from different vehicles since the TPMS warning light was never triggered during this part of the 

testing. 

Pseudo TPMS 

Transmitter 

Spare tire with no TPMS 

sensor installed. 



 

Designing a Pseudo Tire Pressure Monitoring System Transmitter using Software Defined Radios | 71 

 
Figure 47 Signal received while driving Ford Fiesta with spare tire installed. This signal is most likely noise because it does not 

have the shape of TPMS signals encountered so far throughout testing. 

 

 

Figure 48 TPMS signals received while driving Ford Fiesta with spare tire on. The signals have the shape of a TPMS signal but the 
team believes that they belong to other vehicle’s TPMS sensors that were passing by since the TPMS warning light was never 

triggered on the Ford Fiesta during the first attempt at this test.. 

     The TPMS signals received were not decoded using the Benchmark SDR TPMS 

Receiver. That could be because the signals were of other cars with different IDs as the 
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vehicle’s TPMS light never turned on proving that the vehicle’s TPMS system is not active, 

therefore the decoding based on the Ford Fiesta’s TPMS IDs could not happen. Another 

explanation could be the structure of the signal; if the ID was not in the location expected by the 

decoder functions, the receiver would not be able to decode it properly. Overall, the interaction 

between the Benchmark SDR TPMS Receiver and the TPMS of the Ford Fiesta was not 

successful. 

One possibility for not having the light turn on might be that the car wasn’t driven in a 

high speed for an extended period of time. The maximum was 35 mph for a few seconds and 

the rest of the time, the speed was lower than 25 mph. For this reason the next step was to 

perform this test while driving at least 25mph, for a minimum of 2 minutes. After driving at 

50mph for 10 minutes the vehicle did not trigger the TPMS warning light on the vehicle’s 

dashboard. While driving the Benchmark SDR TPMS Receiver was running to see if any signals 

were picked up or decoded but it is speculated that none of the signals received belonged to the 

Ford Fiesta since they were not successfully decoded. Such signals were similar to those 

shown in Figure 48. 

In order to draw some conclusions on the communication of the Benchmark SDR TPMS 

Receiver and the Pseudo TPMS Transmitter with a vehicle’s TPMS, the team performed one 

last test on a 2014 Subaru Outback. The same procedure as in the previous test was followed. 

Similarly to what is depicted on the schematic of 46. The front left tire was removed and 

replaced by the spare tire. Following the tire change, the car was driven for approximately 20 to 

25 minutes with an average speed of 35 mph until the TPMS light turned on. Then, the team 

proceeded to turn on both the Pseudo TPMS Transmitter and the Benchmark SDR TPMS 

Receiver connected to laptops and ran the codes for both while continuing to drive the car 

around Worcester. 

The Pseudo TPMS Transmitter was used to send a signal with tire pressure of 227 kPa 

(33 psi) and the outside temperature of 47 degrees Fahrenheit, using the tire ID of the front left 
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tire which was replaced by the spare. The purpose of this transmission was to mimic the 

“missing” tire’s signal and turn the light off. At the same time, the Benchmark SDR TPMS 

Receiver was used to intercept the signal of the remaining three tires using their IDs. The tire 

IDs were provided to the team by Professor Wyglinski, the owner of the 2014 Subaru Outback, 

and are shown on Table 8. 

Table 8 Subaru Winter Tire IDs 

Tire Position ID in hexadecimal 

Front Left 00AA1BB4 

Front Right 00AA1B49 

Rear Right 00AA15E7 

Read Left 00AA1CB5 

 

4.4 Summary of Implementation Challenges 

The team’s ultimate goal was to manage to transmit a signal to the TPMS Rx in a 

vehicle. In order to do that, it was essential to have a clear understanding of the TPMS 

transmitter and receiver, how they communicate, what kind data their signals exchange as well 

as their architecture. Throughout the implementation phase of this project, the team faced a 

series of challenges while familiarizing with the equipment. Those challenges are analyzed in 

this section.   

One of the challenges that the team faced early on in the implementation of Tx to Rx 

communication was synchronization. Within the first few tests between Pseudo TPMS 

Transmitter and Benchmark SDR TPMS Receiver as well as TPMS Tx and Benchmark SDR 

TPMS Receiver, the team noticed that communication was not stable and many times the Rx 

side would not recognize the transmitted signal. The team attributed this miscommunication to 

synchronization issues. The approach taken to overcome the synchronization challenge was to 

make a real-time receiver that would search continuously until a signal above a specific 
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threshold is identified. This method was successful in overcoming the challenge of 

synchronization. 

Another aspect of the TPMS that the team needed to gain expertise on was the TPMS 

receiver architecture. One of the main research focus was to figure out how the receiver 

connects to an ECU in the vehicle. That includes whether it connects to an ECU that controls 

other functions of the vehicle, whether the receiver itself has an embedded computer or whether 

the TPMS ECU has exclusively that function. More specifically, if the TPMS ECU performs other 

tasks besides monitoring tire pressure, a false signal sent to it could cause complications to 

other systems. This challenge became more complicated when the team realized that analyzing 

the connection between the TPMS ECU and the TPMS receiver cannot be done simply by a 

model [57]. There are a wide variety of differences in CANBus connections from one vehicle 

manufacturer to another; therefore in order to study the TPMS connections within a vehicle the 

team decided to test on a whole vehicle rather than a TPMS Rx by itself. In addition, when the 

team attempted to get information on how a TPMS Rx is connected to an ECU from a car 

dealership, it was explained that that information is proprietary and therefore unable to gain 

access to.   

To get a better understanding of the interaction between a vehicle CANBus and the role 

of TPMS Rx in relation to an ECU, the team also attempted to gather information from car 

manufacturing companies in USA. The companies refused to share their proprietary information 

regarding particular vehicle’s CANBus network and how the TPMS Rx functions within this 

network. This response was expected as the companies tend to keep such information 

confidential due to competitive reasons but this fact became an obstacle for the team which had 

to rely on information and understanding gathered through experimentation. 

To summarize the challenges of implementing the Pseudo TPMS Transmitter and how 

the team worked on identifying and resolving them, Table 9 is provided: 
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Table 9 Summary of implementation challenges throughout the testing phases of the Pseudo TPMS 
Transmitter. 

Issue Identification Solution 

Synchronization “no signal found” error 
message 

 Continuous signal detection with real-
time receiver 

 Setting appropriate power thresholds 

TPMS Receiver 
Variation 

 Research on TPMS 
Receivers 

 Field testing with Ford 
Fiesta 

Personal communication with expert [57] 

 

4.5 Chapter Summary 

This section discusses the methods and approach used to achieve successful 

communication between the Pseudo TPMS Transmitter and the Benchmark SDR TPMS 

Receiver. In order to ensure proper functionality of the Pseudo TPMS Transmitter, the team 

devised tests to evaluate the communication between both the TPMS sensor and the Pseudo 

TPMS Transmitter with Benchmark SDR TPMS Receiver. First of all, the team simulated the 

Benchmark SDR TPMS Receiver and Pseudo TPMS Transmitter through MATLAB by using the 

Benchmark SDR TPMS Receiver code and created a corresponding Pseudo TPMS Transmitter 

code. The simulation was used to confirm the construction of the signal and communication was 

established within MATLAB without any hardware. Then the team moved on to fully 

implementing and establishing communication between the Benchmark SDR TPMS Receiver 

and the TPMS Tx with the USRP hardware. Simultaneously, the team worked on developing the 

Pseudo TPMS Transmitter to successfully communicate with the Benchmark SDR TPMS 

Receiver wirelessly using the USRP. A series of modifications and updates were made to the 

original Benchmark SDR TPMS Receiver MATLAB code to resolve the issues of 

synchronization and signal power thresholds that arose with the use of hardware. Finally, the 

team used the Pseudo TPMS Transmitter to mimic and replace an actual TPMS sensor’s signal 
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in a vehicle. Throughout the testing phase, the team managed to identify and resolve a series of 

challenges before achieving a successful implementation of this project. 
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5 Experimental Results  

     In this chapter, the results of the implementation of the four different tests described in 

Chapter 4 are presented. The first test is a simulation of the communication between the 

Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver through MATLAB. The 

following three tests are performed over-the-air using USRPs. Each section of chapter 5 is 

dedicated to one of the four tests with screenshots and pictures of the results the team obtain 

during each test. 

5.1 Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with 

MATLAB Simulation 

     The first milestone that the team achieved in terms of implementing and testing parts of 

this project was performing a successful MATLAB simulation of the communication between the 

Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver. The reasoning behind starting 

from this simulation is to obtain some results without the interference of noise and other issues 

that might result from wireless communications. Without the SDRu hardware implemented in the 

code, the receiver created by the previous MQP group successfully decoded the signal 

generated by the Pseudo TPMS Transmitter. This indicates that the mimicked TPMS signal was 

constructed correctly and is equivalent to that of the real TPMS sensors.  

Initially, a signal was transmitted with values for temperature and pressure, as seen in 

the first line of Figure 49. Then, those values were compared with the output of the simulation. 

 
Figure 49 The first line demonstrates the transmission of a TPMS signal in simulation. Temperature is 75 degrees and pressure is 

32 psi. 
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The results are illustrated in Figure 50, where the team calls on the decoding function 

which returns the values of pressure and temperature that it has decoded. As seen in the 

workspace, the temperature and pressure readings decoded are equal to those transmitted in 

Figure 49. This means that the mimicked signal has been built correctly and is able to be 

decoded by the Benchmark SDR TPMS Receiver. 

 

Figure 50 This image shows the values of the received signal's parameters, therefore validating that the signal transmitted is 
equivalent to the signal received during simulation. 

     Those results are important because they verify that the signal transmitted by the 

Pseudo TPMS Transmitter can be decoded by the same receiver that decodes the “real” TPMS 

signals. Therefore, the two signals should be very similar if not identical. 

5.2 Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with USRP 

Interface  

With the use of the correct gain, power threshold, and synchronization explained in 

Section 4.3.2 the team was able to receive a clean signal, as illustrated in Figure 51. This 

implementation resulted in successful transmission and decoding of the signal transmitted by 

the Pseudo TPMS Transmitter.  
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Figure 51 Clean signal received during testing with no noise present. 

Once the Benchmark SDR TPMS Receiver had correlated the data, it was able to 

decode the values for pressure and temperature specified in the Pseudo TPMS Transmitter. 

These values matched those received by the Benchmark SDR TPMS Receiver perfectly. Figure 

52 illustrates the values that were inputted in the Pseudo TPMS Transmitter, those being 75 for 

temperature, 32 for tire pressure, and sensor ID ‘8178E561’. The received and decoded values 

can be seen in Figure 53. These values for pressure, temperature, and sensor ID are also 32, 

75, and ‘8178E561’, respectively.  

 

Figure 52 Inputted values for pressure (32), temperature (75), and sensor ID ('8178E561') transmitted using the Pseudo TPMS 
Transmitter. 
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Figure 53 Received values for pressure (32), temperature (75), and sensor ID ('8178E561') in the Benchmark SDR TPMS Receiver. 

5.3 Replicate Benchmark SDR TPMS Receiver with TPMS Tx 

With the alterations to the values of gain and thresholds shown in Table 6, the team 

achieved a successful reception and decoding of the TPMS signal from the sensor in the tire. As 

seen in Figure 54, the Benchmark SDR TPMS Receiver received the real temperature and 

pressure readings of the TPMS as well as the sensor ID. Those values are 71 degrees (room 

temperature), 175 kPa, and and the correct TPMS sensor ID of ‘8178E561’.  

 
Figure 54 Received values for pressure (175kPa), temperature (71 F), and sensor ID ('8178E561') transmitted through the TPMS 

sensor. 

To ensure that the Benchmark SDR TPMS Receiver could decode information from both 

the TPMS sensor and the Pseudo TPMS Transmitter, the team ran again the Pseudo TPMS 

Transmitter - Benchmark SDR TPMS Receiver test (Section 4.3.2 - Pseudo TPMS Transmitter 
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and Benchmark SDR TPMS Receiver with USRP Interface), this time with the updated values 

presented in Table 5. Using the modified values from Section 4.3.3 the team achieved 

successful communication between the Benchmark SDR TPMS Receiver and Pseudo TPMS 

Transmitter, thus proving that the signal from the Pseudo TPMS Transmitter is equivalent to that 

of the TPMS sensor, since it can be received and decoded by the exact same Benchmark SDR 

TPMS Receiver. 

5.4 Transmit using Pseudo TPMS Transmitter to TPMS Rx 

     Two different approaches were utilized to get results for communication between 

Pseudo TPMS Transmitter and TPMS Receiver. In the first approach, the team covered one of 

the tires on the vehicle with a metallic shielding to turn on the TPMS warning light. The result 

was that after 25 minutes of having the car on, the TPMS light did not turn on. Even the 

Benchmark SDR TPMS Receiver did not receive any signal from any of the tires of the vehicle. 

The team got a “no signal found” error message in MATLAB when the Benchmark SDR TPMS 

Receiver did not pick up any signal from the vehicle’s tire as seen in Figure 55. 

 

Figure 55 No signal found error message when no signal was picked up by Benchmark SDR TPMS Receiverfrom the TPMS 
Transmitter. 
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In the second approach, one of the vehicle’s tires was replaced with the spare tire, which 

did not have a TPMS sensor installed. In an attempt to realize if the TPMS sensors and receiver 

were on, the team connected a Benchmark SDR TPMS Receiver in the car’s cigarette lighter 

plug using an inverter and received a series of signals at 315 MHz. The team drove at a speed 

higher than 20 mph continuously for a time duration of 10 minutes.  

Unfortunately, this test resulted in no triggering of the TPMS warning light. After 10 

minutes on the highway going at an average speed of 50mph, it was expected that the warning 

light would be triggered due to the spare tire being installed and having the other tire stored 

away far from the reach of the TPMS receiver located in the vehicle. The signals received by the 

Benchmark SDR TPMS Receiver are similar to those of Figure 48. It is speculated that such 

signals belonged to other vehicles driving by since, had they belonged to the Ford Fiesta, the 

TPMS warning light should have been activated during that drive if the sensors in the vehicle 

had been transmitting data and communicating with the vehicle’s TPMS receiver.  

The test with the Subaru yielded some results that helped the team draw conclusions 

about the communication of the Pseudo TPMS Transmitter and an actual vehicle’s TPMS. While 

driving around the Subaru and transmitting using the Pseudo TPMS Transmitter, the light that 

had originally turned on because of the spare tire did not turn off. Therefore, the team could not 

prove successful communication between the Pseudo TPMS Transmitter and the Subaru’s 

TPMS Receiver. However, by using the Benchmark SDR TPMS Receiver, the team managed to 

receive the vehicle’s TPMS signals from the three tires, using the identified tire IDs from Table 8 

in Section 4.3.4. The received TPMS signal of the Subaru’s active TPMS sensors is 

demonstrated on Figure 56, generated by the MATLAB script running the Benchmark SDR 

TPMS Receiver. 
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Figure 56 Received signal of Subaru’s TPMS sensor using Benchmark SDR TPMS Receiver. 

The signal is composed of “bursts” of high magnitude signal samples and then large 

gaps in between. Compared to the signal received by the same receiver when transmitting 

using the Dorman TPMS sensor on the tire in lab (Figure 51), the signal has significant 

differences. The Dorman TPMS signal is a lot more compact, unlike the Subaru’s signal with the 

bursts and gap layout.  

The Benchmark SDR TMPS Receiver also managed to receive the Pseudo TPMS 

Transmitter’s signal in a similar manner as in Section 5.2. The signal sent by the Pseudo TPMS 

Transmitter aiming to communicate with the Subaru’s receiver was picked up and decoded by 

the team’s receiver and the results can be observed on Figure 57. 

 
Figure 57 The Pseudo TPMS Transmitter signal mimicking the missing tire's information as received by the Benchmark SDR TPMS 

Receiver. 
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The tire ID received is the one that corresponds to the front left tire of the Subaru, 

proving that the Pseudo TPMS signal was, indeed, transmitted. The temperature and pressure 

values are those inserted to the transmitted and transmitted.  

The same receiver was used with a random ID (“ABCDEF12”), used for testing purposes 

in lab, in an attempt to understand why the Benchmark SDR TPMS Receiver was decoding data 

from the Pseudo TPMS Transmitter when given a similar ID to decode. The Benchmark SDR 

TPMS Receiver successfully received and decoded the following signal from a passing car with 

a tire ID similar to the test ID “ABCDEF12”. This came as a surprise to the team but it revealed 

that the Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver were designed to 

work according to specific manufacturer standards for TPMS signal construction. The received 

signal and the information decoded are demonstrated on Figures 58 and 59. 

 

Figure 58 Signal of passing vehicle’s TPMS sensors as received by the Benchmark SDR TPMS Receiver. 
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Figure 59 Decoded information from passing vehicle’s TPMS signal. 

The signal received was most likely decoded because the ID has some similar 

characters as the test ID (“ABCDEF12”). The temperature and pressure readings were switched 

in the specific signal but the rest of the architecture was the same as the one used to create the 

Benchmark SDR TPMS Receiver, therefore the signal was successfully decoded. The actual 

temperature received was 64 degrees Fahrenheit probably due to the fact that the vehicle had 

been in motion and caused the tires to record a higher temperature. The tire pressure of the 

passing vehicle’s tire was 200 kPa (29 psi), which is a normal value for tire pressure. These 

findings prove the Benchmark SDR TPMS Receiver’s interaction with an actual vehicle’s TPMS 

sensors is possible. However, it was not possible with the TPMS of the 2014 Subaru Outback, 

possibly due to the fact that the manufacturer of the TPMS sensors and receiver are different 

and therefore the signal architecture is different (as proven by Figure 56). In the future, the 

Pseudo TPMS Transmitter could be modified to successfully replicate the signals of more TPMS 

sensor manufacturers. This would expand its capabilities to communicate with more vehicles 

and make it universal. 
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5.5 Chapter Summary 

     This chapter discusses the results gathered during the testing of the Pseudo TPMS 

Transmitter. Throughout the four testing phases the team ensured that the created transmitter 

was functioning properly. For the first test, Pseudo TPMS Transmitter and Benchmark SDR 

TPMS Receiver with MATLAB simulation, the team concluded that the transmitter created was 

encoding the data correctly and that Arnold and Piscitelli’s receiver [11] was decoding the 

values properly. For the Pseudo TPMS Transmitter and Benchmark SDR TPMS Receiver with 

USRP interface test the team found that the transmitter and receiver were communicating 

properly and that the data was successfully decoded. The third test, replicate Benchmark SDR 

TPMS Receiver with TPMS Tx, showed successful reproduction of previous results from Arnold 

and Piscitelli’s project using a real TPMS sensor placed inside a tire. For the final test on the 

Ford Fiesta involving a real TPMS receiver the team found that activating the TPMS light was 

not as straight-forward as one would think. Both attempts to turn on the light did not yield the 

results needed to test the Pseudo TPMS Transmitter. Finally, the Subaru test managed to turn 

on the TPMS light but not to communicate with the vehicle’s receiver.  
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6 Conclusion 

     With the advancement of electronic technologies in vehicles, the use of such electronics 

is becoming a commonplace in vehicles. These technological developments have allowed 

vehicles to include a myriad of safety and comfort features that have improved the overall 

driving experience of users. These features use different sensors, which communicate and 

interact with each other through a network of ECUs in a CANBus and therefore leave the 

vehicle exposed to many hacking vulnerabilities through such sensors. The team evaluated 

different wireless access points for the purpose of this project and chose the Tire Pressure 

Monitoring System (TPMS) because of the prior literature and research readily available. 

The outcome of this project has exposed the team to a significant amount of information 

on the TPMS technology and its vulnerabilities. The results of the testing between this team’s 

transmitter, Alex Arnold and Stephanie Piscitelli’s receiver and the TPMS sensor revealed the 

structure of the TPMS signal, which lead to the construction of a semi-successful Pseudo TPMS 

Transmitter. The final test conducted in the real environment of a vehicle was catalytic for the 

conclusion of this project about the vulnerability of the TPMS system and therefore the team 

hopes that this phase of testing is continued by a following MQP project. 

The goal of the initial testing was to verify the communication between the Pseudo 

TPMS Transmitter and Benchmark SDR TPMS Receiver within a MATLAB simulation. The 

successful results of this test allowed the team to conclude that the coding part of the 

transmitter was correct, as well as the decoding of the receiver into the correct information. This 

first test was essential in the continuation of the project since it verified that the software logic 

was correct. The next step was to test the same software over a USRP interface. 

As one can imagine, over-the-air communication brought a lot more challenges than the 

simulation. Once those challenges were overcome, the successful communication between the 

team’s transmitter and Arnold and Piscitelli’s receiver with USRP interface led to the conclusion 
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that the software is correct and it was interfaced correctly to communicate wirelessly. This step 

was crucial since direct TPMS is a system that is based exclusively on wireless communication 

between the TPMS sensors and the TPMS receiver in the vehicle. By establishing good 

communication between the team’s Pseudo TPMS Transmitter and the modified Benchmark 

SDR TPMS Receiver, the project was one step closer to communicating with the real TPMS of a 

vehicle.  

In order to establish communication between the Pseudo TPMS Transmitter and the 

vehicle’s TPMS, the team first decided to test the Benchmark SDR TPMS Receiver with the 

vehicle’s TPMS sensors. This test and its results was important in order to verify that the 

software and USRP interface used in this project could communicate successfully with the “real” 

TPMS sensors. Through Arnold and Piscitelli’s receiver, the team managed to read tire pressure 

and temperature from a tire used for testing purposes. These results were very encouraging 

since they let the team conclude that the system built could communicate with a real, 

commercial TPMS sensor.  

 Once the team was sure that the receiver created by Arnold and Piscitelli was working 

properly with both the team’s transmitter and real TPMS sensor, the final test involving 

communication between team’s transmitter and a TPMS receiver was conducted. In order to 

test the capabilities of the Pseudo TPMS Transmitter, the team first attempted to trigger the 

TPMS warning light in a 2012 Ford Fiesta, so that then a signal from the transmitter would turn 

the light off. However, after trying to trigger the light by sealing one of the tires and then 

replacing one of the tires with a spare tire, the light did not turn on. Therefore, there were no 

conclusions from performing this test since the Pseudo TPMS Transmitter signal was never sent 

to an actual vehicle’s TPMS Receiver.  

After the failed testing on Ford Fiesta, the team tested the Pseudo TPMS Transmitter on 

the 2014 Subaru Outback provided by Professor Alexander Wyglinski. After replacing one of the 

tires with a spare tire and driving for more than 20 minutes, the TPMS warning light turned on 
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but the Pseudo TPMS Transmitter failed to turn off the light. The team concluded that the 

Pseudo TPMS Transmitter signal was based on the signal construction of DORMAN TPMS 

sensors and different TPMS sensor manufacturers use different signal construction. This is the 

reason why the TPMS receiver of the Subaru did not recognize the signal of the Pseudo TPMS 

Transmitter. The Benchmark SDR TPMS Receiver did not pick up any signal from the Subaru’s 

tires as well, which supports the conclusion that the Subaru TPMS sensors are from a different 

manufacturer that construct the TPMS signal differently than the DORMAN TPMS sensors. 

 The results and conclusions of this project are only the beginning of the possibilities to 

explore a vehicle’s CANbus through the Tire Pressure Monitoring System. The team has shown 

that there is a relation between signals sent from a USRP coded in MATLAB and those of an 

actual vehicle, and has provided a good ground for further research on the possibilities once 

someone can access the TPMS receiver. This project may have only gone as far as replicating 

the TPMS signal and testing it against a Benchmark SDR TPMS Receiver, but this has opened 

the way for further exploring the other pathways from the TPMS receiver to different parts of a 

vehicle’s digital network. 

 One of the recommendations for future work would be to further investigate the 

architecture of the CANbus and more specifically, that of the TPMS receiver and its interaction 

with other parts of the network. Knowledge of the setup of the TPMS receiver would give more 

ideas of how to use the wireless access achieved in this project to modify different parts of the 

CANbus, alter information, activate and deactivate features and more. In order to achieve that, 

part of the research should be to further explore the capabilities of the TPMS receiver in 

receiving longer signals, and what kind of signals would be needed to modify different parts of 

the vehicle’s digital systems.  

 Naturally, a good continuation of this project would be to interface the Pseudo TPMS 

Transmitter with the TPMS receiver of a vehicle in a real environment and test this interaction 

successfully. In other words, completing the test on an actual vehicle that the team was not able 
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to finalize. Also, another way to continue this project is to come up with a system to protect the 

TPMS from being “hacked” or the signal from being “sniffed.” Successful communication 

between the Benchmark SDR TPMS receiver and the TPMS signal transmitted by a vehicle’s 

sensor in a tire showed that there is no encryption in the wireless signals between TPMS 

sensors and the TPMS receiver. This, of course, can be dangerous if a system similar to this 

project is developed to attack commercial vehicles and introduce malicious signals that could 

harm the vehicle and its passengers. It is recommended that the TPMS is protected further and 

the results of this project can be used as a basis for developing a protection system for TPMS. 

 The pseudo TPMS transmitter developed in this project sends an FSK modulated signal 

to the receiver. However, market research has shown that there are also TPMS sensors that 

use ASK modulation in their signal processing. For this reason, one more recommendation for 

future work in this field would be the construction and testing of an ASK pseudo transmitter, that 

would mimic the real-life ASK TPMS sensors. Also, different manufacturers construct the TPMS 

signal differently and future work can be based on exploring other manufacturers of TPMS 

sensors as well. Development of such a transmitter would enhance knowledge on the TPMS 

and its vulnerabilities, since all types of sensors would be explored equally.  

 This project is solely based on the direct TPMS by exploring its technology, the types of 

signals the system is based on and its components (transmitter and receiver). However, there 

are numerous vehicles that have indirect TPMS instead, which is based on the calculation of the 

tire’s diameter based on the rotational speed. Indirect TPMS is part of the Anti-Lock Braking 

System and was not explored in this project. The team recommends an implementation of a 

similar project that would mimic the behavior of the indirect TPMS, in order to offer more in 

depth knowledge of the vulnerabilities of TPMS.  

 Conclusively, the team’s Pseudo TPMS Transmitter leads to many more possible 

investigations that can take place to better understand TPMS and its vulnerabilities. It is 

important to explore all facets of the TPMS in order to protect vehicles from malicious 
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interception and alteration. Future work does not have to stop at wireless TPMS, but can 

continue on multiple access points of a vehicle’s electronic system. An enhanced understanding 

of automotive security will bring together a future of safe vehicles without having to compromise 

all the comfort that digital systems offer. 
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7 Appendix A - Benchmark SDR TPMS Receiver 
7.1 TPMS Receiver 

function [ packet] = TPMS_receiver2( TPMS_signal, power_threshold ) 
%TPMS_receiver  
% This function takes in the received signal from a TPMS and will 
% demodulate and decoded the packet 
%close all  
%clc 
% Sample rate used on USRP 
Fs = 100e6/128; 
%These are the thresholds used to determine if a signal is present 
threshold = 20*power_threshold 
%% Reformatting Signal 
rx = TPMS_concat(TPMS_signal); 
%% Traverse the entire received signal looking for TPMS signal 
lower_ind = 1; 
%lower_ind:lower_ind+10 
a = length(rx) 
b = size(bandpower(rx(lower_ind:lower_ind+10))) 
c = bandpower(rx(lower_ind:lower_ind+10)) 
dataRx = rx(lower_ind:lower_ind+10); 
while (bandpower(rx(lower_ind:lower_ind+10)) < threshold) && (lower_ind < length(rx)) 
   lower_ind = lower_ind + 1; 
   if lower_ind >= 24991 
       disp('No signal found'); 
       break; 
   end 
end 
%locating the end point 
upper_ind = length(rx); 
while bandpower(rx(upper_ind-10:upper_ind)) < threshold && upper_ind > 1 
   upper_ind = upper_ind - 1; 
       if upper_ind <= 10 
       disp('No signal found'); 
       break; 
   end 
end 
%holds the wave form of just the packet (no noise) 
packet_waveform = rx(lower_ind:upper_ind); 
%demodulate the packet 
figure 
plot(1:length(packet_waveform),packet_waveform) 
packet = demodulator( packet_waveform, Fs ); 
%decode the packet 
%decode_packet(packet); 
%figure(2) 
%plot(1:length(packet_waveform), real(packet_waveform)); 
end 

7.2 Real-Time Receiver 

function [packet, data] = TPMS_live_receiver_1() 
packet = 0; 
close all 
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clc 
radio = comm.SDRuReceiver('Platform', 'N200/N210/USRP2', 'IPAddress', '192.168.20.2', 
'CenterFrequency', 315000000, 'EnableBurstMode', true, 'OutputDataType', 'double', 'DecimationFactor', 
128, 'SampleRate', 100e6/128, 'Gain', 16, 'NumFramesInBurst', 5, 'FrameLength', 5000); 
%hss = dsp.SpectrumAnalyzer('SampleRate', 100e6/128); 
data(5000,1) = 0; % = zeros(10000, 2001); 
for m = 1:5 
    TPMS_signal = step(radio); 
    %step(hss, TPMS_signal); 
    data(:,m) = TPMS_signal; 
end     
% %% Reformatting Signal 
%   columns = 5000; 
%   TPMS_signal = TPMS_concat(TPMS_signal); 
%   TPMS_signal = reformat(TPMS_signal, columns); 
%   [r,c] = size(TPMS_signal) 
power_threshold = 50*bandpower(data(:,1)) 
packet(1,500) = 0; 
packets = 0; 
i = 2; 
while 1 %i<r-1   %changed to inf while 
   %add a buffer of 4 to 5 columns 
   TPMS_signal = step(radio); 
   %step(hss, TPMS_signal); 
   %data(:, 1:4) = data(:, 2:5); 
   data(:,i+3) = TPMS_signal; 
   if (bandpower(data(:,i)) > power_threshold) 
       low_ind = i-1 
       upper_ind = i+3 
        while i < upper_ind 
            i = i + 1; 
        end 
       figure 
       [a,b] = TPMS_concat(data(:, low_ind:upper_ind)'); 
       plot(b,a) 
       packets = packets + 1 
        
       d = size(data(:, low_ind:upper_ind)') 
       e = data(:, low_ind:upper_ind)'; 
       test = TPMS_receiver2(data(:, low_ind:upper_ind)', power_threshold); 
       packet(packets,1:length(test)) = test; 
       [preamble, ID, temp, pressure, flags, crc, packet] = 
TPMS_decode_by_ID_second('8178E561',packet(packets,1:length(test))) 
       break;          
   else 
        i = i + 1; 
        if (i == 5000) 
            i=2; 
        end 
   end 
end 
end 
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7.3 Decode by ID 

function [preamble, ID, pressure, temp, flags, crc, packet] = TPMS_decode_by_ID_second( ID, 
TPMS_bits ) 
%this function assumes that the ID comes after the packet information 
% this function takes the ID as a Hax string and the packet 
%finds the start of the packet 
[m, ind] = find_ID(ID, TPMS_bits); 
ind = ind - length(TPMS_bits) + - 31; 
%takes the preamble 
preamble_bits = TPMS_bits(1:ind-1); 
preamble_bits = TPMS_bits(1:ind-1); 
%decodes the rest of the packet 
packet = man_decode(TPMS_bits(ind:end)); 
%fills up each field with the bits then calculates the values 
pressure_bits = packet(1:8); 
temp_bits = packet(9:16); 
ID_bits = packet(17:48); 
flags = packet(49:56); 
crc = packet(57:end); 
count = 7:-1:0; 
preamble = num2str(preamble_bits); 
temp = sum(temp_bits .* 2.^count); 
pressure = sum(pressure_bits .* 2.^count); 
ID = dec2hex(sum(ID_bits .* 2 .^ (31:-1:0))); 
%solves for a CRC pattern 
CRC_pattern(packet, 9); 
End 

 

7.4 CRC Pattern 

function [ good_patterns ] = CRC_pattern( packet, p ) 
%CRC_pattern  
% this function takes in the packet and the length of the pattern and 
% solves for a CRC pattern using brute force 
%% init vars 
dec_nums = 0:2^p-1; 
pattern_str = dec2bin(dec_nums); 
pattern = zeros(2^p, p); 
%% initializing the patterns array that will be checked 
for x = 1:2^p 
   for y = 1:length(pattern_str(x,:)) 
       pattern(x,y)= str2double(pattern_str(x,y)); 
   end     
end 
n = length(packet); 
k = n - p + 1; 
pattern(2^(p-1)+1,:); 
good_patterns = zeros(1, p); 
good = 1; 
%% cycles through all potential patterns 
for y = 2^(p-1)+1:2^p 
   y; 
   x = 1; 
   div = packet(1:p); 
   a = 0; 
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   while div(1) == 0 && x+a < k 
           div(1:end-1) = div(2:end); 
           div(end) = packet(x+a+p); 
           a = a + 1; 
   end 
    
   x = a + x; 
    
   while x < k 
       div = xor(div, pattern(y,:)); 
       a = 0; 
       while div(1) == 0 && x+a < k 
           div(1:end-1) = div(2:end); 
           div(end) = packet(x+a+p); 
           a = a + 1; 
       end 
       x = a + x; 
        
   end 
   % If the pattern works put it in the good patterns array 
   if sum (div == zeros(1,p)) == p || sum(div == pattern(y,:)) == p 
       good_patterns(good, :) = pattern(y,:); 
       good = good + 1; 
   end 
end 
end 

 

7.5 Find ID 

function [  m, ind  ] = find_ID( ID, signal ) 
%find_ID  
%This function takes the ID in Hex and the packet and solves for the 
%location of the ID within the packet using corr 
% The function outputs the max value and its index 
%% Convert the ID to bin and then encode it 
ID_binary = Hex_to_Bin(ID); 
encoded_ID = man_encode(ID_binary); 
%% perform corr and take the max val and index 
acor = xcorr(signal, encoded_ID); 
figure 
plot(1:length(acor), acor) 
xlabel('Index') 
ylabel('Correlation') 
title('Correlation of Encoded ID and Encoded TPMS Packet') 
[m, ind] = max(acor); 
End 

 

7.6 Manchester Encode 

function [ encoded_signal ] = man_encode( signal ) 
%man_encode 
% this function takes in a packet and manchester encodes it 
%encoded signal is twice the length 
encoded_signal = zeros(1, 2*length(signal)); 
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for x = 1:2:length(encoded_signal) 
   if signal((x+1)/2) == 1 
      encoded_signal(x) = 1; 
   else 
      encoded_signal(x) = 0; 
   end 
   encoded_signal(x+1) = xor(encoded_signal(x), 1); 
end 
end 

 

7.7 Manchester Decode 

function [ decoded ] = man_decode( encoded ) 
%man_decode 
%This function takes in a manchester encoded signal and decodes it 
x=floor(length(encoded)/2) 
decoded = zeros(1, x); 
%takes every other value starting at 1 
for x = 1:2:length(encoded) 
   %making sure two succesive bits are not the same  
   if encoded(x) ~= encoded(x+1) 
       decoded((x+1)/2) = encoded(x); 
   else 
       decoded = -1; 
       break; 
   end 
end 
end 

 

7.8 Concatenate Signal 

function [ out, samples ] = TPMS_concat( in ) 
% This function takes in the input signal in the form of a multidemensional 
% array and concatenates them into a single demension 
[x, y] = size(in); 
out = zeros(1, x*y); 
samples = 1:x*y; 
for a = 0:x-1 
    
   out(a*y+1:(a+1)*y) = in(a+1,:); 
    
end 
end 
 

7.9 Demodulator 

function [ packet] = demodulator( rx, Fs ) 
%demodulator  
% Takes in the packet and the sample rate 
%This function determines if it uses ASK or FSK and then demodulates the 
%signal and passes the demodulated packet out 
%perform the FFT and get magnitude 
freq = abs(fft(rx)); 
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figure(3) 
plot(1:length(freq), freq) 
%range to prevent side bins from influencing results 
range = 10; 
[max1,ind1] = max(freq); 
%Determines the two max bins that are not closely adjacent 
if ind1 - range > 0 && ind1 + range <= length(freq) 
   freq(ind1-range:ind1+range) = 0; 
elseif ind1 - range < 0 
   freq(1:ind1+range) = 0; 
   freq(length(freq)+ind1-range:length(freq)) = 0; 
else 
   freq(ind1-range:length(freq)) = 0; 
   freq(1:(ind1+range)-length(freq)) = 0; 
end 
[max2, ind2] = max(freq); 
%determines if the second frequency is large enough to be FSK 
if max2 > max1/2 
   [packet] = FSK_demodulator(rx,Fs); 
else 
   [packet] = ASK_demodulator(rx,Fs); 
end 
end 

 

7.10 ASK Demodulator 

function [ packet ] = ASK_demodulator( rx ) 
%ASK_demodulator 
% Function performs ASK demodulation of the TPMS packet 
%% Variable setup 
interp_val = 2; 
rx_interp = interp(rx, interp_val); 
lenRx = length(rx_interp); 
rx_rect = abs(rx_interp); 
threshold = max(rx_rect/2); 
%figure 
%plot(1:lenRx, rx_rect) 
%% Demodulation 
rx_square = zeros(1, lenRx); 
for x = 1:lenRx 
   if rx_rect(x) > threshold 
       rx_square(x) = 1; 
   end      
end 
%figure 
%plot(1:lenRx, rx_square); 
%% Down sampling 
packet = down_sample(rx_square); 
end 

 

7.11 FSK Demodulator 

function [ packet] = FSK_demodulator( rx, Fs ) 
%FSK_demodulator  
%This function performs FSK demodulation on the signal and outputs the 
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%packet 
%% variable intialization 
lenRx = length(rx); 
t = (1:lenRx)/Fs; 
interp_val = 20; 
bits_per_packet = 750; 
samp_per_sym = floor(interp_val * lenRx / bits_per_packet); 
down_samp = interp_val * lenRx - bits_per_packet * samp_per_sym; 
interval = floor(interp_val * lenRx / down_samp); 
%% Adjusting the offset frequency 
freq = max_frequencies(rx, Fs,2); 
offset = -(freq(1)  + freq(2))/2; 
mod_sig = exp(j*2*pi*t*offset); 
rx = rx .* mod_sig; 
%% Calculating the freq separation 
freq = max_frequencies(rx, Fs, 2); 
freq_sep = abs(freq(1)) + abs(freq(2)); 
%% downsamples so there is an symbols per bits divides evenly 
down_samp_sig = zeros(1, bits_per_packet * samp_per_sym); 
rx_interp = interp(rx, interp_val); 
for y = 1:down_samp 
   down_samp_sig((y-1) * (interval-1) + 1:y * (interval - 1)) = rx_interp((y-1) * interval + 1:y * interval - 1); 
end 
%% Demodulates packet 
over_packet = invert(fskdemod(down_samp_sig,2,freq_sep,samp_per_sym, Fs*interp_val)); 
%% Because more bits were output than needed a downsample is used  
packet = down_sample(over_packet); 
    
%figure 
%plot(1:lenRx, abs(fft(rx)))  
End 

 

7.12 Down Sample 

function [ down ] = down_sample( packet ) 
%down_sample 
% This function takes in a packet with excess bits from demodulation. and 
% downsamples based on the small number of consequtive bits 
%% Starts a litte in because sometimes the first bits are compromised 
ind = 50; 
val = packet(ind); 
lenPacket = length(packet); 
%% finding the start of the next change so it does not throw off count 
while packet(ind) == val && ind < lenPacket 
   ind = ind + 1; 
end 
%% Calculates the min number of consequtive bits and is the default single bit 
min_count = lenPacket; 
while ind  < lenPacket-20 
    
   val = packet(ind);   
   count = 0; 
   while packet(ind) == val && ind < lenPacket 
       count = count + 1; 
       ind = ind + 1; 
   end 
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   if count < min_count 
       min_count = count; 
   end 
end 
%% performs the down sampling based on the min count above 
down = 0; 
down_ind = 1; 
ind = 1; 
while ind  < lenPacket 
    
   val = packet(ind);   
   count = 0; 
   while packet(ind) == val && ind < lenPacket 
       count = count + 1; 
       ind = ind + 1; 
   end 
    
   count = floor((count)/min_count); 
   if count == 0 
       count = 1; 
   end 
   a = 1; 
   while a <= count  
       down(down_ind) = val; 
       down_ind = down_ind + 1; 
       a = a+1; 
   end 
    
end 
end 
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8 Appendix B - Pseudo Transmitter 
8.1 Transmitter Code 

function [ TPMS_signal, modulated_signal, bin_ID, bin_press, bin_temp] = TPMS_transmitter( 
dec_temperature, dec_pressure, ID ) 
[bin_temp, bin_press] = decimal_to_binary(dec_temperature, dec_pressure); 
bin_ID = Hex_to_Bin(ID); 
flags = [1 1 1 0 0 0 0 1]; 
[data] = [bin_temp bin_press bin_ID flags]; 
checksum = comm.CRCGenerator('Polynomial', [1 1 1 0 1 0 1 0 1]); 
CRC_data = step(checksum, data.'); 
unencoded_data = [CRC_data.']; 
encoded_data = man_encode (unencoded_data); 
preamble = step(comm.BarkerCode('Length', 13, 'SamplesPerFrame', 23)).'; 
fixed_preamble = fix_preamble(preamble); 
unmodulated_signal = [fixed_preamble encoded_data]; 
modulated_signal = FSK_modulator(unmodulated_signal); 
TPMS_signal = [modulated_signal; modulated_signal; modulated_signal]; 
end 
 

8.2 Live Transmitter Code 

function [] = TPMS_transmitter_live(modulated_signal) 
radio = comm.SDRuTransmitter('EnableBurstMode',true,'NumFramesInBurst',5,'Gain', 16,'Platform', 
'N200/N210/USRP2', 'IPAddress', '192.168.10.2', 'CenterFrequency', 315000000, 'InterpolationFactor', 
128, 'UnderrunOutputPort', true); 
 

output = modulated_signal.'; 
output = padarray(output, [10000 0]); 
%hss = dsp.SpectrumAnalyzer('SampleRate', 100e6/128); 
 

for counter = 1:5 
  step(radio, output); 
  %step (hss, output); 
end 
end 
 

8.3 Decimal to Binary Conversion Code 

function [ bin_temperature, bin_pressure ] = decimal_to_binary( dec_temperature, dec_pressure ) 
 

bin_temperature = de2bi(dec_temperature, 8, 'left-msb'); 
bin_pressure = de2bi(dec_pressure,8, 'left-msb'); 
 

end 
 

8.4 Hexadecimal to Binary Conversion Code 

function [ bin ] = Hex_to_Bin( ID ) 
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%Hex_to_Bin  
% this function takes in the ID in a hex string and converts it to a 
% binary array 
 

binStr = dec2bin(hex2dec(strcat('A', ID))); 
bin = zeros(1, length(binStr)); 
 

for x = 1:length(bin) 
   bin(x)= str2double(binStr(x)); 
end 
   bin = bin(5:end); 
end 
 

8.5 Manchester Encoding Code 

function [ encoded_signal ] = man_encode( signal ) 
%man_encode 
% this function takes in a packet and manchester encodes it 
 

%encoded signal is twice the length 
encoded_signal = zeros(1, 2*length(signal)); 
 

for x = 1:2:length(encoded_signal) 
 

   if signal((x+1)/2) == 1 
      encoded_signal(x) = 1; 
   else 
      encoded_signal(x) = 0; 
   end 
   encoded_signal(x+1) = xor(encoded_signal(x), 1); 
 

end 
 

8.6 Fix Preamble Code 

function [fixed_preamble] = fix_preamble( preamble ) 
preamble(preamble < 0) = 0; 
fixed_preamble = preamble; 
end 
 

8.7 FSK Modulator Code 

function [FSK_signal] = FSK_modulator (unmodulated_signal) 
mod_order = 2; 
freq_sep = 73737; 
Fs = 100e6/128; 
nsamp = 50; 
FSK_signal = fskmod(unmodulated_signal, mod_order, freq_sep, nsamp, Fs); 
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end 
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