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Abstract 
 The mechanism of RNA interference is one that contains a great amount of complexity 

and is dependent upon many proteins and enzymes within the cytoplasm of living cells. The 

nematode, C. elegans, proves to be a great experimental model because it contains a complex 

repertoire that is close in relation to mammals, but resides in different forms that are not 22- and 

26G- RNAs. Scientists have identified a total of 24 argonautes in C. elegans. However, there is 

still uncertainty as to the specific function of some of these worm-specific argonautes. Since we 

already know that primary siRNAs and argonautes lead to the production of secondary 

argonautes, the question remains as to which secondary argonautes are involved in the ALG-3/4 

pathway and can the method for how they regulate their targets be uncovered. From male and 

sperm gene expression datasets, we have identified candidate secondary Argonautes that could 

be involved in the downstream function of the ALG-3/4 pathway (Unpublished data, Mello Lab). 

Here we report that the addition of the genetic mutants wago-1, wago-9, and wago-10 produce 

significantly lower broods and their compounded effect can be seen in the overall phenotype of 

the worm. In addition, further investigation is needed to determine whether any of the WAGO 

mutant strains in this study have a similar temperature sensitive male sterility due to a sperm 

defect in spermiogenesis, which emulates that of the alg-3/4 double mutant phenotype. 
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1 Introduction 

1.1 Introduction to RNAi 
The world of molecular medicine is constantly growing and can be largely attributed to 

the discovery of new scientific and biological mechanisms. These discoveries allow scientists to 

think of new engaging questions and even question certain beliefs that were once thought to be 

absolutely true. RNA interference is one particular scientific finding that has shaped the way 

molecular biologists view and postulate about gene regulation. The hope is that this extremely 

complex mechanism can be fully understood and used for therapeutic purposes through its ability 

to decrease the expression of pathogenic genes, most notably oncogenes (Mello, 2004). For this 

purpose, it is imperative that the numerous pathways that exist within the realm of RNA 

interference are extensively studied and understood.  

1.2 Discovery of RNAi 
The discovery of RNA interference came about from experiments in the early 1990’s that 

incorporated scientists testing color manipulation of petunias. Scientists were attempting to 

change the color of the petunia from a normal shade of purple to a very intense, dark shade of 

purple by injecting mRNA encoding a pigmentation gene that would exaggerate the color if 

overexpressed. In a strange turn of events, the color of the petunia turned either partially white or 

completely white. This suggested that the gene suppressed the production of the pigment rather 

than amplified it. In the late 1990s, Dr. Craig Mello and Dr. Andrew Fire first discovered RNA 

interference in animals while using the nematode, C. elegans, to study other cellular processes. 

Through several experiments of theirs, Dr. Mello and Dr. Fire determined that this newly 

founded gene-silencing mechanism was triggered by double-stranded ribonucleic acid (dsRNA) 

and existed in many living organisms (Mello, 2004). Soon after this discovery, Dr. Mello and Dr. 
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Fire labeled this mechanism as RNA interference (RNAi) and in 2006 were awarded The Nobel 

Prize in Physiology or Medicine for their discovery. 

1.3 Caenorhabditis elegans 
Caernorhabditis elegans, the free-living nematode for which experiments on RNA 

interference are easily conducted, possesses many notable features that make it such a widely 

used experiment model system (Figure 6A & 6B). C. elegans has proved to be a very important 

experimental model system in studying cell differentiation due to its simple and easily 

manageable genome. The genome of the nematode possesses approximately one hundred million 

base pairs, which is roughly 1/30 the size of the human genome. The determining of the 

complete sequence for C. elegans genome has proved to be very beneficial in RNAi research, 

especially since its 20,000 genes are equal in number to the human genome. The nematode can 

be easily grown and genetically manipulated making research more convenient for researchers. 

Another important trait that makes the C. elegans such a desirable experimental model system is 

that it’s transparent, which makes it a powerful tool for cell biology research (Cooper, 2009). 

Interestingly, C. elegans are comprised of both hermaphrodites and males and recognition of the 

males is only possible by observing their distinctive arrow-shaped tail.  

1.4 The RNAi mechanism 
The RNAi mechanism occurs in the nematode and exists within many living organisms 

and plays an important role in defending living cells against parasitic genomic elements such as 

transposons and viroids, as well as regulating gene expression. The mechanism of RNA 

interference is one that contains a great amount of complexity and is dependent upon many 

proteins and enzymes within the cytoplasm of living cells. The “Central Dogma” in the world of 

molecular biology is the genetic flow of information from the DNA to the RNA, which then is 

used as a template to synthesize proteins. It was found that RNA can be regulated post-
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transcriptionally by RNAi and small RNAs to control of gene expression (Joshua-Tor, 2010). 

The RNAi mechanism is initiated by introduction and recognition of dsRNA by an enzyme 

called Dicer. Dicer can then cleave this dsRNA into 21-22 nucleotide (nt) small interfering 

RNAs (siRNAs). siRNAs are loaded onto Argonaute (AGO) proteins and then target specific 

messenger RNAs (mRNAs) that have sequences complementary to the siRNA by base pairing 

(Fischer, 2010). These Argonaute proteins can be classified into three paralogous groups: 

Argonaute-like proteins, which are similar in comparison to Arabidopsis thaliana AGO1 and 

human AGOs; Piwi-like proteins, which are more closely related to D. melanogaster PIWI (P-

element induced wimpy testis), but only in animals and expressed in the germline; and the 

Caenorhabditis elegans-specific argonautes WAGO (worm-specific Argonaute) (Simard, 2008) 

(Figure 3). Argonaute proteins have been identified in gene silencing in most organisms, which 

include plants, fungi, protozoans and metazoans including humans (Conine, 2010). 

Soon after the discovery of RNAi, by supplying exogenous dsRNA it was determined 

that many organisms, including plants and mammals, could produce antisense small RNAs (~20 

– 30nts) targeting mRNAs and other genomic sequences naturally (Mello, 2004). Rather than 

living cells receiving dsRNA by either viral dsRNA or injection of dsRNA, dsRNA can come 

from within by naturally occurring processes. It has been recently discovered that there are 

triggers other than dsRNA, most notably single-stranded RNA (ssRNA). These endogenous 

small RNAs include miRNAs, piRNAs and endo-siRNAs (Vasale, 2010). microRNA (miRNA) 

act as the post-transcriptional regulators and RNA sequences that bind to target mRNAs via 

complementary sequences to induce gene silencing. miRNAs are genomically encoded genes 

that encode for RNAs that form double-stranded hairpins (Fischer, 2010). These hairpins are 

recognized by a series of enzymes to create the mature 21-22 nucleotide miRNA that can be 
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loaded into miRNA-specific argonautes to form miRISC complexes. The miRISC complex can 

then target mRNAs through imperfect complementary base pairing to regulate the mRNAs either 

post-transcriptionally or translationally (Fischer, 2010).  

1.5 Pathways involved in Endogenous RNAi 
The Piwi-interacting RNAs (piRNAs) are a class of 24-31 nucleotide RNAs that are 

processed in a Dicer-independent manner to regulate targets in animals. This class of small 

endogenous RNAs associates with Piwi proteins and play a significant role in transposon 

silencing in flies, while they are restricted mostly to male germ cells. The generation of piRNAs 

relies instead on the endonuclease activity of Piwi-like proteins. It has been observed through 

experiments involving the experimental model system, D. melanogaster, that PIWI can promote 

the production of piRNAs by increasing the transcription of piRNA loci that are localized in the 

subtelomeric regions (Simard, 2008). piRNAs, in C. elegans known as 21U-RNAs, are a class of 

germline specific RNAs that target and repress selfish genomic elements (Batista, 2006). Other 

endogenous small pathways have been described in a variety of organisms. However, the 

organism to date with the largest complement of these pathways is C. elegans. There are many 

Endo-RNAi pathways in C. elegans including the miRNA pathway, the 21U-RNA pathway or 

piRNA pathway, the CSR-1 22G-RNA pathway required for chromosome segregation and the 

WAGO 22G-RNA pathway required for genome surveillance (Figure 5).  

microRNAs, piRNAs, and endogenous siRNAs are conserved across the phyla. Of all the 

small RNAs, endo-siRNAs are the least well studied. The nematode, C. elegans, proves to be a 

great experimental model because it contains a complex repertoire. Through scientific research 

experiments using worms, it is possible to better understand the role and interactions of the endo-

siRNAs in the worm that may have analogous functions in mammals, including humans.  
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Scientists have identified a total of 24 argonautes in C. elegans including 12 worm-

specific. However, there is still uncertainty as to the specific function of some of these worm-

specific argonautes. The one dilemma faced by scientists is the redundancy and specific function 

of these argonautes across the scope of Endo-RNAi pathways. We do know that exogenous 

RNAi trickles into the WAGO pathway. Scientists know this by eliminating all 12 WAGOs in 

the exogenous RNAi pathway, thus inducing no RNAi. This mechanism involves dsRNA 

triggering the Dicer enzyme to cleave the dsRNA, followed by the loading of the anti-sense 

strand onto the RDE-1 Argonaute. RDE-1 is thought to recruit an RNA-dependent RNA-

polymerase (RdRP) to then exploit the target mRNA as a template for the production of 

secondary small RNAs, also termed 22G-RNAs. The 22G-RNAs are then loaded onto WAGOs 

to be brought to either the cytoplasm for mRNA turnover or to the nucleus for transcriptional 

silencing (Yigit, 2006). One of the most interesting molecular actions is the involvement of the 

worm argonautes that leads scientists to question how involved is the WAGO pathway in the 

plentiful downstream steps of RNAi. 

1.5.1 CSR (22G-RNAs) 
As mentioned previously, the CSR pathway is responsible for the production of 22G-

RNAs in the germline of C. elegans. The CSR-1-interacting small RNAs (22G-RNAs) are 

members of a class of endogenous small RNAs that are neither microRNAs nor piRNAs. 

Through experimental research it has been deduced that the CSR-1-interacting small RNAs are 

antisense to thousands of germline-expressed protein-coding genes. CSR-1 and other cofactors 

such as the RNA-dependent RNA polymerase EGO-1, DRH-3, and a Tudor-domain protein 

EKL-1 localize to chromosomes and are required for proper chromosome segregation 

(Claycomb, 2009). These profuse small RNAs are typically 22 nucleotides in length and contain 

a 5’ triphosphate and a strong affinity for a 5’ Guanosine (Ambros et al., 2003). The genes that 
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are usually targeted by the CSR-1 22G-RNAs are genes that have mRNAs expressed in the 

germline, embryos, and oocytes. CSR-1 and other protein components of the 22G-RNA pathway 

localize to P granules, which are found in close proximity on the cytoplasmic face of nuclear 

pores. The localization to P granules is a very similar action that takes place with the worm-

specific Argonaute 1 (WAGO-1) of the WAGO pathway. It is also now known that WAGO-1 

interacts with a nonoverlapping set of 22G-RNAs that function to target transposons and other 

pseudogenes. This suggests that the 2 separate germline 22G-RNA pathways share core 

components while both functioning to physically maintain the genome by chromosome 

segregation and suppression of transposons and other harmful elements (Claycomb, 2009). The 

worm-specific Argonaute (WAGO) pathway is primarily responsible for silencing transposons, 

pseudogenes, cryptic loci, and certain protein-encoding genes. 

1.5.2 Piwi-interacting RNAs (21U-RNAs) 
piRNAs in C. elegans primarily function to mediate the genome-wide surveillance of 

germline transcripts and seek out foreign sequences while, simultaneously, endogenous 

germline-expressed genes are actively protected from piRNA-induced silencing (Shirayama, 

2012). It is known that the PRG-1 protein is vital for initiation in silencing transgenes that are 

contrived to contain complementarity to endogenous 21U-RNAs (Gu, 2012). The prg-1 gene 

itself is the regulator for germline development and fertility, but is not fully involved in 

transposon silencing in the germline. The prg-1 gene has been important in discovering the 

correlation between the 21U-RNA and WAGO pathways. Through examining any changes in 

22G-RNA levels it was determined that the worm-specific Argonaute (WAGO) pathway was the 

pathway primarily affected by the prg-1 mutant gene (Gu, 2012). The increased mRNA 

expression of WAGO mRNA targets prg-1 mutant worms also indicates that the 21U-RNA and 

WAGO endogenous pathways are interconnected. This leads scientists to further believe that the 
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21U-RNA pathway, though separated, progresses into the WAGO pathway and affects the 

functions of these worm-specific argonautes. Though PRG-1 produces 21U-RNAs that target 

transposons there is a secondary step, which leads to the production of 22G-RNAs that are 

loaded into the worm-specific argonautes (WAGO) to target mRNAs (Gu, 2012).  

1.5.3 Worm Argonautes (WAGOs) (22G-RNAs) 
 The WAGO pathway is involved in the production of 22G-RNAs. These worm-specific 

argonautes mainly function in the cytoplasm, though NRDE-3, WAGO-9, and WAGO-10 can 

serve to function in the nucleus. Therefore, these are some of the few known argonautes that can 

bind siRNAs produced by RNA-dependent RNA Polymerases that act upon mRNA templates 

within the cytoplasm and reallocates to the nucleus of the cell. It was only recently discovered 

that WAGO-9 and WAGO-10 are found in the nucleus as well (Buckley, 2011). This is 

extremely important for the execution of RNAi in the nuclei of C. elegans. With a total of 24 

distinct Argonaute proteins in C. elegans, many carry out different functions in the germline. 

These 22G-RNAs that target mRNA, including those in the CSR endogenous pathway, are 

referred to as Secondary argonautes.  

1.5.4 ERI (26G-RNAs) 
A class of 26 nucleotide small RNAs called the 26G-RNAs were first identified in deep-

sequencing datasets in C.elegans as part of the previously described Dicer-ribonuclease-

dependent endogenous small RNA pathway, called the ERI endo-RNAi pathway, and a subset of 

these were noted to be enriched for spermatogenesis-expressed mRNA targets (Conine, 2010). 

The ERI pathway can be broken down into an embryonic pathway and a sperm pathway. Both 

the embryonic and sperm pathways involve RNA-dependent RNA polymerase-mediated small 

RNA biogenesis; these small RNAs are loaded into different argonautes (ERGO-1 embryo) 



 13 

ALG-3/4 sperm (Pavelec, 2009). ALG-3/4 is required for the biogenesis of 26G-RNAs and 

components of the ERI pathway (Han, 2009).  

 

1.6 Project mission 
It is well known that these endogenous RNAi pathways (the 21U-RNA, CSR, WAGO, 

and ERI pathways), including the ALG-3/4 pathway, contain primary small RNAs and 

argonautes that result in the production of 22G-RNAs. One interesting similarity between all of 

these endogenous RNAi pathways is that they ultimately channel into the worm-specific 

argonautes in downstream steps. One of the questions to be answered is since it is already known 

that primary siRNAs and argonautes lead to the production of secondary argonautes, which 

secondary argonautes are involved in the ALG-3/4 pathway and uncovering how these 

argonautes regulate their targets. From male and sperm gene expression datasets, candidate 

secondary argonautes that could be involved in the downstream function of the ALG-3/4 

pathway have been identified (Unpublished data, Mello Lab). Using a combination of genetics 

and molecular biology can provide further insight into which of these secondary argonautes are 

required for the function of the ALG-3/4 sperm small RNA pathway and identify those that are 

temperature-sensitive sterile.  
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2 Materials and Methods 
 

2.1 Worm Strains 
Caernorhabditis elegans culture and genetics were essentially as described (Brenner, 

1974). The Bristol strain (N2) was used as the standard wild-type strain. fog-2 (q71) was used 

during propagation in order to increase the population of males in each strain. fog-2 is a germline 

specific sex determination gene that is required for hermaphrodite spermatogenesis. Other alleles 

used in this study were as follows: wago-1 (tm1414), wago-9 (tm1200), wago-10 (tm1132), 

c14b1.7 (tm1119), and csr-1.  

 

2.2 Screening for Candidates 
  The genes selected for use in this study were selected as candidates from genome wide 

mRNA and small RNA sequencing datasets from males and sperm that focused on locating the 

genes involved in the spermatic pathway. These secondary argonaute candidates are thought to 

play a role in the downstream steps of ALG-3/4 included: wago-1 (tm1414), wago-9 (tm1200), 

wago-10 (tm1132), and c14b1.7 (tm1119). 

 

2.3 PCR amplification for mutant verification 
Amplifications were conducted in 20 μL reactions containing 13.4 μL of deionized water, 

2.5 μL of 10x Ex Taq Buffer, 2.0 μL of dNTPs, 1.0 μL of Forward and Reverse primer each, and 

0.1 μL of Ex Taq polymerase. Samples were amplified by the process; wago-1 primers: 59.0°C 

Annealing temperature, 2:00 min. Elongation time; wago-9 primers: 55.0°C Annealing 

temperature, 1:20 min. Elongation time; wago-10 primers: 55.0°C Annealing temperature, 

1:30 min. Elongation time; c14 primers: 55.0°C Annealing temperature, 1:30 min. 
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Elongation time and then repeated for 30 cycles. Following amplification, 5 μL of 6x sample 

loading dye containing bromophenol blue tracking dye was added to each sample, which 

contained 25 μL before addition. Samples were then ran on a 1% agarose gel with a 100bp 

and 1kb ladder at 100V until the tracking dye had migrated three fourths of the length of 

the gel. Upon completion, the 1% agarose gel was observed under the UV light and a digital 

photo was taken showing the ethidium bromide stained DNA in each lane.  

 

2.4 Creating the wago-9 (tm1200); wago-10 (tm1132) double mutant 
Crosses were performed on NGM (Nematode Growth Medium) mating plates using 7 

males of the wago-9 strain and 3 hermaphrodites of the wago-10 strain, as well as vice versa. 

Crosses were placed at 20°C for approximately 24 hours. The hermaphrodites for each cross 

were picked from each mating plate and single-picked to separate OP50 plates. The 

hermaphrodites were then placed back at 20°C for approximately 24 hours. At the end of the 24 

hours, plates were observed and scanned for males to determine whether crosses were successful 

or not. For final verification that the desired strain was acquired, 4 – 5 L1 progeny from the 

single-picked hermaphrodite OP50 plates were placed in 5 μL of solution for worm lysis. The 

worm lysis solution consisted of 2 μL protease K and 100 μL worm lysis buffer. Worm lysis 

polymerase chain reaction (WL-PCR) for the wago-9; wago-10 strain was prepared in 5 μL 

reactions of a worm lysis buffer/Protease K mixture in order to lyse the worms. Each tube 

contained 4 -5 young progeny (L1 or L2) worms that were picked into PCR tubes filled with the 

worm lysis buffer/Protease K mixture and was number labeled (i.e. #1-10). 
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2.5 Creating the wago-9;c14;wago-10 triple mutant 
Crosses were performed on NTGD mating plates using 7 males of the wago-9;c14 strain 

and 3 hermaphrodites of the wago-10 strain, as well as vice versa. Crosses were placed at 20°C 

for approximately 24 hours. The hermaphrodites for each cross were picked from each mating 

plate and single-picked to separate OP50 plates. The hermaphrodites were then placed back at 

20°C for approximately 24 hours. At the end of the 24 hours, plates were observed and scanned 

for males to determine whether crosses were successful or not. For final verification that the 

desired strain was acquired, 4 – 5 L1 progeny from the single-picked hermaphrodite OP50 plates 

were placed in 5 μL of solution for worm lysis. The worm lysis solution consisted of 2 μL 

protease K and 100 μL worm lysis buffer. Worm lysis polymerase chain reaction (WL-PCR) for 

the wago-9; c14;wago-10 strain was prepared in 5 μL reactions of a worm lysis buffer/Protease 

K mixture in order to lyse the worms. Each tube contained 4 -5 young progeny (L1 or L2) worms 

that were picked into PCR tubes filled with the worm lysis buffer/Protease K mixture and was 

number labeled (i.e. #1-10). 

 

2.7 Creating the wago-9;c14;wago-10;wago-1 quad mutant 
Crosses were performed on NTGD mating plates using 7 males of the wago-9;c14;wago-

10 strain and 3 hermaphrodites of the wago-1 strain, as well as vice versa. Crosses were placed at 

20°C for approximately 24 hours. The hermaphrodites for each cross were picked from each 

mating plate and single-picked to separate OP50 plates. The hermaphrodites were then placed 

back at 20°C for approximately 24 hours. At the end of the 24 hours, plates were observed and 

scanned for males to determine whether crosses were successful or not. For final verification that 

the desired strain was acquired, 4 – 5 L1 progeny from the single-picked hermaphrodite OP50 

plates were placed in 5 μL of solution for worm lysis. The worm lysis solution consisted of 2 μL 
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protease K and 100 μL worm lysis buffer. Worm lysis polymerase chain reaction (WL-PCR) for 

the wago-9; c14;wago-10;wago-1 strain was prepared in 5 μL reactions of a worm lysis 

buffer/Protease K mixture in order to lyse the worms. Each tube contained 4 -5 young progeny 

(L1 or L2) worms that were picked into PCR tubes filled with the worm lysis buffer/Protease K 

mixture and was number labeled (i.e. #1-10). 

 

2.8 Brood size counting for all strains 
Once all desired genotypes and mutant strains were acquired (wago-1, wago-9, wago-10, 

c14, wago-9;c14, wago-9;wago-10, wago-9;wago-10;c14, and wago-1;wago-9;c14; wago-10, 

each strain was grown synchronously to maintain the population. Simultaneously, 15-20 

hermaphrodites were single picked onto OP50 plates for each strain. The hermaphrodites were 

placed at both 20°C and 25°C for a period of 24 hours. The hermaphrodite for each strain on 

every plate was picked to a new OP50 plate after the initial 24-hour time had elapsed; the 

previous plate that the hermaphrodite resided on to lay eggs was then counted and recorded. This 

process was repeated until each hermaphrodite (original mother) had stopped laying eggs for a 

period of two consecutive days. For all strains, the brood size counting for each hermaphrodite 

was recorded daily and tallied at the end of the brood size counting process for comparative 

analysis.  
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3 Results 
 

From genome wide mRNA and small RNA sequencing datasets from males and sperm, 

candidate secondary argonautes were identified that could be involved in the downstream 

function of the ALG-3/4 pathway (Unpublished data, Mello Lab). Each WAGO strain used in 

this study, as well as CSR-1, was selected from an initial experiment (Conine) that observed 

levels of gene expression in the Endogenous RNAi Pathway. These worm argonautes were also 

selected due to their proximity to one another according to the Argonaute Tree (Figure 3). In 

order to test the brood size for each of the proposed mutant strains, each mutant strain needed to 

be created. Using standard genetic cross techniques, the mutant strains were successfully created 

and propagated to use in multiple rounds of brood size counting.   

 

3.1 Schema and brood analysis: wago-9; wago-10 (Double) mutant 
The genetic cross map (Figure 4A) was used to generate the desired phenotype of wago-

9;wago-10. In the first type of cross, wago-9 males were mated with wago-10 hermaphrodites. 

The reciprocal involved wago-10 males that mated with wago-9 hermaphrodites. wago-9 and 

wago-10 mutant strains were both propagated to acquire males used for both types of crosses. 

This particular cross was especially important because it established a base in setting up the rest 

of the mutant crosses in this experiment.  

The brood size analysis (Figure 7) clearly shows that the wago-9 and wago-10 single 

mutant strains showed a much higher brood at 25oC than at 20oC. wago-9 single mutant strain 

produced an average brood count of approximately 212 at 20oC while the same strain at 25oC 

produced an average count of 130, a reduction of over 40%. Similarly, wago-10 single mutant 

strain exhibited a dramatic decrease from 20oC to 25oC: 211 to 117, respectively. The wago-
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9;wago-10 double mutant strain produced an almost identical brood size to that of both wago-9 

and wago-10 single strains at 20oC, 214. However, over a 4-fold decrease in brood size was 

observed in the double mutant at 25oC (average brood size of 51) when compared to the wago-9 

and wago-10 single mutant strains. The more severe decrease in brood size means that they may 

act in synergy and can be considered related in the same pathway. As these 2 genes, wago-9 and 

wago-10, are believed to be linked and participate in the same pathway, it is worth investigating 

whether the addition of a third mutant gene will lower the brood size counts at 25oC and generate 

a similar yet more severe phenotype.  

 

3.2 Schema and brood analysis: wago-9; c14; wago-10 (Triple) mutant 
Similarly to the double mutant strain, the triple mutant was created by crossing wago-

9;c14 and wago-10 mutant strains. The genetic cross map (Figure 4B) was used to generate the 

desired phenotype of wago-9;wago-10;c14. wago-9;c14 and wago-10 worms both propagated to 

acquire males used for both types of crosses. In the first type of cross, wago-9;c14 males were 

mated with wago-10 hermaphrodites. The reciprocal involved wago-10 males that mated with 

wago-9;c14 hermaphrodites. Though this is a similar schematic to how the double mutant strain 

was created, it is a necessary construct due to the known proximity of the genes. The c14 gene is 

known to be located almost directly next to the wago-9 gene on chromosome III within the C. 

elegans genome. Verification was done using wago-9 and wago-10 primers for the same set of 

samples/worm candidates (Figure 1A & 1B). A discrete band seen near 400 base pairs indicated 

a homozygous mutant, thus indicating that worm candidate is the Double mutant.  

The brood sizes for each of the wago-9;c14 and wago-10 mutant strains were both well 

above 200 (224 and 211, respectively) at 20oC (Figure 7). The same strains at 25oC both saw 

decreases of approximately 50% as wago-9;c14 brood dropped from 224 to 124 at the elevated 
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temperature while wago-10 decreased from 211 to 117 (same data from the comparative analysis 

for the double mutant). The newly engineered wago-9;c14;wago-10 triple mutant strain shows 

remarkably different counts in brood size. Triple mutant at 20oC produced at baseline brood 

count of 221. At 25oC a dramatic decrease in number of progeny was seen in the Triple mutant at 

25oC. This decrease in brood size was nearly four-fold as the counts at 20oC (221) dropped to 61 

at 25oC. As previously demonstrated in the double mutant, the compounded decrease in brood 

size counts by adding mutant genes translates that they act in sync with one another within the 

same pathway. One item to take note of is the slight increase in brood size from the double to the 

triple mutant at the elevated temperature. However, the resulting dramatic decrease in progeny 

count in the Triple mutant strain still proves that these genes are related and function in the same 

pathway. To examine whether the addition of another mutant strain has a compounded effect on 

the phenotype of these C. elegans, the addition of another mutant gene was conducted. 

 

3.3 Schema and brood analysis: wago-9; c14; wago-10; wago-1 (Quad) mutant 
The last of the C. elegans worms to be genetically engineered and constructed was the 

Quad mutant. The genetic cross map (Figure 4C) was used to generate the desired phenotype of 

wago-9;wago-10;c14;wago-1 (Quad). wago-9;c14;wago-10 (Triple) and wago-1 worms both 

propagated to acquire males used for both types of crosses. In the first type of cross, wago-

9;c14;wago-10 males were mated with wago-1 hermaphrodites. The reciprocal involved wago-1 

males that mated with wago-9;c14;wago-10 hermaphrodites. However, this genetic cross was 

executed by mating Triple mutant males with wago-1 hermaphrodites. Contrary to the double 

and triple, only crossing Triple mutant males with wago-1 mutant hermaphrodites created the 

Quad mutant. Verification for the Quad mutant was conducted by PCR analysis and used wago-

1, wago-9, and wago-10 primers for the same set of samples/worm candidates (Figure 2). The 
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clear, lone band in lane 8 of the samples using the wago-1 primers indicated the desired 

homozygous mutant or Quad mutant strain.  

Having known the brood size from the newly genetically engineered Triple mutant, the 

thought was that the brood size for the Quad mutant would be significantly lower than that of the 

Triple and Double mutant strains. The Triple mutant brood of 221 was significantly higher than 

that of the wago-1 at 20oC, which was 93. At an elevated temperature of 25oC, the wago-1 single 

mutant strain produced a lower average brood size compared to the Triple mutant. Triple had 

produced an average brood size of 61 while wago-1 generated an average progeny count of 44. 

The brood size analysis for the Quad mutant showed that the addition of the wago-1 mutant gene 

has decreased the average brood. At 20oC the Quad mutant produced an average brood of 83 

while decreasing in brood size by over 50% at 25oC to result in an average of 40.  
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4 Discussion 
4.1 Key findings 
  The purpose of this study was to analyse and determine the role of a group of particular 

secondary argonautes and how they are regulated in the ALG-3/4 sperm small RNA pathway. 

Through genetically engineering the C. elegans, each mutant strain phenotype was able to be 

monitored and provide insight into the possible interactions and consequences of mutating these 

particular secondary worm argonautes. Key findings from this study include: 1) In creating the 

quad mutant, a successful genetic cross could only be obtained by crossing triple males with 

wago-1 hermaphrodites, 2) the brood sizes did not progressively decrease from the double to 

triple to quad mutant strain as was originally hypothesized, however, the combination of the 

mutations generally resulted in a lower brood size than the single mutant strains on their own, 3) 

the phenotype for each of the genetically engineered mutant strains appeared to become more 

“sluggish” and “sick” with each mutant cross made (double triple quad), and 4) that wago-1 

showed a very similar phenotype to that of the quad mutant in brood size, mortality rate, and 

physical appearance.  

4.2 The Quad mutant genetic cross was successful only one particular way 
The genetic crosses for creating the double and triple mutant strains proved to be 

relatively easy compared to designing the quad mutant. Designing the double mutant strain was 

made possible by crossing wago-9 males with wago-10 hermaphrodites and vice versa. The same 

concept could be used for creating the triple mutant strain: crossing wago-9;c14 males with 

wago-10 hermaphrodites and vice versa. It was noticed when trying to create the quad mutant 

that the wago-1 strain appeared very unhealthy and would become increasingly unhealthy with 

each day that passed while propagating the population to the maintain the population. Initial 

attempts at crossing wago-1 into the triple mutant were unsuccessful and took significantly 
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longer to engineer the quad because crossing wago-1 hermaphrodites into triple mutant males 

could only successfully make the cross. The lack in ability for the wago-1 males to fertilize the 

triple mutant hermaphrodites could signify that there is a large defect in the male sperm. This 

could be an important finding for scientists that are interested in a better understanding for the 

ALG-3/4 pathway and how it promotes thermotolerant sperm development. Consequently, this 

could also preface uncovering the ways in which wago-1, wago-9, wago-10 and c14 are 

regulated for fertility, germline maintenance, and development in a multitude of organisms 

(Conine, 2010).  

4.3 Brood sizes did not decrease with each genetic cross  
The most glaring finding in this study concerned the brood sizes for each mutant strain. 

Each of the mutant strains used were temperature-sensitive sterile and showed lower brood 

counts at elevated temperatures. This parallels a prior finding that core body temperatures for 

most mammals are lethal to sperm and external male gametogenesis (Conine, 2010). Since each 

of the mutant strains produced a lower amount of progeny the finding was not unexpected. 

However, the lack of pattern or correlation between the double, triple, and quad brood counts 

was extremely fascinating. Though the triple mutant contained an additional mutation compared 

to the double mutant, it generated a higher brood at 25oC. This means that the addition of the 

c14-mutated gene did not increase the defectiveness in the male sperm and rather encouraged a 

slight increase in sperm production and effectiveness. The slight increase in brood size count 

from the Double to Triple mutant indicates that c14 mutant gene, though close in proximity to 

wago-9 on chromosome III, does not increase defectiveness in male sperm (C.C. Conine, 

personal communication).  
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Though the brood size counts did not progressively decrease with each mutant cross, the 

difference in counts between the single mutant worms and the combined mutant worms were 

especially significant. At an elevated temperature of 25oC, both wago-9 and wago-10 single 

mutant strains had average progeny counts of over 117 while wago-9;c14 mutant had an average 

count of 124, which is significantly higher than wago-1 single mutant’s brood of 44. Meanwhile 

each of the combined mutant strains obtained brood counts of 61 or lower. This dramatic 

decrease shows that the combined interactions of these genetic mutations lead to a more 

temperature-sensitive sterile worm. Interestingly, csr-1 mutants produced the lowest brood size 

of all strains in this study with an average count of 1.5 at 25oC. Prior studies showing that CSR-1 

interacts with chromatin at target loci and protein-coding domains to promote their proper 

organization within the holocentric chromosomes of C. elegans are consistent with these findings 

since the csr-1 mutants have also been proven to have severe chromosome segregation defects. 

The ultimate result of this chromosome segregation defect is embryonic lethality, which can lead 

to a very low brood count.  

4.4 Quad mutant phenotype is due to the loss of wago-1 
From the brood size analysis in the combined WAGO mutants and wago-1 single mutant 

a comparison to the alg-3;alg-4 and MAGO (multiple Argonaute) strains can be drawn. The alg-

3;alg-4 double mutant was reported to cause complete temperature-sensitive sterility, which is 

the same for the MAGO-12 mutant. Since both MAGO-12 and alg-3;alg-4 mutant strains cause 

complete sterility at elevated temperatures and csr-1 mutants produce an almost completely 

sterile worm with known chromosome segregation defects, it can be inferred that the 

combination of the mutations that exist within both the quad mutant and wago-1 single mutant 

interfere with proper chromosome segregation as well, but to a lesser degree. Though this 

comparison can be made, it does not shown that wago-1 is involved at the ALG-3/4 pathway. 
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During the propagation process, before the brood size analysis was conducted, initial 

observations of the phenotypes for each of the strains was noted. wago-9 and wago-10 single 

mutants did not display any signs of significant morphological issues. These would include 

overall size of the worm and changes in organelle structure. In addition, wago-9; c14 did not 

display any eye-catching deformities or abnormalities even with the additional c14 mutated gene. 

The first of the notable morphological issues and abnormalities were initially observed in the 

wago-9;wago-10 double mutant. The double mutant’s organelles were intact and were of proper 

size in relation to the other single mutants. However, the double mutant strain appeared to be a 

bit less mobile than the previously mentioned single mutant strains. The most notable of the 

mutant strains were both the wago-1 single mutant and the quad mutant. These strains were both 

very “sluggish” and “sick” in appearance, which could translate to something else happening 

within the worm’s genome that is causing these strains to appear very dysfunctional. The quad 

mutant and wago-1 single mutant also had the highest mortality rates, which was not exhibited 

by any of the other strains in the study. The high death rate for both can be attributed to the 

sickness and abnormalities that were initially seen in the two strains during propagation.  

4.5 Future Experiments 
The collective findings and results of this study can direct scientists towards further 

research and experiments in order to better understand the roles that these worm argonautes play 

in the endo-RNAi pathway. Though initially planned as part of this study, immunocytochemistry 

could be used to find where these WAGOs are localized in the male sperm and germline of each 

mutant strain. This would be important since the phenotype for these strains have been acquired 

and have a better understanding for what is occurring on the “outside”; the next step is acquiring 

information as to what is happening “inside”. Another experiment worth considering is to cross 

the double, triple, and quad mutant strains with the N2 wild-type strain to observe whether there 
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is an increase in the broods or not. This would provide insight as to whether there is a partial 

rescue observed from mating these mutant strains with the wild-type strain, as previously 

conducted with MAGO-12 mutant by Conine et al., 2010. Lastly, it has been shown that wago-1 

mutants have a sterility phenotype, but not yet known if this is male-specific. Further 

experimentation into the gender specificity of the wago-1 mutant phenotype can be conducted to 

close this gap.  

The creation of the double, triple, and quad mutant strains have shown that there is not a 

compounded effect on the thermotolerance of male sperm. Though there is a dramatic decrease 

in the number of progeny for all of the genetically engineered mutant strains, the brood size 

counts tell us that the compounded mutations in these genes lead to what appears to be a defect 

in the male sperm, but cannot be confirmed until further experiments are conducted. In 

conclusion it has been shown that the phenotype of the quad is very similar to wago-1 mutant, 

which means that the phenotype observed in the quad mutant is due to the loss of wago-1. 

Further experimentation is required in order to answer whether any of the WAGO mutants have 

a similar phenotype to that of the ALG-3/4 mutants, which is temperature-sensitive male sterility 

due to a sperm defect in spermiogenesis and if the ALG-3/4 pathway is feeding into the WAGO 

pathway in downstream steps that regulated the function of these small RNAs.  
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Figures 
 
A) 

 
 
B) 

 
 

Figure 1. Verification of the Triple mutant strain by Polymerase Chain Reaction 
PCR pictures showing verification for confirming the Triple mutant strain. The red arrows are directed at candidate 
worm #34, which is the appropriate candidate. Figure 1A displays a PCR gel using wago-10 primers. The red box 
encompasses the distinctive band that represents the desired homozygous mutant. Figure 1B displays a PCR gel 
using the same samples as in Figure 1A with the exception of using wago-9 primers and, therefore, no such 
distinctive bands should be seen.  
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Figure 2. Verification of the Quad mutant strain by Polymerase Chain Reaction 

Picture of PCR showing the verification for the Quad mutant strain. Eight candidates were analyzed using 3 
different primers sets (wago-1, wago-9, and wago-10). The red arrow indicates the correct worm candidate due to 
the distinctive band using the wago-1 primer set.  
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Figure 3: Argonaute Tree  

Phylogenetic tree of representative Argonaute proteins in fungi, plants, and animals (proposed by Colin Conine). 
The Argonaute group with representatives in all three kingdoms is labeled in black font. There is an expanded group 
of Argonaute proteins that found in C. elegans are labeled in red while the PIWI group common to all metazoans is 
labeled in green. (ce: Caenorhabditis elegans, at: Arabidopsis thaliana, hs: Homo sapiens, sp: Schizosaccharomyces 
pombe).  
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Figure 4. Schematic sketches for creating the Double (A), Triple (B), and Quad (C) mutant 
strains 
 
A) Picture drawing of the genetic cross between wago-9 males and wago-10 hermaphrodites in order to create the 
wago-9;wago-10 (Double) mutant strain. B) Picture Drawing of the genetic cross between wago-9;c14 mutant males 
and wago-10 mutant hermaphrodites, which resulted in the wago-9;c14;wago-10 (Triple) mutant strain. C) Picture 
drawing of the genetic cross between wago-9;c14;wago-10 (Triple) mutant males and wago-1 mutant 
hermaphrodites, thus creating the wago-9;c14;wago-10;wago-1 (Quad) mutant strain.  
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Figure 5. Endogenous RNAi Pathway and substituent pathways 

Diagram depicting the branches and extensions that represent RNA interference and Post-Transcriptional Gene-
Silencing (PTGS). The diagram displays RNAi broken into two distinct pathways: Endogenous and Exogenous. The 
Endogenous RNAi pathway involves four separate, yet cooperative pathways: the piRNA pathway, CSR pathway, 
WAGO pathway, and the ERI pathway. The yellow highlight represents the pathway that is the primary focus and 
where the worm Argonaute proteins used in this study are derived.  
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B) 
 

 
Figure 6: Adopted from WormAtlas (Altun & Hall, 2009) 

 
Figure 6. Anatomy of Caenorhabditis elegans  

A) The anatomy of a C. elegans hermaphrodite in both detailed drawing and image from microscopic view. B) The 
anatomy of a C. elegans male in both detailed drawing and image from microscopic view, which indicates the 
distinctive tail that allows the male to be easily recognized.  
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Figure 7. Brood size analysis 

The box and whisker plot shows the brood size numbers for all strains used in this study. The y-axis represents the 
number of progeny produced by each particular mutant strain. Brood size analysis conducted at 20C used red to 
represent the 75% percentile and blue to represent the 25% percentile. For 25C, green was used to indicate the 75% 
percentile and yellow was used for the 25% percentile. The line that separates red/blue and green/yellow is the 
average for each brood. Error bars were used to show the range of the brood counts for each strain. 
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