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Abstract 

 To extract data from highly sophisticated sensor networks, algorithms derived 

from graph theory are often applied to raw sensor data.  Embedded digital systems are 

used to apply these algorithms.  A common computation performed in these algorithms is 

finding the product of two sparsely populated matrices.  When processing a sparse 

matrix, certain optimizations can be made by taking advantage of the large percentage of 

zero entries.  This project proposes an optimized algorithm for performing sparse matrix 

multiplications in an embedded system and investigates how a parallel architecture 

constructed of multiple processors on a single Field-Programmable Gate Array (FPGA) 

can be used to speed up computations.  Our final algorithm was easily parallelizable over 

multiple processors and, when operating on our test matrices, performed 49 times the 

operations per second than a normal full matrix multiplication.  Once parallelized, we 

were able to measure a maximum parallel speedup of 5.2 over a single processor’s 

performance.  This parallel speedup was achieved when the multiplication was 

distributed over eight Microblaze processors, the maximum number tested, on a single 

FPGA.  In this project, we also identified paths for the further optimization of this 

algorithm in embedded system design. 
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Executive Summary 

In the study of graph theory, a graph is defined as “Any mathematical object 

involving points and connections between them” (Gross & Yellen, 2004).  Graphs are 

composed of sets of vertices which share connections between each other.  The 

connections are referred to as edges.  Graphs are used to model many systems that are of 

interest to scientists and engineers today such as communications between computers, 

social networks between people, and even bonds between proteins and molecules. 

 Through the act of graph processing, useful information from a graph can be 

extracted.  Often times, algorithms to find the most important vertex in the graph or the 

shortest path between two vertices are applied.  When a computer is used to apply these 

algorithms, each graph is represented as an adjacency matrix.  Commonly, these matrices 

contain many more zeros than non-zeros meaning that they are considered sparse 

matrices; matrices with enough zeros in it that advantages can be had by exploiting them. 

 Graph processing algorithms often determine the most important vertex in a 

graph. Though the mathematics required to find a vertex’s importance are outside the 

scope of this project, it is important to note that the majority of computational operations 

involved in performing this algorithm are due to the multiplications of sparse matrices. 

The Embedded Digital Systems group at MIT Lincoln Laboratory focuses heavily 

on the study of knowledge processing.  Knowledge processing is the act of transforming 

basic sensor data, bits and bytes, into actual useable knowledge.  The data can often be 

modeled as a graph.  Graph processing algorithms, such as vertex importance, are 

extremely time consuming and inefficient.  This inefficiency means that in order to find 

results quickly, more powerful computers are needed to apply the algorithms.  Often 

times, raw data are communicated from the sensor back to a more powerful computer to 

be processed.  Because it would be faster, and require less communication bandwidth, a 

heavy focus exists on developing embedded digital systems that can perform graph 

processing algorithms quickly and efficiently at the front end of the sensor application.  

Because embedded digital systems are often limited in both their memory size and 

their computational power, the key to making them perform graph processing algorithms 

faster is to reduce the requirements of the algorithm.  Since these requirements are based 
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on graph theory, and thus process with sparsely populated matrices, exploiting their 

sparsity is the best way to reduce the requirements on the system.  By storing and 

processing only non-zero values, the computational and memory requirements of a graph 

processing algorithm are minimized, allowing it to be performed on an embedded system. 

This project sought to achieve two goals.  The first goal was to develop an 

efficient, parallelizable algorithm for both the storage and multiplication of two sparse 

matrices.  Current methods for performing the multiplication of these matrices on a 

microprocessor perform at operational efficiencies of between 0.05 and 0.1%.  In this 

context, efficiency is defined as: 

%100
#

% x
processorsrequencyOperatingF

TotalTime
rationsNonzeroOpe

Efficiency
×

=  

Sparse matrix algorithms are made more operationally efficient if they perform 

more non-zero operations per clock cycle.  The second goal was to investigate how the 

performance of this algorithm could be increased in by parallelizing operations over 

multiple processors in an embedded system.  In this case, performance, measured in non-

zero operations per second is calculated by the following equation: 

TotalTime

rationsNonzeroOpe
ePerformanc =  

During the development of our multiply algorithm, we assumed that the input 

matrices could be in any storage format.  Therefore we tested multiple types of formats 

for sparse matrices as well as their corresponding multiplication algorithms.  Each of the 

storage formats and multiplication algorithms were developed and tested in MATLAB.  

Three storage types of storage formats in addition to full matrix format were tested in all.  

The aim of these tests was to determine the most efficient methods for storing and 

multiplying sparse matrices.  The first was a basic sparse matrix storage format, which 

stored only the non-zero value.  Next, because matrix multiplication is basically repeated 

row by column multiplication, a sorted sparse method was tried in which the first matrix 

was sorted by row and the second was sorted by column.  Finally we tested compressed 

storage formats, specifically compressed row storage (CRS) by compressed column 

storage (CCS).  Our test proved that CRSxCCS multiplication performed more efficiently 
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than any other format for sparse matrices with densities 1% to 5%.  Results of these tests 

are shown in Figure 1. 

Efficiency of Sparse Multiplication Methods Versus Full Matrix 

Multiplication for Matrices 1-5% Density
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Figure 1: Multiplicational Efficiency of Various Sparse Storage Formats 

This figure shows the multiplication algorithm’s efficiency for each of the sparse storage formats we tested 

compared to the efficiency of a full matrix multiplication for sparse matrices of 1-5% density.   

 

Once our multiplication algorithm had been determined, we parallelized it on a 

single Field-Programmable Gate Array.  An FPGA is a type of programmable logic 

device which is well suited for embedded systems design.  FPGAs consume less power 

and use less space than a programmable processor performing the same function.  An 

FPGA allows an engineer to implement virtually any digital circuit imaginable through 

the use of a hardware definition language (HDL).  HDL files to implement many 

commonly used functions can be found online.  These files are referred to as Intellectual 

Property (IP) cores and can implement a wide range of functions such as USB drivers, 

signal processing applications, and even programmable microprocessors.  A 

programmable microprocessor implemented in the logic of an FPGA through an HDL is 

referred to as a soft-core processor.  Soft-core processors are often used in FPGA 

development because they are easy to implement and can interface easily with specialized 

hardware circuits on the FPGA. 
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This project used multiple Microblaze soft-core processors working in parallel on 

one Xilinx Inc. FPGA to increase the performance of a sparse matrix multiplication 

algorithm.  Our final design incorporated a highly optimized matrix multiplication 

algorithm, a parallel architecture, and an advanced matrix splitting technique to achieve a 

parallel speedup of the multiplication algorithm on a single FPGA. 

Our final matrix multiplication was able to multiply two sparse matrices, A and B, 

stored in CRS and CCS formats, respectively.  The algorithm was highly parallelizable 

and was capable of computing the product of two 128x128 sparse matrices with 1% 

density 49 times faster than the speed at which a full matrix multiplication was capable.  

This type of algorithmic performance was comparable to the abilities of other optimized 

sparse matrix multiplication algorithms, but was highly parallelizable.  A parallel 

implementation of this algorithm achieved a speedup of 5.20 when mapped over eight 

parallel processors.  The algorithm consisted of a load distribution technique that split 

matrix B into submatrices of its columns, thereby providing intelligent distribution of the 

matrix multiplication workload among multiple processors.  Figure 2 shows the measured 

speedups provided by parallelizing our algorithm over a varying number of Microblazes. 
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Measured Performance of Multiplication Algorithm on 128x128 

Matrices with Varying Number of Processors 
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Figure 2: Matrix Multiplication Algorithm Performance over Multiple Processors 

This plot shows the speedups achieved by mapping our final matrix multiplication algorithm over a varying 

number of parallel processors.  The test matrices were 128x128 matrices with 1% density. 

 

A major recommendation for future research into sparse matrix multiplication on 

FPGAs would be to implement the matrix multiplication algorithm in logic on the FPGA 

rather in software on a soft-core processor.  Implementing a matrix multiplication in the 

logic circuitry on an FPGA could provide a projected efficiency increase of 11 over the 

current abilities of the soft-core Microblaze processor to perform this computation and 

would assist in developing highly optimized embedded system designs to perform sparse 

matrix multiplication. 
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1 Introduction 
 

In the study of graph theory, a “graph” is defined as “Any mathematical object 

involving points and connections between them” (Gross & Yellen, 2004).  The individual 

elements in a graph are referred to as “vertices” while the various interconnections 

between them are “edges.” Figure 3 shows an example of a graph. The idea of a graph 

can be used to model many different types of science and engineering problems today.   

 

Figure 3: Graph Example 

This is an example of a graph.  The various vertices are shown by either a black box or circle while the 

various interconnections.  “Edges” are shown as black lines connecting the vertices. (Borgatti, 2003) 

 

Graphs can be used to represent physical structures such as computer networks, 

transportation systems, pictures, or even interconnections between proteins and 

molecules.  More abstract ideas can also be represented by graphs such as social 

relationships between people.  Useful results such as computing the shortest path between 
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a pair of vertices or the most important vertex in a network can be found through the 

application of graph processing algorithms.  These results prove to be extremely useful in 

many applications. 

The identification of a shortest path between two vertices in a network could be a 

meaningful result for a telecommunications company wanting to send a message through 

their network with the shortest delay.  Other applications for this result include 

“geographical information systems, operations research, plant and facility layout, 

robotics, transportation, and [electrical circuit] design.” (Chen, 2007) 

Identification of the most important vertex in a network would be helpful 

information for an electricity company which could identify the most important power 

stations to the functioning of its power grid.  Perhaps the Northeast Blackout of 2003 may 

not have happened if the power companies had real time data about their infrastructure.  

The result could also help determine vulnerable points in a network, both for 

strengthening or disabling a network: 

The meaningful purpose for attack vulnerability studies is for the sake of 

protection:  If one wants to protect the network by guarding or by a temporary 

isolation of some vertices, the most important vertices, breaking of which would 

make the whole network malfunction, should be identified.  Furthermore, one can 

learn how to build attack-robust networks, and also how to increase the 

robustness of vital biological networks.  Also in a large network of criminal 

organization, the whole network can be made to collapse by arresting key 

persons, which can be identified by a similar study.(Holme et al., 2002) 

 

 

These graph computations such as calculating the shortest path or the most 

important vertex can be useful in many types of analyses.  There are multiple other 

characteristics one can derive from the analysis of a graph which are also extremely 

useful. 
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At MIT Lincoln Laboratory in Lexington, Massachusetts researchers work on the 

development of highly sophisticated surveillance and intelligence systems.  Group 102, 

the Embedded Digital Systems group, focuses on what is called knowledge processing.  

Knowledge processing is the act by which raw data from a camera, radar, antenna, or 

some other sensor, is converted into useable information.  In these surveillance systems, 

this work is carried out by small embedded computer systems which accompany the 

sensor itself.  Figure 4 shows an example of the steps involved in knowledge processing. 

 

Figure 4: Knowledge Processing 

This figure shows, from bottom to top, the transition of raw data collected from sensors up to the 

intelligence level where it can actually be used.  This transition is done through the process known as 

knowledge processing. In the case of modern sensor systems, some of this information takes the form of 

graphs. (http://www.nsa.gov) 

 

A large percentage of the data processed by these systems takes the form of 

graphs.  Since a tactical advantage is held by whoever can translate information from the 

bit level to actual knowledge the fastest, a strong focus is placed on performing graph 

processing algorithms faster and more efficiently.   

Once entered into a computer, the information no longer looks like a graph.  

Often, it takes the form of a sparsely populated matrix (a matrix containing a majority of 

zeros) called an adjacency matrix.  During knowledge processing, intelligence is 
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extracted from the matrices using various algorithmic tools.  A common kernel 

performed in these algorithms is the multiplication of two adjacency matrices.  Tests on 

matrix multiplication algorithm performance have been conducted by group 102 of MIT 

Lincoln Laboratory.  The results showed efficiencies, or the percentage of arithmetic 

operations performed out of the peak possible arithmetic operations, of between 0.05 and 

0.1% when performed on conventional microprocessor systems (Bliss, 2007). 

Our project focused on finding a matrix multiplication algorithm that performed 

with efficiency similar to those of current algorithms, but was highly parallelizable.  We 

focused on demonstrating the parallelizable properties of our algorithm through 

implementation on a system of multiple parallel processors in an embedded system 

design.  This design achieved speedup through the utilization of the matrix multiplication 

algorithm and a load distribution algorithm which distributed the workload evenly among 

parallel processors. 

Since certain advantages can be had when dealing with a sparse matrix, this 

project explored various formats for the storage of sparse matrices.  These formats were 

used to develop a more efficient algorithm for the multiplication of sparse matrices.  

Once an optimized matrix multiplication algorithm was developed, an effective method 

for parallelizing its operations on an embedded system was determined. 

The final result of this project was to implement a field-programmable gate array 

(FPGA), a common type of programmable logic chip in embedded system design, which 

was capable of performing our algorithm.  The FPGA implementation demonstrated how 

the matrix multiplication process, a key kernel in graph processing, can be made more 
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efficient by exploiting the sparsity of the matrices in a more efficient multiplication 

algorithm and how parallelization of operations can speed up the entire kernel.   

The two main goals of this project were to develop an efficient algorithm for the 

multiplication of two sparse matrices and to implement a way of easily parallelizing this 

algorithm in a small embedded system.  By utilizing a sparse matrix storage method, the 

storage requirements for many matrices that, if stored in full format, were too large to be 

stored on an FPGA, became small enough be processed in a single FPGA.  With multiple 

processors working together in parallel, the final FPGA design performed perform many 

more non-zero arithmetic operations per second than a single processor could perform.  

The final result design can serve as an example for future research into the area of 

optimized sparse matrix multiplication.  It can also serve as a model for a complete 

hardware implementation of this algorithm, such as the development of an Application-

Specific Integrated Circuit (ASIC) which would be able to perform these multiplications 

faster than any other device.   

1.1 Project Goals 

The goals of this project were as follows: 

1. To determine a highly parallelizable method for the storage and multiplication of two 

sparsely populated matrices which can perform computations at efficiencies comparable 

to the 0.05% to 0.1% achieved by optimized sparse matrix multiplications on traditional 

microprocessor systems 

2. To demonstrate how the optimized multiplication algorithm can be parallelized on a 

single FPGA to achieve a parallel speedup by distributing the load over multiple 

processing elements. 
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1.1.1 Goal Measurementt Metrics 

 

To compute the product of two sparse matrices, there are a certain number of 

arithmetic operations that must occur regardless of how the matrix is stored.  These 

operations are the multiplications and additions of non-zero entries in the two matrices.    

In goal number one of this project, we aimed for efficiency and parallelizability. 

Efficiency means we will be calculating the total number of non-zero operations 

performed divided by the total number of possible non-zero operations.  One clock tick 

on one processor is the time required to perform one non-zero operation.  Therefore, our 

equation to calculate efficiency is as follows: 

%100
#

% x
processorsrequencyOperatingF

TotalTime
rationsNonzeroOpe

Efficiency
×

=  

Therefore, the efficiency of our algorithm is independent of the number of processors 

used and somewhat independent of the clock cycle of those processors. 

 Performance is only the numerator of the efficiency formula.  Our measure of 

performance will depend solely on the number of non-zero operations done and the time 

required to perform them.  The performance is expressed in units of non-zero operations 

per second:  

TotalTime

rationsNonzeroOpe
ePerformanc =  

Therefore, the performance of our design can be increased with the addition of more 

processors working in parallel or by increasing the clock speed of those processors. 
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2 Background 
 

2.1 Graph Processing 

 

Graph processing extracts meaningful data from a graph of vertices and edges.  

Studying a graph of vertices with numerous interconnections between them is not only of 

interest to Lincoln Laboratory, but also can help scientists and engineers in other 

industries.  An easily visualized example of modeling using a graph is a small social 

network.  Suppose Diane is a popular member of her class, and knows many people such 

as Andre, Carol, and Ed.  A graph representing her social network might look something 

like Figure 5: 

 

Figure 5: Small Social Network Represented by a Graph 

This figure shows how a social network of friends can be represented by a graph.  The people in the graph 

are represented by vertices while the fact that two of them have some sort of relationship together is shown 

by an edge connecting their two vertices. 

 

It is easy to see from this graph that Diane is obviously an important person in this 

network.  Beverly and Fernando do not know each other, but the easiest way for them to 

meet would be through Diane.  The same situation is had by Andre and Garth.  Also, 

Heather, even though she doesn’t know Diane, is an important person in this network; she 
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serves as the only connection between Ike and Jane and the rest of the network.  

(Robinson, 2007)   

When these types of graphs are processed on a computer, they are stored in the 

form of an adjacency matrix.  The following is an example of an adjacency matrix 

representation of Diane’s network. 
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Andre 0 1 1 1 0 1 0 0 0 0 

Beverly 1 0 0 1 1 0 1 0 0 0 

Carol 1 0 0 1 0 1 0 0 0 0 

Diane 1 1 1 0 1 1 1 0 0 0 

Ed 0 1 0 1 0 0 1 0 0 0 

Fernando 1 0 1 1 0 0 1 1 0 0 

Garth 0 1 0 1 1 1 0 1 0 0 

Heather 0 0 0 0 0 1 1 0 1 0 

Ike 0 0 0 0 0 0 0 1 0 1 

Jane 0 0 0 0 0 0 0 0 1 0 

 
Figure 6: Adjacency Matrix Representation of Social Network Graph 

This figure is an adjacency matrix showing how the graph in Figure 5 can be represented as sparsely 

populated matrix.  The number of rows and columns is equal to the number of vertices in the graph.  An 

edge is represented by a one in the intersecting rows and columns of the two vertices it connects. 

 

The adjacency matrix shown above is a way of showing which vertices in a graph 

are connected by an edge.  For example, the graph on the previous page showed that 

Diane knew six other people; these relationships were shown as an edge connecting 

Diane to her friends.  In an adjacency matrix, these edges are shown as a one in the cell 

which is the intersection of Diane’s column and her friends’ rows.  Also, a one will be 

found in the intersection of Diane’s row and her friends’ columns. 
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Zeros are found along the main diagonal, in the intersection of each person’s row 

and column.  Some adjacency matrices store all ones along the main diagonal and some 

do not; whether these cells are filled with zeros or not usually depends on the application.  

Also, while the adjacency matrix in Figure 6 has symmetry across the diagonal, not all 

adjacency matrices have this symmetry.  In unidirectional adjacency matrices, vertex A 

can be connected to vertex B without B being connected back to A. 

Adjacency matrices sometimes use values other than one in cells to show the 

strength of an edge.  For example, if Andre and Fernando were brothers rather than just 

friends, a three or a four may be contained in their intersecting cells rather than just a one 

to signify a stronger relationship. 

Once these graphs grow to contain hundreds or thousands of vertices and edges, 

computers become responsible for locating the important vertices.  To find them, an 

algorithm to find the “betweenness centrality” of a certain vertex is used.  Vertices which 

are on the shortest path between many other pairs of vertices have a high betweenness 

centrality.  In the graph example, Diane appeared on the shortest path between many 

other people, therefore she was an important vertex on the graph. 

The matrix representation of a graph is commonly large and sparsely populated.  In 

the adjacency matrix above, there are 100 cells, only 36 of which contain a non-zero 

value; commonly, this type of matrix is referred to as a sparse matrix.  For a graph with N 

vertices, the number of cells in its adjacency matrix is N
2
.  When dealing with a graph of 

tens or even hundreds of thousands of vertices, adjacency matrices become too large to 

be processed by an average desktop computer.   
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Though betweenness centrality algorithms are complicated and outside the scope of 

this project, their performance “is dominated by sparse matrix multiply performance” 

(Robinson, 2007).  The sparse matrix multiply kernel is the limiting factor in performing 

this algorithm.  Conventional algorithms which perform these multiplications prove 

extremely inefficient.  Since the number of zeros in a sparse matrix is high, the frequency 

of a meaningful calculation—multiplying or adding two non-zero values together—is 

low.  Often, when sparse matrix multiplication algorithms are performed on a 

conventional processor, the frequency of non-zero multiplies with relation to the 

computer’s clock cycle is low, between 0.05% and 0.1%.  To effectively handle sparse 

matrices, specialized formats can be used to store only the non-zero values, thus 

shrinking the size of the matrix in memory greatly.  These formats will be discussed in 

the next section. 

2.2 Sparse Matrices 

 

There is no concrete rule defining when a matrix is sparse and when it is not.  

Professor Tim Davis from the University of Florida claims a sparse matrix is: “…any 

matrix with enough zeros that it pays to take advantage of them” (Davis, 2007).  This 

definition means that whether or not a matrix is sparse depends on how many zero entries 

it has as well as how well the user can take advantage of those zeros.  When dealing with 

large sparsely populated matrices, an increasingly common technique to process and store 

them is to take advantage of their sparsity.  Since many of the sparse matrices used in 

science and engineering today have large dimensions, on the order of tens or hundreds of 

thousands, exploiting the sparsity of a matrix can give enormous advantages in both 

storage space required and processing efficiency.  There are two ways one would exploit 
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the sparsity of a matrix: first, to store only the non-zero elements of the matrix and 

second, to process only the non-zero elements of the matrix. (Zlatev, 1991) 

2.2.1 Sparse Matrix Storage 

 

A full matrix representation of a matrix stores every value, regardless of whether 

it is zero or non-zero.  The total size is approximately equal to:   

)(#)(# ofColumnsofRowsMemoryFullMatrix ×=  

Note: This calculation is approximate because some other small values may be 

stored such as the number of rows and the number of columns.  If this matrix is sparsely 

populated, meaning it contains a majority of zero entries, the storage space can be 

reduced greatly by using a sparse matrix storage technique.  To demonstrate how one 

converts a sparsely populated matrix into a sparse matrix format an example will be 

given.  Figure 7 is a five by five full matrix with only eight non-zero entries:  Only eight 

non-zeros means the computer is storing 17 zero values which are not needed. 

 
Figure 7: Full Matrix Format 

The full matrix storage format is shown above.  It stores all values in the matrix, non-zero and zero.  It 

becomes an inefficient storage method when the majority of the values are zero. 

 

 To take advantage of the fact that a matrix is sparse it can be converted into a 

sparse matrix storage format.  A sparse format means only the non-zero entries are stored 

as well as their corresponding row and column indices.  MATLAB, the powerful 
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mathematics and engineering program, currently uses this basic sparse matrix format. 

The following figure is the same matrix as shown above stored in the basic sparse format.   

 
Figure 8: Sparse Matrix Format 

The most basic form of sparse matrix storage formats.  It stores the corresponding row, column, and value 

of every non-zero entry in the matrix. 

 

The total space required to store a matrix in the basic sparse matrix format is 

approximately equal to: 

)(#3 NonzerosoryeMatrixMemBasicSpars ×=  

 

This method stores three values for every non-zero entry in the matrix.  Therefore, for 

matrices with less than 33% density, the sparse matrix storage method will use less 

memory space than a full matrix storage method. 

2.2.2 Compressed Column Storage (CCS)  

 

 The fact that the column vector is sorted can be taken advantage of to further 

compress this matrix. Instead of storing the column vector entirely, a column pointer can 

be stored. The column pointer is a vector telling the user when the column pointer 
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increments and can be made much shorter than the original column vector shown in 

Figure 8.   

 An extra number is added to the pointer vector equal to the total number of non-

zero entries plus one.  With the compression of the column vector to a pointer, the total 

number of values stored in memory will be approximately equal to: 

1)(#)(#2 ++×= ofColumnsNonzerosemoryCCSMatrixM  

Figure 9 shows the same matrix stored in a compressed column format (Dongarra, 2007). 

Two consecutive pointer values being equal indicates that the column vector has 

incremented twice on that entry and thus there is an empty column. 

 
Figure 9: Compressed Column Format (CCS) 

This figure is an example of the compressed column storage format.  This format stores the value, row, and 

column pointer of the non-zero entries in the matrix.  The column pointer tells the user on which entries in 

the value vector, are stored in the next column from the previous entry. 

 

 To find how many entries are in any column, the user just needs to find the 

difference between the sequential pointer values.  For example:  to find out how many 

entries there are in column three, entry three in the pointer would be subtracted from 

entry four.  In the above example, the numbers are five and seven.  We can conclude that 

there are two entries in column three and the first one is entry number five in the value 

vector.  Likewise, if there are two repeated numbers in the pointer, there is an empty 

column in the matrix. 
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2.2.3 Compressed Row Storage (CRS)  

 

It is important to notice that the same process for compression applies to a 

compressed row format.  The difference is that the entries will be sorted according to row 

rather than column and there will be a row pointer instead of a column pointer.  The 

following is the same matrix stored in compressed row storage rather than compressed 

column.  (Dongarra, 2007) 

 
Figure 10: Compressed Row Format (CRS) 

This figure is an example of the compressed row storage format.  This format stores the value, column, and 

row pointer of the non-zero entries in the matrix.  The row pointer tells the user on which entries in the 

value vector are stored in the next row from the previous entry. 

 

Because the compressed row storage is similar to the compressed column storage, but 

stored by row rather than column, the total number of values required to store a 

compressed row matrix is equal to: 

1)(#)(#2 ++×= ofRowsNonzerosemoryCRSMatrixM  

2.2.4 The Length Vector vs. Pointer 

 

An alternate way to use a compressed row or column storage is to use a length 

vector instead of a pointer vector.  The length vector has a size equal to the number of 

columns in the matrix and stores the number of values in each column  (Zhuo & 

Prasanna, 2005).  Below is the original matrix stored in compressed column format using 

a length vector rather than a pointer.  In the case of the length vector, an empty column 

would be marked by a zero entry. 



 27 

 
 

Figure 11: Compressed Column using Length Vector 

This figure shows the Compressed Column format utilizing a Length vector rather than a Pointer.  The 

Length vector tells the user how many Val entries are stored in the current column.   

 

Compression using the length vector is very much the same as the compressed methods 

using the pointer vector.  The only difference is that the length vector is exactly equal to 

the number of rows or columns while the pointer vector is equal to this value plus one.  

Therefore, the difference between the two formats is one value. 

2.2.5 Compressed Diagonal Storage (CDS) 

 

A third type of compressed format that can be useful for some applications is 

compressed diagonal storage (CDS).  Like the column and row compressed methods, 

CDS stores values that are in the same diagonal alongside one another in memory. CDS 

stores multiple vectors, one for each diagonal, with their corresponding diagonal indices.  

The diagonal indexes are assigned with diagonal zero always starting at the upper left-

hand cell of the matrix, as shown in Figure 12. 
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Figure 12: Diagonal Assignments in Compressed Diagonal Storage 

This figure is an example of Compressed Diagonal Storage.  In this type of storage, the values that are 

located diagonally from upper-left to lower-right will be stored next to each other in memory.  This type of 

compression format becomes especially effective when storing banded matrices. 

 

The original full matrix, shown in Figure 7, would be stored as a vector of length 

four and a matrix with four rows and five columns.  The vector contains the diagonal 

numbers and tells the user the diagonal indices of the values stored in the matrix.  

Because non-zero values exist on diagonals 1, 0, -2, and -4 in the matrix above, the 

diagonal index vector contains those diagonal indices: 

 
Figure 13: Diagonal Vector Example 

An example of what the diagonal vector for the original matrix stored in CDS would look like.  This vector 

tells the user which diagonals the values in the diagonal values matrix below are located in. 

 

The matrix that is stored along with this vector contains the values from each diagonal in 

a row of the matrix.  For this matrix, the storage matrix is shown in Figure 14. 



 29 

 

Figure 14: Diagonal Values 

This figure shows the diagonal values matrix for the Compressed Diagonal Storage of the original matrix.  

It would be stored in conjunction with the Diag. vector shown previously.  In this case, the elements in row 

one are from diagonal one.  The elements in row two are from diagonal zero.  These diagonal indices are 

found in the Diag. vector. 

 

The original matrix can be reassembled from the storage matrix and its 

corresponding diagonal vector.  The values in row one of the storage matrix belong in 

diagonal one of the original.  Because the first entry of diagonal one of the original 

matrix is outside its boundaries, the first entry is zero.  Diagonal -4 only has one entry on 

the original matrix thus every entry but its first is filled in with a zero.  (Dongarra, 2007) 

The CDS format is most useful for banded matrices.  Banded matrices are matrices 

with most of the entries stored diagonally across the matrix.  They have a high frequency 

of non-zero entries along their diagonals.  In the case of a banded matrix, CDS storage 

can become smaller than a row or column compressed format.  There is no general 

formula for the number of values stored by the CDS format because it is so highly 

dependent on the structure of the matrix and the number and location of bands. 
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Figure 15: Banded Matrix Example 

The image above is an example of what is called a banded matrix.  Non-zero entries are shown as a non-

white color.  The majority of non-zero values are concentrated along diagonals from the upper left-hand 

side of the matrix to the lower right-hand corner. (Davis, 2007) 

 

For most other cases, however, in which the original matrix is not banded, the 

diagonal method can actually become larger than the original matrix.  This increase in 

size is due to the fact that the diagonals often overrun the boundaries of the matrix and 

are filled in with zeros where appropriate.   

2.2.6 Storage Size Comparison 

 

A plot has been generated to show the number of values in various matrix storage 

methods versus the density of the matrices.  The methods that were compared were the 

full matrix storage method, the basic sparse matrix storage method, the row-compressed, 

and the column-compressed methods. 
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Storage Size Vs Density on a 16x1024 matrix
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Figure 16: Storage Method Sizes on a Square Matrix 

This figure shows the size of each storage method versus the density of the matrix.  Because full matrix 

storage stores all values, regardless of their value, its size is consistent throughout the entire range of 

densities.  For a basic sparse matrix storage method, it is smaller than a full matrix method for densities of 

less than 33%.  The two compressed methods are smaller than full matrix storage up to almost 50% density.  

In this figure, row-compressed is smaller than column-compressed because its size is dependant on the 

number of rows while column-compressed depends on the number of columns. 

 

It is shown in Figure 16; the sparse and compressed sparse matrix formats can be 

much smaller than a full matrix storage method for sparsely populated matrices.  Once 

the matrix becomes more than half full of non-zero entries, the full matrix representation 

becomes the smallest method.  In Figure 16 the row-compressed method is much smaller 

than the column compressed method.  This size difference is due to the fact that the 

matrix has many fewer rows than columns.  If the matrix were a square matrix, the sizes 

of the compressed methods would be exactly equal. 
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2.2.7 Matrix Multiplication 

 

As stated previously, matrix multiplication is a key kernel in knowledge processing 

and the analysis of graphs.  The general format for multiplying two matrices is shown 

below where matrix A times matrix B is equal to matrix C.  An important fact to note is 

the number of columns in matrix A must equal the number of rows in matrix B for the 

multiplication to be possible.  The final matrix will have the same number of rows as 

matrix A and the same number of columns as matrix B.  Therefore, a matrix with 

dimensions (X x Y) multiplied by a matrix with dimensions (Y x Z) will give a resultant 

matrix with dimensions (X x Z).  Figure 17 shows the general form of a matrix 

multiplication: 

A           x           B           =           C 
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Where: 
 
 C11=A11B11+A12B21+…A1YBY1 

 C12=A11B12+A12B22+…A1YBY2 

 CX1=AX1B11+AX2B21+…AXYBY1 

 and  

CXZ=AX1B1Z+AX2B2Z+…AXYBYZ 

 

Figure 17: General form for Matrix Multiplication 

This figure shows the general form for performing the multiplication of two matrices.  In this case, A is an 

X by Y matrix, B is a Y by Z matrix and the resultant, C is an X by Z matrix. (Weisstein, 2006) 
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The value in any cell of matrix C is equal to a multiplication of a row from matrix 

A and a column from matrix B.  This vector by vector multiplication is also known as 

computing the dot product of two vectors.  The value of a dot product is a single number 

that is the sum of the products of corresponding values from each vector.  Figure 18 

shows the general form for computing a dot product is as follows: 
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Figure 18: General Form for Computing a Dot Product 

This figure shows the general form to compute a dot product.  The row vector A and the column vector B 

dotted together give the answer, C.  C is the sum of the products of corresponding values from each vector. 

 

Therefore, to compute the product of matrix A times matrix B, an algorithm must cycle 

through the rows of A and the columns of B, computing the dot product of each row and 

each column.   

2.3 Matrices of Interest 

 

The matrices with which algorithm development will be based upon are sparsely 

populated adjacency matrices with density, or frequency of non-zero entries, of about 

1%.  These matrices can be generated by the RMAT function in MATLAB.  RMAT is a 

MATLAB function designed to generate random adjacency matrices of different sizes 

and densities for testing. RMAT does not generate the same matrix every time it is given 

the same parameters.   It was developed at MIT Lincoln Laboratory by Dr. Jeremy 

Kepner of group 102.  RMAT generates matrices with a power-law distribution, meaning 

that there are few vertices on the graph with very high importance (high betweenness 
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centrality) and numerous vertices with low importance.  The range of edge values also 

follows a power-law distribution, meaning there are many weak edges, signified by an 

entry of one in a cell, and few strong edges which are signified by larger integers.  

RMAT is capable of generating two types of matrices.  The first will be referred to as a 

structured RMAT matrix; the second will be referred to as a randomized RMAT matrix.  

 The structured RMAT matrix is an adjacency matrix with properties similar to 

those found in a real world adjacency matrix.  The structure is based on the idea of 

Kronecker Graphs (for more information on Kronecker Graphs see Leskovec & 

Faloutsos, 2007) and exhibits an interesting matrix structure to researchers at Lincoln 

Laboratory.  Though the mathematical complexities of this matrix structure are beyond 

the scope of this project, it is important to understand its structure.   

 

Figure 19: Structured RMAT Matrix 

This figure shows a 1024 x 1024 structured adjacency matrix generated by the RMAT function with 

density of 5%.  This is the first type of structure used in the testing of the multiplication and parallelization 

algorithms.  Non-zero entries are shown as blue dots in the figure.   

 

The structured RMAT matrix shown in Figure 19 has a block like structure which 

is repeated throughout the matrix.  The more dense rows and columns are found towards 



 35 

the left and upper parts of the matrix.  This same structure is repeated in smaller and 

smaller blocks throughout the entire structure.  Because of this block structure, dense 

rows and columns are repeated at constant intervals throughout the matrix. 

The randomized RMAT matrix contains the same type of data as a structured 

RMAT matrix but the vertices have been randomized.  This randomization means that 

instead of being grouped together, the dense rows and columns are randomly and 

uniformly distributed throughout the matrix.  This same randomization process could be 

applied to any adjacency matrix.  It is as simple as reordering the vertex labels in the 

rows and columns. 

 

Figure 20: Randomized RMAT Matrix 

This figure shows a 1024 x 1024 randomized adjacency matrix generated by the RMAT function with 

density of 5%.  This is the second type of structure used in the testing of the multiplication and 

parallelization algorithms.  Non-zero entries are shown as blue dots in the figure   

 

Figure 20 shows a Randomized RMAT matrix.  The non-zero entries on the randomized 

version are much more evenly distributed throughout the matrix than in the case of the 

Structured RMAT matrix.  It is important to note that although the RMAT matrices look 
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as though they might be symmetric across the major diagonal, they are unidirectional 

adjacency matrices and not symmetric. 

2.4 Field Programmable Gate Arrays (FPGAs) 

 

A final deliverable of this project was to parallelize the optimized sparse matrix 

multiply algorithm on a field-programmable gate array (FPGA).  An FPGA is a type of 

programmable logic device (PLD) with which an engineer can develop almost any logic 

circuit s/he wishes, or even multiple copies of the same logic circuit.  Using multiple 

copies of a specialized logic circuit enables an FPGA to perform operations 

simultaneously, thus processing data in parallel.  Implementing parallel processing on a 

single chip gives a large advantage over an array of conventional microprocessors which 

is slowed by inefficient communication.  Inside an FPGA, separate circuits have high 

connectivity and can transmit data between each other quickly and efficiently. 

Research has shown that the implementation of an FPGA with multiple 

interconnected copies of the same circuit can parallelize operations and achieve “almost 

supercomputer-class performance” at a “tiny fraction of the cost of more general-purpose 

supercomputing hardware” (Pellerin, and Thibault, 2005).  FPGAs enable developers to 

design a circuit which performs exactly the computations they need it to and nothing 

more.  By parallelizing and optimizing for one algorithm, a device can be made much 

more capable to perform its job; however, this optimization simultaneously makes it less 

versatile:  

Parallel architectures can be more powerful, but are less general.  A special-

purpose circuit can always outperform a microprocessor-based implementation 

for a small class of problems ….The very specialization which provides this 

parallelism also necessarily limits the range of its application.(Oldfield & Dorf, 

1995) 

 



 37 

FPGA’s are often a good choice for the development of a complicated yet 

dedicated hardware circuit.  Once a system becomes massively produced, implementing 

it on an Application Specific Integrated Circuit (ASIC) is usually more economical and 

can provide another level of optimization above the FPGA.   

 Embedded system developers constantly strive to achieve the same capabilities 

using smaller and more power-efficient packages.  The low power consumption and 

small package size is another reason FPGAs are often utilized in embedded system 

engineering.  Figure 21 shows the efficiencies of a field-programmable gate array versus 

those of a programmable processor or ASIC system. 

 

Figure 21: Performance Density and Efficiency between device families 

This plot shows a performance comparison between microprocessors, FPGAs, and VLSI circuits in Giga-

Operations per Second (GOPS) per volume (Liter) and power consumption (Watt).  (Graph Courtesy of 

MIT Lincoln Laboratory) 

 

As shown in Figure 21, FPGAs can perform more operations per second than 

programmable processors while using less space and consuming less power.  It is 

important to realize there is a cost factor missing from this chart.  Much more time and 
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money will be spent to develop an FPGA solution to a problem rather than using a 

programmable processor.  Even more resources will be needed to develop a Very Large 

Scale Integration (VLSI) implementation such as an ASIC. There is a direct relation 

between time, cost, level of development, and performance.  For this project, achieving 

the performance of an FPGA implementation is a reasonable target for the available time 

and resources. 

2.4.1 FPGA Architecture 

 

An FPGA is a reprogrammable semiconductor device which is becoming very 

commonly used in the development of embedded systems.  Its ability to be 

reprogrammed in the field is unlike other programmable logic devices which, once 

configured, cannot be changed.  On an FPGA, an engineer can implement almost any 

type of logic circuit.  These logic circuits are implemented by using a hardware definition 

language (HDL) like Verilog or VHDL.  The range of implementation can range from a 

simple logic gate such as an OR or an AND gate to extremely complex circuits.  Figure 

22 shows a diagram of the basic structure inside an FPGA. 



 39 

 

Figure 22: FPGA Architecture 

This figure shows the inner architecture of a basic FPGA.  The blue blocks in the middle are Configurable 

Logic Blocks (CLBs), while the red blocks on the outer edges are I/O blocks.  Between the blocks, in 

yellow, are the row and column programmable interconnects. (Floyd, 2006) 

 

 The inside of an FPGA is mainly comprised of a grid of programmable logic 

blocks and interconnections.  By combining a number of these blocks and connecting 

them through the grid of programmable interconnects, the FPGA can take on the role of 

almost any logic circuit.  A single programmable logic block consists of a Look-Up Table 

(LUT), a D Flip-Flop connected to the main clock of the device, and output logic 

(Computer Engineering Research Group, University of Toronto, 2007).  Figure 23 shows 

the basic internal structure of a programmable logic block. 
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Figure 23: FPGA Logic Block 

This figure shows the inner workings of a Configurable Logic Block.  It consists of a Look-Up Table 

(LUT), a D flip flop and output logic. (Cofer & Harding, 2006) 

 

 

The I/O blocks on an FPGA are also configured by the user.  These blocks control how 

and where information is transferred in and out of the FPGA (which pin or pins the inputs 

are read through and the outputs are sent through).  Modern FPGAs often have other 

hardware devices embedded in them such as block RAM, Universal Asynchronous 

Receiver-Transmitters (UARTs) or even PowerPC processors.   

Many Intellectual Property (IP) or soft-cores can be implemented on an FPGA as 

well.  IP cores are files written in a Hardware Definition Language (HDL) which can be 

obtained through various sources and perform a specific application.  An engineer would 

have to load the HDL file onto the FPGA.  There is a large variety of IP or Soft-cores 

available that perform commonly used circuits.  A quick internet search can find 
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downloadable IP cores for encryptions, Fast Fourier Transforms (FFTs), USB controllers 

or even microprocessors.  This high degree of versatility and performance is why FPGAs 

are often a good choice for embedded systems engineers. 

2.4.2 Soft-Core Microprocessors 

 

Embedding a soft-core processor can reduce the time and effort involved in 

designing an embedded system with an FPGA.  A soft-core processor is an entire 

microprocessor implemented in the hardware of an FPGA through an HDL file.  These 

processors can run software, just like the processor in the average desktop computer. 

When implementing an algorithm on an FPGA, it is often most cost effective to 

implement only the most time-intensive parts of the algorithm in gate-level hardware, 

while leaving the less time consuming parts to be completed by software run by a soft-

core processor.  Soft-core microprocessors allow an engineer to develop a system on an 

FPGA which is a hybrid between hardware and software (Eskowitz et al., 2004).  With 

the option of a soft-core software implementation, an engineer can decide which parts of 

their algorithm will benefit most from a gate-level hardware circuit and which ones are 

more efficiently performed by software.   

A soft-core microprocessor can also increase a company’s ability for rapid 

development and deployment of systems by allowing production and development times 

to overlap.  An original design of an FPGA could perform most of its functions by a soft-

core processor embedded on the FPGA.  The company could begin mass production of a 

working product while its engineers were still developing and optimizing the design’s 

logic circuits.  Later, due to the FPGA’s field programmability, the company could 

update its systems with more gate-level hardware implementations.  This process could 
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continue until, eventually, the entire design was optimized through gate-level hardware 

implementations.  

Perhaps the most commonly used soft-core microprocessor is the Xilinx 

Microblaze.  The Microblaze is a soft-core processor designed for use on Xilinx’s 

Spartan and Virtex lines of FPGAs.  It is a 32 bit processor using RISC architecture 

which is capable of running at 100 MHz on the Virtex-II Pro FPGA.  The Microblaze 

contains many features of a typical microprocessor including: 32 registers, an ALU, a 

multiplier, a divider, a barrel shifter, interrupts, UART, and an off-chip memory 

interface. (Xilinx Microprocessor Controller and Peripheral, 2007) A diagram of the 

Microblaze architecture is shown in Figure 24. 
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Figure 24: Microblaze Architecture 

This figure shows the typical layout and architecture of the Xilinx Microblaze soft-core processor. 

(Rosinger, 2004) 

 

The Microblaze is truly designed for use inside an FPGA.  Since soft-cores run at much 

slower clock speeds than a hard-core processor, the primary reason for using a soft-core 

on an FPGA would be to use it in conjunction with other IP that can speed up the 

algorithm overall.  Therefore, the Microblaze is designed with a port for high speed 

connection to specialized IP circuits called the Fast Simplex Link (FSL).  For many 

designs, utilizing specialized IP cores can increase the overall efficiency of an algorithm.  

Figure 25 displays an example of the same algorithm performed by both software and 

hardware. 
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Figure 25: Software Algorithm vs. Hardware 

This figure shows the same process performed by a microprocessor in software on the left and by a 

hardware circuit on the right.  A, B, C, D, E, F, and G are assumed to be numeric values stored in the 

memory of the system. (Rosinger, 2004) 

 

The hardware solution of this algorithm requires two clock cycles while the 

software requires 12.  A specialized logic circuit is often the best choice for speeding up 

complicated functions in an FPGA design and often provides motivation for a soft-core 

processor to outsource some of its more time consuming jobs to hardware. 

2.4.3 PowerPC processor 

 

Another option to a developer using the Xilinx Virtex-II Pro FPGA is to utilize 

the embedded hard-core PowerPC microprocessor.  This is a more powerful processor 

than the Microblaze.  It consists of a 32 bit RISC architecture.  Connecting IP circuits to 
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the PowerPC is different than in the Microblaze.  Any IP cores utilized by the PowerPC 

are connected through the On-Chip Peripheral Bus rather than the Fast Simplex Link.  

 

Figure 26: PowerPC Architecture 

This figure shows an example of an embedded system utilizing an embedded PowerPC microprocessor on a 

Xilinx FPGA. (Xilinx PowerPC 405 Processor, 2007) 

 

The embedded PowerPC will not be used in our hardware implementation, but it is 

available for future use. 

2.5 ML310 Development Board 

 

The FPGA board that the final design of this project was implemented on is 

Xilinx’s ML310 development board.  The ML310 is a board meant for rapid system 

prototyping of embedded systems using the Virtex-II Pro FPGA.  The ML310 comes 

standard with a Xilinx Virtex-II Pro XC2VP30 chip.  It also comes with a myriad of 

peripheral devices such as USB ports, parallel and serial connections, IDE connections 

for hard drives or CD ROMs, an LCD interface, LEDs, a UART connector to send out 
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data to a terminal, an Ethernet port, audio in and out connections, a 512 MB 

CompactFlash card, 256 MB of DDR RAM, PS/2 mouse and keyboard ports, 5.0V and 

3.3V PCI slots.   Shown in Figure 27 is a picture of the ML310.   

For this project, we only used the Virtex-II Pro itself as well as the UART terminal 

to print data to the computer screens.  It was programmed through the JTAG cable, J9. 

The FPGA is shown as U37 in the diagram while its UART connector is shown as J4. 
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Figure 27: Xilinx ML310 Development Board 

This figure is a diagram showing the Xilinx ML310 development board.   The board is used for rapid 

embedded system prototyping and comes with many useable peripherals.  The Virtex-II Pro FPGA is 

shown above as U37.  The UART port we used to print text to our screen is marked J4 while the JTAG 

connector used to program the Virtex is marked at the top as J9. (ML310 User Guide) 
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2.6 Xilinx Virtex-II Pro XC2VP30 

 

The Virtex-II Pro XC2VP30 is a high performance FPGA platform developed by 

Xilinx Inc., a leading FPGA manufacturer.  The Virtex-II Pro line of FPGAs is targeted 

towards communication and DSP applications and is manufactured using a 0.13 µm 

CMOS nine-layer copper process.  The XC2VP30 model contains 30,816 logic cells, 

each consisting of a 4-input look-up table, a flip-flop, and carry logic.  It also contains 

136 18x18 bit multipliers and 136 blocks of RAM of 2.25 KB each; making the total 

RAM available 306 KB.   

Furthermore, it contains eight RocketIO transceiver blocks which are responsible for 

high speed connectivity and conversions between parallel and serial interfaces.  Two 

hard-core PowerPC microprocessors (400MHz) are also embedded on the XC2VP30. 

The Microblaze soft-core processor can also be implemented in the logic of the 

XC2VP30.  An implementation of the Microblaze on this FPGA can run at a clock speed 

of 100MHz.  (Virtex-II Pro Data Sheet) 



 49 

3 Algorithm Performance Analysis 

There are multiple techniques an engineering team could pursue when building 

and parallelizing an optimal sparse matrix multiplication algorithm. Because of the many 

options and the inherent memory constraints on an FPGA, we sought an algorithm which 

would both perform multiplication quickly and efficiently while keeping memory 

requirements to a minimum.  The methodology section discusses the processes of both 

optimizing a multiplication algorithm and implementing the algorithm on an FPGA. 

When developing the FPGA algorithm, multiple methods for the storage and 

multiplication of two sparse matrices were simulated in MATLAB to find a technique 

that both compressed the matrices effectively and performed the multiplication at a 

higher efficiency than a full matrix multiplication.  After determining the formats and 

algorithm for optimized multiplication, load distribution methods were simulated to find 

one that efficiently parallelized the multiplication between multiple processing elements. 

3.1 Optimized Matrix Multiplication Algorithm 

 

To multiply a set of two matrices, a certain number of calculations must be 

performed regardless of storage type and indexing method.  These calculations are the 

non-zero arithmetic operations; multiplying and summing the corresponding values in a 

row of matrix A and a column of matrix B.  Each type of matrix multiplication has some 

overhead involved in performing these non-zero calculations.  In the case of full matrix 

multiplication, the overhead takes the form of multiple zero operations (multiplying by a 

zero or adding zero) that are not important to product.  In the case of sparse matrix 

multiplications, the overhead takes the form of more complicated indexing and searching 
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operations which find the intersecting values to be multiplied.  The most efficient 

multiplication method will perform these non-zero operations with the least amount of 

overhead. 

To determine the most efficient method to store and multiply two sparse matrices 

for multiplication, storage methods from those discussed in the background were tested to 

find one with high multiplicational efficiency and maximum compression of the matrices.  

The definition of efficiency we used was the number of non-zero operations divided by 

the maximum possible number of non-zero operations performed by the processor.  The 

target matrices were adjacency matrices with less than 5% density.  Four separate storage 

methods were tested to find a combination which organized the matrices optimally for 

multiplication. 

Four different multiplication algorithms were tested for efficiency in MATLAB.  

Because MATLAB itself utilizes C functions to perform some of its calculations faster, 

none of the test functions ran faster than MATLAB’s embedded matrix multiplication 

functions.  The tests sought to test different multiplication methods against each other on 

the same level of development.  MATLAB served as the common platform upon which 

all algorithms were built.  Testing these algorithms in MATLAB provided an estimate of 

their relative efficiencies in other programming languages such as C or even hardware 

definition languages like VHDL.   

During the testing procedures, the efficiency of each algorithm was calculated.  

To measure efficiency, two RMAT test matrices with dimensions 1024x1024 were 

generated for each density tested (1% to 99%).  The total number of non-zero 

calculations (multiplications and additions) to multiply the two test matrices was counted 
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using a specialized function we developed.  The multiplication was timed, and the 

number of calculations was divided by the total time.  The performance of each 

algorithm, in non-zero operations per second, was divided by the clock speed of the 

processor, giving the efficiency of the algorithm.  A plot was generated showing the 

efficiency of each matrix multiplication in non-zero operations per second.   

These tests were run on machines with the same hardware specifications to ensure 

their consistency.  During testing, the machines were monitored to ensure there was no 

additional CPU load unrelated to testing.  The machines were Quad core 3.066 GHz 

processors with 2.5 Gigabytes of RAM each; part of the MIT-Lincoln Laboratory group 

102 cluster.  Five instances of each matrix multiplication test were run and averaged.  

The test’s goal was to determine which multiplication method performed most efficiently 

on the target matrices and to determine the range of densities for which these methods 

performed at higher efficiency than a full matrix multiplication. The plot made strong 

suggestions as to which algorithm worked with the least overhead.   

3.1.1 Full Matrix Multiplication 

To multiply two full matrices in a full matrix storage format, a function was 

developed in MATLAB so each sparse method could be compared against it.  Because all 

the RMAT matrices were originally stored in a full format, tests could easily be run on 

these matrices before converting them to various sparse formats to be tested.  A full 

matrix multiplication stores and multiplies all entries inside the matrices regardless of 

whether they’re zero or not.  Building our own full matrix multiplication function 

allowed our plots to show the benefits of multiplication in the sparse domain versus the 

full domain.   
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MATLAB does have its own full matrix times full matrix function built in 

(matrixA*matrixB), but MATLAB’s function utilizes C-code which operates on a much 

lower level than MATLAB and is much faster.  MATLAB’s function would not be 

comparable to the sparse matrix multiplication methods which were tested.  We therefore 

built our own function in MATLAB which would be comparable. 

3.1.1.1 Full Matrix Multiplication Algorithm 

The following is pseudocode showing the full matrix multiplication algorithm 

which was tested: 

for (x=1; x<matrixA.row; x++) //<- cycle for every row in A 
 for (y=1; y<matrixB.column; y++)) //<- cycle by column in B 
   
  Compute dot product of Row x in A and Column y in B 
  Write result to entry (x,y) in resultant matrix 
  
 end 
end 

 

This process cycles through the rows of A and the columns of B performing vector by 

vector multiplication.  The dot product of each row by each column is computed and the 

answer is written to the corresponding cell in matrix C.  The actual MATLAB code used 

for the simulation can be found in Appendix A.   

3.1.2 Sparse Matrix Multiplication 

When a sparsely populated matrix is multiplied in a full fashion, many 

unnecessary zero operations (multiplying by zero or adding with zero) are performed.  By 

storing the matrices in a sparse format, these operations are eliminated and only useful 

operations are performed. The disadvantage of using sparse matrix storage to multiply is 

that the multiplication algorithm takes on an overhead of more complicated indexing and 
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searching operations.  In basic sparse matrix storage format each matrix is sorted by 

column.  Sorting by column means values in the same row are not stored near each other 

in memory and the algorithm must perform extensive searching to find the row values it 

needs to multiply. 

3.1.2.1 Sparse Matrix Multiplication Algorithm 

 

The following is the pseudocode showing the algorithm for the multiplication of 

two sparse matrices stored in a basic sparse matrix format (both sorted by column). 

for (x=1; x<matrixB.column; x++) //<- cycle by column in B 
 determine appropriate column indices 
 (determine how many indices there are) 
 
 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A 
  determine appropriate row indices 
  (search for all the appropriate indices) 
 
  determine matching indices 
  vector multiplication 
  assign final values 
 end 
end 

 

The actual MATLAB code used for the simulation can be found in Appendix A. 

3.1.3 Sorted Sparse Matrix Multiplication 

 

In sorted sparse matrix multiplication, only non-zero values are computed as in 

the basic sparse multiplication, but each matrix is sorted in an optimal way for 

multiplication to be performed.  Because matrix multiplication multiplies the rows of 

matrix A by the columns of matrix B, it is most efficient to store matrix A sorted by row 

and matrix B sorted by column.  When finding the values in a row or column, no 

searching operations are needed, only counting of the indices. 
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Figure 28: Data Locality in Sorted Sparse Matrix Multiplication 

This figure shows how values in the same column are stored adjacent to one another in memory when 

sorted by column and values in the same row are stored adjacent to one another in memory when sorted by 

row.  Because matrix multiplication is the dot product of one row of A by one column of B at a time, 

sorting the first matrix by row and the second matrix by B is the ideal ordering of entries and eliminates all 

searching. 

3.1.3.1 Sorted Sparse Matrix Multiplication Algorithm 

 

The following is the pseudocode showing the algorithm for the multiplication of 

two sparse matrices stored in a sorted sparse matrix format (A by row, B by column). 

for (x=1; x<matrixB.column; x++) //<- cycle by column in B 
 determine appropriate column indices 
 (count how many indices there are, no searching) 
 
 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A 
  determine appropriate row indices 
  (count how many indices there are, no searching) 
 
  determine matching indices 
  vector multiplication 
  assign final values 
 end 
end 

 

The actual MATLAB code used for the simulation can be found in Appendix A. 
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3.1.4 CRS x CCS Matrix Multiplication Using Pointer 

Compressed sparse matrix multiplication utilizes all the optimization techniques 

of both sparse and sorted sparse multiplication.    Any type of sparse multiplication only 

processes non-zero elements.  Sorted sparse multiplication also sorts the values in the 

optimal order to be multiplied, by row and by column, respectively.  This sorting means 

that the sorted sparse algorithm needs only to count the number of values in a certain row 

or column and need not search for them.  Using the compressed format with a pointer, the 

algorithm can find exactly how many values are in that row or column by subtracting 

consecutive pointer values.  By using the pointer vector, the algorithm can easily find 

where the values are stored and how many there are; thus removing all searching for, and 

counting of, indices. 

3.1.4.1 CRSxCCS Using Pointer Multiplication Algorithm 

 

The following is the pseudocode showing the algorithm for the multiplication of 

two compressed sparse matrices stored using the pointer vector (A stored in CRS and B 

stored in CCS). 

for (x=1; x<matrixB.column; x++) //<- cycle by column in B 
 determine appropriate column indices (subtract consecutive Pointers) 
 
 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A 
  determine appropriate row indices (subtract consecutive Pointers)  
 
  determine matching indices 
  vector multiplication 
  assign final values 
 end 
end 

 

The actual MATLAB code used for the simulation can be found in Appendix A. 
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3.1.5  CRS x CCS Matrix Multiplication Using Length 

The alternative method for performing compressed sparse matrix multiplications 

is to use a length vector.  To find how many entries are in a row or column, the algorithm 

needs to read the value of the corresponding length entry.  Reading the corresponding 

length entry is analogous to subtracting adjacent entries in the pointer vector. 

3.1.5.1 CRSxCCS Using Length Multiplication Algorithm 

 

The following is the pseudocode showing the algorithm for the multiplication of 

two compressed sparse matrices stored using the length vector (A stored in CRS and B 

stored in CCS). 

for (x=1; x<matrixB.column; x++) //<- cycle by column in B 
 determine appropriate column indices (specified by Length vector) 
 
 for (y=1; y<matrixA.row; y++)) //<- cycle by row in A 
  determine appropriate row indices (specified by Length vector)  
 
  determine matching indices 
  vector multiplication 
  assign final values 
 end 
end 

 

The actual MATLAB code used for the simulation can be found in Appendix A. 

3.1.6 Counting Non-Zero Operations 

To count the non-zero operations, a specialized MATLAB function was 

developed.  This function was called OperationsCounter and takes in two sparse matrices 

as parameters.  The function cycles through every row in matrix A and every column in 

matrix B looking for intersecting values. It then counts the non-zero multiplies and 

additions that would be needed to compute the total result of the multiplication.  This 

function was run separately from the timing tests to determine the total number of non-
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zero operations required to multiply two matrices.  The full code for this function can be 

found in Appendix C. 

3.1.7 Algorithm Efficiency Results 

 

Figure 29 and Figure 30 show the multiplicational efficiency of each of these 

storage techniques.  Each plot is the result of five multiplications performed at each 

density for each method with their performances averaged.  The plots compare the 

efficiency of all four storage methods during matrix multiplication.  The density of the 

matrices is the independent variable and non-zero operations per second is the dependant 

variable.  As matrices become denser and denser, it becomes less beneficial to utilize 

sparse formats.   
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Figure 29: Efficiency of Different Multiplication Methods 1-99% Density 

This figure shows the efficiency of different multiplication methods in non-zero mathematical operations 

per second.  As the density of the matrices grows, the performance of a full matrix multiplication becomes 

higher.  For sparser matrices, Compressed Row times Compressed Column multiplication performs best. 
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Efficiency of Sparse Multiplication Methods Versus Full Matrix 
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Figure 30: Efficiency of Different Multiplication Methods 1-5% Density 

This plot is a zoomed in version of the plot in Figure 29. It shows the efficiency of each matrix 

multiplication algorithm we tested for matrices of 1% to 5% density. 

 

The data demonstrates that different matrix storage formats can be multiplied 

more efficiently than others for certain input matrix densities.  Figure 29 shows the 

efficiency of each matrix multiplication algorithm over a broad range of matrix densities, 

from 1% to 99%.  Basic sparse matrix multiplication performs more efficiently than a full 

matrix multiplication until the matrices reach 31% density.  Figure 30 shows that 

performance of basic sparse multiplication, for our target range of densities, performs 

poorer than other forms of sparse multiplication, but slightly better than full matrix 

multiplication. 

Once the sparse matrices are sorted by row and column respectively, the 

advantage becomes more apparent.  For our target matrices shown in Figure 30, it is 

shown that sorted sparse matrix multiplication performs significantly better than full 
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matrix multiplication and basic sparse matrix multiplication. For higher densities, in 

Figure 29, sorted sparse multiplication performs better than full matrix multiplication 

until the density of the input matrices reaches 45%. These plots illustrate the advantage 

given by the optimal sorting of the matrices. 

A final leap in efficiency is achieved once the compressed formats are 

implemented and both searching and counting operations are eliminated completely.  The 

two types of compressed multiplications (utilizing the Length vector and using the 

Pointer Vector) performed similarly for the matrices of interest to this project as shown in 

Figure 30.  CRSxCCS multiplication using the pointer vector performed only slightly 

better on average than using the length vector.  For densities of up to 99%, both 

CRSxCCS multiplications performed significantly better than all other methods until the 

input density reaches about 53%, at which point full matrix multiplication became more 

efficient.  From these numbers, it is clear that compressed sparse matrix multiplication is 

the most efficient method.  Because of their similar efficiencies, the decision of whether 

to use the length or pointer vector depended on each storage format’s functionality during 

parallelization of the multiplication algorithm. 

3.2 Optimized Parallelization and Load Balancing Technique 

 

In section 3.1.7 it was shown why we chose compressed row times compressed 

column formats in which to store our matrices.  Because of the way the matrices were 

sorted, the ways we could easily split the matrices for parallelization were limited.  We 

could either split matrix A into submatrices of its rows or matrix B into submatrices of its 

columns.  Splitting both of these matrices simultaneously was not feasible since it would 
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require an exponential increase in processing elements (splitting matrices A and B each 

into four submatrices would require 16 processing elements.) 

The parallelization method we decided to implement was to have each processing 

element on the FPGA multiply the entire matrix A times a submatrix of matrix B.  Each 

submatrix of B was comprised of a set of columns from the original B matrix.  This 

section will outline the parallel architecture as well as the different load balancing 

techniques which were tested to find one that distributed data evenly between the 

processors.  The following is a block diagram of the structure of our entire system inside 

the FPGA: 

 

Figure 31: Parallelization Block Diagram 

This figure shows the parallelization technique used to parallelize multiplications inside the FPGA.  Each 

processing element (PE) will be responsible for multiplying a submatrix composed from columns of B by 

the entire matrix A.  The results of each will be read into a final matrix assembly process and the resultant 

matrix C was output. 
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 As shown in the graphic above, matrix A will be supplied to each processing 

element as soon as it enters the FPGA.  Matrix B will be split into N submatrices by a 

splitting algorithm (N is the number of processing elements on the chip).  Each 

processing element will multiply A by a submatrix of B producing a submatrix of C.  The 

result will then be combined by a final matrix assembly algorithm and the resultant 

matrix, C will be output from the FPGA.  

To work effectively, a parallel architecture needs a method for distributing 

computations evenly between processors.  The following sections will discuss the type of 

multiplication we chose to implement and why it is better for parallelization.   The tests 

performed on various load distribution techniques will also be discussed.    

3.2.1 Pointer vs. Length Vector in Parallelization 

 

In the multiplication testing section, both compressed sparse matrix storage 

techniques (using the pointer vector and using the length vector) performed similarly.  

This comparable performance between the two formats differs once parallelization is 

considered.  The differences in parallel performance using each storage method will be 

outlined in this section. 

During parallelization of the multiplication algorithm, matrices are broken down 

into smaller matrices for distribution to individual processing elements. When dividing 

compressed sparse matrices, matrices stored using a pointer vector and matrices stored 

using a length vector require different operations when splitting. An example is shown 

below of how these storage methods differ. 
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Figure 32: Splitting a Full Matrix into Smaller Matrices 

This figure serves as an example of how a full matrix, on top, may be split into two smaller matrices both 

comprised of a set of columns from the original matrix. 

 

 Above is a figure showing a full matrix being split at column two into two 

submatrices.  If this matrix were in a column compressed format, Figure 33 would show 

the two resultant matrices if the pointer vector were used: 

 

 

Figure 33: Split Matrices Stored using Pointer 

The above figure shows how a CCS matrix stored using the column pointer, on top, would be split into two 

smaller submatrices.  Notice that the pointer needs to be recalculated in the second submatrix.  
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It is shown that the first submatrix is a piece cut directly from the original matrix data.  

For the second submatrix, the pointer vector needed to be completely recalculated.   

The following is the same split, except the matrices are stored with the length 

vector rather than a pointer: 

 

Figure 34: Split Matrices Stored using Length 

The above figure shows how a CCS matrix stored using length vector would be split into two smaller 

submatrices.  Notice that the length vector does not need to be recalculated for either matrix.  The 

algorithm only needs to calculate the point at which to split the original length vector. 

 

In the case of the length vector, the vector did not need to be recalculated for either sub 

matrix.  Both of the submatrices appear exactly as they do in the larger matrix.  They can 

be split into submatrices and merged into a complete matrix with no recalculation of the 

length vector needed.  Because the parallelization method often requires matrices to be 

split into and rebuilt from submatrices the length vector is the preferred storage method 

because it allows easier splitting and rebuilding of the length vector.  

One disadvantage of using the length vector is that the non-zero entries in the 

portions of the matrix are less accessible.  If a computer needed to access a non-zero 

entry somewhere in the middle of a matrix, the length vector would need to be summed 

up to the column of that non-zero value.  The sum would then be used as an index to find 
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the corresponding number in the value vector.  If this value was to be obtained from a 

matrix stored using a pointer, the computer could easily look at what entry in the value 

vector starts that column and then use that index to find that number in the value vector.  

Since the priority of this project is to focus solely on completing the multiplication as 

quickly and efficiently as possible on the FPGA, the compressed storage methods will 

utilize a length vector. 

3.2.2 Block-Column Distribution 

 

Once we determined that we would use compressed matrices using the length 

vector and which parallelization architecture we would follow, more tests were needed to 

determine the best way to distribute the matrices among the parallel processors.  The 

simplest type of load balancing technique tested was a block-column distribution.  In a 

block-column distribution, matrix B is divided into N submatrices where N is the number 

of parallel processing elements in the system. Each of these submatrices contains 

approximately the same number of adjacent columns from matrix B.  Each submatrix is 

sent to a different processing element of the system.  The following is a graphic showing 

this type of division among four processing elements on a structured adjacency matrix. 
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Figure 35: Block-Column Load Distribution 

This figure shows how the block-column distribution works.  N sections, each composed of approximately 

the same number of adjacent columns from B are generated.  Each is sent to a different processing element 

to be multiplied by matrix A. 

The algorithm for this process attempts to split the length vector of the CCS 

matrix into N pieces of equal size.  The entries in the value and column vectors that 

correspond to each piece of the length vector are copied over and a new submatrix is 

created.  The MATLAB code used to test the block-column distribution can be found in 

Appendix B. 

 

3.2.3 Block-Values Distribution 

 

The second method tested was a block-values distribution.  This distribution 

attempts to give an equal number of non-zero values from matrix B to each processor.  

An equal number of non-zero values to each processor means that in the more dense part 

of the matrices, fewer columns are assigned to the processor.  Likewise, in the more 
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sparsely populated sections of the matrix, a processor will be given more columns, but 

still the same number of non-zeros to process.  The following is a graphic showing how 

the columns are distributed if applied to the same structured adjacency matrix as before: 

 

Figure 36: Block-Values Load Distribution 

This figure shows the block-values distribution.  As in the block-column distribution, matrix B is split into 

N submatrices of adjacent columns.  In the block-values distribution, each one of these submatrices 

contains approximately the same number of non-zero values. 

 

  

This algorithm works by giving each processor a value vector of approximately 

the same length.  Since the denser part of the matrix in this picture is towards the left, 

processor one is given fewer columns to process, but the same number of non-zero 

entries as the others.  The MATLAB code used to test the block-values distribution can 

be found in Appendix B  

 



 67 

3.2.4 Block-Cyclic Distribution 

A block-cyclic distribution works similarly to the block-column distribution.  The 

block-cyclic distribution splits the matrix into blocks, each composed of the same number 

of columns from B.  In block-cyclic distribution, B is split into 2N blocks instead of N.  

Each processor is given two of these blocks, one from each half of the matrix.  If one side 

of the matrix is denser than the other, as is the case in structured adjacency matrices, the 

processor will be given both a dense submatrix and a sparser submatrix of B.  The blocks 

will be distributed between the processing elements in a cyclic manner.  Cyclic means 

that the blocks are assigned in a repeated sequential order (proc 1, proc 2, proc 3, proc 4).  

Once all processors have been assigned one piece of the matrix, the cycle repeats again 

until all pieces have been distributed.  A cyclic distribution of blocks will help to equalize 

the load between all processors.  The following is a graphic showing how a block-cyclic 

distribution works: 
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Figure 37: Block-Cyclic Load Distribution 

The above figure shows the block-cyclic load distribution technique.  The matrix is broken down into 2N 

matrices of adjacent columns from B.  These matrices are distributed to different processing elements in a 

cyclic manner.  Each processor is given two submatrices to process; one from the left side of the matrix and 

one from the right side. 

 

The MATLAB code used to test the block-cyclic distribution can be found in Appendix 

B. 

3.2.5 Inverse Block-Cyclic Distribution  

The inverse block-cyclic distribution is very similar to the block-cyclic.  Again, it 

divides matrix B into 2N blocks compromised of adjacent columns from B.  The 

difference is that it distributes them in an inverse cyclic manner.  Once all processors 

have been given one block, from the left side of the matrix, the blocks will continue to be 

assigned in the reverse order.  In the inverse cyclic distribution, processor one will always 
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get the first block and the last block of the matrix.  This distribution is useful when 

dealing with structured adjacency matrices because the left side of the matrix is very 

dense while the right is very sparse.  Following is a graphic showing this distribution: 

 

Figure 38: Inverse Block-Cyclic Load Distribution 

This graphic shows the workings of an Inverse block-cyclic distribution.   Each block is composed of an 

equal number of columns from matrix B.  In the inverse cyclic distribution, processor one will always be 

given the first and last block.  This method helps to distribute matrices in which one side is denser than the 

other.   

 

The MATLAB code used to test the inverse block-cyclic distribution can be found in 

Appendix B. 

3.2.6 Column-Cyclic Distribution 

The column-cyclic distribution is the most complicated splitting method.  This 

distribution requires indexing through every column in matrix B and assigning each to a 
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different processor.  The column-cyclic distribution assigns individual columns in a 

cyclic manner.  The cycling continues until every column in the matrix has been given to 

a processor.  This method attempts to distribute the dense sections as well as the sparse 

sections as evenly as possible between the elements.  The cyclic distribution is not easily 

shown through a graphic so pseudocode has been generated to show its process. 

N=Number of processing elements 
X=Index of current processing element 
for (i=1; i<matrixB.column; i++) //<- cycle by column in B 
 X=i mod N;     //modular division of current row by N 
  
 if X==0     //if result of modular division is 0, X=N 
  X=N; 
 
 Assign row I to processor X; 
 
End 

 

As shown by the pseudocode above, the process is very simple, but needs to cycle 

for each column in matrix B.  The variable X, which determines which processor the 

column gets assigned, repeats the series 1, 2, …(N-1), N, 1, 2, …(N-1), N.  The modular 

division function determines which processor a certain column is assigned.  The 

MATLAB code used to test the column-cyclic distribution can be found in Appendix B. 

3.2.7 Performance Evaluation of Load Balancing Techniques 

Tests were run in MATLAB to see the performance of each load balancing 

technique on both structured and random adjacency matrices.  We were not seeking an 

algorithm that performed the best for each type of matrix, rather a more versatile 

algorithm that performed reasonably well on both structured and randomized adjacency 

matrices.  These simulations were not actually run on a parallel system.  Instead we 

measured the time it took to split up matrix B and reassemble matrix C.  In between, we 

measured the time it took to multiply each submatrix of matrix B by matrix A 
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individually.  The total time was computed by summing the split time, the rebuild time, 

and the longest submatrix multiply time.   

Once the total time for each computation was found, we again counted the 

number of non-zero computations involved in computing the product matrix.  The 

performance of each load distribution technique was displayed in non-zero operations per 

second.  In these tests, the size and density of the test matrices were held constant while 

the number of simulated processing elements became the independent variable. 

3.2.7.1 Performance on Structured Adjacency Matrices 

 

The first set of tests was performed on structured adjacency matrices as discussed 

in the background section.  The test matrices were 8192 x 8192 adjacency matrices with 

1% density.  The independent variables in this plot are the number of processors and the 

method we used to distribute the load of the multiplication among processing elements.    

The dependent variable is the number of non-zero operations per second performed by 

the algorithm.  Figure 39 shows the average of three runs for each load distribution 

method done in MATLAB. The ideal case is also plotted on the graph.  The ideal case is 

simulated by assuming that the total non-zero computations per second increases linearly 

with every processor added; it was extrapolated from the single processor performance. 
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Load Distribution Performance vs. Number of Processors on Structured 

Social-Networking Matrices
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Figure 39: Performance of Various Load Balancing Techniques on Structured Matrix 

This figure shows the performance of different load balancing techniques on structured adjacency matrices.  

The performance is shown in non-zero operations per second and is dependent on the number of simulated 

processing elements.  It is shown above that in this test the Column-Cyclic distribution comes closest to 

performing ideally. 

 

It is shown that the lowest performing type of parallelization is a block-values 

distribution; only achieving a total speedup factor of 6.8 with 20 processors. Block-values 

is followed closely by block-cyclic and block-column distributions which achieved 

speedup factors of 9.47 and 9.75 respectively.  The inverse block-cyclic distribution 

performs the best of the block distributions.  It achieves a speedup factor of 12.58 with 20 

processors.  Finally, the best overall performance was achieved by the column-cyclic 

distribution.  This distribution achieved a maximum speedup factor of 16.99 with 19 

processors.  However, caution must be taken when applying the column-cyclic 

distribution, especially when using it on structured adjacency matrices.  In the plot above, 

the column-cyclic has a very inconsistent speedup.  This inconsistency is due to the 

structure of the matrix to which it was applied.  The structured adjacency matrices have 

repeated dense columns occurring at evenly spaced intervals.  These intervals are always 
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an even number of columns apart.  When applying a cyclic splitting method to these 

matrices, a resonance type effect can happen in which the same processor is repeatedly 

assigned the denser columns.  This effect cuts down on the performance of the algorithm 

dramatically for some certain numbers of processors since a single processor is assigned 

many more non-zero values than the others.  Therefore, it is recognized that this type of 

distribution is an effective one, but the number of processors should be taken into 

consideration when applying it to a structured adjacency matrix. 

3.2.7.2 Performance on Randomized Adjacency Matrices 

The second set of tests we performed was on randomized adjacency matrices.  

This randomization made the data distribution inherently much more even, meaning it 

was less important to have a good load distribution and more important to just have a 

very quick method of splitting.  Figure 40 is the plot showing the average of three runs 

for each load distribution technique in MATLAB. Again, the ideal case is also plotted for 

comparison.  The ideal case is simulated by assuming that the total non-zero 

computations per second increases linearly with every processor added; it was 

extrapolated from the single processor performance. 
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Load Distribution Performance vs. Number of Processors on 

Randomized Social-Networking Matrices
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Figure 40: Performance of Various Load Balancing Techniques on Randomized Matrix 

This figure shows the performance of different load balancing techniques on randomized adjacency 

matrices.  The performance is shown in non-zero operations per second and is dependent on the number of 

simulated processing elements.  It is shown above that in this test the Block-Column distribution comes 

closest to performing ideally, followed closely by the Column-Cyclic distribution. 

 

As shown in Figure 40, the results of each test were very similar.  The block-

column distribution performed best of all, but by a close margin.  The block-column 

achieved a speedup of 18.69 with all 20 processors and performed closest to ideal.  The 

block-column was followed closely by the column-cyclic distribution.  Even though 

block-column performed best on randomized matrices, we chose to implement the 

column-cyclic distribution on the FPGA.  It performed the best of all methods on 

structured matrices and performed second best on the randomized matrices.  The column-

cyclic technique was the more versatile splitting algorithm and could perform well in 

most circumstances. 
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4 FPGA Implementation 
 

Once the best algorithms for multiplication and parallelization had been decided, 

the complete system was implemented on the FPGA.  In the FPGA implementation, the 

matrix multiplication algorithm was performed by multiple embedded Microblaze soft-

core processors working in parallel.  Also, the processes of load distribution, 

multiplication, and final matrix assembly were all performed by a host Microblaze which 

distributed jobs to the multipliers.  The optimized methods for multiplication and 

parallelization were converted from functions in MATLAB to functions in the 

programming language C to run on the Microblaze processors.   

In the C-code implementation of these algorithms, we originally thought it would 

be beneficial to develop a structure to store the sparse matrices in.  We soon realized that 

a C-structure to store these matrices in was not beneficial.  Referencing of structures in C 

reduced the efficiency of the code significantly.  Instead, all of our matrix functions take 

in each individual piece of information on the matrices.  This means the matrix’s 

dimensions, its value vector, its index vector, and its length vector are all passed in to 

each function as parameters. 

4.1.1 Microblaze Multiplication 

 

It was shown previously in the Algorithm Performance Analysis section how 

CRSxCCS multiplication, with each format utilizing a length vector, was the most 

efficient method we tested to perform sparse matrix multiplication.  The results from 

these tests were why CRSxCCS multiplication was chosen for implementation on the 

FPGA.  To make the Microblaze processors perform this algorithm, we needed to convert 
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our previously developed code from MATLAB into C, a lower level programming 

language.   

4.1.1.1 C Code for CRSxCCS Multiplication 

The first step to writing our parallel matrix multiplication algorithm was to 

implement the CRSxCCS multiplication function in C.  This code was very similar to the 

MATLAB code developed previously, but it could run on the Microblaze soft-core 

processor inside the FPGA. The full C-code can be found in Appendix D. 

4.1.2 Parallel Microblaze Load Distribution 

 

The chosen load distribution technique for implementation on the FPGA was the 

column-cyclic distribution.  This splitting algorithm was performed by software on the 

Microblaze processor to split load of the matrix multiplication as evenly as possible 

between the processing elements.  After the multiplication had completed, the same 

Microblaze reassembled the individual submatrices of C into the final matrix. 

4.1.2.1 Inter-Microblaze Communication via the Fast Simplex Link 

 

Before implementation of the splitting algorithm, communication needed to be 

established between the different elements inside the FPGA.  This communication was 

supported through the use of the Fast Simplex Link (FSL).  Configuring the FSL to 

transmit data between Microblazes required modifications to the hardware configuration 

file.  The entire hardware configuration file, a Xilinx .mhs file, can be seen in Appendix 

F. 

Once the FSL hardware was configured, creating a link between two processors, 

the use of the communication links was coded inside a C program.  The header file fsl.h 
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must be included; and the sending and receiving of data between Microblazes is done by 

using the functions putfsl(val,id) and getfsl(val,id), respectively.  The function putfsl is 

used by the sending processor.  The function is given two parameters, the data to send 

over the link and the id number of the FSL (a number 0-7) to send it through.  Once the 

sending processor has put the value on the FSL, getfsl must be called by the receiving 

processor.  The function getfsl takes in the value from the first processor and stores it in a 

variable with the name given by “val”.  By using these functions, data transfer between 

two Microblaze processors is achieved. Each Microblaze is able to utilize up to eight Fast 

Simplex Links for sending data, and another eight for receiving data. 

4.1.2.2 FPGA Implementation of Column-Cyclic Distribution 

 

Because the column-cyclic load distribution was the chosen method to implement 

on the FPGA, C-code needed to be developed to split up matrix B and to reassemble the 

submatrices of matrix C.  The functions columnCyclic and assembleColumnCyclic are 

functions that break up and reassemble the matrices, respectively.  The actual C-code for 

this implementation can be found in Appendix E. 
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5 Algorithm Performance Results  
 

Once our optimized matrix multiplication algorithm had been developed using C-

code, we were able to test its efficiency against full matrix multiplication to confirm our 

performance estimates and to optimize the code.  The code testing and optimization of 

our algorithm was more easily performed on a desktop computer.  The testing against a 

full matrix multiplication was completed to ensure that our algorithm worked faster, 

solidifying the results obtained in MATLAB. 

Once our final C-code was loaded onto the FPGA, results were obtained about the 

memory usage of the soft-core microprocessors and the Fast Simplex Links.  The 

memory measurements were used as part of a small study of the total memory usage 

inside the FPGA.  Because memory space on an FPGA is often a limiting factor, the size 

of the code in memory made a difference in the maximum size of the matrices our design 

could store and process. 

Once the FPGA hardware had been generated to utilize parallel processing 

elements, tests were run with various numbers of processing elements on the FPGA to 

evaluate their performance and determine the parallel speedup.  A plot was generated 

showing the parallel speedup factor given by an increasing number of parallel processors.   

The performance of each case was measured in non-zero operations per second.   Each of 

these tests were done on randomized adjacency matrices with 1% density generated by 

the RMAT function. 
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5.1 CRSxCCS Multiplication vs. Full Matrix Multiplication in C 

 

In the methods section we discussed the compressed row times compressed column 

multiplication method.  It was shown in MATLAB that the compressed multiplication 

performed much more efficiently than the full matrix multiplication.  We wanted to 

confirm these results by running the code on a desktop computer to be sure that this 

difference in efficiency was also reflected when completed in C-code. The CRSxCCS 

multiplication algorithm was tested against a full matrix multiplication function in C.  

The actual C-code for the full matrix multiplication is shown in Appendix G.  These tests 

were run by multiplying two 128x128 adjacency matrices with 1% density together on a 

PC-based Pentium 4 processor while timing the result.  Our OperationsCounter function 

determined that there were 412 non-zero operations required to multiply the two 

matrices. The clock rate of the desktop’s processor was 3.4GHz.  The processor 

computed the product of the two matrices using both multiplication functions and the 

total time for each was measured.  The efficiency was calculated using the following 

formula, as discussed in the introduction: 

%100
#

% ×
××

=
processorsrequencyOperatingFTotalTime

tionsnzeroOperaNumberofNo
Efficiency  

The multiplication of the two matrices was looped 10,000 times in the code to 

ensure accurate measurements.  To multiply the two matrices in a full matrix format, the 

multiplication took 92.057 seconds.  Because it performed 412x10000 non-zero 

operations total, the processor performed multiplications at a rate of 44,754 non-zero 

operations per second.  Dividing this performance by the clock frequency (3.4 GHz) 

gives an efficiency of 0.0013%.  
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The CRSxCCS multiplication performed the same loop of  4.12 million total non-

zero operations in 1.87 seconds meaning it multiplied the matrices at a rate of 2.193 

Million non-zero operations per second.  Dividing by the clock rate gives an efficiency of 

0.0645%.  From these results, we concluded that the CRSxCCS multiplication method 

truly performs more efficiently; completing 49 times the non-zero operations per second 

of a full matrix multiplication. 

5.2 Theoretical Maximum Allowable Matrix Size 

 

We generated a plot showing the estimated size of the matrices that the FPGA 

could process vs. the number of Microblazes implemented on the Xilinx Virtex-II Pro 

XC2VP30.  As the number of Microblaze processing elements on the FPGA increases, 

the RAM space with which to store the matrices decreases.  An estimate was desired to 

determine if the maximum number of parallel processors, eight, would be capable of 

multiplying two of our 128x128 test matrices.  A set of equations, derived subsequently, 

was developed to show the trade-off between the number of processing elements and the 

allowable matrix size. This prediction incorporated the size of the machine code and 

Microblazes in block RAM as well as the predicted size of the resultant matrix of this 

multiplication. 

Through our program files in Xilinx Platform Studio 9.1, we determined that the 

host processor and its instruction code, responsible for breaking up matrix B and 

reassembling the final matrix, would need approximately 15.8KB of block RAM.  Also, 

each individual parallel Microblaze multiplier would require 12.3KB of RAM.  Both of 

these sizes were rounded up to 16KB.  
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To estimate how much block RAM would be available to store the matrices, we 

needed to determine when and where each matrix, A, B, and C, would need to be stored 

on the FPGA.  Because matrix A was distributed as a whole to the individual processing 

elements, every processor, including the host, needed enough memory to store matrix A.  

This storage scheme meant the total memory size used for matrix A storage would be 

equal to the number of processors on the FPGA times the size of a single matrix A in 

memory.  Matrix B would be stored on the host processor, and then an equal sized piece 

of matrix B would be distributed to each parallel processor meaning that the total size 

needed for matrix B would be two times the size of a single matrix B.  A submatrix of the 

resultant matrix C would also need to be stored in each multiplier as well as an entire 

matrix C on the host processor.  In an actual implementation on the FPGA, both the 

splitting and rebuilding algorithms will be performed on the host processor.  Because the 

host processor does not need to store matrix A or B after it has sent each of them out to 

the parallel processors, this space was reused to store part of matrix C. 

Sparse matrix multiplications often result in a denser product matrix.  Because of 

this increase in density, tests were run in MATLAB to predict the density of the output 

matrix.  These tests were run to find the average product matrix for the multiplication of 

two randomized adjacency matrices and two structured adjacency matrices.  Each of 

these tests utilized two adjacency matrices with dimensions 128x128 and 1% density.  

The results showed that the multiplication of two randomized adjacency matrices would 

result in a 128x128 matrix with average density of 1.2% and standard deviation of 0.22%.  

In the case of the structured adjacency matrices, the resultant matrix would have an 

average density of 3.2% with a standard deviation of 0.21%.  Assuming that these matrix 
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density values follow a Gaussian distribution, five standard deviations beyond 3.2% 

would give a density of 4.25%.  Therefore, if enough memory is allocated for a matrix C 

with 4.25% density, we will statistically be able to process 99.99994% of all 128x128 

adjacency matrices, randomized or structured, with 1% density generated by the RMAT 

function (Weisstein, 2003). 

 The function in Figure 41 can be used to approximate the memory size of the 

matrix we can process depending on the number of processors.  This function makes two 

main assumptions.  First, it assumes that the size of a matrix increases linearly with its 

density.  Second, it assumes that the product matrices of matrices with dimensions close 

to the 128x128 we tested will also have approximately the same densities: 

25.225.42#

*#16306

+++

−
=

processors

processorsKBKB
ryMAXMatrixMemo  

Figure 41: Allowable Memory per Input Matrix Estimate 

This figure shows the formula used to estimate maximum memory size that could be allocated to an input 

matrix depending on the number of processors.  The numerator is equal to the total memory space left after 

all of the Microblazes and their code has been loaded onto the chip. The numerator is divided by the 

denominator which estimates how many total copies of the original matrix will need to be stored on the 

FPGA.  The numbers in this formula are specific to the sizes of a 128x128 sparse adjacency matrix with 

1% density. 

 

The numerator in the function above estimates how much memory will be left 

over to store matrices after all the processors and their code have been loaded to the 

FPGA.  The available memory space is calculated by the total amount of block RAM on 

the FPGA (306KB) minus 16KB (the memory required for one processor) times the 

number of processors.  The remaining memory must be divided among the total number 

of matrices stored on the FPGA.  The total storage size required by these matrices is 

calculated by the value in the denominator.  Because A is distributed to each processor, 

the first addend is equal to the number of total processors on the chip.  Because two B’s 
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will be stored on the chip, one on the host processor and one divided evenly among the 

parallel processors, the second addend is equal to two.  If we are sure to allocate for an 

output matrix with density equal to 4.25% and we assume that the size required to store a 

matrix increases approximately linearly with the density of that matrix, the third addend 

is 4.25.  The last addend in the denominator is equal to 2.25.  This value is due to the fact 

that the resultant matrix C will need to be stored on the host processor after reassembly.  

Because matrix A and B had been stored on the host processor originally but are not 

needed after being sent out to the parallel processors, by freeing them the processor 

already has enough space to store 2/4.25 of the final matrix C.  Therefore, the only 

additional memory needed is another 2.25 times the original matrix size.   

To estimate the dimensions and density of the input matrices depending on the 

available memory size, an equation was needed to calculate the memory size required by 

matrices of certain dimensions and density.  Each matrix, if stored in CRS or CCS, will 

be required to store the following values: 

 

The number of Rows   1x32 bit integer 

The number of Columns  1x32 bit integer 

 

The Value vector    2x 32 bit integers (storing length and size of array) 

     1x 32 bit integer null terminator of array 

Number of Non-Zero (NNZ) integers (one entry for 

each non-zero in matrix) 

 

The Index vector   2x 32 bit integers (storing length and size of array) 

     1x 32 bit integer null terminator of array 

     NNZ integers 
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The Length vector   2x 32 bit integers (storing length and size of array) 

     1x 32 bit integer null terminator of array 

(Row or Col integers) one for each length or row in 

matrix (depending if it is CRS or CCS) 

Because each compressed sparse matrix stores all of these numbers, the total size of the 

matrix in memory is equal to:   

KB

bytes
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KBinSizeMatrix
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Figure 42: Required Memory Space of Compressed Matrix 

The equation above shows how the total memory requirements for a matrix are calculated.  Each matrix 

requires a number of integers to be stored in memory.  There are eleven single integers plus three arrays of 

integers.  Two of these arrays are equal to the number of non-zero entries in the matrix.  The third array is 

equal to the number of columns in a column compressed matrix or the number of rows in a row compressed 

matrix.  All of these integers use four bytes of memory. 

 

The equation shown in Figure 42 for matrix memory prediction was used to create 

a Microsoft Excel spreadsheet which allowed a user to look up the size of a matrix by 

entering the density and dimensions.  The spreadsheet was used for quick reference when 

determining the memory space required for square matrices of varying sizes and 

densities.  A sample of this spreadsheet for matrices with 1% density can be found in 

Appendix H. 

 From these equations, the following plot was constructed to estimate the 

relationship between the number of processors on the FPGA and the maximum 

dimension of the square, 1% density matrices which it could process. 
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Size of Matrices Vs Number of Parallel Processors
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Figure 43: Size of Input Matrices vs Number of Processors 

This figure shows the tradeoff between more soft-core processors implemented on the FPGA and the size 

of the matrices it is able to process.  This plot assumes that the input matrices are square and have a 1% 

density.  The plot shows the dimension of the input matrices as a function of the number of processors 

implemented on the FPGA.  

 

Figure 43 allows the theoretical conclusion that an FPGA implementation with eight 

parallel processors could processes matrices with dimensions of 345x345 with 1% 

density.  To generate this plot, assumptions were made which reduced its accuracy.  This 

plot was based on the product density study of 128x128 matrices.  The output density of 

the matrices was assumed to be 4.25% density.  Because the predicted output density is 

true only for matrices with dimensions of 128x128, the exact dimensions of the predicted 

matrix sizes matrices are slightly inaccurate.  A second imperfection of the estimate is 

that it assumes memory can be divided in any arbitrary way among the processors.  In 

reality, the RAM is divided into block RAMs, each of size 2.25 KB.  On an actual FPGA, 

the block RAMs cannot be divided, they are allocated discretely.  The estimate suggests 
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that a theoretical implementation of eight parallel processors would have enough RAM 

available to multiply two 128x128 matrices of 1% density. 

5.3 FPGA Parallel Speedup Predictions 

 

Before measuring results of the parallel implementation, predictions were made on 

the performance of a single Microblaze performing the multiplication of two 128x128 1% 

adjacency matrices.  The same prediction model was used with the parallel architectures. 

To make the prediction, information was gathered about the Microblaze’s performance 

compared to that of a PC-based Pentium 4 processor.  Once a ratio was found, predictions 

of the Microblaze’s execution time for our splitting, multiplying, and reassembling 

algorithms were made by running the functions on the PC-based Pentium 4 processor and 

scaling by the performance ratio.  These predictions were later compared to actual 

measurements from certain FPGA implementations. 

5.3.1 Microblaze Execution Speed 

 

In order to estimate the performance of the 128x128 multiplication on the 

Microblaze, simulations of our C-code for splitting, multiplying, and rebuilding matrices 

were completed on desktop computers.  First, a ratio was needed between the speed of a 

Pentium 4’s execution of our algorithms and that of the Microblaze.  To find this ratio, a 

sample multiplication task was performed on each and timed.  Our two test matrices, 

128x128 with 1% density, were multiplied together.  To compute the product of these 

two matrices, 412 non-zero operations were required.  By looping this multiplication 100 

thousand times and finding its execution time on both the Pentium 4 and the Microblaze, 

we were able to find a ratio between the two different processor’s performances. 
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The Pentium 4 was able to perform all 41.2 Million non-zero computations in 20 

seconds while a single Microblaze performed them all in 682 seconds.  682 seconds 

corresponds to a single Microblaze matrix multiplication being performed in 0.0068 

seconds.  Note:  The Microblaze computations were timed with a stopwatch due to the 

fact that the Xilinx compiler does not support a simple program timing function.  From 

these measurements, we were able to compute the ratio: 

SMNonzeroOP 06.2
sec20

000,200,41
NonzeroOPS Pentium4 ==

Ops
 

SKNonzeroOP 4.60
sec682

000,200,41
NonzeroOPSMicroblaze ==

Ops
 

1.34
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10*06.2
Ratio Microblaze  toPentium

3

6

==  

The performance ratio was equal to 34.1 Pentium operations per Microblaze operation.  

This number is very close to the difference in clock speed between the two processors.  

The Microblaze operates at 100 Megahertz while the Pentium 4 operates at 3.4 Gigahertz.  

Because the difference in time was almost exactly proportional to the difference in clock 

speed and there was some human error introduced in timing, it was concluded that the 

two processors were able to perform the matrix multiplication algorithm with the same 

efficiency and the difference in performance was mostly due to the difference in clock 

speed.  Our estimates assumed that operations done on the Microblaze would be 

completed by the Pentium 4 in 1/34
th
 the time. 

 By performing this experiment, we were able to measure the time that one 

Microblaze would take to perform the multiplication of our 128x128 test, 0.0068 

seconds.  This point became the first point for our predicted results section as well as our 

actual results section.  The ratio of 34:1 Pentium computations per Microblaze 
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computation was used to predict the matrix splitting, matrix multiplication, and matrix 

rebuilding times for Microblaze systems involving parallel processors.  

5.3.2 Fast Simplex Link 

 

In the methods section, MATLAB simulations served to model the performance 

gains made by parallel multiplication of matrices.  These MATLAB simulations were 

successful in modeling the total processing time to perform the computations, but 

assumed ideal communication between processors.  This communication time must be 

considered when predicting multiplication in a parallel manner.   

In the parallel FPGA design, the communication was between processors through 

the utilization of the Fast Simplex Link.  To model this performance, calculations needed 

to be done involving the speed of the FSL.  The FSL is a 32 bit wide bus used for fast 

transfer of data between IP cores on an FPGA.  The FSL is capable of transmitting 32 bits 

in one clock cycle of the Microblaze, meaning that if the Microblaze runs at 100MHz, the 

FSL can transmit at 400MB per second.  The peak data rate of 400MB per second was 

used to estimate the communication times in our performance prediction. 

The imperfection in our estimates was that our FSL communications did not run 

at full speed.  In the case of our matrices, which are stored in vector formats, the 

Microblaze must cycle through each vector and send each entry in the vector through the 

FSL individually.  Because of this cycling, there are extra clock cycles involved in the 

sending over the FSL and the link will not perform at its top speed. 
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5.3.3 Microblaze System Theoretical Performance Estimate 

A prediction of performance was generated using our existing knowledge about 

the FSL links, the Microblaze processor, and the Microblaze’s performance compared to 

that of a Pentium 4 processor.  For each number of processors, the splitting, 

multiplication, and rebuilding times were simulated on a Pentium 4 processor and scaled 

by the performance ratio to predict the Microblaze performance.  These numbers were 

added with the total prediction of communication times over the FSL links, which were 

predicted assuming a full speed FSL. 
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Figure 44: Theoretical Parallel Microblaze Performance 

This figure shows the theoretical prediction we generated for the performance of parallel Microblaze 

systems in the multiplication of two 128x128 adjacency matrices with 1% density. 

 

The performance prediction is shown in Figure 44.  This estimate is surely an optimistic 

prediction for multiple reasons. It assumes that the multiplication load will be perfectly 

distributed between the multiple processors.  It also assumes that the communication 
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between the Microblazes will work at its full speed, 400MB per second.  The real 

multiplication load will not be perfectly distributed between the Microblaze processing 

elements and the FSL, as discussed previously, needs to cycle through the entries in each 

vector meaning that data transfer will not happen at its full speed.  The measured 

performance curve will level off more quickly as more processors are added.  This 

estimate served as prediction for the actual performance of parallel Microblaze systems.  

After actual implementation of parallel Microblazes, the measured performance was 

compared against the prediction from Figure 44. 

5.4 FPGA Parallel Speedup Measurements 

 

Two separate hardware configurations were successfully implemented and tested 

on the FPGA.  The first system was a single Microblaze system used as a benchmark to 

show the difference in performance between one processor and parallel processors.    The 

second system implemented was a system with three Microblaze processors; a host 

processor and two Microblazes connected to work in parallel.  The host processor 

performed the splitting algorithm on matrix B and the reassembly algorithm on the 

submatrices of matrix C.  Figure 45 shows the block diagram of the parallel configuration 

of two Microblazes. 
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Figure 45: Parallel System of Microblazes 

This figure shows a block diagram of a parallel Microblaze system we implemented on the Virtex-II Pro 

FPGA.  Microblaze zero at top is the host processor.  It sends out matrix A and submatrices of B to the two 

parallel Microblazes, 1a, and 1b.  The FSL links between Microblazes are shown in pink while the 

Microblaze connections to its own instruction set and block RAM are shown as blue.   Microblaze_0 is 

connected through the on-chip peripheral bus to the UART RS232 port (used to read out results through the 

desktop computer) and external DDR RAM (Not used).   
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The hardware configuration (.mhs) files for both the single Microblaze system and the 

parallel Microblaze system can be found in Appendix F.  The hardware configuration 

files are used by the Xilinx compiler to configure hardware on the FPGA. 

Multiple implementations of parallel architectures such as three, four, or even eight 

processors in parallel were outside the scope of this project.  A single implementation of 

two processors in parallel was all that was needed to simulate the performance of more 

parallel processors.  The final results for both one Microblaze and two parallel 

Microblazes are actual results, while all implementations with more than two parallel 

processors were simulated on the two processor implementation and compiled to predict 

performances for more parallel Microblazes.  The performances of parallel 

implementations were calculated using the following formula, as discussed in the 

introduction: 

TotalTime

rationsNonzeroOpe
ePerformanc =  

Once we implemented a parallel architecture consisting of one host Microblaze and 

two parallel Microblazes, measurements were taken to determine the parallel speedup 

possible with this architecture.  To measure the actual performance, the code was run on 

the Microblaze and timed.  Because we could not directly measure the performance of 

other parallel implementations, these results were simulated using the existing parallel 

implementation on the FPGA.  Each communication, multiplication, and splitting process 

that would happen in larger parallel implementations was simulated using the two 

Microblazes system and timed, allowing us to measure performance of further 

parallelized systems.  
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Predicted vs. Measured Performance of Multiplication Algorithm 

on 128x128 Matrices with Varying Number of Processors 
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Figure 46: Measured Performance of Parallel Multiplication of 128x128 Matrices 

This figure shows the actual measured performance of 128x128 matrix multiplication in parallel versus 

different numbers of processors.  It is plotted against the predicted performance of these implementations 

from section 5.3.3.  The predicted performance was very close to the actual performance for up to six 

processors; at which point the actual performance curve started to lose slope drastically. 

 

Figure 46 shows that we successfully achieved a parallel speedup of the algorithm 

by utilizing multiple processors.  The maximum speedup factor achieved was 5.20 with 

the implementation of eight Microblaze processors working in parallel.  The model 

predicted close to the actual performance for one, two, three, and four processors. 

The main sources of performance difference between the actual implementation 

and the prediction are the imperfect load distribution and the speed of the FSL links.  In 

reality, the column-cyclic algorithm does not distribute the load of multiplication evenly 

across the processors.  The multipliers had slightly different loads put on them.  

Furthermore, the FSL links performed slower than ideal, due to the array indexing 

discussed earlier.  A diagram showing a realistic timeline of operations on a system of 

parallel processors is shown in Figure 47. 



 94 

 

Figure 47: Realistic Timeline of Parallel Algorithm 

This figure shows a realistic timeline of what would occur on each different processor in an eight parallel 

Microblaze system.  Unlike our prediction, in a real implementation, the multiply times would not be 

balanced evenly between each processor and the FSL link would perform at much less than its top speed.   

 

Two timing diagrams like the one above can be found in Appendix I with the actual 

timings we measured shown in the plot.  Plots have been generated for both a two parallel 

Microblaze system and an eight parallel Microblaze system. 
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6 Discussion and Conclusions 
 

We were successful in developing a highly efficient and parallelizable algorithm 

for the multiplication of two sparse matrices.  Furthermore, we were able to display a 

performance increase in this algorithm by mapping it over multiple parallel processors.   

6.1 Sparse Matrix Multiplication Algorithm 

 

Our first goal was as follows: 

To determine a highly parallelizable method for the storage and multiplication of 

two sparsely populated matrices which can perform computations at efficiencies 

comparable to the 0.05% to 0.1% achieved by optimized sparse matrix 

multiplications on traditional microprocessor systems. 

 

Our optimized method for storage and multiplication was to store matrix A in a 

row-compressed format and matrix B in a column-compressed format.  Each of these 

matrices was stored using the length vector.  The multiplication algorithm performed 

vector by vector multiplication, multiplying a row of matrix A by a column of matrix B at 

a time.  Because of the row and column compressed formats, the values in the same row 

of matrix A and the same column of matrix B were stored locally. This type of data 

locality proved to be the optimal storage method among the methods we tested to perform 

matrix multiplication. 

When operating on our test matrices, randomized adjacency matrices with 

dimensions of 128x128 and densities of 1%, our algorithm for multiplication achieved an 

efficiency of 0.0645% on a PC-based Pentium 4 processor when implemented using C-

code.  This efficiency means that our algorithm is comparable to the efficiencies of 
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between 0.05 and 0.1% achieved by the most optimized sparse matrix multiplication 

algorithms today while our algorithm also maintains high parallelizability.  Our algorithm 

performs at about 49 times the efficiency of a full matrix multiplication (0.0013% 

efficiency) when processing a sparsely populated matrix. 

6.2 Parallelization of Multiplication Algorithm on FPGA 

 

The second goal of our project, as stated in the introduction, was as follows: 

To demonstrate how the optimized multiplication algorithm can be 

parallelized on a single FPGA to achieve a parallel speedup by 

distributing the load over multiple processing elements. 

 

This goal was achieved as discussed in section Error! Reference source not found..  

We were able to measure a parallel speedup of 5.20 through the implementation of eight 

Microblazes in parallel. 

The parallelization technique we used distributed the entire matrix A to every 

parallel processor.  Assuming that N is the total number of parallel processors, Matrix B 

was distributed using a column-cyclic splitting algorithm which split it into N 

submatrices each containing approximately 1/N of the total columns in B.  The splitting 

algorithm was performed by the host processor.  Each parallel processor multiplied 

matrix A times its submatrix of B and output a submatrix of the final matrix, matrix C, in 

a column compressed format.  The pieces of matrix C in column compressed format were 

put through a reassembly algorithm which constructed the final matrix.  This type of 

parallelization technique is useful information to researchers at Lincoln Laboratory as 

well as other scientists or engineers who are interested in the parallelizing of sparse 

matrix multiplication. 
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6.3 Future Recommendations 

 

We have determined promising paths for further research into parallel sparse matrix 

multiplication on an FPGA.  Implementation of these ideas may be able to further 

increase the effectiveness of similar FPGA designs.  These ideas include new methods for 

transferring data between the system’s components, a lower level type of multiplication 

algorithm, and the implementation of specialized, gate-level logic circuits to complete the 

compressed sparse matrix multiplication. 

A major consumer of time in our FPGA design was the communication between 

system components.  The FSL required serial transmission of data from one processor to 

another.   An improvement that may help speed up the transfer of data is sharing of the 

same RAM between processors.  With the freedom involved in FPGA design, if an 

engineer could implement the sharing of RAM among multiple processors, the parallel 

processors could begin multiplication immediately after the splitting algorithm had been 

performed by the host.  The communication times in this type of design would be reduced 

significantly because the parallel processors would only have to access memory, not 

receive serial transmissions. 

A second recommendation is to implement a bitwise method to search for 

intersecting indices in a row and column.  The compressed row by compressed column 

multiplication algorithm currently indexes through the corresponding indices given by a 

row of A and a column of B searching for common entries in the two vectors.  These 

indices could be mapped, bit by bit, into a small memory buffer to easily find 

intersections.  For example, if there was an entry in column five of the row vector and 

row five of the column vector, a one would be written to the fifth bit of each buffer 
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creating a map of bits.  These two buffers, symbolizing the index entries, could be 

ANDed in only a single clock cycle and the processor could quickly find the indices that 

were common to each vector. This bitwise mapping of the indices found in a row of A or 

a column of B could also be used to easily export index data to a peripheral IP core.  All 

of the index data could be exported to an IP core in a bitmap, rather than an array of 

integers, greatly reducing the amount of information that needed to be transferred.. 

 Though the implementation of a peripheral IP core to assist in the multiplication 

of matrices would be extremely time consuming to develop, it could provide another 

level of performance above our current algorithm.  A large improvement on both 

performance and efficiency could be achieved through the implementation of a logic 

circuit which was capable of performing matrix by matrix multiplication and could take 

the place of a parallel Microblaze.  The logic circuit could be sent matrix A and a 

submatrix of B through the FSL (or shared memory could be utilized).  The logic circuit 

could perform the multiplication itself and return the resultant matrix to the host.  A host 

Microblaze could connect to up to eight of these logic circuits simultaneously.  

Implementing this type of circuit on the FPGA would certainly require significantly 

fewer logic blocks than the implementation of a soft-core processor.  The following is a 

state diagram of a logic circuit capable of performing CRSxCCS multiplication.  A circuit 

of this type could be implemented through a hardware definition language on an FPGA.  
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Figure 48: Proposed Logic Circuit States to Perform Matrix Multiplication 

This figure shows the logic states that would be required of a circuit to perform sparse matrix 

multiplication.  Each box contained above signifies a single clock cycle.  Depending on the complexity of 

each step, the state may be shown in more than one box in the logic diagram.  For example, the two looping 

steps, A and B, contain a check (to see if they’re done cycling yet) and then the increment of a variable.  

These two steps require two clock cycles each while simply checking if two indices match, C, only would 

take only a single clock cycle.  A logic circuit of this type could be implemented in gate-level logic and 

could perform the same functions as the parallel Microblazes in our design.  A more complete state 

diagram showing each operation individually can be found in Appendix J. 

 

We conducted a small study on the performance of the state machine diagram 

shown in Figure 48.  This analysis was done by incrementing multiple variables at 

various places in our C-code multiplier that corresponded to states in the logic circuit.  

The sum of these variables provided an estimate of the number of state transitions with 

which the logic circuit could compute the product of the two test matrices.  The results 

suggest that a circuit of this type could perform the multiplication of our two 128x128 

test matrices in only 60,908 state transitions.  Assuming a 10ns logic state transition 
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period (equal to the Microblaze’s clock cycle of 100MHz), 60,908 state transitions 

corresponds to a total computation time of 610 microseconds, 11 times faster than the 6.8 

ms of which the C algorithm run on a Microblaze is capable. 

With different combinations of hardware circuits and soft-core processors, an 

FPGA system’s performance could increase the performance of our implementation 

hundreds of times over as shown in Figure 49. 

# Microblazes 
Only C 

Algorithm 

1 Logic Circuit 

Per Processor 

4 Logic Circuits 

Per Processor 

8 Logic Circuits 

Per Processor 

1 Microblaze 1 11.16 44.65 89.32 

4 Microblaze 3.57 39.84 159.4 318.9 

8 Microblaze 5.20 58.03 232.2 464.5 

Figure 49: Projected Speedups with Microblazes and Logic Circuits 

This figure shows the theoretical speedup factors that could be attained over the current abilities with a 

single Microblaze.  The speedups with multiple Microblazes were obtained from the data we collected in 

our parallel experiments.  The speedups given by the implementation of logic circuits are optimistic 

predictions based on the state transition counts for the logic state machine shown in Figure 48. 

 

Implementation of some of these recommendations could help to develop an 

FPGA with performance and efficiency far beyond those we achieved in this project.  

Sparse matrix multiplication is an extremely difficult problem for a computer engineer 

and more time and research into parallel architectures, advanced algorithms, and logic 

circuits for performing these multiplications need to be done before these matrices can be 

processed effectively. 

6.4 Future Impacts 

 

The research we have performed into parallelizable sparse matrix multiplication 

will have many future impacts for research MIT Lincoln Laboratory.  Because of the high 

level research we have performed, results from our project can filter down to many 
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different types of systems for sparse matrix processing.  Results of our project could 

assist researchers with sparse matrix processing on multi-core processors, logic circuit 

implementations, or even grid computing. 

The value in this project comes from the methods for storage of sparse matrices and 

parallelizable multiplication we developed.  Our implementation of multiple processor 

cores on a single FPGA was not faster than even a single Pentium 4, but the algorithm 

and parallelization method can be replicated in other systems that could potentially 

perform multiplication hundreds of times faster than even the fastest desktop computer as 

shown in Figure 50. 
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Figure 50: Parallelizable Algorithm in Multiple Computer Environments 

This figure shows how the parallelizable sparse matrix multiplication algorithm developed in this project 

can be used in many different types of computing systems, both large scale clusters and embedded. 
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Appendix A 

This appendix contains all the multiplication codes we used to test various 

multiplication methods in MATLAB.  

Full Matrix Multiplication 

The following is the MATLAB code for the full matrix by full matrix 

multiplication that was used to run our tests against.  The inputs, matrixA and matrixB 

are both matrices stored in MATLAB’s full matrix format.   

function MatrixC = FullxFull(matrixA, matrixB) 
% Written by Ryan Kendrick WPI '08 
  
% This function takes in two dense matrices and multiplies them. 
  
matrixArow=size(matrixA,1); 
matrixAcol=size(matrixA,2); 
matrixBrow=size(matrixB,1); 
matrixBcol=size(matrixB,2); 
  
if (matrixAcol==matrixBrow) %check that cols inA equal rows in B 
     
    MatrixC=zeros(matrixArow,matrixBcol); %allocate space for result 
     
    for i=1:matrixBcol     %loops for each column in matrixB 
     
        % i=current row being calculated 
         
        for j=1:matrixArow     %loops for each row in matrixA 
         
            % j=current column being calculated 
 
            %Row x Col multiplication 
            MatrixC(j,i)=(matrixA(j,:))*(matrixB(:,i));         
        end 
    end 
else 
    error('columns in first matrix must equal rows in second matrix'); 
end 

 

Basic Sparse Matrix Multiplication (Unsorted) 

 

Below is the MATLAB code used to simulate the performance of the basic sparse 

matrix multiplication. 

 
function objf = multiplyColxCol(obj1, outputType, row1, col1, vector_row1, vector_col1, 
vector_val1, row2, col2, vector_row2, vector_col2, vector_val2) 
%Written by Michael Moukarzel WPI 2008 
  
%This function performs sparse matrix multiplication. 
%Sparse sorted by Row x Sparse sorted by Col = Sparse sorted by Col 
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%Inizilaize temporary variables 
vector_row = zeros(1, row1*col2); 
vector_col = zeros(1, row1*col2); 
vector_val = zeros(1, row1*col2); 
  
%Inizialize the pointers 
pointer_fin = 0; 
  
pointer_ori = 1; 
pointer_len = 0; 
  
%Cycle by Column 
for col=1 : col2 
    %Set the pointers 
    pointer_ori = pointer_ori + pointer_len; 
    pointer_len=0; 
  
    %Determine the number of values in the column 
    while(((pointer_len+pointer_ori) <= size(vector_col2,1)) && (vector_col2(pointer_ori 
+ pointer_len) <= col)) 
        pointer_len = pointer_len + 1; 
    end 
  
    %Determine the valid Column values and there indices 
    indices2 = pointer_ori:pointer_ori+pointer_len-1; 
    ind2 = vector_row2(indices2)'; 
  
    %Cycle by Row 
    for row=1 : row1 
        %Determine the valid Row values and there indices 
        indices1 = zeros(1, row1); 
        ind1 = zeros(1, row1); 
        ptr3 = 1; 
        %Search the number of values in the row, and there locations 
        for ind=1 : size(vector_row1, 1) 
            if(vector_row1(ind) == row) 
                indices1(ptr3) = ind; 
                ind1(ptr3) = vector_col1(ind); 
                ptr3 = ptr3+1; 
            end 
        end 
        val = 0; 
        pos2 = 1; 
  
        %Matching Sequence -> Search for the matching row and column indices 
        for pos1=1:size(indices1,2) 
            %Search for a match 
            while ((pos2 <= size(ind2,2)) && (ind1(pos1) > ind2(pos2))) 
                pos2=pos2+1; 
            end 
            %if there is a match then multiply and add it to the final value 
            if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2))) 
                val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2)); 
            end 
        end 
  
        %Add value if it is not a zero 
        if(val ~= 0) 
            pointer_fin = pointer_fin+1; 
            vector_row(pointer_fin) = row; 
            vector_col(pointer_fin) = col; 
            vector_val(pointer_fin) = val; 
        end 
    end 
end 
  
%Output the final matrix in sparse col format using the temporary variables 
objf = sparseMatrix(row1, col2, vector_row(1:pointer_fin)', vector_col(1:pointer_fin)', 
vector_val(1:pointer_fin)'); 
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Sorted Sparse Matrix Multiplication 

 

Below is the MATLAB code used to simulate the performance of the sorted 

sparse matrix multiplication. 

 
function objf = multiplyRowxCol(obj1, outputType, row1, col1, vector_row1, vector_col1, 
vector_val1, row2, col2, vector_row2, vector_col2, vector_val2) 
%Written by Michael Moukarzel WPI 2008 
  
%This function performs sparse matrix multiplication. 
%Sparse sorted by Row x Sparse sorted by Col = Sparse sorted by Col 
  
%Inizilaize temporary variables 
vector_row = zeros(1, row1*col2); 
vector_col = zeros(1, row1*col2); 
vector_val = zeros(1, row1*col2); 
  
%Inizialize the pointers 
pointer_fin = 0; 
pointer_ori_col = 1; 
pointer_len_col = 0; 
  
%Cycle by Column 
for col=1 : col2 
    %Set the Column pointers 
    pointer_ori_col = pointer_ori_col + pointer_len_col; 
    pointer_len_col=0; 
  
    %Determine the number of values in the column 
    while(((pointer_len_col+pointer_ori_col) <= size(vector_col2,1)) && 
(vector_col2(pointer_ori_col + pointer_len_col) <= col)) 
        pointer_len_col = pointer_len_col + 1; 
    end 
  
    %Determine the valid Column values and there indices 
    indices2 = pointer_ori_col:pointer_ori_col+pointer_len_col-1; 
    ind2 = vector_row2(indices2)'; 
  
    %Set the column pointers 
    pointer_ori_row = 1; 
    pointer_len_row = 0; 
  
    %Cycle by Row 
    for row=1 : row1 
        %Set the row pointers 
        pointer_ori_row = pointer_ori_row + pointer_len_row; 
        pointer_len_row=0; 
  
        %Determine the number of values in the row 
        while(((pointer_len_row+pointer_ori_row) <= size(vector_row1,1)) && 
(vector_row1(pointer_ori_row + pointer_len_row) <= row)) 
            pointer_len_row = pointer_len_row + 1; 
        end 
  
        %Determine the valid Row values and there indices 
        indices1 = pointer_ori_row:pointer_ori_row+pointer_len_row-1; 
        ind1 = vector_col1(indices1)'; 
   
        %Matching Sequence -> Search for the matching row and column indices 
        val = 0; 
        pos2 = 1; 
        for pos1=1:size(indices1,2) 
            %Search for a match 
            while ((pos2 <= size(ind2,2)) && (ind1(pos1) > ind2(pos2))) 
                pos2=pos2+1; 
            end 
            %if there is a match then multiply and add it to the final value 
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            if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2))) 
                val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2)); 
            end 
        end 
  
        %Add value if it is not a zero 
        if(val ~= 0) 
            pointer_fin = pointer_fin+1; 
            vector_row(pointer_fin) = row; 
            vector_col(pointer_fin) = col; 
            vector_val(pointer_fin) = val; 
        end 
    end 
end 
  
%Output the final matrix in sparse row format using the temporary variables 
objf = sparseMatrixRow(row1, col2, vector_row(1:pointer_fin)', 
vector_col(1:pointer_fin)', vector_val(1:pointer_fin)'); 

 

Compressed Sparse Matrix Multiplication (CRSxCCS) using  
Pointer Vector 

 

Below is the MATLAB code used to simulate the performance of the compressed 

row times compressed column matrix multiplication using the pointer vector. 

 

 
function objf = multiplyCRSxCCStoCCS(obj1, row1, vector_val1, vector_ind1, vector_len1, 
vector_ptr1, col2, vector_val2, vector_ind2, vector_len2, vector_ptr2, outputVersion) 
%Written by Michael Moukarzel WPI 2008 
 
%This function performs compressed sparse matrix multiplication. 
%CRS x CCS = CCS using the Pointer vector 
 
%Inizilaize temporary variables 
vector_val = zeros(1, row1*col2); 
vector_ind = zeros(1, row1*col2); 
vector_ptr = zeros(1, row1*col2); 
 
%Inizialize the pointers 
pointer_ptr = 1; 
vector_ptr(1) = 1; 
 
%Cycle by Column 
for col=1 : col2 
    %Determine the valid Column values and there indices 
    indices2 = vector_ptr2(col):vector_ptr2(col+1)-1; 
    ind2 = vector_ind2(indices2); 
 
    %Set the pointers 
    pointer_ptr = pointer_ptr+1; 
    vector_ptr(pointer_ptr) = vector_ptr(pointer_ptr-1); 
 
    for row=1 : row1 
        %Determine the valid Row values and there indices 
        indices1 = vector_ptr1(row):vector_ptr1(row+1)-1; 
        ind1 = vector_ind1(indices1); 
 
        %Set the pointers 
        val = 0; 
        pos2 = 1; 
 
        %Matching Sequence -> Search for the matching row and column indices 
        for pos1=1:size(indices1,2) 
            %Search for a match 
            while (pos2 <= size(ind2,2)) && ind1(pos1) > ind2(pos2) 
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                pos2=pos2+1; 
            end 
            %if there is a match then multiply and add it to the final value 
            if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2))) 
                val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2)); 
            end 
        end 
 
        %Add value if it is not a zero 
        if(val ~= 0) 
            vector_val(vector_ptr(pointer_ptr)) = val; 
            vector_ind(vector_ptr(pointer_ptr)) = row; 
            vector_ptr(pointer_ptr) = vector_ptr(pointer_ptr) + 1; 
        end 
    end 
end 
 
%Output the final matrix in CCS format using the temporary variables 
objf = sparseCCSMatrix(row1, col2, vector_val(1:vector_ptr(pointer_ptr)-1), 
vector_ind(1:vector_ptr(pointer_ptr)-1), vector_ptr(1:pointer_ptr), []); 

 

 

Compressed Sparse Matrix Multiplication (CRSxCCS) using 
Length vector 

 

Below is the MATLAB code used to simulate the performance of the compressed 

row times compressed column matrix multiplication using the length vector. 

function objf = multiplyCRSxCCStoCCS(obj1, row1, vector_val1, vector_ind1, vector_len1, 
vector_ptr1, col2, vector_val2, vector_ind2, vector_len2, vector_ptr2, outputVersion) 
%Written by Michael Moukarzel WPI 2008 
  
%This function performs compressed sparse matrix multiplication. 
%CRS x CCS = CCS using the Length vector 
  
%Inizilaize temporary variables 
vector_val = zeros(1, row1*col2); 
vector_ind = zeros(1, row1*col2); 
vector_len = zeros(1, row1*col2); 
  
%Inizialize the pointers 
pointer_val = 0; 
pointer_len = 1; 
pointer_col = 1; 
  
%Cycle by Column 
for col=1 : col2 
    %Determine the valid Column values and there indices 
    indices2 = pointer_col:vector_len2(col)+pointer_col-1; 
    ind2 = vector_ind2(indices2); 
  
    %Set the pointers 
    pointer_col = vector_len2(col)+pointer_col; 
    pointer_row = 1; 
  
    %Cycle by Row 
    for row=1 : row1 
        %Determine the valid Row values and there indices 
        indices1 = pointer_row:vector_len1(row)+pointer_row-1; 
        ind1 = vector_ind1(indices1); 
  
  
        %Set the pointers 
        pointer_row = vector_len1(row)+pointer_row; 
        val = 0; 
        pos2 = 1; 
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        %Matching Sequence -> Search for the matching row and column indices 
        for pos1=1:size(indices1,2) 
            %Search for a match 
            while (pos2 <= size(ind2,2)) && ind1(pos1) > ind2(pos2) 
                pos2=pos2+1; 
            end 
            %if there is a match then multiply and add it to the final value 
            if ((pos2 <= size(ind2,2)) && (ind1(pos1) == ind2(pos2))) 
                val = val + vector_val1(indices1(pos1)) * vector_val2(indices2(pos2)); 
            end 
        end 
  
        %Add value if it is not a zero 
        if(val ~= 0) 
            pointer_val = pointer_val+1; 
            vector_val(pointer_val) = val; 
            vector_ind(pointer_val) = row; 
            vector_len(pointer_len) = vector_len(pointer_len)+1; 
        end 
    end 
  
    %Increment length pointer 
    pointer_len = pointer_len+1; 
end 
  
%Output the final matrix in CCS format using the temporary variables 
objf = sparseCCSMatrix(row1, col2, vector_val(1:pointer_val), vector_ind(1:pointer_val), 
[], vector_len(1:pointer_len-1)); 
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Appendix B 

This appendix contains all the code used to test various load distribution techniques in 

MATLAB. 

Block-Column Distribution 

The following is the MATLAB function to test block-column distributions.  It 

breaks up the matrices into submatrices composed of equal numbers of columns from B. 

It then performs each multiplication and reassembles the final matrix.  The splitting and 

reconstruction steps are timed as well as the actual multiplications.  The inputs are 

matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of simulated 

processing elements to use. 

function [ Y ] = ParallelMultiplyByColumns( matrixA,matrixB,N ) 
%Written by Ryan Kendrick WPI '08 
  
%This function tests possible parallel implementation of sparse matrix 
%multiplication.  It will split matrixB into N parts of equal size, 
%and perform N sets of multiplication. In a real parallel implementation, 
%each of these sets of multiplication would be done by a different 
%processing element.  The point of this function is to time the different 
%sets of multiplication to see how equally this method of splitting 
%distributes work between processing elements. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
    if (matrixA.col== matrixB.row) 
  
        % SPLIT MATRIX A INTO N different parts 
         
        disp('Time to split up jobs takes') 
        tic 
        Ptr1=1; 
         
        Values(N).v=[]; 
        Columns(N).v=[]; 
        Pointer(N).v=[]; 
        for i=1:N % loop once for each processor 
            if i~=N 
                Ptr2=(round(i*(matrixB.col)/N)); 
            else 
                Ptr2=size(matrixB.vector_ptr,2); 
            end 
            %write values to separate matrices 
            
Values(i).v=matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1)); 
            
Columns(i).v=matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1)); 
            Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2-1))-(matrixB.vector_ptr(Ptr1)-
1)) (size(Values(i).v,2)+1)]; 
            Ptr1=Ptr2; 
        end 
        CCSpart(N).v=[]; 
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        for k=1:N 
            CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Pointer(k).v,2)-
1),Values(k).v,Columns(k).v,Pointer(k).v,[]); 
        end 
        toc 
        Result(N).v=[]; 
        %perform parallel multiplications, time each one 
        for j=1:N 
            fprintf('Time to perform Multiplication on PE %g is:\n',j) 
            tic 
            Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',1); 
            toc 
        end 
  
        disp('Final Matrix Construction Takes') 
        %time the final matrix reconstruction 
        tic 
        ValRowLength=0; 
        for d=1:N 
            ValRowLength=ValRowLength+size(Result(d).v.vector_val,2); 
        end        
          
        FinalValue=zeros(1,ValRowLength); 
        FinalRowIndex=zeros(1,ValRowLength); 
        FinalPointer=zeros(1,(matrixB.col+1)); 
  
        Valptr=0; 
        Rowptr=0; 
        Ptrptr=0; 
        %loop N times to reassemble final matrix 
        for h=1:N 
            if h==1 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr,2)))=Result(h).v.vector_ptr; 
                Ptrptr=Ptrptr+size(Result(h).v.vector_ptr,2); 
            else 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr
,2)),2)))=(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))+max(FinalPointer)-1); 
                
Ptrptr=Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2)),2); 
            end 
  
            
FinalValue((Valptr+1):(Valptr+size(Result(h).v.vector_val,2)))=Result(h).v.vector_val; 
            Valptr=Valptr+size(Result(h).v.vector_val,2); 
           
            
FinalRowIndex((Rowptr+1):(Rowptr+size(Result(h).v.vector_ind,2)))=Result(h).v.vector_ind; 
            Rowptr=Rowptr+size(Result(h).v.vector_ind,2); 
                   
        end 
        
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]); 
        toc 
    end 
end 

 

Block-Values Distribution 

The following is the MATLAB function to test block-values distributions.  It 

breaks up the matrices into submatrices composed of columns from B.  Each submatrix 

contains approximately the same number of non-zero values.  After splitting B into 

submatrices, the function performs each multiplication and reassembles the final matrix.  
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The splitting and reconstruction steps are timed as well as the actual multiplications.  The 

inputs are matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of 

simulated processing elements to use. 

function [ Y ] = ParallelMultiplyByValues( matrixA,matrixB,N ) 
%Written by Ryan Kendrick WPI '08 
  
%This function tests possible parallel implementation of sparse matrix 
%multiplication.  It will split matrixB into N parts.  The size of each 
%part depends on how many values are contained in that part of the matrix. 
%It attempts to keep the number of nonzeros present in each part of matrixB 
%equal by splitting the Values vector as evenly as possible. 
%In an actual implementation of this algorithm, each of these 
%multiplications would be done by a different processing element.  The point 
%of this function is to time the different sets of multiplication to see 
%how equally the workload is distributed. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
    if (matrixA.col== matrixB.row) 
        DivisionsizeB= size(matrixB.vector_val,2)/N; 
  
        % SPLIT MATRIX A INTO N different parts with equal number of values 
        disp('Time to split up jobs takes') 
        tic 
        Ptr1=1; 
        Values(N).v=[]; 
        Columns(N).v=[]; 
        Pointer(N).v=[]; 
  
        for i=1:N 
            if i~=N 
                [trash Ptr2] = min(abs(matrixB.vector_ptr - (DivisionsizeB*i))); 
            else 
                Ptr2=size(matrixB.vector_ptr,2); 
            end 
  
            
Values(i).v=matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1)); 
            
Columns(i).v=matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2)-1)); 
            Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2-1))-(matrixB.vector_ptr(Ptr1)-
1)) (size(Values(i).v,2)+1)]; 
            Ptr1=Ptr2; 
        end 
        CCSpart(N).v=[]; 
        for k=1:N 
            CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Pointer(k).v,2)-
1),Values(k).v,Columns(k).v,Pointer(k).v,[]); 
        end 
        toc 
        Result(N).v=[]; 
        %perform individual multiplications, time each 
        for j=1:N 
            fprintf('Time to perform Multiplication on PE %g is:\n',j) 
            tic 
            Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',1); 
            toc 
        end 
        disp('Final Matrix Construction Takes') 
        tic 
        ValRowLength=0; 
        for d=1:N 
            ValRowLength=ValRowLength+size(Result(d).v.vector_val,2); 
        end 
  
        FinalValue=zeros(1,ValRowLength); 
        FinalRowIndex=zeros(1,ValRowLength); 
        FinalPointer=zeros(1,(matrixB.col+1)); 
        Valptr=0; 
        Rowptr=0; 
        Ptrptr=0; 
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        for h=1:N %reassemble final matrix by looping N times 
  
            if h==1 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr,2)))=Result(h).v.vector_ptr; 
                Ptrptr=Ptrptr+size(Result(h).v.vector_ptr,2); 
            else 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr
,2)),2)))=(Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))+max(FinalPointer)-1); 
                
Ptrptr=Ptrptr+size((Result(h).v.vector_ptr(2:size(Result(h).v.vector_ptr,2))),2); 
            end 
            
FinalValue((Valptr+1):(Valptr+size(Result(h).v.vector_val,2)))=Result(h).v.vector_val; 
            Valptr=Valptr+size(Result(h).v.vector_val,2); 
  
     FinalRowIndex((Rowptr+1):(Rowptr+size(Result(h).v.vector_ind,2)))= 
Result(h).v.vector_ind; 
            Rowptr=Rowptr+size(Result(h).v.vector_ind,2); 
        end     
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]); 
        toc 
    end 
end 

 

Block-Cyclic Distribution 

 

The following is the MATLAB function to test block-cyclic distributions.  It 

breaks up the matrices into 2N submatrices with equal number of columns of B in each.  

The function then performs each multiplication and reassembles the final matrix.  The 

splitting and reconstruction steps are timed as well as the actual multiplications.  The 

inputs are matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of 

simulated processing elements to use. (Note: the block-cyclic method of parallelization 

was previously referred to as the round robin technique.) As you can see, it is a 

significantly more involved algorithm to perform. 

function [ Y ] = ParallelMultiplyRoundRobin( matrixA,matrixB,N ) 
%Written by Ryan Kendrick WPI '08 
  
%This function tests possible parallel implementation of sparse matrix 
%multiplication.  It will split matrix B into N parts and perform N 
%multiplications between the N matrices of matrix B and matrixA. 
%This function uses a round robin technique meaning that each smaller matrix 
%is made up of two different pieces of matrix B, one from the denser side 
%of matrix B and one from the sparser side. 
%The round robin technique attempts to equalize the work 
%between separate processors; Especially in power-law matrices.  The N 
%multiplications occur in series in this M-file...in a real life 
%application with multiple processors they would run simultaneously in 
%parallel. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
    if (matrixA.col== matrixB.row) 
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        % SPLIT MATRIX A INTO N different parts 
        disp('The time required to split up the jobs is:') 
        tic 
        Values(N).v=[]; 
        Columns(N).v=[]; 
        Pointer(N).v=[]; 
        Ptr1=1; 
        Ptr2=zeros(1,(2*N)); 
        for i=1:(2*N) 
  
            if i~=(2*N) 
                Ptr2(i)= round(i*((matrixB.col)/(2*N)))+1; 
            else 
                Ptr2(i)=size(matrixB.vector_ptr,2); 
            end 
            if i<=N 
  
                %This section creates vectors for the first set of columns 
                %that will be given to each processing element 
  
                Values(i).v=  
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1)); 
                Columns(i).v= 
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1)); 
                Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))-
(matrixB.vector_ptr(Ptr1)-1)) (size(Values(i).v,2)+1)]; 
                Ptr1=Ptr2(i); %Ptr2 is kept as a vector..may need this for reconstruction 
  
            elseif i>N 
  
                %This section adds on the sectond set of columns that will 
                %be given to each processing element.  The values are 
                %simply concatenated to the existing values vectors, but 
                %the pointer must do some math to have it done correctly. 
  
                Values(i-N).v= [Values(i-N).v 
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1))]; 
                Columns(i-N).v= [Columns(i-N).v 
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1))]; 
                Pointer(i-N).v= [Pointer(i-N).v (max(Pointer(i-
N).v)+cumsum(diff(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))))) (size(Values(i-N).v,2)+1)]; 
                Ptr1=Ptr2(i); 
  
            end 
        end 
  
        %This loop simply creates separate CCS Matrices using the values 
        %, columns, and pointer vectors constructed in the last step. 
  
        CCSpart(N).v=[]; 
  
        for h=1:(N) 
            CCSpart(h).v=sparseCCSMatrix(matrixB.row,(size(Pointer(h).v,2)-
1),Values(h).v,Columns(h).v,Pointer(h).v,[]); 
        end 
        toc 
        % This next section Performs Each Multiplication, CRS matrixA X Each part of CCS 
        % matrixB.  It uses the same process as the normal CRSxCCS 
        % function. 
  
        Result(N).u=[]; 
        %perform individual multiplications 
        for j=1:N 
            fprintf('Time to perform Multiplication on PE %g is:\n',j) 
            tic 
            Result(j).u= multiply(matrixA,CCSpart(j).v,'CCS',1); 
            toc 
        end 
  
        %This section takes the results calculated in the last step and 
        %picks out which part goes where...it basically constructs the final matrix 
        %by cutting and pasting pieces from the results. 
  
        disp('The required to reassemble final matrix is:') 
        tic 
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        ColDist=[(Ptr2(1)-1) diff(Ptr2)]; %Makes a vector showing the column 
distriibution 
        %How many columns each piece of B is 
        %made up of 
  
        ValRowLength=0; 
        for d=1:N 
            ValRowLength=ValRowLength+size(Result(d).u.vector_val,2); 
        end 
  
        FinalValue=zeros(1,ValRowLength); 
        FinalRowIndex=zeros(1,ValRowLength); 
        FinalPointer=zeros(1,(matrixB.col+1)); 
  
        Valptr=0; 
        Rowptr=0; 
        Ptrptr=0; 
  
        for k=1:(2*N) 
  
            if k<=N 
  
                %FinalPointer must be constructed before FinalValue 
                %becuase it bases its numbers off of the current length of 
                %FinalValue 
  
                if k==1 
                    
FinalPointer((Ptrptr+1):(Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(1:(1+ColD
ist(k)))),2)))=(Valptr+Result(k).u.vector_ptr(1:(1+ColDist(k)))); 
                    
Ptrptr=Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(1:(1+ColDist(k)))),2); 
  
                else 
                    
FinalPointer((Ptrptr+1):(Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(2:(1+ColD
ist(k)))),2)))=(Valptr+Result(k).u.vector_ptr(2:(1+ColDist(k)))); 
                    
Ptrptr=Ptrptr+size((size(FinalValue,2)+Result(k).u.vector_ptr(2:(1+ColDist(k)))),2); 
  
                end 
  
                
FinalValue((Valptr+1):(Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+Col
Dist(k))-1)),2)))= Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)); 
                
Valptr=Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2); 
  
                
FinalRowIndex((Rowptr+1):(Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+
ColDist(k))-1)),2)))= Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)); 
                
Rowptr=Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2); 
  
            elseif k>N 
  
                FinalPointer((Ptrptr+1):(Ptrptr+size((cumsum(diff(Result(k-
N).u.vector_ptr((ColDist(k-N)+1):(ColDist(k-
N)+ColDist(k)+1))))),2)))=(cumsum(diff(Result(k-N).u.vector_ptr((ColDist(k-
N)+1):(ColDist(k-N)+ColDist(k)+1))))+Valptr+1); 
                Ptrptr=Ptrptr+size((cumsum(diff(Result(k-N).u.vector_ptr((ColDist(k-
N)+1):(ColDist(k-N)+ColDist(k)+1))))),2); 
  
                FinalValue((Valptr+1): (Valptr+size(Result(k-
N).u.vector_val(nonzeros((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1)),2)))=Result(k-
N).u.vector_val(nonzeros((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1)); 
                Valptr=Valptr+size(Result(k-N).u.vector_val(nonzeros((Result(k-
N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1)),2); 
  
                FinalRowIndex((Rowptr+1): (Rowptr+size(Result(k-
N).u.vector_ind((Result(k-N).u.vector_ptr(1+ColDist(k-N))):Result(k-
N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-1),2)))=Result(k-N).u.vector_ind((Result(k-
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N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1); 
                Rowptr=Rowptr+size(Result(k-N).u.vector_ind((Result(k-
N).u.vector_ptr(1+ColDist(k-N))):Result(k-N).u.vector_ptr((ColDist(k)+ColDist(k-N))+1)-
1),2); 
  
            end 
        end 
  
        
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]); 
        toc 
    end 
end 

Inverse Block-Cyclic Distribution 

The following is the MATLAB function to test Inverse block-cyclic distributions.  

It breaks up the matrices into 2N submatrices of B.  Each submatrix is composed of an 

equal number of columns from B.  The function then performs each multiplication and 

reassembles the final matrix.  The splitting and reconstruction steps are timed as well as 

the actual multiplications.  The inputs are matrixA a CRS matrix, matrixB, a CCS matrix, 

and N, the number of simulated processing elements to use. (Note: The inverse block-

cyclic method of parallelization was previously referred to as the inverse round robin 

technique.) As you can see, it is the most complicated splitting algorithm we tested. 

 
function [ Y ] = ParallelMultiplyInverseRoundRobin( matrixA,matrixB,N ) 
%Written by Ryan Kendrick WPI '08 
  
%This function tests possible parallel implementation of sparse matrix 
%multiplication.  It will split matrix B into N parts and perform N multiplications 
between 
% the N matrices of matrix B and matrixA. 
%This function uses an inverse round robin technique meaning that each smaller matrix 
%is made up of two different pieces of matrix B that are not next to 
%eachother. The round robin technique attempts to equalize the work 
%between separate processors. This is an improvement over the regular round 
%robin function because it works inversely; meaning that if a processing 
%element receives the MOST DENSE piece of the matrix then its second piece 
%will be the MOST SPARSE.  This is an attempt to equalize both size and 
%average density that each processing element deals with.  The N 
%multiplications occur in series in this M-file...in a real life 
%application with multiple processors they would run simultaneously in 
%parallel. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
  
    if (matrixA.col== matrixB.row) 
  
        % SPLIT MATRIX A INTO N different parts 
        disp('The time required to split up the jobs is:') 
        tic 
        Values(N).v=[]; 
        Columns(N).v=[]; 
        Pointer(N).v=[]; 
        Ptr1=1; 
        Ptr2=zeros(1,(2*N)); 
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        for i=1:N 
  
            Ptr2(i)= round(i*((matrixB.col)/(2*N)))+1; 
  
            %This section creates vectors for the first set of columns 
            %that will be given to each processing element 
            Values(i).v=  
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1)); 
            Columns(i).v= 
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2(i))-1)); 
            Pointer(i).v=[(matrixB.vector_ptr(Ptr1:(Ptr2(i)-1))-
(matrixB.vector_ptr(Ptr1)-1)) (size(Values(i).v,2)+1)]; 
            Ptr1=Ptr2(i); %Ptr2 is kept as a vector.. 
        end 
  
        for p=N:-1:1 
  
            if p~=1 
                Ptr2((2*N+1)-p)= round(((2*N+1)-p)*((matrixB.col)/(2*N)))+1; 
            else 
                Ptr2((2*N+1)-p)=size(matrixB.vector_ptr,2); 
            end 
  
            %This section adds on the sectond set of columns that will 
            %be given to each processing element.  The values are 
            %simply concatenated to the existing values vectors, but 
            %the pointer must do some math to have it done correctly. 
  
            Values(p).v= [Values(p).v 
matrixB.vector_val(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2((2*N+1)-p))-1))]; 
            Columns(p).v= [Columns(p).v 
matrixB.vector_ind(matrixB.vector_ptr(Ptr1):(matrixB.vector_ptr(Ptr2((2*N+1)-p))-1))]; 
            Pointer(p).v= [Pointer(p).v 
(max(Pointer(p).v)+cumsum(diff(matrixB.vector_ptr(Ptr1:(Ptr2((2*N+1)-p)-1))))) 
(size(Values(p).v,2)+1)]; 
            Ptr1=Ptr2((2*N+1)-p); 
  
        end 
  
        %This loop creates separate CCS Matrices using the values 
        %, columns, and pointer vectors constructed in the last step. 
  
        CCSpart(N).v=[]; 
        for h=1:(N) 
            CCSpart(h).v=sparseCCSMatrix(matrixB.row,(size(Pointer(h).v,2)-
1),Values(h).v,Columns(h).v,Pointer(h).v,[]); 
        end 
  
        toc 
  
        % This next section Performs Each Multiplication, CRS matrixA X Each part of CCS 
        % matrixB.  It uses the same process as the normal CRSxCCS 
        % function. 
  
        Result(N).u=[]; 
        %perform individual multiplications 
        for j=1:N 
            fprintf('Time to perform Multiplication on PE %g is:\n',j) 
            tic 
            Result(j).u= multiply(matrixA,CCSpart(j).v,'CCS',1); 
            toc 
        end 
        %This section takes the results calculated in the last step and 
        %picks out which part goes where...it basically constructs the final matrix 
        %by cutting and pasting pieces from the results. 
  
        disp('The required to reassemble final matrix is:') 
        tic 
        ColDist=[(Ptr2(1)-1) diff(Ptr2)]; %Makes a vector showing the column 
distriibution 
        %How many columns each piece of B is 
        %made up of 
  
        %Preallocate memory for the FinalValue and FinalRowIndex vectors 
        ValRowLength=0; 
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        for d=1:N 
            ValRowLength=ValRowLength+size(Result(d).u.vector_val,2); 
        end 
        FinalValue=zeros(1,ValRowLength); 
        FinalRowIndex=zeros(1,ValRowLength); 
        FinalPointer=zeros(1,(matrixB.col+1)); 
        Valptr=0; 
        Rowptr=0; 
        Ptrptr=0; 
  
        for k=1:N 
  
            %FinalPointer must be constructed before FinalValue 
            %becuase it bases its numbers off of the current length of 
            %FinalValue 
  
            if k==1 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(k).u.vector_ptr(1:(1+ColDist(k))),2)))=(Valpt
r+Result(k).u.vector_ptr(1:(1+ColDist(k)))); 
                Ptrptr=Ptrptr+size(Result(k).u.vector_ptr(1:(1+ColDist(k))),2); 
            else 
                
FinalPointer((Ptrptr+1):(Ptrptr+size(Result(k).u.vector_ptr(2:(1+ColDist(k))),2)))=(Valpt
r+Result(k).u.vector_ptr(2:(1+ColDist(k)))); 
                Ptrptr=Ptrptr+size(Result(k).u.vector_ptr(2:(1+ColDist(k))),2); 
            end 
            
FinalValue((Valptr+1):(Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+Col
Dist(k))-1)),2)))= Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)); 
            
Valptr=Valptr+size(Result(k).u.vector_val(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2); 
            
FinalRowIndex((Rowptr+1):(Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+
ColDist(k))-1)),2)))= Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)); 
            
Rowptr=Rowptr+size(Result(k).u.vector_ind(1:(Result(k).u.vector_ptr(1+ColDist(k))-1)),2); 
        end 
  
        for k=N:-1:1 
             
FinalPointer((Ptrptr+1):(Ptrptr+size(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(C
olDist(k)+ColDist((2*N+1)-
k)+1)))),2)))=(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(ColDist(k)+ColDist((2*N
+1)-k)+1))))+Valptr+1); 
            
Ptrptr=Ptrptr+size(cumsum(diff(Result(k).u.vector_ptr((ColDist(k)+1):(ColDist(k)+ColDist(
(2*N+1)-k)+1)))),2); 
            FinalValue((Valptr+1): 
(Valptr+size(Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Resul
t(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-
1)),2)))=Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Result(k)
.u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)); 
            
Valptr=Valptr+size(Result(k).u.vector_val(nonzeros((Result(k).u.vector_ptr(1+ColDist(k)))
:Result(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)),2); 
            FinalRowIndex((Rowptr+1): 
(Rowptr+size(Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Resul
t(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-
1)),2)))=Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k))):Result(k)
.u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)); 
            
Rowptr=Rowptr+size(Result(k).u.vector_ind(nonzeros((Result(k).u.vector_ptr(1+ColDist(k)))
:Result(k).u.vector_ptr((ColDist(k)+ColDist((2*N+1)-k))+1)-1)),2); 
  
        end 
        
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,FinalPointer,[]); 
        toc 
    end 
end 
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Column-Cyclic Distribution 

 

The following is the MATLAB function to test column-cyclic distributions.  It 

breaks up the matrices into submatrices composed of columns from B. The function then 

performs each multiplication and reassembles the final matrix.  The splitting and 

reconstruction steps are timed as well as the actual multiplications.  The inputs are 

matrixA a CRS matrix, matrixB, a CCS matrix, and N, the number of simulated 

processing elements to use. 

function [ Y ] = ParallelMultiplyCyclic( matrixA,matrixB,N ) 
%Written by Ryan Kendrick WPI '08 
  
%This function tests possible parallel implementation of sparse matrix 
%multiplication.  It will split matrixB into N parts of equal size, 
%and perform N sets of multiplication....The columns are distributed to the 
%separate processing elements in a cyclic manner.  the algorithm starts on 
%the first column and distributes them cyclically until the last column is 
%reached. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
    if (matrixA.col== matrixB.row) 
  
        % SPLIT MATRIX A INTO N different parts 
  
        disp('Time to split up jobs takes') 
        tic 
        Values(N).v=[]; 
        Columns(N).v=[]; 
        Length(N).v=[]; 
        RunningSum=1;             %keeps a sum of the total len's used 
  
        for i=1:matrixB.col 
            X=mod(i,N);  %X is the processing element number that this row will be 
assigned to 
            if X==0 
                X=N; 
            end  
            Length(X).v = [Length(X).v matrixB.vector_len(i)]; 
            Values(X).v = [Values(X).v 
matrixB.vector_val(RunningSum:(RunningSum+matrixB.vector_len(i)-1))]; 
            Columns(X).v = [Columns(X).v 
matrixB.vector_ind(RunningSum:(RunningSum+matrixB.vector_len(i)-1))]; 
            RunningSum=RunningSum+ matrixB.vector_len(i); 
        end 
  
        CCSpart(N).v=[]; 
  
        for k=1:N 
            
CCSpart(k).v=sparseCCSMatrix(matrixB.row,(size(Length(k).v,2)),Values(k).v,Columns(k).v,[
],Length(k).v); 
        end 
  
        toc 
        Result(N).v=[]; 
        %perform each individual multiplication 
        for j=1:N 
            fprintf('Time to perform Multiplication on PE %g is:\n',j) 
            tic 
            Result(j).v=multiply(matrixA,CCSpart(j).v,'CCS',2); 
            toc 
  
        end 
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        disp('Final Matrix Construction Takes') 
        tic 
        ValRowLength=0; 
        for d=1:N 
            ValRowLength=ValRowLength+size(Result(d).v.vector_val,2); 
        end 
  
        FinalValue=zeros(1,ValRowLength); 
        FinalRowIndex=zeros(1,ValRowLength); 
        FinalLength=zeros(1,matrixB.col); 
        Valptr=0; 
        Rowptr=0; 
        LenIndex=1; 
        LenIndexCounter=0; 
        IndexArray=ones(1,N); 
  
        for h=1:matrixB.col 
  
            X=mod(h,N);  %X is the processing element number that this row will be 
assigned to 
            if X==0 
                X=N; 
            end 
            %Assemble Final Length Vector 
  
            FinalLength(h)= Result(X).v.vector_len(LenIndex); 
            
FinalValue((Valptr+1):(Valptr+size(Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Re
sult(X).v.vector_len(LenIndex)-1)),2))) = 
Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Result(X).v.vector_len(LenIndex)-1)); 
            
Valptr=Valptr+size(Result(X).v.vector_val(IndexArray(X):(IndexArray(X)+Result(X).v.vector
_len(LenIndex)-1)),2); 
            
FinalRowIndex((Rowptr+1):(Rowptr+size(Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)
+Result(X).v.vector_len(LenIndex)-1)),2))) = 
Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)+Result(X).v.vector_len(LenIndex)-1)); 
            
Rowptr=Rowptr+size(Result(X).v.vector_ind(IndexArray(X):(IndexArray(X)+Result(X).v.vector
_len(LenIndex)-1)),2); 
            IndexArray(X)=IndexArray(X)+Result(X).v.vector_len(LenIndex); 
            LenIndexCounter=LenIndexCounter+1; 
  
            if LenIndexCounter==N 
                LenIndexCounter=0; 
                LenIndex=LenIndex+1; 
            end 
        end 
        
Y=sparseCCSMatrix(matrixA.row,matrixB.col,FinalValue,FinalRowIndex,[],FinalLength); 
        toc 
    end 
end 
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Appendix C 
The following is the MATLAB code used to determine the number of non-zero 

operations needed to the product of two sparse matrices.  The inputs are A, a CRS matrix 

and B, a CCS Matrix. The function returns the total number of non-zero operations 

(multiplies and adds) needed to compute the final product of the matrix. 

function operations = OperationsCounter(matrixA, matrixB) 
%   Written by Ryan Kendrick WPI '08 
%Counts the number of floating point operations needed to multiply two 
%matrices. 
  
if ((isa(matrixA,'sparseCRSMatrix')== 1) && (isa(matrixB,'sparseCCSMatrix')==1)) 
  
    %make sure columns in A equal rows of B 
    if (get(matrixA,'col')== get(matrixB,'row')) 
  
        len_total1 = 0; 
        len_total2 = 0; 
        matrixAcol = get(matrixA,'vector_ind'); 
        matrixBrow = get(matrixB,'vector_ind'); 
        lengthA = get(matrixA,'vector_len'); 
        lengthB = get(matrixB,'vector_len'); 
        matrixAval = get(matrixA,'vector_val'); 
        matrixBval = get(matrixB,'vector_val'); 
        matrixArows=get(matrixA,'row'); 
        matrixBcols=get(matrixB,'col'); 
  
        operations=0; 
  
        for current_row=1:matrixArows    %loop for each row in matrixA 
            len_total2=0; 
%******************building the col_values vector****** 
            col_values=zeros(1,lengthA(current_row)); 
            for t=1:size(col_values,2) 
                col_values(t)=matrixAcol(len_total1+t); %builds a vector showing which 
columns there are entries in 
            end 
            for current_column=1:matrixBcols     %loop for each col in matrixB 
%**********************building the row_values vector******** 
                row_values=zeros(1,lengthB(current_column)); 
                for g=1:size(row_values,2) 
                    row_values(g)=matrixBrow(len_total2+g); 
                end 
%Cycle through nonzero entries in row of A and col of B 
                col=1; 
                additions=0; 
                multiplications=0; 
                for row=1:size(row_values,2) 
                    while (col <= size(col_values,2)) && row_values(row) > 
col_values(col) 
                        col=col+1; 
                    end 
                    if ((col <= size(col_values,2)) && (row_values(row)== 
col_values(col))) 
%if two values to be multiplied are found, increment the multiplications variable 
                        multiplications=multiplications+1; 
                    end 
                end 
                additions=multiplications; 
%increment the operations variable with new data acquired from row and column 
                operations = operations + multiplications + additions; 
                len_total2=len_total2 + size(row_values,2); 
            end 
            len_total1=len_total1 + size(col_values,2);   %keeps a cumulative total of 
all the length values we've used 
        end 
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    else 
        error('columns in first matrix must equal rows in the second matrix') 
    end 
else 
    error('first matrix must be in CRS storage, second must be a CCS') 
end 
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Appendix D  
 

This appendix contains the C-code used to perform compressed row by 

compressed column matrix multiplication on the Microblaze soft-core processor. 

void multiplication(int total_row, int total_col, int* val_A, int* ind_A, int* len_A, 
int* val_B, int* ind_B, int* len_B, int* val_C, int* ind_C, int* len_C){ 
 //Pointers and indexings used for loops and keeping track of locations 
 int row=0, col=0, pos1=0, pos2=0, value=0, pointer_col=0, pointer_val=0, 
pointer_len=0, limit_lenA=0, limit_lenB=0; 
 
 //Cycle by Column 
 for(col=0; col< total_col; col++){ 
  //set the value at this memory location to 0, as to increment everythime a 
value is added 
  len_C[pointer_len]=0; 
   
  //Set the pointers 
  limit_lenA = 0; 
  pointer_col = limit_lenB; 
  limit_lenB += len_B[col]; 
 
  //Cycle by Row 
  for(row=0; row< total_row; row++){ 
   //Set the pointers 
   pos2 = pointer_col; 
   pos1=limit_lenA; 
   limit_lenA += len_A[row]; 
    
   //Matching Sequence -> Search for the matching row and column 
indices 
   while(pos1<limit_lenA && pos2 < limit_lenB){ 
    //If indexA value is greater than indexB value 
    if(ind_A[pos1] > ind_B[pos2]) 
     pos2++; 
     
    //If indexA value is less than indexB value 
    else if(ind_A[pos1] < ind_B[pos2]) 
     pos1++; 
     
    //Otherwise indexA matches indexB whcih indecates a match 
    else{ 
     value += (val_A[pos1] * val_B[pos2]); 
     pos1++; 
     pos2++; 
    } 
   } 
    
   //Add value if it is not a zero 
   if(value != 0){ 
    val_C[pointer_val] = value; 
    ind_C[pointer_val] = row+1; 
    len_C[pointer_len]++; 
    pointer_val++; 
    value = 0; 
   } 
  } 
 
  //Increment length pointer 
  pointer_len++; 
 } 
} 
 



 128 

Appendix E  
 

This appendix contains the parallelization code for the column-cyclic distribution.  

This code runs on the Microblaze processing elements on the FPGA to distribute matrix 

B as evenly as possible among the individual processing elements and to reassemble the 

submatrices of the final matrix, C. 

 

Column-Cyclic Splitting 

To properly complete the splitting algorithm using C code, two functions were 

needed, one that split the matrix into submatrices composed of columns from matrix B, 

and another that reassembled the submatrices of matrix C into the entire matrix C.  In the 

case of the column-cyclic distribution, these functions were called columnCyclic and 

assembleColumnCyclic respectively. 

The parameters given to columnCyclic are a pointer to the original matrix, which 

submatrix you would like returned, and N, the number of pieces to split the matrix into.  

The following is the actual C code for this function. 

void columnCyclic(int* val_B, int* ind_B, int* len_B, int* val_F, int* ind_F, int* len_F, 
int section, int N, int size_nnz, int size_len){ 
 int i=0; 
 int j=0; 
 int lensum=0; 
 int entries=0; 
 int X=0; 
 int totalCols=0; 
 int lenpointer=0; 
 int valpointer=0; 
 int valpointerB=0; 
 
 //copy memory over to subMatrixB 
 for(i=0;i<COL_B;i++){ 
  //Determine which column to capture 
  if(currentProc==N) 
   currentProc=0; 
  currentProc++; 
   
  //Add the column section for the appropriate processor 
  if(section==currentProc){ 
   len_F[lenpointer]=len_B[i]; 
   lenpointer++; 
   for(j=0;j<len_B[i];j++){ 
    val_F[valpointer+j]=val_B[valpointerB+j]; 
    ind_F[valpointer+j]=ind_B[valpointerB+j]; 
   } 
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   valpointer=valpointer+len_B[i]; 
  } 
 valpointerB=valpointerB+len_B[i]; 
 } 
} 

 

 

Column-Cyclic Reassembly 

 

The function shown below, assembleColumnCyclic is responsible for the 

reassembly of the submatrices of matrix C into the final matrix. 

 
void assembleColumnCyclic(int* val_C, int* ind_C, int* len_C, int* val_C1, int* ind_C1, 
int* len_C1, int* val_C2, int* ind_C2, int* len_C2, int* val_C3, int* ind_C3, int* 
len_C3, int* val_C4, int* ind_C4, int* len_C4){ 
 int totalCols=0; 
 int i=0; 
 int valPointerFinal=0; 
 int NUMBER_OF_PES=4; 
 int currentProc=0; 
 int currentValue[4]={0,0,0,0}; 
 int currentLen[4]={0,0,0,0}; 
 
 //Copy entries into FinalMatrix 
 for(i=0;i<COL_C;i++){ 
  //Determine which processor data to add 
  if(currentProc==NUMBER_OF_PES) 
   currentProc=0; 
  currentProc++; 
  switch(currentProc){ 
   case 1://sub_Matrix_1 
    //copy over value and index vectors 
    memcpy((void *)&val_C[valPointerFinal], (void 
*)&val_C1[currentValue[currentProc-1]],len_C1[currentLen[currentProc-1]]*sizeof(int)); 
    memcpy((void *)&ind_C[valPointerFinal], (void 
*)&ind_C1[currentValue[currentProc-1]],len_C1[currentLen[currentProc-1]]*sizeof(int)); 
 
    //copy over len entries 
    memcpy((void *)&len_C[i], (void 
*)&len_C1[currentLen[currentProc-1]], sizeof(int)); 
 
    //update indexes for submatrices and Final Matrix 
    currentValue[currentProc-1]+=len_C1[currentLen[currentProc-
1]]; 
    valPointerFinal+=len_C1[currentLen[currentProc-1]]; 
    currentLen[currentProc-1]++; 
    break; 
   case 2://sub_Matrix_2 
    //copy over value and index vectors 
    memcpy((void *)&val_C[valPointerFinal], (void 
*)&val_C2[currentValue[currentProc-1]],len_C2[currentLen[currentProc-1]]*sizeof(int)); 
    memcpy((void *)&ind_C[valPointerFinal], (void 
*)&ind_C2[currentValue[currentProc-1]],len_C2[currentLen[currentProc-1]]*sizeof(int)); 
 
    //copy over len entries 
    memcpy((void *)&len_C[i], (void 
*)&len_C2[currentLen[currentProc-1]], sizeof(int)); 
 
    //update indexes for submatrices and Final Matrix 
    currentValue[currentProc-1]+=len_C2[currentLen[currentProc-
1]]; 
    valPointerFinal+=len_C2[currentLen[currentProc-1]]; 
    currentLen[currentProc-1]++; 
    break; 
   case 3://sub_Matrix_3 
    //copy over value and index vectors 
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    memcpy((void *)&val_C[valPointerFinal], (void 
*)&val_C3[currentValue[currentProc-1]],len_C3[currentLen[currentProc-1]]*sizeof(int)); 
    memcpy((void *)&ind_C[valPointerFinal], (void 
*)&ind_C3[currentValue[currentProc-1]],len_C3[currentLen[currentProc-1]]*sizeof(int)); 
 
    //copy over len entries 
    memcpy((void *)&len_C[i], (void 
*)&len_C3[currentLen[currentProc-1]], sizeof(int)); 
 
    //update indexes for submatrices and Final Matrix 
    currentValue[currentProc-1]+=len_C3[currentLen[currentProc-
1]]; 
    valPointerFinal+=len_C3[currentLen[currentProc-1]]; 
    currentLen[currentProc-1]++; 
    break; 
   case 4://sub_Matrix_4 
    //copy over value and index vectors 
    memcpy((void *)&val_C[valPointerFinal], (void 
*)&val_C4[currentValue[currentProc-1]],len_C4[currentLen[currentProc-1]]*sizeof(int)); 
    memcpy((void *)&ind_C[valPointerFinal], (void 
*)&ind_C4[currentValue[currentProc-1]],len_C4[currentLen[currentProc-1]]*sizeof(int)); 
 
    //copy over len entries 
    memcpy((void *)&len_C[i], (void 
*)&len_C4[currentLen[currentProc-1]], sizeof(int)); 
 
    //update indexes for submatrices and Final Matrix 
    currentValue[currentProc-1]+=len_C4[currentLen[currentProc-
1]]; 
    valPointerFinal+=len_C4[currentLen[currentProc-1]]; 
    currentLen[currentProc-1]++; 
    break; 
  } 
 } 
} 
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Appendix F  
 

This section displays our two Xilinx hardware description files.  These files are 

used by Xilinx software to configure the hardware on a Xilinx FPGA.  The first is a .mhs 

file used to configure a single Microblaze system on the FPGA.  The second configures a 

system of three Microblazes, one host and two in parallel.   

 
# ############################################################################## 

# Created by Base System Builder Wizard for Xilinx EDK 9.1 Build EDK_J.19 

# Tue Sep 04 16:28:24 2007 
# Target Board:  Xilinx Virtex-II Pro ML310 Evaluation Platform Rev D 

# Family:  virtex2p 

# Device:  xc2vp30 
# Package:  ff896 

# Speed Grade:  -6 

# Processor: Microblaze 
# System clock frequency: 100.000000 MHz 

# Debug interface: On-Chip HW Debug Module 
# On Chip Memory :  64 KB 

# Total Off Chip Memory : 256 MB 

# - DDR_SDRAM_32Mx64 = 256 MB 
# ############################################################################## 

 

 
 PARAMETER VERSION = 2.1.0 

 

 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr, DIR = O, VEC = [0:12] 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr, DIR = O, VEC 

= [0:1] 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn, DIR = O 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn, DIR = O 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DM, DIR = O, VEC = [0:3] 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS, DIR = IO, VEC = [0:3] 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ, DIR = IO, VEC = [0:31] 

 PORT fpga_0_RS232_Uart_RX_pin = fpga_0_RS232_Uart_RX, DIR = I 

 PORT fpga_0_RS232_Uart_TX_pin = fpga_0_RS232_Uart_TX, DIR = O 
 PORT fpga_0_LEDs_8Bit_GPIO_IO_pin = fpga_0_LEDs_8Bit_GPIO_IO, DIR = IO, VEC = [0:7] 

 PORT fpga_0_ORGate_1_Res_pin = fpga_0_ORGate_1_Res, DIR = O 

 PORT fpga_0_ORGate_1_Res_1_pin = fpga_0_ORGate_1_Res, DIR = O 
 PORT fpga_0_ORGate_1_Res_2_pin = fpga_0_ORGate_1_Res, DIR = O 

 PORT fpga_0_DDR_CLK_FB = ddr_feedback_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000 

 PORT fpga_0_DDR_CLK_FB_OUT = ddr_clk_feedback_out_s, DIR = O 
 PORT sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000 

 PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST 

 
 

BEGIN microblaze 

 PARAMETER INSTANCE = microblaze_0 
 PARAMETER HW_VER = 6.00.a 

 PARAMETER C_USE_FPU = 0 

 PARAMETER C_DEBUG_ENABLED = 1 
 PARAMETER C_NUMBER_OF_PC_BRK = 2 

 BUS_INTERFACE DLMB = dlmb 

 BUS_INTERFACE ILMB = ilmb 
 BUS_INTERFACE DOPB = mb_opb 

 BUS_INTERFACE IOPB = mb_opb 

 PORT DBG_CAPTURE = DBG_CAPTURE_s 
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 PORT DBG_CLK = DBG_CLK_s 

 PORT DBG_REG_EN = DBG_REG_EN_s 
 PORT DBG_TDI = DBG_TDI_s 

 PORT DBG_TDO = DBG_TDO_s 

 PORT DBG_UPDATE = DBG_UPDATE_s 
END 

 

BEGIN opb_v20 
 PARAMETER INSTANCE = mb_opb 

 PARAMETER HW_VER = 1.10.c 

 PARAMETER C_EXT_RESET_HIGH = 0 
 PORT SYS_Rst = sys_rst_s 

 PORT OPB_Clk = sys_clk_s 

END 
 

BEGIN opb_mdm 

 PARAMETER INSTANCE = debug_module 
 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_MB_DBG_PORTS = 1 

 PARAMETER C_USE_UART = 1 
 PARAMETER C_UART_WIDTH = 8 

 PARAMETER C_BASEADDR = 0x41400000 

 PARAMETER C_HIGHADDR = 0x4140ffff 
 BUS_INTERFACE SOPB = mb_opb 

 PORT DBG_CAPTURE_0 = DBG_CAPTURE_s 

 PORT DBG_CLK_0 = DBG_CLK_s 
 PORT DBG_REG_EN_0 = DBG_REG_EN_s 

 PORT DBG_TDI_0 = DBG_TDI_s 
 PORT DBG_TDO_0 = DBG_TDO_s 

 PORT DBG_UPDATE_0 = DBG_UPDATE_s 

END 
 

BEGIN lmb_v10 

 PARAMETER INSTANCE = ilmb 
 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 
 PORT LMB_Clk = sys_clk_s 

END 

 
BEGIN lmb_v10 

 PARAMETER INSTANCE = dlmb 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 

 PORT LMB_Clk = sys_clk_s 
END 

 

BEGIN lmb_bram_if_cntlr 
 PARAMETER INSTANCE = dlmb_cntlr 

 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_BASEADDR = 0x00000000 
 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = dlmb 

 BUS_INTERFACE BRAM_PORT = dlmb_port 
END 

 

BEGIN lmb_bram_if_cntlr 
 PARAMETER INSTANCE = ilmb_cntlr 

 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_BASEADDR = 0x00000000 
 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = ilmb 

 BUS_INTERFACE BRAM_PORT = ilmb_port 
END 

 

BEGIN bram_block 
 PARAMETER INSTANCE = lmb_bram 

 PARAMETER HW_VER = 1.00.a 

 BUS_INTERFACE PORTA = ilmb_port 
 BUS_INTERFACE PORTB = dlmb_port 

END 

 
BEGIN opb_uartlite 

 PARAMETER INSTANCE = RS232_Uart 
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 PARAMETER HW_VER = 1.00.b 

 PARAMETER C_BAUDRATE = 9600 
 PARAMETER C_DATA_BITS = 8 

 PARAMETER C_ODD_PARITY = 0 

 PARAMETER C_USE_PARITY = 0 
 PARAMETER C_CLK_FREQ = 100000000 

 PARAMETER C_BASEADDR = 0x40600000 

 PARAMETER C_HIGHADDR = 0x4060ffff 
 BUS_INTERFACE SOPB = mb_opb 

 PORT RX = fpga_0_RS232_Uart_RX 

 PORT TX = fpga_0_RS232_Uart_TX 
END 

 

BEGIN mch_opb_ddr 
 PARAMETER INSTANCE = DDR_SDRAM_32Mx64 

 PARAMETER HW_VER = 1.00.c 

 PARAMETER C_MCH_OPB_CLK_PERIOD_PS = 10000 
 PARAMETER C_REG_DIMM = 1 

 PARAMETER C_DDR_TMRD = 20000 

 PARAMETER C_DDR_TWR = 20000 
 PARAMETER C_DDR_TRAS = 60000 

 PARAMETER C_DDR_TRC = 90000 

 PARAMETER C_DDR_TRFC = 100000 
 PARAMETER C_DDR_TRCD = 30000 

 PARAMETER C_DDR_TRRD = 20000 

 PARAMETER C_DDR_TRP = 30000 
 PARAMETER C_DDR_AWIDTH = 13 

 PARAMETER C_DDR_DWIDTH = 32 
 PARAMETER C_DDR_COL_AWIDTH = 10 

 PARAMETER C_DDR_BANK_AWIDTH = 2 

 PARAMETER C_NUM_CLK_PAIRS = 2 
 PARAMETER C_MEM0_BASEADDR = 0x50000000 

 PARAMETER C_MEM0_HIGHADDR = 0x5fffffff 

 BUS_INTERFACE SOPB = mb_opb 
 PORT DDR_Addr = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr 

 PORT DDR_BankAddr = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr 

 PORT DDR_CASn = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn 
 PORT DDR_CKE = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE 

 PORT DDR_CSn = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn 

 PORT DDR_RASn = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn 
 PORT DDR_WEn = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn 

 PORT DDR_DM = fpga_0_DDR_SDRAM_32Mx64_DDR_DM 

 PORT DDR_DQS = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS 
 PORT DDR_DQ = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ 

 PORT DDR_Clk = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk & ddr_clk_feedback_out_s 

 PORT DDR_Clkn = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn & 0b0 
 PORT Device_Clk90_in = clk_90_s 

 PORT Device_Clk90_in_n = clk_90_n_s 

 PORT Device_Clk = sys_clk_s 
 PORT Device_Clk_n = sys_clk_n_s 

 PORT DDR_Clk90_in = ddr_clk_90_s 

 PORT DDR_Clk90_in_n = ddr_clk_90_n_s 
END 

 

BEGIN opb_gpio 
 PARAMETER INSTANCE = LEDs_8Bit 

 PARAMETER HW_VER = 3.01.b 

 PARAMETER C_GPIO_WIDTH = 8 
 PARAMETER C_IS_DUAL = 0 

 PARAMETER C_IS_BIDIR = 0 

 PARAMETER C_ALL_INPUTS = 0 
 PARAMETER C_BASEADDR = 0x40000000 

 PARAMETER C_HIGHADDR = 0x4000ffff 

 BUS_INTERFACE SOPB = mb_opb 
 PORT GPIO_IO = fpga_0_LEDs_8Bit_GPIO_IO 

END 

 
BEGIN util_reduced_logic 

 PARAMETER INSTANCE = ORGate_1 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_OPERATION = or 

 PARAMETER C_SIZE = 2 

 PORT Op1 = sys_rst_s & 0b0 
 PORT Res = fpga_0_ORGate_1_Res 

END 
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BEGIN util_vector_logic 
 PARAMETER INSTANCE = sysclk_inv 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SIZE = 1 
 PARAMETER C_OPERATION = not 

 PORT Op1 = sys_clk_s 

 PORT Res = sys_clk_n_s 
END 

 

BEGIN util_vector_logic 
 PARAMETER INSTANCE = clk90_inv 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SIZE = 1 
 PARAMETER C_OPERATION = not 

 PORT Op1 = clk_90_s 

 PORT Res = clk_90_n_s 
END 

 

BEGIN util_vector_logic 
 PARAMETER INSTANCE = ddr_clk90_inv 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SIZE = 1 
 PARAMETER C_OPERATION = not 

 PORT Op1 = ddr_clk_90_s 

 PORT Res = ddr_clk_90_n_s 
END 

 
BEGIN dcm_module 

 PARAMETER INSTANCE = dcm_0 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_CLK0_BUF = TRUE 

 PARAMETER C_CLK90_BUF = TRUE 

 PARAMETER C_CLKIN_PERIOD = 10.000000 
 PARAMETER C_CLK_FEEDBACK = 1X 

 PARAMETER C_DLL_FREQUENCY_MODE = LOW 

 PARAMETER C_EXT_RESET_HIGH = 1 
 PORT CLKIN = dcm_clk_s 

 PORT CLK0 = sys_clk_s 

 PORT CLK90 = clk_90_s 
 PORT CLKFB = sys_clk_s 

 PORT RST = net_gnd 

 PORT LOCKED = dcm_0_lock 
END 

 

BEGIN dcm_module 
 PARAMETER INSTANCE = dcm_1 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_CLK0_BUF = TRUE 
 PARAMETER C_CLK90_BUF = TRUE 

 PARAMETER C_CLKIN_PERIOD = 10.000000 

 PARAMETER C_CLK_FEEDBACK = 1X 
 PARAMETER C_DLL_FREQUENCY_MODE = LOW 

 PARAMETER C_PHASE_SHIFT = 72 

 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED 
 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT CLKIN = ddr_feedback_s 

 PORT CLK90 = ddr_clk_90_s 
 PORT CLK0 = dcm_1_FB 

 PORT CLKFB = dcm_1_FB 

 PORT RST = dcm_0_lock 
 PORT LOCKED = dcm_1_lock 

END 

 

 

The following is the hardware configuration file used to configure a system of 

three Microblazes.  Two Microblazes in parallel which performed the multiplications in 

our design and a single host Microblaze that distributes jobs to the parallel processors.  
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The processors are connected through Fast Simplex Links.  FSLs are also configured in 

this hardware configuration file. 

 
# ******************************************************************************************** 

# *                             mhs File -> hardware description                             * 
# ******************************************************************************************** 

# Written by Michael Moukarzel WPI 2008 

# ############################################################################## 
# Created by Base System Builder Wizard for Xilinx EDK 9.1 Build EDK_J.19 

# Tue Sep 11 12:38:45 2007 

# Target Board:  Xilinx Virtex-II Pro ML310 Evaluation Platform Rev D 
# Family:  virtex2p 

# Device:  xc2vp30 

# Package:  ff896 
# Speed Grade:  -6 

# Processor: Microblaze 

# System clock frequency: 100.000000 MHz 
# Debug interface: On-Chip HW Debug Module 

# On Chip Memory :  64 KB 

# Total Off Chip Memory : 256 MB 
# - DDR_SDRAM_32Mx64 = 256 MB 

# ############################################################################## 
 PARAMETER VERSION = 2.1.0 

 

 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clk_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_Addr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr, DIR = O, VEC = [0:12] 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr, DIR = O, VEC 

= [0:1] 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn, DIR = O 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CKE_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_CSn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_RASn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn, DIR = O 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_WEn_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn, DIR = O 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DM_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DM, DIR = O, VEC = [0:3] 

 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQS_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS, DIR = IO, VEC = [0:3] 
 PORT fpga_0_DDR_SDRAM_32Mx64_DDR_DQ_pin = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ, DIR = IO, VEC = [0:31] 

 PORT fpga_0_RS232_Uart_RX_pin = fpga_0_RS232_Uart_RX, DIR = I 

 PORT fpga_0_RS232_Uart_TX_pin = fpga_0_RS232_Uart_TX, DIR = O 
 PORT fpga_0_ORGate_1_Res_pin = fpga_0_ORGate_1_Res, DIR = O 

 PORT fpga_0_ORGate_1_Res_1_pin = fpga_0_ORGate_1_Res, DIR = O 

 PORT fpga_0_ORGate_1_Res_2_pin = fpga_0_ORGate_1_Res, DIR = O 
 PORT fpga_0_DDR_CLK_FB = ddr_feedback_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000 

 PORT fpga_0_DDR_CLK_FB_OUT = ddr_clk_feedback_out_s, DIR = O 

 PORT sys_clk_pin = dcm_clk_s, DIR = I, SIGIS = CLK, CLK_FREQ = 100000000 
 PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 0, SIGIS = RST 

 

 
# **************************************** MICROBLAZE **************************************** 

# -------------------- MICROBLAZE: 0 -------------------- 

# Main Setup 
BEGIN microblaze 

 PARAMETER INSTANCE = microblaze_0 

 PARAMETER HW_VER = 6.00.b 
 PARAMETER C_USE_FPU = 0 

 PARAMETER C_DEBUG_ENABLED = 0 

 PARAMETER C_NUMBER_OF_PC_BRK = 2 
 PARAMETER C_FSL_LINKS = 2 

 BUS_INTERFACE DLMB = dlmb0 

 BUS_INTERFACE ILMB = ilmb0 
 BUS_INTERFACE DOPB = mb_opb 

 BUS_INTERFACE IOPB = mb_opb 

 BUS_INTERFACE MFSL0 = fsl_v20_0a 
 BUS_INTERFACE MFSL1 = fsl_v20_0b 

 BUS_INTERFACE SFSL0 = fsl_v20_1a 

 BUS_INTERFACE SFSL1 = fsl_v20_1b 
# PORT DBG_CAPTURE = DBG_CAPTURE_s0 

# PORT DBG_CLK = DBG_CLK_s0 

# PORT DBG_REG_EN = DBG_REG_EN_s0 
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# PORT DBG_TDI = DBG_TDI_s0 

# PORT DBG_TDO = DBG_TDO_s0 
# PORT DBG_UPDATE = DBG_UPDATE_s0 

 PORT CLK = sys_clk_s 

END 
 

# Local Memory Bus -> Instruction 

BEGIN lmb_v10 
 PARAMETER INSTANCE = ilmb0 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_EXT_RESET_HIGH = 0 
 PORT SYS_Rst = sys_rst_s 

 PORT LMB_Clk = sys_clk_s 

END 
 

# Local Memory Bus -> Data 

BEGIN lmb_v10 
 PARAMETER INSTANCE = dlmb0 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_EXT_RESET_HIGH = 0 
 PORT SYS_Rst = sys_rst_s 

 PORT LMB_Clk = sys_clk_s 

END 
 

# Local Memory Bus -> Instruction Controller 

BEGIN lmb_bram_if_cntlr 
 PARAMETER INSTANCE = dlmb_cntlr0 

 PARAMETER HW_VER = 2.00.a 
 PARAMETER C_BASEADDR = 0x00000000 

 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = dlmb0 
 BUS_INTERFACE BRAM_PORT = dlmb_port0 

END 

 
# Local Memory Bus -> Data Controller 

BEGIN lmb_bram_if_cntlr 

 PARAMETER INSTANCE = ilmb_cntlr0 
 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_BASEADDR = 0x00000000 

 PARAMETER C_HIGHADDR = 0x0000ffff 
 BUS_INTERFACE SLMB = ilmb0 

 BUS_INTERFACE BRAM_PORT = ilmb_port0 

END 
 

# B-RAM 

BEGIN bram_block 
 PARAMETER INSTANCE = lmb_bram0 

 PARAMETER HW_VER = 1.00.a 

 BUS_INTERFACE PORTA = ilmb_port0 
 BUS_INTERFACE PORTB = dlmb_port0 

END 

 
# -------------------- MICROBLAZE: 1a ------------------- 

# Main Setup 

BEGIN microblaze 
 PARAMETER INSTANCE = microblaze_1a 

 PARAMETER HW_VER = 6.00.b 

 PARAMETER C_USE_FPU = 0 
 PARAMETER C_DEBUG_ENABLED = 0 

 PARAMETER C_NUMBER_OF_PC_BRK = 2 

 PARAMETER C_FSL_LINKS = 1 
 BUS_INTERFACE DLMB = dlmb1a 

 BUS_INTERFACE ILMB = ilmb1a 

# BUS_INTERFACE DOPB = mb_opb 
# BUS_INTERFACE IOPB = mb_opb 

 BUS_INTERFACE SFSL0 = fsl_v20_0a 

 BUS_INTERFACE MFSL0 = fsl_v20_1a 
# PORT DBG_CAPTURE = DBG_CAPTURE_s1a 

# PORT DBG_CLK = DBG_CLK_s1a 

# PORT DBG_REG_EN = DBG_REG_EN_s1a 
# PORT DBG_TDI = DBG_TDI_s1a 

# PORT DBG_TDO = DBG_TDO_s1a 

# PORT DBG_UPDATE = DBG_UPDATE_s1a 
 PORT CLK = sys_clk_s 

END 
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# Local Memory Bus -> Instruction 
BEGIN lmb_v10 

 PARAMETER INSTANCE = ilmb1a 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 

 PORT LMB_Clk = sys_clk_s 
END 

 

# Local Memory Bus -> Data 
BEGIN lmb_v10 

 PARAMETER INSTANCE = dlmb1a 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 

 PORT LMB_Clk = sys_clk_s 
END 

 

# Local Memory Bus -> Instruction Controller 
BEGIN lmb_bram_if_cntlr 

 PARAMETER INSTANCE = dlmb_cntlr1a 

 PARAMETER HW_VER = 2.00.a 
 PARAMETER C_BASEADDR = 0x00000000 

 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = dlmb1a 
 BUS_INTERFACE BRAM_PORT = dlmb_port1a 

END 
 

# Local Memory Bus -> Data Controller 

BEGIN lmb_bram_if_cntlr 
 PARAMETER INSTANCE = ilmb_cntlr1a 

 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_BASEADDR = 0x00000000 
 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = ilmb1a 

 BUS_INTERFACE BRAM_PORT = ilmb_port1a 
END 

 

# B-RAM 
BEGIN bram_block 

 PARAMETER INSTANCE = lmb_bram1a 

 PARAMETER HW_VER = 1.00.a 
 BUS_INTERFACE PORTA = ilmb_port1a 

 BUS_INTERFACE PORTB = dlmb_port1a 

END 
 

# -------------------- MICROBLAZE: 1b ------------------- 

# Main Setup 
BEGIN microblaze 

 PARAMETER INSTANCE = microblaze_1b 

 PARAMETER HW_VER = 6.00.b 
 PARAMETER C_USE_FPU = 0 

 PARAMETER C_DEBUG_ENABLED = 0 

 PARAMETER C_NUMBER_OF_PC_BRK = 2 
 PARAMETER C_FSL_LINKS = 1 

 BUS_INTERFACE DLMB = dlmb1b 

 BUS_INTERFACE ILMB = ilmb1b 
# BUS_INTERFACE DOPB = mb_opb 

# BUS_INTERFACE IOPB = mb_opb 

 BUS_INTERFACE SFSL0 = fsl_v20_0b 
 BUS_INTERFACE MFSL0 = fsl_v20_1b 

# PORT DBG_CAPTURE = DBG_CAPTURE_s1b 

# PORT DBG_CLK = DBG_CLK_s1b 
# PORT DBG_REG_EN = DBG_REG_EN_s1b 

# PORT DBG_TDI = DBG_TDI_s1b 

# PORT DBG_TDO = DBG_TDO_s1b 
# PORT DBG_UPDATE = DBG_UPDATE_s1b 

 PORT CLK = sys_clk_s 

END 
 

# Local Memory Bus -> Instruction 

BEGIN lmb_v10 
 PARAMETER INSTANCE = ilmb1b 

 PARAMETER HW_VER = 1.00.a 
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 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 
 PORT LMB_Clk = sys_clk_s 

END 

 
# Local Memory Bus -> Data 

BEGIN lmb_v10 

 PARAMETER INSTANCE = dlmb1b 
 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 
 PORT LMB_Clk = sys_clk_s 

END 

 
# Local Memory Bus -> Instruction Controller 

BEGIN lmb_bram_if_cntlr 

 PARAMETER INSTANCE = dlmb_cntlr1b 
 PARAMETER HW_VER = 2.00.a 

 PARAMETER C_BASEADDR = 0x00000000 

 PARAMETER C_HIGHADDR = 0x0000ffff 
 BUS_INTERFACE SLMB = dlmb1b 

 BUS_INTERFACE BRAM_PORT = dlmb_port1b 

END 
 

# Local Memory Bus -> Data Controller 

BEGIN lmb_bram_if_cntlr 
 PARAMETER INSTANCE = ilmb_cntlr1b 

 PARAMETER HW_VER = 2.00.a 
 PARAMETER C_BASEADDR = 0x00000000 

 PARAMETER C_HIGHADDR = 0x0000ffff 

 BUS_INTERFACE SLMB = ilmb1b 
 BUS_INTERFACE BRAM_PORT = ilmb_port1b 

END 

 
# B-RAM 

BEGIN bram_block 

 PARAMETER INSTANCE = lmb_bram1b 
 PARAMETER HW_VER = 1.00.a 

 BUS_INTERFACE PORTA = ilmb_port1b 

 BUS_INTERFACE PORTB = dlmb_port1b 
END 

 

# ************************************* Fast Simplex Link ************************************ 
# ----------------- Fast Simplex Link: 0a ---------------- 

BEGIN fsl_v20 

 PARAMETER INSTANCE = fsl_v20_0a 
 PARAMETER HW_VER = 2.10.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT FSL_Clk = sys_clk_s 
 PORT SYS_Rst = sys_rst_s 

END 

 
# ----------------- Fast Simplex Link: 1a --------------- 

BEGIN fsl_v20 

 PARAMETER INSTANCE = fsl_v20_1a 
 PARAMETER HW_VER = 2.10.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT FSL_Clk = sys_clk_s 
 PORT SYS_Rst = sys_rst_s 

END 

 
# ----------------- Fast Simplex Link: 0b --------------- 

BEGIN fsl_v20 

 PARAMETER INSTANCE = fsl_v20_0b 
 PARAMETER HW_VER = 2.10.a 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT FSL_Clk = sys_clk_s 
 PORT SYS_Rst = sys_rst_s 

END 

 
# ----------------- Fast Simplex Link: 1b --------------- 

BEGIN fsl_v20 

 PARAMETER INSTANCE = fsl_v20_1b 
 PARAMETER HW_VER = 2.10.a 

 PARAMETER C_EXT_RESET_HIGH = 0 
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 PORT FSL_Clk = sys_clk_s 

 PORT SYS_Rst = sys_rst_s 
END 

 

# ********************************** On Chip Perifferal Bus ********************************** 
BEGIN opb_v20 

 PARAMETER INSTANCE = mb_opb 

 PARAMETER HW_VER = 1.10.c 
 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT SYS_Rst = sys_rst_s 

 PORT OPB_Clk = sys_clk_s 
END 

 

# ************************* Slaves of On Chip Perifferal Bus(mb_opb) ************************* 
# ---------------------- DDR Memory --------------------- 

BEGIN mch_opb_ddr 

 PARAMETER INSTANCE = DDR_SDRAM_32Mx64 
 PARAMETER HW_VER = 1.00.c 

 PARAMETER C_MCH_OPB_CLK_PERIOD_PS = 10000 

 PARAMETER C_REG_DIMM = 1 
 PARAMETER C_DDR_TMRD = 20000 

 PARAMETER C_DDR_TWR = 20000 

 PARAMETER C_DDR_TRAS = 60000 
 PARAMETER C_DDR_TRC = 90000 

 PARAMETER C_DDR_TRFC = 100000 

 PARAMETER C_DDR_TRCD = 30000 
 PARAMETER C_DDR_TRRD = 20000 

 PARAMETER C_DDR_TRP = 30000 
 PARAMETER C_DDR_AWIDTH = 13 

 PARAMETER C_DDR_DWIDTH = 32 

 PARAMETER C_DDR_COL_AWIDTH = 10 
 PARAMETER C_DDR_BANK_AWIDTH = 2 

 PARAMETER C_NUM_CLK_PAIRS = 2 

 PARAMETER C_MEM0_BASEADDR = 0x50000000 
 PARAMETER C_MEM0_HIGHADDR = 0x5fffffff 

 BUS_INTERFACE SOPB = mb_opb 

 PORT DDR_Addr = fpga_0_DDR_SDRAM_32Mx64_DDR_Addr 
 PORT DDR_BankAddr = fpga_0_DDR_SDRAM_32Mx64_DDR_BankAddr 

 PORT DDR_CASn = fpga_0_DDR_SDRAM_32Mx64_DDR_CASn 

 PORT DDR_CKE = fpga_0_DDR_SDRAM_32Mx64_DDR_CKE 
 PORT DDR_CSn = fpga_0_DDR_SDRAM_32Mx64_DDR_CSn 

 PORT DDR_RASn = fpga_0_DDR_SDRAM_32Mx64_DDR_RASn 

 PORT DDR_WEn = fpga_0_DDR_SDRAM_32Mx64_DDR_WEn 
 PORT DDR_DM = fpga_0_DDR_SDRAM_32Mx64_DDR_DM 

 PORT DDR_DQS = fpga_0_DDR_SDRAM_32Mx64_DDR_DQS 

 PORT DDR_DQ = fpga_0_DDR_SDRAM_32Mx64_DDR_DQ 
 PORT DDR_Clk = fpga_0_DDR_SDRAM_32Mx64_DDR_Clk & ddr_clk_feedback_out_s 

 PORT DDR_Clkn = fpga_0_DDR_SDRAM_32Mx64_DDR_Clkn & 0b0 

 PORT Device_Clk90_in = clk_90_s 
 PORT Device_Clk90_in_n = clk_90_n_s 

 PORT Device_Clk = sys_clk_s 

 PORT Device_Clk_n = sys_clk_n_s 
 PORT DDR_Clk90_in = ddr_clk_90_s 

 PORT DDR_Clk90_in_n = ddr_clk_90_n_s 

END 
 

# ------------------- Serial Interface ------------------ 

BEGIN opb_uartlite 
 PARAMETER INSTANCE = RS232_Uart 

 PARAMETER HW_VER = 1.00.b 

 PARAMETER C_BAUDRATE = 9600 
 PARAMETER C_DATA_BITS = 8 

 PARAMETER C_ODD_PARITY = 0 

 PARAMETER C_USE_PARITY = 0 
 PARAMETER C_CLK_FREQ = 100000000 

 PARAMETER C_BASEADDR = 0x40600000 

 PARAMETER C_HIGHADDR = 0x4060ffff 
 BUS_INTERFACE SOPB = mb_opb 

 PORT RX = fpga_0_RS232_Uart_RX 

 PORT TX = fpga_0_RS232_Uart_TX 
END 

 

# ----------------------- Debugger ---------------------- 
# BEGIN opb_mdm 

# PARAMETER INSTANCE = debug_module 



 140 

# PARAMETER HW_VER = 2.00.a 

# PARAMETER C_MB_DBG_PORTS = 1 
# PARAMETER C_USE_UART = 1 

# PARAMETER C_UART_WIDTH = 8 

# PARAMETER C_BASEADDR = 0x41400000 
# PARAMETER C_HIGHADDR = 0x4140ffff 

# BUS_INTERFACE SOPB = mb_opb 

# PORT DBG_CAPTURE_0 = DBG_CAPTURE_s0 
# PORT DBG_CLK_0 = DBG_CLK_s0 

# PORT DBG_REG_EN_0 = DBG_REG_EN_s0 

# PORT DBG_TDI_0 = DBG_TDI_s0 
# PORT DBG_TDO_0 = DBG_TDO_s0 

# PORT DBG_UPDATE_0 = DBG_UPDATE_s0 

# PORT DBG_CAPTURE_1 = DBG_CAPTURE_s1a 
# PORT DBG_CLK_1 = DBG_CLK_s1a 

# PORT DBG_REG_EN_1 = DBG_REG_EN_s1a 

# PORT DBG_TDI_1 = DBG_TDI_s1a 
# PORT DBG_TDO_1 = DBG_TDO_s1a 

# PORT DBG_UPDATE_1 = DBG_UPDATE_s1a 

# PORT DBG_CAPTURE_3 = DBG_CAPTURE_s1b 
# PORT DBG_CLK_3 = DBG_CLK_s1b 

# PORT DBG_REG_EN_3 = DBG_REG_EN_s1b 

# PORT DBG_TDI_3 = DBG_TDI_s1b 
# PORT DBG_TDO_3 = DBG_TDO_s1b 

# PORT DBG_UPDATE_3 = DBG_UPDATE_s1b 

# END 
# ******************************** IP - Intellectual Property ******************************** 

# ----------------------- Or Gate ----------------------- 
BEGIN util_reduced_logic 

 PARAMETER INSTANCE = ORGate_1 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_OPERATION = or 

 PARAMETER C_SIZE = 2 

 PORT Op1 = sys_rst_s & 0b0 
 PORT Res = fpga_0_ORGate_1_Res 

END 

 
# --------------- System Clock (inverted) --------------- 

BEGIN util_vector_logic 

 PARAMETER INSTANCE = sysclk_inv 
 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SIZE = 1 

 PARAMETER C_OPERATION = not 
 PORT Op1 = sys_clk_s 

 PORT Res = sys_clk_n_s 

END 
 

# --------- Clock (inverted and 90 phase shift) --------- 

BEGIN util_vector_logic 
 PARAMETER INSTANCE = clk90_inv 

 PARAMETER HW_VER = 1.00.a 

 PARAMETER C_SIZE = 1 
 PARAMETER C_OPERATION = not 

 PORT Op1 = clk_90_s 

 PORT Res = clk_90_n_s 
END 

 

# ------- DDR Clock (inverted and 90 phase shift) ------- 
BEGIN util_vector_logic 

 PARAMETER INSTANCE = ddr_clk90_inv 

 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_SIZE = 1 

 PARAMETER C_OPERATION = not 

 PORT Op1 = ddr_clk_90_s 
 PORT Res = ddr_clk_90_n_s 

END 

 
# ----------- Digital Clock Managers -> dcm_0 ----------- 

BEGIN dcm_module 

 PARAMETER INSTANCE = dcm_0 
 PARAMETER HW_VER = 1.00.c 

 PARAMETER C_CLK0_BUF = TRUE 

 PARAMETER C_CLK90_BUF = TRUE 
 PARAMETER C_CLKIN_PERIOD = 10.000000 

 PARAMETER C_CLK_FEEDBACK = 1X 
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 PARAMETER C_DLL_FREQUENCY_MODE = LOW 

 PARAMETER C_EXT_RESET_HIGH = 1 
 PORT CLKIN = dcm_clk_s 

 PORT CLK0 = sys_clk_s 

 PORT CLK90 = clk_90_s 
 PORT CLKFB = sys_clk_s 

 PORT RST = net_gnd 

 PORT LOCKED = dcm_0_lock 
END 

 

# ----------- Digital Clock Managers -> dcm_1 ----------- 
BEGIN dcm_module 

 PARAMETER INSTANCE = dcm_1 

 PARAMETER HW_VER = 1.00.c 
 PARAMETER C_CLK0_BUF = TRUE 

 PARAMETER C_CLK90_BUF = TRUE 

 PARAMETER C_CLKIN_PERIOD = 10.000000 
 PARAMETER C_CLK_FEEDBACK = 1X 

 PARAMETER C_DLL_FREQUENCY_MODE = LOW 

 PARAMETER C_PHASE_SHIFT = 72 
 PARAMETER C_CLKOUT_PHASE_SHIFT = FIXED 

 PARAMETER C_EXT_RESET_HIGH = 0 

 PORT CLKIN = ddr_feedback_s 
 PORT CLK90 = ddr_clk_90_s 

 PORT CLK0 = dcm_1_FB 

 PORT CLKFB = dcm_1_FB 
 PORT RST = dcm_0_lock 

 PORT LOCKED = dcm_1_lock 
END 
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Appendix G 
 

 Shown in this appendix is the multiplication C-code for a full matrix by full 

matrix multiplication.  This code was used to test against our compressed matrix 

multiplication to determine the advantage of our method versus full matrix multiplication. 

 
void multiplicationFull(int dataA[ROW_A][COL_A], int dataB[ROW_B][COL_B], int 
dataC[ROW_C][COL_C]){ 
 int row=0; 
 int col=0; 
 int ptr=0; 
 
 for(row=0; row<ROW_C; row++) 
  for(col=0; col<COL_C; col++) 
   for(ptr=0; ptr<COL_C; ptr++) 
    dataC[row][col] += (dataA[row][ptr] * dataB[ptr][col]); 
 
} 
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Appendix H 
 

This appendix contains an example of the Excel spreadsheet used to estimate 

matrix storage sizes in memory versus their dimensions and density.  In this example, 

matrix sizes are only listed up to 256x256. 

 
THIS FILE IS USED 
TO PREDICT THE 
MEMORY SIZE 
USED BY A CRS OR 
CCS MATRIX 
EACH VALUE IS 
ASSUMED TO BE A 4 
BYTE INTEGER.   
ALL MATRICES ARE 
ASSUMED TO BE 
SQUARE  
EACH MATRIX 
CONTAINS THE 
FOLLOWING 
VALUES 

      

# OF ROWS = 1 INT 

# OF COLS = 1 INT 

      

VALUE      

LEN = 1 INT 

SIZE = 1 INT 

ARRAY = NNZ INTS + 1 INT(NULL CHAR) 

      

INDEX      

LEN = 1 INT 

SIZE = 1 INT 

ARRAY = NNZ INTS + 1 INT(NULL CHAR) 

      

LENGTH      

LEN = 1 INT 

SIZE = 1 INT 

ARRAY =  # OF ROW OR COL + 1 INT (NULL CHAR) 

      

      
ASSUMED DENSITY 
OF MATRICES 0.01   

      

      

      

ROW/COL LENGTH  NNZ 
TOTAL # OF 
INTS 

TOTAL # OF 
BYTES 

TOTAL KB IN 
RAM 

       

10  1 23 92 0.08984 

11  1.21 24.42 97.68 0.09539 
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12  1.44 25.88 103.52 0.10109 

13  1.69 27.38 109.52 0.10695 

14  1.96 28.92 115.68 0.11297 

15  2.25 30.5 122 0.11914 

16  2.56 32.12 128.48 0.12547 

17  2.89 33.78 135.12 0.13195 

18  3.24 35.48 141.92 0.13859 

19  3.61 37.22 148.88 0.14539 

20  4 39 156 0.15234 

21  4.41 40.82 163.28 0.15945 

22  4.84 42.68 170.72 0.16672 

23  5.29 44.58 178.32 0.17414 

24  5.76 46.52 186.08 0.18172 

25  6.25 48.5 194 0.18945 

26  6.76 50.52 202.08 0.19734 

27  7.29 52.58 210.32 0.20539 

28  7.84 54.68 218.72 0.21359 

29  8.41 56.82 227.28 0.22195 

30  9 59 236 0.23047 

31  9.61 61.22 244.88 0.23914 

32  10.24 63.48 253.92 0.24797 

33  10.89 65.78 263.12 0.25695 

34  11.56 68.12 272.48 0.26609 

35  12.25 70.5 282 0.27539 

36  12.96 72.92 291.68 0.28484 

37  13.69 75.38 301.52 0.29445 

38  14.44 77.88 311.52 0.30422 

39  15.21 80.42 321.68 0.31414 

40  16 83 332 0.32422 

41  16.81 85.62 342.48 0.33445 

42  17.64 88.28 353.12 0.34484 

43  18.49 90.98 363.92 0.35539 

44  19.36 93.72 374.88 0.36609 

45  20.25 96.5 386 0.37695 

46  21.16 99.32 397.28 0.38797 

47  22.09 102.18 408.72 0.39914 

48  23.04 105.08 420.32 0.41047 

49  24.01 108.02 432.08 0.42195 

50  25 111 444 0.43359 

51  26.01 114.02 456.08 0.44539 

52  27.04 117.08 468.32 0.45734 

53  28.09 120.18 480.72 0.46945 

54  29.16 123.32 493.28 0.48172 

55  30.25 126.5 506 0.49414 

56  31.36 129.72 518.88 0.50672 

57  32.49 132.98 531.92 0.51945 

58  33.64 136.28 545.12 0.53234 

59  34.81 139.62 558.48 0.54539 

60  36 143 572 0.55859 

61  37.21 146.42 585.68 0.57195 

62  38.44 149.88 599.52 0.58547 

63  39.69 153.38 613.52 0.59914 

64  40.96 156.92 627.68 0.61297 

65  42.25 160.5 642 0.62695 
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66  43.56 164.12 656.48 0.64109 

67  44.89 167.78 671.12 0.65539 

68  46.24 171.48 685.92 0.66984 

69  47.61 175.22 700.88 0.68445 

70  49 179 716 0.69922 

71  50.41 182.82 731.28 0.71414 

72  51.84 186.68 746.72 0.72922 

73  53.29 190.58 762.32 0.74445 

74  54.76 194.52 778.08 0.75984 

75  56.25 198.5 794 0.77539 

76  57.76 202.52 810.08 0.79109 

77  59.29 206.58 826.32 0.80695 

78  60.84 210.68 842.72 0.82297 

79  62.41 214.82 859.28 0.83914 

80  64 219 876 0.85547 

81  65.61 223.22 892.88 0.87195 

82  67.24 227.48 909.92 0.88859 

83  68.89 231.78 927.12 0.90539 

84  70.56 236.12 944.48 0.92234 

85  72.25 240.5 962 0.93945 

86  73.96 244.92 979.68 0.95672 

87  75.69 249.38 997.52 0.97414 

88  77.44 253.88 1015.52 0.99172 

89  79.21 258.42 1033.68 1.00945 

90  81 263 1052 1.02734 

91  82.81 267.62 1070.48 1.04539 

92  84.64 272.28 1089.12 1.06359 

93  86.49 276.98 1107.92 1.08195 

94  88.36 281.72 1126.88 1.10047 

95  90.25 286.5 1146 1.11914 

96  92.16 291.32 1165.28 1.13797 

97  94.09 296.18 1184.72 1.15695 

98  96.04 301.08 1204.32 1.17609 

99  98.01 306.02 1224.08 1.19539 

100  100 311 1244 1.21484 

101  102.01 316.02 1264.08 1.23445 

102  104.04 321.08 1284.32 1.25422 

103  106.09 326.18 1304.72 1.27414 

104  108.16 331.32 1325.28 1.29422 

105  110.25 336.5 1346 1.31445 

106  112.36 341.72 1366.88 1.33484 

107  114.49 346.98 1387.92 1.35539 

108  116.64 352.28 1409.12 1.37609 

109  118.81 357.62 1430.48 1.39695 

110  121 363 1452 1.41797 

111  123.21 368.42 1473.68 1.43914 

112  125.44 373.88 1495.52 1.46047 

113  127.69 379.38 1517.52 1.48195 

114  129.96 384.92 1539.68 1.50359 

115  132.25 390.5 1562 1.52539 

116  134.56 396.12 1584.48 1.54734 

117  136.89 401.78 1607.12 1.56945 

118  139.24 407.48 1629.92 1.59172 

119  141.61 413.22 1652.88 1.61414 
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120  144 419 1676 1.63672 

121  146.41 424.82 1699.28 1.65945 

122  148.84 430.68 1722.72 1.68234 

123  151.29 436.58 1746.32 1.70539 

124  153.76 442.52 1770.08 1.72859 

125  156.25 448.5 1794 1.75195 

126  158.76 454.52 1818.08 1.77547 

127  161.29 460.58 1842.32 1.79914 

128  163.84 466.68 1866.72 1.82297 

129  166.41 472.82 1891.28 1.84695 

130  169 479 1916 1.87109 

131  171.61 485.22 1940.88 1.89539 

132  174.24 491.48 1965.92 1.91984 

133  176.89 497.78 1991.12 1.94445 

134  179.56 504.12 2016.48 1.96922 

135  182.25 510.5 2042 1.99414 

136  184.96 516.92 2067.68 2.01922 

137  187.69 523.38 2093.52 2.04445 

138  190.44 529.88 2119.52 2.06984 

139  193.21 536.42 2145.68 2.09539 

140  196 543 2172 2.12109 

141  198.81 549.62 2198.48 2.14695 

142  201.64 556.28 2225.12 2.17297 

143  204.49 562.98 2251.92 2.19914 

144  207.36 569.72 2278.88 2.22547 

145  210.25 576.5 2306 2.25195 

146  213.16 583.32 2333.28 2.27859 

147  216.09 590.18 2360.72 2.30539 

148  219.04 597.08 2388.32 2.33234 

149  222.01 604.02 2416.08 2.35945 

150  225 611 2444 2.38672 

151  228.01 618.02 2472.08 2.41414 

152  231.04 625.08 2500.32 2.44172 

153  234.09 632.18 2528.72 2.46945 

154  237.16 639.32 2557.28 2.49734 

155  240.25 646.5 2586 2.52539 

156  243.36 653.72 2614.88 2.55359 

157  246.49 660.98 2643.92 2.58195 

158  249.64 668.28 2673.12 2.61047 

159  252.81 675.62 2702.48 2.63914 

160  256 683 2732 2.66797 

161  259.21 690.42 2761.68 2.69695 

162  262.44 697.88 2791.52 2.72609 

163  265.69 705.38 2821.52 2.75539 

164  268.96 712.92 2851.68 2.78484 

165  272.25 720.5 2882 2.81445 

166  275.56 728.12 2912.48 2.84422 

167  278.89 735.78 2943.12 2.87414 

168  282.24 743.48 2973.92 2.90422 

169  285.61 751.22 3004.88 2.93445 

170  289 759 3036 2.96484 

171  292.41 766.82 3067.28 2.99539 

172  295.84 774.68 3098.72 3.02609 

173  299.29 782.58 3130.32 3.05695 
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174  302.76 790.52 3162.08 3.08797 

175  306.25 798.5 3194 3.11914 

176  309.76 806.52 3226.08 3.15047 

177  313.29 814.58 3258.32 3.18195 

178  316.84 822.68 3290.72 3.21359 

179  320.41 830.82 3323.28 3.24539 

180  324 839 3356 3.27734 

181  327.61 847.22 3388.88 3.30945 

182  331.24 855.48 3421.92 3.34172 

183  334.89 863.78 3455.12 3.37414 

184  338.56 872.12 3488.48 3.40672 

185  342.25 880.5 3522 3.43945 

186  345.96 888.92 3555.68 3.47234 

187  349.69 897.38 3589.52 3.50539 

188  353.44 905.88 3623.52 3.53859 

189  357.21 914.42 3657.68 3.57195 

190  361 923 3692 3.60547 

191  364.81 931.62 3726.48 3.63914 

192  368.64 940.28 3761.12 3.67297 

193  372.49 948.98 3795.92 3.70695 

194  376.36 957.72 3830.88 3.74109 

195  380.25 966.5 3866 3.77539 

196  384.16 975.32 3901.28 3.80984 

197  388.09 984.18 3936.72 3.84445 

198  392.04 993.08 3972.32 3.87922 

199  396.01 1002.02 4008.08 3.91414 

200  400 1011 4044 3.94922 

201  404.01 1020.02 4080.08 3.98445 

202  408.04 1029.08 4116.32 4.01984 

203  412.09 1038.18 4152.72 4.05539 

204  416.16 1047.32 4189.28 4.09109 

205  420.25 1056.5 4226 4.12695 

206  424.36 1065.72 4262.88 4.16297 

207  428.49 1074.98 4299.92 4.19914 

208  432.64 1084.28 4337.12 4.23547 

209  436.81 1093.62 4374.48 4.27195 

210  441 1103 4412 4.30859 

211  445.21 1112.42 4449.68 4.34539 

212  449.44 1121.88 4487.52 4.38234 

213  453.69 1131.38 4525.52 4.41945 

214  457.96 1140.92 4563.68 4.45672 

215  462.25 1150.5 4602 4.49414 

216  466.56 1160.12 4640.48 4.53172 

217  470.89 1169.78 4679.12 4.56945 

218  475.24 1179.48 4717.92 4.60734 

219  479.61 1189.22 4756.88 4.64539 

220  484 1199 4796 4.68359 

221  488.41 1208.82 4835.28 4.72195 

222  492.84 1218.68 4874.72 4.76047 

223  497.29 1228.58 4914.32 4.79914 

224  501.76 1238.52 4954.08 4.83797 

225  506.25 1248.5 4994 4.87695 

226  510.76 1258.52 5034.08 4.91609 

227  515.29 1268.58 5074.32 4.95539 
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228  519.84 1278.68 5114.72 4.99484 

229  524.41 1288.82 5155.28 5.03445 

230  529 1299 5196 5.07422 

231  533.61 1309.22 5236.88 5.11414 

232  538.24 1319.48 5277.92 5.15422 

233  542.89 1329.78 5319.12 5.19445 

234  547.56 1340.12 5360.48 5.23484 

235  552.25 1350.5 5402 5.27539 

236  556.96 1360.92 5443.68 5.31609 

237  561.69 1371.38 5485.52 5.35695 

238  566.44 1381.88 5527.52 5.39797 

239  571.21 1392.42 5569.68 5.43914 

240  576 1403 5612 5.48047 

241  580.81 1413.62 5654.48 5.52195 

242  585.64 1424.28 5697.12 5.56359 

243  590.49 1434.98 5739.92 5.60539 

244  595.36 1445.72 5782.88 5.64734 

245  600.25 1456.5 5826 5.68945 

246  605.16 1467.32 5869.28 5.73172 

247  610.09 1478.18 5912.72 5.77414 

248  615.04 1489.08 5956.32 5.81672 

249  620.01 1500.02 6000.08 5.85945 

250  625 1511 6044 5.90234 

251  630.01 1522.02 6088.08 5.94539 

252  635.04 1533.08 6132.32 5.98859 

253  640.09 1544.18 6176.72 6.03195 

254  645.16 1555.32 6221.28 6.07547 

255  650.25 1566.5 6266 6.11914 

256  655.36 1577.72 6310.88 6.16297 
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Appendix I  
 

This appendix shows actual timing diagrams for two parallel processors and eight 

parallel processors implemented on the FPGA.  These times were obtained by measuring 

the actual performance of the parallel systems.  All times are in milliseconds and are 

measured from t=0, the start of processing. 
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Appendix J 
 

This appendix contains a complete flow chart for the implementation of a logic 

circuit to perform the matrix by matrix multiplication algorithm in logic rather than in C-

code on a microprocessor.  Implementation of parallel logic circuits of this type could be 

used to significantly increase the performance of the compressed-row times compressed 

column multiplication kernel. 
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IEEE Code of Ethics 
 

We, the members of the IEEE, in recognition of the importance of our technologies in 

affecting the qualify of life throughout the world, and in accepting a personal obligation 

to our profession, its members, and the communities we serve, do hereby commit 

ourselves to the highest ethical and professional conduct and agree: 

 

1. To accept responsibility in making decisions consistent with the safety, health and 

welfare of the public, and to disclose promptly factors that might endanger the 

public of the environment; 

 

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose 

them to affected parties when they do exist; 

 

3. to be honest and realistic in stating claims or estimates based on available data; 

 

4. to reject bribery in all its forms; 

 

5. to improve on the understanding of technology, its appropriate application, and 

potential consequences; 

 

6. to maintain and improve our technical competencies and to undertake 

technological tasks for others only if qualified by training or experience, or after 

full disclosure of pertinent limitations; 

 

7. to seek, accept and offer honest criticism of technical work, to acknowledge and 

correct errors, and to credit properly the contributions of others; 

 

8. to treat fairly all persons regardless of such factors as race, religion, gender, 

disability, age, or national origin; 

 

9. to avoid injuring others, their property, reputation, or employment by false or 

malicious action; 

 

10. to assist colleagues and co-workers in their professional development and to 

support them in following this code of ethics. 

 

 

The IEEE code of ethics applies in multiple ways to this Major Qualifying Project 

experience.   A few examples of how this applied to this experience follow.   

First, being honest and realistic in stating claims or estimates was extremely 

important to this project’s scope.  Since our research will serve as background knowledge 

for other researchers in this area, we strived not to exaggerate our findings.  It is always 
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best for a researcher to be honest in his or her findings so others will not base their own 

claims off of incorrect information.  Being conservative in estimates is a practice that 

every engineer should adopt, not just IEEE members.  

Furthermore, our project, being a research project, focused on improving the 

understanding of technology and its appropriate applications.  By writing a very detailed 

MQP paper, we are furthering the understanding of the technology we have researched 

and making it easier for other engineers understand this project. 

Finally, working at a project site like MIT-Lincoln Laboratory allowed us to work on 

our own project as well as observe other students working on theirs.  Because we often 

presented to other students, we were put in positions to give and receive constructive 

criticisms.  It was important to us that these criticisms be given and received in a 

professional manner as we were all students and can aid in each other’s professional 

development throughout this experience. 

The IEEE code of ethics applies to many parts of our project than have been listed.  

Only a few ways in which we followed this code were discussed.  There are surely 

multiple other ways which we demonstrated this code throughout our project experience. 
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