
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

GRIP: Graphically Represented Image Processing
engine
Jonathan L. Leitschuh
Worcester Polytechnic Institute

Thomas John Clark
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Leitschuh, J. L., & Clark, T. J. (2016). GRIP: Graphically Represented Image Processing engine. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2236

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212993123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2236?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

GRIP: Graphically-Represented Image Processing

A Major Qualifying Project submitted to the faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements
for the degree of Bachelor of Science

April 28, 2016

By:
Thomas J. Clark
Jonathan L. Leitschuh

Submitted To:
Professor Michael Gennert
Professor Brad Miller
Worcester Polytechnic Institute

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree
requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more
information about the projects program at WPI, see http: // www. wpi. edu/ Academics/ Projects .

http://www.wpi.edu/Academics/Projects

GRIP: Graphically-Represented Image Processing 1

Abstract

The goal of this project was to build an application that non-experts could use to construct
computer vision algorithms, and more experienced users could use to develop algorithms
faster. Given the time constraints imposed by robotics challenges like the FIRST Robotics
Competition, computer vision is often underutilized by even the most experienced play-
ers. We used Java and OpenCV to implement a user interface to make rapidly developing
vision systems easier. As a result, many teams successfully used our software in the 2016
FIRST Robotics Competition. We believe that our application could be used for further
applications in research and education.

GRIP: Graphically-Represented Image Processing 2

Contents

List of Figures 4

1 Introduction 5

2 Background 7
2.1 Computer Vision Fundamentals . 7
2.2 Existing Solutions . 9

2.2.1 OpenCV . 9
2.2.2 NI Vision Assistant . 9

2.3 Researchers . 10
2.3.1 Robot Operating System (ROS) . 10

2.4 FIRST Robotics Competition . 11
2.4.1 Computer Vision in FRC . 12
2.4.2 NetworkTables . 13

3 Design and Methodology 15
3.1 Goals . 15
3.2 Project Schedule . 16
3.3 Architecture . 16
3.4 User Interface . 19
3.5 Implementation Details . 24

3.5.1 Java and JavaFX . 24
3.5.2 OpenCV . 24
3.5.3 Build . 24
3.5.4 ROS Build System . 25
3.5.5 Generator . 25
3.5.6 Project Layout . 26
3.5.7 Tests . 27
3.5.8 GitHub Webhooks & Services . 28
3.5.9 Gitter . 28
3.5.10 Codacy . 29
3.5.11 Continuous Integration . 29

GRIP: Graphically-Represented Image Processing 3

3.5.12 Packaging and Deployment . 30

4 Usage and Results 32
4.1 Usage by FRC Teams . 32
4.2 Open Source Community . 32
4.3 Researchers . 32
4.4 Corporate Usage . 33

5 Conclusion and Future Work 35
5.1 Recommendations for Future Work . 35

Appendices 37

A Sample Code for GRIP in FRC 37

B GRIP Source Code 38

6 Bibliography 39

GRIP: Graphically-Represented Image Processing 4

List of Figures

1 An image with various image processing operations applied 8
2 NI Vision Assistant . 10
3 FIRST Stronghold tower drawings . 12
4 FIRST Stronghold sample image . 13
5 GRIP architecture . 17
6 A simple GRIP pipeline . 19
7 GRIP’s operation palette . 20
8 The GRIP sources panel . 21
9 The GRIP preview panel . 21
10 The GRIP deploy dialog . 22
11 The Exception Alert Dialog . 23
12 Generated system information as rendered markdown 23
13 Some of the generated OpenCV operations in the GRIP user interface 26
14 GRIP Pull Request WebHooks Status Checks 28

GRIP: Graphically-Represented Image Processing 5

1 Introduction

Computer vision (CV) is a field in computer science that deals with the processing of
visual data into abstract information, such as the location of an object. Computer vision is
applicable to computer science and robotics in particular, although CV techniques can be
appropriate for any problem that can be thought of as automatically extracting high-level
details from images.

Computer vision solutions typically exist as a pipeline of data. The pipeline’s
input consists of images and the final output is the desired high-level feature data. Each
step of the pipeline extracts information into a representation suitable for analysis by the
next step. The building blocks of computer vision are simple, but in practice construct-
ing a pipeline requires choosing from many different possible operations and fine-tuning
the parameters to each one. This can make it a difficult field to begin in without either
having a solid background in CV theory or many iterations of experimentation. Unfor-
tunately, the most popular existing toolkits are not ideal for quickly experimenting, and
areas like competitive robotics and academic projects do not allow a large amount of time
for experimenting.

This problem has been previously acknowledged, and several open-source projects
and commercial products exist in response to it. OpenCV (Open Source Computer Vision
Library) is a comprehensive software library that contains over 2,500 operations. It is used
extensively by companies and researchers [1]. RoboRealm is a proprietary Windows ap-
plication that aims to simplify the process of computer vision programming using a point-
and-click interface [2]. A similar tool is NI Vision Assistant, which helps create computer
vision algorithms without programming by automatically generating LabVIEW or C code.

While OpenCV is the most complete and widely-used of these solutions, it is not
suitable for beginners to experiment and prototype. OpenCV is a software library, so any
change to the pipeline or any parameters requires editing the source code, recompiling,
and running the program again. In addition, getting started with OpenCV requires knowl-
edge of a supported programming language and the OpenCV API, which makes it an in-
convenient choice for beginners to computer vision. For more experienced users, OpenCV
is a more viable option, but as a programming API it still requires recompiling and run-
ning code whenever a parameter or step of an algorithm changes. Even veteran computer

GRIP: Graphically-Represented Image Processing 6

vision programmers could benefit from a more streamlined development process. Robo-
Realm improves this workflow by providing a user interface for selecting algorithms and
tuning parameters. However, most users must purchase a license to use RoboRealm, and
the source code is not available, making it less attractive as an option for students trying
to learn computer vision. In addition, there is potential for a more intuitive user interface
than the one in RoboRealm.

To fill this gap, we created GRIP (Graphically-Representing Image Processing en-
gine). GRIP is a program that beginners can use to solve computer vision problems with-
out any prior expertise with the field or with programming in general. GRIP can be used
to create real algorithms that can be deployed, for example, as part of a robotic control sys-
tem, or just for educational, research, and prototyping use. We designed the initial version
of GRIP with FIRST Robotics Competition in mind because FRC teams falls within one of
our intended audiences — novice programmers seeking to solve a computer vision chal-
lenge with limited time — we intend for GRIP to improve the workflow of computer vision
users of any experience level.

GRIP: Graphically-Represented Image Processing 7

2 Background

2.1 Computer Vision Fundamentals

Computer vision is the use of algorithmic techniques to understand images of the real
world. It is important to many fields, such as driver assistance systems, industrial au-
tomation, and consumer products like mobile phones. [3, p. vii] A single computer vision
application involves a combination of many techniques, which fall into several broad cat-
egories.

Image acquisition is the most important step in implementing practical computer
vision systems, since shortcomings in acquiring initial inputs are likely to result in flawed
analysis from subsequent steps. One critical aspect of this is proper lighting. In order for
algorithms to analyze an object, the image must have enough contrast to distinguish the
boundaries between different objects, as well as consistent enough lighting to recognize
which areas of the image are part of the same object. One technique for achieving uniform
lighting is a ring-shaped light source around the camera, which illuminates the sides of
any objects that face the camera. [4, ch. 27]

The next step after image acquisition is image processing. The main goal of pro-
cessing images in computer vision is to remove some information, such as lighting, tex-
tures, or background objects, leaving only information that’s useful for extracting data.
An example of this would be edge detection — all of the colors are removed from an im-
age, since it’s much more useful to know boundaries between objects than every single
pixel of every object. Image processing also includes techniques for scaling an image to
a smaller resolution for faster computation, transforming an image into grayscale, and
blurring an image to remove noise. [3] Figure 1 shows examples of Gaussian blur, desat-
uration, bicubic interpolation, and Canny, which are specific techniques for tasks such as
blurring, resizing, and edge detection.

Image segmentation is typically performed next in computer vision. Image seg-
mentation refers to partitioning the pixels of an image into groups of connected pixels
based on a similar quality they share. The most common technique is by applying a thresh-
old, where connected pixels within a certain range of hue, saturation, lightness, or other
values are grouped in a segment. This type of segmentation results in a binary image,

GRIP: Graphically-Represented Image Processing 8

since every pixel has two possible states - within the threshold or not within the thresh-
old.

Next, some sort of feature extraction is done on the processed image. In this step,
algorithms are used that attempt to recognize shapes and patterns in an image that might
indicate some object of interest. A simple example of this is contour detection, where a
two-dimensional binary segmented image is transformed into lists of points forming the
boundaries around each segment. These lists can then be filtered by qualities like their area
or their shape to eliminate all data except the object of interest. While raw two-dimensional
images are easy for humans to interpret, high-level feature data like this is much easier for
computer programs to act on, since it reduces a complicated, noisy, real-world view into
a few numbers that represent the important parts of the image.

(a) Gaussian blur (b) Desaturation

(c) Bicubic scaling (d) Canny edge detection

Figure 1: An image with various image processing operations applied

GRIP: Graphically-Represented Image Processing 9

Lastly, the final phase of a computer vision process is to make a decision based
on the data gathered from the image. This step is obviously very different for different
computer vision applications, and could include actions as diverse as turning a robot to
face towards a target, discarding a defective manufactured product, or steering a self-
driving car to the proper location on the road. Unlike the previous steps, this one isn’t
composed of a set of widely accepted algorithms. Therefore, computer vision solutions
such as OpenCV and GRIP only focus on the first few steps, and it’s up to the author of
the decision-making code to write this one.

2.2 Existing Solutions

2.2.1 OpenCV

OpenCV is an extremely popular computer vision software library, used extensively in
industry, research, and by hobbyists. The library provides over 500 computer vision algo-
rithms that can be used by programmers working in C, C++, Python, Java and MATLAB
on multiple operating systems. [1]

2.2.2 NI Vision Assistant

NI Vision Assistant is a commercial application for creating image processing algorithms.
Vision Assistant includes a GUI that can be used to acquire images, apply image process-
ing filters, and analyze images to find high-level features.

Unlike RoboRealm, NI Vision Assistant algorithms are deployed by generating
source code. Vision Assistant generates code that uses National Instrument’s proprietary
computer vision API in several different programming environments, including LabVIEW,
.NET and C [5]. A major advantage of NI Vision Assistant’s code generation is portability
— algorithms can run on any device supporting NI Vision, even FPGAs. However, this
means that either the final decision-making steps of the control system must be written
in one of the supported programming languages, or some application-specific communi-
cation protocol must be written to relay vision data from the generated code to another
program. This constraint could make NI Vision Assistant inconvenient to use for devel-

GRIP: Graphically-Represented Image Processing 10

Figure 2: NI Vision Assistant [5]

opers working with common programming languages like Python or Java. Because the
generated code uses the commercial NI Vision library, the potential applications are also
limited to machines with a valid license, which could be prohibitively expensive for hob-
byists and students.

2.3 Researchers

Robotics research combines a variety of fields such as electrical, mechanical and computer
science. Robotic researchers may have a depth in one particular field but not in others. A
project may need a fast solution to a software challenge that is not the primary concern
of the research. Currently, the easiest way to solve many of computer vision challenges in
the research domain is using OpenCV.

2.3.1 Robot Operating System (ROS)

“The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms” [6]. ROS

GRIP: Graphically-Represented Image Processing 11

provides the infrastructure researchers need to quickly solve a robotic challenge using
packages that other developers have created to perform specific robotic computations like
inverse kinematics, driving, or performing SLAM (Simultaneous localization and map-
ping). ROS is designed to use a publisher and subscribers model to allow message to be
sent between different processes and across networks. This allows robotic programs to
interact agnostic from the language or OS that is running. The ROS platform provides
the full stack of development requirements. It includes a build system to implement your
own source code, a custom way to define messages that are passed between nodes, a de-
pendency manager that allows you to pull in other developers projects, and the run en-
vironment to allow these various programs to communicate. The preferred OS for ROS
development and running ROS programs is Ubuntu. This created a problem for GRIP
because one of our goals was to be agnostic of the operating system and environment.

Because ROS is already used extensively within the robotic research domain, it
is a promising protocol for third-party tools targeting researchers to support. A program
using ROS could run on the research robot’s OS, or the master OS and ROS robot programs
would be able to communicate with it without requiring additional software libraries or
unfamiliar APIs.

2.4 FIRST Robotics Competition

FIRST Robotics Competition (FRC) is an annual robotics challenge organized by FIRST
(For Inspiration and Recognition of Science and Technology). FRC teams typically consist
of around twenty high school students who are guided by volunteer mentors. Each year,
students and mentors spend a six-week build season designing, building, and program-
ming a robot to compete against other teams in their district and in the FIRST Champi-
onship. [7]

Each year’s game, which is announced at the beginning of build season, is differ-
ent from the previous games. For example, the 2015 game, Recycle Rush, required teams
to design robots that would cooperate to stack plastic totes and recycling bins. [8] The 2016
game, FIRST Stronghold, consists of robots navigating over obstacles to score balls in goals
on their opponents’ towers. [9] Because of these differences, FRC teams must develop both
a strategy and technical design essentially from scratch within the six week build season.

GRIP: Graphically-Represented Image Processing 12

Figure 3: FIRST Stronghold tower drawings [8]

2.4.1 Computer Vision in FRC

One shared component of different FIRST Robotics Competition games is an autonomous
period where robots operate without human drivers, instead relying on sensor data and
pre-programmed instructions to score bonus points. FIRST Stronghold, for instance, in-
cludes a 15-second autonomous period at the beginning of each match where robots may
score in their opponents’ tower goals for 10 points each instead of 5. [9] Because this
must be done without the assistance of human players, computer vision is an attractive
technique for reliably completing this portion of the challenge. Computer Vision is also
important in the rest of the match, called the teleoperated period, where human drivers
may use computer-aided automatic targeting for faster scoring.

To make the use of computer vision easier, the FIRST Stronghold goals are sur-
rounded by a U-shaped arrangement of retro-reflective tape, as shown in Figure 3. The
tape reflects light back towards its source, so a ring of LEDs around a camera lens will
cause the camera to pick up an intense brightness that can be used to detect the goal. Fig-
ure 4 shows this effect combined with a very small exposure time, which causes everything
but the brightest objects in the frame to appear black. This setup is well-suited for com-
puter vision processing because the goal can be cleanly segmented from the background
by simply comparing the brightness of each pixel to a certain range.

GRIP: Graphically-Represented Image Processing 13

Figure 4: FIRST Stronghold sample image, captured with LED ring and low exposure

2.4.2 NetworkTables

NetworkTables is a network protocol for communicating key-value pairs between multiple
clients, designed specifically for FRC. [10] Software libraries to access NetworkTables are
included in the distribution provided to FRC teams, and it is the de facto standard for
communication in FRC robot control systems.

Clients can use the protocol to send key-value entries to a server running on
the robot controller, which then notifies all other clients. Keys are conventionally slash-
separated strings, such as "SmartDashboard/rotation/z". Values can be booleans, num-
bers, strings, arrays of any of the above, or raw data.

NetworkTables is used by robot controllers, driver station computers, and other
hardware on the same network for scenarios such as:

• Sending real-time sensor data from the robot controller to a dashboard program for
viewing by drivers or programmers.

• Sending debug messages from the robot controller to the dashboard.

• Sending configuration options from the driver station to the robot controller. This
allows teams to include multiple autonomous programs that could be selected before

GRIP: Graphically-Represented Image Processing 14

a match without reloading the robot’s software.

• Sending the result of a computer vision algorithm from a custom team-made pro-
gram to the robot controller.

Because NetworkTables is already used extensively within the FRC control sys-
tem, it is a promising protocol for third-party tools supporting FRC teams. A program
using NetworkTables could run on the robot controller, on the driver station, or on an-
other piece of hardware, and FRC robot programs would be able to communicate with it
without requiring additional software libraries or unfamiliar APIs.

The disadvantage of NetworkTables is that it is not commonly used outside of
FRC. Researchers, students, and hobbyists working outside of the FIRST ecosystem would
be less likely to write software to integrate with programs unless they support other more
general-purpose protocols.

GRIP: Graphically-Represented Image Processing 15

3 Design and Methodology

3.1 Goals

The goal of this project was to create a tool for computer vision that could help both new-
comers to the field and experienced users rapidly develop algorithms. To implement this,
we developed GRIP with the following requirements:

• The user interface must be intuitive to use, so users can discover for themselves how
to construct computer vision algorithms. To judge the completion of this require-
ment, we interacted with FRC teams who used GRIP, many of which were made up
of high schoolers with only some preliminary computer programming experience.

• The application must support a useful number of computer vision operations. This is
somewhat ambiguous alone, so we used FIRST Stronghold as a use-case to prove that
GRIP could be used to solve a moderately complicated computer vision challenge.

• The application must be able to run a pre-made pipeline in a ”headless” mode with-
out a user interface, so a pipeline can be developed on a desktop computer and de-
ployed to an embedded device. We used the FRC controller, the roboRIO, to test this
feature, with the expectation that it could also work on similar devices used outside
of FRC.

• The application must run on most common operating system and computer archi-
tectures to reach the largest possible audience. Specifically, we made sure GRIP runs
on Windows, OS X, and several Linux distributions.

• The application must be open for anyone to modify, so in the future people and
companies can add features we didn’t think of.

GRIP: Graphically-Represented Image Processing 16

3.2 Project Schedule

The initial planning phase for GRIP begin in D term of 2015. Because FIRST Robotics
Competition was such an important initial use case, our schedule was designed so that
an early version of the program would be available to FRC teams before the beginning of
build season, and the first stable release would correspond roughly with the beginning
of build season. Throughout the FRC build season and competition season, we were able
to use feedback from FRC teams to plan new features that we didn’t conceive during the
planning phase, and fix bugs that we hadn’t discovered ourselves.

Milestone/Phase Start Date End Date
Background research and planning March 2015 May 2015
Initial implementation August 2015 December 2015
First public alpha release November 2015 –
First stable release January 2016 –
FRC build season January 2016 February 2016

3.3 Architecture

GRIP is divided into two modules - the core and the graphical user interface (GUI). The
core is responsible for performing the actual computer vision operations. The GUI allows
the user to both manipulate the set of operations that the core performs and preview the
outputs of the core.

Because of this separation, GRIP can run either in an interactive GUI mode or
in a ”headless” command line mode where the GUI is not present. Users can construct
algorithms graphically and have the same behavior on an embedded processor with no
modifications. This allows GRIP to function both as a tool for experimentation and as a
practical production-ready solution for computer vision.

GRIP’s core architecture is divided into three basic roles - image acquisition, the
processing pipeline, and publishing. Figure 5 shows how data flows through the major
components of GRIP and how they fit into the architecture of a larger robotic control sys-
tem.

GRIP: Graphically-Represented Image Processing 17

Image Acquisition

Publishing Preview*

USB Webcam IP Camera Static Image

videoInput Library
(Windows)

Java Networking
API (java.net)

OpenCV
VideoCapture
(Linux + OS X)

Java I/O API
(java.io)

NetworkTables JavaFX

Pipeline

Raw OpenCV
image processing

 operations

High-level
composite
operations

Feature extraction
operations

Feature filtering
and processing

operations

NetworkTables Decision-making
code

Camera

GRIP

Robot

*GUI mode only

Images

Features

Figure 5: GRIP architecture

Several different input methods exist in GRIP for acquiring images, depending
on the hardware and the operating system. In addition, a static image source can be used.
The main use case for this is testing algorithms. Instead of developing an algorithm using
a real-time camera feed that requires the physical presence of an object of interest and
consistent lighting conditions, the static image source can be used with a list of existing
sample images. For FIRST STRONGHOLD, over four hundred images of the field were
provided to teams. The expected work-flow is that teams would create an algorithm in
GRIP using many static image inputs as test data, then replace them with a physical camera
input for actual use.

GRIP: Graphically-Represented Image Processing 18

The processing pipeline performs the actual computer vision operations in GRIP.
It consists of a series of steps that fall into four main categories.

• Raw OpenCV functions

• High-level composite operations, such as a generic ”Blur” operation that can use
several different filters, or a ”Threshold” operation that segments an image based
on HSV values

• Feature detection operations, which take an image as an input and produce a ”re-
port” of high-level features found in the image, such as contours or lines.

• Feature filtering and manipulation operations, which are used to narrow down fea-
tures to ones that seem like the object of interest.

Finally, the ultimate output of the processing pipeline is sent to publishing opera-
tions. GRIP itself does not perform any decision making or robot control, it only produces
data about features it finds, such as a list of coordinates, and publishes this data for another
part of the robot control system to use.

One method we implemented for sending this data was NetworkTables, a net-
work protocol used in FRC to create a shared key-value store between robots and other
clients. [10] Using NetworkTables to communicate data to the control system means that
GRIP could run on any machine — the roboRIO, the driver station, or a co-processor. If
a team frequently runs into problems with GRIP running out of memory, they could sim-
ply run GRIP on a dedicated vision processing machine connected to the same network
without modifying their own code.

NetworkTables is only used in FRC, so for GRIP to be useful for more general-
purpose use cases, more publishing operations will have to be implemented. See also
subsection 5.

Another method we implemented for sending data was ROS, a network protocol
used by researchers and some robotic companies to relay data between different process.
ROS uses a topic based publisher/subscriber infrastructure to allow different processes to
interact. Using ROS to communicate data to the control system means that GRIP could
run on any machine connected to the ROS master node.

GRIP: Graphically-Represented Image Processing 19

3.4 User Interface

The distinguishing feature of GRIP is its graphical user interface, which is designed to
allow users with a range of experience levels to author computer vision algorithms. Be-
cause computer vision applications are essentially pipelines of many small, commonly-
used algorithms, GRIP’s UI is based on the concept of a ”step”, which is a single primitive
computer vision operation. Different steps can be connected together, allowing the out-
put of one algorithm to be used as an input to another. From this basic building block,
complicated computer vision pipelines can be constructed.

Figure 6: A simple GRIP pipeline

Figure 6 shows a simple pipeline with four steps: an HSV threshold to segment an
image into black and white regions, a ”find contours” step to extract contours representing
the borders around the white regions, a ”convex hulls” step to process these contours, and
finally a publish step to write several measurements of the contours to NetworkTables. The
labeled circles on the left and right of each step are the sockets for the inputs and outputs
of that step respectively, and the curved lines between them indicate connections. Users
can create new connections by clicking and dragging from one socket to another.

GRIP: Graphically-Represented Image Processing 20

Some input socket values can be set with a UI field instead of by connecting it to
another socket. For example, the threshold range for ”Hue” in HSV Threshold is specified
by the user with a ranged slider control. Output socket values have a toggle button that
enables a preview of the value currently in that socket. The combination of these two fea-
tures allows users to experiment with parameters in real-time and see the output, without
the need to restart a program to test out a different combination of inputs.

(a) The normal palette appearance (b) The search feature

Figure 7: GRIP’s operation palette

GRIP has over 60 operations available to use in the pipeline. However, novice
users may not know the name of a specific operation, so the application includes a cate-
gorized, searchable palette, as shown in figure 7. This operation palette shows a name,
description, and icon for every available algorithm that should help users find useful op-
erations for their use cases. Clicking and dragging an operation adds it to the pipeline.

To the left of the pipeline is the sources panel, which contains inputs such as
cameras and static images that serve as the starting point of an algorithm. Inputs, like
steps, connect to the rest of the pipeline using sockets, providing a consistent paradigm
for interacting with a GRIP algorithm.

GRIP: Graphically-Represented Image Processing 21

Figure 8: The GRIP sources panel

Figure 9: The GRIP preview panel

GRIP also contains a preview pane. Most sockets can be previewed in GRIP by
toggling a button next to the socket name. Numbers and vectors are represented as text,
images are represented by drawing the image, and high-level features like contours and
lines are shown by rendering the shapes to a bitmap, optionally overlayed onto the input
image. The values in these sockets show up in the preview pane and update in real-time,
allowing users to gain instant feed back on modifications of an algorithm. For example,

GRIP: Graphically-Represented Image Processing 22

a user may preview a contour list while adjusting the parameters of a ”Filter Contours”
operation to find the right minimum and maximum areas to use. Another use case that
a computer vision novice may use is previewing the image resulting from an image pro-
cessing operation, to visually learn what different operations do and how their parameters
affect the output.

Figure 10: The GRIP deploy dialog

A dialog is included in GRIP to help users deploy algorithms to a dedicated ma-
chine, such as a robot controller. The dialog, shown in figure 10, presents a simple user
interface that copies a pipeline to another machine using SSH (Secure Shell). GRIP does
not need to already be installed on the machine, since all necessary code and data is in-
cluded in the deploy — only a Java Runtime Environment is required to be installed. The
deploy dialog by default contains values that should work for FRC teams deploying to
a roboRIO without any modifications, but it could potentially be used by any other con-
troller that supports SSH and Java.

GRIP: Graphically-Represented Image Processing 23

Figure 11: The Exception Alert Dialog

One of the most powerful debugging tools that GRIP has is a UI to handle unex-
pected exceptions while GRIP is running. The dialog, shown in figure 11, appears when
GRIP runs into an uncaught exception. This dialog contains two buttons that allow a user
to quickly open an issue on GitHub.

Figure 12: Generated system information as rendered markdown

Additionally, the error message contains properly formatted markdown contain-
ing important details about the error including the full stack trace, and the users system
information. This system information, seen in figure 12, is incredibly important for track-
ing down bugs that are system dependent. Fore example, during the development of GRIP
we had a reoccurring bug that was only reproducible on Windows 7.

GRIP: Graphically-Represented Image Processing 24

3.5 Implementation Details

3.5.1 Java and JavaFX

We wrote GRIP using the Java programming language. Java runs in a virtual machine,
so it can be compiled once and run on multiple operating systems. Oracle describes the
Java platform as intended to support ”secure, portable, high-performance applications”
[11]. Writing the programming in Java was a natural choice because one of our goals
was to support many common operating systems and architectures, and because Java is a
very common programming language, making it more likely that users could contribute
modifications to GRIP.

JavaFX is a modern user interface toolkit for Java. We chose to use JavaFX for
GRIP because it’s included by default with the Java Runtime Environment, making it ubiq-
uitous across desktop computers. JavaFX also has consistent appearance and behavior
across different operating systems, which usually use different frameworks for user in-
terfaces. This consistency allowed us to avoid duplicating our efforts in developing and
testing the UI while still being able to commit to supporting multiple platforms.

3.5.2 OpenCV

We used OpenCV to perform the underlying image processing and computer vision oper-
ations in GRIP. OpenCV already supports a comprehensive set of performant operations,
so adopting it saved us the trouble of developing our own. In addition, because OpenCV is
already so widely used and well documented, using it as the underlying engine for GRIP
makes it easier for experienced computer vision users to understand our source code and
make modifications.

3.5.3 Build

The build system compiles, tests, builds and releases GRIP. Solid build infrastructure al-
lows developers to add new features quickly and test them locally. This fast closed loop
development cycle is critical to any software development project. Additionally, a solid

GRIP: Graphically-Represented Image Processing 25

set of tests ensures that adding new features does not break existing functionality. Hav-
ing solid build infrastructure is also critical in allowing new developers contribute to the
project with minimal system configuration. For GRIP, we wanted to make it possible for
a new developer to run a single command and have everything correctly configured and
running. We were able to achieve this with Gradle. Gradle provides an entire ecosystem
for managing a project’s dependencies as well as compiling, running and testing a project.
Currently, it is as simple as cloning the project and running one command to build GRIP.

3.5.4 ROS Build System

By using ROS Java we were able to include the ROS infrastructure in GRIP without creating
a dependency upon the ROS environment. A build system was developed for ROS that
allowed GRIP’s custom messages to be generated within a Docker image agnostic of the
developers build system. Additionally, our own custom maven repository was deployed
onto GitHub to allow the java implementation of our messages to be acquired by our build
system. The result was the ability to take advantage of ROS if it was installed and running
on the host machine but it would not effect the user if the machine did not have ROS.

3.5.5 Generator

Many OpenCV methods conform to a very similar method signature structure, which
several inputs and typically one output. Many operations we wanted to add would be
very repetitive to write manually. As many of these operations were all very similar to
each other in syntax structure we determined that a code generator could be used to parse
the OpenCV source code, find the operations we wanted to include in GRIP, and then
automatically generate a piece of source code to add that operation in GRIP.

The GRIP generator was implemented using JavaParser, an open source project
for parsing Java source code into an abstract syntax tree. We were able to use this abstract
syntax tree to automatically find methods in OpenCV and generate operations based on
their name and arguments. Over thirty operation in GRIP are generated using this tech-
nique.

As a result of the generator, a large subset of the operations available directly

GRIP: Graphically-Represented Image Processing 26

to OpenCV users are also available in GRIP. This expands the amount of functionality
offered by the program, and also makes it easy for seasoned OpenCV users to migrate
their development to GRIP.

Figure 13: Some of the generated OpenCV operations in the GRIP user interface

3.5.6 Project Layout

Gradle defines a very specific project layout that it recommends in order to allow a project
to compile without explicit configuration. Originally, the project was confined to a single
module that included both the Core code and the JavaFX UI code. Eventually, a build step
was required to add the generator.

Gradle defines a directory buildsrc that can contain any project specific plug-
ins that your project uses. This is where the generator code was added so that it would
run as a pre-compile step for every build of GRIP. Later, when working on a methodol-
ogy to deploy GRIP to a remote device to run in headless mode we found that it would
be much easier to deploy and run a single JAR. In order to produce a JAR that contained

GRIP: Graphically-Represented Image Processing 27

all of the dependencies for the GRIP core source we needed to split GRIP into two sepa-
rate modules, the core that would produce a JAR with all of its dependencies inside that
would be depended upon by the UI module to run. This allowed us to have one jar that
we could SCP over to a remote device and run without trying to keep track of the core’s
dependencies within GRIP.

3.5.7 Tests

Testing is a fundamental part of the software development process. It ensures that new
code being added works as expected and that as the code evolves exiting functionality isn’t
broken. There are two fundamental testing methodologies: Unit, and Integration. Unit
testing is designed to test the smallest unit of code to ensure that it functions as expected.
Integration testing, by contrast, tests that when all of the source code is integrated together
the data flows through the entire program in an expected way. The GRIP tests are a mix
of both Unit and Integration tests.

JUnit is described as a simple, open source framework to write and run repeat-
able tests [12]. It provides assertion based testing of testing classes in expected ways. For
example, it allows you to assert that a value is true, false, null, equal to something, ect.
When assertions fail they provide valuable feedback regarding the cause of the problem
to allow a developer to quickly debug the problem and resolve it. By developing a solid
suite of unit tests during the development of GRIP we have ensured that future refactors
do not introduce unintended bugs and expected functionality is preserved.

TestFX is self described as ”Simple and clean testing for JavaFX” [13]. It provides
an API to allow a developer to quickly automate UI tests for JavaFX. Using it’s Fluent
API you can easily tell the automated test system to click on a button with the text ”OK”
and validate that the UI and data model reacts as expected. Instead of assertions TextFX
allows you to verifyThat specific UI elements are present or not. Additionally, TestFX
depends upon the JUnit test life cycle allowing you to take advantage of JUnit assertions
while testing. GRIP uses TestFX to ensure that the various components that make up the
UI render correctly and fully as well as to exercise the various user inputs.

GRIP: Graphically-Represented Image Processing 28

3.5.8 GitHub Webhooks & Services

Github has a directory of integrations that can be easily configured to customize how the
repository behaves. They allow you to automate your repository to perform specific ac-
tions when a pull request is opened, when a release tag is pushed, when code is merged
into a repository. Our project uses several of these webhooks to help automate the man-
agement of the project and keep us informed when things change. Additionally, GRIP’s
build infrastructure is resilient against developer mistakes and buggy code. The GRIP
repository takes advantage of GitHub’s ”Protected branches” to prevent developers from
being able to push code to master without first passing configured PR status checks. These
checks significantly decrease the likelihood that a developer will break the build for oth-
ers. It was an expectation that GRIP will continue to be developed for many years beyond
the scope of this MQP. We wanted to ensure that it could maintain itself and evolve safely
beyond the original authors involvement.

Figure 14: GRIP Pull Request WebHooks Status Checks

3.5.9 Gitter

Gitter is similar to IRC chat for projects but with integration with GitHub and many other
services that offer WebHooks. This allows you to very easily reference issues or pull re-
quests and Gitter will automatically create a link directly to that issue. Additionally, all

GRIP: Graphically-Represented Image Processing 29

status changes for the repository are reflected in the status bar on the right side of the chat.
This allows us to know quickly when a Pull Request succeeds or fails and if a Pull Request
that has just been merged breaks master. Gitter also includes an integration with Trello
which we were originally using to manage our projects burn-down board.

We have utilized Gitter to communicate with the growing number of outside de-
velopers who have become involved with GRIP. It allows us to ask them questions about
how they are using GRIP, provide support when they are facing an issue, talk about fu-
ture development plans, share code samples, and encourage them to open pull requests
with features they want. Through Gitter we have been able to watch as a community has
formed around GRIP with different users supporting one another with the technical chal-
lenges that computer vision poses. The closed loop feedback loop with users has been
instrumental in the success of GRIP.

3.5.10 Codacy

Codacy is a relatively new service that provides automated code reviews on pull requests
using PMD and other similar static code analysis tools. When it encounters one of the
code problems you have set it to check for it automatically leaves a comment on the pull
request. This includes things varying from unused imports to forgetting to calling new

Exception() with out a throw in front of it. It then adds its own status check to the PR
(pass or fail).

Codacy catches many things that may go unnoticed during a normal code re-
view. It provides defense against many common but obscure coding mistakes. This is
important as an open source project becomes popular. Reviewing many pull requests can
be time consuming. Codacy provides automated feedback that can be resolved before a
real person has the opportunity to provide a review.

3.5.11 Continuous Integration

Travis CI (Travis) and AppVeyor are a continuous integration service provided for free
to open source projects. Much like Jenkins you can setup these services to run code on
their servers and report back whether or not specific checks pass or fail. Additionally, you

GRIP: Graphically-Represented Image Processing 30

can set up these services to perform specific actions on release. Travis CI provides Linux
and OSX operating systems while AppVeyor provides a Windows Server. As AppVeyor is
significantly slower than Travis we only require the Travis check to pass currently before a
PR can be merged. Every time that anyone working on GRIP creates a pull request against
the master repository Travis CI and AppVeyor grabs the code from the branch and runs
specific commands they read (each respectively) from the .travis.yml and appveyor.yml

files in the root directory of the repository.

AppVeyor AppVeyor is our Windows continuous integration service. Although it is
much slower than Travis CI it serves the vital role of building our 64 bit Windows release.
As the core developers on this project don’t have easy access to a Windows OS in order
to build releases AppVeyor will automatically build any release tag that it is given. Addi-
tionally, it runs the Gradle check task to ensure that all of the tests also pass on Windows.
There have been circumstances where UI components that have appeared correctly on
Linux and OSX have not worked correctly on Windows. AppVeyor also sends a notifica-
tion webhook to the Gitter chat whenever it passes or fails to provide feedback on build
failure/success.

Travis CI Travis CI is our primary workhorse when it comes to our continuous inte-
gration system. Once Travis receives a PR it runs the core and UI tests compiling code
coverage metrics with JaCoCo. Once the tests complete successfully a small python script
from CodeCov retrieves the JaCoCo code coverage and sends it off to their servers to be
processed. As part of the build we also generate the project’s JavaDocs. When a PR is
merged with master the Javadocs are automatically pushed to the repo’s gh-pages branch.
This allows anyone to view the documentation for the project online without having to
build the project on their machine. After the build is complete Travis sends a notification
to Gitter though a webhook informing us of whether or not a build has passed or failed.

3.5.12 Packaging and Deployment

The Java development tools can create operating system-specific installers for applications
developed with JavaFX. The installer bundles all dependencies with the application, so

GRIP: Graphically-Represented Image Processing 31

users are not required to have a particular Java Runtime Environment already installed.

GRIP builds for Windows and Ubuntu are generated on Travis and AppVeyor
automatically with each release. A developer must explicitly generate builds for other
platforms, including other Linux distributions and OS X, by running a single command.

GRIP: Graphically-Represented Image Processing 32

4 Usage and Results

GRIP has close to 7,000 downloads from GitHub [14]. The project has over 100 stars on
GitHub.

4.1 Usage by FRC Teams

FIRST reports teams using computer vision in their robots has significantly increased due
to the availability of GRIP. During a WPI FIRST Robotics Competition held after kickoff,
several teams were queried regarding their initial experience with GRIP. Of the teams that
chose to use GRIP to perform their computer vision processing, most teams found the UI
to be intuitive.

4.2 Open Source Community

Even before the first stable release of GRIP, members and mentors from FIRST Robotics
Competition teams became interested in GRIP. Several developers opened pull requests
to add features they found useful. Once GRIP had its first full release after the FIRST
kickoff. we were overwhelmed with people opening issues discussing feature requests
and defects. In many cases, this helped to drive the development cycle. Currently there
are around half a dozen individuals who actively provide support to new people trying
out GRIP to solve computer vision challenges.

4.3 Researchers

Junior Cunha, a Former WPI Robotic Student currently teaching and researching Robot
Perception in Rhode Island provided this quote.

Robot Perception is an intricate part in developing pragmatic and interactive-
centric robotic systems with the objective of solving real-world problems. A
plethora of robot perception capabilities are derived from understanding and

GRIP: Graphically-Represented Image Processing 33

extracting rich semantics from various different image modules. Thus, in-
novative and efficient methods for image processing have become symbiotic
with to development of smart and complex systems. OpenCV, a computer vi-
sion software, is an ideal platform for researchers for it is written in general-
purpose languages, C++ and Python, it is composed of intuitive modular soft-
ware structures, and it allows for state-of-the-art algorithms to be implemented
with ease. Nevertheless, OpenCV libraries and functions are not bug-free, and
implementing even a simple function can be time-consuming and require the
user to possess extensive knowledge and experience with CV systems. GRIP is
an alternative solution to such burdens, for it allows fast-prototyping and jux-
taposing algorithms and image pipelines through a drag-and-drop GUI. Such
platform reduces vision pipeline assembly- time significantly and allows re-
searchers to quickly test pet theories and modify function settings. Modularity,
portability, and feasibility accentuates GRIP utility for solving complex image
processing challenges in a robust and precise manner.

4.4 Corporate Usage

The response from corporations has been surprisingly positive. Two companies have dis-
cussed the possibility of using GRIP to try to solve their robotic computer vision chal-
lenges.

Additionally, another company that is actively involved with the development of
GRIP provided this quote:

Artaic is a company in Boston that uses robots to create custom mosaics. We’re
building a new robot that will use computer vision to locate tiles. With hun-
dreds of kinds of tiles, the vision module needs to be able to rapidly switch
between pipelines multiple times per second, and if a new kind of tile is added,
an operator will need to be able to quickly and easily create a new pipeline to
locate that tile without having to write any code.

We looked at industrial software packages for graphically creating computer
vision pipelines, but none were able to switch pipelines. So we turned to GRIP,

GRIP: Graphically-Represented Image Processing 34

which, because it is open-source, we were able to modify to meet our needs
[15].

GRIP: Graphically-Represented Image Processing 35

5 Conclusion and Future Work

This project’s goal was to create a solution for both inexperienced and seasoned computer
vision users to rapidly create computer vision algorithms. After researching CV theory
and the state-of-the-art in CV tools, we designed GRIP to fulfill this goal. With the com-
bined effort of our project team and contributions from interested participants of FIRST
Robotics Competition, we created a complete, usable graphical interface for developing,
testing, and deploying computer vision algorithms.

GRIP was very successful in completing our goals. Many FRC teams chose to
use GRIP in the 2016 FIRST Robotics Competition game, increasing the exposure to com-
puter vision that many beginning programmers receive. This demonstrates GRIP’s ability
be used by inexperienced users for simple tasks with severe constraints on development
time. In addition, Artaic, a company that offers robotic custom tile services, has invested
resources into adopting GRIP for commercial use, showing that that the program is also
extendable enough to provide value for more advanced use cases. Due to GRIP’s interact-
ing with an open source community, further development of the program is still taking
place after the completion of this project.

5.1 Recommendations for Future Work

There are several missing or in-progress features in GRIP that would further extend the
number of use cases it covers.

Network Protocols Support for a wide variety network protocols besides NetworkTables
would create an opportunity for GRIP to be used in more existing systems and therefore
see higher adoption. For example, as of this report, support for Robot Operating System
(ROS) and HTTP have been or are currently being written.

Code Generation GRIP currently runs computer vision algorithms itself and commu-
nicates with other programs though a network connection. Adding the ability to instead
generate source code from a pipeline would allow GRIP to be used to develop algorithms

GRIP: Graphically-Represented Image Processing 36

that run on a machine not powerful enough to run GRIP itself, or for projects where it’s
inconvenient to introduce a new network protocol.

Scripting One planned feature that was never fully implemented was the ability for
users to write custom operations for GRIP in a scripting language. This would allow users
to extend the program without learning about its internal structure or waiting for feature
requests to be fulfilled.

More Platforms Although GRIP runs on most common operating systems and CPU ar-
chitectures, we never created a version that worked on the Raspberry Pi, a small, inexpen-
sive computer popular for hobbyist robotics projects. Support for the Raspberry Pi could
make GRIP a go-to solution for makers working on small projects not worth the effort of
learning a complicated CV toollkit like OpenCV.

GRIP: Graphically-Represented Image Processing 37

Appendices

A Sample Code for GRIP in FRC

import edu.wpi.first.wpilibj.IterativeRobot;

import edu.wpi.first.wpilibj.networktables.NetworkTable;

import java.io.IOException;

public class Robot extends IterativeRobot {

private final NetworkTable grip = NetworkTable.getTable("grip");

@Override

public void robotInit() {

/* Start GRIP in a new process */

try {

new ProcessBuilder("/home/lvuser/grip &").inheritIO().start();

} catch (IOException e) {

e.printStackTrace();

}

}

@Override

public void autonomousPeriodic() {

/* Get published values from GRIP using NetworkTables */

for (double area : grip.getNumberArray("targets/area", new double[0])) {

System.out.println("Got contour with area=" + area);

}

}

}

GRIP: Graphically-Represented Image Processing 38

B GRIP Source Code

The source code for GRIP is available on GitHub:
https://github.com/WPIRoboticsProjects/grip

https://github.com/WPIRoboticsProjects/grip

GRIP: Graphically-Represented Image Processing 39

6 Bibliography

[1] About OpenCV. Accessed 2016-2-18. [Online]. Available: http://opencv.org/about.
html

[2] RoboRealm Robotic Machine Vision Software. Accessed 2016-2-16. [Online]. Avail-
able: http://www.roborealm.com/

[3] R. Klette, Concise Computer Vision: An Introduction into Theory and Algorithms.
Springer, 2014.

[4] E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities. Morgan Kaufmann,
2005.

[5] NI Vision Assistant Help. [Computer software].

[6] ROS About. [Online]. Available: http://www.ros.org/about-ros/

[7] What is FIRST Robotics Competition? FIRST. [Online]. Available: http://www.
firstinspires.org/robotics/frc/what-is-first-robotics-competition

[8] Recycle Rush Game Description. FIRST. [Online]. Avail-
able: http://www.firstinspires.org/sites/default/files/uploads/resource library/
frc/game-and-season-info/archive/2015/2015-frc-game-description-1page.pdf

[9] (2016, February) 2016 FIRST Robotics Game Manual: FIRST STRONGHOLD.
FIRST. [Online]. Available: https://firstfrc.blob.core.windows.net/frc2016manuals/
GameManual/FRC-2016-game-manual.pdf

[10] (2015, June) Network Tables Protocol Specification, Version 3.0. Ac-
cessed 2016-2-20. [Online]. Available: https://docs.google.com/document/d/
1nxiriSz1n O4d7qWrzt16uaFjrU48mB-UvPE2AG0zmU

[11] Oracle. Java Technologies. Accessed 2016-4-27. [Online]. Available: https://www.
oracle.com/java/technologies/index.html

[12] JUnit FAQ. [Online]. Available: https://github.com/junit-team/junit4/wiki/FAQ

http://opencv.org/about.html
http://opencv.org/about.html
http://www.roborealm.com/
http://www.ros.org/about-ros/
http://www.firstinspires.org/robotics/frc/what-is-first-robotics-competition
http://www.firstinspires.org/robotics/frc/what-is-first-robotics-competition
http://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/game-and-season-info/archive/2015/2015-frc-game-description-1page.pdf
http://www.firstinspires.org/sites/default/files/uploads/resource_library/frc/game-and-season-info/archive/2015/2015-frc-game-description-1page.pdf
https://firstfrc.blob.core.windows.net/frc2016manuals/GameManual/FRC-2016-game-manual.pdf
https://firstfrc.blob.core.windows.net/frc2016manuals/GameManual/FRC-2016-game-manual.pdf
https://docs.google.com/document/d/1nxiriSz1n_O4d7qWrzt16uaFjrU48mB-UvPE2AG0zmU
https://docs.google.com/document/d/1nxiriSz1n_O4d7qWrzt16uaFjrU48mB-UvPE2AG0zmU
https://www.oracle.com/java/technologies/index.html
https://www.oracle.com/java/technologies/index.html
https://github.com/junit-team/junit4/wiki/FAQ

GRIP: Graphically-Represented Image Processing 40

[13] Test FX ReadMe. [Online]. Available: https://github.com/TestFX/TestFX/blob/
master/README.md

[14] Github Release Stats. [Online]. Available: http://www.somsubhra.com/github-
release-stats/?username=WPIRoboticsProjects&repository=GRIP

[15] S. Carlberg, on behalf of Artaic.

https://github.com/TestFX/TestFX/blob/master/README.md
https://github.com/TestFX/TestFX/blob/master/README.md
http://www.somsubhra.com/github-release-stats/?username=WPIRoboticsProjects&repository=GRIP
http://www.somsubhra.com/github-release-stats/?username=WPIRoboticsProjects&repository=GRIP

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	GRIP: Graphically Represented Image Processing engine
	Jonathan L. Leitschuh
	Thomas John Clark
	Repository Citation

	List of Figures
	Introduction
	Background
	Computer Vision Fundamentals
	Existing Solutions
	OpenCV
	NI Vision Assistant

	Researchers
	Robot Operating System (ROS)

	FIRST Robotics Competition
	Computer Vision in FRC
	NetworkTables

	Design and Methodology
	Goals
	Project Schedule
	Architecture
	User Interface
	Implementation Details
	Java and JavaFX
	OpenCV
	Build
	ROS Build System
	Generator
	Project Layout
	Tests
	GitHub Webhooks & Services
	Gitter
	Codacy
	Continuous Integration
	Packaging and Deployment

	Usage and Results
	Usage by FRC Teams
	Open Source Community
	Researchers
	Corporate Usage

	Conclusion and Future Work
	Recommendations for Future Work

	Appendices
	Sample Code for GRIP in FRC
	GRIP Source Code
	Bibliography

