
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

May 2014

Visualization of InsightNotes Database Annotation
Management System
Armir Bashllari
Worcester Polytechnic Institute

Tyler Jarrett Menard
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Bashllari, A., & Menard, T. J. (2014). Visualization of InsightNotes Database Annotation Management System. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/1139

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212992947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1139?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Visualization for the

InsightNotes Database Annotation

Management System

A Major Qualifying Project Report submitted to the faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science

by

Armir Bashllari

Tyler Menard

Date: 5-1-14

Approved:

1

1. Abstract

InsightNotes is an annotation management system designed for scientific databases. It

addresses the increasing scale of annotations that occur within systems such as biological databases,

where the number of annotations can be 10s or even 100s of times greater than the number of records

that are stored. This immense quantity of annotations can make it difficult to decipher useful information

from a record. The solution that InsightNotes provides is to create concise representations, or

summaries, of the annotations in order to produce more meaningful data. However, there is currently no

visualization for InsightNotes. Having a way to easily display the results of this system will help in

creating a practical way to access information from a large database. What we provide is a visualization

for the functionality of InsightNotes, making it easier to manipulate and retrieve the data along with the

annotations and summaries.

2

https://drive.google.com/file/d/0B5tJL_TlOrAab1JZTVZqem5XakR5eHB6bUJ3TTZFVWo1LS1B/edit?usp=sharing

Table of Contents:

1. Abstract …………………………………………………………………………………2

List of Figures ……………………………………………………………………………..4

2. Introduction

2.1 Introduction to InsightNotes …………………………………………………..5

2.2 Overview……………………………....………………………..……………..5

2.3 Goals ….……………………………....………………………..……………..6

2.4 Chapter Overview …………………....………………………..……………...6

3. InsightNotes Overview

3.1 Summary Types ……………………………………………………………….8

3.2 Summary Instances ……………………………………………………………9

3.3 Summary Objects ………...…………………………………………………..10

3.4 Propagation Strategies ………………………………………………………...11

4. Other Background Info

4.1 LibreOffice ……………...……………………………………………….…….13

4.2 PostgreSQL Installation ………………………………………………………..13

4.3 VirtualBox ……………………………………………………………………...14

5. The Visualization

5.1 Connecting to Database…………………………………………………………15

5.2 Query the Database ……………………………………………….……………16

5.3 Adding New Annotations ……………………………………………………….21

6. Conclusion ……………………………………………………………………………….25

7. Appendix

7.1 PostgreSQL 1.9.2 installation ……………………………………………..……26

3

List of Figures
3.1 Examples of Annotation Summaries …………………………………………… 9

3.4 Summary Propagation Strategies ………………….…………………………… 12

3.4 Strategy Comparisons ………………….………….…………………………… 13

4

2. Introduction

2.1 Introduction to InsightNotes

Modern relational database systems capture the details and observations of different users

through annotations that are attached to the tuples of data. The credibility of a scientific database

system may be assessed through the quality of its annotations. With the increasing scale of collaboration

between scientists and the use of automated annotation tools, database systems eventually have too

many annotations to get any useful meaning from them. A tuple of data may have as many as hundreds

of annotations attached to it, making it difficult to process all of the information, so a method for

InsightNotes offers a solution through summarizing these annotations. It provides concise

representations of the raw annotations in what are called annotation summaries. There are various

methods for summarizing these annotations, one of which allows users to define their own summarization

criteria, making InsightNotes extensible to a wide variety of applications.

2.2 Overview

Currently, the InsightNotes system is only implemented through a command-line interface

making it difficult to organize and retain the data, as well as making it difficult to view a record, its

annotations, and its summary simultaneously. In order to retrieve and display all this data in a useful way

some new system must be created that allows the user to query the database and retrieve the results of

the query, including the records returned and their annotations. The system must also be able to query

the database to generate and retrieve any desired summary, as well as displaying this summary along

5

with its associated records and annotations. Because it provided tools for connecting to, querying, and

retrieving data from PostgreSQL databases, LibreOffice was chosen as the platform on which to build

the desired interface.

2.3 Goals for the Project

Using LibreOffice:

● Add functionality to query a PostgreSQL database running InsightNotes and retrieve the

appropriate records along with their annotations.

● Display the query results in a spreadsheet, with annotations attached appropriately.

● Allow the user to generate summaries

● Allow the user to retrieve the annotations from the summaries (support for the “zoom in” feature

of InsightNotes).

2.4 Chapter Overview

The rest of the report will describe the InsightNotes system and our implementation of the

visualization in detail. Chapter 3 covers the overview of InsightNotes, which goes over the different

summarization techniques and the data structures necessary to implement the system. There are also

optimization techniques and algorithms for the summarization techniques which are beyond the scope of

this report and will not be covered. Chapter 4 will go over some background information on the tools

we used to create our implementation. Chapter 5 will describe our visualization in detail. These

sections will go over each piece of functionality, such as connecting to the database, inserting

6

annotations, and generating annotations. Chapter 6 will contain the conclusion for our visualization,

followed by a section for any documents related to the project.

7

3. InsightNotes Overview

InsightNotes addresses the fact that varying types of annotation summaries may be suitable for

different applications. For example, a biological database on birds (ornithology) may want to have its

annotations categorized into different groups such as Habitat, Behavior, and General Comments.

InsightNotes allows for database administrators to apply this sort of customization. If the user then

wanted to look at the raw annotations for each category, a “zoom in” feature is implemented to expand

annotations for a given category.

3.1 Summary Types

Figure 1. Examples of Annotation summaries

Figure 1 above shows the three types of data mining techniques for summarizing raw

annotations that InsightNotes supports. The first is text summarization, which is used to create concise

snippets of large text documents, as shown in figure 1(b). The second is clustering, which clumps similar

8

content together into distinct groups, as shown in figure 1(a). The final technique is classification, shown

on the right side of both (a) and (b), which is what allows administrators to define annotations based on

their desired classifiers.

Each annotation summary has a type that consists of a pair of values {Name, TypeProperties},

where Name is a unique identifier that defines the summary type, such as “Snippet,” “Cluster” or

“Classifier,” and TypeProperties is a set of properties to be used in the creation of the summaries. All

summaries will have at least two Boolean type properties. The first of these is AnnotationsInvariant,

which indicates whether the summarization of a newly added annotation over a tuple depends on that

tuple’s existing annotation. The second is DataInvariant, which indicates whether the summarization

depends on the contents of a given tuple. There are also type-specific properties, for example, a

summary of the type “Snippet” (text summary) may also have the LargeObjThreshold property, which

specifies the threshold at which an annotation is considered large enough to be summarized into a text

summary. As mentioned before, database administrators would have the option to organize summaries

into custom categories. This is possible with summaries of type “Classifier,” where ClassLables is

included in the set of type properties.

3.2 Summary Instances

Each summary has a summary instance, which is a four-part structure {InstanceID, TypeName,

FunctionID, InstanceProperties} that defines the exact algorithm used to implement the summary and

its properties. InstanceID is a unique identifier for each instance, TypeName is the summary type,

FunctionID refers to the name of the function/algorithm that implements the instance, and

InstanceProperties is a set of values indicating instance-level properties for the summary. Once

9

summary instances are defined in the database, they can be linked to the user’s relations through a

many-to-many relation. Each relation can have many instances linked to it in order to summarize the

annotations attached to each tuple and to create summary objects.

3.3 Summary Objects

The algorithms that are specified by the Summary Instances create Summary objects, which are

what summarize the raw annotations of a relation. These objects will be attached to relations and be

maintained and updated by the system. Also, summary objects are what will be propagated to the

end-user. A summary object is five-piece structure {ObjID, InstanceID, TupleID, Rep[],

Elements[][]} where ObjID is an object’s unique identifier, InstanceID refers to the object’s

corresponding summary instance, TupleID refers to the object’s corresponding data tuple, Rep[] is an

array of the representatives produced from the summarization algorithm, and Elements[][] is a

two-dimensional array that stores the contributing raw annotations for each representative. Each

summary type has a different representative structure that affects what the end-user would see. This is

also pictured in figure 1.

10

3.4 Summary Propagation Strategies

Figure 2. Summary Propagation Strategies

There are three different strategies for creating and propagating the annotation summaries, as

shown in figure 2 above. The first is the On-The-Fly strategy in figure 2(a), which postpones the

creation of summaries until query time. This means that the query process is left unchanged until the

very end. The Lazy-Propagation strategy in figure 2(b) adds in the summaries at the last stage of

query processing, where annotations have already been generated. Finally, the Summary-Aware

strategy depicted in figure 2(c) integrates summaries at the early stages of query processing so that raw

annotations do not need to be retrieved if they are not needed. Figure 3 below compares the details

between strategies.

11

Figure 3. Strategy Comparisons

12

4. Other Background Information

4.1 LibreOffice

We decided to develop the visualization of InsightNotes on linux in order to avoid any

compatibility issues with prerequisite programs that needed to be installed. InsightNotes was developed

on the Mac-OS. Due to our lack of Mac-OS experience we chose to work on linux. LibreOffice is a

free and open source alternative to Microsoft Office that works well on linux and has the tools required

to create the visualization. Specifically, we used Open Office Calc, which is a spreadsheet program

similar to excel. LibreOffice is the default office suite for some linux distributions, however it does not

necessarily come with LibreOffice Base. In order to connect to a database and issue commands to it

through any of the LibreOffice programs, LibreOffice Base must be installed. This allows users to add

code through the programming language LibreOffice Basic, which is similar to Microsoft Visual Basic.

4.2 PostgreSQL

PostgreSQL is an object-relational database management system. It is cross-platform and runs

on many operating systems including Linux, Mac OS, and Windows. InsightNotes was developed

using PostgreSQL version 9.1.2, so the first step for creating the visualization was getting this version of

Postgres installed. The details of the installation process will be included at the end of the report in the

documents/appendix section

13

4.3 VirtualBox

Our visualization for InsightNotes was developed in a virtual machine running Ubuntu. The

virtual machine software we used was Oracle VM Virtualbox. The virtual machine allowed us to easily

transport the builds of our visualization onto different computers without having to reinstall all the

prerequisite programs or having to worry about what operating system was being used.

14

5. Visualization

5.1 Connecting to the Database

Connecting to the InsightNotes PostgreSQL database was achieved using built in functionality in

LibreOffice BASIC. Databases running on the system are visible through the DataSource Service and

are given a registered name. In order to connect to an InsightNotes database, a dialog box is presented

which asks the user to input the name of a database registered on their client.

After the user has input a registered database name and pressed “Connect”, this String is read by the

connectDB Sub. This sub creates a DatabaseContext and a connDB UnoService to retrieve all

available databases and handle a database connection. From the available databases, the proper URL

is selected from the registered database name and a connection is attempted. If there is no password

required for the database then the connection details are stored and Calc is now connected to the

database and the database URL is printed in a message box so that the user can verify their selection. If

15

a password is required, an interaction handler is created and the user must complete the login before the

connection is established.

Sub connectDB
 Dim ConnectionDetails As Object
 Dim dbName As String

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
ConnectionDetails = createUnoService("com.sun.star.sdb.connDB")
dbName = Dlg.getControl("dbName").Text

DataSource = DatabaseContext.getByName(dbName)

If Not DataSource.IsPasswordRequired Then

 Connection = DataSource.GetConnection("","")
Else

 InteractionHandler = createUnoService("com.sun.star.sdb.InteractionHandler")
 Connection = DataSource.ConnectWithCompletion(InteractionHandler)

End If

MsgBox DataSource.URL()
End Sub

5.2 Querying the Database

Database queries are performed by constructing a SQL SELECT statement from user input for

the table to query and any WHERE clause conditions. The user cannot, however, select which columns

to return and will have all columns of the requested table returned. Annotations are automatically

fetched with the table records and inserted as comments into the spreadsheet cell corresponding to the

tuple and column specified in the data_anno table.

16

The dialog above will generate the SQL SELECT statement “SELECT * FROM akn_data

WHERE genus=’Apaloderma’;”.

The dialog above will generate the SQL SELECT statement “SELECT * FROM akn_data;”.

From this query the spreadsheet will be filled out as shown in the image below with the column names

listed across the top, tuples listed in the spreadsheet, and annotations in comment boxes attached to the

appropriate cells.

17

The comment boxes are able to be resized to better fit the data and hidden to reduce clutter.

The code below implements querying the database with for the given table and conditions,

displaying the results in the spreadsheet, getting the annotations for the table returned, and determining

the cells to which it should add the annotations.

Sub queryDB
Dim QueryDefinition As Object
Dim queryCond, queryString As String
Dim Statement as Object
Dim Cell As Object
Dim row
Dim col
Dim table As String

row = 0
Doc = ThisComponent
Sheet = Doc.Sheets(0)

clearSheet()

DialogLibraries.LoadLibrary("Standard")

QueryDefinition = createUnoService("com.sun.star.sdb.QueryDefinition")
queryTable = Dlg.getControl("queryTable").Text
If(Dlg.getControl("matchCond").State) Then

 queryCond = Dlg.getControl("queryCond").Text
 queryString = "SELECT * FROM " & queryTable & " WHERE " & queryCond & ";"

Else
 queryString = "SELECT * FROM " & queryTable & ";"

18

EndIf

MsgBox queryString
Statement = Connection.createStatement()
Statement = Connection.PrepareStatement(queryString)

ResultSet = Statement.executeQuery()

Statement = Connection.createStatement()
Statement = Connection.PrepareStatement("SELECT * FROM " & queryTable & ";")

wholeTableSet = Statement.executeQuery()

If Not IsNull(ResultSet) Then

 While col < ResultSet.getMetaData().getColumnCount()
 Cell = Sheet.getCellByPosition(col, 0)
 Cell.CharUnderline = 1
 Cell.String = ResultSet.getMetaData().getColumnLabel(col + 1)
 col = col + 1
 Wend
 While ResultSet.next
 col = 0
 While col < ResultSet.getMetaData().getColumnCount()
 Cell = Sheet.getCellByPosition(col, row + 1)
 Cell.String = ResultSet.getString(col + 1)
 getAnnotations(queryTable, col, getTupleID(ResultSet,
ResultSet.getRow()), Cell)
 col = col + 1
 Wend
 row = row + 1
 Wend

End If
ResultSet.first()

End Sub

Sub getAnnotations (table As String, col As Integer, tuple As Integer, cell As Object)
 Dim Statement as Object
 Dim AnnoResultSet as Object

 If(tuple<>-1) Then
 Statement = Connection.createStatement()
 Statement = Connection.PrepareStatement("SELECT data_anno.tuple_id,
data_anno.tuple_column, data_anno.table_name, anno_table.value FROM anno_table INNER JOIN
data_anno ON anno_table.id=data_anno.id WHERE data_anno.tuple_id=" & tuple & " AND
data_anno.table_name='" & table & "';")
 AnnoResultSet = Statement.executeQuery()

 While(AnnoResultSet.next)
 If(tuple=AnnoResultSet.getInt(1)) Then
 If(col=CInt(RIGHT(LEFT(AnnoResultSet.getString(2), 2), 1))) Then
 Annotations = Sheet.getAnnotations()
 CellAddr = cell.CellAddress
 Annotations.insertNew(CellAddr, cell.annotation.String &
chr(13) & AnnoResultSet.getString(4))
 cell.Annotation.isVisible = True
 End If
 End If
 Wend
 EndIf
End Sub

19

The clearSheet sub called by queryDB is used to remove any excess data from the spreadsheet in

preparation for displaying the results of a new query. In order to create this sub the LibreOffice Macro

Recorder was used to record the process of selecting and of the cells on the spreadsheet, clearing all

their contents, and selecting cell A1. The original code generated has been modified slightly and is given

below.

Sub clearSheet()

 Dim Document As Object
 Dim Dispatcher As Object

 Document = ThisComponent.CurrentController.Frame
 Dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

 Dispatcher.executeDispatch(document, ".uno:SelectAll", "", 0, Array())

 Dispatcher.executeDispatch(document, ".uno:ClearContents", "", 0, Array())

 Dim args4(0) As New com.sun.star.beans.PropertyValue
 args4(0).Name = "ToPoint"
 args4(0).Value = "A1"

 Dispatcher.executeDispatch(document, ".uno:GoToCell", "", 0, args4())
End Sub

20

5.3 Adding New Annotations

Adding annotations through the Postgres CLI requires updating one tables with information

about the annotation and another with information about which tuple and column it is associated with.

Using this interface, annotations can now be added to tables which have been queried simply by

selecting a cell and filling in the annotation text and the author name in the proper dialog, and submitting

the annotation.

21

This information is used to first generate a SQL INSERT statement to fill in the appropriate data in the

data_anno table.

And then from the selected cell, another INSERT statement is generated to properly link the annotation

with the appropriate tuple and column by matching the data in the row containing the selected cell with

the same row in the previously selected table.

Because of the method of storing which cells annotations are attached to and the ResultSet data

structure used in LibreOffice BASIC to return the results of SQL queries some limitations were

introduced into the system. Because there is no way to get the index of a selected tuple, in reference to

the entire table that it exists in, with the information supplied in a ResultSet, the tuple is matched by

checking it against each row in the table, checking the each column until the whole row is matched,

because it is not guaranteed that all columns of a table contain distinct values which could lead to

false-positives when matching data.

After the tuple index is found a SQL INSERT statement is generated to store information

attaching the annotation to the matched tuple and column.

22

After the two annotation tables are updated, the spreadsheet is updated with the new annotation

using the GetAnnotations Sub at the end of Section 5.2.

The code implementing the functionality in this section is given below.

Sub newAnnotation()
 Dim QueryDefinition As Object
 Dim AnnoText As String
 Dim AnnoAuthor As String
 Dim AnnoQuery As String
 Dim Statement As Object
 DialogLibraries.LoadLibrary("Standard")

QueryDefinition = createUnoService("com.sun.star.sdb.QueryDefinition")
AnnoText = Dlg.getControl("newAnno").Text
AnnoAuthor = Dlg.getControl("authName").Text

AnnoQuery = "INSERT INTO anno_table (author, timestamp, value) VALUES " & "('" &

AnnoAuthor & "', TIMESTAMP '" & Now & "', '" & AnnoText & "');"
MsgBox AnnoQuery
Statement = Connection.createStatement()
Statement = Connection.PrepareStatement(AnnoQuery)
Statement.executeUpdate()

AnnoQuery = "SELECT MAX(id) AS highestId FROM anno_table"
Statement = Connection.createStatement()
Statement = Connection.PrepareStatement(AnnoQuery)
MaxIDResultSet = Statement.executeQuery()
MaxIDResultSet.next
nextID = MaxIDResultSet.getInt(1)

 AnnoQuery = "INSERT INTO data_anno (id, table_name, tuple_id, tuple_column) VALUES "
& _
 "(" & nextID & ", '" & queryTable & "', " & getTupleID(ResultSet,
ThisComponent.getCurrentSelection().CellAddress.Row) & _
 ", '{" & ThisComponent.getCurrentSelection().CellAddress.Column &
"}');"
 MsgBox AnnoQuery
 Statement = Connection.createStatement()

Statement = Connection.PrepareStatement(AnnoQuery)
Statement.executeUpdate()

ThisComponent.getCurrentSelection.annotation.String = ""
GetAnnotations(queryTable, ThisComponent.getCurrentSelection().CellAddress.Column,

getTupleID(ResultSet, ThisComponent.getCurrentSelection().CellAddress.Row),
ThisComponent.getCurrentSelection)

23

End Sub

Function getTupleID(CheckResultSet As Object, row As Long)
 Dim match As Boolean
 match = false
 Dim i As Integer
 i = 0
 CheckResultSet.first
 wholeTableSet.first
 CheckResultSet.absolute(row)
 While wholeTableSet.next
 If(i=0) Then
 wholeTableSet.first
 EndIf
 If(CheckResultSet.getString(1)=wholeTableSet.getString(1)) Then
 col = 2
 match = true
 While(col < wholeTableSet.getMetaData().getColumnCount())
 If(CheckResultSet.getString(col)=wholeTableSet.getString(col)) Then
 Else
 match = false
 EndIf
 col = col + 1
 Wend
 If(match) Then
 getTupleID = i
 EndIf
 EndIf
 i = i+1
 Wend
 If Not match Then
 getTupleID = -1
 EndIf
End Function

24

Conclusion

Interfacing with a SQL database system through LibreOffice BASIC through built in

functionality is relatively straight forward. However, for the purpose of displaying query results and

adding annotations, extensive checking of several tables is required to create properly formatted

SELECT and UPDATE statements. Constructing these statements allowed for the process of viewing

data with its annotations to be greatly simplified, as well as simplifying the process of adding new

annotations to the database. From the functionality implemented in this system thus far, the next step

would be to add a visualization for annotation summaries.

25

Appendix

Installation of the postgres system from the custom InsightNotes source code was completed

using the following procedure:

1) pre-requirement
JDK for running eclipseCDT
link: http://www.blogs.digitalworlds.net/softwarenotes/?p=41
EclipseCDT any version
for building the project and debugging the entire system

Packages(some package are optional) I only list the necessary ones.
libreadline5-dev, zlib1g-dev
sudo apt-get install package name

2) change directory to the root of extracted postgresql
1) configuration:
./configure - - prefix= /path/project - -enable-depend - - enable-cassert - - enable-debug

2) import the source code into eclipse
file->import->
type: existing code as Makefile Project
remember: Language: C(checked) C++(not)
Toolchain for Indexer: Linux GCC
click finish
3) build the full project

4) create one target: install
5) right click the target “install”.
Installation complete.
6) try to run dataBase
change directory to the root of extracted postgresql
export PATH=$path/project:$PATH
export PGDATA=DemoDir
initdb
7) then can run your dataBase as you like. Follow the documentation in website.

More detailed instructions for installing Postgres from source code can be found in the online
PostgresSQL Documentation at http://www.postgresql.org/docs/9.1/static/install-procedure.html.

26

http://www.google.com/url?q=http%3A%2F%2Fwww.blogs.digitalworlds.net%2Fsoftwarenotes%2F%3Fp%3D41&sa=D&sntz=1&usg=AFQjCNE-EMMN5st_i_9d6QF59F_eTEvcgg
http://www.google.com/url?q=http%3A%2F%2Fwww.blogs.digitalworlds.net%2Fsoftwarenotes%2F%3Fp%3D41&sa=D&sntz=1&usg=AFQjCNE-EMMN5st_i_9d6QF59F_eTEvcgg
http://www.blogs.digitalworlds.net/softwarenotes/?p=41

	Worcester Polytechnic Institute
	Digital WPI
	May 2014

	Visualization of InsightNotes Database Annotation Management System
	Armir Bashllari
	Tyler Jarrett Menard
	Repository Citation

	tmp.1535548689.pdf.PB0uC

