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Abstract 
 

The purpose of this Major Qualifying Project is to demonstrate a proof-of-concept for the DigiBlox. The 

DigiBlox are similar to “Lego” construction blocks and have the ability to determine their assembly 

configuration and then transmit that information to a PC where it would be used to render a 3D model 

of the assembled blocks in a virtual environment. These blocks are cubed-shaped, come in different 

colors, and have the ability to connect with one another at all six sides. 

Embedded in each block is a microcontroller that will allow it to communicate with neighboring blocks. 

When the blocks are assembled to form a structure, a network of connections is established allowing 

each block to communicate with blocks beyond its neighbors. 

An algorithm was developed that will utilize this network of connections to calculate the assembly 

configuration of the blocks. Using this network of connections, the algorithm would determine the 

position and color of each block relative to a unique block in the structure and send that information to 

the PC to render 3D models of those blocks in the appropriate position in virtual space. 

Structures were built using the DigiBlox to test if the calculated assembly configuration sent to the PC 

was accurate. The tests showed that there was a bug in the code embedded in the microcontrollers of 

the blocks. Though the proof-of-concept was not attainable in the time frame of this major qualifying 

project, further work to eliminate this bug would determine whether this algorithm would work in a 

multi-processor system or not. 
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1 Introduction 

1.1 Goal 

The goal of this MQP is to design and realize the DigiBlox – a playset of “Lego” blocks containing 

electronics that transmits the blocks’ assembly configuration to a piece of software which will use it to 

render a representation of the assembled blocks in a virtual environment. 

1.2 Motivation 

The idea of the DigiBlox was engendered by the desire to promote a creative learning environment for 

children. With the DigiBlox, children will be able to build structures like they would with normal Legos 

and witness their creations come into existence in a virtual environment. They would then be able to 

perform experiments on their creations in the virtual environment that would otherwise be impractical 

should it be done in real life. For example, a group of children may build a bridge using the DigiBlox and 

may want to see if the bridge could withstand a dynamite explosion under it. Dynamites would be too 

dangerous for children to play with but in the virtual environment, where that bridge they just built now 

exists, they will be able to put virtual dynamites under it and run a simulation. They could also go one 

step further by assigning the bridge properties like ‘all red blocks are made out of steel and all green 

blocks are made out of marsh mellows’ and see what happens if the simulation is ran again. Surely they 

could have easily built the bridge directly in the virtual environment with a mouse and keyboard; 

however, having children directly manipulate objects instead of using a mouse and keyboard makes an 

interface easy to learn, to use, and to retain over time.1 Furthermore, the “play” setting where children 

interact with other children will be lost with a mouse and keyboard, and instead will be replaced by a 

“hot seat” scenario (i.e. children taking turns using the mouse and keyboard to build the bridge). Having 

                                                             
1 (Shneiderman, 1998) 
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a collaborative play setting is conducive to learning and creativity among children.2 What the DigiBlox 

does is retain the “play” environment while taking advantage of the flexibility and possibilities of 

software. 

2 Prior Art 

The concept of the DigiBlox is relatively new thereby limiting the available prior art. No commercially 

available product resembles the DigiBlox but there are a few in research laboratories, albeit in prototype 

forms. The ones selected for further analysis were chosen for their disparate implementation method. 

They are the following: the GameBlocks3, the Tern4 and the ActiveCube5. 

2.1 GameBlocks 

GameBlocks – Internet of Things Engineering Group – CSIR Mereka Institute 

The GameBlocks is a “digital manipulative system for coding simple program sequences to control a toy 

robot”. Below is a picture of children using the GameBlocks. They are placing blocks with magnets 

embedded in them on a tray of switches. Each block type has magnets positioned at different locations 

depending on the block type; this is so that specific blocks will close specific switches on the tray. By 

knowing what switches are closed, the robot will know what program sequence to execute. 

                                                             
2
 (Boden, 2004) 

3
 (Smith, 2007) 

4
 (Horn, 2007) 

5 (Kitamura, 2001) 
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Figure 1: Children Using the GameBlocks 

This implementation method means that each block can be very cheap to manufacture since it only 

consists of magnets. But the problem with it when applied to the DigiBlox is that it only allows for 2D 

structures. 

2.2 Tern 

Tern – Human Computer Interaction Lab – Tufts University 

The Tern is a tangible programming language where programmers write software code by arranging 

blocks on a flat surface. The only thing special about the blocks and surface is that the blocks have a 

marker imprinted on it and the surface has a camera mounted above it. Below shows an image of the 

types of blocks and another image showing the blocks connected together to form a software code. 

 

Figure 2: Different Types of Tern Blocks 
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Figure 3: A Software Code “written” in Tern 

When the blocks are placed together on the surface, the computer will capture images of the blocks and 

use image processing techniques to convert the captured images into software code.  

Because each block is basically a piece of wood with an imprinted marker, this implementation method 

is extremely cheap. Furthermore, the lack of moving parts and electrical components implies that it is 

not prone to hardware failure. However, like the GameBlocks, this implementation would only work for 

2D structures unless multiple cameras are used. 

2.3 ActiveCube 

ActiveCube – Human Interface Engineering Lab – Osaka University 

ActiveCube is probably the system closest to that of the DigiBlox. It is described as “a novel device that 

allows a user to construct and interact with a 3D environment by using cubes.” A computer recognizes 

the 3D structure of connected cubes in real time by utilizing the communication network among cubes 

as suggested in the image below. 
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Figure 4: Children Playing with the ActiveCube 

This communication network is made possible by the Local Operating Network (LON) microchips 

(designed by Echelon Corporation and manufactured by Toshiba) embedded in each block. The 

microchips are known to be reliable and robust in networking applications thereby allowing for users to 

build large structures with many different types of blocks. However, all that comes at a high price. 

Quotes from Space Coast IC and Sierra IC put the price of each LON microchip at above US$4 per unit 

even in large quantities (over 5,000). Children playing with Lego blocks often build structures consisting 

of as many as 100 blocks. If each block contains the LON microchips as well as additional auxiliary 

components, not to mention the material to encase them, a normal ActiveCube structure would be 

worth tens or hundreds of dollars. The ActiveCube is an effective but expensive system. 

3 Product Requirement 

Seeing that there are no commercial products that do something similar to what the DigiBlox playset 

should do, a heuristic approach was used to determine the product requirement – a list of requirements 

for a final product releasable in the market. Below lists the requirements and explains the reason for 

each one of them. 
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Table 1: Requirement and Specifications 

 Product Requirement Reason 

Robust The playset should be scalable. In 

other words, it should allow for an 

infinite number of types and 

amount of blocks. However, the 

initial playset should consist of 15 

blocks of three different types: 5 

red, 5 green and 5 blue. 

15 blocks of 3 different types seem appropriate 

for a starter kit. Since the playset should be 

scalable, users will be able to purchase more 

blocks when they are made available. 

The playset should at least allow 

users to build the test structures in 

Figure 5, Figure 6 and Figure 7. 

These test structures covers even the most 

eccentric assembly configurations, particular 

ones with gaps and holes. If the DigiBlox playset 

can be used to build these test structures, then it 

could be used to build a wide variety of 

structures. 

Responsive The time it takes for the software to 

update the blocks in the virtual 

environment after a change has 

been made in the real world should 

be no longer that 2 second. 

2 second seems to be the approximate amount 

of time it take for someone to switch attention 

from making a change to a structure and viewing 

the virtual environment. 
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Stable and 

Safe 

There should be no current greater 

than 0.06A (AC) or 0.5A (DC). 

Literature values for lethal current levels are 

0.06A (AC) or 0.5A (DC).6 

A stack of at least 15 blocks should 

be able to stay in place. 

Experience and observations suggests that 15 

blocks of Duplo (the preschool line of Lego) can 

be stacked in place without it toppling over.   

Easy to Install The hardware should communicate 

with the software through USB. 

USB is the standard for many peripheral devices. 

Most, if not all, modern personal computers 

have USB ports. 

The hardware should be powered by 

the USB port of a PC and/or off-the-

shelf batteries (AA and AAA only). 

The playset will need to plug into the PC via USB. 

It would be very convenient if the USB is the only 

cable that users have to plug in. Also, AA and 

AAA batteries are the batteries that are often 

expected in consumer electronics. Hence, these 

battery types are acceptable for the playset. 

Easy to Use The physical dimension of a block 

should be between 1x1x1cm and 

4x4x4cm. 

The dimensions of Lego blocks, which are 

already known for its ease of use for children, 

typically fall in this range.7 

The user should be able to pan 

around the structure in the virtual 

environment using the mouse or 

keyboard. 

 

Camera control is a basic interface feature of 

virtual environments.8 

                                                             
6
 (Hsu, 2000) 

7
 (Dimensions of a Standard Lego Brick) 

8 (Noble, 2009) 
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Affordable The cost of components for each 

block when manufactured in large 

quantities (more than 1k units) 

should be less than US$1. 

There can be structures that are made out of as 

many as 100 blocks. The playset would be 

considered a very expensive toy for children if 

each block cost more than US$1. 

The cost to manufacture the starting 

hardware, if any, in large quantities 

(more than 1k units) should be less 

than US$20. 

20-100 US dollars seems to be an appropriate 

initial investment for a child’s playset which is 

why 20 US dollars was selected as the target cost 

to manufacture the starting hardware.  

The entire hardware should not 

consume more than 10 watts. 

The hardware itself should be affordable to run 

for a toy; therefore it should not consume more 

than 10 kW/h.9 

                                                             
9 (Bluejay) 
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Important Note: Although they make look like standard “Lego” blocks, the structures in Figure 5, Figure 

6 and Figure 7 are made of only 1x1x1 blocks with the ability to connect at all six sides. 

 

 

Figure 5: Different Views of Test Structure 1 

 

Figure 6: Different Views of Test Structure 2 
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Figure 7: Different Views of Test Structure 3 

4 Design Approaches 

After much brainstorming and researching on prior art, design approaches from a broad spectrum came 

into mind. They are the following: resistor network, vision markers, shift register, distributed network 

routing. Each one of them was analyzed against the product requirements covered in section 3 for 

strengths and weaknesses until finally one was selected. 

4.1 Resistor Network 

This approach uses a resistor network to determine the block locations.  The blocks are placed on a 

specially designed surface, the workbench, as shown below. 
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Figure 8: System Diagram of the Resistor Network Approach 

The blocks consist of a resistor and a switch. The switch in a block is always closed when there is nothing 

connected to the top of it. However, when a block is connected to the top of another block, the switch 

in the latter will open. This is illustrated below. As you can see, when the top block is stacked on top, the 

switch in the middle block opens. 
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Figure 9: Stacking a Block 

Notice how each stack of blocks is a series of resistors. When a stack of blocks is placed on the 

workbench, the series of resistor will be a complete circuit with a Vdd = 5V voltage source. Furthermore, 

the voltage across the last resistor (the resistor embedded in the workbench) will have a voltage given 

by this equation: 

voltage across last resistor   
   

  number of blocks in stack
 

The microcontroller in conjunction with the multiplexor embedded in the workbench will read the 

voltage across the last resistor of each stack, use that information to calculate the number of blocks in 
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those stacks and send the result to the PC where it would be used to render the structure in the virtual 

environment. 

The problem with this design is that there can only be one type of block. Having different blocks with 

different resistors stacked together will allow the system to determine what blocks may be present in 

the stack, but it will not allow the system to figure out the order in which the blocks are stacked. A way 

to remedy this is to make it so that the user must place the blocks one at a time so that the software can 

use the changes in the voltage to figure out what block with what resistance was just placed down. 

However, this means that when there are multiple users playing with the DigiBlox, it is not possible for 

them to work on separate parts of a construction and then bring back their work to the workbench. This 

is not an acceptable constraint for the user, especially for users that are children. 

The main problem with this design is that there is a limit to how many blocks can be stacked before the 

voltage across the last resistor becomes so small that it becomes difficult for the software to accurately 

determine the number of blocks in the stack. Hence, this design was scrapped entirely. 

4.2 Vision Markers 

This approach is similar to the Tern in that it utilizes a piece of technology intended for augmented 

reality applications or other image processing systems. The vision markers are a part of the ARToolKit 

that is freely available from the Human Interface Technology research group at the University of 

Washington.10 

The ARToolKit uses computer vision algorithms to calculate the real camera position and orientation 

relative to physical markers in real time. In other words, markers can be placed on physical objects and a 

computer with a camera will be able to determine the location of the marker as long as the camera is in 

view of it. In the image below, for example, the woman is wearing a head-mounted display with a built 

                                                             
10 (AR ToolKit) 
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in camera and interface to a computer. She is holding a marker. When she looks at the marker, the 

computer feeds a computer-generated cartoon character into her display so that it appears as if the 

cartoon is directly on top of the marker no matter what orientation or distance the marker is held at. 

This is because the AR ToolKit tells the computer where the marker is located so that the computer 

knows where to generate the cartoon. 

 

Figure 10: AR ToolKit used for Augmented Reality 

This concept could be applied to the DigiBlox as well because the software allows for multiple markers 

at a given time. Multiple markers allow for each block type to have its own marker. However, this entails 

that there must be cameras pointing at all sides (top, bottom, left, right, front and back) of the structure 

as it is built and the positions of the cameras must be carefully placed with respect to one another. Also, 

the camera must be in view of the structure at every step of the building process; if the cameras fail to 

capture a step in the building process where a block gets enclosed by other blocks, the enclosed block 

will not appear in the final rendition in the virtual environment. The errors that this design can result in 
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render it undesirable. Besides, having a multiple camera setup is not exactly an ideal play area for 

children, especially when there are many children working together to build a structure. 

4.3 Shift Register 

The shift register approach is like a hybrid of the resistor network approach and the distributed network 

routing approach. Like the resistor network approach, the shift register approach utilizes a workbench 

that consists of a matrix of connectors allowing it to connect to the bottom of stacks of blocks placed on 

top of it. Each stack of blocks acts like a shift register but instead of shifting a data bit down the stack to 

the workbench, it is shifting information regarding the type of block.  

 This means that the workbench will know the order at which the blocks are stacked in for each stack. 

And since it also knows where on the workbench the stacks exist, it can give that information to the PC 

where it will be used to render the structure in a virtual environment. So, in a way, it is like the 

distributed network approach in that each block is sending information to the computer down a 

network of blocks, except that there are multiple networks and each network follows a linear path. 

This design approach, unlike the resistor network approach, allows for different kinds of blocks and 

allows users to build large stacks of blocks. Additionally, the design approach is not as cumbersome as 

the multiple camera setup of the vision marker approach. The best aspect of it, however, is that the 

microprocessor embedded in each block that does the shifting of information only needs a fixed amount 

of memory because as new information comes in, the old ones go out. This memory constraint was the 

problem with distributed network routing approach but the shift register approach manages to 

overcome this problem.  

By combining the resistor network approach with the distributed network approach, the result is a 

design that seems to be the most promising of all the approaches considered. As a result, it is the design 
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approach that will be used to realize the DigiBlox. The proceeding chapter will describe this approach in 

detail. 

The DigiBlox playset consists of three main modules: the blocks, the workbench, and the virtual 

environment. The workbench contains a microcontroller, a power supply and a connection to the PC 

(where the virtual environment is generated) while the blocks only have a microcontroller embedded in 

them. When the blocks are assembled together on the workbench, a network of connections will be 

established between the blocks and the workbench allowing the workbench to power up the blocks so 

that they would transmit their information to the workbench via this network of connections. The 

workbench will then compile all the information it received and transmit them to the PC where a 

representation of the assembled blocks will be built in the virtual environment. 

Below shows the system diagram of the DigiBlox playset illustrating how the blocks, the workbench and 

the virtual environment all integrate together. Detailed description of how each module works is 

explained in the next section. 
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Figure 11: Complete System Diagram of the DigiBlox Playset 
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The blocks’ main component is the microcontroller. Below is the system diagram of a single block.  
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Block ID
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Vdd

Microcontroller

 

Figure 12: System Diagram of a Single Block 

The blocks come in different types with an ID associated for each type; for example, red colored blocks 

will have “red” as their ID and blue colored blocks will have “blue” as their ID. When the blocks are 

stacked on top of one another on the workbench, their Vdd, shift enable and block ID lines will all get 

connected as shown below. This means that when the workbench provide the bottom block power via 

the Vdd line, all the other blocks will also get power. 
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Figure 13: A Stack of Blocks on the Workbench 
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Furthermore, when the workbench set the shift enable line to active high, it will prompt the blocks to 

start shifting their IDs through the block ID line. For example, in the configuration above, where a red, 

green and blue block are stacked on top of each other in that order on the workbench, when the 

workbench sets the shift enable to high, the following will occur in sequence:  

1. All blocks will make a copy of their IDs 

in their temporary memory to prepare 

for the proceeding shifting process as 

shown on the right. 
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2. The shifting process now begins: The 

blue block will send “blue” to the 

workbench, the green block will send 

“green” to blue block and the red 

block will send “red” to the green 

block as shown on the right. 
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3. The blue will send “green” to the 

workbench and the green block will 

send “red” to the blue block as shown 

on the right. 
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4. The blue block will send “red” to the 

workbench as shown in the right. 
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Notice that the workbench receives the ID of each block in order of the way it was stacked. This will be 

used later on by the software to determine what block goes where when rendering the blocks in a 

virtual environment. 

The workbench is a flat surface consisting of a matrix of cells outlining where blocks could be placed. It 

will look like the image below.  

 

Figure 14: Concept Image of the Workbench 
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Each cell has two output pins and one input pin. The output pins are the Vdd and the shift enable, and 

the input pin is the block ID. The workbench also has a microcontroller and multiplexors connected in 

the manner shown below. 
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Figure 15: System Diagram for the Workbench 

 The idea is to make the microcontroller, with the help of the multiplexors, retrieve the IDs of blocks 

stacked on a cell for each cell. It does this by setting the shift enable for the cell to high so that the 

stacked blocks on that cell can begin shifting their IDs to the workbench. Once that is done, it will move 

on to the next cell and so on and so forth until eventually it will know the stacking configuration of each 

cell. It will aggregate all this information and transmit it to the PC where the information will be used to 

render a virtual representation of the blocks in a virtual environment. 

This approach begs the question, “How can you build a bridge?” A bridge is a structure where there is 

nothing under certain blocks. Since this approach is based on the idea of blocks being stacked, how do 

you insert a gap between blocks in a stack? The solution to this is to have an “invisible” block. The 
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invisible block is a transparent block in the real world but is an unoccupied space in the virtual world. 

The problem with this solution is that it really does not allow children to play with their physical 

creations. For example, children would not be able to have toy cars passing under the bridge they built 

because there are those “invisible” blocks in the way.  

4.4 Distributed Network Routing 

This approach treats the blocks as a distributed network routing system where the assembled blocks are 

a network of nodes, one of which is connected to the PC. Each block has a microprocessor that allows it 

to communicate with neighboring blocks. Since all the blocks are connected to one another, this 

network of connections allows each block to communicate with blocks beyond its immediate vicinity. An 

algorithm would then be implemented that will have all the microprocessors of each block work 

together to map its assembly configuration and then send that information to the PC. The PC will then 

be able to render the assembled blocks as a 3D model in a virtual environment. 

To explain how the algorithm works, suppose the blocks are connected in the manner shown in Figure 

16 with the gray circle representing the block that is connected to the Brain Block (assume the Brain 

Block is connected immediately below the gray circle). The letter within each block indicates blocks of 

different types where the red, green and blue colored blocks corresponds to A, B and C. 

 Important Note: Figure 16 does not show physical connections; it is merely a representation. 
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A B B

C C A

B B A

 

Figure 16: Connected Blocks Represented as a Graph 

The DigiBlox uses a Breadth-First Search (BFS) algorithm to build a tree with vertices reachable from the 

root vertex. In non-graph theory terms, the algorithm establishes a flow of information between blocks 

so that every block has a unique path to send information to the block represented by the gray circle 

(the block immediately connected to the Brain Block which is not shown in the figures). 

Running BFS on the construction in Figure 16 will build the tree shown in Figure 17 where the gray 

vertex is the root of the tree (or the block that is immediately connected to the Brain Block which again 

is not shown in figures) and hereby will be called the root block. 
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Figure 17: Constructed Tree after Running BFS 

After the tree has been established, each block has a unique path to send information to the root block. 

In Figure 18, a specific block sends a packet down the tree. The packet initially contains just the type of 

the block, but as the packet traverses down the tree, it accumulates information regarding the direction 

of its traversal. It will then reach the root block, the root of the tree, where it will be sent to the PC via 

the Brain Block. By using the information contained in the packet, the PC can retrace the route the 

packet took and the type of block the packet came from. In Figure 18, for example, the PC receives the 

packet containing C ►▼▼. Reversing the directions and order of the arrows within the packet will give 

C ▲▲◄. This means that a block of type C will be found up ▲, up ▲and left ◄ from the root block. Of 

course, this means that all the blocks must have the same physical orientation meaning that if each 

block were to have faces labeled 1 through 6, faces of the same label must point in the same direction. A 

forcing function must be implemented in the connecting mechanism to physically restrict uses from 

assembling the blocks in an incorrect orientation. 
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Figure 18: Information Flow from Block to Brain Block 

 

If each block sends packets like this to the PC, then the PC would know what blocks go where and thus 

would be able to recreate the assembled blocks in a virtual environment. This is how the DigiBlox works! 

Of course the DigiBlox is entirely dependent on the BFS algorithm’s ability to construct the tree in the 

first place. 
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The inputs of the BFS are the graph G = (V, E) (where V and E are vertices and edges in G respectively) 

and the vertex s (where s ∈ V [G]). In the context of the DigiBlox, G is the graph of the assembled blocks 

where the vertices V are the blocks, the edges E are the connections and the vertex s is the root block 

or, more specifically, the selected root of the tree to be grown from the graph G.  

BFS works by exploring adjacent vertices starting from the root vertex s. It will keep track of its progress 

by coloring the vertices: all vertices start out white but once it gets discovered, it will get colored gray or 

even black if all vertices adjacent to it have been discovered. Gray vertices may have some adjacent 

white vertices; they represent the frontier between discovered and undiscovered vertices. Whenever a 

white vertex v is discovered in the course of scanning the adjacency list of an already discovered vertex 

u, the vertex v and the edge (u, v) are added to the tree with u being the parent of v. In terms of the 

DigiBlox, this means that packets from v will flow from u. Since a vertex is discovered at most once, it 

has at most one parent. All this is visually demonstrated in Figure 20 and the pseudocode in Figure 19 

clearly describes the BFS procedure.  

In describing BFS in psuedocode form, let me preface with the following:  

 The color of each vertex u ∈ V is stored in the variable color[u], and the parent of u is stored in 

the variable π[u].  If u has no parent (for example, if u = s or u has not been discovered), then 

π[u] = NIL. (However, in the actual implementation of BFS in the DigiBlox, π[u] contains the 

direction of the parent of u relative to u.) 

 The distance from the source s to vertex u computed by the algorithm is stored in d[u]. 

(However, d[u] has no use to BFS in the DigiBlox; it is only used for the algorithm’s proof of 

correctness covered in chapter 6.1.) 
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 BFS also uses a first-in, first-out queue Q to manage the set of gray vertices. ENQUEUE(Q,u) 

means to put u into the queue Q and DEQUEUE(Q,u) means to remove u from the queue Q.  

 

Figure 19: BFS Procedure in Psuedocode 
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Figure 20: BFS in Action 
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This distributed network routing approach allow for an infinite number of types of blocks unlike the 

resistor network approach. It also avoids any extra cumbersome hardware like the cameras in the vision 

marker approach and the workbench in the resistor network approach. The only extra hardware is a 

single block that connects to the PC. The best part about this approach is that it is extremely robust in 

that it allows more freedom for users in creating structures. The six connectable sides and the fact that 

there are no workbenches or “invisible” blocks to consider gives rise to this freedom for the user.    

One problem with the algorithm that was previously mentioned is that it requires the blocks to have the 

same orientation. However, the robustness of the algorithm makes this problem an acceptable trade-

off.  

Another problem with the algorithm is that the space complexity is not constant. See Figure 18 again 

and notice how the packet grows in size the more nodes it traverses. This indicates that the space 

complexity of the algorithm is proportional to the number of nodes (i.e. the number of blocks used in a 

structure). This means that this design will challenge low-memory microprocessors. However, this does 

not mean that a 15 block playset could not be built.  
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5 MQP Specification 

The goal of this MQP is to demonstrate a proof-of-concept of the algorithm (covered in 4.4) in a multi-

microprocessor system. The algorithm calculates the assembly configuration of interconnected 

microprocessors. This system of interconnected microprocessors will be developed in the context of the 

DigiBlox playset: a toy set consisting of “Lego” blocks that have the ability to transmit its assembly 

configuration to a piece of software which would then render the assembled blocks in a virtual 

environment. With that said, the following additional specifications should be met to fully demonstrate 

this proof-of-concept: 

1. There should be three different types of blocks: red, green and blue. 

2. Five blocks of each type should be available for use. 

3. Each block should physically be a cube-shaped structure that can be grasped by one 

hand. 

4. It should be quick and easy to assemble and dissemble the blocks given the constraint of 

the algorithm. 

5. The test structures in Figure 5, Figure 6 and Figure 7 should be able to be built and 

rendered. (As explained in section 3, these test structures are complex enough to 

represent a wide-variety of structures.) 

6. The virtual environment should be able to clearly showcase the assembled blocks. 
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6 Design, Implementation and Testing 

The DigiBlox consists of the Basic Blocks (which will be typically referred to as just “blocks”), the Brain 

Block (which can only connect to one block) and the Virtual Environment. All these modules will be 

working together to execute the algorithm that determines the assembly configuration of the assembled 

blocks. 

6.1 Proving the Algorithm 

Before implementing the algorithm, a formal proof is needed to ensure that the algorithm works for all 

assembly configurations. The following is the mathematical proof of the algorithm verified by Prof. Mani 

Murali, Assistant Professor at Worcester Polytechnic Institute and an instructor of its algorithms course: 

Assume, for the purpose of contradiction, that some vertex receives a d value not equal to its shortest 

path distance. Let v be the vertex with minimum δ(s, v) that receives such an incorrect d value; clearly v 

≠ s. By Lemma 1, d[v] ≥ δ(s, v), and thus we have that d[v] > δ(s, v). Vertex v must be reachable from s, 

for if it is not, then δ(s, v) = ∞ ≥ d[v].11 

Lemma 1 

Let G = (V, E) be a directed or undirected graph, and suppose that BFS is run on G from a given source 

vertex s ∈ V. Then upon termination, for each vertex v ∈ V, the value d[v] computed by BFS satisfies d[v] 

≥ δ(s, v). 

Proof  

We use induction on the number of ENQUEUE operations. Our inductive hypothesis is that d[v] ≥ 

δ(s, v) for all v ∈ V. 

                                                             
11 (Cormen, Leiserson, Rivest, & Stein, 2001) 
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The basis of the induction is the situation immediately after s is enqueued in line 9 of BFS (Figure 

19). The inductive hypothesis holds here, because d[s] = 0 = δ(s, s) and d[v] = ∞ ≥ δ(s, v) for all v 

∈ V - {s}. 

For the inductive step, consider a white vertex v that is discovered during the search from a 

vertex u. The inductive hypothesis implies that d[u] ≥ δ(s, u). From the assignment performed by 

line 15 and from Lemma 2, we obtain 

d[v] = d[u] + 1 

  ≥  δ(s, u) + 1 

  ≥  δ(s, v). 

Vertex v is then enqueued, and it is never enqueued again because it is also grayed and the then clause 

of lines 14–17 is executed only for white vertices. Thus, the value of d[v] never changes again, and the 

inductive hypothesis is maintained. 

Lemma 2 

Let G = (V, E) be a directed or undirected graph, and let s ∈ V be an arbitrary vertex. Then, for any edge 

(u, v) ∈ E, 

δ(s, v) ≤ δ(s, u) + 1. 

Proof  

If u is reachable from s, then so is v. In this case, the shortest path from s to v cannot be longer 

than the shortest path from s to u followed by the edge (u, v), and thus the inequality holds. If u 

is not reachable from s, then δ(s, u) = ∞, and the inequality holds. 
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6.2 Block Diagram 

The block diagram in Figure 21 shows a DigiBlox playset consisting of nine blocks attached together. The 

bottom center block is the block that connects to the Brain Block which is the only block that interfaces 

with the PC. The blocks communicate with each other through a bus driven by a clock signal generated 

by the brain block to maintain synchronization. Although the block diagram only shows each block 

having four buses, the actual blocks will have six buses altogether, one for each side. 
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Figure 21: Top-Level Block Diagram 
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6.3 Basic Blocks 

The Basic Block is just one microcontroller known as the MSP430F2013 as shown in Figure 22. There are 

no additional components and the selected microcontroller is from the Value Line series from Texas 

Instruments thereby making each block as inexpensive as possible. This is ideal since a DigiBlox structure 

will be using as many as 15 of these blocks. The selected MSP430 also has bidirectional pin capabilities 

which make it appropriate for the bidirectional nature of the connections involved in the algorithm. 

 

 

Figure 22: Schematic of the Basic Block 

 

Figure 23 is a photograph of one of the MSP430F2013 used and the MSP-EXP430G2 Development Board 

that uploads program code into it. IAR Embedded Workbench was the integrated development 

environment used to write the code. 
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Figure 23: MSP430 and Development Board 

6.3.1 Build Tree 

The assembled blocks will first need to build a tree to determine the direction of the flow of 

information. As you can see in Figure 17, each block has an arrow indicating the direction at which to 

send data. Establishing the direction of the arrow for each block is the key to building this tree. 

The code snippet in Figure 24 is the Main of the microcontroller code and the flowchart in Figure 25 

describes the entire code snippet visually. Majority of the code snippet of Main consists of instructions 

on how the microcontroller implements the part where the blocks build the tree. Notice how Lines 60 to 

93 loops forever (at least until the microcontroller loses power). 
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Figure 24: Code Snippet of Main 

 

A “starting” signal (a simple logic high) will be generated from the Brain Block to a bus of the Basic Block 

that it is connected to. Each Basic Block starts off with its status variable equal to 001. This means that it 

would always enter the if statement from Line 61 to 74 until its status changes. Embedded in this if 

statement is Line 63 which sets all the buses of Basic Blocks as inputs; therefore all Basic Blocks starts off 
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ready to receive the “starting” signal and cycles between all its buses (as you can see from the for loop 

in Line 64 to 72) so that when it detects the signal from a particular bus, it would set its direction 

variable to that which corresponds to it (as shown in Line 68). Upon detecting this signal, it would also 

change its status to 010 so that it would enter the if statement from Line 76 to 82 instead of the prior if 

statement thereby ceasing its search for the signal in case it receives that signal again. This new if 

statement is where the block sets its buses other than the one that received the signal to output (see 

Line 78) and regenerates that signal to those buses (see Line 79) so that the blocks that it is connected 

to will similarly receive that signal to repeat the whole process. After doing that it would once again 

change its status variable (see Line 80) to 100 so that it would start entering the if statement from Line 

84 to 92 and stop entering the prior ones. This if statement is where the Send/Receive Bits process 

covered in section 6.3.2 occurs. It is where the block sends data in the direction according to its newly 

set direction variable and receives data from the remaining buses. 
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Figure 25: Flowchart of Main 

 

In summary, the Brain Block generates the “starting” signal to the block that it is connected to. That 

block receives the signal, sets its direction variable to correspond to where the signal came from, 

regenerates the signal to neighboring blocks, stops looking for the signal and start sending data to a 
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connecting block according to its direction variable. The neighboring blocks will then receive the 

regenerated signal and repeat this entire process. 

To test if the blocks can successfully build the tree, several microcontrollers had some of their buses 

connected together to represent a scenario of an assembly configuration. The image in Figure 26 shows 

these connections established using the black jumper wires. The blue wires and green wires respectively 

provide the power (3.3V) and ground supplied by an external board (called the Arduino USB Board) to 

the microcontrollers. The yellow wire is the source of the “starting” signal (3.3V logic high) which was 

again provided by the external board. 

 

Figure 26: Testing the Build Tree 

 

Changing the assembly configuration was a matter of rewiring the black wires and yellow wire to 

different buses of the microcontrollers. Checking what the direction variable equal to for each 

microcontroller was a matter of checking the logic value of pin 8, 9 and 10 using a logic analyzer since 
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the logic value of these pins corresponds to a certain value for the direction variable as shown in Table 

2. Note that these pins were configured that way only for this test and not for the actual final code of 

the project. 

Table 2: Expected Test Results 

direction variable Pin 8 Pin 9 Pin 10 

00000001 0 0 0 

00000010 0 0 1 

00000100 0 1 0 

00001000 0 1 1 

00010000 1 0 0 

00100000 1 0 1 

 

A myriad of assembly configurations (at least 20) involving 1 to 6 blocks were tested successfully. 

6.3.2 Send/Receive Bits 

After establishing the direction each Basic Block is to send data, the next step is to actually send the 

data. 

Once the Basic Block has established its direction variable and changes its status to 100, it would start 

entering the if statement in Line 84 to 90 as shown in the code snippet in Figure 24. Using the direction 

variable, the block will set the bus that it is to send data through to output and the buses that it expects 

to receive data from to input as shown in Line 86. Then it would enter the Interrupt Service Routine 

mode as shown in Lines 87 to 91. 

The Interrupt Service Routine is the key to synchronize the blocks when they transfer data between 

each other to the clock signal provided by the Brain Block. At the falling edge of that clock signal, the 

blocks will enter the Interrupt Service Routine, which basically means it would execute the sequence of 

instructions in the code snippet in Figure 27 every time it detects a falling edge of the clock signal. 
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Figure 27: Cope Snippet of Interrupt Service Routine 

Since all the blocks enter this Interrupt Service Routine at the same time due to them using the same 

clock signal, this means that when one block sends a bit, the receiving block is ready to receive the bit. 

Line 100 is where the block sends a bit and lines 102 to 107 are where the block looks for a sent a bit. On 

the next falling edge of the clock signal, the Interrupt Service Routine is executed again so that a new bit 

is sent and a new bit is received if any. Of course this means that the wavelength of the clock signal must 

be sufficiently long enough so that the next falling edge is not encountered before the tasks in the 

Interrupt Service Routine is completed, nor should it be too long that it would contribute to latency. This 

issue will be explored and resolved in section 6.4.1.  

This proceeding part describes the test that was done to see if the microcontrollers could transfer bits 

from Basic Block to Basic Block and from Basic Block to Brain Block simultaneously with a clock signal 

generated by the Brain Block.  
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Figure 28: Testing the Send/Receive Bits 

The test basically uses two Basic Blocks and the Brain Block connected to a PC. Each Basic Block has 

power, ground and a clock signal supplied by the Brain Block, which is the Arduino USB Board shown at 

the far right of the picture in Figure 28. The first block is connected to the second block which is also 

connected to the Brain Block. The first block will be sending a bit sequence that alternates between 0 

and 1. The second block should receive the bits and send them to the Brain Block. The Brain Block 

should finally send those bits to display on the serial monitor of the PC.  

This test was successful since the serial monitor of the PC continuously displayed “01010101...” and so 

on and so forth. 

6.3.3 Data Manipulation 

The PC in the example in Figure 29 should receive this information: 

11111111000100101111111100010010001001001111111100010010000100101111111100010010000

100100010011000000000… (and more 0’s until the DigiBlox is powered off). 
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Figure 29: Example Configuration 

 

Symbolically, these bits represent the following: $↑A$↑A←B$↑A↑A$↑A↑A←C!  

To break it down further: 

 

This is all the information the PC needs to render the block configuration in Figure 29. $ is the header 

indicating the start of a new packet. Each packet contains information regarding the type and location of 

one of the block. The first packet is ↑A which means that there is an A block up (↑) from the Brain 

Block. The second packet is ↑A←B which means that there is a B block, determined by the last letter in 

the packet, up and left (↑←) from the Brain Block. The third packet is $↑A↑A which means that there 

is an A block up and up (↑↑) from the Brain Block. The fourth and final packet is $↑A↑A←C which 

means that there is a C block up, up and left (↑↑←) from the Brain Block. The exclamation mark means 

that there are no more packets. The table below shows what sequence of bits corresponds to what 

symbolic value. Note that even though some of the symbols have the same bit sequence, they are 

11111111 0001 0010 11111111 0001 0010 0010 0100 11111111 0001 0010 0001 0010 11111111 0001 0010 0001 0010 0010 0110 00000000 

$ ↑ A $ ↑ A ← B $ ↑ A ↑ A $ ↑ A ↑ A ← C ! 
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expected at different places relative to the most recent header; therefore the similar bit sequences 

would not cause a misreading. 

Table 3: Bit Sequence Definitions 

Symbol Bit Sequence Description 

$ 11111111 Header 

A 0010 Block A 

B 0100 Block B 

C 0110 Block C 

↑ 0001 Up 

← 0010 Left 

X 0011 Forward 

→ 0100 Right 

O 0101 Backward 

↓ 0110 Down 

! 00000000 Ender 

 

Now that the bit sequence has been defined, the next step is to code how a block is to handle all the bits 

it receives from other blocks and what to do with that information before it sends the bits to the next 

block. Remember that it needs to send a bit as it receives a bit from each bus. 

To describe this data manipulation process, let’s use the example in Figure 29. Once again, the block 

connected to the Brain Block needs to send the following bit sequence: 

$↑A$↑A←B$↑A↑A$↑A↑A←C! 
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This bit sequence is an amalgamation of bits received from contiguous blocks and an additional bit 

sequence known as the appendByte. When a bit is received from a bus, say bus1, it is stored in a bit of 

a byte making up the array side1. Similarly, a bit received from bus2 will be stored in a bit of a byte 

making up the array side2. This is the same all the way until bus6 which corresponds to array side6. 

The code snippet of the function that reads a bit from the selected bus and places it in the appropriate 

array is shown in Figure 30. 

 

Figure 30: Code Snippet for Read Data 

 

Now back to the example configuration of Figure 29, the block connected to the Brain Block would 

receive and store the following bits in its arrays (side1 to side6, all of which are of size 120): 

 

 



53 | P a g e  
 

side1 0 1 2 3 4 5 … 119 

byte value 11111111 00010010 11111111 00010010 00100110 00000000 … 00000000 

 $ ↑ A $ ↑ A ← C !   

 
side2 0 1 2 3 4 5 … 119 

byte value 11111111 00100100 00000000 00000000 00000000 00000000 … 00000000 

 $ ← B       

C 

side3 0 1 2 3 4 5 … 119 

byte value 00000000 00000000 00000000 00000000 00000000 00000000 … 00000000 

 

 

side4 0 1 2 3 4 5 … 119 

byte value 00000000 00000000 00000000 00000000 00000000 00000000 … 00000000 

 

 

side5 0 1 2 3 4 5 … 119 

byte value 00000000 00000000 00000000 00000000 00000000 00000000 … 00000000 

 

 

side6 0 1 2 3 4 5 … 119 

byte value 00000000 00000000 00000000 00000000 00000000 00000000 … 00000000 

 

 

 

The appendByte, which originally only contained information regarding the block type and then later 

changed to include the direction (see Line 69 of Figure 24), would have this value: 

appendByte 0 

byte value 00010010 

 ↑ A 

As the block receives and stores the bits into the arrays, the blocks simultaneously retrieve bits from the 

arrays and appendByte to create a sequence of bits it needs to send as shown in Figure 31. The block 
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looks for headers in each array. When a header is found, the sequence of bits between it and the next 

header (or ender) will be a packet. This packet needs to be appended with a new header and the 

appendByte before it could be sent out. So in the example in Figure 31, the packet ↑A←C was found in 

array side1. Before this packet is sent out, the bit sequence $↑A needs to appended to the front of it to 

make the new packet $↑A ↑A←C. That’s just one of the four packets being sent out in the example in 

Figure 31. The other packets being sent out are $↑A, $↑A ←B and $↑A ↑A. 
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Figure 31: Example of Data Manipulation 
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That basically describes the data manipulation process. The complexity of the data manipulation process 

arises from the fact that the microcontroller has limited memory. It would be significantly easier code 

wise to store the information of the bits as a queue data structure of integer type, but that requires a 

significant amount of memory since one bit of a receive/sent data will actually take more than six bytes 

when stored! This is because 1) each piece of data in a queue data structure needs a pointer which takes 

up two to four bytes of memory space and 2) even though integer type is easier to code with, it alone 

takes up four bytes. 

The way the data manipulation was handled in this project paid careful attention to memory 

constraints. The code made use of arrays of type char with each bit of the char data (that’s two bytes 

per char data) representing the bit of the sent/receive data. This means that one bit of a receive/sent 

data will take exactly one bit when stored! 

Notice that each array has 120 data elements. This is not an arbitrary number. According to calculations, 

if there are 14 blocks all together, the maximum number of elements that one array can have when the 

blocks are assembled is 120. 

The assembly configuration that will cause this maximum to be reached would be 14 blocks connected 

in a snake-esque fashion like the one below with an additional Brain Block connected at an end. 

a 

b 

c 

c 

d 

e 

f 

g 

h 

i 

j 

k 

l 

m 

 

 

Figure 32: Snake-esque Configuration 
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The block immediately connected to the Brain Block will encounter an array that is filled with  

 

number of elements in the packet to determine Block a + number of elements in the packet to determine Block b + … + number 

of elements in the packet to determine Block l + number of elements in the packet to determine Block m + element for ender = 

15 + 14 + … + 2 + 1 = 120 elements 

 

Hence, the array sizes are set to 120 instead of some arbitrary size which could lead to too little space 

for the DigiBlox to work or too much space causing the code to fail to compile. 

The design of the data manipulation code seems appropriate for the constraints of the MSP430F2013. 

This code also marks the end of the code for the Basic Block. 

6.3.4 Mechanical Construction 

This section describes the mechanical design of the blocks. Each block should physically be a cube-

shaped structure that can be grasped with one hand and should also be quick and easy to connect and 

disconnect from other blocks. 

Each block will be made of three of the structure similar to the one in Figure 33 assembled in the way 

shown in Figure 34 using readily available angle brackets. 
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Figure 33: A Third of a Block 

The SPOX connectors are resistance-hold connectors which mean that you could easily connect and 

disconnect them making them ideal for this project. PVC was chosen because they are light and easy to 

machine compared to metal and wood. They are also sufficiently strong and very durable. 

SPOX Crimp Housing from MOLEX 

SPOX Vertical Headers from MOLEX 

Extruded PVC 90˚ Angle 
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Figure 34: Assembled to Make a Cube 

The three pieces assembled together in Figure 34 are not the same, that is, they are not exactly as 

shown in Figure 33, but they only differ in the number of pins of the connector. The drawing shown in 

Figure 35 roughly illustrates the complete block after the three pieces have been assembled together. 
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Figure 35: Front, Side and Top View of a Block 

A block will basically be a cube consisting of a 4-pin male connector on one side with a 4-pin female 

connector on the opposite side, a 5-pin male connector on another side with a 5-pin female connector 

on the opposite side, and a 6-pin male connector on the remaining sides with a 6-pin female connector 

on the opposite side. Although some of the sides have up to 6 pins, only 4 of the pins are actually in use 

(ground, Vdd, the bus line and the clock signal). The mismatch number of pins would mean that only 

specific sides of two blocks can connect to each other thereby providing the forcing function required 

for the algorithm to work. 
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Each block will house the microcontroller chip sitting on a 14-pin IC socket. Wires from the leads of the 

IC socket would be soldered to the appropriate pins of the SPOX connectors. Since the IC socket will be 

the piece permanently attached to the rest of the parts, the MSP430 could therefore be easily replaced. 

The image below shows the inside of the block with the connectors attached. 

 

Figure 36: Photograph of a Basic Block 

Table 4 lists all the parts needed for the mechanical assembly of the DigiBlox. 

Table 4: Parts List for Mechanical Design 

Manufacturer Part Description Part Number Qty 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 4 Circuits 

0009501041 14 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 5 Circuits 

0009501051 14 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 6 Circuits 

0009501061 14 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 3 Circuits 

0009652048 14 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 4 Circuits 

0009652058 14 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 5 Circuits 

0009652068 14 

U.S. Plastic Corps. 2"x2"x1/4" Gray PVC-1 Extruded Angle 45031 14 

Amplifier Parts 14-Pin DIP IC Socket 9000026 14 
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6.4 Brain Block 

The function of the Brain Block is to supply the clock signal, power and ground to all the other blocks, 

receive data from only one other block (whichever block the user connects the Brain Block to) and send 

data to the PC via USB. The schematic for the Brain Block is shown in Figure 37. 

g
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Figure 37: Schematic of Brain Block 

 

The Brain Block is just the Arduino USB Board which is a popular development board for USB interfaces 

and therefore is suitable for the USB aspect of this project. The development board also comes with its 

own proprietary integrated development tool called the Arduino Software Suite.  

6.4.1 Generate Clock Signal 

Although the Interrupt Service Routine described rigorously in section 6.3.2 begins on the falling edge of 

an external clock, the code within the Interrupt Service Routine itself runs on an internal one.  
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The selected internal clock was the fMCLK according to line 53 of the code snippet in Figure 24. The 

frequency of this clock is 1MHz according to the datasheet snippet in Table 5 circled in red. 

Table 5: Datasheet Snippet of MSP4302013 

 

Using the timing tool available in IAR Embedded Workbench, the code within the Interrupt Service 

Routine uses approximately 2220 clock cycles from fMCLK. This means that the clock to be generated from 

the Brain Block must be at least 2220 / 1M = 2ms in wavelength. 

 

Figure 38: Code Snippet for Brain Block 
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The code snippet in Figure 38 shows that the clock signal to be generated would be 3ms where the extra 

millisecond was added in case of system uncertainties. Oscilloscope reading of the clock signal showed 

negligible discrepancy in the wavelength which means that the clock signal is reliable enough. 

6.4.2 Send/Receive Bits 

The Brain Block only connects to one other block therefore only has one bus other than its USB 

connection to the PC. 

The Arduino is primarily a USB interface therefore it has predefined libraries specific for USB 

communication: both for the PC end and the board end. The code snippet circled in red in Figure 39 

basically shows that the Arduino will send a ‘1’ ASCII character to the PC whenever it receives a 1 bit 

from the connected block or a ‘0’ ASCII character if it receives a 0 bit instead.   

 

Figure 39: Code Snippet for Brain Block with Highlights 
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6.5 Virtual Environment 

As mentioned, the PC needs to be able to use the information sent by the blocks to render the 

assembled blocks in the Virtual Environment. Furthermore, the Virtual Environment needs to be able to 

clearly showcase the rendered blocks. The Virtual Environment was created in Unity, an integrated 

authoring tool commonly used for game development. It has tools that can be used to generate 

polygonal worlds with advance camera controls, model texturing and peripheral device support; thus it 

is suited for the purpose of this project.  

A preview of the world that was created out of blocks of different colors is shown in Figure 40. 

 

Figure 40: Early Version of Virtual Environment 

The code snippet below takes preexisting assets already available in Unity libraries such as 3D blocks, 

assign them colors and place them in positions determined by values in the serial port of a USB. This 

shows that this early version of the Virtual Environment can retrieve information from devices 

connected via USB and use it to alter objects in the virtual world.  
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Figure 41: Script Used to Generate Blocks in Virtual Environment 

7 Project Results 

To demonstrate the proof-of-concept, the test structures in Figure 5, Figure 6 and Figure 7 should be 

able to be built in the real world and rendered in the virtual world. Unfortunately, there is a consistent 

error in the sequence of bits being transferred from the blocks to the PC.  

In the test configuration shown in Figure 42, the PC should receive the following sequence of bits: 
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However, the bits highlighted in yellow are consistently incorrect. After testing many different assembly 

configurations, a patterned emerged suggesting that the two least significant bit of the byte that 

represent the directions, except for the one immediately after a header, are always wrong. 

C A

B A

Brain

 

Figure 42: Simple Test Configuration 

 

The consistent nature of the error suggests that the cause of the problem is not an electrical one, but a 

software one – there is a bug in the code. Since the data manipulation part of the code (covered in 

section 6.3.3) is the only untested part of the code, it is likely to be the part of the code that carries the 

bug. The fact that the error is to do with bit sequences also indicates this. 

The complexity of the data manipulation part of the code is inherently necessary as it was coded in a 

way that is optimized to use as little memory as possible. Using a microcontroller that has more memory 

or installing more RAM into the current microcontroller would make this part of the code less complex. 

But it would bring up the price of each block significantly. 

11111111 0001 0010 11111111 0001 0010 0010 0100 11111111 0001 0010 0001 0010 11111111 0001 0010 0001 0010 0010 0110 00000000 

$ ↑ A $ ↑ A ← B $ ↑ A ↑ A $ ↑ A ↑ A ← C ! 
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8 Budget Results 

Table 6 lists the all the parts used in this project. The total money expected to be spent for this project 

was $64.44; however, the actual money spent was a little less than $90 due to extra parts purchased in 

case of part failure or damage. 

Table 6: Complete Parts List 

Manufacturer Part Description Part Number Qty Price 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 4 Circuits 

0009501041 14 $0.20 each 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 5 Circuits 

0009501051 14 $0.20 each 

Molex 3.96mm (.156") Pitch SPOX™ Crimp Housing, 
Female, With Friction Ramp, 6 Circuits 

0009501061 14 $0.20 each 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 3 
Circuits 

0009652048 14 $0.18 each 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 4 
Circuits 

0009652058 14 $0.18 each 

Molex 3.96mm (.156") Pitch SPOX™ and KK® Wire-to-
Board Header, Vertical, with Friction Lock, 5 
Circuits 

0009652068 14 $0.18 each 

U.S. Plastic Corps. 2"x2"x1/4" Gray PVC-1 Extruded Angle 45031 14 $12.80 total 

Amplifier Parts 14-Pin DIP IC Socket 9000026 14 $0.22 each 

Texas Instruments TI LaunchPad Development Board MSP-EXP430G2 1 $4.30 each 

Texas Instruments Microcontroller – Value Line Series, DIP MSP430F2013 14 $0.45 each 

Arduino Arduino Uno – USB Board with Software Suite n/a 1 $22 each 

Unity Unity 3.1 – Integrated Authoring Tool n/a 1 WPI carries 
license 

IAR Systems IAR Embedded Workbench – Integrated 
Development Environment 

n/a 1 used free 
version 

TOTAL   64.44 
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9 Conclusion 

This major qualifying project set out to show how the DigiBlox would work. An algorithm that utilizes the 

network of connections of the assembled blocks to determine its assembly configuration was developed 

and mathematically proven. The implementation of this algorithm, however, yielded mixed results.  

The first part of the algorithm was to build a tree where the nodes of the tree were the blocks 

themselves. This was done successfully. The next part of the algorithm required each node (a.k.a. block) 

to retrieve data from all its child nodes, manipulate the data, and then send it to its parent. The retrieval 

and sending of data worked fine, but the data manipulation part had a problem. The code for the data 

manipulation was discovered to have a bug. The code was optimized to ensure effective memory usage 

which was important since the DigiBlox used low-memory microprocessors; however, this significantly 

increased the complexity of the code making it difficult to determine the location of the bug. Having 

more memory to allow easier coding was suggested. 

Other than having access to more memory, future work for the DigiBlox could include having blocks of 

different shapes instead of just different colors. Actual Lego blocks come in many different shapes so 

this addition would make playing with the blocks more interesting. 
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11 Appendices 

11.1 Source Code of Basic Block 

//****************************************************************************** 
//  DigiBlox 
//  Anas Maghfur 

//****************************************************************************** 
 
#include  <msp430x20x3.h> 

#define MAX_POS_SEL 120 
#define MAX_BIT_SEL 7 
#define MAX_SIDE_SEL 5 

#define TYPE 00000001 // red=00000001 green=00000010 blue=00000011 
 
//***************************Function Prototypes******************************** 

 
void swDelay(unsigned int max_cnt); // Software delay 
void readData(char selector[], char side[], char BIT); 

void sendData(char counter[], char direction); 
void changeBits(char selector[], char side[], char newVal); 
void incrementSelector(char selector[]);  

void incrementCounter(char counter[]); 
char retrievedBitByCounter(char counter[]); 
char retrieveBitFromByte(char byte, char bitPos); 

void addDirectionToAppendByte(char direction); 
 
//**************************Global Variables************************************ 

 
char counter[3] = {0,0,MAX_BIT_SEL}; 
 

char appendByte = TYPE; 
 
char selector0[2] = {1,MAX_BIT_SEL}; 

char selector1[2] = {1,MAX_BIT_SEL}; 
char selector2[2] = {1,MAX_BIT_SEL}; 
char selector3[2] = {1,MAX_BIT_SEL}; 

char selector4[2] = {1,MAX_BIT_SEL}; 
char selector5[2] = {1,MAX_BIT_SEL}; 
 

// buffers for each side 
char side0[MAX_POS_SEL+1]; 
char side1[MAX_POS_SEL+1]; 

char side2[MAX_POS_SEL+1]; 
char side3[MAX_POS_SEL+1]; 
char side4[MAX_POS_SEL+1]; 

char side5[MAX_POS_SEL+1]; 
 
char direction = 0;  

 
 
//**********************************Main**************************************** 

 
void main(void) 
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{ 
 

  WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer 
   
  char status = BIT0; // Initialize status to blank (001) 

   
  appendByte <<= 1; // Needed to prepare the append byte 
   

  while(1) 
  { 
    if (status & BIT0) // If status is blank (001), then enter 

    { 
      P1DIR &= ~(BIT5|BIT4|BIT3|BIT2|BIT1|BIT0); // Set P1.0-5 to input direction 
      for (char i=1;i^BIT6;i=i<<1) // Cycle through P1.0-5 

      { 
        if (i & P1IN) // If signal found in P1.0-5, then enter 
        { 

          direction = i; // Set direction to where signal was found 
          addDirectionToAppendByte(direction); // Add direction to append byte 
          status = BIT1; // Set status to gray (0010) 

          i=BIT5; // Set i to the end to exit the for loop 
        } 
      } 

    } 
     
    else if (status & BIT1) // If status is blank (010), then enter 

    { 
      P1DIR = ~direction; // Set P1.0-5 to output except for the direction bus 
      P1OUT = ~direction; // Send signal to the selected buses 

      status = BIT2; // Set status to black (0100) 
      swDelay(100000); // This delay is needed to ensure that contingent blocks reads sent signals 
    } 

     
    else if (status & BIT2) // If status is blank (100), then enter 
    { 

      P1DIR = direction; // Set output for parent pin and input for child pins 
      P1IE |= BIT6;                             // P1.6 interrupt enabled 
      P1IES |= BIT6;                            // P1.6 Hi/lo edge 

      P1IFG &= ~BIT6;                           // P1.6 IFG cleared 
     
      _BIS_SR(LPM4_bits + GIE);                 // Enter LPM4 w/interrupt 

    } 
  } 
} 

 
// Port 1 interrupt service routine 
#pragma vector=PORT1_VECTOR 

__interrupt void Port_1(void) 
{ 
  sendData(counter, direction); // Send a bit to parent block 

   
  readData(selector0, side0, BIT0); // Read a bit from bus1 
  readData(selector1, side1, BIT1); // Read a bit from bus2 
  readData(selector2, side2, BIT2); // Read a bit from bus3 

  readData(selector3, side3, BIT3); // Read a bit from bus4 
  readData(selector4, side4, BIT4); // Read a bit from bus5 
  readData(selector5, side5, BIT5); // Read a bit from bus6 

  // Note: The bus from parent block will always be a 0 bit 
 
  P1IFG &= ~BIT6;                           // P1.6 IFG cleared 

} 
 
//********************************Functions************************************* 

 
void swDelay(unsigned int max_cnt) // Software delay 
{ 

  unsigned int cnt=0; 
  while (cnt < max_cnt) 
    cnt++; 

} 
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void readData(char selector[], char side[], char BIT) // Read bits from the bus into respective side[] 

{ 
  static int headerStatus = 0; 
  static int enderStatus = 0; 

   
  if (BIT & P1IN) // Searching for header 
    if (headerStatus < 7) 

      headerStatus++; 
  else 
    if (headerStatus < 7) 

      headerStatus = 0; 
   
  if (headerStatus == 8) // Header found 

    if (BIT & P1IN) 
      changeBits(selector, side, 1); // Change the selected bit in side[] to 1 
    else 

      changeBits(selector, side, 0); // Change the selected bit in side[] to 0 
    incrementSelector(selector); 
 

  if (BIT & P1IN == 0) // Searching for ender 
    if (enderStatus < 7) 
      enderStatus++; 

  else 
    if (enderStatus < 7) 
      headerStatus = 0; 

} 
 
void sendData(char counter[], char direction) // Retrieve bit from buffer and send to parent 

{ 
  static int sendStatus = 0; 
  char temp; 

   
  char retrievedBit = retrievedBitByCounter(counter); 
   

  if (sendStatus <= 7) 
  { 
    if (retrievedBit == 1) 

    { 
      sendStatus++; 
      P1OUT = direction; 

    } 
    else 
    { 

      sendStatus = 0; 
      P1OUT = 0; 
    } 

  } 
  else if (sendStatus > 7 && sendStatus <= 15) 
  { 

    switch(sendStatus) 
    { 
      case 8: 
        temp = 7; 

      case 9: 
        temp = 6; 
      case 10: 

        temp = 5; 
      case 11: 
        temp = 4; 

      case 12: 
        temp = 3; 
      case 13: 

        temp = 2;; 
      case 14: 
        temp = 1; 

      case 15: 
        temp = 0; 
    } 

    if (retrieveBitFromByte(appendByte, temp) == 1) 
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      P1OUT = direction; 
    else 

      P1OUT = 0; 
    sendStatus++; 
  } 

  else 
  { 
    if (retrievedBit == 1) 

      P1OUT = direction; 
    else 
      P1OUT = 0; 

    incrementCounter(counter); 
  } 
} 

 
void changeBits(char selector[], char side[], char newVal) // Use this to change the value of bits in chosen side 
{ 

    if (newVal == 1) 
    { 
      switch(selector[1]) 

      { 
        case 0: 
          side[selector[0]] |= BIT0; 

        case 1: 
          side[selector[0]] |= BIT1; 
        case 2: 

          side[selector[0]] |= BIT2; 
        case 3: 
          side[selector[0]] |= BIT3; 

        case 4: 
          side[selector[0]] |= BIT4; 
        case 5: 

          side[selector[0]] |= BIT5; 
        case 6: 
          side[selector[0]] |= BIT6; 

        case 7: 
          side[selector[0]] |= BIT7; 
      } 

    }  
    else  
    { 

      switch(selector[1]) 
      { 
        case 0: 

          side[selector[0]] ^= BIT0; 
        case 1: 
          side[selector[0]] ^= BIT1; 

        case 2: 
          side[selector[0]] ^= BIT2; 
        case 3: 

          side[selector[0]] ^= BIT3; 
        case 4: 
          side[selector[0]] ^= BIT4; 
        case 5: 

          side[selector[0]] ^= BIT5; 
        case 6: 
          side[selector[0]] ^= BIT6; 

        case 7: 
          side[selector[0]] ^= BIT7; 
      } 

    } 
} 
 

void incrementSelector(char selector[]) // Increment the selectors 
{ 
  if (selector[0] <= MAX_POS_SEL) // Increment the position select until MAX_POS_SEL 

    selector[0]++; 
 
  if (selector[1] > 0) // Decrement bit select until 0 then reset back to its maximum value and start over  

    selector[1]--; 
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  else 
    selector[1] = MAX_BIT_SEL;  

} 
 
void incrementCounter(char counter[]) // Increment the counter which keeps track of the bit to send 

{ 
  if (counter[2] == 0) 
  { 

    counter[2] = MAX_BIT_SEL; 
    counter[1]++; 
  } 

  else 
    counter[2]--; 
 

  if (counter[1] == MAX_POS_SEL) 
  { 
    counter[1] = 0; 

    counter[0]++; 
  } 
  else 

    counter[2]++; 
   
  if (counter[0] == MAX_SIDE_SEL) 

    counter[0] = 0; 
  else 
    counter[0]++; 

} 
 
char retrievedBitByCounter(char counter[]) // Uses the counter variable to retrieve the correct bit from a byte 

{ 
  switch(counter[0]) 
  { 

    case 0: 
      return retrieveBitFromByte(side0[counter[1]], counter[2]); 
    case 1: 

      return retrieveBitFromByte(side1[counter[1]], counter[2]); 
    case 2: 
      return retrieveBitFromByte(side2[counter[1]], counter[2]); 

    case 3: 
      return retrieveBitFromByte(side3[counter[1]], counter[2]); 
    case 4: 

      return retrieveBitFromByte(side4[counter[1]], counter[2]); 
    case 5: 
      return retrieveBitFromByte(side5[counter[1]], counter[2]); 

  } 
} 
           

char retrieveBitFromByte(char byte, char bitPos) // Retrieves the selected bit from a byte 
{ 
  int bitVal; 

   
  switch(bitPos) 
  { 
    case 0: 

      bitVal = byte & BIT0; 
    case 1: 
      bitVal = byte & BIT1; 

    case 2: 
      bitVal = byte & BIT2; 
    case 3: 

      bitVal = byte & BIT3; 
    case 4: 
      bitVal = byte & BIT4; 

    case 5: 
      bitVal = byte & BIT5; 
    case 6: 

      bitVal = byte & BIT6; 
    case 7: 
      bitVal = byte & BIT7; 

  } 
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  if (bitVal == 0) 

    return 0; 
  else 
    return 1; 

} 
 
void addDirectionToAppendByte(char direction) // Add the direction bit sequence to the append byte 

{ 
  switch(direction) 
  { 

    case 00000001: 
      appendByte |= BIT4; 
    case 00000010: 

      appendByte |= BIT5; 
    case 00000100: 
      appendByte |= (BIT5|BIT4); 

    case 00001000: 
      appendByte |= BIT6; 
    case 00010000: 

      appendByte |= (BIT6|BIT4); 
    case 00100000: 
      appendByte |= (BIT6|BIT5); 

  } 
} 
   

11.2 Source Code of Brain Block 
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11.3 Source Code for Virtual Environment 
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