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Abstract 

 The software engineering industry is trending towards cloud computing. For our project, we 

assessed the various tools and practices used in modern software development. The main goals of this 

project were to create a reference model for developing cloud-based applications, to program a functional 

cloud-based prototype, and to develop an accompanying training manual. These materials will be 

incorporated into the software engineering courses at WPI, namely CS 3733 and CS 509.  



Executive Summary 
 

Cloud computing is a model for enabling on-demand, convenient, and ubiquitous access 

to shared computing resources. Industry leaders are looking into cloud computing to increase 

efficiency in products and the workplace.  

Our project involves researching the current state of the software industry, including 

desired skills, emerging technology, and other trends as of October, 2017. We will use this data 

to compile the necessary skillset of a full stack cloud developer. Our findings will be 

incorporated into the Software Engineering courses at WPI, namely CS 509 Design of Software 

Systems and CS 3733 Software Engineering. 

The main categories we researched were cloud computing itself, cloud developer 

skillsets, prevalent technologies, industry initiatives, and cybersecurity. We analyzed data from a 

variety of job postings related to cloud computing. We interviewed various company 

professionals about the skills they expect for cloud computing positions.  

We used the data collected from the above methods to create three key components of the 

project. These components are a reference model, a cloud-based application, and a training 

manual.  

The reference model is a tiered grouping of technologies or methodologies that are 

required to implement an application similar to the prototype application developed for this 

project. The tiers are ordered by importance to development. We present options for each tier 

that are derived from the research in this paper. 

The cloud-based application is an image classification service that allows users to upload, 

tag, and search for images. The application was run entirely on the cloud and was built using the 

reference model previously mentioned.  

The training manual consists of modules that aim to guide a novice cloud developer 

through their first cloud application. The modules can be completed independently, but together 

form a guide that teaches the basics of cloud development using Amazon Web Services (AWS). 

In the end, the developer will become familiar with several services offered by AWS and should 

be able to build an image classification service similar to our own. 

We end this report by discussing our technology choices and alternatives, as well as 

limitations of the project.  

 

  



1. Introduction 
 

 Cloud Computing is an emerging field of Software Engineering. The National Institute of 

Standards and Technology (NIST) defines cloud computing as: 

 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction. (NIST, 2011) 

 

 Cloud Computing can be broken into five essential characteristics, three service models, 

and four deployment methods. All of these will be discussed more in-depth in Section 2.1 of the 

background.  

 

 Industry leaders are looking into cloud computing to increase efficiency in products and 

the workplace. Ford Motor Company, Coca Cola, and JDA Software, among many others have 

moved their products and services over to cloud computing. Currently the top three leaders in 

cloud distribution are; Amazon, Microsoft, and Google. According to Forbes, the forecast for 

2018 of the percentage of Information Technology (IT) spending directed at cloud computing 

resources and technologies is going to reach 60% (Columbus, 2017). 

         Cloud computing allows for companies to move away from having designated IT 

specialists for downloading and maintaining software on their devices by making the software 

more easily available using technologies such as web services and web applications. With access 

to a cloud platform, companies do not have to spend money to store their data and software on-

site, or in an expensive, dedicated off-site location. Companies can also increase their data 

storage without having to build their own data storage center. They simply pay the cloud 

providers for more storage. Companies are also able to downsize their data storage amounts if 

business rules for storage of data change, or the company downsizes their products. 

Our project involves researching the current state of the software industry, including 

desired skills, emerging technology, and other trends. We will use this data to compile the 

necessary skillset of a full stack cloud developer. Our findings will serve to capture the current 

state of the industry as of October, 2017. These findings will be incorporated into the Software 

Engineering courses at WPI, namely CS 509 Design of Software Systems and CS 3733 Software 

Engineering. Additionally, we will create an application that utilizes cloud technology as a proof 

of concept project for the course. 

With the rise of popularity in cloud development, students must be prepared for a shift in 

which skills are required to succeed in the software industry. Currently, there is a lack of cloud 



development principles and skills found in the curriculum. By incorporating these principles in 

the Software Engineering course, WPI will better prepare students with a more modernized 

skillset. 

The goal of our project is to create a robust training structure for full stack cloud 

developers. Additionally, we will build an image classification service using cloud technology. 

To achieve this goal, we will achieve the following objectives: 

1. Identify current requirements for cloud development positions in the industry 

2. Identify initiatives by leading companies in the industry regarding cloud 

development  

3. Research current and potential future cloud technologies, including microservices, 

databases, and DevOps  

4. Research potential issues with cyber security 

 

  



 

2. Background 

2.1 Breakdown of Cloud Computing 

Cloud computing is a model for enabling on-demand, convenient, and ubiquitous access 

to shared computing resources. Cloud computing can be broken into three large sections, with 

multiple subsections in each. The overarching sections are: essential characteristics of cloud 

computing, service models for use of the cloud by companies and individual users, and 

deployment methods for hosting the cloud. (NIST, 2011) 

Cloud computing as a whole is supported by the Internet which allows end-users and 

service providers, such as Netflix, to use resources that might not be located on their local area 

network (LAN). What this means is that end-users are able to access data, such as movies in the 

case of Netflix, that could be located thousands of miles away. The primary benefit of cloud 

computing is that the resources or online services can be accessed over the network at a speed 

much faster than before (Microsoft, 2017). Both end-users and large companies using resources 

hosted on the cloud have reduced costs for varying reasons, both do not have to go out and 

purchase physical copies of the services; the companies do not have the extra cost of building 

and maintaining large infrastructure for data storage (Griffith, 2016); finally, companies are 

given the ability to see their usage of the services they pay for and can scale up or down 

depending on the demand, which reduces costs but also frees up the services so that other 

companies may use them (Amazon, 2017). 

There are many different user types that will use cloud computing. The end-user installs 

programs offered, uses programs and websites that are hosted on the cloud, and stores data on the 

cloud such as emails, photos, and social media information. The developers that create services 

and software that is hosted on the cloud use the cloud to host their programs without the costly 

infrastructure setup and maintenance. The cloud platform company uses the cloud they created to 

make money. The company can do this by selling their cloud out to developers to host their 

services and charge based on the amount their service is used. The company could also charge 

end-users to use in-house developed cloud services such as data storage programs. Throughout 

this document, we refer to all of these types of users as “the user” of the cloud for simplicity. 

 

2.1.1 Essential Characteristics 

 The essential characteristics of cloud computing can be divided into five categories that 

are in place to help both the provider and the consumer of the cloud service. The characteristics 

laid out by NIST are as follows, on-demand self-service, broad network access, resource pooling, 

rapid elasticity, and measured service. All of these characteristics allow cloud computing to 

provide a seemingly unlimited supply of resources to users. (NIST, 2011) 



On-demand Self-service 

With cloud-based service, users do not have to interact with each service provider to 

complete projects that might need access to the server or need network storage. This allows users 

to remove the ‘middle-man’ aspect of traditional computing techniques to run more smoothly 

and efficiently. With non-cloud based technologies, users rely on other users and service 

providers to allow access and return results. (NIST, 2011) 

Broad Network Access 

Technology device types change constantly. Thus, access to the cloud with any type of 

device is mandatory. Broad network access allows for any type of device to utilize to the 

resources stored on the cloud. Types of devices that are included currently are mobile phones, 

tablets, desktop computers, and laptops. In the future devices such as cars could be added to the 

required device list. (NIST, 2011) 

There are two major network types for connecting devices to the internet and each other. 

A Local Area Network (LAN) connects devices, by either Ethernet cable or wireless, to the same 

network of restricted size, most likely a home or office building. A Wide Area Network (WAN) 

connects devices in a wider scale than LAN, but not in a defined size. A WAN can be as small as 

a college campus or as large as a global network. (Meyers, 2012)  

Broad network access is similar to WAN in that it allows connects from multiple types of 

devices from over large distances, but in a manner that only gives access to authorized users on 

the network. This security allows workers to access private, company-owned resources from 

devices at home, on business trips, and vacations using varying types of devices such as desktops 

and mobile phones. (“What is Broad”, n.d.) 

Resource Pooling 

Currently, for non-cloud based technologies, most resources are located on the local 

machine, or in a data warehouse that an individual can access. With cloud computing, the 

resources are stored remotely on a server hosted by the cloud distributer Any user can now 

access these resources, with what is called the multi-tenant model. Resources that would be 

shared in this manner, and reassigned based on demand, include network bandwidth, storage, 

memory, and processing. (NIST, 2011) 

With non-cloud based technologies, resources had to be located onsite or even on the 

local hard drive of the machines that required access to these resources. Alternatively, two users 

that wanted to share resources could create a group with the correct configurations that allowed 

file sharing across computers.This file sharing would be done using a shared drive stored locally 

or at an offsite location that was owned and operated by a company (Meyers, 2012). Resources 

not shared using file sharing had to be purchased individually and uploaded manually onto each 

device, which wasted time and money for companies and individual end-users. 

With resource pooling, the file sharing aspect of allowing other users to have access to 

one another's files has been moved to the internet and not in a datacenter in an offsite location. 



This allows for resources to be used by virtually anyone without having to wait for the resource 

to be retrieved from the center and can be used by multiple people without slowing the retrieval 

location down, thus making the resource scalable to large demands. (“What is Resource”, n.d.) 

Rapid Elasticity 

 With more and more users and companies moving their applications and services to the 

cloud, rapid elasticity helps reduce the impact of this large increase in demand. Rapid elasticity 

allows for the cloud’s capabilities to be provisioned and released in a way that is flexible and 

reactive to demand. They are stretched in different lengths based on demand for the services. 

This capability allows users to have the view that resources are unlimited and can be taken at any 

time and in any amount. (NIST, 2011) 

In non-cloud based technologies, when more space or resources are needed for the 

specific service or company to continue functioning as normal, large data centers need to be 

created which can take time and money. When a data center was needed, space needed to be 

rented or purchased, a building erected, and the infrastructure created and maintained. These 

requirements are removed for users once they move to the cloud (Meyers, 2012). Rapid elasticity 

allows users to access resources as needed, reducing time and cost. Furthermore, users do not 

need to build and configure their own resources, as it is handled automatically by the cloud 

provider (“What is Rapid”, n.d.). 

Measured Service 

 Cloud systems monitor the usage amount of each user account to optimize resources. By 

monitoring and charging for services, such as bandwidth and storage, companies can charge 

clients based on their individual usage. With this capability, resource usage is transparent for 

both the provider and the consumer. (NIST, 2011) 

 In non-cloud based technologies, users receive an invoice statement in which each charge 

is listed out at the end of a billing period. With measured service, users can monitor their usage 

before the billing period. Measured services also capture services being paid for but not being 

used so that users may reduce their plans accordingly. (“What is Measured”, n.d.) 

2.1.2 Service Models 

 The service model describes the three different ways that the cloud services can be 

utilized by consumers. The models can be broken down into: Software as a Service, Platform as 

a Service, and Infrastructure as a Service. These models allow consumers to have an 

understanding of the limitations of using the cloud for various purposes and for providers to keep 

consumers from overstepping their limitations depending on the type of service they are using. 

(NIST, 2011) 

 



 

Figure 2.1. Offerings of each cloud service model. (Plitchenko, 2016) 

 The three service models offered by cloud computing can be broken down into the 

characteristics seen in Figure 2.1. The three model types have relatively little in common when it 

comes to the specific offers users gain from each.  Based on research discussed below, the 

different service models have only one thing in common and that is that none of the users may 

modify the underlying cloud infrastructure of their specific provider’s cloud.  

Software as a Service (SaaS) 

 Software as a Service allows the user to gain access to the provider’s applications that are 

running on a cloud infrastructure. The accessibility of the applications can be from different 

client devices through either a program interface or a thin client interface, such as a web browser. 

The user does not have the ability to change or manage the underlying cloud infrastructure, with 

the possible exception of limited user-specific configuration settings within the application. The 

user should not be able to change any of the following: network, servers, operating systems, 

storage, or even some individual application capabilities. (NIST, 2011) 

Platform as a Service (PaaS) 

 Platform as a Service allows the user to deploy their own applications and services onto 

the cloud; these programs can be user-created or acquired software that were created using 

programming languages, services, tools, and libraries that are supported by the cloud provider. 

The user does not have the ability to change or manage the cloud infrastructure, but does have 

control over the deployed applications. The user may also have the ability to change 

configuration settings for the application-hosting environment. The user may not modify the 

following cloud infrastructure features: network, operating systems, servers, or storage. (NIST, 

2011) 



Infrastructure as a Service (IaaS) 

 Infrastructure as a Service allows the user to provision the processing, networks, storage, 

and other fundamental computing resources. This model allows the user to deploy and run 

arbitrary software, which may include operating systems and other applications. The user does 

not have access to change or modify the underlying cloud infrastructure, but has control over 

deployed applications, operating systems, and storage. The user also may have limited control of 

select networking components such as host firewalls. (NIST, 2011) 

2.1.3 Deployment Methods 

 The deployment methods of cloud computing can be broken into four distinct types of 

infrastructures. The different methods list who can and should be using the specified cloud 

infrastructure. These methods are: private, community, public, and hybrid. (NIST, 2011) 

Private Cloud 

 The private cloud method of deployment has the infrastructure provisioned for exclusive 

use by one organization, such as a company with multiple business units (e.g., users). This 

method allows for the cloud to be owned and operated by the user organization, a third party, or 

a combination of the two. The cloud can exist at an on or off-site location. (NIST, 2011) 

Community Cloud 

 The community cloud method of deployment has the infrastructure provisioned for 

exclusive use by a specific subset of users from organizations that have shared concerns, such as 

security requirements and compliance considerations. The community cloud may be owned and 

managed by one or more of the organizations in the community, a third party, or any 

combination of them. This method may exist at an on or off-site location. (NIST, 2011) 

Public Cloud 

 The public cloud method of deployment has the infrastructure provisioned for open use 

by the general public. This method may be owned and operated by a business, government, or 

academic organization, or any combination of those organizations. This cloud method exists on 

the property of the cloud provider. (NIST, 2011) 

Hybrid Cloud 

 The hybrid cloud method of deployment is a combination of two or more of the distinct 

cloud infrastructures listed above. This method allows for the different infrastructures being 

combined to remain unique entities, but they are bound by a standardized or proprietary 

technology. The technology enables data and application portability. (NIST, 2011) 



2.2 Skill Sets for Cloud Developers 

 This section explores various skills and methods that cloud developers should be familiar 

with. For specific technologies relevant to cloud computing, see section 2.3. 

REST 

 REST (REpresentational State Transfer) is an architectural style for Application Program 

Interfaces (APIs) which describes six constraints: uniform interface, stateless, cacheable, client-

server, layered system, and code on demand (“REST API Tutorial” 2017). Most cloud platforms 

provide their own APIs that adhere to the REST guidelines, including AWS, Azure, and Google 

Cloud. For further discussion of these platforms, see Section 2.3.1 Frameworks/Platforms. Since 

this style of API is prevalent in the top cloud platforms, it follows that cloud developers should 

be familiar with using REST APIs. However, there is currently a lack of standardization between 

REST APIs on the cloud, as platforms prefer to use their own implementations. There are 

currently attempts in the industry to make these APIs more standardized, to increase 

understandability and reusability across all cloud platforms. (Petrillo et al, 2016) 

DevOps 

DevOps refers to the use of various tools, methods, and architectures in software 

development to allow for greater automation, integration, and collaboration between software 

and operations engineers (Waxer, 2015). Thus, DevOps is more a cultural movement within 

software development rather than a reference to any specific tools. DevOps is an attempt to 

combine development and operations departments into one team, removing scenarios where one 

team would be forced to wait for the other team to fix a bug or implement a feature to continue 

their own work (Ellis, 2014). 

         DevOps can improve several aspects of software development. Since teams are not 

reliant on one another to continue their own work, overall development speed is increased. 

Companies report higher quality applications after implementing DevOps. Finally, DevOps 

directly increases the amount of collaboration within a company. (Bednarz, 2013)  

DevOps itself is an umbrella term that includes several different types of tools. These 

categories include containers, configuration management, and continuous integration/continuous 

deployment, which are discussed further in Sections 2.3.4 Continuous Integration/Continuous 

Deployment, 2.3.5 Containers, and 2.3.6 Code Management & Monitoring.  

Microservices 

Microservices are the key to the new complexity that businesses are experiencing due to 

the change in competitive software development (Felipe, 2016). Traditionally, programs were 

built in one code base, with the goal to create a single monolithic application that was executed. 

Software engineers used different programming languages and various modularity techniques to 

compartmentalize the source code into classes, modules or units to make it easier to maintain and 

debug, but the final resulting executable was expected to be a singular entity. Today, most 



businesses want to implement changes to processes and customer experiences almost instantly. 

Microservices again fit this need. (Felipe, 2016) 

A microservice is a component of a larger process that is well encapsulated on its own. 

The service can function on its own, without external dependencies, handling its own data 

storage and transactions. In the world of microservices, if one component were to fail or go down 

temporarily, the whole process would not be jeopardized. In the traditional model, a bug in one 

section of the program would affect the whole code base. (Richardson, 2017) 

With the implementation of microservices, larger coding efforts may be delivered in a 

piecewise manner to an external source for larger testing efforts. Bugs that are found in the 

smaller components would be easier to spot and fix before doing end-to-end testing. Decoupling 

services allows larger, month-long, code development to be completed in shorter periods because 

multiple developers can work on several microservices in parallel. (Richardson, 2017) 

Microservices can decrease the development time needed to deliver important business 

requested improvements and even develop new features from scratch quickly. There are 

development tools such as Spring Boot and Maven that work together to increase the efficiency 

of creating microservices. (Richardson, 2017)   

Languages 

 Cloud developers should learn at least one of the object-oriented languages mentioned 

below in section 2.3.2. Developers should learn at least one scripting language, such as Node.js, 

which is supported by the top cloud platform providers, as discussed in Section 2.3.1 

Frameworks/Platforms. Ruby is supported and used to build many of the DevOps tools as listed 

in Section 2.3.8 Languages. 

 

2.3 Cloud Technologies 

 With the rise of Cloud Computing, the technologies that developers and companies must 

use have changed. The location of code is moving from local repositories to cloud platform 

hosted remote repositories. Large companies are charging for the services that work with 

developers to ease building, testing, and deploying code instead of developers manually doing all 

three in longer, more tedious steps. Programs are being decoupled into microservices that are 

able to be built and deployed faster. 

 In this section, we present research on the most prevalent technologies in cloud 

development. These technologies are the non-exhaustive list from our research that attempts to 

capture the state-of-the-practice in cloud development as of October, 2017. The results from our 

job listing research determined which technologies made the non-exhaustive list and can be 

viewed in Section 4. Results. These include platforms, languages, databases, containers, DevOps 

tools, microservices, and version control software.  



2.3.1 Frameworks/Platforms  

Amazon Web Services 

         Amazon Web Services (AWS) launched in 2006 by Amazon.com as a secure cloud 

services platform. AWS offers computing power, database storage, content delivery, and other 

functionality that helps businesses scale and grow. As of August 2017, AWS includes multiple 

types of services, ranging from Computing to Code Management. Each service has several 

programs to choose from depending on the user’s needs. 

         For computing and running code on the AWS Cloud, AWS Lambda is the option that 

best suits most developer’s needs. As a serverless computing function-as-a-service platform, 

Lambda allows code to be run for almost any type of application or backend service without 

having to manage, ration, or administer servers. AWS Lambda allows developers to write 

applications that respond to changes in data or environment. (Close-up Media, Inc., 2014) 

AWS Lambda has an auto scale feature that scales to the size of the workload based on 

each trigger of the code. Lambda charges for every 100ms that code is being executed and the 

number of times the code is triggered. When code is not running, there is no charge to the 

developer. (Amazon, 2017) 

         Lambda can be written in “Lambda functions” or in several third party languages. A 

Lambda function is always ready to run as soon as it is triggered, and includes configuration 

information along with the written code. The functions are “stateless” meaning that they have no 

underlying infrastructure that way multiple copies of the same function can be running in parallel 

as needed based on workflow. Lambda can run external libraries and currently supports Java, 

Node.js, C#, and Python code, with support for other languages coming in the future. (Amazon, 

2017) 

Azure 

         Azure launched in 2010 by Microsoft under the original name of Windows Azure. Azure 

is a cloud computing service created for building, testing, deploying, and managing applications 

and services. Offered as all three service models mentioned in Section 2.1.2 Service Models, 

Azure supports multiple programming languages. There are currently 75 different products 

offered on Azure, ranging from several different Database types to virtual machines. (Microsoft, 

2017) 

         For deploying infrastructure, Azure offers two virtual machine options for developers. 

The developers have the option to deploy using Linux and Windows virtual machines. 

Developers have the option to use two command-line tools, Azure CLI and Azure PowerShell. 

Azure offers containers with Kubernetes, microservice options and orchestration of containers 

with Service Fabric. Azure also offers serverless functions in a similar fashion to AWS Lambda. 

(Microsoft, 2017) 

         Azure offers several database options, in both NoSQL and Relational databases. Cosmos 

DB is the option for NoSQL databases offered. The relational databases are offered as a service 



and those are SQL database, PostgreSQL database, and MySQL database. Azure includes 

Computer Vision API and Face API as well for AI and Cognitive Services. There are five third 

party languages supported currently by Azure. Those are Python, .NET, Java, PHP, and Node.js. 

(Microsoft, 2017) 

 

Google Cloud Platform 

         Google Inc. launched Google Cloud Platform in 2011. The platform is a suite of services 

that run on the same infrastructure as the end-user products that Google offers, such as Google 

Search and YouTube. Google Cloud offers developers all three options of service models listed 

in Section 2.1.2 Service Models, along with a few others not part of the NIST formal definition of 

Cloud Computing. Database as a service is provided with the Cloud Datastore service that 

provides a document-oriented database to users. 

As of 2017, Google Cloud started to offer Functions as a service. This is similar to both 

Azure and AWS Lambda, which both provide serverless functions that can be triggered by cloud 

events. The platform has an Internet of Things service that allows for devices to be connected to 

the global device network. Currently Google Cloud supports the following languages: Go, Java, 

.NET, Node.js, PHP, Python, and Ruby. (Google Inc., 2017) 

Google Cloud has its own cloud deployment manager, which allows one to specify all 

resources needed for the given application using a yaml document (Google Inc., 2017). This 

manager can also use Python or Jinja2 templates to configure common deployment paradigms 

that can be reused by multiple deployments. There is also an option to host all code bases on a 

private Git repository on the Cloud platform using Stackdriver. Developers can also connect 

GitHub or Bitbucket repositories to the internal Google Cloud Source Repositories. (Google Inc., 

2017) 

Hadoop 

         Launched in 2011 by Apache Software, Hadoop is an open-source software framework 

that is used for distributed storage and the processing of big data datasets. Hadoop is a cluster of 

computers built with the ideology that hardware fails and should be handled by the framework. 

While being written in Java, Hadoop is not a software for building code. Currently several cloud 

platforms are using Hadoop’s software. The larger contributors include Azure, Amazon Web 

Services, Google Cloud, IBM, and Oracle. (IBM, 2017) 

One of Hadoops’s main functionality is data storage, which is done in the Hadoop 

Distributed File System. The other main functionality is stored data processing, which follows a 

MapReduce programming model. MapReduce is a job tracker that helps to schedule jobs to be 

run. Hadoop takes in large files, breaks them into blocks, and then distributes them across nodes 

in one of the clusters. In this model, the datasets are processed faster due to taking advantage of 

data locality. (Apache, 2017) 

 



 

 

2.3.2 Databases 

NoSQL 

         NoSQL, short for “not only SQL”, is a database system that foregoes storing relations 

between data in tables in favor of storing large amounts of data through other means. This 

storage technique allows large data sets to be stored cheaply across servers, improving scalability 

and processing power. NoSQL is a solution to the lack of scalability inherent with traditional 

relational databases. As the industry shifts towards cloud development, this scalability is highly 

desirable. Types of NoSQL databases include Key-Value Store, Document Store, Column Store, 

and Graph Store. (Open Source FOR You, 2013) 

 NoSQL databases may support more than one type of storage model. For example, 

Amazon’s DynamoDB supports both Key-Value Store and Document Store. 

Key-Value Store 

         In a Key-Value Store database, keys are used to access groups of similar data commonly 

referred to as “blobs”. It is the application’s responsibility to understand exactly what is stored 

(Vishwakarma, 2017). Key-Value Store databases are simple to implement, have great 

performance, and has good scalability. However, it is impossible to query these kinds of 

databases based on stored values (McCreary, 2014). Example uses of Key-Value Store include 

user session data, user preferences, and shopping cart data. Key-Value Store databases include 

DynamoDB, Redis, MemcacheDB, and Riak (Vishwakarma, 2017). 

Document Store 

         Document Store databases are similar to Key-Value Store databases, but have structured 

or semi-structured data instead of blobs (Vishwakarma, 2017). Document Store databases have 

great performance for searches. However, Document Store is difficult to implement, because if 

the data is not stored properly, performance and scalability can be poor (McCreary, 2014). 

Example uses of Document Store include e-commerce platforms, analytics systems, and 

blogging platforms. Document Store databases include DynamoDB, MongoDB, CouchDB, 

ElasticSearch (Vishwakarma, 2017). 

Column Store 

         Column Store databases store data as columns rather than rows. Columns are grouped 

into families with similar data that is often accessed at the same time (Vishwakarma, 2017). 

Column Store databases have great performance on simple searches and great horizontal 

scalability. Downsides of Column Store are poor performance for complex queries and, like 

Document Store, a poorly designed implementation will diminish any benefits (McCreary, 

2014). Example uses of Column Store include content management platforms, services with 



counters, and services with many write requests. Column Store databases include Cassandra and 

Hadoop Hbase (Vishwakarma, 2017). 

Graph Store 

         Graph Store databases store data in nodes along with relationships between different 

nodes. While traditional databases describe each possible relationship in foreign keys, Graph 

Store can describe any relationship between two nodes spontaneously. In this type of database, 

queries are graph traversals (Vishwakarma, 2017). Graph Store databases are ideal for 

representing relationship networks and searching through these networks. Graph Store should be 

avoided if the data is not sufficiently related and can have issues with scalability (McCreary, 

2014). Example uses of Graph Store databases are fraud detection and social networks. Graph 

Store databases include Neo4j, ArangoDB, OrientDB (Vishwakarma, 2017). 

Relational Databases and NewSQL 

         Traditional relational databases are still desirable because they subscribe to ACID, 

properties which ensure the consistency of data within a database, while NoSQL databases do 

not. ACID stands for Atomic, Consistent, Isolation and Durable, the key properties that ensured 

the integrity of databases in the face of concurrent access. One of the largest weaknesses of 

relational databases is poor scalability with large data sets. In cloud computing environments 

where data is large, relational databases struggle to compete with NoSQL databases. One of the 

leading relational databases is PostgreSQL. (Hammes et al, 2014) 

NewSQL is a recent movement to attempt to implement the scalability of NoSQL while 

maintaining ACID. Theoretically, NewSQL databases would provide excellent performance and 

reliability for data of any size. Currently NewSQL databases have failed to gain a significant 

market share, as large companies prefer to develop and improve their own databases. However, 

NewSQL may be a contender in the future. (Pavlo & Aslett, 2016) 

 

2.3.3 Configuration Management  

Configuration management tools allow users to configure systems remotely either 

through a node system managed by a master server or through pushing updates to other systems 

via SSH. Through configuration management, it is possible to quickly ensure that all systems on 

a network are up to date regarding a variety of software. (Heller, 2017) 

Puppet 

         Puppet is a configuration management tool introduced by PuppetLabs in 2005.  Puppet 

uses a master-client architecture, in which a master server controls several nodes on a network. 

Using a ruby-based declarative language, the developer can write scripts to define how the 

system should be configured. Then, the desired state is deployed to the nodes on the network 

automatically and any differences in the state of a node and the desired state are reported back to 

the master. (Miglierina, 2014) 



         Puppet has multiple characteristics that make it highly desirable. Puppet is in and of itself 

a comprehensive tool for almost every system. Though Puppet is complex due to its 

comprehensiveness, its custom declarative language makes it easier to learn and use than other 

similar tools. As one of the oldest competitors in the market, Puppet has a well-developed GUI 

compared to other tools. Additionally, Puppet has a large active community which makes it 

much easier to find specific user-made scripts. (Torberntsson & Rydin, 2014) 

         Some drawbacks of Puppet include its difficult installation and performance. The initial 

configuration of Puppet on a system can be more difficult than other tools because of its 

complexity. Additionally, while its custom language is easier to learn than traditional Ruby, it 

may be more difficult to learn than a Python-based tool. Finally, Puppet has worse performance 

than other, more lightweight tools. (Torberntsson & Rydin, 2014) 

Chef 

         Chef is a configuration management tool introduced in 2008. Chef’s master-slave 

architecture is similar to that of Puppet in terms of deployment.  Scripts are uploaded to the 

master node or server, and then deployed to the rest of the network’s nodes from there. Chef 

utilizes “cookbooks” which are Ruby scripts for configuration and deployment. The goal of these 

cookbooks is to allow users to use scripts created and field tested by other users, reducing 

development time. (Benson et al, 2016) 

         Chef’s strengths largely lie with its technical ability. Chef has the best performance of the 

configuration tools discussed in this paper (Benson et al, 2016). Chef is the most flexible of these 

tools as well, giving developers greater control over most aspects of configuration and 

deployment. The use of scripts rather than a declarative language allows users to share tested 

“cookbooks” easily. (Torberntsson & Rydin, 2014) 

         Chef’s largest weakness is that it is difficult to use. Since it only uses Ruby, Chef will be 

difficult for users without intimate knowledge of Ruby. Furthermore, since Chef uses scripts, 

users must be careful about ordering in their deployments. A declarative language, such as the 

one used by Puppet, will determine the correct deployment order for the user (Torberntsson & 

Rydin, 2014). Lastly, though Chef implements a community-based approach, its active 

community is much smaller than that of Puppet (Benson et al, 2016). 

Ansible 

         Ansible is a configuration management tool introduced in 2012. Ansible uses an 

agentless architecture, meaning it does not require an agent to be installed on nodes. In other 

architectures, agents are used by the master node or server to control the slave nodes. Instead, 

Ansible simply executes its code over SSH. (Benson et al, 2016) 

         Ansible’s unique architecture results in several unique strengths. Ansible is much simpler 

to install because agents do not need to be installed on each node. Additionally, the lack of nodes 

can reduce network traffic, as agents need to report back to the master node. Ansible offers 



greater security options because it uses SSH. Ansible also supports modules in several languages 

(Benson et al, 2016). 

         On the other hand, Ansible experiences issues with its performance and UI. Ansible has 

the worst performance of the tools discussed in this paper, especially on larger systems (Benson 

et al, 2016). Ansible is also not as simple to set up on larger systems. Both of these factors 

severely inhibit Ansible’s scalability. Ansible also has a poorly developed UI. The UI is not tied 

directly to the command line interface, which can cause delays and usability issues. 

(Torberntsson & Rydin, 2014) 

SaltStack 

         SaltStack is a configuration management tool introduced in 2011. It has a similar master-

client architecture like that of Puppet and Chef. However, SaltStack provides support for 

multiple master nodes, including masters of other master nodes. This capability creates a tiered 

hierarchy of nodes. (Benson et al, 2016) 

         SaltStack’s tiered hierarchy gives it many competitive strengths. Tiers allow users to 

configure specific groups of nodes, which results in excellent scalability. Compared to Chef and 

Ansible, SaltStack required less code to achieve the same result, meaning it is much easier to 

program for. Additionally, SaltStack experienced much better performance than Ansible and 

only moderately worse performance than Chef. (Benson et al, 2016) 

         However, SaltStack has some management level issues. SaltStack lacks proper 

monitoring tools for vast systems of tiered nodes (Benson et al, 2016). SaltStack also lacks a 

robust GUI. Though it is more lightweight, SaltStack does not have as comprehensive tools and 

solutions as more complex software, such as Puppet (Torberntsson & Rydin, 2014). 

 

2.3.4 Continuous Integration/Continuous Deployment  

Continuous Integration/Continuous Deployment tools allow for continuous integration of 

code by many developers from different machines. Continuous integration involves constantly 

and automatically pushing updates, provided they pass given test cases. When paired with 

configuration management, it is possible to keep an entire network continuously updated 

automatically. (Heller, 2017) 

Jenkins 

 Jenkins is a continuous integration tool introduced in 2005. It is widely considered the 

most popular automation server in use, with 511,446 active Jenkins nodes as of February, 2017  

(Database and Network Journal, 2017). Jenkins works with version control tools, such as git, to 

create an automated version control system. Developers can commit builds as in normal version 

control. Builds can also be scheduled to automatically commit at certain times. 



By automating this system, developers can spend less time managing their code base. 

Anecdotal evidence suggests that Jenkins is difficult to manually configure, so automation is 

recommended. Jenkins also provides developers with dashboards and other utilities with which 

to properly monitor their version control system and modify it accordingly. (Manufacturing 

Close-Up, 2016) 

 

2.3.5 Containers  

            A container uses virtualization to create an environment in a sort of package that is easily 

transferrable between different platforms (Crosman, 2015). Containers are similar to virtual 

machines in that they simulate an operating system for programs to be run on. However, 

containers have the additional benefit of being far more lightweight and less resource intensive 

than traditional virtual machines (Silver, 2017). Containers are useful for cloud development, 

and some cloud platforms, such as AWS and Azure, have native container support (Kozhayev & 

Sinnott, 2017). 

      Containers circumvent the configuration required to get traditional software to work on 

multiple environments. Each environment has many different variables that can interfere with 

software running in the exact same way. Containers eliminate these extra variables, causing a 

direct increase in reproducibility. (Silver, 2017) 

         Containers also improve development speed, particularly with cloud developers. 

Developers are not required to consider what platform they are developing an application for. 

Rather, they can develop the application for just the container and be confident that it will run on 

every system, provided the container supports those systems. One use for this ability include 

transferring applications between different clouds as required. A second use is that applications 

can be uploaded to a private, internal cloud and be developed on by any machine. This capability 

is particularly useful for developers working for organizations in which the cloud is kept private 

for security, including banks and the government. (Crosman, 2015). 

         Containers complement DevOps well in that they provide tools for both software 

development and operations work. Software developers can program and test on environments 

the same as the live server, reducing configuration issues in the future. Meanwhile, for those in 

operations, containers reduce the need to support several different systems and allow for testing 

changes in the same environment that developers will be using. (Ratan, 2017) 

         However, containers currently lack security features. Security must be decided around 

containers, not within one. Some vendors offer security add-ons to complement their containers.  

As it currently stands, security is not a reason to choose containers, but it may be in the future. 

(Crosman, 2015) 

Docker 

         Docker is a container tool developed by Docker, Inc. Docker consists of three versions: 

developer, operations, and enterprise. Docker creates an image that contains both the application 



to be contained, the developer’s environment, and a configuration file created by the developer. 

The image is then turned into an executable package which can be exported to other 

environments. From there, the executable package can simply be run on other environments. 

(Docker Inc., 2017) 

         Docker is currently the leading container tool in the industry. A survey of more than one 

thousand IT professionals revealed that 35% of respondents were currently using Docker, and 

32% had plans to implement Docker. These numbers far outmatched that of any other DevOps 

tool. (Yegulalp, 2017) 

         Docker experiences several advantages that make it a top competitor among container 

tools. Images produced by Docker tend to be small and produce virtually no additional overhead 

(Kozhayev & Sinnott, 2017). Docker requires minimal application runtime, which allows for 

faster deployment. Docker contains built in version control and supports remote repositories. 

Docker is supported among a wide variety of environments and can be easily integrated with 

other infrastructure tools, such as AWS, SaltStack, and Jenkins. (Ratan, 2017) 

         The largest weakness of Docker is its complexity. Since it attempts to integrate so many 

features, learning Docker can be a daunting task. Furthermore, configuring the Docker 

environment can be difficult for the inexperienced. If configured incorrectly, Docker may not 

work the same as the desired environment. (Ratan, 2017) 

Kubernetes 

         Kubernetes is a container orchestration tool developed by Google. Kubernetes supports 

image-based application containers, and even offers integrated support for Docker. However, 

Kubernetes also acts as a management tool for automating, deploying, and scaling containers. 

Kubernetes groups application containers into logical groups, called pods, based on application 

and resource requirements for simpler management. Each pod is assigned its own IP address that 

can be reached by any other pod. Additionally, containers in the same pod are generally 

collocated on the same physical machine. (The Kubernetes Authors, 2017) 

         Kubernetes’ management tools produce a number of enhancements to application 

containers.  By grouping containers into pods, Kubernetes makes the system easier to manage. 

Additionally, these pods improve scalability by creating groups that can be managed similarly. 

Furthermore, pods reduce resource consumption by grouping applications based on hardware 

needs. (Pahl, 2015) 

         Despite the benefits, pods have some drawbacks as well. The system loses overall 

flexibility when applications need to be collocated on the same physical machine with their data. 

Kubernetes systems also require advanced network support to run efficiently, since each pod is 

hosted at its own IP address. (Pahl, 2015) 

 



2.3.6 Code Management & Monitoring 

Git 

         Git is an open sourced, free code management tool that was created in 2005 after 

BitKeeper revoked the tool’s free to use status. The community that created the Linux kernel was 

the largest user of BitKeeper’s tool. This community reverse engineered the functionality they 

learned from BitKeeper in order to build their own system. The goals of the new system were 

speed, being fully distributed, simplicity, ability to handle larger projects (like the Linux kernel) 

efficiently, and a strong support for non-linear development (having thousands of parallel 

branches). (Chacon et al, 2014) 

         Git as a tool allows for code to be used by multiple developers locally and remotely using 

its branching and merging features. The branching model allows for frictionless context 

switching to different code bases or versions of the current code base. With the branching off of 

the main branch to create different features that may or may not go into production, role-based 

codelines can be kept so that a branch can be used solely for what is going into production. This 

minimizes broken code from accidentally being deployed into the working production 

environment. The branching also allows for experimentation because local branches based on the 

remote branch can be created and deleted without harming the remote branch. (Chacon et al, 

2014) 

         Git allows for multiple local branches to be created by the same or different developers 

from the same shared remote repository. These remote repositories allow for backups to be 

created and for different types of workflows to be implemented. With each developer having the 

ability to create and push local branches, Git captures the time and developer who makes any 

type of event, be that a commit, a push, or a merge. This allows for backtracking if a feature goes 

missing, or needs to be removed from a master branch that is going to go live into production. 

(Chacon et al, 2014) 

         Git has a staging area that gives developers a space to check over their commit files and 

add an optional commit message before completing the commit. This area also allows for the 

staging of selected files of a project, and only files that have been modified. (Chacon et al, 2014)  

Artifactory 

 Artifactory is a version control tool for binary artifacts, such as Jar and War files. Files 

may also be stored in Artifactory as a way of allowing other project teams to use the files across 

companies with minimal cross-team interactions. Artifactory allows for the storage of files that 

have already been tested so that other teams can use without having to incorporate testing efforts 

for that service. Jenkins can be connected so that when a clean build is made, the metadata for 

the builds are automatically integrated into the file being built. (Ford, 2014) 

 Artifactory supports projects from many different tools, such as DevOps tools (Puppet, 

Chef, etc.) and various programming languages (Ruby, Java, Python, etc.). The tool also 



connects to remote repositories so that developers and DevOps teams do not have to search and 

download copies of configuration services to their local machine. (JFrog, 2017). 

 

2.3.7 Microservices 

Spring Boot 

         Spring Boot is a framework added to the Java programming language. The framework 

can currently be installed into the Eclipse IDE for Java, or can be downloaded in an IDE that 

mirrors Eclipse called Spring Tool Suite. The framework  allows for easily importing other 

projects, and includes libraries for connecting to AWS and the Netflix cloud platform (Hikari, 

Eureka, etc.) for cloud hosting. Spring Boot has APIs for most development needs, so minimal 

coding is needed to create new microservices, thus minimizing time to create and debug lengthy 

code bases. (Pivotal Software, 2017) 

Spring Cloud 

 Spring Cloud is a project that was created using Spring Boot that helps connect projects 

to a cloud platform. The project has several branches that developers have created for Pivotal 

Software. The different branches help to connect to different cloud platforms. Some supported 

platforms include Netflix OOS, Cloud Foundry, and AWS.  

 Other components to the project include different frameworks built for the many facets of 

the developing community. Spring Cloud includes libraries and APIs for building projects for 

business contracts, projects that connect to external servers, and many more. (Pivotal Software, 

2017). 

Maven 

         Maven is an Apache project that helps with the compiling of code. It is a project 

management software and comprehension tool. The software is based on the project object 

model (POM). Maven manages a project’s build, reporting, and documentation from one central 

piece of information, known as the POM file, using XML. 

         Maven includes a framework for best practices for setting up projects to make them 

easier to start. The software also works with multiple projects at once, allowing multiple 

microservices to be run in parallel without issue. Maven allows for plug-ins to be implemented in 

one location for the all files of a project to use. This feature decreases bugs due to forgetting to 

implement an API in one file. (Apache Software Foundation, 2017) 

Gradle 

 Gradle is an open-sourced project that helps with the building of code. It is a project 

management software and comprehension tool. The software is built upon both the Apache Ant 

and Apache Maven projects. The documentation for build configurations for Gradle use a 



Groovy-based domain-specific language. Gradle has an internal set of APIs and plugins that 

allow developers to implement code and build quickly. Gradle has the capacity to be used by 

mono and multi repository projects, and was built to scale for large projects. (Gradle Inc., 2017) 

 

2.3.8 Languages 

Python 

         First released in 1991, Python has since had two updates to modernize the language to 

keep up with new technologies. Python is an interpreted language, making it easy to read, 

understand, and write (Python Software Foundation, 2017). According to the Python Software 

Foundation, as of 2017, Python is used by upwards of tens of thousands of users. Python is a 

universal programming language that is currently being supported by the top three cloud 

provider platforms mentioned in Section 2.3.1 Frameworks/Platforms.  

Java 

         Having been around since 1995, Java is one of the most used programming languages in 

cloud computing. The top three cloud platform providers, mentioned in Section 2.3.1 

Frameworks/Platforms, support Java for building programs and deploying using their services. 

Java 8 was upgraded to fit the cloud, allowing programs to fit wide-scale cloud deployment. The 

upgrades that support cloud development were multitenancy, the ability to run multiple 

applications on the JVM safely, and modularity, allowing for the JDK to be reorganized to be 

cleanly defined into interdependent modules. (SyndiGate Media Inc., 2011) 

         Java will have some drawbacks and advantages depending on which service model, see 

Section 2.1.2 Service Models, the developers will be deploying in. Using Java for IaaS, the cloud 

can make deployment and testing easier for developers due to the built –in services that the cloud 

providers may have. For PaaS, the developer does not need to worry about physical or virtual 

machines, the application server platform, and the database systems. The platform provider is 

now supplying and in control of these resources. Using PaaS, the developer does have to plan the 

deployment platform out because there is no standard similar to Java EE currently. Development 

has to be done using the API/SDK provided by the platform vendor. (Panda, 2011) 

         For SaaS, developers no longer need to handle code management or continuous 

integration services in-house, because the provider handles those services. For all three service 

models, the writing of code remains the same. Deployment and testing change depending on 

service model. In the cases of IaaS and SaaS, deployment and testing are easier, but in PaaS, a 

small amount of accommodation is required. (Panda, 2011) 

Ruby 

         Released in 1995, Ruby is a scripting language that is also a powerful object-oriented 

programming language (“About Ruby”, 2017). Only one of the top three cloud platform 



providers, Google Cloud, currently supports Ruby. Developers building cloud applications 

cannot program in Ruby easily due to the lack of support by the providers. However, many cloud 

DevOps tools are written and maintained mostly using Ruby. These DevOps tools are discussed 

further in Section 2.3.3 Configuration Management. 

 

Node.js 

         Node.js was created in 2009 and is a version of JavaScript that is used primarily for 

creating web servers. Node.js is an event-driven language that works well with the event-driven 

triggers used in serverless cloud computing platforms (Node.js Foundation, 2017). All three of 

the top cloud platform providers mentioned in Section 2.3.1 Frameworks/Platformshave Node.js 

as the only scripting language being supported. 

Go 

         Go is a programming language that had its first stable release in August of 2017, but first 

appeared in 2009. The language is a compiled, statically typed language modeled after C. The 

language includes limited structural typing, garbage collection, and has features for both memory 

safety and concurrent programming. (Golang Blog, 2017) 

         Go was written expressly for the cloud by incorporating useful features of several popular 

programming languages. Go developers also considered the failures of the different languages, 

especially in regards to cloud computing. The most improved upon feature is the ability to 

program concurrent processes more easily than before. According to Rob Pike, one of Go’s 

designers, Go will be easier to read, write, maintain, and understand. (Asay, 2014) 

Bootstrap 

 Bootstrap is a front-end development framework that can be used with HTML, CSS, and 

JavaScript. Bootstrap was created in 2011 as a project by Matt Otto and Jacob Thornton as a way 

of creating web and mobile applications that looked professional and were consistent across the 

industry. Bootstrap provides various API’s that help developers improve the visual elements of a 

webpage. The fourth version of Bootstrap released in 2017, with new features added to the 

framework. The code is open source and the code is licensed under the MIT license. (Github 

Inc., 2017). 

 

2.4 Industry Initiatives  

  In the past several years, companies have been embracing the cloud computing world. 

The companies vary greatly across all industries, and seem to vary in what they use the cloud for 

as well. While there are some big name companies backing cloud computing, some industries are 

not satisfied with their service. 



         Ford Motor Company jumped in to using Cloud Computing in their hybrid cars in 2011. 

For uses cloud technology enhance efficiency in three main areas of vehicle performance: 

intelligent operation, intelligent routing, and intelligent driving. The technology is used to detect 

driver behaviors to optimize the control systems of the vehicle and improve fuel or hybrid-

electric efficiency. In the hybrid version of the Ford Escape, cloud technology is used to detect 

lower emissions zones and switch the car over to all-electric power. (Spiegel, 2011) 

         In early 2015, Walmart moved all of their e-commerce operation on the cloud using 

OpenStack. This move included more than 100,000 cores and several petabytes of storage. 

Walmart’s senior director of cloud operations and engineering, Amandeep Singh Juneja, stated 

that Walmart was due for a technology upgrade to their e-commerce platform. The previous 

platform was a legacy Art Technology Group (ATG) solution on top of a scale-up production 

infrastructure. Juneja supports OpenStack because the technology is mature enough to use at 

such a large scale in production. (Knorr, 2015) 

         The online television streaming service Hulu has decided to move to the cloud. The 

company decided to use Amazon Web Services as their cloud provider. The main reasons Hulu 

chose AWS are that they wanted an agile, scalable, and cost effective infrastructure to support 

the addition of at least 50 more channels that users can stream live starting in May 2017. 

(Entertainment Close-up, 2017) 

         As of May 2016, the United States House of Representatives has been banned from using 

any Google Cloud applications hosted on appspot.com due to an increase in phishing scams. 

Early May 2016, two individuals had fallen victim to phishing scams that were sent via word 

document email attachments. Reuters reported on the ban a week after the incidents occurred, 

and included the ban on Yahoo mail that occurred in 2015. The only reason, reported by Reuters, 

is that the FBI warned about an increase in viruses from these cloud platforms. There was no 

report on if other cloud platforms were also warned against. (Volz, 2016) 

 

2.5 Cyber Security and the Cloud  

Cloud computing brings about a new threat to security of not only data, but also devices, 

and money. When looking into cloud computing, the type of data users will be working with and 

possibly storing can impact the cloud provider they use and if they even move to the cloud. 

Although security is important, it was not the focus of this project. Thus, security is only covered 

briefly. 

 In 2013, KLAS research group surveyed several healthcare companies to see how they 

rated using cloud technology in their workplace. Users of the cloud rated on average 4.5 out of 5 

on security using off-site IT services. On the other hand, 66% of non-cloud users were wary of 

security, ranking it their greatest concern with cloud technology. (Health and Management 

Technology, 2013) 



The company Microchip, in 2016, created an end-to-end solution that will allow Internet 

of Things (IoT) devices to easily set up connections to Amazon Web Services’ cloud platform. 

The process of connecting to AWS using an IoT device is long and can be complicated for some 

manufacturers. The multi-step process to set up devices with the security encryption is needed to 

comply with the advanced security model. The process is simplified by soldering Microchip’s 

service onto the IoT device. (Electronics For You, 2016) 

Before Microchip’s product, or without, the manufacturer must pre-register their security 

authority with AWS servers to establish a trust model. Then for each IoT they must generate a 

unique encryption key that are linked to the pre-registered security authority. The unique key 

must be kept a secret for the life of the device, or risk the device being compromised which can 

lead to all devices being compromised. Microchip’s solution handles the whole process during 

production. The customer meets the security standard set by AWS authentication model and 

connect to the AWS IoT platform easily. Both of these happen during the evaluation and 

engineering phase of the device. During the prototyping phase, Microchip’s device helps with 

meeting the security standards. Lastly, the devices are customized for production; this will 

ensure that customer information will be secure. (Electronics For You, 2016) 

  



 

3. Methodology 

The goal of our project is to create a robust training structure for full stack cloud 

developers. To achieve this goal, we executed the following process: 

 

1. Evaluate Current Cloud Development Positions 

2. Identify Initiatives by Leading Companies 

3. Research Cloud Technology 

4. Research Cyber Security 

5. Build an Image Classification Service 

3.1 Evaluate Current Cloud Development Positions 

We will interview career development professionals to gain insight into best practices for 

clear and concise job searches. Then, we will incorporate their advice in order to select the best 

websites for our job search. We will then take industry keywords found from our background 

research to search for cloud computing positions in the Boston area. As a tech center, Boston will 

provide us with a large enough sample size while still allowing us to narrow the scope of our 

project. Using this sample size, we will collect the most common technical skills listed in the 

requirements section of these job postings. Jobs not directly related to cloud computing, such as 

marketing jobs, were excluded. Technologies not related to cloud computing, such as 

networking, were excluded. 

            Additionally, we will attend the WPI Fall Career Fair and speak with hiring managers 

there. From these interviews, we will be able to discern an expert opinion on the requirements of 

cloud development. These managers will provide us with additional detail not available with just 

job postings. We will ask each manager the same set of questions to provide us with consistent 

data. For the full list of questions please see Appendix A. 

3.2 Identify Initiatives by Leading Companies  

 Our second objective is to research the projects performed by leading companies in cloud 

computing. We will search databases to find articles. We will also look at company newsletters, 

announcements, and blogs. From these projects, we will gain a better understanding of the 

direction the industry is trending towards. Additionally, this research will help us understand the 

type of work that students could expect once they graduate. 

3.3 Research Cloud Technology 

As a team, we will research the current and potential future of cloud technologies. 

Research into these areas will allow us to provide a clear understanding of what a full stack 

cloud developer will be doing in the workplace. The types of technologies we will research will 



include, but not be limited to, microservices, databases, code management, languages, and 

frameworks. We will focus on how cloud computing causes potential change to currently 

established technologies. 

Using database searches, our research materials will include Trade Journals, academic 

papers, news articles and reports from companies, and online forums for the different 

technologies. These methods of media and information will house the most up to date 

information for this rapidly growing facet of technology. 

3.4 Research Cyber Security  

Lastly, our research will involve how cloud computing changes how we as a society view 

cyber-security. We will search databases to find academic papers regarding cyber-security 

currently interacts with the cloud, and potential changes to the future of cyber-security in cloud 

computing.. These resources will also be paired with how the future of cyber-security is currently 

being adapted to account for a large influx of data and other personal information being stored 

the cloud. 

3.5 Cloud Application Reference Model 

In this section we present the reference model we used to implement the proof of concept project 

in Section 3.6 Image Classification Service. Each tier contains a technology or method that we have 

determined to be necessary for building a cloud-based application. The tiers are in descending order of 

importance relative to cloud computing. In each tier, we present why it is necessary for cloud computing, 

any dependencies on other tiers, and some of the choices available that were previously discussed in this 

paper.  

We discuss our choices further in Section 3.6.2 Implementation. We discuss dependencies of 

specific technologies further in Section 5. Discussion of this paper. 

 

Platform: Platforms form the base of a cloud-based application and determine several choices 

for other tiers. Choices: AWS, Azure, Google Cloud 

Database: Cloud-based applications often have intensive technical specifications since they 

often work with vast volumes of data. A database that fits these specifications is necessary for 

good performance. Certain platforms have native support for databases which makes them 

easier to implement on those platforms. Choices: Key-Value store, Document store, Column 

store, Graph store, relational 

Configuration Management:It is too difficult to manage the large systems used in cloud 

computing without DevOps tools.  At least one configuration management tool should be used. 

Choices include Puppet, Chef, Ansible, and SaltStack and are platform independent. 

Continuous Integration/Continuous Deployment: Continuous integration tools can help 

large teams manage their code automatically. One option for this is Jenkins. 



Container: Containers allow for easy transfer of applications between cloud environments. 

Most container tools, such as Docker and Kubernetes, are supported on the three platforms 

mentioned.  

Code Management: Developers need a standardized method of code management to 

successfully maintain a codebase. Code management tools exist largely independent of other 

technologies. The methodology of code management is more important than any specific 

technology.  

Microservices: Implementing a microservice model improves application development, though 

it is not cloud specific. The three cloud platforms include API gateways that facilitate the 

implementation of microservices. In order to implement microservices without using a 

platform’s native API gateway, a third party software, such as Spring Cloud, is required.  

Programming Language: The language(s) used depend on which languages are supported by 

the platform chosen. If implementing a microservice model of development, each module can 

be programmed in a different language, making the choice a personal preference for the 

developer.  

Figure 3.1. Reference Model for Cloud Application. 

3.6 Image Classification Service 

 We will be implementing cloud technologies to create an image classification service as a 

proof of concept project for our training manual. The end program will have a system for 

classification of images, be able to upload images for classification, and be able to search for 

already classified images. The application will have two types of admin accesses, one for the 

company and the other for moderators. The company will have the opportunity to monitor the 

user activity of the application and be able to have a reward system for users that classify images. 

The moderator will have the permission to block and allow images and ban users that violate the 

expected uses for the application.  

3.6.1 Use Cases 

 We identified three types of personas for use cases for our application. They are end 

users, moderators, and the company. 

End Users 

 

E1. As an end user of the image classification system, I want to be able to search for images 

by keywords with results organized by relevance to the keywords, so that I may find 

images related to what I want in a short time frame. 

E2. As an end user of the image classification system, I want to be able to upload images to 

the cloud to be able to access them later, so that I can view the images on any device. 



E3. As an end user of the image classification system, I want to be able to classify images 

that have been uploaded by adding keywords, so that I can earn rewards given by the 

company. 

E4. As an end user of the image classification system, I want to be able to have images be 

able to be classified as the same keyword more than once, so that the image will have a 

better chance of being in the search results for that keyword. 

E5. As an end user of the image classification system, I want to be able to have a personal 

account to log into, so that I can track my uploaded images and points for classifying 

images all in one place.  

Moderators 

 

M1. As a moderator of the image classification system, I want to be able to block images 

that are not allowed, so that end users may have a clean and enjoyable experience. 

M2. As a moderator of the image classification system, I want to be able to allow images 

that are not banned, so that end users may get their images classified. 

M3. As a moderator of the image classification system, I want to be able to ban users that 

intentionally classify images incorrectly, so that end users using the application 

correctly 

may get their images classified properly. 

M4. As a moderator of the image classification system, I want to be able to ban users that 

intentionally classify images incorrectly, so that the search results do not return 

incorrect images. 

M5. As a moderator of the image classification system, I want 

to be able to ban end users that violate the acceptable images guidelines, so 

that end users using the application properly do not have to see unacceptable 

images in the classification system and search results. 

The Company 

 

C1. As the company that owns the image classification system, I want to be able to provide 

end users that classify images or upload images with a reward system, so that the end 

users will feel appreciated and continue to use the service. 

C2. As the company that owns the image classification system, I want to be able to monitor 

the end users’ use of the application, so that I can see if the service is worth the business 

investment. 

C3. As the company that owns the image classification system, I want to be able to monitor 

the end users’ use of the application, so that I can modify the cloud service to keep up 

with demands for the different aspects of the application when needed. 



3.6.2 Implementation 

 In the following section, we discuss which cloud computing technologies we chose to 

implement to create the image classification system, based on the research explained in Section 

2.3 Cloud Technologies. These choices were made in accordance with our reference model in 

Section 3.5 Cloud Application Reference Model. Each decision was made taking into account the 

current WPI teaching format for Computer Science Majors and the current trends in cloud 

computing technologies. We discuss the implications of selecting different technologies within 

each group in Section 5. Discussion of this paper. 

 For this project, we used a website hosted on AWS’ S3 service. We chose a website as 

the simplest way to present a front-facing UI that could be connected to the various services we 

intended to use. This decision is largely trivial and there are many alternatives that still follow 

our reference model. 

 

Platform 

 We used AWS as the cloud platform provider. Most job applications we researched listed 

AWS as a skill they were looking for in the candidates. AWS also allows students to use their 

Educate tier, which supplies a free credit code to be able to use features that are not free. 

Additionally, AWS provides most of its services for free under certain storage and computation 

constraints through the free tier. AWS supports the most variety of programming languages, 

giving students more options to program in. AWS has a large selection of integrated utilities 

including user management, API creation, monitoring tools, and more. These utilities allow 

students to gain a wider range of experience than other platforms. 

 The other options that we decided to not use were Microsoft Azure and Google Cloud 

Platform. Most job listings preferred AWS over both of these options. Both platforms support 

Java and other languages, but are not as many as AWS. Both platforms also do not offer a 

student version for learning and academic purposes meaning that students would have to pay out 

of pocket from the start using these platforms. 

Database 

We decided to use NoSQL as it is more scalable than SQL. The database we used was 

DynamoDB because it has built in support for AWS and cloud computing, making it easier to 

connect our project to the database. DynamoDB supports both key-value store and document 

store models. Key-value store databases are vertically scalable and simplest to implement.  

Configuration Management 

 For automation and configuration management, we decided to use Puppet. Puppet’s 

robustness means it is better at management than any other single DevOps tool. Additionally, we 

decided that the Puppet command language would be easier to learn than some of the other tools. 

However, implementing Puppet is a stretch goal for our project, as it will not have the most 

meaningful impact on a two person team.  



Continuous Integration/Continuous Deployment 

 While the most used tool for continuous integration has been Jenkins, this tool is most 

helpful for larger teams that have many developers committing code and making builts to 

deploy. Since we are a team of two students, this tool is not within the scope of our project and 

thus we will not be using a continuous integration tool. 

Container 

We chose to use Docker for the container tool. Docker is supported by AWS making it 

easier to incorporate into the project. Kubernetes is also supported by AWS, but with the small 

scale of our project we decided that the functionality of moving containers around different 

systems in a network is not within the scope of our project. We did not find any competitor 

container tools that we needed to choose between. 

Code Management 

We decided to use Git as our code management system. Most WPI classes mention 

GitHub and using Git for repositories, so this coincides with WPI teachings. We used BitBucket 

for our private repository hosting platform and Sourcetree as the UI. We made our own branches 

from our master branch and merged into that for end-to-end testing. We also had a release branch 

that held only code that had been through end-to-end testing and passed that would go into our 

production environment. 

Microservices 

We decided that using the microservices framework was best for our project so that we 

could build different components of the project and unit test without having to build the whole 

system. Microservices are also easy to implement using the AWS API Gateway. 

Languages 

 We decided to use AWS as our platform, as noted above. Within this platform there are 

several services that require specific languages. AWS Lambda and the AWS API Gateway 

services have been easiest to use Python and JavaScript for the Lambda function creation. 

Additionally, we used JavaScript for the connections between the website and the API Gateway. 

CSS and HTML were used for the development of the website. 

  



4. Results 

4.1 Overview 

We collected data on job listings using CareerShift, which pulls job postings from the 

internet based on keywords and filters. These sources include popular job boards as well as 

company websites. The below graphs show our data for the frequency of technologies and skills 

listed in our relational model in Section 3.5 Cloud Application Reference Model. Our sample size 

of job listings was 67. 

 

 

Figure 4.1. Bar graph of technologies listed in job postings. 

 Figure 4.1 shows the distribution of the technology categories previously mentioned in 

Section 2.3 Cloud Technologies. 67 job postings (97% of total) requested Platform skills. 49 job 

postings (73% of total) requested programming language skills. 27 job postings (40% of total) 

requested skills using DevOps tools. 20 job postings (30% of total) requested NoSQL database 

skills. 18 job postings (27% of total) requested relational (“traditional”) SQL skills. 17 job 

postings (25% of total) requested skills using containers. 13 job postings (19% of total) requested 

knowledge of microservice methodology. 12 job postings (18% of total) requested source control 

skills. 



 

Figure 4.2. Job Titles in Job Postings 

 When searching for cloud computing jobs, we took note of what titles the companies 

were supplying for the keyword “cloud computing”. Figure 4.2 displays the breakdown of 

position names seen then within those titles how many years of experience the job posting 

required. As seen above, the three most common job titles seen were Software Engineer, Cloud 

Engineer, and Cloud Architect, with the years of experience varying. Software Engineer was 

seen 18 times (26%), Cloud Engineer was seen 10 times (15%), and Cloud Architect was seen 8 

times (12%). 



4.2 Platforms 

 

Figure 4.3. Cloud Platforms in Job Postings 

 Figure 4.3 displays the frequency that the cloud platforms were requested by job 

postings. 65 job postings (97% of total) requested any platform type. Of these postings, the 

different platforms were requested differently. AWS was requested 61 times (94%), Azure was 

requested 23 times (35%), Google Cloud was requested 16 times (25%), and Hadoop was 

requested 13 times (20%). 

4.3 Databases 

For the results of the database research, we broke the technology down into the types of 

databases found, NoSQL and Relational (sometimes referred to as “traditional” SQL). This was 

done to be able to focus on the specific subsections of the two types of databases when looking 

through the job postings. These include the overall type, such as NoSQL or SQL, and specific 

database programs, such as MongoDB or PostgreSQL. 

Table 4.1. Types of Databases, NoSQL and Relational. 

 Key-Value 

Store 

Document-Store Column Store Graph Store Relational 

Pros -Vertical 

scalability 

-Simple 

-Good search 

capability 

-Horizontal 

scalability 

 

-Fast network 

search 

-Public linked 

-ACID 



data sets 

Cons -Queries for 

specific data 

values 

-Relationships 

between data 

values 

-Multiple 

unique keys 

-Complex 

multiple operation 

transactions 

-Difficult to 

design and 

implement 

-Incompatible 

with SQL 

-Complex 

querying 

-Querying 

patterns change 

frequently 

-Lack of 

relationships 

between data 

-Poor scalability 

with large graphs 

-Specialized 

query languages 

-Poor scalability 

Use cases -User session 

data 

-User profiles 

-User 

preferences 

-Shopping cart 

data 

-E-commerce 

-Content 

management  

-Analytics  

-Blogging 

-Content 

Management 

-Blogging 

-Counters 

-Services that 

expire 

-Heavy write 

requests 

-Fraud detection 

-Graph based 

search 

-IT operations 

-Social networks 

 

Examples -DynamoDB 

-Redis 

-MemcacheDB 

-Riak 

-DynamoDB 

-MongoDB 

-CouchDB 

-Elasticsearch 

-Cassandra 

-Hadoop Hbase 

-Neo4j 

-ArangoDB 

-OrientDB 

-PostgreSQL 

-MySQL 

 

Table 4.1 displays the different types of databases listed in Section 2.3.2 Databaseswith the pros 

and cons of each type, use cases currently used by each type of database, and examples of each 

type that are currently used. These pros and cons helped the team decide which type of database 

we would use if we needed one within the scope of our project. (Vishwakarma, 2017) & 

(McCreary, 2014). 

 



 

Figure 4.4. NoSQL in Job Postings. 

 Figure 4.4 displays the amount of job postings that requested NoSQL as a skill along with 

any specific NoSQL database programs. NoSQL as a whole was requested 20 times (30% of 

total). Within those job postings, MongoDB and DynamoDB were both requested 3 times (15%), 

Cassandra was requested 4 times (20%), and HBase and BigTable were both requested 1 time 

(5%), Redis was requested 2 times (10%). 

  

 



 

Figure 4.5. Relational SQL in Job Postings. 

 Figure 4.5 displays the amount of job postings that asked for relational SQL 

(“traditional”) and relational SQL specific database programs. Relational SQL as a whole were 

requested 18 times (27% of total). Within these postings, PostgreSQL was requested 4 times 

(22%). 

4.4 DevOps 

Table 4.2. Types of DevOps Tools. 

 Puppet Chef Ansible SaltStack 

Pros -Well developed web 

UI 

-Easier to use than 

pure Ruby 

-Large 

community/Good 

documentation  

-Comprehensive, even 

for complex systems 

-Great performance 

-Flexible 

-Users can share 

scripts easily 

-Supports modules in 

several languages 

-Higher security 

-Simple installation 

-Lightweight 

-Python based 

-Fewer lines of code 

(easy to use) 

-Good performance 

-Good tools for 

targeting updates to 

specific nodes 

-High scalability with 

tiered master nodes 

-Lightweight 



Cons -Must learn Ruby or 

Ruby-based command 

language 

-Difficult installation 

-Worse performance 

-Must learn Ruby 

-Difficult to use 

-Worst performance 

-Less robust web UI 

-Scalability issues 

-Lack of monitoring 

capabilities 

-Less robust web UI 

Use Cases -Developers -Performance 

-Developers 

-Lack of tiered 

architecture desired 

-Sys admins 

-Simplicity 

-Sys admins 

 

Table 4.2 displays the four most requested configuration management tools according to our job 

posting research. The table includes pros and cons along with use cases for each tool.  

 

 

Figure 4.6. DevOps in Job Postings. 

 Figure 4.6 depicts the number of times the overall DevOps keyword and the most 

requested DevOps tools were found in our job posting search. DevOps as a whole was requested 

27 times (40% of total). Out of those postings, the configuration management tools that were 

requested were: Chef, Ansible, Puppet, and SaltStack. Chef was requested 15 times (55%), 

Ansible was requested 11 times (41%), Puppet was requested 17 times (63%), and SaltStack was 

requested 2 times (7%). Jenkins was the only continuous integration tool that was requested with 

a total of 8 jobs (30%) listing it as a skill. 



4.5 Containers 

 

Figure 4.7. Containers in Job Postings. 

 Figure 4.7 depicts the number of times containers overall and specific container tools 

were mentioned in the job postings we researched. Containers overall were requested 17 times 

(25% of total). Of these job postings Kubernetes was requested 6 times (35%) and Docker was 

requested 12 times (70%). 



4.6 Code Management 

 

Figure 4.8. Code Management in Job Postings. 

 Figure 4.8 depicts the amount of requests for code management skills in job postings. 12 

job postings (18% of total) requested code management skills. Of these postings, 11 (92%) 

requested knowledge of Git.  



4.7 Microservices 

 

Figure 4.9. Microservices in Job Postings. 

 Figure 4.9 shows the frequency of microservices and microservice specific tools and 

frameworks in job postings. Microservices were requested 13 times (19% of total). Within these 

job postings Spring Cloud and Maven were both requested 4 times (31%). 



4.8 Programming Languages 

 

Figure 4.9. Programming Languages in Job Postings. 

 Figure 4.9 depicts the languages requested from job postings. Languages overall were 

requested 49 times (73%). Within these job postings languages were requested at different 

frequencies. Python was requested 28 times (57%), Java was requested 24 times (49%), Ruby 

was requested 15 times (30%), Node.js was requested 11 times (22%), C++ was requested 9 

times (18%) and Go was requested 8 times (16%).  

4.9 Security 

In a 2014 comparative study, different methods of encryption for the cloud were 

compared to see which covered the most known security issues. The following table is 

reproduced based on the table in the study. 

 

Table 4.3. Comparison Techniques of Existing Encryption Algorithms (Hemalatha et al, 2014) 

Author Techniques 

Used 

Description Concepts Used Security 

Applied On 

Issues 

Addressed 



Padmapriya et al Inverse Caesar 

Cipher 

Classical 

Substitution 

Cipher Same 

key used for 

encryption and 

decryption 

ASCII full 

characters (256 

characters) 

Cloud 

customer and 

cloud 

provider side 

Data security 

and privacy 

Sastry et al Playfair Cipher Classical 

substitution 

cipher. Same 

key used for 

encryption and 

decryption 

5x5 matrix and 

alphabetic 

characters used 

Cloud 

customer and 

cloud 

provider 

Data security 

and privacy 

Maha et al Fully 

Homomorphic 

Encryption 

The private key 

is used for 

Encryption 

(without 

decryption) 

Cryptosystem 

based on fully 

homomorphic 

encryption 

Cloud 

provider side 

only 

Data security 

Huda et al Fully 

Homomorphic 

Encryption 

The private key 

is used for 

encryption 

(without 

decryption) 

Electronic health 

records classify 

based on PI 

(personally 

identifiable 

information) 

Cloud 

customer and 

cloud 

provider side 

Data 

confidentialit

y, 

authentication

, availability, 

and integrity 

Sugumaran et al Block based 

Symmetric 

Cryptography 

Symmetric layer 

inserted for 

encrypting the 

secure data 

using a 

symmetric 

algorithm 

The private key 

concept is used 

between sender 

and receiver 

Cloud 

customer side 

Data security 

and privacy 



Monikandan et al Classical 

Encryption 

Both 

Substitution and 

Transposition. 

Same key used 

for both 

encryption and 

decryption 

Plain text is 

converted to 

ASCII code 

value, key range 

between 1 to 256 

Customer’s 

side only 

Data security 

and privacy 

Neha Jain et al DES 

Algorithm 

The same key is 

used for 

Encryption and 

Decryption 

Cipher Block 

chaining mode 

Both cloud 

customer and 

cloud 

provider 

Data security 

 

Table 4.3 displays the different implementations of encryption that can be used to 

increase the effectiveness of cloud security. With each different type of encryption, there can be 

multiple aspects of the cloud industry that can be impacted, depending on the type of security 

that needed the increase in effectiveness. Security can be tightened on both the consumer and the 

provider’s sides of the cloud, and can tighten just one, or many aspects of the security in the 

specific cloud instance. 

4.10 Company Uses of Cloud Technologies 

 The list below depicts the results from meetings with Cloud professionals. All the 

personal identifiers of companies that the professionals interviewed work for have been removed 

to keep the identities of the individuals interviewed private. We conducted meetings and 

interviews with industry professionals to gain insight into what companies that deploy onto the 

cloud or create the cloud platforms use in their workplace. 

 

Cloud Manager, Develops Private In-House Cloud 

1. How does the cloud impact your company? 

a. The cloud empowers Development teams to deliver code for projects on a timely 

manner. 

b. Without the infrastructure, setup teams can deliver projects at least 6 weeks ahead 

of when it would have been delivered before the cloud. 

c. The elasticity of the cloud allows peak seasons to use more resources without 

having to pay for them for the entire year like before the cloud. 

2. What kinds of cloud technology does your company use? 



a. Kubernetes, for CI/CD: Jenkins. Artifactory for binary artifacts, Hashicorp, 

Packer, Terraform, Team Management: Confluence, JIRA, BitBucket (code 

management), Puppet in private cloud. 

3. What skills are you looking for with regards to cloud computing jobs only? 

a. Out of workforce: broad infrastructure background: networks, Linux, security 

b. Out of school: Development background. 

4. Any skills that you recommend students work on? 

a. Cloud platform tutorials and books, a student that has worked for six months on 

tutorials for cloud platforms is worth more than a 15 year developer that has no 

cloud platform experience. 

DevOps Engineers, Develops Cloud Security Software 

1. How does the cloud impact your company? 

a. The cloud is what the company builds software to protect. Without the cloud they 

have nothing to protect. 

2. What kinds of cloud technology does your company use? 

a. AWS Cloud formation, Troposphere (Python), Terraform. CI/CD: Jenkins, 

Teamcity, Artifactory, codepipeline AWS, Spinnaker, AWS Code Deploy, 

SaltStack, Chef, Puppet, Ansible, Docker, Kubernetes, Gitlab, Git. 

3. What skills are you looking for with regards to cloud computing jobs only? 

a. Moving fast, using code auto-deployment. Develop on feature branches. Feature 

flags (on/off feature switch), unit testing, but automated code and UI testing. 

DevOps Engineer, Develops Cloud Security Software 

1. What kinds of project would you suggest having students do to learn cloud 

technologies? 

a. Find a quick project that can get an application hosted easily. Put code on Github, 

use runners to connect and launch the application using Heroku. 

b. Also, have students try to implement new features with little downtime to a 

running Cloud application. Most end-user products have a 1% downtime that can 

be used for introducing new features. Giving students a chance to work on a 

project like that would be helpful. 

2. How did you learn cloud computing technologies? 

a. AWS on the job, then learned more and more from there. 

 



 

Figure 4.10. Technology Results from Industry Professionals from the WPI Fall 2017 Career 

Fair. 

 Figure 4.10 depicts the technologies companies that attended the WPI Fall 2017 Career 

Fair use in their development of cloud computing applications. Out of the 21 companies we 

surveyed during the career fair (10% of total), the following results were given with limited 

prompting for technologies. AWS was reported to be used by 15 companies (71%). Docker and 

Jenkins were reported by 11 companies (52%). Eight companies (38%) reported that the 

technologies depended on the project or team members. Jira, Puppet, Artifactory were reported 

by 4 companies (19%). Confluence, Bitbucket, Azure, and Kubernetes were reported being used 

by 3 companies (14%). Mesos, Ansible, Packer, and PostgreSQL were reported to be used by 2 

companies (9%). Google Cloud Platform, Redhat, SSH, Marathon, Kafka, rabbitMQ, MongoDB 

were all reported being used by 1 company (5%). 

 



 

Figure 4.11. Skillset Results from Industry Professionals from the WPI Fall 2017 Career Fair. 

 Figure 4.11 depicts the skillsets reported by Industry Professionals from the companies 

we surveyed at the WPI Fall 2017 Career Fair. Out of the 21 companies we surveyed (10% of 

total) the following were skillsets supplied by the industry professionals with little to no 

prompting. Knowledge of Git was reported by 10 companies (47%). Knowledge of Java was 

reported by 8 companies (38%). C/C#/C++ were reported 5 times by companies (24%). Python 

was reported by 4 companies (19%). Spring methodologies, and Gradle knowledge were 

reported by 3 companies (14%). Microservices methodologies, version control, REST 

methodologies, and Maven knowledge were reported by 2 companies (10%). Provisioning of 

cloud resources, deploying to cloud, concurrency, Django, Angular, SOAP, JS, and Groovy were 

all reported by 1 company (5%). 

 

  



5. Discussion 

In this chapter, we draw conclusions and recommend technologies. These 

recommendations are based on research (Section 2. Background), personal implementation 

(Section 3. Methodology), and gathered data (Section 4. Results). We then discuss limitations of 

the project. 

5.1 Technology Recommendations 

 In this section we consider the impacts of selecting a technology from each category of 

our reference model. Ultimately, we provide our recommendations for which technology to 

choose for particular use cases. The specific tools discussed are accurate as of October, 2017. 

Though the tools may change, we believe that the underlying concepts will continue to be highly 

valuable in the future. In this section, “the team” refers to a theoretical software engineering 

team that wants to implement these technologies. 

5.1.1 Platforms 

The top platforms are Amazon Web Services (AWS), Microsoft Azure (Azure), and 

Google Cloud Platform (GCP). While all three were mentioned by companies, AWS showed up 

far more than Azure and GCP. Based on these results and research, the cloud computing industry 

appears to be trending towards AWS. The Hadoop framework showed up mainly when 

researching job postings. Hadoop can be integrated into most platforms as a way to parse big 

data in and out of the platforms.  

 Amazon Web Services provides superior free services given to students doing academic 

work. The free tier itself gives access to many of the services that students would need to 

implement a basic cloud application for free. AWS’s free tier is also good for 12 months, with 

each month starting a new billing period that resets all amounts used back to zero. As of 

September 2017, WPI partners with AWS’s Educate tier that gives students from WPI $100 

worth of credit along with more free tutorials than the free tier provides. One free tier account 

can grant admin access to multiple users, which is good for academic group project work. One 

downside is that students need to monitor their accounts carefully, as Amazon will automatically 

charge for exceeded free tier limits. Additionally, there is no way to open the console of the VM 

being hosted when hosting a server instance through AWS.  

 Microsoft Azure’s free tier gives $200 worth of credit, but only lasts 30 days, which is 

less than a WPI term. Azure also does not appear, with in depth research, to offer an education 

tier like AWS does. Azure does not charge the user unless they subscribe to use services at the 

end of the trial. From the research done, Azure does appear to allow use of any services it 

provides. However, the user must use the $200 credit towards provisioning either: space 

allocated to their account for 14 projects, 40 Databases allocated to their account, or 8 TB of 

storage. All of these provisions are for the free trial month only.  



 Google Cloud Platform offers two project environments: the ‘standard’ and the ‘flexible’ 

environments. The ‘standard’ has a limited free tier that gives $300 worth of free credit, but only 

for 6 months. There is no automatic charge once the trial is completed. The ‘flexible’ 

environment does not have a free tier. GCP does have the ability to open the console for any 

VMs being hosted. The free tier does have limitations that are not clearly listed out. These 

limitations can be found on the Cloud platform Console under each individual service. The free 

tier does supply interactive tutorials, along with documented tutorials. Google Cloud Platform 

caps the number of project provisions at 12 projects for the free tier. If a user wants additional 

projects they must request access and pay for the services for that project, even if their trial has 

not ended. 

AWS should be used over Azure and GCP. Many companies and job postings are 

currently using AWS, and the industry appears to be continuing in that direction. AWS’s free tier 

gives students and individuals working on projects more freedom to learn the technologies than 

the free tiers from Azure and Google Cloud Platform. The documentation for AWS’s services is 

vast and growing as services continue to be built. The documentation for Azure and GCP are not 

as detailed and not as extensive. AWS also has the most support for and from other tools and 

frameworks that will be needed to develop a cloud platform, as can be seen in section 2. 

5.1.2 Databases 

In the results from the job postings (Figures 4.4 and 4.5), NoSQL and Relational 

Databases were requested almost equally. As seen in Figure 4.10, the WPI Fall 2017 Career Fair, 

few companies surveyed reported looking for relational SQL and none reported looking for 

NoSQL. 

 Most job postings that asked for NoSQL did not give specific database programs, only 

requesting that the applicant know how to use this type of database for storage.  Most of the job 

postings that requested knowledge of NoSQL were also looking for six or more years of 

experience in the workplace, which may suggest that companies do not expect beginner and 

intermediate skill leveled applicants to have experience using NoSQL databases. 

There was only one specifically requested database program that appeared often in job 

postings and that was PostgreSQL. Over half of the job postings that requested relational SQL 

were also looking for six or more years of experience in the workplace, which may suggest that 

most job postings do not expect beginner and intermediate skill leveled applicants to have 

experience using relational SQL databases. 

 NoSQL databases should be used over relational SQL databases if scalability is important 

to the team. If the team wants ACID, then relational SQL should be used. Additionally, relational 

SQL databases may have better performance for relatively small data sets. For cloud computing, 

it is likely that the datasets will be large. 

 If scalability is highly desired, then the different types of NoSQL databases should be 

considered. These different types are outlined in more detail in Table 4.1. Key-Value Store is 

ideal for simplicity and vertical scalability. Document Store is ideal for searches. Column Store 



is ideal for queries over entire rows. Graph Store is ideal for data that forms a network of 

relationships. The type of database used depends on the needs for the project, and the needs of 

the team.  

These types of databases do not have dependencies on other technologies, but some 

platforms include built-in database types that are easy to integrate. For example, AWS offers 

DynamoDB, a NoSQL database that offers Key-Value Store and Document Store capabilities. 

5.1.3 Configuration Management 

Most companies that use configuration management tools reported that the tool used was 

largely personal preference. Teams within companies even used different configuration 

management tools. 

If the team has a complex network of computers, Puppet or Chef should be used. Both 

tools are comprehensive and offer enough functionality to maintain a system by themselves. 

Within those choices, unless the team is comfortable with Ruby, Puppet may be preferred 

because it uses its own simple command language.  If the team wants a simple to use tool, then 

Ansible or SaltStack are preferable. Within those choices, Ansible is quicker and easier to install 

on a system, but SaltStack is more scalable. See Table 4.2 for a more in depth comparison. 

In general, it may be optimal to run two configuration management tools. In this case, the 

team should choose one of Puppet or Chef and one of Ansible or SaltStack. This approach 

provides a comprehensive tool as well as a simple and lightweight one. 

 In the end, the optimal choice for a configuration management tool is whichever the 

team is more comfortable using. Each of these four tools have good enough performance and 

perform the same job function. Furthermore, benefits of using one tool may be negated if the 

team is unable to configure it properly due to inexperience. 

5.1.4 Continuous Integration/Continuous Deployment 

During both our research and the results from job postings and the Career Fair, Jenkins 

was the only Continuous Integration/Continuous Deployment tool mentioned.  

Containers 

Docker and Kubernetes both work well with AWS, which can explain the frequency of those two 

tools being requested. Docker should be used by teams that reuse the same libraries and 

configuration settings across different projects to reduce cross-platform issues. If a team is small, 

Docker might not be needed.  

Kubernetes should be used by a team that has multiple devices using the same containers, 

such as Docker, to deploy and manage the containers. Kubernetes is not required by teams with a 

small network of systems or teams that do not use containers. 



5.1.5 Code Management 

During both the research and the results from job postings and the Career Fair, Git was 

the only Code Management system mentioned. There were a few different UI tools to implement 

Git in the workplace. The most common of these tools were Github and BitBucket.  

During surveys and meetings with companies, see Figure 4.10, the binary artifact 

repository tool Artifactory, was mentioned several times. Artifactory can be used for teams that 

build multiple working versions of their executable files. The tool stores the files in one location 

allowing for version control of the artifacts. Artifactory should be used if developers outside of 

the initial team might want to use the binary artifacts in their projects, as the repositories can 

have different access permissions. 

5.1.6 Microservices 

 For build configuration tools, Gradle should be used. Gradle is open source and builds 

upon Maven. In a 2017 case study done on the build speeds between Gradle and Maven, Gradle 

outperformed Maven in every test. The build speed can be equated to developer time, which is 

money being spent by companies to build projects. Gradle saves more time, thus more money in 

the long run. (Gradle. Inc., 2017) 

 Springboot can be used by teams that want to implement the APIs that have been created 

for Spring. Springboot is not necessary for cloud computing, but will make developing code in 

Java easier, as many APIs are available for various project features. 

 All platforms offer built in API gateway services. These services are simple to integrate 

into their respective platform and should be used to implement microservices with cloud 

applications. 

5.1.7 Language 

Specific languages are supported by different platforms. Thus, depending on which 

platform the team chooses, the language options will change. Once the platform is decided upon, 

the language selected will vary within those options because, as seen in Figure 4.10, companies 

use whichever language the team is comfortable with. 

Based off our team’s implementation of AWS using AWS Lambda and AWS API 

Gateway, Python is easy to use within AWS. JavaScript was also useful for programming within 

AWS. From research into the cloud technologies and tools, Ruby can be limited to the 

development and use of code management tools, such as Puppet and Chef. Java is what many 

graduates know as it is a well known and used object-oriented language.  

Since much of the code is abstracted away by the platform, it is generally best that 

developers use whichever language with which they are most comfortable. The main 

consideration for languages should be if there are any custom libraries that would be helpful. 



5.2 Project Infrastructure 

 In this section, we discuss the infrastructure of the prototype application. The application 

used several AWS services that work together to produce features for the AWS hosted static 

website. Figure 5.1 depicts the infrastructure the application has to communicate between AWS 

services and the end users. 

 

 

Figure 5.1. Prototype Application infrastructure. 



The prototype used two DynamoDB tables, neither of which needed to be set up 

manually. There were only two Lambda functions, with 190 lines of code. There was one CSS 

file with 296 lines of code. There were five HTML/Javascript files with 926 lines of code. 

The end user starts the application process by requesting one of three actions: uploading 

an image, requesting images to be displayed via the random image or search features, or 

updating tag data.  

Uploading Images 

 When uploading an image to S3, the end user invokes Amazon’s AWS Javascript API to 

upload the image to the S3 bucket, which has a Lambda trigger. This trigger calls a Lambda 

function (imagesToDynamo) that places all of the image data (name, uuid, tags, filepath) into the 

images table in DynamoDB. The image table has a trigger that invokes a Lambda function 

(tagsToDynamo) to store any new and old data each time a table item is changed. The lambda 

function stores updated data related to tags in a tags table. From there, the database is queried 

using the AWS API when an end user requests an image, or group of images. 

Requesting Images 

 The end user invokes the AWS API to query directly from the DynamoDB images table. 

The table then returns the list of images requested by the user. This list is either a list of searched 

images by tag or a random image depending on if the user searched for tags or requested a 

random image, respectively. The images are then displayed to the end user on the web UI. Users 

can also request all currently stored tags by using the AWS API to scan the tags table. 

Updating Tag Data 

 When updating tag data, the end user invokes the AWS API to store the updated 

information in the images table. This update automatically triggers a Lambda function 

(tagsToDynamo) that stores all updated tags in the tags table. The tags table is then queried to 

display the updated tags to the user. 

 

5.3 Project Limitations 

 In this section, we discuss some of the limitations that may have affected the results of 

our project. It is important to keep these limitations in mind when considering the implications of 

our research.   

 The short time frame we had limited the amount data we could gather. Particularly, we 

were unable to see if trends in technologies and skillsets would have changed several months 

later. Though this report may serve as an accurate representation of the industry as of October, 

2017, the short length means that there may be drastic changes that we will be unable to track. 

This limitation is especially important to note, as the software industry often goes through rapid 

change. 



With a small team, most of the DevOps tools were not feasible to use. These tools 

include: Configuration Management tools, Continuous Integration/Continuous Deployment 

tools, Docker, and Kubernetes. These tools work best for teams larger than most academic 

course project sizes.  

The application implementation was limited to the free tiers of platforms to reduce the 

amount of money students would have to pay out of pocket during a course at WPI. Thus some 

services were not used and the free services were called in a limited amount for the application 

implementation. 

  



6. Conclusion 

The project produced three final deliverables; a reference model, a training tutorial, and a 

prototype cloud computing application. The reference model can be found in Section 3.5 Cloud 

Application Reference Model. The training tutorial can be found at the following webpage: 

http://aws-mqp.blogspot.com/p/overview.html. The prototype application can be read about in 

more detail in Section 3.6 Image Classification Service and is hosted at the following webpage: 

https://s3.amazonaws.com/aws-website-imageclassification-nqrc7/index.html. 

The reference model was created as a model for others to build their own cloud 

computing application based on our market research. The training tutorial was created so that 

others can recreate the minimum viable product for our prototype application and learn how to 

use several services offered through Amazon Web Services. The prototype application was 

created to be able to learn the cloud computing technologies that were researched for this project 

and to be able to create the training tutorial effectively. The prototype application was an image 

classification website that allows users to upload, classify, and search for images.  

The prototype’s infrastructure is broken down into several AWS services: AWS S3, 

AWS Lambda, AWS DynamoDB, and AWS IAM. All of these services work together, using 

HTML, CSS, and Javascript, to make the application functional on AWS. The application has 

only a few hundred lines of code, and uses many templates created by other AWS users, AWS 

Developers, and outside projects, such as Bootstrap, to limit the amount of code written 

manually. Section 5.2 Project Infrastructure has a more detailed description of the 

infrastructure.  

The cloud computing approach to this type of project domain is much simpler than the 

traditional Java approach. In Java, this application would have required a minimum of thousands 

of lines of code. Additionally, developers would need to create a domain manually, find the web 

servers to host the site, and manually write the code for each service AWS provides.  

 

Risk Mitigation 

The main risk for the project is potentially being charged for AWS use. Charges may 

occur if the project exceeds the monthly Free Tier limit or if a service that is used is not part of 

the Free Tier.  

This risk can be mitigated within development teams by switching user accounts if the 

current user is close to their monthly limit. Any files can be easily swapped over to a different 

AWS account. Any Lambda functions or DynamoDB tables will need to be recreated under the 

new account, but it is easy to do so. Users are charged for the use of all services under their 

account, so if any team members have side projects on AWS, this approach will not work. Users 

are able to view their current as well as projected resource usage on a monthly basis through 

AWS’s billing dashboard. Automated alerts can be configured to send emails when a certain 

http://aws-mqp.blogspot.com/p/overview.html
https://s3.amazonaws.com/aws-website-imageclassification-nqrc7/index.html


threshold has been reached or is projected to be reached. However, it is recommended to closely 

monitor the billing dashboard, as the alerts may come too late in certain situations.  

 There is a much greater risk of overusing resources if there are any errors in the Lambda 

code. If a function fails due to an error, AWS will attempt to call the function again. These 

retries may repeat infinitely and use up compute resources for each attempt. Additionally, the 

function may time out if it receives a particularly large request. All subsequent retries will also 

time out. To remedy time out issues, increase the time out option on the Lambda function. A 

simple solution to terminate all active Lambda requests is to put a return statement at the top of 

the function. To prevent additional requests during this time, disable the Lambda function’s 

trigger. It may also be useful to temporarily disable the website. One simple way to do so is to 

enable the “Requester Pays” option on the S3 bucket hosting the website. If requester pay is not 

setup, the website will be inaccessible until the option is disabled.  

Lambda functions should be monitored closely to avoid any surprise charges. Logs from 

all Lambda functions can be viewed through CloudWatch. CloudWatch shows if a function 

terminated early due to an error or time out, and thus will be retried. Logs are stored in streams 

based on function and updated in real time. A new stream is created for the function each time 

you push an update to Lambda.  

 

Recommendations for Future Work 

Based on our results and information gathered through implementing our application, we 

would have made the following changes to the project. We would have started with the randomly 

generated identification numbers for the images to allow for better database table structure. We 

now know that buckets can only have one trigger of the event type, in our case object PUT. We 

would have structured our application from the start without planning on having multiple triggers 

on our S3 bucket. We would have created two database tables from the start for the image and 

tag data to allow for new features to possibly be developed in the scope of the project. We would 

have started the user login features at the very beginning of development, since AWS Cognito is 

a new service without detailed documentation or code templates. We would have used Bootstrap 

from the start to be able to enhance the UI sooner. DynamoDB uses several reserved words 

which we used unknowingly, which slowed the development process. DynamoDB does not add 

triggers immediately, so we would have added them earlier to save development time. We would 

have ensured that we created all services in the same region to prevent cross-region errors.  

For future work on the application, we would develop the features based on the use cases 

regarding The Company and Moderators, located in Section 3.6.1 Use Cases. These use cases 

were not developed due to time constraints. Some features we would like to highlight from the 

use cases include deletion of images for Moderators and user accounts that limit the functionality 

based on user group. 
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Appendix A 

Career Fair Questions 

Note: Ask representatives for their role in the company (ie. HR, Manager, Dev) and tailor these 

questions accordingly. For example, if speaking to a dev, Question 2 would be “What kinds of 

cloud technology do you work with? Which are the most important?” 

 

Companies WITH Cloud Computing 

1. How does the cloud impact your company? 

2. What kinds of cloud technology does your company use? 

3. What skills are you looking for with regards to cloud computing jobs only? Do they 

happen to overlap with the non-cloud computing jobs? 

 

Companies WITHOUT Cloud Computing 

1. Does your company have any doubts about the cloud? If so, do you know what they are 

and why they might be? 

2. Does your company have any plans to move towards the cloud? If so, do you know what 

those might be and when they might take place? 

3. Do you use cloud technologies, but from a third party? If so, why? 

4. What skills are you looking for regarding the positions you are offering? 
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