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Abstract 

Traditional methods of authentication used in smartphones have been proven to be both 

inconvenient for users and inadequate to prevent attackers from accessing stolen devices. Many 

users use a four-digit PIN as their method of authentication or no authentication at all, because 

more secure forms of authentication are too time-consuming to use. To attempt to make 

authentication more convenient so that users would choose more secure methods, we designed a 

system, LOBS (Location, Orientation, Battery and Screen), that would authenticate users 

continuously and automatically by recognizing their behavior patterns. LOBS constructed this 

behavioral signature by examining data gathered from the phone’s sensors during normal phone 

usage. Specifically, it recorded WiFi networks observed, GPS location, accelerometer readings, 

battery usage over time, and the times that the screen was turned off and on. Then, it used a neural 

network that was trained on the user’s historical data to analyze the latest data and determine a trust 

score, which measured how likely that data was to be from the same person as the historical data. 

LOBS authenticated the user if the trust score passed a threshold without them consciously entering 

any identity verification. We evaluated LOBS using the F0.1 score, which is a numerical evaluation 

of classifiers that weights false positives (people being authenticated when they shouldn’t be) ten 

times as highly as false negatives, since authenticating an impostor has deeper ramifications than 

locking out the user. After conducting an initial study to fine-tune some parameters of the system, 

we evaluated LOBS with a study that used data gathered from six people over the course of a week. 

The scores we obtained were too low for LOBS to be commercially marketable (we achieved F0.1 

score of 50.1%, well short of our goal of 90%), but much higher than random chance (which would 

get 16.7% with half the positive cases and half the negative cases being correct), which is 

promising.  
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1. Introduction 

1.1 Current Smartphone Authentication Patterns 

 In the United States, 77% of people owned a smartphone in 2015, according to Murmuria et 

al [23]. With constant access to a mobile device, more than half of the population enjoys the 

convenience of having countless services available at their fingertips. From social media to games, 

news outlets, dating services, and navigation tools, the majority of smartphone users use those 

devices as part of their daily routines. One especially important case is that, among those that own 

smartphones in the United States, 51% of adults used their smartphones to make online purchases in 

2015, and 12% used their devices to make purchases within physical stores. These users have to 

store their credit card information on their phones to perform checkouts. Even if only a small 

percentage of smartphone users store this data on their device to expedite checkouts, the users who 

practice these behaviors place themselves at considerable risk should the phone and its contents not 

be properly secured.  

 According to the Pew Research Center [20], as of 2015 the most popular means of securing 

a smartphone is a password in the form of a four digit PIN, used by 25% of users. In addition, an 

even larger percentage (28%) of the smartphone owners use no means of securing their device 

whatsoever. When compared to other, more secure, methods such as fingerprint scanning, facial 

recognition, and lengthier password options, one can reasonably assume that the more common and 

less secure options owe their popularity to their convenience. However, using a more convenient 

method of authentication invariably makes the device and any information on it less secure. 

Therefore, the 53% of all smartphone users in the United States that opt for no password or a four-

digit PIN are sacrificing the security of their devices in exchange for convenience. 
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1.2 Smartphone Security versus Convenience 

Today’s world of omnipresent smartphones is increasingly vulnerable to security flaws in 

one of the most common modes of authentication: passwords. More secure passwords are difficult 

for the user to remember and time-consuming to enter, while simpler ones are easily cracked. Many 

people use the same password for multiple devices and accounts, subjecting them to greater risk 

should any account be compromised. In addition, users tend to store personal information, such as 

credit card information, on their mobile devices, much of which they need to be secured against 

outside attack. Common modes of biometric authentication, such as face recognition or fingerprint 

scanning, are potentially more secure but have a different major issue, aside from the 

aforementioned lack of convenience: if the attacker finds a way to impersonate the user’s biometric 

information, such as with a photo of their face or a mold designed to match their fingerprint, the 

user can never change that information, so the thief will always be able to access both the user’s 

current device and any devices they acquire in the future.  

 In fact, two of the most popular means of authentication among smart devices, namely four 

digit PINs and swipe patterns, are among the easiest of methods for hackers to crack. Highlighted in 

an article published by Express [19], potential thieves with access to thermal imaging only need to 

take a picture of the screen of a smartphone device, either in person or over surveillance equipment. 

The numbers which are touched to enter a four digit PIN will give off residual heat that can be 

picked up in the image, with the amount of heat emitted corresponding to how frequently and how 

recently each button was pressed to enter the code. Thereafter, there it is a trivial matter of 

determining in which order to press the buttons in, which can even be done by simply trying every 

possibility with a four-digit PIN. Consequently, hackers can breach a mobile device simply through 

the use of a thermal image. Swipe-pattern based authentication, while it may seem more complex, is 
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at even greater risk according to that article, as the sliding of one’s finger over the screen creates a 

much more obvious trail of hotspots.  In order to test this, the Express group arranged an 

experiment in which thermal images of touch screens were provided to participants, who were then 

asked to predict the four digit PIN for the device. Figure 1 below illustrate how thermal imaging 

can reveal the password used by the user to the would-be hackers, and the predictions made by the 

participants. 
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Figure 1: Password predictions made by participants when provided with thermal images of a phone. [19] 

 

Passwords involving use of the touch screen also leave behind other forms of evidence 

besides heat signatures. In another study by Aviv et al [3], it was shown that the oils left behind by 

a finger on the touch screen can put a smart device at risk of being breached even without 

specialized equipment. Under certain light conditions, such as tilting the device on its side, residual 

oils left behind from taps and swipes become visible on the surface. Particularly visible patterns of 

taps or swipes are very likely to correspond to the password used to authenticate the device. In fact, 

the study performed by Aviv et al determined that passwords could be partially guessed in this 

manner 98% of the time, and fully discovered 68% of the time, under optimal lighting. Even under 

poor lighting conditions, these methods for guessing and full discovery still worked for a worrying 

37% and 14% of attempts respectively. As a result of this unfortunate reality, even securing one’s 

mobile device in the most popular and convenient authentication methods still leaves the user at 
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considerable risk of having their device breached. Figure 2 below illustrates the visibility of the 

residual oils from swipe data. 

 

Figure 2: Residual oil patterns on smartphone screens are visible, even without optimal lighting [3] 

 

 A potentially more convenient alternative to physical biometric authentication methods, 

such as facial or fingerprint scanning, is behavior based authentication. Behavior based 

authentication is a system by which user behavior is observed by the device being accessed, and 

this information is used to authenticate them [10]. Mobile users who often forget their password 

would likely find use in an application which could accurately use their behavior, such as locations 

visited and apps used, to replace the need for their other forms of authentication, without storing 

data about their physical biometrics. Mobile users who store personal data on their phone would 

find use in an app that identifies intruders and forces them to manually authenticate; such a system 

could be used as a backup authentication method, and typically used in conjunction with more 
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secure methods such as a password or biometric, especially in situations with more pressing 

security concerns. Most importantly, by creating a system which allows users to be automatically 

authenticated based on their behavior, we hope that they might be more willing to use more secure 

forms of passwords or physical biometrics due to not having to enter them as frequently. 

 

1.3 Other Methods of Smartphone Authentication 

 Even within the emerging field of behavior based authentication, there are still several 

factors to consider when selecting a method of authentication. When a mobile device needs to 

determine whether or not to authenticate a user, there are two different strategies to do so. The most 

common method is referred to as explicit authentication. To be authenticated by an explicit method, 

the user is prompted to enter a password, swipe a finger over a scanner, or enter some other form of 

identifying information in order to authenticate themselves [15]. A simple way to think of explicit 

authentication is to consider it a form of active authentication, which means to say that it requires 

manual input from the user of the device. 

Implicit authentication, on the other hand, relies in the behavior of the user to determine 

whether or not they should be unauthenticated instead of the use of passwords, PIN numbers, or 

fingerprint data [15]. When using implicit authentication, the user is granted access to the device or 

feature until the authentication system detects behavior which contrasts sufficiently enough from 

the usual behavior that the system is no longer confident that the user is in fact the owner of the 

device. In contrast to explicit authentication, implicit authentication can be thought of as a passive 

method in that the user is not required to deliberately enter any input. Generally, implicit 

authentication is paired with explicit authentication by having the system fall back to explicit 

authentication if the user is deauthenticated, in case the true user’s behavior changes suddenly for 
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some reason, but this is less secure than either method individually, as an attacker could access the 

device by cracking either. 

Another key factor to consider when authenticating users is to decide when or how 

frequently a user is to be prompted to provide identifying information. On most computers and 

mobile devices that use explicit authentication, if the user needs to be authenticated, it is usually 

done each time the device has been shut down, put to sleep, or become inactive for a specified 

period of time. Under systems such as these, the device is considered to have episodic 

authentication: a form of authentication in which the user is required to re-authenticate periodically 

in order to continue using the device. When a user sets their mobile device to require a password 

input after a set time of inactivity, this is a form of authentication which is explicit, due to the fact 

that manual input is expected from the user, and episodic in that the user is periodically logged out 

and must be authenticated once more.  

The goal behind implicitly authenticating users with their behavioral profiles is to make the 

process of authenticating continuous. To authenticate continuously as opposed to episodically, 

instead of requiring that the user login each time the device is used after a period of inactivity, the 

user remains authenticated until a situation arises which causes the user to no longer to be trusted, 

such as behaving in a way which does not match their behavioral profile. Our ideal use case is to 

authenticate users continuously and implicitly. More specifically, for as long as the user’s recent 

behavior is found to be similar to their behavioral profile, the device will be authenticated with no 

input required, and the user will remain authenticated unless their behavior significantly changes. 
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1.4 Prior Work 

 In 2016, Donti et al. [8] created a behavioral model system, called BMS, for implicit mobile 

authentication. This system was designed to record location, WiFi SSIDs observed, device tilt, and 

application usage. They stored their data on a Google Drive server. From there, they used the 

simplest type of neural network, known as feedforward, to generate behavioral profiles for each 

user, based on the first six days of the prior week. They then used the trained network to generate 

scores indicating how likely the network thought the last day’s worth of data was to be produced by 

the same user as the prior six days’. If this score was high, the user would hypothetically be 

authenticated automatically, and if not then they would be deauthenticated. To evaluate the 

effectiveness of the system, they also generated scores by running each trained network on each 

other person’s latest data as well as that of the person it trained on [8]. In order to process this 

information, they built a supervised feed-forward artificial neural network (ANN) using 

TensorFlow [28]. Donti et al. used the WiFi BSSID, the WiFi level, and the timestamp of the 

recording as the features that were fed into the ANN to produce a trust score. In order to increase 

the accuracy of these trust scores, Donti et al. supervised their network by labeling the behavioral 

data with the correct expected output. For example, when data from a specific subject was 

collected, the data was labeled to be true for that particular subject, and false for all other users. 

Each time the behavioral data was collected, it was uploaded to a folder on Google Drive via a 

custom Android application. In order to be accessible by TensorFlow and any servers, the WiFi 

data was transmitted in JSON format. Once the data was stored in the Google Drive, it could then 

manually be transferred to a folder to be sent as input to the ANN generated via TensorFlow. 
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With access to their code, research, and reports, this project was meant to build off of this 

previous work. Our goal was to improve upon their system and hopefully reach the point where it 

could be used commercially alongside conventional forms of authentication. 

 

1.5 The Goals of This MQP 

 In this MQP, we designed and implemented a system, called LOBS (which stood for 

Location, Orientation, Battery, and Screen, as those were the behavioral metrics we eventually 

decided to use), that authenticated or deauthenticated users continuously and implicitly. 

Convenience was the primary goal of LOBS, since it was always intended to run alongside 

conventional means of authentication. If LOBS deauthenticated the user, the system would fall back 

to conventional explicit authentication methods, and it was therefore impossible for LOBS to 

increase security beyond what those means of authentication provide. This meant that our app 

would only come into play occasionally, and therefore its role was to provide a way for the user to 

sometimes not need to put in a password. 

However, it was vitally important for LOBS not to compromise security. We aimed to 

achieve the same confidence of authentication as passwords provide before we allowed our app to 

actually replace them. Like our predecessor BMS, we chose to represent this sense of confidence as 

a percentage of how closely recent sensor data from the user matches the behavioral profile of the 

device owner [8]. 

In this paper, a system, LOBS, is described, researched and implemented, in which 

behavioral biometrics, such as phone tilt and location, are used to authenticate a user based on their 

behavior, falling back to other authentication methods if the user cannot be authenticated based on 

behavior. To use LOBS, a user only needed to install a mobile application, which would then gather 
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information from the built in sensors of the Android device. Once these data were sent to a server, 

the server could then generate a trust score by comparing the user’s recent behavior against their 

historical behavioral profile, which was developed via deep learning. In order to build the user’s 

historical behavioral profile, LOBS trained on user data gathered over an extended period of time. 

Future snapshots were compared to this behavioral profile, and a trust score generated which 

predicted how likely the current user wass to be the owner of the phone The app then authenticated 

the user if its confidence that the user is indeed the owner was above a certain threshold. In order 

for this application to work, it operated on the notion of trust. Whether or not the user would be 

trusted was determined by whether or not their data generated a trust score above or below a 

specified amount, or trust score threshold. A trust score is generated by a neural network such as the 

one used by BMS or LOBS to represent the likelihood of recent user test data matching the model 

from the training data set [8]. 

  In this case, much like placing trust in another person, trust—in the case of our 

application—is the measure of whether or not LOBS was confident that the current user of the 

device was the owner of the device. In LOBS, trust is derived from a trust score. If the resulting 

trust score generated by comparing recent behavior seen by the device to previous behavior 

exceeded a certain threshold, then the user was trusted. If this was not the case, then the user was 

not trusted, and was de-authenticated. We used a trust score that ranges from 0 to 1, a number 

which represented the level of confidence LOBS has that the user is the owner of the device. In 

general, higher trust scores indicated higher trust that the data observed indeed belonged to the 

actual owner of the device or smartphone, with one being absolute confidence. 

Using the work of Donti et al. [8] as the backbone of our project, we wanted to improve 

upon this application in several ways. To streamline the application workflow, we wanted to make 
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data upload and TensorFlow integration happen automatically. We also wanted to increase the 

number of metrics used to develop LOBS. Specifically, we wished to use GPS location, WiFi 

networks seen, device orientation, battery charge information, and screen mode (on/off) as our list 

of metrics. In doing so, we hoped to create a more integrated system that resulted in more accurate 

trust scores.  

Our overarching goal was to investigate what metrics worked to authenticate users and to 

present results of such analyses. As part of determining how well our metrics worked, we also 

wanted to change the neural network hyperparameters of LOBS such the activation function used 

by the neural network, as well as the trust score threshold required for authentication. Modifying 

the Android operating system to actually use our app as a means of authentication was beyond the 

scope of the project, which can be pursued as future work. 

Our goals can be summarized as follows: 

● Automate the smartphone data gathering and uploading process used by Donti et al. 

[8] 

● Re-architect and re-implement the smartphone data gatherer to use a more 

comprehensive third party library, in order to have access to more sensors without 

needing to implement each sensor ourselves 

● Automate the process they used by which their neural network trains on the data and 

generates trust score predictions 

● Conduct sufficiently large studies (longer time frame and more subjects) that we 

could evaluate the effectiveness of LOBS 

● Optimize the accuracy and performance of LOBS by modifying its parameters 
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2. Literature Review 

2.1 Summary 

In order to evaluate which metrics would be the most useful to include in our implicit 

authentication app, in this chapter, we explored existing research on alternate methods of 

authentication without use of conventional passwords. In particular, we looked at research into 

constructing behavioral profiles based on data that can be gathered in the background, without the 

user needing to explicitly provide any information or input, since our goal was to create an app that 

could continuously authenticate users without interrupting their experiences to ask them for 

passwords. 

 

2.2 Sensor Data Gathering Libraries 

We looked into finding libraries that could collect various sensor data, since it would have 

been time-consuming to write the data-gathering code ourselves. We eventually found several 

possibilities, outlined below. 

 

2.2.1 Funf 

The first, Funf [12], was developed by MIT, and covers most, if not all, of the sensor data 

available on Android devices. It also had a built-in capability to save the data in the form of JSON 

files, which can then be uploaded to any given server. Thus, we could easily build a server that 

would receive that data and feed it to the neural network. However, the codebase for Funf had not 

been updated in over four years, so we needed to update the codebase before we could use it. 

Despite that, we eventually decided to use it to gather our data, as there were no others that would 
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be easier to integrate and Funf is straightforward to extend to use additional sensors. The sensors 

available in Funf are outlined below in Table 1. 

 

Type of Sensor Data retrieved Why we used it (or not) 

AccelerometerSensorProbe  Accelerometer data Yes, the user’s hand 

movements were part of the 

behavioral signature 

AccountsProbe Accounts data No, because most phones only 

have one account 

ActivityProbe Steps walked No, because it would have 

drained the battery too much 

AndroidInfoProbe Operating system information No, because it doesn’t change 

on  any given phone 

ApplicationsProbe Applications being installed or 

uninstalled 

No, because we didn’t expect 

this to be a routine occurrence 

AudioCaptureProbe Audio data No, because background 

applications can’t access this 

anymore 

BatteryProbe Battery status Yes, because how much the 

user uses the phone and how 

low the battery gets were part 

of the behavioral signature 

BluetoothProbe Data on nearby bluetooth 

devices 

No, it would be used as a 

proxy for location, similar to 

WiFi in that it looks at nearby 

devices 

BrowserBookmarksProbe Browser bookmarks No, phone bookmarks do not 

change frequently enough to 

be used for authentication. 

BrowserSearchesProbe Browser searches No, because we couldn’t 

access this anymore 

CallLogProbe Call logs No, because it will have to 

wait for intruders to either 

make calls or not, and would 
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only trigger LOBS if the true 

user usually does the opposite. 

CellTowerProbe Nearby cell tower information No, because this was another 

location probe that worked 

outdoors 

ContactProbe Phone contacts No, because we didn’t expect 

this to change routinely 

GravitySensorProbe Gravity data No, gravity changes very 

slightly by location, making 

this a proxy for location 

GyroscopeSensorProbe Gyroscope data No, because we used 

orientation instead of angular 

acceleration, and the 

gyroscope sensor also tended 

to have a lot of random noise 

HardwareInfoProbe Device hardware information No, because it didn’t change 

for any given device 

ImageCaptureProbe Camera data No, because background 

applications couldn’t access 

this anymore 

ImageMediaProbe Stored image data No, because it wasn’t  

expected to change over a 

relatively short time 

LightSensorProbe External light data No, because this only works if 

the camera is on, and 

background applications 

couldn’t keep the camera on 

MagneticFieldSensorProbe Magnetic field data Yes, because we needed it to 

calculate orientation 

OrientationSensorProbe Device orientation data No, because this just 

calculated orientation based on 

accelerometer and magnetic 

field, so it had no new data 

PressureSensorProbe Air pressure data No, this is a measure for air 

pressure which changes 

slightly by location, making it 

another location proxy 
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ProcessStatisticsProbe Running process data No, because background 

applications couldn’t get this 

data anymore 

ProximitySensorProbe Sensor distance in cm No, because usually nothing is 

close enough to pick up during 

normal phone usage 

RotationVectorSensorProbe Device rotation data No, because it was derived 

from the gyroscope 

RunningApplicationsProbe Running application data No, because the functionality 

this sensor relies on was 

deprecated and no longer 

returned the actual list of 

running applications 

ScreenProbe On/off state of screen Yes, because when the user 

used their phone was part of 

the behavioral profile 

ServicesProbe Running services No, because this was 

deprecated, similar to running 

applications 

SimpleLocationProbe An estimate of device location No, because we used the more 

precise location estimate 

SmsProbe SMS data No, much like phone calls, this 

relies on waiting for a thief to 

create usage patterns which do 

not match the user 

TelephonyProbe Mobile network information No, this relies on a thief 

changing phone service 

providers 

TemperatureSensorProbe Temperature of environment 

or phone, depending on the 

device 

No, device temperature is a 

proxy for battery usage, and 

external temperature trends are 

a proxy for location 

TimeOffsetProbe Time offset between device 

and major NTP servers 

No, because this had nothing 

to do with the user 

VideoCaptureProbe Captured video data No, like call and text history 

this relies on waiting for a 

thief to develop usage habits 
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contrasting with the owner’s 

VideoMediaProbe Stored video data No, for the same reason as 

video capture 

WifiProbe Nearby WiFi network data Yes, because the visible WiFi 

networks was part of the 

behavioral signature 

Table 1: Sensors available in the Funf library and reasons for and against their use 

 

2.2.2 AndroSensor 

The second app we found for gathering smartphone sensor data, AndroSensor [11], also had 

not been updated for a few years. It supported several programming languages and could export the 

data to CSV files, but had fewer sensors than Funf (mostly related to location and orientation) and a 

less convenient uploading mechanism, so we found no reason to use it over Funf. 

 

2.2.3 SensingKit 

The third library, SensingKit [26], was the only one that had been updated within the last 

two years, so it would have been the easiest to integrate. It also supported iOS, which could have 

been a benefit in the future, although we were not planning to include that in LOBS. However, like 

AndroSensor, its sensors were mostly related to location and phone orientation, which was 

insufficient for some of the metrics we wanted to implement. Therefore, we once again decided to 

use Funf to gather sensor data on the smartphone. 
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2.3 Related Work 

 We also looked at several previous works to determine which combination of metrics to 

select for LOBS. 

 

2.3.1 Lists of Metrics 

One previous work that describes various possible metrics that can be used in behavioral 

authentication is ‘Behavioral biometrics: a survey and classification’ by Roman Yampolskiy and 

Venu Govindaraju [29]. As the title suggests, it surveyed all of the biometrics people had 

experimented with using for authentication at the time and listed the uniqueness and coverage of 

each one. It also classified them into groups based on what sort of data they gather about the user, 

e.g. physical biometrics like a fingerprint, passive usage patterns such as phone orientation and 

keystroke patterns (which are what we were primarily interested in using in our app), and more 

active usage patterns like app usage and call history (which we could also have used but decided 

not to since they are easier to imitate). We used this information primarily as a reference when 

trying to figure out what metrics were actually worth using from the list of types of data we can 

gather on Android phones. 

 

2.3.2 Related Systems 

 Several previous works describe alternative authentication systems. One such system, 

ActivPass, is not an implicit authentication system, but is still useful for comparison to this system 

described in this paper. ActivPass is a system by which users can be authenticated based on 

questions about rare events in their recent activity, such as SMS history, described in Dandapat et 

al. [27]. While the method described showed some promise in being able to authenticate users 
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without needing passwords, our goal was to create an app that would authenticate users without 

requiring them to consciously provide any information at all, so the findings there were of little use. 

Khan et al. [15] describes Itus, a framework for developers to build upon for behavioral 

biometric authentication. It provides a framework for various biometrics to be added for analysis on 

Android devices, to be used by Android developers, and machine learning algorithms for the 

training and analysis of these metrics. Unlike LOBS, Itus was an overarching framework for 

building authentication systems, not an authentication system itself. 

 

2.3.3 Touchscreen, Keystroke, and Orientation Metrics 

This section covers work with goals similar to ours, especially those which would 

authenticate users based on data gathered in the background. Several of these papers used 

touchscreen or orientation data as their metrics, described below. 

The first of these, a system by Sitova et al. [30], was the paper describing a system called 

HMOG, which stands for hand movement, orientation, and grasp. As the name suggests, the system 

would use the accelerometer and gyroscope sensors built into the phone to measure tiny movements 

in how the phone was held, which generally result from how the person holds the phone. Upon 

reading this paper, we decided that the device orientation metrics they used would definitely be 

worth including in our app.  

In Biedert et al. [4], touch screen data was collected from subjects using an Android app to 

read and compare images. While it was in use, the app collected various touchscreen related 

metrics, including touch pressure, trajectory, distance, orientation, and velocity. The data from these 

metrics were then used k-nearest-neighbors (kNN) and support-vector machine (SVM) neural nets, 

which resulted in 0-4% EER (Equal Error Rate) for authentication, with some outliers at 10%.  
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The EER is a metric for determining accuracy of behavioural authentication systems, where 

the False Rejection Rate (FRR) is equal to the False Acceptance Rate (FAR). The FRR is a measure 

of how many true users were rejected incorrectly, while the FAR is a measure of how many 

imposters were authenticated incorrectly. A lower EER means a higher accuracy (Cheng et al [7]).  

While touchscreen data seemed promising at first, unfortunately, the Android operating 

system no longer allowed the required touchscreen data to be collected in the background by third 

party applications like ours, so this turned out to be impossible to implement in our app. 

In Murmuria et al [23], touchscreen data was also used as a metric. The preliminary results 

showed that direction and duration of taps, as well as diameter of the finger, returned the best 

results for tapping data. For swiping data, direction, arc-length, pressure, speed, and finger diameter 

worked best as metrics. However, this was also largely useless for us, as we could not gather any of 

the data described in that paper either. 

Bo et al. [5] used touchscreen data as well as device feedback from vibrations to determine 

when different users were using the device. The researchers assigned a trust score to the likelihood 

of the device having changed hands. This trust score increased with multiple consistent judgements. 

While the researchers were able to show 100% accuracy for 5 to 10 consecutive observations, they 

do not consider external noise, which would be important in real-world applications. 

In Crawford et al. [13], two different behavioral biometrics, specifically voice patterns and 

keystrokes, were used to verify users on an Apple iPhone. This data was gathered in the 

background. The keystroke metrics had an EER of less than 10% and an FRR of around 2.5%. The 

keystroke data is fairly unique, but some users in this study had concerns about their keystroke data 

being used elsewhere. Voice patterns had an EER of 25% in Crawford et al. [13], but had an EER 
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of 10-12% in previous papers. We decided to not use voice as a metric, as we couldn’t gather voice 

data with the Android permissions that we had access to. 

In Kwapisz et al. [16], accelerometer data from 36 users was used as a metric for 

authentication. Each subject was given an Android smartphone and told to walk, jog, and climb up 

and down stairs for specific time periods with the phone in their front pants pocket. The results had 

a wide range of accuracy, from 42% to 100% between the 36 users. This wide range of accuracy 

suggests that gait-based authentication may not be the best metric to use, especially given potential 

battery drain due to constant accelerometer sensor use. As such, LOBS did not use gait as a metric. 

 

2.3.4 Location Metrics 

We found several papers describing authenticating users based on the user’s location 

history. Donti et al. [8] was the paper written by the group that was working on the same MQP last 

year, so we started with that. From their paper, we learned that timestamped location data (gathered 

using visible WiFi networks while inside and using either GPS or visible cell tower signals while 

outside) is an easy to gather and fairly effective metric for constructing users’ personality profiles, 

although not sufficient on its own to distinguish people. They also looked at the orientation of the 

phone while it was in use and the apps that were used, but although both of those metrics were 

possible to gather and construct profiles from, neither proved as useful as location for 

distinguishing the four people they used in their study. They used TensorFlow [28] to construct the 

profiles from the raw user data, consisting of GPS location, WiFi networks seen, device orientation, 

and app usage, and then test the effectiveness of the authentication by producing trust scores based 

on new data from each participant.  
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Their code was loosely based on the TensorFlow tutorial designed to work with Boston 

housing data [9], but they modified the input function and features to accommodate their data set. 

They created a script to set up the neural network with attributes for each sensor type, in order to 

have each sensor type easily accessible to the neural network as a whole. The feed-forward neural 

network was fed the data as its input function, with the training output stored in a pickle file, a way 

of storing Python objects efficiently via serialization [21], in each iteration. Once the training set 

was stored in a pickle file, the neural network produced a trust score based on the test data they 

provided. They used the last week’s worth of data for each user, with the first six days being 

training data and the last day being used for testing. 

Since we had access to all the code of the Donti et al. [8] MQP, we decided that reusing 

some of their TensorFlow code would be the most straightforward way to test for authentication. 

However, we followed a suggestion from our advisor to use a more complete and extensible third-

party library rather than trying to reuse their data-gathering code. We used version 1.3.0 of 

TensorFlow for our study. 

 In Rachuri et al. [14], various behavioral biometrics were used by a Naive Bayes classifier 

to determine suggestions for everyday user activities, such as cooking dinner or waiting for a bus, 

for a social check-in app. These metrics included accelerometer, GPS, WiFi, application usage, 

calls, SMS messages, battery, and network information. This resulted in a false positive rate of less 

than 3%. However, it was determined that the battery cost of physical sensors, such as GPS, was 

significantly higher than soft sensors, such as application usage. Not using a GPS metric resulted in 

a 6% loss of accuracy, but a significant increase in battery life. Since these papers generally agreed 

that location is an effective metric, we decided that it was worth using in LOBS. 
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2.3.5 History Content Metrics 

Another group of metrics is history content: text messages, phone history, and app usage. In 

Fridman et al. [17], stylometry (literary style), web browsing history, app usage, and location were 

used as metrics for authentication, in part due to the low battery usage involved in collecting them. 

Location was determined via both GPS and WiFi. The experiment resulted in an EER between 1 

and 5%. 

One of the relevant papers found by last year’s group was the paper “Soft Authentication 

with Low-Cost Signatures” by Bupithya et al. [25], which uses data that the phone already gathers 

in the background, such as SMS history and location (via cell tower placement), to detect anomalies 

in users’ behavior. While they were able to detect anomalies with a higher degree of accuracy than 

previous methods that only looked at the GPS signal, this method could not detect anomalies 

without at least half an hour and preferably over an hour of anomalous data to analyze: it achieved 

42% coverage (the fraction of the time it could confidently say whether or not the data was 

anomalous) with an hour’s worth of data. However, our initial goal was to use metrics that could 

detect anomalies within half an hour, in order to minimize the amount of time the attacker had to do 

damage before being locked out. While the metrics used in Bupithya et al. [24] were not within this 

threshold, they were still useful. 

In Shi et al. [10], SMS, phone call, and browser history, together with location data, were 

used on 50 Android devices to authenticate the owner of the device and distinguish them from an 

impostor. The users in this study could typically use their device about 100 times before suffering 

an incorrectly failed authentication, whereas an adversary had a 50% probability of being locked 

out after two uses of the device, and a 95% chance after 16 uses. The SMS, phone call, and browser 

history data were hashed with a key generated on app install and stored only on the device to 
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protect user privacy. We decided against using any of these history content metrics, since none of 

them are implemented in Funf [12]. 

 

2.3.6 Battery Metrics 

A few papers recommended using battery usage as a metric. In Murmuria et al. [22], four 

behavioral biometrics, specifically battery usage, movement, apps usage, and touchscreen data, 

were used to authenticate a group of 73 subjects using Facebook and Google Chrome on Android 

devices. Two machine learning algorithms were used to analyze the data: Strangeness-based Outlier 

Detection (StrOUD) and the Discord Algorithm. The experiment obtained an EER between 6.9% 

and 16.9%. 

In Zhang et al. [31], researchers monitored only power consumption of applications used on 

HTC smartphones. They used this data to form a model of the users of the phone, an effort which 

resulted in an average error rate of 4.1%. 

We eventually decided to use battery usage as one of our metrics, as Funf had a sensor to 

gather it, and the systems that used it achieved sufficiently low error rates that it was evidently 

worth including. 

 

 

 

  



28 

3. Methods 

3.1 System Architecture  

 The system we designed that authenticated users based on their behavior is outlined below. 

First, a data collecting service on the device continuously collected behavioral biometric data from 

the device. This data was then sent periodically to a server, where a machine learning algorithm 

trained on the given user’s data. The device could send a trust score request to the server, which 

sent a predicted trust score back to the device indicating how likely the user most recently using the 

device was the one who usually uses the device. A graphical overview of LOBS architecture is 

outlined in Figure 3 below. 

 

Figure 3: The high-level architecture of LOBS. 
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3.2 Selecting Metrics and Establishing Criteria for the 

Application 

 After examining the prior work of other researchers who have attempted to make 

applications which serve similar purposes, we came up with a list of criteria for the metrics that we 

would be using in our app.  

Ideally, all metrics recorded by our application would gather information from sensors 

which are constantly in use by Android devices during normal operation. By developing the 

behavioral profiles of users using metrics that are constantly being recorded by their device already, 

our application would not only be less invasive of the user’s privacy, but also present minimal 

burden on the user and put little to no additional strain on the battery life of the device.  

Secondly, while we intended to use as many metrics as possible to develop behavioral 

profiles for our users, we speculated that using every metric available would not only be redundant, 

but would also make the application less convenient: the more data that gets fed to our neural 

network for machine learning, the longer it would take to train the network to develop a user profile 

with confidence, and the longer it would take to actually determine a trust score for the user. For 

example, the Android operating system includes sensors for GPS, WiFi networks seen, and Cell 

Tower location alongside many others. Each of these sensors can be used to determine the location 

of the user with varying degrees of accuracy, but to use them all together would result in more data 

being sent to our neural network, which would slow down the training process in exchange for 

recording potentially overlapping information. In order to avoid redundancy, we opted to use 

sensors that gathered different types of data. 
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Finally, out of all of the metrics initially considered for the applications, some could not be 

used due to limitations of third-party applications on Android devices. Based on findings in prior 

work, we initially intended keystrokes and swipe data recorded from the user to be examined by our 

application, because of their uniqueness from individual to individual. However, Android devices 

only provide this data to applications which run in the foreground. While this was technically a 

possibility for our application, requiring our app to run constantly in the foreground would have 

violated our goal of developing a convenient alternative to passwords. The sensor types we used are 

as follows: WiFi networks seen, GPS location, battery usage, screen mode (on or off), and device 

orientation (using accelerometer and magnetic field sensors as a proxy for orientation). All of these 

sensors could run in the background, which made them more ideal for  LOBS. 

Once our metrics had been selected, we moved on to look at the means available to gather 

information from Android sensors. We had already decided that TensorFlow would be the library 

that we would use for building the neural network that our application would use, so we then 

needed a way to streamline the process of sending sensor information to the neural network. As it 

turned out, Funf [12] already had a built-in mechanism to convert the data to JSON and send it to a 

server, so we only needed to build a server that would forward the data to our TensorFlow 

application and upload the data to there. The code that used TensorFlow was written in Python. We 

used the metrics listed in Table 2 as inputs to our neural network in order to correctly authenticate a 

genuine smartphone user against an impostor.  

 

Metric Pros Cons 

WiFi Easy to measure location while 

indoors 

 If user’s phone is stolen, the 

phone would automatically 

connect anyway as the thief 

and the user would initially be 
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in the same location, rendering 

this useless. 

 Could also circumvent simply 

by being near where the person 

usually uses their phone, 

depending on how it is set up. 

This would be true for any 

location metric. 

 Could be confused by people 

who are in similar places at 

similar times i.e. class, work. 

GPS Relatively precise location 

detection that works almost 

anywhere 

Very battery intensive, also 

could be confused by 

mimicking the phone’s owner 

Orientation Difficult to impersonate as it’s 

largely an unconscious 

behavior 

Information content was 

reduced when phone is used 

while placed on a surface 

instead of in the user’s hand 

Screen Status No or low battery cost Only records data when screen 

is turned on/off, which many 

users do not do often 

Battery Usage Always tracked and 

surprisingly accurate (95.9%) 

Zhang et al. [31] 

Battery life degrades over 

time, and user can change 

habits 

Table 2: Selected Metrics for the application and reasons for and against their use 

 

 

3.3 Modification of Prior Software 

We began by copying the TensorFlow code written by Donti et al. [8] to a WPI research 

cluster. We then modified the code to run with the Funf sensor data that would be sent to the cluster 

via the previously mentioned Node.js server. The provided code already had the functionality of 

using sensor data to build a behavioral profile of users based on which WiFi SSIDs were seen by 

the sensors. With these profiles the code was capable of creating a trust score by evaluating recently 
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collected data against the behavioral profile of the user generated over the course of the training 

period.  

 Additionally, in order to construct a user behavioral profile, the provided code for BMS 

also had the functionality of being able to convert the WiFi SSID data recorded from the user to a 

form that could be used to train the neural network, and the other sensors could use the raw data. 

The strategy employed by the previous group consisted of training the neural network on user data 

collected over the course of a week. Once the training period was complete, the network used in the 

application would then be able to generate a trust score in the form of a percent value of how 

closely recent data matched the training data. With a trust score generated, the application was then 

able to compare that score to a threshold in order to determine whether or not the user of the device 

was trusted to be the owner of the device. 

 Initially upon receiving code for BMS, there was no threshold set in place, but selecting a 

value for the purpose of our application was a simple process. Based on the research of other 

similar applications, we decided to start with a threshold of a ninety percent trust score or higher, 

and from there we needed only to weigh the security benefits of having a greater threshold against 

the inconvenience of potentially deauthenticating an actual user with a lower-than-usual trust score. 

For example, while our application would ideally not authenticate an impostor who takes a 

Massachusetts resident’s mobile device to New York City, it would also be ideal to not lock out that 

Massachusetts resident should they take a day trip to New York City. We decided, however, to err 

on the side of security, and set the trust score threshold to something higher than we initially 

thought necessary so that it would lock out people doing unusual things like that even if they likely 

were the real owner. This was not a problem because the actual owner of the device could regain 
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access by entering their usual password if they happened to be locked out. We determined the value 

of the threshold to use with the data from our initial study. 

 

3.4 Repairing Funf 

 Perhaps the largest influence of the selections of metrics for the application was data could 

be gathered using the Funf library [12]. The library itself had code prepared with the ability to read 

data from more than thirty sensors within Android devices. Each sensor on the list was therefore 

considered for our application, and each metric that fit our criteria, as stated in the previous section, 

ended up being used in the final product. However, the developers of Funf had stopped maintaining 

the library in 2013, while our application was being developed in 2017. In order to make use of the 

library, it had to be updated. Fortunately for us, Android always maintained backward compatibility 

of its hardware features, so most of the code in the library still worked. However, within the last 

four years, Google had created an IDE (integrated development environment, or an application that 

helps you write and then compiles code) called Android Studio specifically for Android 

development, and all Android development had to be done using that by the time we created our 

app. Since Funf had stopped being updated before Android Studio existed, the project was 

structured in a way that was compatible with Eclipse, the IDE that was used for Android 

development at the time, but not with Android Studio. Therefore, the one change that we did have 

to make to Funf was modifying the project structure to be compatible with Android Studio.  

 In order to make it easy to migrate projects from Eclipse, Android Studio used the same 

programming language and file organization system as Eclipse did, so that the only change that had 

to be made in order for projects made in Eclipse to work in Android Studio was the addition of 

several configuration files for its new build system. Specifically, Android Studio uses the Gradle 
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build system, which looks at a set of predetermined configuration files to find some information it 

needs to build the app. This included information like the minimum and targeted versions of 

Android, the dependencies the app had and what versions of those should be used, and the location 

of the source files. In order to migrate Funf to Android Studio, we essentially had to create the files 

necessary for Gradle to build it.  

The Gradle build system required several configuration files to be present in the project in 

order to run, which Funf did not have. While these files can be lengthy, most of the contents are the 

same for almost all projects. Android Studio creates these files whenever a new project is made, so 

we started by creating a blank project for Funf and copying the existing code into it, and then 

figuring out what needed to be changed from the automatically generated Gradle files. As it turned 

out, the default settings were almost all correct; the only thing that had to be added was the third-

party dependencies that Funf itself required. 

We ran into one unexpected problem while adding Funf’s dependencies to the Gradle files. 

The Gradle file that determined dependencies had to contain a list of libraries by package name, and 

if no version number is provided, it defaulted to the latest one. By looking at the compilation errors 

in the Funf code with no dependencies provided, we determined that it only had two external 

dependencies, one of which was the Android support library necessary to ensure that the old sensor 

code still worked, and the other of which was Google’s Gson library. The most recent version of the 

Android support library worked, since the main function of the library was to allow backwards 

compatibility, but the most recent version of Gson did not.  

Rather than try to update Funf to use the most recent versions of Gson, which would have 

required us to dive deep into the Funf source code in order to figure out what calls no longer 

worked and how to fix them, we simply decided to use that Gradle file to set the version of Gson to 
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the version that Funf would have used when it was in development. At first, we assumed that that 

would be the latest version released before Funf development stopped. Setting the version only 

required adding a version number to the Gradle file, but that version did not turn out to be the 

correct one either.  

We ended up determining the correct version of Gson by trial and error: since the most 

recent version of Gson released before Funf development stopped didn’t work, we tried the prior 

version, and when that also didn’t work we tried the one before that, and so on until it worked. 

While this was time-consuming, we eventually found a version that the Funf code compiled with, 

and set the Gradle file to always use that version in the future so that later updates to Gson would 

not cause the updated Funf to break again. Once that was done, we could start using Funf as a 

library in our project. 

The data produced by the Funf-based data collector application was uploaded in the JSON 

format, with each sensor having its own fields, as shown in Table 3. 

Sensor Type Example JSON Data Sent By Funf Features Used By Neural 

Net 

WiFi Sensor Data {"BSSID": "e0:88:5d:9a:0c:7d", 

"BSSLoadElement": "0500610000", 

"ChannelMode": "11n_HT20(45.0)", 

"SSID": "HOME-0C77-2.4", 

"SamsungVsie": "null", 

"autoJoinStatus": 0, 

"blackListTimestamp": 0, 

"capabilities":"[WPA-PSK-CCMP+TKIP][WPA2-

PSK-CCMP+TKIP][WPS-PBC][ESS][BLE]", 

"centerFreq0": 0, 

"centerFreq1": 0, 

"channelWidth": 0, 

"distanceCm": -1, 

"distanceSdCm": -1, 

"Flags": 0, 

"Frequency": 2437, 

"is5GHzVsi": false, 

BSSID, distanceCm, 

operatorFriendlyName, 

venueName 
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"is80211McRTTResponder": false, 

"isAutoJoinCandidate": 0," 

Level": -30, 

"numConnection": 0, 

"numIpConfigFailures": 0, 

"numUsage": 0, 

"operatorFriendlyName": "" 

,"seen": 0, 

"Timestamp": 1510733136.151,"tsf":1124860494, 

"Untrusted": false, 

"venueName": "", 

"wifiSsid": 

{"octets":{"buf":[72,79,77,69,45,48,67,55,55,45,50,

46,52,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 

"Count": 13}}} 

} 

Accelerometer and 

Magnetic Field 

Sensors 

(Orientation) 

{"accuracy": 3, 

"Timestamp": 1510733197.866043, 

"X": -0.7278373, 

"Y": 7.469909, 

"Z": 9.481039} 

Timestamp, x, y, z 

GPS Location {"mAccuracy": 10.0, 

"mAltitude": 233.0, 

"mBearing": 0.0, 

"mElapsedRealtimeNanos": 1133051794991, 

"mExtras": {"satellites":8}, 

"mHasAccuracy": true, 

"mHasAltitude": true, 

"mHasBearing": false, 

"mHasSpeed": true, 

"mIsFromMockProvider": false, 

"mLatitude": 39.79432262, 

"mLongitude": -85.77671905, 

"mProvider": "gps", 

"mSpeed": 0.0, 

"mTime": 1510733145000, 

"Timestamp": 1510733144.40} 

mLongitude, mLatitude, 

mAccuracy, 

mBearing, 

mElapsedRealtimeNanos, 

mTime 

Battery Sensor {"capacity": 280000, 

"Charge_type": 0, 

"Current_avg": -13, 

"Current_now": 0, 

"Health": 2, 

"Hv_charger": false, 

Timestamp, Level 
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"Icon-small": 17303412, 

"Invalid_charger": 0, 

"Level": 100, 

"Max_charging_current": 0, 

"Online": 6, 

"Plugged": 2, 

"Pogo_plugged": 0, 

"Power_sharing": false, 

"Present": true, 

"Scale": 100, 

"Self_discharging": false, 

"Status": 5, 

"Technology": "Li-ion", 

"Temperature" :284, 

"Timestamp" :1512328712.715, 

"Voltage": 4335} 

Screen Sensor {"screenOn":true, 

"timestamp":1516648604.32} 

Timestamp, screenOn 

Table 3: Sensor types and features used and examples of their JSON data 

 

3.5 Initial Data Gathering Study 

In order to test LOBS, we designed two separate studies. The goal of the initial study was to 

find a threshold for how many days worth of data would need to be examined from any given user 

before the application began to return consistent trust scores when a sample of said user’s data was 

compared to their behavioral profile.  

In this study, we pushed the Android app we had developed onto the Google Play store as an 

open beta, then asked friends and family to forward the link to the app to people they might know. 

We were able to recruit fifty participants from coworkers of family and friends to download the app 

this way, and acquired nearly 8 gigabytes of data over the course of a single night. When running 

this data through the training and prediction algorithms it became apparent that the additional data 

those functions generated filled up several terabytes worth of memory, and that our initial setup for 

storing data was inefficient. If the data was going to be properly analyzed for the purpose of the 
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study, LOBS would have to train and run predictions on one user at a time. In order to determine 

just how many days of data would be needed, a Python script was created which would compare 

samples of each user’s data against several behavioral profiles for that user. For example, the first 

behavioral profile consisted of a full day of data from the user, the second consisting of two full 

days, continuing up to two weeks of data. 

However, since all the participants in this study were recruited by word of mouth and often 

secondhand, participants did not know how to keep the data collector running after it was installed, 

so none of them successfully collected two full weeks’ worth of data. In fact, most participants had 

less than a day of data, so the script varying the amount of training for them produced no results. 

We eventually determined, using data from two of the researchers, that two weeks’ worth of data 

was the maximum that LOBS could train and predict for in reasonable time, but that was too small 

a sample size for us to determine how the accuracy of the system was affected. 

 

3.6 Post Study Changes 

 While conducting the first study, several issues were discovered with that iteration of the 

data collection application. The first issue was observed during the initial attempts at running the 

training and predicting algorithms on the data from the fifty initial study subjects: early in the 

process, the storage of the virtual machine we were using in the WPI research cluster was 

completely full of the resulting data. After investigating where all of the extra data came from, it 

became obvious that the recently added accelerometer and magnetic field sensors were being 

sampled more frequently than the other sensors and generating far too much data. While the other 

sensors polled every twenty to thirty minutes, the accelerometer was polling five times each second 

for the first minute out of every hour. When compared to the other data collected by the application, 

the vast majority of it came from the accelerometer.  



39 

 The server becoming full due to this abundance of data was not the only consequence of this 

overly frequent polling. While LOBS was being tested, the device running it would noticeably rise 

in temperature whenever the device was beginning to poll the accelerometer and magnetic field 

data. Additionally, LOBS was reported to draw a substantial amount of battery power. As a result 

of the extremely rapid sampling, it was drawing ten to a hundred times more power than other 

applications on the device. Even beyond the issues of storage and battery consumption, users 

without unlimited data available to their mobile devices were at risk of running out of data. Due to 

LOBS periodically uploading the information polled from the sensors to our servers, it required the 

use of network data whenever the user was not connected to a WiFi network. Whenever the 

application began to sample the new data and send it to the server each hour, if the user was not on 

WiFi, they would use up their cellular data allotment very quickly. Even if the user was on WiFi 

most of the time, the original version of the app could easily use hundreds of megabytes of mobile 

data in less than a day in a few data uploads that happened to occur while the user wasn’t 

connected. In order to recruit more participants to future studies, keep the interest of the current 

participants, maintain convenience of the application, and improve its scalability, something needed 

to be done to fix these issues. 

 The first step in doing so was to adjust the intervals at which the sensor data recorded by the 

data gathering application sent the information to the servers. However, in order to ensure that 

intruders could be detected by the device relatively quickly, we attempted to avoid waiting longer 

than half an hour between each upload. Also, in order to reduce the data usage of the application, 

LOBS was modified to first check if the device was connected to a WiFi network before uploading 

data to the server. In the event that the device was not connected to the Internet when it was 
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scheduled to upload its sensor data, the application would simply discard the data, as we found that 

we could gather plenty of data that way anyway. 

Then, in order to make LOBS more efficient, we wrote a Python script to convert the multi-

file data format we already had to a single-file-per-subject format. Instead of having each individual 

data point sent from a subject’s device stored in a separate file, which is what we did in our original 

version, we stored all data points for each subject in a single array in a single file, with each index 

in the array being a JSON object containing a single data point. Once we had converted the data 

from the initial study to the new format, we determined that the new data system was able to train at 

an average rate of one data point every 0.296 seconds, which was an improvement to performance 

by roughly a factor of four. For example, our initial trial only made it through testing the 

information of 3 users after running for two weeks; however, after changing to the new format for 

the information in order to perform less file I/O, the same task was accomplished for all subjects in 

a matter of hours. With this change, the amount of time to process data increased in a linear 

relationship with the amount of data points to process. This relation is depicted below in Figure 4. 
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Figure 4: Training duration versus data points after minimizing file I/O. 

 

After converting the data format of LOBS, we modified the activation function of the neural 

network from Sigmoid to TanH. This decision was motivated by the popularity of the TanH 

function in neural network applications. In order to get an estimate as to whether this change would 

be beneficial to our particular neural network, we compared the training time of several test neural 

networks using Sigmoid and TanH provided by an online test suite by the name of “a Neural 

Network Playground” [6].  Unfortunately, LOBS was unable to train quickly enough to adjust 

parameters as often as desired, so we used the online sandbox to develop an educated guess as to 

the accuracy and time efficiency of training a neural network with our intended parameters. In all 

cases, running networks with TanH resulted in greater accuracy, and results were achieved in 

roughly one third of the time [6]. After this change in the activation function was implemented, the 

efficiency of the neural net improved again to training at an average rate of one data point every 
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0.171 seconds. These training times were measured on a RedHat virtual machine with 11 gigabytes 

of RAM and a four-core Intel processor with 2097.570 mHz speeds. These training times are 

depicted below in Figure 5.

 

Figure 5: Training duration versus data points after minimizing file I/O and converting activation function to TanH. 

 

 After converting the neural net to use TanH as the activation function, we decided to try to 

improve other hyperparameters of the neural net. The two parameters we modified were the size of 

the two hidden layers in the neural network and its learning rate. In order to determine the optimal 

values for these parameters, we wrote and ran a script to randomly select fifty combinations of 

parameters and then train and evaluate the loss on a particular subject’s data. We would have liked 

to test more in order to get more precise results, but did not have time, as it was very time-

consuming to evaluate the different parameters. In order to ensure that the effects of changes in 

hyperparameters were not confounded with those from differences in the data, we picked a subject 
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before making any changes and used that subject to evaluate all of them. We picked a subject that 

had enough data to get meaningful results but not so much that the network would train very 

slowly, in order to try as many combinations of parameters as possible in the time we had. The 

range for the randomly selected sizes of hidden layers was two layers of between two and sixteen 

nodes each. The range of values investigated for the learning rate was between 10-6 and 10-2. The 

script determined that the best combination of parameters was seven nodes per layer and a learning 

rate of 0.0082. The shape of the new feedforward neural network with seven nodes per layer, 

instead of the initial eight, is displayed in Figure 6 below. 

 

Figure 6: The reduced size, seven nodes per layer shape of the new neural network. 
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3.7 SONA Study 

 In our second study, we posted our app as a study on WPI’s SONA system, in which 

students can participate in studies for credit. The participants in the study were students that signed 

up through that system, and were given credit for their participation once we got enough data from 

them. 

In this study, we tried to collect some additional personal information about the participants: 

age, gender, and occupation. We did this on the basis that this information may help provide 

insights on which metrics work best for accurately authenticating different groups of individuals. 

The personal information was anonymized and linked to the gathered data of the participant. 

However, no participants recruited by word of mouth filled out the form where they provided that 

information. The participants recruited by the SONA study did fill out the form, but the entire 

demographic listed their occupation as student, and their age ranging from 19-22, so we decided 

against trying to draw any conclusions from it.  

As with the first study, once installed, the Android app collected and sent data to our server 

on the WPI research cluster. Once two weeks of data were gathered from the subjects, we ran the 

trust score prediction Python scripts previously mentioned on their data to generate trust scores for 

analysis. 
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4. Implementation 

Once we had decided on a sensor data-gathering library (Funf) and a machine learning 

library (TensorFlow), we set up the Node.js server to receive data from the Funf-based application 

on users’ devices and pass it to the TensorFlow library. We had three paths on the server, one of 

which received the data, a second which ran the TensorFlow prediction algorithm and sent back a 

trust score, and a third which collected anonymous data about the subject for data analysis (age, 

gender, and occupation). The three paths defined in the Node.js server are outlined in Table 4 

below. 

Server Path Description Example JSON 

/getData Received Funf data and wrote 

it to a file. 

{"datetime": 

"Nov0919:29:22017", "data": 

{ 

"Accuracy": 3, 

"Timestamp": 

1510284566.034270, 

"X": 10.002563, 

 "y" :0.24931335, 

 "z": 0.87023926}} 

/getTrustScore Ran the TensorFlow prediction 

algorithm and sent back a trust 

score.  

{"response": "Data Read 

Successfully.", 

 "trustScore": 0.993, 

 "trusted":trusted} 

/writeAdditionalInfo Collected anonymous data 

about the subject for data 

analysis. 

{"Age": "21", 

"Occupation": "Student", 

"Gender": "Male"} 

Table 4: The three paths on the Node.js server and example JSON for each path 

 

The first path received as its parameters a unique encrypted device UUID, the date and time 

on which the data was sent, and the sensor data generated by Funf in JSON format.  
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It then wrote that data as a new entry in a JSON array contained in a JSON file associated 

with the UUID of the subject. The second path took in the device UUID as a parameter, and ran the 

TensorFlow prediction algorithm using the data for that UUID as input. This algorithm returned a 

trust score, which the Node.js server then sent back to the Android device, along with whether or 

not the user of the device met the threshold. The third path took in the user input provided in the 

Android application, along with the device’s UUID, and then wrote that information in a JSON file 

on the server. Figure 7 below illustrates the workflow between the three paths on the Node.js server 

and the Android application. 

 

Figure 7: The workflow between the paths on the server and the Android application. 

Once we updated Funf to work with current Android systems, we created a simple Android 

application, using Funf as a dependency, which periodically sent the data Funf collected to the 

Node.js server. We then modified the TensorFlow code to work with this data, and used it to 
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compute prediction trust scores for the data. A separate Python file was set up for each sensor type, 

with TensorFlow code to train and predict for that sensor, in order to separate the TensorFlow 

training by sensor type. To train the TensorFlow neural net, the training algorithm was run on each 

sensor separately with sample data gathered for that user in the past. 

The original neural net we used had two layers and eight nodes per layer. It took in JSON 

files containing data sent from Android devices using Funf as input, then trained on those files 

individually for each sensor type. Once trained, the neural net used as input all JSON data for the 

appropriate sensor taken from the date range specified for prediction (one to fourteen days), with 

the training data being the first three quarters of that and the test data being the last quarter, then 

computed a trust score for each sensor type. The original layout of the neural network with eight 

nodes per layer is outlined in Figure 8 below. 

 

Figure 8: Eight node per layer structure of our neural network 
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Once the neural network had produced scores for each sensor individually, a final trust score 

was produced by averaging together the reported trust score for each sensor. The final trust score 

was then written to a text file associated with that subject’s UUID.  

These trust scores could then be read by the trust score request API call from that subject’s 

Android device, and sent back to the device for authentication. The workflow between Funf on an 

Android device, the Node.js server, and the Python TensorFlow scripts thus served as a way for 

devices to be authenticated via behavioral biometrics. All of this code, as well as the trust scores, 

were stored in a private Github repository as well as on the WPI research cluster, both as a backup 

and as a way of managing access to the code by multiple programmers for the purpose of 

maintaining the codebase. 

 The code used in our TensorFlow implementation is outlined below. 

 

regressor=tf.contrib.learn.DNNRegressor(feature_columns=feature_cols, 

                    hidden_units=hidden_units, 

                    model_dir=networkSetup.MODEL_DIR, 

                    activation_fn=tf.nn.tanh,                    

optimizer=tf.train.GradientDescentOptimizer( 

                    learning_rate=learning_rate ), 

                    config = tf.contrib.learn.RunConfig( 

                    save_summary_steps = 10000000)) 

 

The above code snippet created a neural network with the specified parameters, which are 

the ones that LOBS used. Feature_cols was a variable containing the components of the device 

sensor data we wished to feed into our neural network. The hidden_units variable was a list of 

numbers—one for each layer in LOBS—which determined how many ‘neurons’ we wished to put 

into that layer. Model_dir was a variable file path which contained the ID of the user whose data 

were being trained on and the corresponding sensor type. The activation_fn parameter corresponded 

to the activation function used in the neural network. In general, activation functions are used to 
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determine whether or not each “neuron” will fire a “synapse” to other nodes when information is 

passed to it.  

 

def train(filepath, isAuthentic, hidden_units=[8, 8], learning_rate=0.001): 

 regressor = getRegressor(hidden_units, learning_rate) 

 regressor.fit(input_fn=lambda: input_fn(filepath, isAuthentic), steps=1) 

 

 

In order to train a neural network for future use, we used the above function. This function 

took in a file path, a format for number of layers and how many neurons should be used in each 

layer, and a learning rate which corresponded to how much the training network would change with 

every new piece of data it was trained on. Inside the train function, we called getRegressor to build 

our neural network to train using the specified variables. 

 

def evaluate(filepath, isAuthentic, hidden_units=[8, 8], learning_rate=0.001): 

 regressor = getRegressor(hidden_units, learning_rate) 

 ev = regressor.evaluate(input_fn=lambda: input_fn(filepath, isAuthentic), steps=1) 

 loss_score = ev["loss"] 

 print("Loss: {0:f}".format(loss_score)) 

 return loss_score 

 

The evaluate function computed the average loss that resulted from training the neural 

network. It used the same variables as train in order to do so. For each data point fed into the 

network, we developed a loss score, which was a measure of error in a neural network’s ability to 

classify the training input. Once the neural network was finished training, we obtained the output of 

this function which was an average of all loss values recorded. 

 

def predict(filepath, hidden_units=[8,8], learning_rate=0.001): 

 regressor = getRegressor(hidden_units, learning_rate) 

 y = regressor.predict(input_fn=lambda: input_fn(filepath)) 

 predictions = list(itertools.islice(y, networkSetup.getNumRows())) 

 sum = 0 

 for p in predictions: 

  sum+= p 

 average = float(sum)/len(predictions) 

 print('average prediction over wifi sensor objects: %f' %(average)) 

 return average 
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The predict function was similar to its predecessors train and evaluate. In the same way, it 

received a format for hidden layers and a learning rate, and used those inputs to compare a user’s 

testing data (typically the last quarter of their total data) against a neural network which had trained 

on the rest of their data. This process iteratively worked through the testing data set, and returned an 

average prediction score which represented how confident LOBS was that the testing data and 

training data were provided by the same person.  
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5. Results 

5.1 Initial Study Results 

 In our initial study of fifty participants, we ran a Python script that would generate trust 

scores for each participant based on their own profile, to evaluate the effectiveness of LOBS in 

authenticating the correct person, against those of four other randomly selected participants, to test 

locking out the wrong ones. The impostors we tested against were the same for everyone. 

 With the data from that study, we experimented with varying some parameters of our 

authentication algorithm to see what produced the best results. Initially, we measured results by 

calculating the F1 score of the classifications based on various required trust score thresholds for 

authenticity. The F1 score is the harmonic mean of precision, which is the fraction of the time that 

cases labeled as authentic by the classifier being evaluated are actually authentic, and recall, which 

is the fraction of the authentic cases that are labeled as such by the classifier. It is impossible to 

draw conclusions from comparing F scores computed with differently sized data sets, so we used 

the F score primarily to compare the results LOBS obtained with different parameters for the same 

data set. For the authentic cases in our data set, we generated trust scores for every participant, 

using the first three quarters of their data as the “historical” data for training and the remaining 

quarter as the “new” data that LOBS would determine the authenticity of. For the inauthentic cases, 

we matched the “historical” data of each participant with the “new” data of each other participant. 

This meant that we had many more inauthentic cases than authentic ones (skewed data), which 

artificially lowered all our F scores, but did not make the comparisons between our scores less 

effective. In order to streamline the process of experimenting with multiple trust score thresholds, 

we generated all the trust scores only once, and then wrote a script that would generate F scores by 
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classifying those trust scores into “authentic” or “not authentic” for any of several given trust score 

thresholds. 

We observed how frequently LOBS authenticated users and impostors with values of trust 

score thresholds ranging from our initial guess of 90% up to a cutoff of 99%. We tested every 

integer number of percentage points, as we found simply by looking at the data that many of the 

trust scores produced were above 90%, in order to find which cutoff point yielded the highest F1 

score. A higher F1 score indicates a higher degree of accuracy for LOBS when using the associated 

trust score threshold. The F1 scores for every trust score threshold in that range are shown in Figure 

9, which shows that the optimal trust score cutoff for us was 93%. 

 

Figure 9: F1 Scores at varying trust score thresholds for authenticity for our initial study. 

  

 After some discussion from our team, we decided that the F1 score was not the ideal 

measure of accuracy for our network, since for our application, incorrectly authenticating the wrong 
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person was a much more serious error than failing to authenticate the right one. Consequently, we 

decided to weight false positives more than false negatives in our evaluation by a factor of 10, by 

using the F0.1 score instead of the F1 score. Other than the different weighting of false positives 

and false negatives, the F0.1 score is the same as the F1 score. The F0.1 scores LOBS obtained for 

the same set of trust score thresholds are shown in Figure 10. When evaluated with the F0.1 score, 

the best trust score threshold still turned out to be 93%. 

 

Figure 10: F0.1 scores at varying trust score thresholds for our initial study. 

 

In an effort to determine how many days’ worth of data we needed to gather to get useful 

data for any given subject, we also tried to generate predictions with the network being trained on 

various numbers of days of data, ranging from 1 to as many as we had for any given subject. 

However, this did not turn out to be very useful, as most of our subjects had too little data for 

varying the number of days to make a difference. The only conclusion we could draw from that 
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experiment was that having more than two weeks’ worth of data for any one subject slowed the 

system down without affecting the results. Consequently, our results were generated by using all the 

data produced by the subject, unless it was over two weeks’ worth, in which case we only used the 

last two weeks. 

 

5.2 SONA Study Results 

When the data from the SONA study had been gathered, we ran the modified neural 

network to generate trust scores for each of the participants when trained on their own and when 

trained on each other participant’s data. Strangely, the trust scores generated by the modified neural 

network were universally very high: none of them fell below 0.9, and almost all were above 

0.99999. Consequently, although we had originally intended to use the same trust score threshold as 

we had found to work in the prior study, it was apparent that this would produce very poor results. 

Instead, we determined what trust score threshold was appropriate for the SONA data separately. 

We set the trust score threshold for authentication to values of 1 - 10-X for values of X from 1 to 15. 

In other words, we tried 0.9, 0.99, etc. until we reached 1 - 10-15.  
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Figure 11: F1 and F0.1 scores of LOBS with various trust score thresholds on the SONA study data. 

 

We found that, for both the F1 score and the F0.1 score, the best-performing trust score 

threshold for the SONA data was 1 - 10 -10 , as shown in Figure 11. Interestingly, although the trust 

scores were exceedingly high for the SONA data, the F scores we got with a similarly high 

threshold were substantially better than those we got with the older data: the F0.1 score for this trust 

score threshold was 0.501, whereas the best we achieved with the older data was 0.236. However, 

since F scores cannot necessarily be compared with different data sets, that does not mean that the 

SONA system actually outperformed the older one. 

To determine if the new parameters actually outperformed the old ones on the same data set, 

we tried running the network with the original hyperparameters on the SONA data, in order to get F 

scores that we could compare. The best trust score threshold with the old parameters was 90%, with 

a F0.1 score of 0.288, which was much lower than the F0.1 score of 0.501 that we obtained with the 
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new parameters. Since that was using the same data, the F scores were comparable, which indicated 

that the network with the new parameters did outperform the network with the older parameters on 

the SONA data. 
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6. Discussion 

6.1 Study Accuracy 

For both our early study and our later SONA study, the F0.1 scores we produced were 

substantially better than what a random classifier would generate with that distribution of positive 

and negative cases. A random classifier might seem easy to beat, but it was the only comparison we 

had, since there is no general definition of a “good” F score. With the original study’s data, where 

we had 50 people, and generated predictions for each person with both their own data and each 

other person’s, a random classifier would produce an average F0.1 score of 1.98%. Our classifier 

obtained an F0.1 score of 23.6%, which is a significant improvement. With the smaller SONA 

study, which only had 6 participants, a random classifier would generate an average F0.1 score of 

16.7%. Our classifier, with the newest learning rate, shape, and activation function, produced a F0.1 

score of 50.1%. While we had no data for competing algorithms that we could compare our results 

to, LOBS was clearly an improvement over random guessing. Therefore, this method of 

authenticating users was recognizing data that distinguishes people, if imperfectly. This meant that 

the prototype version of LOBS was working, at least to some degree.  

We also tried running the older study’s data in the network with the new hyperparameters 

and the SONA study’s data in the network with the original ones, in order to evaluate the effect of 

changing the hyperparameters. Using the neural net with the new parameters, we achieved a F0.1 

score of 5.06% on the larger study. This was lower than we obtained with the original parameters. 

However, running the network with the original parameters on the SONA data produced a 

maximum F0.1 score of 28.8%, which is lower than the new parameters as well. From that, we 

concluded that the most likely explanation was that, because the new parameters were optimized 
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with a subject with a substantial amount of data, those parameters were most appropriate for other 

subjects with a similar amount of data. Since the subjects in the SONA study generally had more 

data than those in the earlier study, they might have been closer to the test subject that those 

parameters were optimized for, and consequently the new parameters could have performed better 

with the SONA study’s data than with that of the original study. 

Additionally, despite the lack of success of the day-by-day analysis, we did determine, by 

looking at the trust scores for subjects with differing amounts of total data, that subjects with more 

data were generally more likely to be correctly authenticated and less likely to authenticate 

impostors. While we could not determine a specific threshold at which more data collected 

consistently produced better results, we found that, when trained on subjects with at least two 

weeks of historical data, LOBS’ accuracy at verifying the correct user and detecting impostors 

stabilized, and having more historical data slowed the network down greatly without noticeably 

improving the results further. This was a very rough estimation, due to the fact that the amount of 

data we gathered for any given subject ranged from a couple of hours to more than two months’ 

worth of data. Unfortunately, we had very few subjects who had at least two weeks’ worth of 

historical data to train on, so although we could find out how much of that data was needed to 

produce consistent results for each of them, we could not precisely determine the amount of data 

required to produce consistent results in general. All users generated consistent results with at least 

two weeks of historical data, though, so we concluded that at most two weeks’ worth of data were 

generally required to obtain good results.  

It is also worth noting that that amount of time was what was required for all metrics to 

produce effective classifications, and individual metrics might do so faster. Most notably, the 

accelerometer could produce consistent results in its trust score evaluations with a few minutes’ 
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worth of data, but LOBS as a whole would not produce accurate results until each metric did so 

individually, since the final trust score produced was the average of those produced by each metric. 

 

6.2 Energy Consumption 

The data collecting app itself consumed about 332.1 mW during an accelerometer sensor 

polling session. In comparison, the data collecting app used in Rachuri et al. [14] consumed 561 

mW. Notably, the Rechuri application used the same hard sensors as our application, which would 

typically result in similar power consumption. The device used in Rachuri et al. [14] ran the 

Android 4.4 operating system, while most devices used in our study used the Android 7.0 operating 

system. Therefore, it is likely that the much newer operating system, coupled with newer hardware 

is more energy efficient, which may have impacted these results. 

 

6.3 Authentication Speed 

Our original goal for the speed of LOBS was to have a trust score be available to 

authenticate or deauthenticate the user within half an hour of starting to use the device, once the 

user had been using LOBS and collecting historical data for at least two weeks. The goal for the 

speed of returning trust scores was slower than would have been ideal, since we wanted to be able 

to deter intruders almost immediately, but we decided to choose half an hour in order to allow 

LOBS to collect enough data and process it. 

 In addition, while we were able to reduce the amount of time to train and predict a trust 

score from a user’s data by roughly a factor of eight from our initial prototype, LOBS still took at 

least 10 minutes to train on the already collected data and produce a trust score. This further limited 
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the timeframe for data collection. Once we built LOBS, however, we realized that in order to 

accurately predict a trust score, at least 300 points of test data were required. While we could 

produce that much data with under a minute of collection, almost all of that data would come from 

the accelerometer, resulting in trust scores based almost entirely on accelerometer data.  

Consequently, we concluded that  LOBS could be made to run fast enough to meet our goal, 

but we could only do so by effectively ignoring all metrics we used other than accelerometer. This 

indicates that, if LOBS is to reach our goal for performance, we need to use only sensors that gather 

data as fast or nearly as fast as the accelerometer does, which none of our other metrics did. Future 

work on LOBS might therefore include finding other metrics that produce data at that pace, in order 

to have more than one sensor gather useful amounts of data within our target timespan for 

authenticating or deauthenticating the user. 
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7. Future Work 

7.1 Integration with Android Operating System 

Our ability to gather distinguishing data for our users was heavily limited by the fact that 

our data gathering application was a third party application and therefore did not have access to 

some types of data. Specifically, the Android operating system gathered data on how the user uses 

the touch screen and the keyboard, which prior studies had demonstrated were very useful for 

distinguishing users, but did not give third party applications access to this data at the time of this 

study. Additionally, as a third party application, it was impossible for us to actually modify the 

login flow for the phone.  

Therefore, further research would be much more effective if done by a group that is 

associated with a mobile device company, which would give them access to touchscreen and 

keyboard data, and also permit them to incorporate LOBS into the device at the operating system 

level. With this association, our application could be improved to capture a user’s usage of the 

touch screen for taps and swipes, and typing tendencies through use of the keyboard. Furthermore, 

with access to the operating system, the application would be integrated as a backup authentication 

method, prompting the user to perform their typical authentication only when LOBS does not 

sufficiently trust the user. In contrast, the final version of LOBS only calculated this level of trust, 

but had no means of acting upon it. It is also worth mentioning that implementing a similar system 

as part of the operating system will ensure that sensor data can be gathered at all points of the day, 

instead of relying on users interacting with an application on a regular basis.  
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7.2 Faster Metrics 

When trying to optimize the performance of LOBS, we found that, of the metrics we used, 

only the accelerometer actually produced enough data to authenticate or deauthenticate people with 

any degree of accuracy by the time that we wanted to have LOBS return a trust score. This 

effectively meant that, if we tried to authenticate people as quickly as we originally were trying to, 

we would only be using one metric. We would like to have more metrics that gather data fast 

enough to produce meaningful results within that time frame in order to authenticate people more 

accurately at that speed. 

 

7.3 Additional Devices 

7.3.1 Other Smartphone Operating Systems 

In addition to adding different sensor types and access levels, another way to potentially 

improve data and prediction quality is to include different devices. Our studies only used Android 

phones to collect data, but there are other devices that could be used. For mobile phones, both 

iPhones and Windows Phones are valid options for a mobile behavior-based authentication system. 

In fact, the only limitation for a device being able to use a system such as this is that it gather 

enough data in the course of normal interactions with the user to verify the user’s identity, which is 

true of all modern smartphones that we could find. 

 

7.3.2 Other Device Types 

Along with phone data collection, there are a variety of other device types that could be 

used to collect behavioral data. For example, smart home devices have had a rise in popularity in 
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recent years. Since these devices are constantly listening to their users’ voices, and occasionally 

being interacted with in other ways, as the users go about their daily activities, they collect valuable 

behavioral data that can be later used for authentication. Similarly, smartwatches were an accessory 

with growing popularity at the time of this study. Like phones, they collect large amounts of data 

from their wearers throughout the day, including heart rate, gait, GPS, and nearby WiFi and 

Bluetooth devices. Future studies can take advantage of these various devices, using the framework 

provided by this study, in order to create a wider range of functionality for data collection. This 

could be used either to more accurately authenticate people into their phones or to authenticate them 

separately into their other devices. 

 

7.4 Other Neural Networks 

Additionally, our study only used a feedforward neural network to create trust score 

predictions. There are many other types of neural networks, such as a recursive neural network, or 

RNN. Future studies could take advantage of the various types of neural networks and attempt to 

generate more accurate trust scores than we did by using them. 

 

7.5 Additional Experiments 

 There are some other experiments we could perform in order to determine the optimal 

amount and types of data used to predict the best trust scores. One such experiment would be to run 

training and testing on smaller subsets of each subject’s data, starting with the subject’s complete 

data. In each iteration, the amount of data used by the neural network would be smaller, and the 
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network’s accuracy would be evaluated for that amount of data. This experiment would help 

determine the minimum amount of historical data required to accurately identify impostors.  

 Another possible experiment would be to determine what metrics are the most effective for 

classification by running LOBS on data that excludes one or more of the metrics and observing 

whether or not the accuracy of LOBS is impacted as a result. This experiment would help determine 

if any metrics were unnecessary, and therefore could be taken out of LOBS without making it any 

less effective. If any metrics were determined to be not worth using and consequently removed, this 

would improve the efficiency of LOBS in two ways. The data collection app would not need to 

collect and send the data for those sensors to the server, thereby saving battery power and taking 

less time to collect data. In addition, the neural network would not need to train on or predict trust 

scores for those sensor types, which would reduce the time it takes for LOBS to produce a trust 

score for the user. 
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8. Conclusions 

In this paper, we designed and implemented a system, called LOBS, to implicitly 

authenticate or deauthenticate users based on their behavior, without the user needing to 

consciously provide any information. If incorporated into the normal login flow of smartphones, it 

would enhance phone security by requiring the user to enter their password less, which would make 

users more willing to use more secure methods of explicit authentication even if those are less 

convenient to enter. LOBS gathered data on the phone’s location, using the GPS sensor and the 

observed WiFi networks; orientation, using the accelerometer and magnetic field sensor; battery 

usage, using the battery sensor; and the times that the screen turns on and off. It then trained a 

feedforward neural network, created using TensorFlow, on the data that was gathered for each user. 

When the user needed to be authenticated or deauthenticated, LOBS would produce a trust score by 

running the neural network that was trained on the user’s older data on the latest data. This trust 

score would reflect how confident the network was that the newer data was from the same user as 

the older data. If it was above a certain threshold, the user was authenticated; if not, the user was 

deauthenticated. Modifying the phone’s login flow to incorporate LOBS was beyond the scope of 

this project, but if we had been able to do that, the user would have been logged out and required to 

log in with a password or some other form of explicit authentication. 

While LOBS did not perform well enough to be commercially marketable as an addition to 

normal passwords, it performed much better than random chance. We measured the effectiveness of 

our system using the F0.1 score, which is the harmonic mean of the precision and recall of the 

system’s classification of users, with false positives (impostors being authenticated) being weighted 

ten times as highly as false negatives (authentic users being locked out), since false positives are 

more of a security issue than false negatives. Our goal was to reach a score of 90%. With our first 
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large study, which we used to fine-tune the system, we achieved an F0.1 score of 23.6%, whereas a 

random classifier with the same data would have achieved a score of 1.98%. With our second one, 

which we used to test the improved system, we achieved a score of 50.1%, whereas a random 

classifier on that data would have achieved a score of 16.7%.  

Although we did not achieve our targeted level of accuracy for LOBS, the fact that we could 

distinguish people’s actual data from that of an impostor with some degree of reliability with this 

method is promising. Considering that we had less data to work with than we would have liked and 

that we did not have access to several of the metrics that had been demonstrated to be the most 

effective, such as keyboard usage and touch screen data, the fact that it works at all is an 

accomplishment. Our results, while not exemplary, showed a decent proof of concept for a 

behaviour based mobile authentication system. We were able to create an automated, fully-

functional system that gathered sensor data and analyzed it to authenticate subjects based on their 

recent data. The F0.1 scores we determined from the results of our experiments were lower than we 

would have liked, but much higher than randomly guessing, which indicates that LOBS was 

detecting and analyzing real differences between the participants’ data. Consequently, while LOBS 

needs work, an improved version could be commercially marketable. 
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