
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2009

Mobile Robotics Platform
Jeffrey Evan Trost
Worcester Polytechnic Institute

Keith Chester
Worcester Polytechnic Institute

Mathew P. DeDonato
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Trost, J. E., Chester, K., & DeDonato, M. P. (2009). Mobile Robotics Platform. Retrieved from https://digitalcommons.wpi.edu/mqp-
all/1845

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1845?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1845?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Mobile Robotics Platform
An educational robotics system designed for academic use

A Major Qualifying Project
Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Bachelor of Science

on

March 15, 2009

by

Keith Chester
keithc@wpi.edu

Mathew P. DeDonato
dedonato@wpi.edu

Jeffrey E. Trost
jetrost@wpi.edu

mobileroboticsplatform@wpi.edu

Approved:

Prof. Michael J. Ciaraldi

Prof. Eben C. Cobb

Prof. Fred J. Looft

Project Number: MXC RBE1/ECC RBE1

Abstract

Students, particularly those that will be studying in upper–tier Unified Robotics courses at Worces-
ter Polytechnic Institute (WPI), are in need of a robotics platform that will provide a foundation
facilitating laboratory demonstrations and experiments on theoretical concepts in robotics, as well
as act as a basis for robotic projects, allowing a focus on more complicated subjects instead of
getting a groundwork system “up and running” first.

Researchers studying on the wide spectrum of topics in robotics also are able to make use of a
platform that will

• provide a base to quickly experiment with computational theoretical research, such as arti-
ficial intelligence or behavioral and navigational algorithms,

• enable electronic modularity allowing various sensors and critical equipment to interact di-
rectly with the robot,

• allow those without the prerequisite knowledge to construct a robotic platform so they may
focus their attentions towards their expertise.

The main purpose of this project is to design and prototype a modular robotics base that will
fulfill the needs of these intended audiences. This base will be modular, allowing mechanical,
electronic, and software modifications while maintaining an ease–of–use approach.

Acknowledgments

We would like to acknowledge and thank Professor Ciaraldi, Professor Cobb, and Professor Looft
for advising this project. We would also like to express special thanks to Professor Padir and
Professor Miller for their support and advice in overcoming countless problems throughout the
course of the project. Special thanks should be given to Professor Beach for taking a personal
interest in our success and all the great ideas and feedback he has provided, pro bono.

All pertinent files and documents related to this project are available in digital form from the
advising professors.

Contents

1 Introduction 1
1.1 Project Statement . 1
1.2 Report Organization . 2
1.3 Project Management . 3
1.4 Summary . 3

2 Background 5
2.1 Introduction . 5
2.2 Definitions and Foundational Knowledge . 5
2.3 Unified Robotics III and IV Course Outcomes . 7
2.4 Robot Bases and Kits Available . 7
2.5 Related Projects and Research . 10
2.6 Summary . 11

3 Problem Statement 13
3.1 Introduction . 13
3.2 Problem Statement . 13
3.3 Objectives . 13
3.4 Requirements . 16
3.5 Summary . 18

4 Methodology 19

5 System Design 20
5.1 Introduction . 20
5.2 Functional Block Diagram . 20
5.3 Subsystems . 20
5.4 Summary . 25

6 Design Details 27
6.1 Introduction . 27
6.2 Trade Studies . 27
6.3 Construction and Implementation . 32
6.4 Summary . 32

7 Results 33
7.1 Introduction . 33
7.2 Testing and Evaluation . 33

ii

7.3 Project Economics/Economic Considerations . 34
7.4 Summary . 34

8 Summary and Conclusions 35
8.1 Introduction . 35
8.2 Completion of Project Objectives . 35
8.3 What could be improved upon? . 35
8.4 Summary . 35

A Electrical Design Details Reference 41

B Mechanical and Software Design Details Reference 67

C Budget Summary 81

List of Figures

5.1 Preliminary systems–level functional block diagram of the MRP. 21
5.2 Functional block diagram of the electrical subsystems. 23
5.3 Flowchart of getDI() software routine, querying the digital inputs. 24
5.4 Flowchart of setDO() software routine, setting the digital outputs. 26

iv

List of Tables

2.1 Assumed prerequisite knowledge for Unified Robotics III and IV courses. 12

6.1 Value Analysis of candidate processor systems. 28
6.2 Value Analysis of candidate motor controller solutions. 30
6.3 Value Analysis of candidate optical shaft encoders. 31

8.1 Completion of objectives. 36
8.2 Topics to be improved upon. 38

v

Authorship

• Introduction KC
- Project Statement JET
- Report Organization JET

• Background
-Introduction KC
-Def. & Foundational Knowledge JET
-RBEIII & IV Course Outcomes KC
-Robot Bases and Kits Available KC
-Related Projects and Research MPD

• Problem Statement JET
-Objectives MPD
-Requirements KC

• Methodology JET

• System Design
-Functional Block Diagrams KC, MPD, JET
-Subsystems KC, MPD

• Design Details
-Trade Studies KC
-Construction & Implementation MPD

• Results
-Introduction MPD
-Testing & Evaluation KC
-Project Economics JET

• Summary & Comclusions
-Introduction JET
-Completion of Project Objectives KC, MPD
-Summary KC

vi

Chapter 1

Introduction

Worcester Polytechnic Institute (WPI) launched a program earning the degree of bachelor of sci-
ence for Robotics Engineering in the fall of 2007. A sequence of four courses have been introduced,
preceded by an introductory course specifically designed for the Robotics Engineering degree pro-
gram. The four–course sequence is an introduction to the “foundational theory and practice of
robotics engineering from the fields of computer science, electrical engineering and mechanical
engineering” [1]. The introductory course and Unified Robotics I and II courses have thus far
been conducted using the VEX Robotics Design System, a kit designed by Innovation First, Inc.
enabling students to easily build robots [2].

Based upon research to be presented later, it has been determined that there is a need in the
market for an affordable yet capable educational robotics platform. In particular, this market niche
currently encompasses educational systems that are either

• overpriced,

• bound to proprietary expansions,

• inadequate in their processing capacity,

• convoluted in their operating procedures,

• incompatible with different operating systems,

or a combination of these and other shortcomings. Moreover, it is noted that researchers in fields
related to Robotics Engineering also are in need of a cost–effective system.

Determining the characteristics and specifications of a system, particularly one designed for
Robotics Engineering students, would logically become clear by itemizing the descriptions of the
courses in which the system is to be used. Additional information for topics of future senior design
projects and robotic research will be presented later in this document.

1.1 Project Statement

The objective of the project is to design and fabricate a prototype modular robotics base that will
be able to meet defined goals in areas such as affordability, capability, open architecture and in-
dustry standards. This base will be easily modifiable mechanically, electronically, and within its
software. It will be designed to fulfill the needs of students in the Unified Robotics III and IV
(RBE300x) courses offered at WPI. It will also be compatible with many readily available compo-
nents and development tools. The easily–modifiable nature and ease of use will aid researchers

1

1.2. REPORT ORGANIZATION CHAPTER 1. INTRODUCTION

in quickly developing a platform in which to perform their experiments. There will be sufficient
documentation for the system and accompanying software, allowing users to easily and quickly
become familiar with it and adapt to its use.

Goals and Objectives

In general terms, the goal of the project is to enable students to complete the RBE300x course lab-
oratory exercises. It aids the students in demonstrating the course learning outcomes, facilitating
the demonstration of learning goals in the three fields comprising the Robotics Engineering dis-
cipline. Allowing students to demonstrate comprehension, analysis, evaluation, application, and
finally synthesis of these learning outcomes verifies the project’s successful implementation of the
stated goals and objectives.

Specifications and Requirements

To determine whether the project meets the intended goals and objectives, certain requirements
must be met. In particular, since the end result will be a prototype of the designed system, spec-
ifications of the system must be met, demonstrating the achievement of the desired goals. These
specifications are separated into disciplines within three categories; electrical and computer engi-
neering, mechanical engineering, and computer science.

It is best to use a scenario providing a functional description of a system’s typical operating
condition, otherwise referred to as a “use case,” often used in software engineering [3]. A use case
for the system demonstrating some characteristic specifications is as follows.

The modular robotics platform is equipped with a four–wheel powered drive train.
The system approaches a curb with a height of 10 centimeters. The system is able to
negotiate the obstacle and continue on its course past the barrier.

This use case presents a situation that the system deals with. In use cases, there are speci-
fications that are implied by the scenario. These are typically required in order to complete the
scenario. Other specifications, those that are not explicitly required by the scenario, are not re-
quirements of the system. For example, in the previous scenario, there would be a certain size
requirement that the platform’s wheels must meet in order to adequately traverse the curb. This
minimum size for the wheel is a requirement. However, strictly abiding to this use case, it is
obvious that the color of the wheel is not a requirement for the system.

Referring to the material presented in section 2.3, the required specifications for the system
begin to evolve. Using the proposed laboratory exercises and expected performance as a group of
concurrent use cases, a compilation of specifications and requirements can be extrapolated.

There are certain requirements that the modular robotics platform must meet in order to satisfy
the use cases presented. By satisfying these requirements implied by the use cases, it is ensured
that the goals and objectives of the project are also satisfied simultaneously. A complete listing of
requirements and specifications is presented in section 3.4.

1.2 Report Organization

The organization of the report is as follows. Chapters 2 through 4 are concerned with the plan-
ning and preparations for designing a Mobile Robotics Platform (MRP). In Chapter 2, background
information is presented on the problem being solved, including mention of the stakeholders in

2

1.3. PROJECT MANAGEMENT CHAPTER 1. INTRODUCTION

the project. Previous senior design projects and relevant external study is discussed, and market
research is provided to demonstrate the problem statement. Chapter 3.2 explores in more depth
the problem statement of the project, and the initial objectives to be considered as the project pro-
gresses. Also presented in Chapter 3.2 are the quantifiable requirements which will be used in
determining the success at the completion of the project. Chapter 4 expresses the methodology of
how the final prototype was designed to fulfill the requirements presented in Section 3.4.

Chapters 5 through 7, describe the design of the MRP system through evaluation and testing.
The final system design is detailed in Chapter 6, with elaboration of the subsystems comprising
the framework of the prototype. Chapter 7 illustrates the results of the system design, including
the construction, implementation, and testing of the produced prototype. The economics of the
project are presented in Section 7.3, detailing the project’s total budget and an analysis of the total
cost of the completed system for fiscal considerations in using the results of the project in Robotics
Engineering (or other) courses.

Finally, conclusions are drawn and a summary of the project is given in Chapter 8, including
possible improvements and future work in education–oriented modular robotics platforms.

1.3 Project Management

The Mobile Robotics Platform project team consisted of three students, each of whom worked
on very diverse and overlapping facets of the project. With the vast majority of the work being
done on computers and in digital form, there is always the concern of large amounts of data
being lost with if a computer crashes or a storage drive fails. To ameliorate these concerns, there
were checks in place that ensured redundant copies of critical files were made to prevent against
complete loss of work (and time) with a single software or hardware malfunction. In addition
to having redundant copies on local hard drives, a network storage space was provided by the
Electrical and Computer Engineering Department on their secure (and equally fail–safe) server,
farad.ece.wpi.edu. This also provided a common central location to allow better productivity
and easier locating of digital resources.

Another valuable resources utilized in the development of the project was Microsoft Office
OneNote. This software allowed easy collaboration and organization of data during the gathering
of information for background research. It also allowed simultaneous editing of documents with
dynamic updates. By using OneNote, the project team benefitted from a more organized approach
to research.

The additional time taken to familiarize the team with using Microsoft Office OneNote and
instilling the practice of backing-up documents and files was insignificant compared to the time
saved on multiple occasions where lost data was recovered or document creation came off with
time–saving synergy.

1.4 Summary

This paper is a presentation of the Mobile Robotics Platform and the efforts of the project team.
The project was founded as a response to poor selection in the current market for a college level
educational platform. The requirements for the platform shall be determined from analyzing the
course descriptions for the Unified Robotics courses RBE2001 and RBE2002. While determining
the requirements, use cases shall be used to determine requirements from probable scenarios of
student use.

3

1.4. SUMMARY CHAPTER 1. INTRODUCTION

The report shall be organized to cover the engineering process behind the platforms design
to its construction and testing. First, in Chapters 2 through 3, requirements shall be derived.
Chapters 3 and 4 shall cover the construction of the MRP and its methods behind its design.
Chapters 5 through 7 shall cover the design of each element of the MRP, its testing, and the end
result of the teams efforts.

The project was worked on by three students, whom worked on overlapping parts of the over-
all project. The MRP was designed, built, tested, and maintained in WPI labs. All information
was stored on the Electrical and Computer Engineering Departments network server. Microsoft
OneNote was used for team organization and compilation of research information.

4

Chapter 2

Background

2.1 Introduction

The target audience for this project is defined as university-level students studying Robotics Engi-
neering, specifically students participating in the RBE300x courses at WPI. Researchers in related
fields are considered to be the extended audience. Constructing a framework of requirements is
essential in keeping the project faithful to the problem statement. Since the result of the project
is intended to be used in Robotics Engineering courses, logic dictates that a thorough review of
these courses is needed in order to become aware of the experience and skill set exhibited by the
target audience.

Researching what is publicly available for purchase will confirm that there is no appropriate
robotic base that fits these needs.

2.2 Definitions and Foundational Knowledge

In the context of this project, a robot is considered an autonomous vehicle with means of sensing
its environment. It is not to be confused with industrial robotic arms.

A researcher that would require and use this robotic platform is assumed to be college edu-
cated or better and have a basic understanding of programming methods and languages, static
systems and basic mechanics, as well as the fundamentals of electronic circuits and computer
architecture.

A Robotics Engineering student that is considered the target audience for the project is as-
sumed to be a student with the following experience. Example WPI course numbers are included
in parethesis [1].

• Mechanical Engineering

-knowledge of static systems (ES 2501)

• Electrical Engineering

-ability to design basic analog circuits combined with an uderstanding of circuit dia-
grams (ECE 2011)

-familiarity with designing digital circuitry, as well as Boolean logic (ECE 2022)

-capacity to read a sensor datasheet and understand the principles of its operation

-experience designing and configuring an embedded system (ECE 2801)

5

2.2. DEFINITIONS AND FOUNDATIONAL KNOWLEDGE CHAPTER 2. BACKGROUND

• Computer Science

-programming experience, particularly in a systems programming language such as C
(CS 1101, CS 1102, CS 2102, CS 2301)

• Robotics Engineering

-course experience in Unified Robotics, including Introduction to Robotics and Unified
Robotics I and II (RBE 1001, RBE 2001, RBE 2002)

Taken from the WPI course catalog and experience with the courses, the Unified Robotics
curricula consists of the following.

Introduction to Robotics serves as a general multidisciplinary introduction to robotics. Stu-
dents are taught how to design basic analog circuitry. Basic analog circuitry covered consists of

• resistors,

• capacitors,

• operational amplifiers, and

• voltage dividers.

Students are also exposed to mechanic forces and moments in static systems. Students gain expe-
rience in programming with C in an embedded system through both class lectures and laboratory
and project work.

Unified Robotics I, the first of a four course series, focuses on the mechanical and electrical
aspects of robotic systems. Mechanical engineering concepts covered in this course include calcu-
lating force, moments, and inertia, as well as an introduction to friction in static systems. Students
learn the principles of various electrical systems including power systems and signal analysis;
voltage regulation and power supplies, selecting application-appropriate batteries, design and
implementation of H-bridges, and the design and analysis of Pulse Width Modulated (PWM) sig-
nals. In regards to computer science, different types of variables and memory storage techniques
are proposed for writing software in the C programming language.

Unified Robotics II expanded upon the fields taught in the prior course and introduced stu-
dents to the basics of control engineering. This aspect of the course consisted of types of control
loops with examples of their application, and application of feedback loops. The course’s elec-
trical portion had students study the physical and electronic principles behind the functioning of
sensors, along with a brief overview of continuous and discrete signal analysis. Computer science
topics expanded in the class included pointers and arrays in embedded C, memory management
with proper use, as well as an introduction to real-time and structured programming.

Unified Robotics III and IV will not be offered until the spring semester of the 2008-09 academic
year. The expected curricula from these courses are speculated from their course descriptions.

Unified Robotics III’s computer science portion of the course will be more advanced. Topics
will include complex response and feedback processes implemented in software in an embedded
system, concepts of real time operating systems, and interrupt signaling and re-entrant coding.
Topics in mechanical and electrical engineering will cover actuator design and interface methods.
Such scheme will cover magnetic, pneumatic, piezoelectric, and linear actuators.

In Unified Robotics IV, students will study computer science concepts such as navigation,
position estimation, vision processing, and communications and network protocol. Students will
also be exposed to wireless networks and radio communication. Operation and design of robots
in hazardous environments shall also be covered.

6

2.3. UNIFIED ROBOTICS III AND IV COURSE OUTCOMES CHAPTER 2. BACKGROUND

2.3 Unified Robotics III and IV Course Outcomes

An interesting challenge is presented to the engineers of this project. Traditionally, it would be
appropriate to analyze the content of a course after the curriculum has been formulated and de-
cided upon. However, as a result of the infancy of the Robotics Engineering program at the time
of this document’s production, this luxury cannot be afforded. The only documentation to base an
analysis of the Unified Robotics III and IV courses upon is one brief descriptive paragraph apiece,
offered by the WPI Course Catalog.

Assumed Prerequisite Knowledge

Based upon the assumption that students prepared to take the Unified Robotics III and IV courses
have taken the preceding Unified Robotics courses, familiarity with certain concepts and tech-
niques are presumed. Table 2.1 provides a sampling of the multidisciplinary prerequisites the
RBE300x courses build upon. Given this foundational base of knowledge, certain liberties can be
afforded that take advantage of these concepts. It also defines a range of applications that would
be expected of students in the courses’ laboratory exercises.

Inferring Course Objectives

Based upon these course descriptions and preliminary material provided by Professor Fred J.
Looft, a brainstorming meeting was held to determine some general course objectives for these
two courses. Beginning with an outline of the course descriptions, general topics in robotics the-
ory began to materialize. Following this, it became clear that in order to determine what was
needed in an appropriate base platform to be used for these courses, several laboratory exercises
would have to be proposed.

Furthermore, learning objectives for the courses should be compared to the labs to ensure that
the laboratory exercises successfully fulfill the expected learning outcomes for the courses. These
learning outcomes, although still preliminary, are the guides that will dictate the design of the
project. It is best to focus the formulation of laboratory exercises around the Unified Robotics IV
course since this course is the culmination of the Unified Robotics sequence. The brainstorming
activity resulted in an outline of proposed course material to be used in the RBE300x curriculum.

2.4 Robot Bases and Kits Available

Several robot kits and bases are available for purchase. These kits provide intriguing ideas for
consideration in new robot designs but also exhibit limitations for the application of being used
in a college level robotics course.

The cost of each kit is determined by either the price listed by the manufacturer or the most
commonly found retail price. The rating of “Expandable” is determined by the ability of the kit or
base to be either reformed into different robots or by the kit’s or base’s ability to be built upon.

All kits and bases listed in the table are programmable. The score of “High Level Program-
ming” is determined by several factors:

• Is there any programming support?

• Do the software development tools allow complete and unrestricted programming of the
robot?

7

2.4. ROBOT BASES AND KITS AVAILABLE CHAPTER 2. BACKGROUND

• Can the kit or base be programmed in high–level languages, such as object oriented lan-
guages?

Kits that did not receive a check mark for programmability usually did not have object oriented
language support, though a few also lacked proper software development tools. Those that did
not support object oriented languages tended to support C.

For the “Outdoor Operation” category considered whether a unit can operate outdoors in an
urban environment. The ability to handle slightly rocky terrain and a curb were the consideration
when assigning a check mark. Units that did not receive a mark were usually too small to be
considered for use in an urban environment.

While there were ratable similarities between each kit, each was unique enough to warrant
individual explanations. A short summary of each kit within the above table follows.

The VEX Robotics Design System, produced by Innovation First Inc., has been used by WPI
for the first three robotics courses within the Robotics Engineering program—Introduction to
Robotics and Unified Robotics I and II. The processor in the VEX system can be programmed
in either EasyC, a graphical C based programming environment produced by Innovation First,
Inc., or in C using a standard development environment with the proper proprietary compiler
and software library. This library, WPILIB, was created at WPI. It has been used by the robotics
classes at WPI thus far [4]. VEX’s mechanical kit allows for many possible configurations of your
robot and for students to construct many different mechanical systems [5].

The iRobot Create is based upon their popular Roomba robotic vacuum cleaner. The Roomba
had a dedicated hobbyist following to program and “hack” the Roomba by adding capabilities
and turning it into a robotics base. iRobot decided to release the Create, a vacuum-free platform
that allows one to easily add electronics and completely reprogram the base. The Create is only
reprogrammable and accepts other electronics with the “command module” attachment [6]. The
Create, with the command module, has open ports on the top of the robot for easy wiring of
electronics. It is programmable in both C and C++ and by Microsoft Robotics Studio [7]. The base
is not easy to mechanically modify, however. While additional parts can be attached to the top of
the base, the user is limited to how much they can change the base.

Evolution Robotics’ ER1 is a robot base with no controller. It is a metal laptop stand with
attached wheels, motors and motor controllers, and webcam. A laptop is attached to the base to
act as the robot’s controller. The ER1 can be programmed with the use of proprietary software
from Evolution Robotics. The only I/O or sensor input that the ER1 has is a webcam. Evolution
Robotics’ software takes care of the complicated aspects of vision processing, allowing users to
merely program the robot’s behavior and responses [8].

The Robotech RDS-X01 Robodesigner is a robotics kit geared towards middle school and
early high school students [9]. There is a very limited range of sensors and motors. This kit can
be programmed with the proprietary graphical user interface that is included or in C. The website
for the RDS claims the intended audience is high school and university students. The plastic parts
and limited sensor options restricts the usefulness and expandability of the kit.

LEGO’s popular Mindstorms kit (the NXT) has been used extensively in a large number of
educational applications. The kit is used in the FIRST LEGO League competition, in which high
school students across the nation compete with LEGO robots [10]. The kit consists of an single box
that has all necessary I/O and motor ports on it, and connectors for programming. The controller
for LEGO Mindstorms can support up to three motors and an additional four sensors, and has
Bluetooth and USB ports. LEGO’s large library of compatible bricks for building allows for heavy
modification of the robot. Many LEGO accessories allow outdoor robots to be built with Mind-
storms [11]. While the Mindstorm can be programmed with LEGO’s graphical language, there are

8

2.4. ROBOT BASES AND KITS AVAILABLE CHAPTER 2. BACKGROUND

numerous development tools that allow the Mindstorms to also be programmed with C, C++, and
Java [10].

Surveyor makes the SRV-1 Blackfin robot. The robot is very small, only 5 inches by 4 inches
by 4.5 inches. Despite its dimensions, the SRV-1 has many powerful onboard electronics. Its
processor, attached to its camera, is the 500 MHz Blackfin from Analog Devices [12]. This camera–
processor combination can actually be separated into two different components. The camera is 1.3
megapixels made by Omnivision and can capture directly to SDRAM at four different resolutions.
The processor can handle basic image processing, including histograms and blob detection. The
robot has a WiFi module and a dual motor H-bridge that can source up to 1 ampere of current. It
also has a laser rangefinder onboard [13]. The Surveyor SRV-1 was designed to aid the develop-
ment and research of SWARM robotics [12]. It cannot be extended upon mechanically and is too
small to deal with even basic environmental obstacles.

Acroname’s Garcia robot is modifiable and made upon order. The simplest version—a chas-
sis with a serial port, battery and basic electronics, and infrared remote control—sells for $1500.
Garcia robots through customization can reach prices up to $6000 with the following options [14].

• Hokuyo Laser Scanner

• USB instead of a serial port

• Stargate 400MHz processor with optional WiFi support

• Camera boom

• Text-to-speech module

The Garcia robot base can be programmed in Java, C, and C++. The product page for the robot
claims that the primary focus of the Garcia robot is for enthusiasts, researchers, and students to
explore robot behavior. They recommend an advanced knowledge of programming and com-
munications in order to work with the Garcia [15]. The Garcia is not mechanically or electrically
modifiable. It does not allow additional components to be added onto the base, nor does it allow
modifying its hardware.

The Seekur, by MobileRobots, allows for high–level programming and is capable of outdoor
operation. Its drive system is holonomic, meaning that it can drive in any direction and rotate
independently, with a built–in suspension to absorb inconsistencies in outdoor terrain. MobileR-
obots’ outdoor guidance system (mOGS) includes GPS, accelerometers, laser range finders, and
mOGS software. There are several additional options available.

• Multiple degrees of freedom arms

• Vision systems

• Sonar units

• Gyroscopes

• Additional embedded PCs

• Wireless Ethernet

• Thermal sensing

9

2.5. RELATED PROJECTS AND RESEARCH CHAPTER 2. BACKGROUND

Seekur is programmed in C or C++ created with or without ARIA, one of their many proprietary
development and robot operations programs designed to work with their available sensors and
robots [16].

Segway has four models for their Robotic Mobility Platform (RMP) line. The smallest and
least expensive of the four, the RMP 50, is labeled as ideal for teaching laboratories. The circular
base has two large powered wheels and a single smaller caster wheel to balance the robot. RMPs
come without any sensors but do come with a programmable controller. The controller can be
programmed in C or C++. The base is designed for indoor use, but can travel long distances
(approximately five to six miles) and can handle simple urban obstacles. The base is priced at
$7000. The base supports construction and additions on top of it, but does not allow the base’s
drive train to be modified at all [17].

2.5 Related Projects and Research

Projects

Previous Senior Design Projects at WPI have focused on robots designed only for a specific pur-
pose with commercially available parts. Examples of applications in prior Senior Design Projects
focused on are as follows.

• Autonomous robot security guard

• Inspection of gas pipes [18]

• Robotic test bed for exploring capabilities to be incorporated in future Mars rovers

• Walk on six legs [19]

• Autonomously measure temperature, distance, and acceleration to participate in the Trinity
College Home Robot Fire Fighting Contest [20]

All past robotics projects and research at WPI has been towards a specific (as opposed to gen-
eral) application. There has not been a project with the intent of developing a modular robotics
base. This can be attributed to the relative infancy of the Robotics Engineering degree at WPI. The
similarities that exist between the aforementioned projects and this project will provide valuable
information on how to proceed.

Research

Carnegie Mellon University and The Instituto Tecnolgico y de Estudios Superiores de Monterrey
have either developed a robot base for use in a course or studied what was previously available
on the market.

Carnegie Mellon University produced Trikebot for a summer high school robotics course. The
robot used common and easily replaceable components for its base. The course was targeted at
high school students entering their senior year with no previous robotics experience and would
teach the students to program robot behavior and algorithms. The Trikebot design was limited
because each student was allowed to take their robot home, forcing a lower overall budget. The
cost of each robot was kept below $1200 [21].

The Instituto Tecnolgico y de Estudios Superiores de Monterrey (ITESM) teaches a senior level
robot design course wherein the students make proposals for robots that solve specific problems.

10

2.6. SUMMARY CHAPTER 2. BACKGROUND

Students then design and construct these robots. A test–board robot was created to aid in the
development of students’ robots. The platform was designed so that it would be affordable for
medium and small educational and research centers. This resulted in the capabilities and expand-
ability of the platform being limited [22].

2.6 Summary

As can be seen by the presented background information, there is much evidence pointing to the
need for an appropriate platform for the Unified Robotics courses, one that cannot be satisfied by
the currently available platforms on the market. This evidence is provided through the descrip-
tions of the Unified Robotics courses in which the platform will be used, as well as past work
related to this project’s goal. This past work includes both outside research done by independent
universities, as well as internal work conducted as the topics of past Major Qualifying Projects
here at WPI. Hence, the basis for the project is established and a formal statement of the project’s
purpose shall follow.

11

2.6. SUMMARY CHAPTER 2. BACKGROUND

Table 2.1: Assumed prerequisite knowledge for Unified Robotics III and IV courses.

Prerequisite
Course Number

Course Title Concepts Gained

ES 3011 Control Engineering Mathematical representation of control compo-
nents and systems.
Laplace transforms, transfer functions, block and
signal flow diagrams.
Transient response analysis.

CS 2223 Algorithms Data structures, data abstraction techniques, algo-
rithm design and analysis, worst case and average
case.
Greedy algorithms, divide–and–conquer, dy-
namic programming, heuristics, and probabilistic
algorithms.
Introduction to sorting, graph theory, and string
processing.

ECE 2801 Embedded Computer
Systems

Fundamentals of computer architecture and orga-
nization.
How hardware, software, and the passage of time
must be managed in an embedded system design.
Logic flow, real–time programming, maintainabil-
ity and software maintenence cycles.

MA 2051 Ordinary Differential
Equations

Techniques for solving ordinary differential equa-
tions.
Modeling using first–order differential equations,
solution methods for linear higher–order equa-
tions, qualitative behavior of nonlinear first–order
equations.
Oscillatory phenomena including spring–mass
systems and RLC–circuits and Laplace transform.

RBE 2002 Unified Robotics II Interaction with the environment via sensors.
Concepts of stress and strain as related to sensing
of force.
Principles of operation and interface methods for
electronic transducers of strain, light, proximity
and angle.
Feedback mechanisms for mechanical systems via
electronic circuits and software mechanisms.
Modular design and implementation of decision
algorithms and finite state machines.

12

Chapter 3

Problem Statement

3.1 Introduction

The purpose of creating a problem statement is to be able to have a clearly defined goal to which
the project can be directed. When the requirements of the project are clearly defined, an objective
approach to measuring the success of the project is more easily attained.

3.2 Problem Statement

The purpose of this project is to design and prototype a modular robotics platform for educational
use in the Unified Robotics course curriculum at WPI.

3.3 Objectives

To expand upon the original problem statement, it should be clarified that the design consid-
erations focus primarily on modularity, expandability, universality of use, and low cost. When
describing the final prototype, these four descriptors should be easily demonstrated. The four
concepts were prominent throughout the design process and are worth further defining.

Modularity

In regards to the delivered system being modular, the intent is that the overall prototype is com-
prised of smaller subsystems, each of which can be thought of as a module. In addition, these
modules can be easily applied to the final product and should readily enhance functionality, since
modularity of the system was an objective for the final design of the system.

Consider the drive train of the final design; a “modular” mobile robotics platform would have
a standard drive train system that is self-contained in that the drive train can be used in the overall
system even if the frame or chassis of the MRP is altered into a new configuration. This implies
that these modules are not dependent on the structure or design of the rest of the system, and are
able to perform their intended task if the rest of the system changes configuration.

Expandability

It is recognized that the student team involved in the inception and birth of the MRP will not be
able to design and prototype for all intended applications for the MRP. Also, to prevent the MRP

13

3.3. OBJECTIVES CHAPTER 3. PROBLEM STATEMENT

from becoming outdated in a year or two because of a simple change in curriculum, the MRP
should be expandable and should be able to be used in a large range of applications as a result of
this expandability.

For instance, consider the laboratory exercises required of the Unified Robotics courses. A
sample laboratory scenario might have students use the standard base MRP (without significant
additional features) to complete certain tasks. At the conclusion of the course, the curriculum
might warrant a change in some of the laboratory exercises to incorporate different aspects of the
course learning objectives. An expandable and universal platform should be able to accommodate
these future curriculum changes. This is another objective of the system as a whole.

Low Cost

As was identified in the Background, many robotics systems have a tendency to be outside the
fiscal budget of most educational institutions. Also, since this project’s principal stakeholder is an
educational institution, it is logical to solve the problem of learning tools being prohibitively ex-
pensive with the solution to the overall objective as well. Therefore, the MRP should be designed
with the mentality of keeping the end result “low cost.”

Since the term “low cost” is relative, the administrators of the Robotics Engineering curriculum
were consulted. Based upon the cost of the systems currently in use for the Unified Robotics I and
II courses, it was determined that a range between $1000 and $2000 was an appropriate definition.
Thus, a further objective of the project is to complete the design of the MRP with a final prototype
cost in this range.

Field-of-Study Specific Objectives

The field of Robotics Engineering is an amalgamation of multiple engineering disciplines gener-
ally aimed at providing solutions for application-specific problems. The three disciplines consti-
tuting the bulk of the Robotics Engineering field are Mechanical Engineering, Computer Science,
and Electrical and Computer Engineering. Hence, the objectives presented in this section are sep-
arated into these three subsections.

Mechanical Engineering

Objectives with regard to Mechanical Engineering are few; however they are universal in their
application. Considerations for providing adequate support in the implementation of actuator
design are expected. Different mechanical interfacing methods should be afforded forethought.
Some of these include magnetic, pneumatic, piezoelectric, and linear actuators [1]. Looking into
the future, operation in hazardous environments is a growing application for robotics, and design
of platforms for these conditions is a possible course topic.

Computer Science

As more complex systems are miniaturized and implemented into embedded systems, robots will
gain proportionally more complex tasks. These tasks can range from simple navigation and posi-
tion estimation to processor-intensive vision processing and wireless communication using secu-
rity network protocols. Scaling down to embedded systems and applications, real-time operating
systems are becoming expected of robotic systems, which go hand–in–hand with interrupt sig-
naling and re–entrant coding. Finally, applying control theory to robotic platforms dictates the
implementation of complex response and feedback processes in embedded systems.

14

3.3. OBJECTIVES CHAPTER 3. PROBLEM STATEMENT

From the perspective of the end–user, it would be considered presumptuous to choose a pro-
gramming language that is inappropriate for robotic applications. Because of the subjectivity of
this issue, an ideal system would not be bound to a single programming language. Similarly,
as embedded systems become increasingly capable of running operating systems as opposed to
merely programs loaded into memory, more avenues for expansion begin to be explored. So too,
open source and non–traditional operating systems are quickly becoming more common, espe-
cially with the academic and research community. All of these things suggest a need for a system
capable of being developed independent of a host operating system.

Electrical and Computer Engineering

When considering a robotic system, there are many aspects encompassed in the field of Electrical
and Computer Engineering that must be recognized. Thus, a distinction must be made between
analog and digital concentrations, as they relate to the field of Electrical and Computer Engineer-
ing. Specifically, ”electrical engineering” corresponds to the analog aspects of the field, i.e. circuit
analysis focusing on current and voltage relationships. The complementary term ”computer engi-
neering” refers to the world of digital logic circuits using logic gates, i.e. NOT, AND, OR, NAND,
XOR, as well as designing logic networks via truth tables, optimizing for speed, etc. Because of
the scope of these two fields, it is important to make a delineation when specifying objectives in
Electrical and Computer Engineering.

Electrical Engineering (Analog) As the field of robotics evolves, many things may change from
how they are presently. However, one thing that will remain constant into the near future is the
need for electrical power in robotic applications. Students learning to analyze and demonstrate
concepts of analog circuitry and apply them to robotic applications, a few basic “lab bench” needs
become apparent.

The tools every electrical engineering student becomes intimately familiar with are the equip-
ment ever–present on the laboratory bench tops. These tools include the multimeter, power sup-
ply, prototyping breadboard and oscilloscope, to name a few. Therefore, the MRP shall provide
students with tools to create and analyze analog circuits, as well as collect and react to feedback
from these circuits when they are designing for applications in robotics.

Computer Engineering (Digital) As computers become smaller and cheaper, many things that
were once accomplished via analog circuitry have made the transition into the digital domain.
The field of Computer Engineering provides an elegant solution to the previous statement. With
speed increases in processing ability, tasks that traditionally called for analog circuitry, such as
sound recording or signal analysis, are not able to be reproduced digitally with fidelity rivaling
the analog counterpart.

Since many advanced concepts and theory of Robotics Engineering require more processing
power than is available in an embedded system, an alternative again appears in the form of dig-
ital circuits. With the proliferation of smaller and inexpensive microcontrollers, tasks requiring
large desktop computing systems can be broken up into smaller tasks and computed in parallel.
Also, signal acquisition and analysis can be processed from the raw data taken from sensors into
intelligible information that is at a level the main processor can easily and quickly work with.
Additionally, many tasks usually handled by an embedded processor or microcontroller can be
accomplished using a digital logic circuit. This frees the processor from menial or time–intensive
tasks such as keeping count of wheel encoders or processing data through algorithms. As Field

15

3.4. REQUIREMENTS CHAPTER 3. PROBLEM STATEMENT

Programmable Gate Arrays (FPGAs) become more common and cheaper, logic circuits can be im-
plemented and modified with merely re–flashing the device. These logic circuits can be highly
complex, even reaching the complexity of a 64–bit RISC architecture microprocessor with 165,000
or more logic gates.

3.4 Requirements

Computer Science

The requirements discerned from the course descriptions of the Unified Robotics courses spec-
ify characteristics of the processor board to be chosen. The computer science subject matter of
the courses suggest a preference for high–level object oriented languages. Languages commonly
used at WPI are Java and C++, though Python also seemed a viable choice for object oriented
programming. Furthermore students’ prior experience in C seemed to also demand compatibility
with this language. The controller to be used in this project had to be able to compile and execute
code written in these languages. The object oriented languages immediately led away from micro
controllers, as these typically only execute C, Assembly, or other non object–oriented languages.

Several Professors and students expressed the desire to be able to network to their robot con-
trollers. This would theoretically allow programming to be done without a direct connection. It
would also allow for the robot to be remotely controlled. The Unified Robotics 3002 course de-
scription does state the course will discuss methods of communication—network capabilities is a
requirement that can be derived from this.

Regardless of network capabilities, a direct connection to the robot would still be required.
This is for when the robot is in use in an environment with no network connections possible.
This was an easy requirement to fulfill—nearly all the boards considered defaulted to a serial
connection.

Users of the processor board needed to be able to have direct access to read and write to a
number of inputs and outputs on the board. This ranged from digital and analog inputs to writing
to digital outputs. This meant direct hardware control on a software level. There could be no
software permissions blocking a user from gaining access to different aspects of the hardware.

Electrical and Computer Engineering

Based on our research and experience we were able to we came up with some basic requirements
for the electrical system of our robot. The robot was to have at least the following:

• 10 Digital I/O

• 5 Analog inputs

• 5 Serial I/O

• 1 Stepper Motor Port

• 5 Servo Ports

• 4 Driven Motors

• 4 Wheel Encoders

• 12V, 5V and 3.3V Power

16

3.4. REQUIREMENTS CHAPTER 3. PROBLEM STATEMENT

• Co-Processors

The 10 digital I/O’s, the 5 analog inputs, and the 5 servo ports were deemed necessary based
on the use of the ports on the Vex controllers. Based on market research, the systems currently
available show the need for at least 10 digital, 5 analog and 5 servo ports, from reading over the
course descriptions and based on experience this would be sufficient for the labs (If necessary
additional ports can be added through the serial ports).

When we looked at the different types of sensors that were being considered for the courses,
we found that many used various types of serial to communicate. Most serial methods could be
recreated in software through the digital I/O ports, but RS-232 and TTL serial communications
were found to be the most commonly used therefore we require 5 serial ports of either TTL or
RS–232, both of which can easily be converted using level shifters.

The drive system requires 4 wheel drive, therefore 4 motors are necessary. Each motor will
be attached to an encoder in order for the user to determine speed and direction of each wheel.
A stepper motor port was required because the code required to run a stepper driver takes up
valuable processor time. The co–processors are microcontrollers that will offload some of the
tedious tasks from the main processor. The stepper driver and the quadrature encoders require a
repetitive task that will be done on the microprocessors.

12V power is required because it was the highest voltage required by any of the researched
components. This 12V will then be converted down to 5V and 3.3V in order to power the most
common sensors.

Mechanical Engineering

Based upon our prior knowledge and research of similar systems the following requirements were
set:

• The final dimensions of the robot allows for it to fit inside a cube with an edge length of 0.5
meters to allow for multiple robots (at least 3) to interact on a 12 foot by 8 foot table and also
to be easily transportable by a single individual.

• A maximum weight of 7.5 kg allows for an average human adult to transport the robot over
long distances (across WPI’s campus) without undue fatigue.

• The chassis design is flexible so that it can be reconfigured in 30 minutes using only hand
tools and without making any permanent modifications to the individual parts.

• The motors will be sufficiently powerful in order to propel the robot up a 45 degree incline
at a speed of 0.6 meters per second, a theoretical power requirement of 11 Watts.

• All moving parts of the drive mechanism with exception to the output shaft and attached
wheels shall be fully enclosed to prevent injury.

• The drive mechanism is able to operate for 500 hours with no need for adjustment, repair, or
part replacement.

• The drive mechanism is mounted so that an individual familiar with the design and in pos-
session of the proper tools is able to remove one unit and replace it with another in less than
5 minutes.

• The total time to construct the frame from finished parts should take no longer than 30
minutes.

17

3.5. SUMMARY CHAPTER 3. PROBLEM STATEMENT

3.5 Summary

In summary, the purpose of the project is stated to be to design and prototype a modular robotics
platform for educational use in the Unified Robotics course curriculum at WPI. In order to gage
whether or not the project has been successfully completed, certain general objectives were estab-
lished. Also, these objectives will give the project a direction to aim toward and a goal to achieve.
Furthermore, concrete and specific requirements of the project are listed to give quantifiable mea-
sures to which to gage the success of the project.

18

Chapter 4

Methodology

This Chapter describes the methodology used to ensure the final design realizes the completion of
the requirements presented in Section 3.4. When creating the Mobile Robotics Platform we used
the following methods to guide us to our final goal:

1. We researched the requirements for the 3000 level robotics classes and focused on key con-
cepts that would be taught in the class.

2. A preliminary concept was created, along with requirements and a list of possible compo-
nents.

3. Each product that was considered for use on the Mobile Robotics Platform was extensively
researched and compared with other similar products.

4. System diagrams were created to plan out all of the electronics, each component was looked
over to determine what was needed for an interface. Mechanical sketches were made and
critiqued to determine the necessary specifications for the design. Program flow charts were
created for the software planning, and programming language was decided on.

5. A final design was created and analyzed in Solidworks for all the mechanical components.
Each electrical circuit was designed and tested on bread boards, and then put onto a circuit
board using PCB123. Software functions were prototyped in pseudo code.

6. Finally, all the mechanical parts were machined and assembled, the hardware was ordered,
along with the circuit board. All the code was written and tested on the assembled parts.

When designing this project we focused on the objectives of the 3000 level robotics classes.
Each product that was considered for use on the Mobile Robotics Platform was extensively re-
searched and compared with other similar products. Function and price were compared, and the
best product was ordered. The software and electrical hardware was then designed to be compat-
ible with the chosen mechanical hardware.

19

Chapter 5

System Design

5.1 Introduction

The final system design is detailed in this Chapter, with elaboration of the subsystems comprising
the framework of the prototype. The design of the MRP is broken up into the modular systems
that provide the structure for its operation. Each subsystem is described in detail, including the
specifics behind the design of these subsystems.

5.2 Functional Block Diagram

A functional block diagram of the MRP system provides a useful understanding of the high–level
system concepts that will be implemented in the design. An example of a preliminary functional
block diagram for the MRP can be seen in Figure 5.1. A complete breakdown of the functional
block diagram presents details as to the input, output, and function of each system and subsystem
of the diagram.

5.3 Subsystems

Electrical Subsystems

The electrical systems consists of five subsystems; the single board computer, the interface board,
the co–processing board, the motor drivers, and the power system. The single board computer is
the main component of the electrical system. It is what holds the main processor that controls the
robot. All of the other subsystems of the electrical system, aside from the power system, interface
with the single board computer. The single board computer must have a console port to allow
for programming directly from a PC, an Ethernet port for remote programming, analog inputs
and digital I/O ports for communication with sensors and control of circuits, and finally serial
ports for communication with other peripheral devices. Through the serial ports the single board
computer can then communicate to two motor controllers. Each of these motor controllers will
then convert the signal to drive up to two motors each.

The co–processing board will be used to offload some of the tedious tasks from the main pro-
cessor. These will include six AVR chips that will each handle one task. Four of the chips will
each get assigned one encoder to continuously keep track of the count. These encoders will re-
member the value they used until the main processor asks for it. Another AVR will control the

20

5.3. SUBSYSTEMS CHAPTER 5. SYSTEM DESIGN

Battery

Charger
Batteries

unregulated

DC voltage

Battery

Monitor

“low battery”

signal

Power Supply

Regulator

Microprocessor

regulated (>8V) DC

to microprocessor

regulated DC

(5.0V/3.3V)

regulated (12.0V) DC

to actuators

high-level actuator

control signals

Actuator Control

Decompiler

Motor

Driver

control signals

Stepper Motor

Controller

control

signals

Servo

Controller

control

signals

motor

control signals

(8) servo

control signals

(4) stepper motor

control signals

Energy Efficiency &

Reconstitution Unit

(4) motor

control signals

digital I/O signals
GPIO Break-out

Board

Power Management Unit

Actuator Control Unit

Analog/Digital

Converter
analog signal

Prototyping

Breadboard
digital I/O signals

ADC control/data

signals

Audio

Amplifier

unamplified

audio signal

amplified

audio signal

I/O Peripheral Board

Encoder-Decoding

Unit

encoder info

data register

raw encoder

signals

Sensor

Interpretation

Unit

sensor interpreter

control signals

raw sensor

signals

Co-Processing Unit

Figure 5.1: Preliminary systems–level functional block diagram of the MRP.

21

5.3. SUBSYSTEMS CHAPTER 5. SYSTEM DESIGN

stepper driver. This AVR will do nothing until the main processor tells it to move the stepper mo-
tor a certain number of steps, then the chip will generate the necessary control signal. Each chip
will communicate to another AVR through TTL level serial. This AVR will act as a multiplexor,
directing the incoming serial signal from main processor to the correct chip.

The interface board takes the open ports and makes them easily accessible on the outside of
the robot with standard connectors and terminal blocks. Another function of the interface board
is to protect the single board computer from receiving a signal that could potentially harm it. The
interface board connects to the digital I/O ports and limits the current to what the single board
computer can handle, and then connects each to a terminal strip. Some digital I/O ports are used
for status LED’s, a reset button, and jumpers for user interaction. The analog inputs are limited
to the specified voltage then connected to terminals. Each RS–232 serial port will be wired up to
a standard DB9 connector, while TTL ports will use two terminals for TX and RX pins. The servo
controller on the interface board will receive a serial signal and convert it into a PWM signal to
control servo motors.

The Power system of the robot consists of a battery fed through a fuse block that distributes
12V to each system of the robot. Those systems which require 5V or 3.3V will go through a buck
converter to lower the voltage. 5V and 3.3V terminals will be accessible on the interface board to
power external sensors. A functional block diagram of these electrical subsystems can be seen in
Figure 5.2.

Processing Subsystems

getDI() Software Routine

getDI() is the first of two fundamental programs to deal with digital inputs and outputs. The
program accepts an integer value of a pin, which is expected to be between one and fifteen inclu-
sive. The function will eventually return the digital value on the requested pin. The pin numbers
are selected as if they were sequentially ordered as on the MRP’s breakout board. This is not the
case, and the pin actually chooses the appropriate bit to return from the correct register.

First the program determines if any action is required to prepare the digital input pins to
be read. For the first five pins, attached physically to the TS–7800’s DIO header and to register
0xE8000004, the program must first set the appropriate bit on its register to a logic high. For pins
six through fifteen, belonging to the GPIO C header, the program must first set the appropriate bit
in GPIO C’s direction register, 0xE800001C before reading its data register. After these sets our
completed, the appropriate bit is selected via getBit().

getBit() accepts a pin number and, through a simple switch statement, will return which
bit location the desired information is in.

A “bitmask” is created, which is a value of 0’s in every location in a register except the desired
bit.

The program once again checks to see which set of pins is being read—this determines which
register is finally read. An integer value—readvalue—is assigned either the DIO header’s data
register or GPIO C’s data register. This value is then bitwise ANDed with the bitmask in order to
set all bits but the desired bit to 0. This value is bit shifted to the right getBit()’s amount of bits
and returned—it is the lone value that was set on the desired bit, and thus the pin.

A flowchart of the getDI() software routine can be seen in Figure 5.3.

22

5.3. SUBSYSTEMS CHAPTER 5. SYSTEM DESIGN

Figure 5.2: Functional block diagram of the electrical subsystems.

23

5.3. SUBSYSTEMS CHAPTER 5. SYSTEM DESIGN

getDI(int pin)

Accepts a pin number that we

want to read.

bit = getBit(pin)

Returns the bit value

of the register that

pin belongs to

Is the value of pin 1 to 5

or 6 to 15?

setDO(pin, 1)

If the pin is among

the first five, we

need to set the pin

high to start

Pin is between 1 and 5 Pin is between 6 and 15

set2Input(pin)

If the pin is 6 to 15,

we need to make

sure that the pin is

set to an input before

we read it

bitmask = 1 >> bit

We create a bitmask of

0's with a 1 in the

appropriate bit’s place.

Is the value of pin 1 to 5

or 6 to 15?

readvalue = peek16(DIOHEADERREAD);

readvalue acquires the current value of the

register which includes all of the pins 1 through 5

readvalue = peek16(GPIODATA);

readvalue acquires the current value of the

register which includes all of the pins 6 through 15

readvalue = readvalue & bitmask;

Isolate the bit we are interested in

readvalue = readvalue >> bit;

Shift that bit over to make readvalue 1

or 0 based on the relative information

return readvalue

Figure 5.3: Flowchart of getDI() software routine, querying the digital inputs.

24

5.4. SUMMARY CHAPTER 5. SYSTEM DESIGN

setDO() Software Routine

setDO() is very similar to getDI()—they operate nearly identically until getDI() would re-
turn a value. The primary difference beforehand is in the first if statement, setDO() prepares
both the DIO header and GPIO C pins to be outputs instead of inputs.

Once the program reads the appropriate registers for the pin, a new bitmask is created, differ-
ent from getDI(). This bitmask is a value of 0’s in all locations except the desired bit, which is
set to the value desired. This way the value may be bitwise ORed with the register’s read value
to set all values stored to logic high except the desired bit. This prevents other pins from having
their values changed each time a digital output is set.

A flowchart of the setDO() software routine can be seen in Figure 5.4.

5.4 Summary

This chapter describes the final design of the electrical and computer systems. The electrical sys-
tem contained several subsystems, controlling features such as:

• Power management

• Central Processing

• Actuator Control

• Input and Ouput Control (Digital and Analog)

• Co-Processing Subsystem Unit

The software was divided into a series of subroutines that controls the interaction between soft-
ware and hardware, which provides a level of abstraction for hardware control.

25

5.4. SUMMARY CHAPTER 5. SYSTEM DESIGN

setDO(int pin, int value)

Accepts a pin number that we

want to read and a value that we

want to write to that value

bit = getBit(pin)

Returns the bit value

of the register that

pin belongs to

Is the value of pin 1 to 5

or 6 to 15?

setDO(pin, 1)

If the pin is among

the first five, we

need to set the pin

high to start

Pin is between 1 and 5 Pin is between 6 and 15

set2Output(pin)

If the pin is 6 to 15,

we need to make

sure that the pin is

set to an output

before we read it

bitmask = 1 >> bit

We create a bitmask of

0's with a 1 in the

appropriate bit’s place.

Is the value of pin 1 to 5

or 6 to 15?

readvalue = peek16(DIOHEADERREAD);

readvalue acquires the current value of the

register which includes all of the pins 1 through 5

readvalue = peek16(GPIODATA);

readvalue acquires the current value of the

register which includes all of the pins 6 through 15

readvalue = readvalue & bitmask;

Isolate the bit we are interested in

bitmask = ~bitmask

Invert the bitmask to be all

1's and a 0 in the

appropriate bit place

writevalue = writevalue | bitmask

Isolate the value we want so we can

write to it

writevalue = value << bit

Create a mask that will

write our value

Write writevalue to register

Figure 5.4: Flowchart of setDO() software routine, setting the digital outputs.

26

Chapter 6

Design Details

6.1 Introduction

This section will go over the research into each component group, as well as why each componenet
was eventually selected. It will also look over the design details of each section of the MRP indi-
vidually and the design decisions that were made.

6.2 Trade Studies

Processor

When researching single board computers for comparison, much of the data came from PC104
Embedded Consortium. This community put together a database of PC104 boards made by dif-
ferent manufacturers. This was very useful in picking out boards that suited our needs. We also
referenced an on–campus project titled “Dig–It”. Much of the hardware that has been selected for
Dig–It fulfills many of this project’s requirements due to both projects being robotic in nature.

Some of the more important features we were focusing on were processing power, data storage
and input/output. Wireless capability and support was also considered an important feature.
More key considerations were the development tools available for the boards as well as operating
systems supported. This data was placed into table form for easy comparison.

The media in which the onboard memory is stored, as well as if it is expandable, played a key
role in the selection of a board. Almost all of the boards have an interface to connect an external
hard drive. Since our robot will be mobile in numerous environments there is the potential for
some abrupt mechanical shock from collision. This could damage a hard drive. Therefore a solid
state memory flash drive is the best solution. Also, a removable flash card will allow for the
creation and duplication of an image of the final software, OS, development tools, and project–
created library for easy production of the platform. This will speed up the creation of a lab’s
worth of robotic platforms.

The last common feature looked at was the input and output features of the board. Almost all
of the boards had USB ports, serial ports, video ports and Ethernet ports. This was so universal
that it is pointless to seriously compare boards this way.

A value analysis of the available boards was performed, as can be seen in Table 6.1.
Based on these specifications the Technologic Systems TS–7800, the CompactRio, and the Ver-

saLogic Puma top all other boards. These all have support for compact flash card support, 500

27

6.2. TRADE STUDIES CHAPTER 6. DESIGN DETAILS

Table 6.1: Value Analysis of candidate processor systems.

28

6.2. TRADE STUDIES CHAPTER 6. DESIGN DETAILS

MHz processors, and have all of the necessary I/O support. Only one of these three boards, the
Technologic Systems TS–7800, supported every requirement for the project, while also having

• Wireless network support

• On board Field Programmable Gate Array (FPGA)

• Low power consumption

• Expandable hardware

• ADC and DAC convertors

For this reason the TS-7800 is the foremost recommended processor for this project.

Motor Controller

Finding a number of different brand names of motor controllers was particularly easy—merely
searching robot hobby sites pointed toward a number of manufacturers that produced motor con-
trollers of all kinds of sizes, power rating, and quality. One manufacturer’s website boasted how
their tests for rating continuous amperage of their motor controllers were done over a long period.
They made claims to their competitor’s ratings being inflated by only reading the max continuous
amperage for mere minutes or less! Obviously this would be a significant problem for our base
design. This became an almost common theme amongst the more “combat robot” oriented motor
controller distributors/manufacturers. In the end it became an issue of trust. The manufacturers
that list the time that their motor controllers can maintain continuous amperage are to naturally
be trusted more than those that do not.

A common feature throughout the motor controllers was regenerative braking. Some had
channel inversion; two even had signal–lost fail safes to cut the motors.

Input methods varied. The most common was a standard RC control signal. A handful had
support for serial input while one or two supported just a varying analog voltage.

Dimension Engineering’s speed controllers fulfilled every requirement we looked for, with
interesting features such as accepting a large number of inputs: analog PWM, RC signal, serial
input, and packetized serial input. Each one controls two motors (with the exception of their
SyRen series). They claim their continuous amperage rating is for prolonged use, and all their
controllers have built in regenerative braking.

While pricier per motor, IFI’s Victor 884 Speed Controller is also highly recommended. While
it controls only one motor per Victor, is pricier, and also requires a separate breaker to protect it,
the Victor is well proven through its extensive use in the FIRST Robotics Competition. The robots
in these competitions are heavier than our expected maximum payload weight, so we know that
Victors can handle motors with sufficient amp draw.

BaneBot’s controllers are miniature—nearly the size of a quarter. They claim decent amp draw
for several minutes nonstop use and are listed for a low price. Heat dissipation due to its compact
design may become problematic. BaneBot’s products are designed for and used in robot combat
competitions, proving that they can run a robot’s motors at least for several continuous minutes.

Dimension’s Engineering’s Sabertooth line is the recommended choice because of the follow-
ing features:

• Decent price for dual channel speed controllers

• Voltages and continuous amperage is within the required range

29

6.2. TRADE STUDIES CHAPTER 6. DESIGN DETAILS

Table 6.2: Value Analysis of candidate motor controller solutions.

30

6.2. TRADE STUDIES CHAPTER 6. DESIGN DETAILS

• Regenerative braking

• Flexibility of accepted input signals

Wheel Encoders

In the search for the most appropriate rotary shaft encoder we came across several industrial
options. These options were very high precision, rather large, and expensive considering the need
for four in total. We narrowed our search to include optical shaft encoders that used quadrature,
were designed for the enthusiast rather than industry, had sufficient accuracy, and were relatively
inexpensive. We found the two manufactures used in our comparison; US Digital and Bane Bots.
US Digital is “in the business of solving motion control problems by employing the absolute best
minds with the most innovative manufacturing facility in the industry” and BaneBots is a small
retailer of robotic electronics

The Common features throughout the offerings of both companies were the use of quadra-
ture as well as similar construction methods and the standard 5V power voltage. Only the prod-
ucts from US Digital allowed the use of many sizes of shafts for each model, the offerings from
BaneBots are designed to fit the motors and gear trains that they sell and have a single size for
each model.

Input methods of both companies are identical, four pins. The channels A and B are binary
outputs. Depending on the direction A will transition before or after B.

Table 6.3: Value Analysis of candidate optical shaft encoders.

Based upon a value analysis of the choices for optical shaft encoders, the first choice is the
E4P from US Digital, in particular because of its small size and low cost. The E4P has options of
accuracies from 100 Counts Per Revolution (CPR) to 360 CPR.

31

6.3. CONSTRUCTION AND IMPLEMENTATION CHAPTER 6. DESIGN DETAILS

6.3 Construction and Implementation

Much of the design details corresponding to the electrical systems in the MRP are highly technical.
For the sake of portability, the information included in this section has been compiled separately
and is included in Appendix ??.

6.4 Summary

In this section we went over the details of the selection process for selecting components. After
gathering research on all of the potential components that we could use, trade studies were done
on each one. The cost, compatibility, and documentation database were weighted along with some
individual characteristics of the components. This data was then used to select the best fit for our
project. The products selected were the Technologic Systems TS–7800 single board computer,
Dimensions Engineerings Sabertooth motor controller, and US Digitals E4P wheel encoder. This
section also covers the design details of the MRP. Going over in detail the design of each circuit
schematic designed into the project, and all of the code written for the libraries.

32

Chapter 7

Results

7.1 Introduction

This section will present and analyze the outcomes of the Modular Robotics Platform. By using
these results and comparing them to our original objectives we can determine the overall success
of the project and individual systems. An understanding of the performance of the MRP can be
derived from these results.

7.2 Testing and Evaluation

Computer Science

In order to test the library developed for regular users and the individual hardware components,
several test programs were developed. These programs implemented the functions individually
to provide terminal based control of the hardware on the MRP.

Digital Inputs and Outputs

The program DIOTest.c is designed to test all the digital inputs and outputs on the MRP. The
program accepts a terminal–based command and then either returns the value of the input, or
sets the output to the desired value. To test the input capabilities of each pin, a 5 volt source was
applied to each pin individually. A change in the value returned by DIOTest.c was observed.
To test the output capabilities of each pin, an LED in series with a small resistor was hooked up to
each pin. Calling DIOTest.c set the LED either on or off properly.

Analog-to-Digital Conversion

A relatively simple program, ADCTest.c would print the analog value read at the requested
channel. In order to demonstrate a working analog-to-digital conversion (ADC) program, both
a digital power supply and potentiometer were used to modify the voltage. This change was
witnessed through terminal control of the robot.

Motor and Servo Testing

In order to test both motors and servos, motorTest.c was written. This program allows the user
to, through the terminal, implement the library’s motor and servo controller. Servos and motors

33

7.3. PROJECT ECONOMICS/ECONOMIC CONSIDERATIONS CHAPTER 7. RESULTS

were attached to the appropriate terminals and the appropriate physical reaction to the program’s
control was witnessed.

7.3 Project Economics/Economic Considerations

One application of the results from this project is the use of the MRP in the Unified Robotics
courses at WPI. In particular, it is intended for use in course laboratory exercises for the demon-
stration of robotics theory. This dictates that the final product be reproducible for a sizeable group
of students at a reasonable cost. Stated earlier, the target cost for the complete MRP system is
between $1000 and $2000 per unit. An approximate budget summary of the entire course of the
project is summarized in Appendix C.

7.4 Summary

This section goes over the testing done on the MRP. All parts of the project were extensively tested
throughout the design and construction phases. Since all of the debugging was done beforehand,
the final assembly of the prototype was built with minimal errors. This section also talks about
how the final project fell into the budget range of $1000–$2000.

34

Chapter 8

Summary and Conclusions

8.1 Introduction

With the completion of the project design process, a detailed documentation of the comprising
processes has been presented. In defining the problem statement, project objectives were pre-
sented. These are evaluated and discussed, as well as topics of further development, including
items that can be improved upon with future work.

8.2 Completion of Project Objectives

To determine the completion of project objectives, the initial project objectives were divided into
two catergories: Computer Science objectives, and Electrical & Computer Engineering objectives.
These objectives are again separated into two columns, the first reflecting the specific objective
being evaluated, and the second stating the state of the objective at the conclusion of the project.
This evaluation can be seen in Table 8.1.

8.3 What could be improved upon?

As is common with most projects, throughout the course of the project the students discovered
certain things that, in retrospect, could have been improved upon if the project were done again.
Similarly, issues were found that would be helpful to students were they to take the results of this
project further as the topic of an additional project. Again, as in the previous section, these topics
were divided into two categories: Computer Science and Electrical & Computer Engineering.
These topics are separated into two columns, the first reflecting the specific topic to be discussed,
and the second describing ways in which the topic could be improved upon. This evaluation can
be seen in Table 8.2.

8.4 Summary

This project started with the lofty goal of designing a suitable platform for upper level Robotics
Engineering courses. These objectives were expanded to include budget restraints, a target audi-
ence, theoretical course requirements, and an expanding list of desired capabilities.

Over the course of the project, these objectives eventually created requirements, described ear-
lier in this document. These requirements guided the construction of the MRP prototype. Once the

35

8.4. SUMMARY CHAPTER 8. SUMMARY AND CONCLUSIONS

software library to allow simple hardware control of the robot was created, the MRP’s possibilities
became apparent.

The original goal for the platform—to be used in a series of upper level Robotics classes—

Table 8.1: Completion of objectives.

Objective Objective Status

Computer Science

Programmable by user The MRP is programmable in any language that can be compiled in
Debian Linux, including, but not limited to, C/C++, Java, Python and
Scheme.

Wired Connection The MRP can connect to a student’s computer through its serial port.
A student can completely control and program the robot through this.

Network abilities The MRP can connect to WPI’s campus network through an ethernet
connection. Wireless connection proved successful in areas with un-
protected wireless networks. WPI’s network is protected by a WPA
Enterprise encryption and has not yet allowed the MRP to connect.

Network Programming A student may wirelessly control, program, and completely modify
the on–board programming of an MRP that is connected to a network.

Library A C library that, upon compile time, can allow students to easily con-
trol the MRP’s hardware was completed and tested.

Field Control A student can start, stop, and reset code on a robot without a com-
puter.

Operating System Debian Linux, compiled for the ARM9 processor, successfully runs
and controls the MRP.

Expandability Due to the vast array of programming languages available to control
the MRP, the constant updates of the Linux for ARM operating sys-
tem, and the vast amount of untapped power within the processor,
the MRP has excellent potential in expanding to meet the needs of
complicated projects in research and education.

Electrical & Computer
Engineering

Digital I/O The MRP has a total of 10 easily accessible digital I/O ports with built
in current protection.

Analog inputs The MRP has 5 Analog to Digital Converter ports that can accept a
range of 0–3.3V, and are protected from overvoltage.

Serial I/O The MRP has 4 serial ports for use, 2 RS–232 ports accessible through
DB9 connectors and 2 TTL ports assessable through terminal blocks.

Servo Ports A servo Controller is connected to the MRP allowing for control of up
to 8 servos.

12V, 5V and 3.3V Power Internally the MRP runs on a 12V system with both 5V and 3.3V ac-
cessible through terminal blocks on the interface board.

Co–Processors The Co–Processors of the MRP are wired up but still await program-
ming.

36

8.4. SUMMARY CHAPTER 8. SUMMARY AND CONCLUSIONS

seemed to only touch upon a fraction of the possible applications for the MRP. While we among
the project agree that, had we started the project knowing what we did now, the outcome would
be significantly different, we also agree that the outcome of the project was a success. Knowing
what we know now, the project would have been tailored more towards what the Unified Robotics
courses actually ended up including. This would most likely have resulted in the courses using
the results of this project in the curriculum.

By the time that this document was written, a platform has been chosen for the first rendition
of Unified Robotics 3001. No platform has been chosen for Unified Robotics 3002 as of yet. Some
would consider this a failure for a platform designed to fill this “market space,” but we would
argue otherwise. The expected educational outcomes for the Unified Robotics course has since
changed over the course of the project, changing drastically what was required in a platform. The
MRP also still has an excellent future as a project prototype, hastening development as it was
meant to do. For an initial attempt at developing such a platform, the resulting platform is a
success.

37

8.4. SUMMARY CHAPTER 8. SUMMARY AND CONCLUSIONS

Table 8.2: Topics to be improved upon.

What could be improved upon? How could it be improved?

Computer Science

Wireless Connectivity Despite our best efforts, the MRP never successfully con-
nected to WPI’s wireless network due to difficulties with its
encryption. Linux has since made significant improvement
with wireless compatibility and shows promise that future
ARM distributions will perform better.

Boot–up Time The initial boot–up sequence of the MRP could be drastically
improved. Currently it can reach a time up to two and a
half minutes depending on the previous method of shutting
down the MRP and network connection settings. Modifica-
tions to the operating systems and networking scripts could
be made to improve the boot–up time.

Additional Distributions Since the project’s end, additional distributions of Linux
have either been released or update for the ARM proces-
sor. An exploration of compatibility with other distributions
could improve the performance of the robot.

Libraries for other languages Only a C library was created to control the hardware on the
MRP. Libraries in other languages would also greatly en-
hance using the MRP for more advanced projects.

Electrical & Computer
Engineering

AVRs The pins on the AVR chip could have been wired to a
header terminal to allow for each chip to be completely re-
programmed by students.

ADC The MRP could have used more than 5 ADC ports, as well as
an ADC with a faster refresh time.

FPGA When the TS–7800 was purchased we were under the im-
pression that the TS–7800 would have a completely user pro-
grammable FPGA, but when the board was received it was
determined that the FPGA was non user programmable.

Remove ribbon Cables The ribbon cables connecting the circuit board to the TS–
7800 clutter the platform. A stackable arrangement of these
boards would be ideal.

38

Bibliography

[1] Worcester Polytechnic Institute, “Robotics engineering - courses”.

[2] Innovation First Inc, “Classroom lab kit”.

[3] Gentleware AG, “Model to business - uml glossary”, 2007.

[4] Brad Miller, “Wpilib”, 2008.

[5] Innovation First Inc, “Vex robotics design system”, 2008.

[6] iRobot, “irobot create”, 2008.

[7] Microsoft Corporation, “irobot create and roomba with microsoft robotics studio”, 2008.

[8] Evolution Robotics, “Evolution robotics er1 robot kit”, 2008.

[9] Carl’s Electronics, “Robodesigner educational robot platform”, 2008.

[10] Wikipedia contributors, “Lego mindstorms nxt”, 2008.

[11] LEGO, “Lego mindstorm’s nxt overview”, 2008.

[12] Surveyor, “Surveyor srv-1 blackfin robot”, 2008.

[13] Surveyor, “Surveyor srv-1 blackfin camera”, 2008.

[14] Acroname, “Customize a garcia”, 2008.

[15] Acroname, “Garcia custom robot”, 2008.

[16] MobileRobots Inc., “Seekur”, 2008.

[17] Inc Segway, “Robotic mobility platform (rmp)”, 2008.

[18] Michael David Medeiros and Aaron CHristopher Bergeron, “Development of a gas-pipe
climbing robot”, Tech. Rep. 05B014M, Worcester Polytechnic Institute, 2005.

[19] Eric Carter Tripodi and Christopher Phillip Bitzas, “Design of a six-legged walking robot”,
Tech. Rep., Worcester Polytechnic Institute, 2001.

[20] Christopher D. Korzeniowski, Francisco T. DeMolina Cobo, and Kevin M. Bobrowski,
“Search and rescue robot”, Tech. Rep. 07D070M, Worcester Polytechnic Institute, 2007.

39

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Illah R. Nourbakhsh, Kevin Crowley, Ajinkya Bhave, Emily Hamner, Thomas Hsiu, An-
dres Perez-Bergquist, Steve Richards, and Katie Wilkinson, “The robotic autonomy mobile
robotics course: Robot design, curriculum design and educational assessment”, Autonomous
Robots, vol. 18, no. 1, pp. 103, Jan-1 2005.

[22] J. M. Mirats Tur and C. F. Pfeiffer, “Mobile robot design in education”, IEEE robotics and
automation magazine, vol. 13, no. 1, pp. 69, Mar-1 2006.

40

Appendix A

Electrical Design Details Reference

Much of the design details corresponding to the electrical systems in the MRP are highly technical.
For the sake of portability, these Electrical Design Details for the Mobile Robotics Platform are
included as a standalone entity in the pages that follow.

41

MOBILE R

ELECTRICAL

Compiled in majority by Matthew DeDonato.

Originally included in the Mobile Robotics Platform

1 TS-7800

For the main processing board we choose to go with the TS

Technologic Systems. The TS-7800 has connectors and headers that allow access to all of the

features of the board. We will be using the DIO header, the 40

the COM 1 connector, and COM 3 header.

1.1 LCD HEADER

The LCD header is numbered as follows

Figure

The pin assignments are as follows:

Table

Pin Feature

1 5V

2 GND

3

Page 1 of 25

ROBOTICS PLATFORM:

LECTRICAL DESIGN DETAILS

Mobile Robotics Platform team report as an appendix.

Figure 1: TS-7800

rd we choose to go with the TS-7800 single board computer created by

7800 has connectors and headers that allow access to all of the

features of the board. We will be using the DIO header, the 40-PIN GPIO header, the A/D heade

the COM 1 connector, and COM 3 header.

header is numbered as follows (Pin 1 is next to the dot on the silkscreen):

2 4 6 8 10 12 14

.1 3 5 7 9 11 13

Figure 2 - LCD Pin Numbers

Table 1 - LCD Pin Assignments

Feature Note

5V

GND

7800 single board computer created by

7800 has connectors and headers that allow access to all of the

PIN GPIO header, the A/D header,

Page 2 of 25

4

5

6

7 Digital I/O 2.2K Resistor Pull Up

8 Digital I/O 2.2K Resistor Pull Up

9 Digital I/O 2.2K Resistor Pull Up

10 Digital I/O 2.2K Resistor Pull Up

11 Digital I/O 2.2K Resistor Pull Up

12 TTL_TxEn UART #7

13 TTL_Tx UART #7

14 TTL_Rx UART #7

1.2 DIO HEADER

The DIO header is numbered as follows (Pin 1 is next to the dot on the silkscreen):

2 4 6 8 10 12 14 16

.1 3 5 7 9 11 13 15

Figure 3 - DIO Pin Numbers

The pin assignments are as follows:

Table 2 - DIO Pin Assignments

Pin Feature Note

1 Digital I/O 2.2K Resistor Pull Up

2 GND

3 Digital I/O 2.2K Resistor Pull Up

4 Input Only

5 Digital I/O 2.2K Resistor Pull Up

6 SPI_FRAME For Temp Sensor

7 Digital I/O 2.2K Resistor Pull Up

8 Digital I/O 20k-150k Resistance Pull Up

9 Digital I/O 2.2K Resistor Pull Up

10 SPI_MISO For Temp Sensor

11 TTL_TxEn UART #6

12 SPI_MOSI For Temp Sensor

13 TTL_Tx UART #6

14 SPI_CLK For Temp Sensor

15 TTL_Rx UART #6

16 3.3V

1.3 40-PIN GPIO HEADER
The GPIO consists of two headers. The first is a 64 pin header labeled “A” and “B”, and the second is

a 40 pin header labeled “C” and “D”.

Page 3 of 25

D 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4 - 40-PIN GPIO Pin Numbers

A 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

B 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 5 - 64-PIN GPIO Pin Numbers

For our purposes we have decided to use only the 40-PIN GPIO header because the header contains

more than enough I/O pins, plus serial ports and power pins. The 64-PIN GPIO only contained I/O

and power ports. The pin assignments for the 40 pin connector are as follows:

Table 3 - 40-PIN GPIO Pin Assignments

Pin Feature Note Pin Feature Note

C0 GND D0 GND

C1 Digital I/O D1 Digital I/O

C2 Digital I/O D2 Digital I/O

C3 Digital I/O D3 Digital I/O

C4 Digital I/O D4 Digital I/O

C5 Digital I/O D5 Digital I/O

C6 Digital I/O D6 Digital I/O

C7 Digital I/O D7 Digital I/O

C8 Digital I/O D8 3.3V

C9 Digital I/O D9 Digital I/O

C10 Digital I/O D10 Digital I/O

C11 Digital I/O D11 Digital I/O

C12 Digital I/O D12 Digital I/O

C13 TTL_TxEn UART #9 D13 Digital I/O

C14 TTL_Tx UART #9 D14 Digital I/O

C15 TTL_Rx UART #9 D15 Digital I/O

C16 TTL_TxEn UART #8 D16 5V

C17 TTL_Tx UART #8 D17 Digital I/O

C18 TTL_Rx UART #8 D18 GND

C19 GND D19 GND

1.4 A/D HEADER

The analog to digital header provides connections for the analog to digital converter. The A/D

header is numbered as follows (Pin 1 is next to the dot on the silkscreen):

2 4 6 8 10

.1 3 5 7 9

Figure 6: A/D Pin Numbers

The pin assignments are as follows:

Table

Pin Feature

1 ADC_0

2 GND

3 ADC_1

4 GND

5 ADC_3

6 GND

7 ADC_2

8 GND

9 ADC_7

10 GND

1.5 COM 1 CONNECTOR

COM 1 is wired into a male DB9 connector.

Figure

The pin assignments are as follows:

Table

Pin Feature

1 RS-232_Rx

2 RS-232_Rx

3 RS-232_Tx

4 RS-232_Tx

5 GND

6

7 RS-232_Tx

8 RS-232_Rx

9

1.6 COM 3 HEADER

The COM 3 header is used to connect to two more serial ports, it is numbered a bit differently from

the other headers. The pins in this connector are

silkscreen):

Page 4 of 25

Table 4 - A/D Pin Assignments

Feature Note

ADC_0 0 to 3.3V tolerant

GND

ADC_1 0 to 3.3V tolerant

GND

ADC_3 0 to 3.3V tolerant

GND

ADC_2 0 to 3.3V tolerant

GND

ADC_7 0 to 3.3V tolerant

GND

COM 1 is wired into a male DB9 connector. The pins in this connector are numbered as follow

Figure 7 - DB9 Connector Pin Numbers

Table 5 - COM 1 Pin Assignments

Feature Note

232_Rx UART #1

232_Rx CONSOLE

232_Tx CONSOLE

232_Tx UART #1

GND

232_Tx UART #0

232_Rx UART #0

The COM 3 header is used to connect to two more serial ports, it is numbered a bit differently from

pins in this connector are numbered as follows (Pin 1 is next to the dot on the

numbered as follows:

The COM 3 header is used to connect to two more serial ports, it is numbered a bit differently from

1 is next to the dot on the

Page 5 of 25

6 7 8 9 10

.1 2 3 4 5

Figure 8 - COM 3 Pin Numbers

The pin assignments are as follows:

Table 6 - COM 3 Pin Assignments

Pin Feature Note

1

2 RS-232_Rx UART #4

3 RS-232_Tx UART #4

4

5 GND

6

7 RS-232_Tx UART #5

8 RS-232_Rx UART #5

9

1.7 ANALOG TO DIGITAL CONVERTER (ADC)
The analog to digital converter built into the TS-7800 is powered by an ATMega48 AVR

microcontroller. This microcontroller has 5 ADC channels that it can sample at 10-bit resolution

every 0.5 seconds. The value is then communicated back to the main processor through I2C serial

protocol.

Page 6 of 25

Figure 9 - ADC Schematic

The A/D header on the TS-7800 plugs into the ADC socket on the interface board. Pins 2, 4, 6, 8,

and 10 are all tied to ground. Pins 1, 3, 5, 7, and 9 are each run through a voltage limiting circuit, to

protect the onboard ADC, and then connected to a terminal block on the interface board.

Table 7 - A/D Pin Use

A/D PIN

(TS-7800)

USE

(Interface Board)

NOTE

1 ADC 1 0 to 3.3V tolerant

2 GND

3 ADC 2 0 to 3.3V tolerant

4 GND

5 ADC 3 0 to 3.3V tolerant

6 GND

7 ADC 4 0 to 3.3V tolerant

8 GND

9 ADC 5 0 to 3.3V tolerant

10 GND

1.7.1 VOLTAGE LIMITING CIRCUIT

Since the onboard ADC chip only reads voltages from 0 to 3.3V, it cannot handle voltages that are

much higher than 3.3V without being destroyed. The problem is that we have a 5V power rail; this

creates the potential for 5V to be put through the ADC. To protect against this potentially

catastrophic scenario, we designed a voltage limiting circuit that would output any voltage inputted

into the circuit from 0 – 3.3V, but once the input voltage passes 3.3V the output o

voltage will still always remain at 3.3V.

Figure 10

The circuit in Figure 11 is what was designed to limit the voltage. When the input voltage comes in

it is sent through a 1K ohm resistor to protect the op

sent into a general op-amp. In our case we used chip LM358M because it met our specifications and

was readily available. Because of the feedback loop in the

increase the voltage at the output point 1, until the voltage at point 2 is equal to the input voltage at

point 3. The voltage out of the op amp which is equal to the input will travel through the resistor, to

protect the ADC from over current, and then out to the output of the circuit. Unless of course if the

voltage passing out exceeds the threshold of the zener diode. In this case the zener diode will close

and direct all of the current to ground. The zener diode we

but because zener diodes work on a curve the op

at 3.3V exactly, creating the desired effect the output curve in

against negative voltage by means of the general diode D5. If a negative voltage is placed on the

input the diode will allow the current to flow from ground instead of through the output.

Page 7 of 25

Since the onboard ADC chip only reads voltages from 0 to 3.3V, it cannot handle voltages that are

much higher than 3.3V without being destroyed. The problem is that we have a 5V power rail; this

for 5V to be put through the ADC. To protect against this potentially

catastrophic scenario, we designed a voltage limiting circuit that would output any voltage inputted

3.3V, but once the input voltage passes 3.3V the output of the output

voltage will still always remain at 3.3V.

10 - Input vs. Output Voltage Graph

is what was designed to limit the voltage. When the input voltage comes in

is sent through a 1K ohm resistor to protect the op-amp from over current. The voltage is then

amp. In our case we used chip LM358M because it met our specifications and

was readily available. Because of the feedback loop in the circuit the op-amp will continually

increase the voltage at the output point 1, until the voltage at point 2 is equal to the input voltage at

point 3. The voltage out of the op amp which is equal to the input will travel through the resistor, to

he ADC from over current, and then out to the output of the circuit. Unless of course if the

voltage passing out exceeds the threshold of the zener diode. In this case the zener diode will close

and direct all of the current to ground. The zener diode we picked was 1N750. It is rated for 4.7V,

but because zener diodes work on a curve the op-amp will continuously force open the zener diode

at 3.3V exactly, creating the desired effect the output curve in Figure 10. This circuit also protects

against negative voltage by means of the general diode D5. If a negative voltage is placed on the

input the diode will allow the current to flow from ground instead of through the output.

Since the onboard ADC chip only reads voltages from 0 to 3.3V, it cannot handle voltages that are

much higher than 3.3V without being destroyed. The problem is that we have a 5V power rail; this

for 5V to be put through the ADC. To protect against this potentially

catastrophic scenario, we designed a voltage limiting circuit that would output any voltage inputted

f the output

is what was designed to limit the voltage. When the input voltage comes in

amp from over current. The voltage is then

amp. In our case we used chip LM358M because it met our specifications and

amp will continually

increase the voltage at the output point 1, until the voltage at point 2 is equal to the input voltage at

point 3. The voltage out of the op amp which is equal to the input will travel through the resistor, to

he ADC from over current, and then out to the output of the circuit. Unless of course if the

voltage passing out exceeds the threshold of the zener diode. In this case the zener diode will close

picked was 1N750. It is rated for 4.7V,

amp will continuously force open the zener diode

lso protects

against negative voltage by means of the general diode D5. If a negative voltage is placed on the

input the diode will allow the current to flow from ground instead of through the output.

Page 8 of 25

Figure 11 - Voltage Limiting Circuit

2 CONNECTOR PLATE
The connector Plate is where most of the interaction with the robotics platform will occur. It is

designed to be mounted on the top or back of the robot depending on the user’s preference. The

plate is the interface point for all of the robots electrical systems. The power switch on the bottom

left directly controls the power to the distribution block. The switch can handle up to 20 amps and

illuminates when activated. To the right of the power switch a breadboard is mounted to the

connector plate. This breadboard provides an incredibly useful and modular environment for

interfacing sensors and creating circuits that will interact with the robot. These circuits and

sensors can communicate with the robot through the interface board, which is flush mounted on

the connector plate.

Figure 12 - Connector Plate

2.1 USER ACCESSIBILITY BOARDS
The TS-7800 board was able to satisfy all of our design requirements. In order to make the

different input and output ports user friendly and easily accessible a two part circuit board was

designed as an interface to the TS-7800. These boards not only made the features of the board

accessible, they also off-loaded some of the tedious computing to a series of Atmel AVR microchips.

2.1.1 INTERFACE BOARD

Page 9 of 25

The interface board is the first board in a two part design that creates easy to use modular

electronics for the robot. It takes the ports on the 7800 and organizes them into easily accessible

terminals for connecting components. The interface board holds the serial ports, the status LED’s, the

reset button, 15 digital input output ports, 5 analog to digital converter ports, 8 servo motor ports, 1

stepper motor port,10 five volt terminals, 10 three volt terminals, and 10 ground terminals. A series of

five ribbon cables connect the interface board to the TS-7800. The ribbon cables attach to various

headers on the TS-7800 and plug into the corresponding headers on the interface board. The

circuitry on the interface board sorts the scattered ports of the TS-7800 into user friendly terminals

on the interface board, as well as provides protection circuits to prevent the processing board from

getting accidentally destroyed.

Figure 13 - Interface Board Schematic

2.1.2 DIGITAL I/O (DIO)

The ribbon cable coming off of the DIO header of the TS-7800 board is split into two cables. The

first, of the two connects to pins 1-10 of the DIO header and plugs into the socket labeled “DIO PIN

1-10” on the interface board. The other cable connects to the co-processing & power regulation
board and will be talked about later. When the cable comes into the interface board they are
distributed as seen in Figure 14.

Page 10 of 25

Figure 14 - DIO PIN 1-10 Schematic

All of the digital input and output pins are routed through a 1K ohm resistor to protect the TS-7800

from over current. The TS-7800 can only sink 8mA of current into the board. So to prevent the

accidental discharge of more than 8mA into the board, we use a resistor to limit the current. We

assume that the maximum voltage that can be supplied to the input is 5V, since only 5V and 3.3V

terminals are accessible on the connector plate. We also decide to build in an error margin of 3mA

leaving us with 5mA maximum current. Knowing these two values we can calculate the size of the

resistor using:

� � ��

We find that a 1K ohm resistance is required to limit the current to 5mA. 1K ohm resistors are used

on every non serial, digital or analog input that connects to the board.

Table 8 - DIO Pin Use

DIO PIN

(TS-7800)

USE

(Interface Board)

NOTE

1 DIO 1 1K ohm Resistor

2 GND

3 DIO 2 1K ohm Resistor

4 BOOT TO LINUX 1K ohm Resistor

5 DIO 3 1K ohm Resistor

6

7 DIO 4 1K ohm Resistor

8 RESET 1K ohm Resistor

9 DIO 5 1K ohm Resistor

10

Page 11 of 25

Pins 1, 3, 5, 7, and 9 are routed through the resistors and connect to the terminal block for Digital

I/O 1-5. Pin 4 connects to the boot to Linux jumper. When this jumper is connected pin 4 is tied to

ground triggering a reaction in the software. Pin 8 is tied to the reset button, which operates in the

same manner as the jumper.

2.1.3 GENERAL PURPOSE I/O (GPIO)

The ribbon cable connects to the 40 pin general purpose I/O header, and runs directly to the “40-

PIN GPIO” socket on the interface board. The pins are then routed as shown in Figure 15.

Figure 15 - 40-PIN GPIO Schematic

Pins C1 through C10 are used as digital I/O ports 6-15 and are protected from over current with 1K

ohm resistors. 2 TTL level serial ports are included on the interface board. TTL level serial ports

operate using the same protocols as RS-232, but these ports only operate with voltages from 0 to

5V, instead of plus or minus 3 to 15V like RS-232, making TTL level devices unable to communicate

with RS-232 ports. For this reason we added two TTL ports connected to pins C14 and C15, as well

as C17 and C18. The signal is routed to terminals on the interface board for convenient connecting

of TTL level serial devices. Lastly LED 1 and LED 2 draw power from pin D16 and are activated

when the corresponding pin D1 or D2 is set low. LED 3 connects to the battery monitoring circuit

discussed later in this section.

Page 12 of 25

Table 9 - 40-PIN GPIO Pin Use

GPIO PIN
(TS-7800)

USE
(Interface Board)

NOTE GPIO PIN
(TS-7800)

USE
(Interface Board)

NOTE

C0 GND D0 GND

C1 DIO 6 1K ohm Resistor D1 LED 1 1K ohm Resistor

C2 DIO 7 1K ohm Resistor D2 LED 2 1K ohm Resistor

C3 DIO 8 1K ohm Resistor D3

C4 DIO 9 1K ohm Resistor D4

C5 DIO 10 1K ohm Resistor D5

C6 DIO 11 1K ohm Resistor D6

C7 DIO 12 1K ohm Resistor D7

C8 DIO 13 1K ohm Resistor D8

C9 DIO 14 1K ohm Resistor D9

C10 DIO 15 1K ohm Resistor D10

C11 D11

C12 D12

C13 D13

C14 TTL – 9_Tx D14

C15 TTL – 9_Rx D15

C16 D16 5V

C17 TTL – 8_Tx D17

C18 TTL – 8_Rx D18

C19 GND D19 GND

2.2 SERIAL PORTS (RS-232)
There are 3 DB9 serial port connectors on the interface board. The top connector is the console

port. This is the port used to directly connect the TS-7800 to another computer for programming

and feedback. The next two are RS-232 serial ports. They allow the user to connect any serial RS-

232 device for use with the robot.

Page 13 of 25

Figure 16 - RS-232 Ports Schematic

These ports are wired to the COM 1 socket on the back of the interface board, and that connects to

the DB9 connector on COM 1 of the TS-7800. Pins 2 and 3 of COM 1 connect to the console port,

pins 7 and 8 connect to the RS-232-0 port, and pins 1 and 4 connect to the RS-232-1 port. The

standard wiring of a RS-232 male DB9 connector is as follows:

Figure 17 - RS232 DB9 Pin-Out

Pin 2 is the receive data pin (Rx) and pin 3 is the transmit data pin (Tx). Pin 2 on the COM 1 header

is the Rx pin for the console, and pin 3 is the Tx pin. Therefore pin 2 and 3 on COM 1 goes to the

corresponding pins 2 and 3 on the DB9 connector for the console. The Rx pin for UART #0 on COM

1 is pin 8, so it is wired to pin 2 on the DB9 connector for RS-232-0 and the Tx pin for UART #0 on

COM 1 is pin 7, so it is wired to pin 3 on the DB9 connector for RS-232-0. The same concept applies

for RS-232-1, pin 1 on COM 1 is the Rx pin so it connects to pin 2 on the DB9 connector for RS-232-

1, and pin 4 on COM 1 is the Tx pin so it connects to pin 3 on the DB9 connector for RS-232-1. Pin 5

on all of the DB9 connectors is signal ground. These pins all connect to each other then tie to the

signal ground on pin 5 of the COM 1 header. This ground is kept isolated from the board ground

once again to prevent noise on the serial lines.

Page 14 of 25

Table 10 - COM 1 Pin Use

COM 1 PIN

(TS-7800)

DB9 Connector

(Interface Board)

DB9 Connector

Pin

Serial Signal

(RS-232)

1 RS-232-1 2 Rx

2 CONSOLE 2 Rx

3 CONSOLE 3 Tx

4 RS-232-1 3 Tx

5 ALL 5 GND

6

7 RS-232-0 3 Tx

8 RS-232-0 2 Rx

9

10

By using standard connectors for the RS-232 we create the opportunity for any number of standard

serial devices to be interfaced with the robot. Because of the wide range of devices that can be

connected to these ports we need to take into account the potential for a device that might require

the use of the other 6 pins on a standard RS-232 DB9 connector. These pins are used when flow

control is being used or the detection of a signal is required before the data can be sent. Since the

TS-7800 only has the capability to communicate using the Tx and Rx ports for each serial

connection, we can use a technique called “spoofing” to fool any device trying to use these pins.

This is done by connecting pins 1, 4, 6, 7, and 8, on the DB9 connectors, together. What this does is

creates a feedback loop that sends any signal coming from the serial device back to the device,

where it is interpreted as a signal from the computer.

3 POLOLU SERVO CONTROLLER

Figure 18 - Pololu Micro Serial Servo Controller

The Pololu servo controller is used to relieve the main processor of the tedious task of generating a

PWM signal to drive the servos. This controller receives packets of information, trough serial

Page 15 of 25

communication, specifying the servo number and speed. This information is then converted into a

PWM signal that drives the servo motor.

Figure 19 - Servo Controller Layout and Pin-Out

The interface board is designed so that the Pololu controller can be mounted directly to the board.

A 12V power is connected to the interface board to power the servo controller. Because individual

servos can draw at around 0.5A under normal use and have a stall torque of 1A, a separate 6 amp

5V power supply is connected to power the servo power rails.

Figure 20 - Servo Controller Schematic

The ribbon cable from COM 3 on the TS-7800 connects to the COM 3 socket on the interface board.

Pin 3, which is the transmit pin for the RS-232 UART #4, is connected to the RS-232 serial input of

the servo controller. Pin 5 which is serial ground is connected to the controller as well but is kept

isolated from to board ground to prevent noise on the serial line.

Page 16 of 25

4 CO-PROCESSING & POWER REGULATION BOARD
The co-processing & power regulation board or CPRB is the second half of the user accessibility

board design. The CPRB holds 6 reprogrammable ATMega168 AVR microcontrollers, a stepper

motor driver, 3 power regulating circuits and a battery monitoring circuit.

Figure 21 - Co-processing & Power Regulation Board Schematic

Page 17 of 25

4.1 ATMEGA168 AVR MICROCONTROLLERS

Figure 22 - ATMega168 Pin-Out

The ATMega168 chips were chosen as co-processing chips because they are fast, cheap and easy to

work with. The AVR chips are widely used; therefore there is a lot of software already written for

them. They are also programmed in C, simplifying programming even more.

4.2 BUCK CONVERTERS
The robot is supplied with 12V from the battery, but most sensors and servos are run on a voltage

somewhere in the range of 0-5V, the most common being 3.3V and 5V. In order to reduce the 12V

from the battery to a more common voltage type we used buck converters. Buck converters work

with an inductor and two switches that control the inductor. It alternates between connecting the

inductor to source voltage to store energy, and discharging the inductor into the load. After

considering the current that could be drawn by sensors, as well as servos, we concluded that 3 buck

converters would be necessary, each with a rating of 6 amps. 2 buck converters are set to 5V, one

to power the servos, and the other to supply power to the 5V power terminals. The third buck

converter is set to 3.3V to supply power to the 3.3V power terminals. Based on these requirements

we choose the PTH12000W variable buck converter.

Figure 23 - PTH12000W Buck Converter

The buck converters are wired up as shown in Figure 24. Rset was set to 2K ohms for the 3.3V

regulator and 270 ohms for the two 5V regulators. The inhibit pin was left open because it was not

Page 18 of 25

needed for our application, 12V was supplied to Vin and Vout was connected to its corresponding

place on the interface board. The Capacitors are used to smooth the voltage output from the buck

converter.

Figure 24 - Power Regulation Circuit

4.3 BATTERY MONITORING CIRCUIT
This circuit alerts the user when their battery is getting low by turning on an LED located on the

interface board. The need for a battery monitoring circuit became evident when we were

researching batteries, we found that the type that best suited our needs was a nickel-metal hydride

(NiMH) battery, and with further research discovered that NiMH batteries can be damaged if they

are drained below a certain voltage. So by designing a circuit to alert the user when the battery was

getting low we reduce can reduce the chances of the user damaging the battery.

NiMH batteries are rated to a nominal voltage that they can steadily output for the majority of their

discharge cycle. When the battery is fully charged it will output a voltage higher than its rated

voltage output. The output voltage will slowly drop as the battery is discharged, it will follow a

curve known as a discharge curve. By studying this curve the remaining battery capacity can be

determined based on the voltage output.

Page 19 of 25

Figure 25 - Battery Monitor Schematic

Figure 25 shows the circuit we designed to illuminate an LED at a set voltage. The concept of this

circuit is that while the input voltage is above the set trigger voltage the zener diode breaks down

applying a high to the transistor which shorts across the LED, diverting the current to ground. As

the input voltage lowers beyond the trigger voltage, there is not enough voltage supplied to the

zener diode for it to break down therefore the transistor receives a low, disconnecting the short and

sending current through the LED which is located on the interface board and connected to pin 1 and

2 through a cable.

Figure 26 - Discharge Curve for MH-C5000 Cells

In order to determine where to set the trigger voltage we looked at the discharge curve for our

selected battery (Figure 26). Since this graph is for each individual cell in the battery pack, we need

to multiply the voltage and discharge rate by 10, because our battery pack contains 10 cells.

Page 20 of 25

Assuming a standard discharge of 2Ah and deciding to drain the battery by approximately 90% we

can see that the approximate output voltage of the battery at that point would be 11V.

Now that we know the trigger voltage is going to be set to 11V, we can calculate the resistor values

need to use in order for the circuit to react to the desired trigger voltage. The zener diode we are

using is 1N4735; it has a nominal breakdown voltage of 6.2V. The calculation for the resistors can

now be done by a simple voltage divider calculation.

Figure 27 - Voltage Divider

Where V = 11V, Vout = 6.2V, and R1 + R2 = 10K.

We come up with R1 = 4.4K ohms and R2 = 5.6K ohms.

This is the ideal situation, but since the zener diode is not triggered exactly at 6.2V we used these

numbers as a starting point and through trial and error determined a value of 3.4K ohm for R1 and

6K ohm for R2. We achieved this ratio using two 6.8K ohm resistors in parallel to make 3.4K ohms,

and two 12K ohm resistors in parallel to make a 6K ohm value. With this resistance ratio the LED

illuminates just as the voltage drops below 11V.

4.4 MOTOR CONTROLLERS

Figure 28 - Sabertooth Dual 5A Motor Driver

Two Sabertooth dual 5A motor drivers were used to control the 4 12V motors that drive the robot.

The motors used on the robot had a stall torque of 3A so the 5A version of the Sabertooth satisfied

our needs by supporting up to 5A per motor.

Page 21 of 25

Figure 29 - Sabertooth Wiring Diagram

A positive 12V is connected to the B+ terminal and B- was connected to ground on each motor

controller. The front two motors were wired to the M1 and M2 terminals of one Sabertooth, and

the rear motors were wired to the M1 and M2 terminals of the other Sabertooth. By connecting the

front motors to one and the rear motors to another, each motor controller had control of a right and

left wheel. The 0V terminals on each Sabertooth controller are connected to ground on pin 2 of the

TS-7800 LCD header, and the S1 terminals are tied to the TTL_TX_7 port on pin 13 of the LCD

header.

Table 11 - Sabertooth Pin-Out

Terminal Connected

B+ 12V

B- GND

M1A Motor 1

M1B Motor 1

M2A Motor 2

M2B Motor 2

0V Pin 2 TS-7800 LCD Header

5V

S1 Pin 13 TS-7800 LCD Header

S2

Since the Sabertooth controllers both connect to the same serial port they receive commands, from

the TS-7800 UART #7, in packetized serial form. Each controller is given an address that it can

determine if the information it receives was intended for itself or the other motor controller. One

controller is set to address 128 and the other is set to 129 by setting the dip switches as shown in

Figure 30.

Page 22 of 25

Address: 128 Address: 129

Figure 30: Sabertooth Dipswitch Settings

4.5 FUSE BLOCK
After the power from the battery is routed through the main power switch on the connector plate, it

is sent to a fuse block. The fuse block is used to protect the electronic components and motors from

stalling or shorting and drawing too much current. Trouble shooting shorts and other power

problems on the robot is also made easier since each system of the robot has its own fuse.

Figure 31 - 10 Circuit Fuse Block

 The fuse block used on the robot is shown in Figure 31, it accepts 10 ATC blade style fuses. It has a

distribution block, for the positive side of the battery, of 10 fused terminals each rated for 30A, and

a 14 terminal distribution block for the negative side. Table 12 shows the fuses used for each

device.

Table 12 - Fuse Ratings

Device Fuse Rating(A)

TS-7800 2

Sabertooth 1 7.5

Sabertooth 2 7.5

Servo Controller 1

Buck Converter 3.3V 5

Buck Converter 5V 5

Buck Converter 5V - Servo 5

Page 23 of 25

5 SENSORS
To keep the cost of the platform down we decided not to integrate sensors into the base design of

the robot. There is one exception to this and that is the wheel encoders, they were designed into

the drive train. These are necessary to make the robot drive straight. Minor differences in the

resistance of the gear boxes cause the wheels to spin at slightly different speeds, the encoders

monitor the rotation of the output shaft and adjust the motor controllers to compensate. Another

reason is the signal generated by the quadrature encoders would interrupt the processor 360 times

for every revolution of the wheel, so we assigned the task of interpreting this signal to one of the

AVR’s.

Figure 32 - EP4 Optical Encoder

The robot contains 4 US Digital E4P OEM Miniature Optical Kit Encoder, one on the output shafts of

each gearbox. We used this encoder because of its small size and cheap price. The encoders

connect to headers on Co-processing & Power Regulation Board that supply it with 5V power from

the buck converters, and connect the output signals on pins 2 and 4 to an AVR chip for processing.

Table 13 - EP4 Pin-Out

Pin Description

1 +5VDC Power

2 A Channel

3 Ground

4 B Channel

6 BATTERY
When selecting a battery you must analyze the energy requirements for your system, and use it to

define specifications for your battery. The battery voltage is required to be greater than or equal to

the maximum voltage required by the robot. Looking at Table 14 we can see that the voltages

required by the motors and electronics of the robot were no higher than 12V, therefore the selected

battery had to have a voltage no lower than 12V, so in order to avoid using a transformer to lower

the voltage the battery should be 12V. The next criterion in selecting the battery is its capacity.

Capacity is given in amp hours; this means that the battery can produce the specified amperage for

Page 24 of 25

a period of one hour. Again looking at Table 14 we see that the total current drawn by the robot,

with 4 motors and 8 servos, running continuously under normal operating conditions is 5.63A. The

ideal running time of the robot in this condition would be 50 minutes, or the time of one class

period. Therefore a 5Ah battery will satisfy our current and time requirements.

Table 14 - Component Voltage and Current

Component Voltage Current - Normal (A) Current -Max (A)

Motor 1 12V 0.7 3.5

Motor 2 12V 0.7 3.5

Motor 3 12V 0.7 3.5

Motor 4 12V 0.7 3.5

TS-7800 12V 0.8 0.8

Stepper Driver 12V 0.75 0.85

Servo Driver 12V 0.5 0.5

Motor Controller 1 12V 0.1 0.1

Motor Controller 2 12V 0.1 0.1

Servo 1 5V 0.16 0.9

Servo 2 5V 0.16 0.9

Servo 3 5V 0.16 0.9

Servo 4 5V 0.16 0.9

Servo 5 5V 0.16 0.9

Servo 6 5V 0.16 0.9

Servo 7 5V 0.16 0.9

Servo 8 5V 0.16 0.9

Total

5.63 20.05

The final decision that needs to be made in order to select the right battery for our robot was the

type of battery. There are many different types of batteries; however, since we require a

rechargeable battery we can narrow down the search to lead acid, lithium ion, nickel cadmium, and

nickel metal hydride. Lead acid batteries can be ruled out because they are too big for our

application. Since this platform will be used in a classroom environment we decide to avoid lithium

ion batteries, due to their potential to explode if used incorrectly. And lastly we cross off nickel

cadmium because they tend to have a high memory effect. This means that over time they tend to

hold less and less charge. This leaves us with nickel metal hydride batteries. These batteries are

relatively low cost, have good current output, long life and a high energy capacity. The only

downside to nickel metal hydride batteries, is that they have higher charging times and have a self-

discharge rate, meaning that if left for a period of time, they tend to lose their charge.

Page 25 of 25

Figure 33 - 12V 5000mAh NiMH Battery Pack

Based on the criteria we selected a 12V 5000mAh NiMH Battery Pack from batteryspace.com. The

battery pack contained 10 NiMH C size cells wired up side by side, with a 12V normal voltage

output and a 14.5V max. The standard discharge rate is 5A but the battery is capable of a 10A

continuous discharge. For this reason a 10A fuse was wired into the battery packs output terminal,

to prevent the over-draw of current from the battery. The battery can accept a standard charge of

1.8A and has a maximum charge of 5A. Two terminals are wired into the battery pack, one for

discharge and one for charging. The charging terminal has a built in temperature sensor to protect

against overcharging, it disconnects the charger if the temperature of the battery rises over 70

degrees Celsius. Because the battery pack has two terminals the battery can be charged while the

robot is still on. The only catch is that the charger will only output 1.8A. To protect against

overdrawing the charger a 2A fuse was wired in to the charge terminal.

Appendix B

Mechanical and Software Design Details
Reference

Much of the design details corresponding to the mechanical and software systems in the MRP
are highly technical. For the sake of portability, these mechanical and software Technical Design
Details for the Mobile Robotics Platform are included as a standalone entity in the pages that
follow.

67

1.1 MECHANICAL SYSTEMS

1.1.1 FRAME

Being a modular robot we wanted to design the frame separately from the drive mechanism. The

primary function of the frame is to provide mounting options for the electronics, the drive

mechanism and for any peripheral devices such as arms or sensor arrays. In addition to mounting

the frame also provides grounding for many of the electronics. The features of the frame light

weight (under 3.5 pounds), easy to assemble by one person and low in cost all while being able to

survive a fall from a 3ft tall table without permanent deformation. The initial designs are detailed

in Table 1 - Frame Designs.

Table 1 - Frame Designs

The final design was a combination of the Extruded Aluminum, and Square 3. The construction

material, item, similar to 8020, allows for a low build time and cost of material as well as making for

 Square 1 Square 2 Square 3 Hexagonal Octagonal Extruded Al

Description Short Square
frame with
horizontal
mounting

plates

Short
Square

frame with
removable

vertical
mounting

plates

Cube design
with easily
removable
horizontal
mounting

plates

Hexagonal
shaped

design with
both vertical

and
horizontal
mounting

plates

Octagonal
shaped

design with
both vertical

and
horizontal
mounting

plates

A short
Square frame

with
horizontal
mounting

plates

Picture

 Criteria

Mass (Lbs) 3.15 3.3 3.88 2.74 2.8 3.1

Center of
Gravity

(5, 5,
2.65in.)

(5, 5,
2.64in.)

(5, 5, 3.5in.) (5, 5.1,
3.41in.)

(5, 5.09,
3.5in.)

(5, 5, 2.5in.)

Dimensions 10x10x5in.
(lxwxh)

10x10x5in.
(lxwxh)

10x10x8in.
(lxwxh)

10x8in.
(minor dia. x

h)

10x8in.
(minor dia. x

h)

10x10x5in.
(lxwxh)

Material
Costs

$80 $90 $90 $120 $150 $100

Estimated
Build Time
and Cost

10 hrs. $300 12 hrs.
$360

12 hrs $360 18 hrs $540 22 hrs $660 4 hrs. $120

Material
Wasted

~20% ~20% ~20% ~50% ~50% ~5%

Ability to be
Mass
Manufactured

long cycle
times (2hrs
+), needs to
be welded

with
precision

long cycle
times

(2hrs +),
needs to be

welded
with

precision

long cycle
times (2hrs
+), needs to
be welded

with
precision

long cycle
times (2hrs

+), close
tolerances

high cycle
time (2+

hours), 50+
fasteners,

close
tolerances

Simple
machining

and finishing
(cut to length,

and tap 16
holes)

Expandability Universal
mounting
bracket on

top,
standardized

holes

Easy
access

removable
plates

Universal
mounting
bracket on

top,
standardized

holes

Universal
mounting
bracket on

top,
standardized

holes

Universal
mounting
bracket on

top,
standardized

holes

Item frame
allows for
multiple

configurations

Standard
Drive Train

Yes Yes Yes No (adapters
needed)

No (adapters
needed)

Yes

a very expandable design with channels for mounting located along the face of each piece of the

frame. By combining the extruded design with a taller design close to a cube the internal volume is

maximized relative to the use of material. However this raises concerns with the center of gravity

that will have to be dealt with by mounting the heavy components as low as possible.

1.1.2 DRIVE MECHANISM

One of the basic functions of the MRP is the ability to move around under its own power. The first

limitation we placed on the possibilities was the choice of using a DC electric motor because it

would be the most familiar method of propulsion known to the potential students using the MRP.

After making that selection there are several methods and configurations left to compare and

determine the best solution. In Table 2 - Drive Mechanisms, each configuration is ranked one to six

for the given criteria.

Table 2 - Drive Mechanisms

Criteria One
Steerable/

Driven
Wheel*

Treads Two
Wheel
Drive*

Four
Wheel
Drive

Six
Wheel
Drive

4 Wheel Drive
Swerve

Example/
Description

A child’s
tricycle

Tank Segway 2
wheels
on each

side
driven

together

3
wheels
on each

side
driven

together

Each wheel is
independently

driven and
turned

Weight 1 4 1 3 4 6

Maneuverability 6 5 4 2 2 1

Ease of Use
(complexity)

3 5 1 2 4 6

Handling of
Rough Terrain

6 1 5 3 1 4

Cost 3 5 1 2 4 6

Manufacturability 4 5 1 2 3 6

Maintenance 1 6 1 1 1 5

Total 24 31 14 15 19 34

Average 3.43 4.43 2.00 2.14 2.71 4.86

* Note: Additional points of contact with driving surface may be used to increase stability.

Explanation of Criteria:

• Weight: the estimated mass of the drive system

• Maneuverability: the ability to make the robot go to a location and to have the desired

orientation when it gets there

• Ease of use: the difficulty in controlling the robot in order to make a desired motion

• Cost: the estimated cost of materials and manufacturing time

• Manufacturability: a gauge of how easy it would be to mass produce MRP’s with this

particular drive mechanism

• Maintenance: how much work the end user has to do to keep the drive mechanism working

After comparing each possibility the two best designs are the two and four wheel drives. The main

performance difference between the two designs is that with four wheel drive as long as wheels are

contacting the ground the robot will be able to move towards the goal. With two wheel drive if one

drive wheel loses traction the ability to move is greatly impaired. For this reason the four wheel

drive solution was chosen as the drive configuration of the prototype.

1.1.3 SOFTWARE LIBRARY

The programming library is a key element towards making the MRP easily accessible. A user with a

basic handle on programming languages should still be able to write a program that controls the

MRP’s hardware. Functions were made to control the basic hardware of robotics platform in terms

that a basic user could understand. Error! Reference source not found. provides a brief overview

of what the library consists of.

Table 3: Library Functions

Hardware Controlled Description Function Name

Digital Inputs and Outputs Wrote high or low to digital

outputs and returned high or low

from digital inputs

setDO() and getDI()

Analog to Digital Converter Contacted the TS-7800’s Analog to

Digital Converter and gets the

value of a channel

getADC()

Servo Controller Commands the servo controller to

send a standard servo signal to one

of 8 servos

setServo()

Motor Controllers Contacts motor controllers and

orders a specific motor to go a

certain speed

setMotor()

1.1.3.1 Digital Inputs and Outputs

Digital inputs and outputs were controlled by specific registers. These registers contained 32 bit

values, though they could also be read as 16 and 8 bit values. Reading these registers as 16 or 8 bit

values means certain bits are ignored that may contain important information. Digital Input and

Output pins hail from two areas of the board – 5 from the TS-7800’s DIO Header, and 10 from a row

of its PC104 header. Each group of pins had its own set of registers and was handled different

depending on the function required.

1.1.3.1.1 PeekPoke.c (need to talk to Ciaraldi to properly explain this)

Both digital inputs and outputs require the ability to read and write to memory registers. All

functions that require these capabilities call functions within peekpoke.c. Written by one of this

project’s advisors, Professor Michael Ciaraldi, for another project, peekpoke.c will read and write to

registers in hardware memory and was vital to this project’s success.

NOTE: I need to meet with professor Ciaraldi, as this is based on his code. I believe I know how this

works, but I want to make sure I 100% understand this before I write more to this section.

1.1.3.1.2 Digital Inputs

By calling the function getDO(), the user receives either a 0 or a 1 to represent the status of that

digital input. The program controlling this function call is DOhandler.c, which controlled how to

return the value based on the several considerations that had to take place.

The pins chosen to be brought out to the breakout board did not progress regularly – the first 5

even numbered pins on the DIO header were chosen, then an almost progressive set of odd

numbered pins on the DIO header were selected. The reason for skipping pins is due to the pins

being dedicated through hardware to other uses. To make the pin numbering easier for users, an

easier 1 through 15 pin numbering was assigned. Since the average user is unaware of the unusual

pin numbers in hardware, a simple program and function was created to return what bit in a

register represents the selected pin. This function, getBit(), is in getBit.c:

int getBit(int pin){
 switch(pin){
 case 1: return 0;
 case 2: return 2;
 case 3: return 4;
 case 4: return 6;
 case 5: return 8;
 case 6: return 1;
 case 7: return 2;
 case 8: return 3;
 case 9: return 4;
 case 10: return 5;
 case 11: return 6;
 case 12: return 7;
 case 13: return 8;
 case 14: return 9;
 case 15: return 10;
 }
}

getBit.c consists of a switch statement that merely returns the corresponding bit of the pin

requested. It is shared between DOhandler.c and DIhandler.c

If the pin being selected was in the first group of 5 pins, the register that needed to be written to is

0xE8000004. By reading this register, the program merely needs to isolate the required bit and

return it. In order to do this, the following code from getDI() is used:

Once the register is read, its value then goes through a number of bitwise operations. First the

function creates a value bitmask, which is a 1 bit shifted bit bits high, where bit is the location of the

bit we are interested in. The register value is bitwise anded with bitmask, setting everything to 0

except potentially the value in the desired bit location. The register value is now bitshifted bit bits

to get the first bit. What was once the register value read is now the desired bit’s real value – a 0 or

a 1.

The remaining 10 digital IO pins belong to the PC104 header and belong to a different register.

Before reading the register, however, we must first check to see if the pin’s corresponding bit is set

as an input before reading. This invokes a function inside of DIhandler.c, set2Input():

int getDI(int pin){
 int bit;
 unsigned int bitmask;
 unsigned int readvalue;

 if(pin < 1 || pin > 15) return 0; //error check

 //We must make sure that input pins are set high each time we
 //read them for DIO HEADER pins only.
 // This is because they are open-drain.
 if(pin <= 5) setDO(pin, 1);

 //Likewise, for GPIO pins we must set the pin as an input.
 else if(pin >= 6) set2Input(pin);

 bit = getBit(pin);
 bitmask = 1 << bit;
 //Set appropiate bit in bitmask - shift over bit bits

 if(pin <= 5) readvalue = peek16(DIOHEADERREAD);
 else if(pin >= 6) readvalue = peek16(GPIODATA);

 readvalue = readvalue & bitmask;
 //Isolate the bit we want
 readvalue = readvalue >> bit;
 //shift to right to force return value to 0 or 1

 return readvalue;
}

To set the requested pin as an input, the corresponding bit on 0xE800002C for the pin must be set

to 0. Once the direction is set as an input, the program then reads the register 0xE800001C. The

code for set2Input() is similar to setDO(), which is explained in the following subsection.

1.1.3.1.3 Digital Outputs

Digital outputs are handled similarly to digital inputs, and like digital inputs, the DIO header pins

and PC104 header pins have to be handled differently for them to work. DIO header pins required

the least overhead, merely requiring flipping an individual bit on their register. The register for

writing out to the DIO header is 0xE8000008, different from the input register. The register is read

and preserved to prevent other pin’s values from inadvertently being changed when attempting to

change the value of a single pin.

void set2Input(int pin){
 int bit;
 unsigned int bitmask;
 unsigned int writevalue;
 int temp, read;
 int mask;

 bit = getBit(pin);

 read = peek16(GPIODIRECTION);

 // Create a mask with all 1, except the desired bit = 0;
 mask = 1;
 mask = mask << bit;
 mask = ~mask;

 // Force desired bit to 0; leave the rest unchanged.
 writevalue = read & mask;

 // Set the desired bit = 0
 temp = 0;
 temp = temp << bit;
 writevalue = temp | writevalue;

 poke16(GPIODIRECTION, writevalue);
}

Much like digital input handling in getDI(), we create a bitmask. In this case, however, mask, our

bitmask, is inverted to be all 1’s save the position of our desired bit. Then mask is anded with the

register value, forcing the bit we want to 0. The function then create an additional mask then, temp,

which is a value of all 0’s save a single 1 in the desired bit location. Temp is bitwise ored with the

modified register value to set the desired bit to the value we wanted.

The digital output pins 6 through 15 originate from the PC104 header pins. The register for these

pins is the same as the one used for the inputs. The direction register, 0xE800002C, however, must

have the corresponding bit for that pin be set to 1 for the pin to be successfully written to. This is

void setDO(int pin, int value){
 int bit;
 unsigned int bitmask;
 unsigned int writevalue;
 int temp, read;
 int mask;

 if(pin < 1 || pin > 15) return;
 if(value < 0 || value > 1) return;

 bit = getBit(pin); // Which bit in the register goes with this pin

 if(pin >= 6) set2Output(pin); // Set direction to output

 if(pin <= 5) read = peek16(DIOHEADERREAD);
 else read = peek16(GPIODATA);

 // Create a mask with all 1, except the desired bit = 0;
 mask = 1;
 mask = mask << bit;
 mask = ~mask;

 // Force desired bit to 0; leave the rest unchanged.
 writevalue = read & mask;

 // Set the desired bit = value
 temp = value;
 temp = temp << bit;
 writevalue = temp | writevalue;

 //Now write to the appropiate place.

 if(pin <= 5) poke16(DIOHEADERWRITE, writevalue);
 else poke16(GPIODATA, writevalue);

}

done via set2Output(), who’s code is identical to set2Input(), save the change in registers read and

written to.

1.1.3.2 Servos and Motors

While controlled by different hardware systems, both motors and servo motors are controlled in

very similar ways. setMotor.c controls both servos and regular motors through different functions.

Their combination was warranted by their similar nature – both require a proper serial connection

to be opened such that a command can be sent.

1.1.3.2.1 Serial

TBD

1.1.3.2.2 Servos

In order to set a servo’s position or speed, setServo() is called. The parameters that are passed to

setServo are the servo number (one through eight), the position or speed (the ranging depending

upon the duplex), and half or full duplex (0 is half, while 1 is full).

Writing to the servos requires first sending a “start byte”. The servo controller will not accept

commands until you first send it 0xFF (255). After this start byte is sent, setServo() will send the

servo being called and its position. If a servo is being called to work in full duplex mode, setServo()

will add 8 to its address to notify the servo controller.

1.1.3.2.3 Motors

Motor controllers also use a serial connection in order to convey the desired control over motors.

Sabertooth motor controllers, however, can be daisy-chained, allowing a single serial port to

control up to eight separate controllers, or sixteen separate motors. For the purposes of the library,

it is assumed that the user has no more than two motor controllers, though more can easily be

accounted for.

The motor controller accepts commands in a certain format. Each command is sent via a write()

command. Commands must be sent in a certain order for the motor controller to understand the

request. The commands sent are, in order:

 write(fd, &baud, 1);
 write(fd, &address, 1);
 write(fd, &command, 1);
 write(fd, &speed, 1);
 write(fd, &checksum, 1);

write(fd, &startBit, 1);
write(fd, &servo, 1);
write(fd, &pos, 1);

1. A baud-check. This is a known value issued by Dimension Engineering, the motor

controller’s manufacturer. The defined bit, 0xAA (170 decimal). This notifies the motor

controller what baud rate the MRP will communicate to it with.

2. The address is the motor controller being controlled. There can be up to eight motor

controllers on a single serial line, so eight different possible addresses from 127 to 135. The

address is set physically on the motor controllers via a DIP switch.

3. The motor controller has 14 possible commands, 0 to 13, for controlling its two motors.

These commands change how one addresses the motor controller and controls the MRP’s

motors. For simplicity’s sake the library always uses commands 6 or 7 (depends on which

motor you are addressing). These commands drive a single motor with 7 bit accuracy (0 to

127). Additional commands can provide better control and feedback for the MRP, but make

controlling the MRP for a new user more difficult. Future renditions of the library should

include functions that take advantage of these commands.

4. The speed of the motor is the next value sent. The range of speeds is 0 to 127, with 64 being

a rest speed, 0 being full reverse, and 127 being full forward.

5. A final checksum value is submitted last. This is a value generated by the previous pieces of

for the motor controller to confirm a successful transfer of information. The checksum is

the value of the address, the command, and the speed added together. This value is then

bitwise anded with 0x7f (127) to generate the checksum. If the checksum fails or is wrong,

the motor controller will not respond and ignore the MRP until a correct checksum is

submitted.

1.1.3.3 Internet Connection

1.1.3.3.1 Wired Internet

1.1.3.3.1.1 Getting Connected

Since Debian Linux was used, network configuration was automatic. The board’s MAC address was

properly reported to WPI’s Network Operations Center and, once approved to be on the network,

connected without a problem. Merely plugging the Ethernet into the board quickly connects the

MRP to available networks.

NOTE: I seem to not have much to say in this area. Professor Ciaraldi – what can I add here?

1.1.3.3.2 Wireless Internet

NOTE: As of now, even after the best efforts of Professor Ciaraldi, myself, and the Free Software

Association of WPI (new group on campus), we still can’t get the Wi-Fi to work. I have one last idea

I still need to test. If this doesn’t work, should I just write about my attempts albeit failure?

1.1.3.3.3 Remote Connections

Once an internet or network connection is established, the ability to remotely connect to the MRP

becomes a possibility. Two protocols become available, each for suited for distinct goals.

Secure Shell, or SSH, is a connectivity protocol that allows users to remotely connect to a system.

Once connected, their user commands are treated as if entered on the host system. This connect

type is equivalent to being directly connected to the MRP via a serial cable. The MRP can be

completely controlled by a user remotely connected through SSH.

Linux users who wish to connect to the MRP using SSH usually need only use the command

ssh username@XXX.XXX.X.XX

and then, when prompted, enter their password. Windows and Mac users can user the freely

available program Putty in order to connect to the MRP via SSH.

Secure File Transfer Protocol, or SFTP, was another protocol commonly used in the project. SFTP is

typically used for downloading and uploading files to and from the MRP. This is useful for backing

up important files or uploading new code to the robot. Future uses could entail downloading and

receiving sensor feedback from the MRP.

Many programs exist in order to connect to the MRP through SFTP. Linux users again merely need

to use their command line interface. Using the command

sftp username@XXX.XXX.X.XX

will prompt for a password and then connect the user to the MRP. Windows, Linux, and Macs have

numerous freely available programs that will support SFTP. Many of these programs boast

graphical user interfaces and are very accessible to users of all levels.

1.1.3.4 Serial Connection

The serial connection is defaulted on the operating system to always output to COM1. Several

programs exist in order to establish a connection to the MRP through serial. Linux users may use

the terminal based Minicom. Minicom treats the user’s Linux terminal as a terminal based on the

host machine. A graphical version of Minicom is available, called CuteCom. CuteCom features the

same capabilities, but for long term use, Minicom had noticeably fewer issues during this project’s

use. Windows users have HyperTerminal, a program that comes with most versions of Windows by

default. Windows and Mac users may also use Putty in order to connect to the MRP through serial.

To connect to the MRP through serial, specific settings are required to be set in each program.

These settings are:

• 115200 bits per second baud rate

• 8 data bits with no parity (commonly called 8N1)

• No flow control

• 1 stop bit

1.1.3.5 Operating System

1.1.3.5.1 Operating System Upgrade

During the project, Technologic Systems issued an upgrade to the recommended operating system.

They issued a newer version of Debian Linux, recompiled to work with the Journaling File System

(JFS) instead of the Network File System (NFS). JFS works better in embedded and portable

applications as it deals with sudden power loss better. This makes it more ideal for the MRP.

1.1.3.5.2 Internet Switch

The MRP’s expected environment of operation is twofold – it is not unexpected to find it placed in a

laboratory complete with wireless network. Likewise, it is expected that the MRP will be used at

some point out of reach of wireless networks. When turning on the MRP, the time to reach a state in

which code can be executed can be drastically different depending on the variables.

Table 4: Boot-up Times

Description Time to Boot

The MRP is in a lab with the network connected and it attempts to connect 1 minute, 45 seconds

The MRP is in an area with no network and it attempts to connect 1 minute

The MRP skips all network steps 30 seconds

The table demonstrates a very noticeable difference in boot time between all the possibilities. An

“internet switch” was included on the MRP. Early in the boot sequence, the script internetOnOff is

executed. This script checks the state of the internet switch. If on, it forcibly creates soft links

(creates them over ones that may already be there) to start up scripts throughout /etc/rcS.d/ and

/etc/rc3.d/. These are the folders that contain, in order, boot up scripts for the MRP’s OS. If the

switch is off, indicating that no network connection will be needed, the script will forcibly (do it

even if they are not there) destroy these soft links. This will prevent the operating system from

even attempting a network connection, drastically improving the boot up time of the MRP.

1.1.3.5.3 “Boot-to-Code/Kill” Switch

The MRP is designed to be used both in and away from an equipped laboratory. To allow users to

activate their code while away from the library, as well as end the code when necessary, two

features were added that are closely dependent. The first to be activated is a script, resetButton,

first checks to see if a jumper is set to high or low. If it is set high, resetButton executes code in a

known file in a known folder – in this case, the file runMe in the folder /CODE. When the code is ran,

a file in /var/run labeled studentCode.pid is created. This file is filled with the process identification

(or PID) of the program being ran. By reading studentCode.pid, one can find the PID of the student

code. This allows a program to terminate the process, suspend it, monitor it, or directly

communicate with it.

resetButton also creates a daemon process, or process that runs in the background forever. The

process merely checks the MRP’s reset button routinely. If it detects a press, it will execute the

command:

kill -9 ‘cat /var/run/studentCode.pid’

The command kill -9 will terminate any process running with the following PID. The command ‘cat

/var/run/studentCode.pid’ will return to that section of the command the contents of

studentCode.pid, in which resetButton has placed the PID of the user’s code. The result is the

termination of any code that was ran through resetButton.

If the jumper was not set to boot the MRP to code, or the code was terminated at some point by the

reset button, there is still a way to execute code without access to a computer. When the reset

button is pressed, resetButton first checks to see if there is an existing process to be killed. If no

process exists, then it will execute /CODE/runMe, recreating the PID file.

A proper and safe termination of code, however, does not stop at merely ending the process. All

outputs – be they digital, servos, or motors – will continue to execute the last known command even

when the process is terminated. A function was created, resetAll(), which would safely reset each of

these systems. All digital inputs would be set to inputs. The servo controller would receive a “reset”

signal that halts all servos. Motors are set to stop to prevent the robot from colliding with anything.

Appendix C

Budget Summary

An approximate budget summary of the entire course of the project is summarized in the follow-
ing pages. Figures in red indicate going over budget.

81

Part Description Price Ea. QtyCost #Used Platform Cost
Electronics

Processor
500MHz ARM9 SBC with 128MB DDR-RAM and 512MB Flash $269.00 1 $269.00 1 $269.00

Battery Backed Real Time Clock $10.00 1 $10.00 1 $10.00

On-Board Temperature Sensor $3.00 1 $3.00 1 $3.00

RS-232 or RS-485/422 Full or Half Duplex on COM 2 $14.00 1 $14.00 1 $14.00

64 and 40 Pin (16-bit) Stack-Thru Connectors $25.00 1 $25.00 1 $25.00

8-30VDC on-board switching-mode power regulator $28.00 1 $28.00 1 $28.00

USB 802.11g wireless network interface $35.00 1 $35.00 1 $35.00

18VDC wall mounted regulated power supply $22.00 1 $22.00 1 $22.00

Double-headed null modem cable with DB25F & DB9F at each end $9.00 1 $9.00 1 $9.00

10 Pin header to DB9M ribbon cable $4.00 1 $4.00 1 $4.00

Video Board for TS-7000 series $99.00 1 $99.00 0 $0.00

subtotal: $518.00 $419.00

Computer Expansions/Peripherals

Sandisk 8GB Ultra SD Card $89.98 1 $89.98 1 $89.98

ATtiny45 4kB Flash, 0.256kB, Atmel Microcontrollers – RISC $2.13 5 $10.65 0 $0.00

ATmega168 16kB Flash, 0.5kB, Atmel Microcontrollers – RISC $3.25 # $32.50 6 $19.50

subtotal: $133.13 $109.48

Motor/Servo Controllers

Sabertooth dual 5A motor driver $59.99 2 $119.98 2 $119.98

EasyDriver v3 Stepper Motor Driver $14.95 1 $14.95 1 $14.95

#208 Pololu micro serial servo controller (partial kit) $17.95 2 $35.90 1 $17.95

Resistors $0.05 # $1.85 3 $0.15

subtotal: $172.68 $153.03

Encoders

CONN HEADER 4POS 1.25MM VERT TIN $0.71 4 $2.84 4 $2.84

CONN HOUSING 4POS 1.25MM $0.37 8 $2.96 8 $2.96

CONN TERM SOCKET CRIMP 28-32AWG $0.12 # $4.80 40 $4.80

Quadrature Encoder $22.95 4 $91.80 4 $91.80

subtotal: $102.40 $102.40

HardwareHardware

12V 5000mAh NiMH Battery Pack $54.95 1 $54.95 1 $54.95

subtotal: $54.95 $54.95

Breakout Connector Board

Bill of materials (BOM) $0.00 0 $0.00 0 $0.00

terminal block 5mm 2pos pcb $0.90 1 $0.90 0 $0.00

terminal block 5mm 2pos pcb $0.83 1 $0.83 0 $0.00

terminal block 5mm 2pos pcb $0.90 1 $0.90 0 $0.00

terminal block 5.08mm 2pos pcb $0.96 1 $0.96 3 $2.88

terminal block 5mm 2pos pcb $0.90 1 $0.90 0 $0.00

terminal block 5mm 2pos pcb $0.74 1 $0.74 0 $0.00

terminal block 5mm 2pos pcb $0.76 1 $0.76 0 $0.00

term block 5mm vert/hor 2pos pcb $0.34 1 $0.34 0 $0.00

pin header 02 pos tin 5mm $0.36 1 $0.36 0 $0.00

term block hdr 3.81mm 2pos pcb $0.62 1 $0.62 0 $0.00

term block plug 3.81mm 2pos pcb $1.11 1 $1.11 0 $0.00

term block hdr $1.85 1 $1.85 0 $0.00

term block plug 5.08mm 2pos pcb $2.47 1 $2.47 0 $0.00

conn db 9 fmale gold metal shell $4.65 1 $4.65 0 $0.00

conn db9 female au shell lo pro $5.08 1 $5.08 1 $5.08

conn d-sub plug vert 9pos $7.47 4 $29.88 3 $22.41

conn d-sub plug str 9pos pcb au $7.05 1 $7.05 0 $0.00

conn d-sub plug str 9pos pcb au $6.27 1 $6.27 0 $0.00

conn d-sub rcpt vert 9pos $9.75 1 $9.75 0 $0.00

conn header lopro str 10pos 30au $0.94 6 $5.64 5 $4.70

conn header lopro str 40pos 30au $3.39 2 $6.78 1 $3.39

conn header lopro str 16pos 30au $1.62 1 $1.62 0 $0.00

conn header lopro str 14pos 30au $1.47 1 $1.47 0 $0.00

switch rotary dip bcd top adj $2.88 1 $2.88 0 $0.00

switch dip top slide 4pos $1.78 1 $1.78 2 $3.56

switch dip top slide ext 3pos $1.16 1 $1.16 0 $0.00

switch bcd rotary dip thruhole $3.01 1 $3.01 0 $0.00

cap black window version 94 ser $0.76 1 $0.76 0 $0.00

switch push spst mom 100ma 14vdc $1.92 2 $3.84 1 $1.92

lens for t1 3/4 LED green dome $0.49 1 $0.49 0 $0.00

Part Description Price Ea. QtyCost #Used Platform Cost

LED super brite grn t1-3/4 vert $0.90 1 $0.90 0 $0.00
TERMINAL BLOCK 5.08MM 5POS PCB $2.15 # $21.50 10 $21.50
IC SOCKET 8PIN LOW PROFILE .300 $0.86 3 $2.58 3 $2.58
IC SOCKET 28PIN LOW PROFILE .300 $2.80 6 $16.80 6 $16.80
CONN HEADER VERT 4POS .100 TIN $0.31 6 $1.86 6 $1.86
POLOLU SERVO CONTROLLER $17.95 1 $17.95 1 $17.95
CONN HEADER FEMALE 6POS .1" TIN $0.55 1 $0.55 1 $0.55
LED $0.05 3 $0.15 3 $0.15
CONN HEADER 2 POS TIN PCB $0.62 7 $4.34 7 $4.34
CONN HEADER 4 POS TIN PCB $0.93 1 $0.93 1 $0.93
Transistor $0.05 1 $0.05 1 $0.05
Zener Diodes $0.05 6 $0.30 6 $0.30
75V Diode $0.05 5 $0.25 5 $0.25

Printed Circuit Board Manufacturing $137.75 1 $137.75 1 $137.75

subtotal: $310.76 $248.95

Auxiliary Control Board

Bill of materials (BOM) $0.00 0 $0.00 0 $0.00

Buck Converter $11.50 3 $34.50 3 $34.50

subtotal: $34.50 $34.50

Miscellaneous Shop Parts

Regular 9V Battery $2.00 1 $2.00 0 $0.00

9V battery clip $0.25 1 $0.25 0 $0.00

1uF ceramic capacitor $0.25 # $3.00 0 $0.00

10uF electrolytic capacitor 25V-63V $0.70 3 $2.10 0 $0.00

male header connector, 2x3 pins $0.25 2 $0.50 0 $0.00

header connector, female, 2x20, long pin $0.75 1 $0.75 0 $0.00

header connector, female, 2x32, long pin $1.00 1 $1.00 0 $0.00

male header connector, 2x4 pins $0.30 1 $0.30 0 $0.00

header connector, 2x6 male pins $0.35 1 $0.35 0 $0.00

RC connector, 2x20 female $0.50 2 $1.00 0 $0.00

RC connector, 2x32 female $1.00 2 $2.00 0 $0.00

7-segment LED display $1.00 4 $4.00 0 $0.00

small protoboard, Jameco #105099 $4.75 2 $9.50 0 $0.00

large protoboard, Jameco #105152 $9.00 1 $9.00 0 $0.00large protoboard, Jameco #105152 $9.00 1 $9.00 0 $0.00

medium protoboard, Jameco #28177 $5.50 2 $11.00 0 $0.00

Cables(Est) $10.00 1 $10.00 0 $0.00

subtotal: $56.75 $0.00
Electronics subtotal: $1,383.17 $1,122.31

Mechanical
Wheels

2-pack Axial 2.2 Rockster Beadlocks (Chrome) $24.95 2 $49.90 0 $0.00

2-pack Dirt Paw Tire – Fits 2.2” truck front or rear $14.95 1 $14.95 0 $0.00

2-pack Speed Hawg Tire – Fits 2.2” truck front or rear $18.95 1 $18.95 0 $0.00

Vintage racing tire 26mm D Compound (2pcs) $12.95 1 $12.95 0 $0.00

2-pack TE27 Wheel 26mm CHROME (6mm offset) $8.95 1 $8.95 0 $0.00

Rubber wheel, cushion tread, 5”x1-1/4”, plain bearing, 210lb capacity $4.91 2 $9.82 0 $0.00

neoprene rubber wheel, cushion tread, 3-1/2”x1-1/4”, plain bearing, 200lb capacity $11.47 2 $22.94 0 $0.00

rubber wheel, cushion tread, 4”x1-1/4”, plain bearing, 200lb capacity $3.23 2 $6.46 0 $0.00

Super-soft rubber-tread wheel, 5”x1”, 5/16” axle, plain bore, 120lb capacity $4.88 2 $9.76 0 $0.00

Super-soft rubber-tread wheel, 4”x1”, 5/16” axle, plain bore, 110lb capacity $4.38 6 $26.28 4 $17.52

Super-soft rubber-tread wheel, 3”x1”, 5/16” axle, plain bore, 100lb capacity $3.60 6 $21.60 0 $0.00

subtotal: $202.56 $17.52

Motors

BH31 Geared Motor 31:1 $23.99 4 $95.96 4 $95.96

subtotal: $95.96 $95.96

Metal

Aluminum Plate 12"x12"x 0.125" $26.06 6 $156.36 0 $0.00

Aluminum 6061 2-1/2" Square, 1' Length $59.88 1 $59.88 1 $59.88

Aluminum 6061 3/8" Thick, 4" Width, 1' Length $16.65 1 $16.65 1 $16.65

Aluminum 6061 .0625" Thick, 12" X 12" $13.54 2 $27.08 2.5 $33.85

Aluminum 6061 7/8" Diameter, 1' Length $14.60 1 $14.60 0.5 $7.30

Aluminum 6061 .125” Thick, 12” X 12” $29.44 1 $29.44 0.5 $14.72

Item - Per Inch $0.27 # $58.32 104 $28.08

Aluminum Angle 1.25 x 1.25 Mc88805K52 $0.24 # $3.84 0 $0.00

Item Profile 5 20x20 $29.29 2 $58.58 1 $29.29

subtotal: $424.75 $189.77

Part Description Price Ea. QtyCost #Used Platform Cost

Hardware

Bronze Thrust Bearing for 1/4" Shaft $1.13 # $27.12 19 $21.47

Slotted Spring Pin 1/8" Diameter, 5/8" L $4.92 1 $4.92 0.07 $0.34

Slotted Spring Pin 1/8" Diameter, 7/8" L $6.42 1 $6.42 0.05 $0.32

Steel Flat Head Screw #6-32 1/2" Black Oxide $10.84 1 $10.84 0.48 $5.20

Socket Head Cap Screw 8-32 $7.16 1 $7.16 0.08 $0.57

Threaded Hex Standoff 1/4" $0.66 4 $2.64 4 $2.64

Alloy Steel Cup Point Socket Set Screw #8-32 1/4" L $8.88 1 $8.88 0.14 $1.24

Metric 18-8 SS Socket Head Cap Screw M3 $7.80 1 $7.80 0.1 $0.78

Button Head Socket Cap Screw 8-32 0.5" L $10.10 1 $10.10 0.16 $1.62

Steel Drive Shaft 1/4" OD, 5" L $3.68 6 $22.08 6 $22.08

Steel Drive Shaft 1/4" OD, 3" L $3.07 6 $18.42 6 $18.42

Sleeve Bearing for 1/4" Shaft $0.32 # $7.68 18 $5.76

Unthreaded Round Spacer 1/2" OD, 5/16" L $1.85 7 $12.95 7 $12.95

Unthreaded Round Spacer 1/2" OD, 15/16" L $3.49 6 $20.94 6 $20.94

Low-Clearance C-Style Retaining Ring $9.14 1 $9.14 0.11 $1.01

Aluminum Round Spacer 1/2" OD, 1/2" Length, 1/4" ID $1.31 # $13.10 8 $10.48

Standard Fasteners $0.82 # $13.12 0 $0.00

M4 x 8mm Screws - Mc91292A108 $0.07 # $2.24 0 $0.00

Captive Screw 8-32, 0.125" - Mc92060A120 $3.57 # $99.96 0 $0.00

Captive Screw 8-32, 0.0625" - Mc92060A110 $3.39 8 $27.12 0 $0.00

TNut $1.00 # $32.00 0 $0.00

Item Std. Fastening Set 5 $0.82 # $26.24 12 $9.84

Item Multiblock PA Set 5 $1.88 # $18.80 12 $22.56

subtotal: $174.44 $158.23

Gears/Chains/Linkages

30 Tooth Miter Gear Pair (Set of Two) $3.34 6 $20.04 6 $20.04

subtotal: $20.04 $20.04
Mechanical subtotal: $917.75 $481.52

Grand Total $2,536.15 $1,603.83
Budget $1,500.00 $1,500.00
Remaining $1,036.15 $103.83
per-Student cost: $534.61per-Student cost: $534.61

	Worcester Polytechnic Institute
	Digital WPI
	March 2009

	Mobile Robotics Platform
	Jeffrey Evan Trost
	Keith Chester
	Mathew P. DeDonato
	Repository Citation

	tmp.1535548689.pdf.fNV52

