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Abstract 

The objective of this project is to develop a dynamic model that predicts the 

performance of wooden baseball bats.  The model is sensitive to the manner in which the 

mass is distributed throughout out the bat as measured by its total mass, its moment of 

inertia, and the axial location of the center of its center of mass.  Using these properties of 

the bat, we employ rigid body dynamics and the effects of inelastic bat/ball collisions to 

investigate how the outgoing ball velocity is affected by changes in the mass distribution 

of the bat, the minimum and maximum radii of the bat, and the locations along the bat of 

minimum and maximum radii.  The results are influenced by the coefficient of restitution 

between the bat and the ball, the angular velocity of the swing, and the dynamic 

dependence of the angular velocity of the swing on the moment of inertia of the bat. 

Ultimately, we highlight how adjustments to the shape of the bat might improve the 

outgoing velocity of the ball. 

  



 

ii 
 

 
 
Table of Contents 
 
Abstract   ................................................................................................................................ i
Table of Figures   ................................................................................................................. iii
List of Nomenclature   ........................................................................................................ vii
Executive Summary   ............................................................................................................ x
Chapter 1 Introduction   ........................................................................................................ 1

1.1 Review of Previous Work   .................................................................................... 2
1.2 Further Work to Perform   ...................................................................................... 6

Chapter 2 Geometry and Mass Distribution of Wooden Bats   ............................................ 7
2.1 Cubic Profile   ........................................................................................................ 9
2.2 A Special Case: Linear Radial Profile  ................................................................ 12
2.3 A Special Case of the Cubic Profile: Zero Slopes at the Ends   ........................... 19

Chapter 3 Rigid Body Dynamics   ...................................................................................... 33
3.1 Cubic Profile, Fixed Mass, Zero End Slopes   ..................................................... 40
3.2 Cubic Profile, Fixed Minimum and Maximum Radii, Zero Handle Slope   ........ 45
3.3  Cubic Profile, Fixed Mass and Maximum Radius, Zero Handle Slope   ............. 51
3.4  Effects of Coefficient of Restitution and Angular Velocity   ............................... 57

Chapter 4 Dynamics of the Swing   .................................................................................... 68
4.1 Ω, as Dependent on Moment of Inertia about the Center of Rotation   ............... 68
4.2  Cubic Profile, Fixed Mass, Zero End Slopes, Omega-Moment Dependence   .... 71
4.3  Fixed Minimum and Maximum Radii, Zero Handle Slope, Omega-Moment 
Dependence   ................................................................................................................... 74
4.4  Fixed Mass and Maximum Radius, Zero Handle Slope, Omega-Moment 
Dependence   ................................................................................................................... 77
4.5  Analysis of Cupping   ........................................................................................... 77

Conclusion   ........................................................................................................................ 89
References   ......................................................................................................................... 91
Appendix A: MatLab Code   ............................................................................................... 93
 
  



 

iii 
 

Table of Figures 
 
Figure 2.1: Cubic Radial Profile   ....................................................................................... 10

Figure 2.2: Linear Radial Profile   ...................................................................................... 12

Figure 2.3: Variation of R1 with R0 for linear model for M1 = 0.0006, 0.0008, 0.0010, 

0.0012, and 0.0014. (MATLAB code 1, Appendix A)   ................................. 15

Figure 2.4: Variation of 𝑋𝑋� with R0 for linear model for M1 = 0.0006, 0.0008, 0.0010, 

0.0012, and 0.0014. (MATLAB code 2, Appendix A)   ................................. 16

Figure 2.5: Variation of J0 with R0 for linear model for M1 = 0.0002, 0.0004, 0.0006, 

0.0008, and 0.0010.  (MATLAB code 3, Appendix A)   ................................ 17

Figure 2.6: Variation of R1 with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 

0.008.  (MATLAB code 4, Appendix A)   ...................................................... 18

Figure 2.7: Variation of 𝑋𝑋� with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 

0.008.  (MATLAB code 5, Appendix A)   ...................................................... 20

Figure 2.8: Variation of M1 with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 

0.008.  (MATLAB code 6, Appendix A)   ...................................................... 21

Figure 2.9: Barrel Radius R1 as a function of Handle Radius R0 for values of M1=0.0006, 

0.0008, 0.0010, 0.0012, and 0.0014 (MATLAB code 7, Appendix A)   ........ 24

Figure 2.10: Location of center of mass 𝑋𝑋� as a function of Handle Radius R0 for values of 

M1=0.0006, 0.0008, 0.0010, 0.0012, and 0.0014 (MATLAB code 8, 

Appendix A)   .................................................................................................. 25

Figure 2.11: Moment of Inertia about the Knob, J0, as a function of Handle Radius R0 for 

values of M1=0.0006, 0.0008, 0.0010, 0.0012, and 0.0014 (MATLAB code 9, 

Appendix A)   .................................................................................................. 26

Figure 2.12: Barrel radius R1 as a Function of Handle Radius R0 with values of Jo=0.002, 

0.004, 0.006 and 0.008 (MATLAB code 10, Appendix A)   .......................... 28

Figure 2.13: Location of center of mass 𝑋𝑋� as a function of Handle Radius R0 for values of 

J0=0.0002, 0.0003, 0.0004, 0.0005, and 0.0006 (MATLAB code 11, 

Appendix A)   .................................................................................................. 30

Figure 2.14: Mass M1 as a Function of Handle Radius R0 with values of Jo=0.0002, 

0.0003, 0.0004, 0.0005 and 0.0006 (MATLAB code 12, Appendix A)   ....... 32



 

iv 
 

Figure 3.1: Outgoing Ball Velocity, V'2, versus location of impact, X (MATLAB code 

13, Appendix A)   ............................................................................................ 38

Figure 3.2: Variance of the bat handle-end radius versus the barrel-end radius for a 

constant mass scenario for e=0.5, ω =50 radians/second, and d=2.5 inches 

(MATLAB code 14, Appendix A)   ................................................................ 41

Figure 3.3: Location of the optimal impact point along the bat as the barrel-end radius 

changes for e=0.5, ω =50 radians/second, and d=2.5 inches (MATLAB code 

15, Appendix A)   ............................................................................................ 43

Figure 3.4: Maximum ball exit velocity as a function of the barrel-end radius for e=0.5, ω 

=50 radians/second, and d=2.5 inches (MATLAB code 16, Appendix A)   ... 44

Figure 3.5: Non-dimensional bat mass vs. location of max radius for e=0.5, ω=50 

radians/second, and d=2.5 inches (MATLAB code 17, Appendix A)   .......... 46

Figure 3.6: Moment of inertia about x=0 vs. location of max radius for e=0.5, ω=50 

radians/second, and d=2.5 inches (MATLAB code 18, Appendix A)   .......... 48

Figure 3.7: Moment of inertia about the center of mass vs. location of maximum radius 

for e=0.5, ω=50 radians/second, and d=2.5 inches (MATLAB code 19, 

Appendix A)   .................................................................................................. 49

Figure 3.8: Non-dimensional VMAX vs. location of maximum radius (MATLAB code 20, 

Appendix A)   .................................................................................................. 50

Figure 3.9: Location at which maximum outgoing velocity occurs (XMAX) vs. location of 

Max radius (MATLAB code 21, Appendix A)   ............................................. 52

Figure 3.10: Rmin versus the Location of the Maximum Radius X with m1=40 oz, l=33” 

and rmax=1.375” (MATLAB code 22, Appendix A)   ..................................... 54

Figure 3.11: Non-dimensional J0 versus the Location of the Maximum Radius X with 

m1=40 oz, l=33” and rmax=1.375” (MATLAB code 23, Appendix A)   ......... 55

Figure 3.12: Non-dimensional Jc versus the Location of the Maximum Radius X with 

m1=40 oz, l=33” and rMAX=1.375” (MATLAB code 24, Appendix A)   ........ 56

Figure 3.13: Optimal impact location XMAX versus the Location of the Maximum Radius 

X with m1=40 oz, l=33”, rMAX=1.375”, and ω=40, 50 and 60 rad/s (MATLAB 

code 25, Appendix A)   ................................................................................... 58



 

v 
 

Figure 3.14: Maximum ball exit velocity VMAX versus the Location of the Maximum 

Radius X with m1=40 oz, l=33”, rMAX=1.375”, and ω=40, 50 and 60 rad/s 

(MATLAB code 26, Appendix A)   ................................................................ 59

Figure 3.15: Ω’/ Ω vs. Location of impact, Y, with e = 0.3, 0.5, 0.7 (MATLAB code 27, 

Appendix A)   .................................................................................................. 60

Figure 3.16: D’/D vs. coefficient of restitution, e, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3 

(MATLAB code 28, Appendix A)   ................................................................ 62

Figure 3.17: Vmax versus coefficient of restitution, e, with M=3, 4, 5, 6, and 7 (MATLAB 

code 29, Appendix A)   ................................................................................... 64

Figure 3.18: D’/D vs. Ω, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3 (MATLAB code 30, 

Appendix A)   .................................................................................................. 65

Figure 3.19: VMAX versus Ω, with M= 3, 4, 5, 6, and 7 (MATLAB code 31, Appendix A)

  ....................................................................................................................... 66

Figure 3.20: XMAX versus Ω, with M = 3, 4 , 5, 6, and 7 (MATLAB code 32, Appendix A)

  ....................................................................................................................... 67

Figure 4.1: Angular velocity ω versus non-dimensional barrel radius R1 for applied 

torques of T=49, 61 and 73 Nm and with ω0 = 20 rad/s  (MATLAB code 33, 

Appendix A)   .................................................................................................. 72

Figure 4.2: Maximum non-dimensional outgoing velocity VMAX versus non-dimnesional 

barrel radius R1 for applied torques of T=49, 61 and 73 Nm and with ω0 = 20 

rad/s (MATLAB code 34, Appendix A)   ....................................................... 73

Figure 4.3: Non-dimensional location XMAX that give maximum outgoing velocity versus 

non-dimensional barrel radius R1 for applied torques of T=49, 61and 72 Nm 

and with ω0 = 20 rad/s (MATLAB code 35, Appendix A)   ........................... 75

Figure 4.4: Non-dimensional maximum outgoing velocity VMAX versus non-dimensional 

location of Rmax with torques T = 49, 61 and 73 Nm and with ω0 = 20 rad/s 

(MATLAB code 36, Appendix A)   ................................................................ 76

Figure 4.5: Angular velocity ω versus non-dimensional locations of RMAX with torques T 

= 49, 61 and 73 Nm and with ω0 = 20 rad/s (MATLAB code 37, Appendix 

A)   ................................................................................................................... 78



 

vi 
 

Figure 4.6: Non-dimensional maximum outgoing velocity VMAX versus non-dimensional 

location of RMAX with constant mass, torques T = 49, 61 and 73 NM and 

with ω0 = 20 rad/s (MATLAB code 38, Appendix A)   .................................. 79

Figure 4.7: Angular velocity ω versus non-dimensional location of RMAX with constant 

mass, torques T = 49, 61 and 73 and with ω0 = 20 rad/s (MATLAB code 39, 

Appendix A)   .................................................................................................. 80

Figure 4.8: Diagram of cupping analysis   .......................................................................... 81

Figure 4.9: Depth of cup versus the moment of inertia about the center of rotation 

(MATLAB code 40, Appendix A)   ................................................................ 84

Figure 4.10: Depth of cup, h, versus the mass of the bat (MATLAB code 41, Appendix 

A)   ................................................................................................................... 85

Figure 4.11: Angular velocity versus cup depth h for rMAX = 1.375”, rMIN = 0.5”, torque t 

= 61 Nm and ω0 = 20 rad/s (MATLAB code 42, Appendix A)   .................... 86

Figure 4.12: Non-dimensional maximum outgoing velocity versus cup depth for rMAX = 

1.375”, rMIN = 0.5”, torque T = 61 Nm and ω0 = 20 rad/s (MATLAB code 

43, Appendix A)   ............................................................................................ 87

Figure 4.13: Non-dimensional XMAX versus cup depth h for rMAX = 1.375”, rMIN = 0.5”, 

torque T = 61 Nm and ω0 = 20 rad/s (MATLAB code 44, Appendix A)   ..... 88

 

  



 

vii 
 

List of Nomenclature 

A, B, C, D:  Non-dimensional constants to determine radial profile of cubic bat 

d:  Distance from the knob to the center of rotation of the bat before collision 

d’:  Distance from the knob to the center of rotation of the bat after collision 

e:  Coefficient of restitution of the bat-ball collision 

f, g, k:  Constants determined by the boundary conditions of the cupping analysis 

h:  Depth of cup 

Ic:  Moment of inertia about the axial center of mass of the bat 

Jc:  Non-dimensional moment of inertia about the axial center of mass of the bat 

Io:  Moment of inertia about x=0 of the bat 

Jo:  Non-dimensional moment of inertia about x=0 of the bat 

IR:  Moment of inertia about the center of rotation, x=-d 

JR:  Non-dimensional moment of inertia about the center of rotation, x=-d  

L:  Length of baseball bat 

m1:  Mass of baseball bat 

M1:  Non-dimensional mass of baseball bat 

m2:  Mass of the baseball 

M:  Non-dimensional mass (m1/m2) 

P:  Axial location of RMIN  

Q:  Axial location of RMAX 

r: The sum of r1 and r0, divided by the length, L 

r0:  Radius of the bat at x=0 

R0:  Non-dimensional radius of the bat at x=0 

r1:  Radius of the bat at x=L 

R1:  Non-dimensional radius of the bat at x=L 

Rc:  Maximum radius of the cup 

ri:  Cup radius as a function of x 

rMAX:  Maximum radius of the baseball bat 

RMAX:  Non-dimensional maximum radius of the baseball bat 

rMIN:  Minimum radius of the baseball bat 



 

viii 
 

RMIN:  Non-dimensional minimum radius of the baseball bat 

t:  Time required for swing of baseball bat 

T:  Torque applied 

r(x):  Radial profile of baseball bat, in terms of x 

v1:  Linear velocity of the impact point of the bat before impact 

v’1:  Linear velocity of the impact point of the bat after impact 

V1:  Non-dimensional linear velocity of the impact point of the bat before impact 

V’1:  Non-dimensional linear velocity of the impact point of the bat after impact 

v2:  Velocity of the baseball prior to impact 

v’2:  Velocity of the baseball after impact 

V2:  Non-dimensional velocity of the baseball prior to impact 

V’2:  Non-dimensional velocity of the baseball after impact 

vc:  Linear velocity of the center of mass of the bat before impact 

v’c:  Linear velocity of the center of mass of the bat after impact 

Vc:  Non-dimensional linear velocity of the center of mass of the bat before impact 

V’c:  Non-dimensional linear velocity of the center of mass of the bat after impact 

vMAX:  Maximum outgoing ball velocity 

VMAX

𝑥̅𝑥 :  Axial location of the center of mass of the baseball bat 

:  Non-dimensional maximum outgoing ball velocity 

x:  Distance measured along the bat from the knob 

X:  Non-dimensional distance measured along baseball bat from the knob 

𝑋𝑋�:  Non-dimensional axial location of the center of mass of the baseball bat 

xMAX:  Location of impact which produces maximum v’2 

XMAX:  Non-dimensional location of impact which produces maximum v’2 

y:  Distance from the center of mass of the bat to impact location 

Y:  Non-dimensional distance from the center of mass of the bat to impact location 

yMAX:  Location of impact which produces vMAX 

YMAX:  Non-dimensional location of impact which produces VMAX 

z:  Axis representing the depth into the bat from the barrel end 

α:  Angular acceleration of baseball bat 

θ:  Angular displacement of the baseball bat 



 

ix 
 

ρ:  Density of baseball bat 

ω:  Angular velocity of the baseball bat before impact  

ω’:  Angular velocity of the baseball bat after impact 

ω0:  Angular velocity resultant from the linear acceleration effects of the swing 

Ω:  Non-dimensional angular velocity of the baseball bat before impact  

Ω’:  Non-dimensional angular velocity of the baseball bat after impact 

  



 

x 
 

Executive Summary 
 
 The purpose of this project was to construct and apply a rigid-body dynamic 

model of a bat-ball collision in order to determine and optimize the performance of 

wooden baseball bats. The bat radial profile was modeled as a cubic polynomial in order 

to capture the general shape of a typical bat and yet yield a simple mathematical model 

that could easily be manipulated. Our preliminary analysis was based on total bat mass 

and mass distribution throughout the bat. Variances of bat mass, center of mass, and 

moment of inertia were explored for a range of bat shapes. These analyses carried over to 

the dynamic modeling of performance. Maximum ball exit speed and optimal impact 

location were graphically analyzed by varying the geometric profile of a bat. Finally, we 

expanded upon our simple dynamic model by considering how swing speed is affected by 

moment of inertia about the center of rotation. This allowed us to account for the 

competing effects of effective mass and swing speed on outgoing ball velocity. Finally, 

using our complete model we analyzed the popular practice of “cupping” the barrel-end 

of the bat to comment on the net effect. 

 We first defined bat mass, center of mass, and moment of inertia in terms of the 

length, density, and radial profile of any given bat. We then defined our cubic bat profile 

in terms of four parameters A, B, C, and D, such that each parameter is a coefficient in 

the four-term cubic function. Combining our equations for bat mass, center of mass, and 

moment of inertia with our cubic function, we developed these properties as functions of 

A, B, C, and D. These expressions can be evaluated for any given cubic radial profile. 

This procedure serves as the foundation of our model. 
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 Our dynamic model of the bat-ball collision was based on four physical equations: 

conservation of linear momentum, conservation of angular momentum, the definition of 

the coefficient of restitution, and the relationship between the velocity of the bat’s mass 

center and the velocity of the impact point. The bat mass, mass center, and moment of 

inertia are requisite quantities that are calculated in the manner described previously. 

Solving our system of four equations, we calculated four quantities: the outgoing ball 

velocity 𝑣𝑣2
′ ; the velocity of the bat center of mass just after collision 𝑣𝑣𝑐𝑐′ ; the velocity of 

the impact point on the bat just after collision 𝑣𝑣1
′ ; and the angular velocity of the bat just 

after collision 𝜔𝜔′ .  Each was found in terms of pitched ball speed 𝑣𝑣2, coefficient of 

restitution 𝑒𝑒, initial angular velocity 𝜔𝜔, distance from bat knob to center of rotation 𝑑𝑑, 

and distance from bat center of mass to impact point 𝑦𝑦, and the calculated mass, center of 

mass, and the moment of inertia of the bat.   

 Finally, we incorporated into our model the effect of moment of inertia on angular 

velocity of the bat. This allowed us to compare the net effects of geometrical changes, as 

increased mass, which tends to increase ball output velocity, is often accompanied by a 

decrease in bat angular velocity, which tends to diminish the outgoing ball speed. Our 

refined model allowed us to thoughtfully analyze cases in which a small amount of 

material is removed from the barrel-end. This is a popular practice in baseball today, but 

it does not provide a clear, intuitive advantage over a standard bat.  From our analysis we 

concluded that there is a near linear decrease in the outgoing ball velocity as the depth of 

the cup is increased.  Although this decrease is slight, if hitting power is the only 

consideration, cupping results in a negative effect and should not be utilized.  However, 

with an increase in cup depth, the angular velocity of the bat, or the swing speed, is 
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increased.  Therefore, cupping the bat will provide an advantage if a faster swing is 

sought.  These competing effects must be considered by the individual batter, as personal 

preference will determine the appropriate use of the cupping technique. 
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Chapter 1 Introduction 
 

 Every baseball player knows when they’ve hit the ball just right: the sound from 

the bat is different; the ball seems to fly with a little more speed; and the batter feels 

nothing as the bat head plows through the oncoming pitch.  Although the player might 

not be able to explain this phenomenon, physics provides an explanation for this “sweet 

spot.”  The difference in sound occurs due to the proximity to nodes of the first two 

vibration modes.  The high exit velocity of the ball is a result of the large transfer of 

momentum that occurs where combined effects of both the effective mass and linear 

velocity of the bat are highest.  The special feel associated with the sweet spot is a 

consequence of low vibration energy and the angular and linear forces canceling one 

another at the location of the hands.  Although the locations of these phenomena are 

slightly different and vary from bat to bat, they do occur for impacts in a similar area and 

their effects combine to form what is commonly referred to as the “sweet spot”. 

 While hitting a ball on the sweet spot results in the optimum performance and 

feel, outside of a laboratory, the collision between bat and ball often occurs away from 

this optimal zone.  This reality leads to the question of how the performance of a bat 

should be quantified.  Is it best to have large hitting power in a relatively large zone; or is 

it more useful to have a bat with less peak power and a much larger effective hit zone?  

This can only be answered by the player.  A homerun hitter may prefer more power in a 

small zone, whereas a contact hitter could require the opposite.  Whatever the desired 

qualities, bats can be designed to suit a particular player’s needs.   
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 The simplest way to model the collision between a baseball and a bat is a linear, 

one-dimensional model.  By only taking into account the masses and initial velocities of 

the bat and ball, conservation of momentum and energy allow for easy calculation of the 

resultant velocities.  This model, however straightforward, is essentially useless for 

calculating the exit velocities of the bat and ball in a real world application.  To make this 

model more useful, a coefficient of restitution can be used to describe the energy lost as 

heat and vibrations during the collision.  The effective mass of the bat must also be 

considered, as the collision normally takes place away from the center of mass (Cross 

2008b, Russell 2008b). 

 As Cross sets up a simple model for the collision between bat and ball, Russell 

(2003) brings experimental values into the equation.  College or professional hitters can 

produce a maximum force upwards of 8000 lbs on the ball.  Russell (2008b) then goes on 

to optimize bat weight against swing speed in order to produce the highest ball exit 

velocities. 

 More important than the bat mass, however, is the bat moment of inertia.  

Sometimes referenced as the swing weight, the moment of inertia dictates how heavy the 

bat will feel when swung and is affected by the distribution of mass.  Bats with higher 

moments of inertia, though harder to swing, will produce more effective collisions and 

larger batted ball speeds (Russell 2008a).   

1.1 Review of Previous Work 

 Bahill (2004) takes this concept further and applies it to the selection of the proper 

bat for any individual.  By having the individual swing bats of different masses and 

moments of inertia and measuring the linear velocity of the sweet spot, the optimal 
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arrangement can be found.  The sweet spot for this experiment was not a calculated 

location, but simply a defined point 29 or 26 inches from the knob for adults and 

children, respectively. 

 Similar experiments were conducted by Fleisig et. al. (2002) as a means to 

regulate the performance of bats.  By using a three-dimensional motion analysis system, 

the bat could be tracked throughout a swing to determine maximum velocity and where it 

occurred.  By loading the bats with extra mass in either the handle or the barrel, it was 

determined from resultant swing speed data that it was in fact the moment of inertia of 

the bats, not their total mass that determined the maximum swing speed.  

 A bat with large moment of inertia will produce a more effective and therefore 

more powerful collision with the ball; but the bat with large moment of inertia will be 

harder to accelerate to the same swing speed as a bat with low moment of inertia.  Some 

players, such as Sammy Sosa in 2003, feel that the increased swing speed associated with 

a lower moment of inertia bat gives them an advantage (Russell 2004b).  By drilling out 

the inside of a wooden bat’s barrel and replacing the heavy wood with much lighter cork, 

the moment of inertia of the bat is decreased, allowing for larger swing speeds.  Purely in 

terms of batted ball speed, this change is negligible.  The increased bat speed is offset by 

a less effective collision with the ball.  However, there are benefits to a lower moment of 

inertia bat.  For a professional ball player, the removal of 1.5 oz from the barrel end 

“means being able to watch the ball travel an additional 5-6 feet before having to commit 

to a swing” (Russell 2004b).  There is also a psychological advantage. 

 In order to characterize the performance of baseball bats, the effects of impacts all 

along the barrel of the bat must be considered.  By holding bat properties and initial 
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velocities (both linear and angular) constant, impacts can be compared according to 

impact location.  Since a bat is swung with some angular velocity, the linear velocity of 

any point on the bat is directly proportional to that point’s distance from the handle.  

Therefore, the linear velocity is greatest at the end of the barrel.  This location however, 

does not produce the greatest batted ball speed.  Since the end of the barrel is located 

away from the center of mass of the bat, the impact with the ball produces a rotation in 

the bat about this center of mass, as well as linear recoil.  Therefore, the effective mass of 

a collision at the end of the bat is less than a collision near the center of mass.  It is where 

these two effects combine that the greatest batted ball speeds are produced (Nathan 2002, 

Cross 1999). 

 While a rigid body model of the ball bat collision is useful, it fails to consider 

important effects resulting from the flexibility of the bat.  Vibrations traveling through 

the bat due to the collision with the ball not only affect what the batter feels, but also how 

much energy is transferred to the ball.  When the ball impacts the bat in the region 

between the nodes of the first two vibration modes, the rigid body approximation yields 

accurate results for ball exit velocity.  However, when the impact occurs away from this 

region, and these modes of vibration are excited, the rigid body approximation is no 

longer valid, as large amounts of energy are stored in the bat as vibrations and less energy 

is transferred to the ball (Nathan 2000, Cross 1999). 

 Some hitting coaches teach that a tighter grip can result in a higher batted ball 

speed.  This supposedly reduces the vibrations in the bat and therefore imparts more 

energy on the ball.  Research by Nathan et. al. (2000) has shown that by the time the first 

waves have reached the handle and returned to the barrel, the collision between ball and 
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bat is over.  Both experiments and calculations have shown that the collision is 

independent of the method of support at either end, as long as the collision takes place 

away from the ends (Nathan 2000, Cross 1999, Russell 2005b). 

 Players associate the sweet spot of a bat not only with the optimal performance, 

but also with the distinct feel of an impact there.  A collision occurring on the sweet spot 

will result in a significant reduction in sting felt by the batter on the hands.  Two separate 

effects contribute to this phenomenon.   

 Any collision occurring at the center of percussion of a body will result in zero 

net force at the pivot.  Although the pivot of a bat at the time of impact is shown by 

Russell (2004a) to be beyond the end of the handle and off the axis of the bat, the concept 

is useful in determining forces acting on the hands at this instant.  When a baseball 

impacts the bat in the sweet spot, the combined linear recoil and moment about the center 

of mass cancel to produce a point on the handle with zero net force (Russell 2005c). 

 The other effect producing a sting in the batter’s hands is the vibrations excited by 

the collision.  Cross (1998a) argues that the first two modes of vibration are large enough 

to produce pain in the hands.  Adair (1998) argues that the fundamental mode is solely 

responsible for the stinging sensation by reason of biometrics.  He argues that the 

frequencies of all other modes are too high to be detected by receptors in the hands.  

Regardless, any collision occurring near the nodes of these two modes will reduce the 

overall vibration, and therefore sting, felt in the batter’s hands (Russell 2004a). 

 Research by Stronge et. al. (2003) has been done into the flight of the ball and 

how to obtain maximum hit distance by means of modifying the swing of the bat.  Based 

upon the initial velocity and spin of the incident pitch, it can be determined exactly how 
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to strike the ball to achieve optimal distance.  The lift and drag that act on the ball during 

flight are considered, as well as the friction and energy transfer of oblique collisions. 

 Significant research by Axtell et. al. (2001) has also gone into the materials used 

for the construction of baseball bats.  Comparisons considering durability, performance 

and feel are done and recommendations for improving existing bats are made.  

 
 Baseball bat performance is an important consideration for players at all levels of 

the game. In the MLB, where players compete for multi-million dollar contracts and 

national championships, even a small batting advantage can have big payoffs. It is 

important that a player select a bat which provides an optimal balance of swing speed and 

effective mass. 

From a design standpoint, we seek a systematic way to compare various bat 

geometries in order to tailor mass and moment of inertia to a particular player. According 

to our findings, there is currently no research in this area of bat design. Most efforts in the 

field have gone into describing the bat-ball impact in terms of energy transfer and 

vibration analysis. There has been no major study of how the shape of a baseball bat 

affects its performance. 

The goal of this project is to create a mathematical model for the bat-ball collision 

which predicts bat performance as a function of geometry. This model will be used to 

analyze the effect of geometrical changes on the resulting performance. Ultimately, we 

seek to optimize bat performance by systematically investigating several radial profiles. 

  

1.2 Further Work to Perform 
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Chapter 2 Geometry and Mass Distribution of 

Wooden Bats 

 Here we consider the properties of the baseball bat that will appear in our 

dynamic model.  The property that most baseball players consider is the mass of the bat.  

To calculate this mass we must know the density of the material from which the bat was 

made, ρ, the length of the bat, L, and the radial profile of the bat, r(x), in terms of the 

distance, x, along the bat.  Using these properties we can determine the total mass, m1,

  𝑚𝑚1 = ∫ 𝜌𝜌𝜌𝜌𝑟𝑟(𝑥𝑥)2𝐿𝐿
0 𝑑𝑑𝑑𝑑 (1) 

 The second property to consider is the location of the center of mass of the bat, 

 of 

a bat with any radial profile.   

x .  

This is found through the first moment of the mass.  The first moment of the mass is 

equal to the product of the mass and the location of the center of mass.  This results in the 

equation for the center of mass:  

  𝑥̅𝑥 = ∫ 𝜌𝜌𝜌𝜌
𝑚𝑚1
𝑥𝑥𝑟𝑟(𝑥𝑥)2 𝑑𝑑𝑑𝑑𝐿𝐿

0  (2) 

 Following the center of mass, we shall consider the moment of inertia about the 

end of the bat, I0

  𝐼𝐼0 = ∫ 𝜌𝜌𝜌𝜌𝑥𝑥2𝑟𝑟(𝑥𝑥)2𝑑𝑑𝑑𝑑𝐿𝐿
0  (3) 

.  This is equal to the second moment of mass about point 0.   

Aside from the moment of inertia about the end of the bat, the moment of inertia about 

the center of mass, Ic, is also important to consider.  The value of Ic can be found by 

using the parallel axis theorem; this can be accomplished by subtracting the product of 

the squared distance from the knob to the center of mass and the mass from the moment 
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of inertia about x=0.  The distance to the center of mass is already known, x , so the 

equation of the moment of inertia about the center of mass is given by: 

  𝐼𝐼𝑐𝑐 = ∫ (𝑥𝑥 − 𝑥̅𝑥)2𝜌𝜌𝜌𝜌𝑟𝑟(𝑥𝑥)2𝑑𝑑𝑑𝑑𝐿𝐿
0  (4) 

These equations can be used to calculate properties for a bat of any known radial profile, 

material density, and length.   

 For proper analysis and comparisons in later models, these properties are used 

primarily in their non-dimensional form.  The following lengths are non-dimensionalized 

by dividing by the length of the bat, L :   

  𝑌𝑌 = 𝑦𝑦
𝐿𝐿
  ;  𝑅𝑅 = 𝑟𝑟

𝐿𝐿
 ; and 𝑋𝑋 = 𝑥𝑥

𝐿𝐿
   . (5) 

An equation to non-dimensionalize the mass of the bat to be used in later linear and cubic 

models is  

  𝑀𝑀1 = 𝑚𝑚1
𝜌𝜌𝜌𝜌 𝐿𝐿3   . (6)  

The center of mass, x , can also be non-dimensionalized.  Because of the method by 

which it is derived, it cannot simply be non-dimensionalized by dividing by the length of 

the bat.   

  𝑋𝑋� = 𝑚𝑚1𝑥𝑥̅
𝜌𝜌𝜌𝜌 𝐿𝐿4 (7) 

The last term that needs to be non-dimensionalized is the moment of inertia about the 

center of mass.  For use in the linear and cubic models, the non-dimensionalized value of 

the moment of inertia about the knob is 

  𝐽𝐽0 = 30𝐼𝐼0
𝜌𝜌𝜌𝜌 𝐿𝐿5   . (8) 

Using each of these non-dimensional terms we can non-dimensionalize all equations that 

have been derived previously.  These equations are then used in our later comparisons.   
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 To create a non-dimensionalize variable M for mass in the case of the rigid body 

dynamic equations, the mass of the bat, 1m , is divided by the mass of the ball, 2m .  The 

equation to non-dimensionalize the moment of inertia in the rigid body dynamics 

equations, the following equation is used.   

  𝐽𝐽𝑐𝑐 = 𝐼𝐼𝑐𝑐
𝑚𝑚1𝐿𝐿2 (9) 

 In terms of the qualities defined here, equation (1) gives us the dimensionless 

mass 

  𝑀𝑀1 = ∫ 𝑅𝑅2(𝑋𝑋)𝑑𝑑𝑑𝑑1
0    ; (10) 

Equation (2) gives the dimensionless axial location of the center of mass 

  𝑋𝑋� = ∫ 𝑋𝑋𝑅𝑅2(𝑋𝑋)𝑑𝑑𝑑𝑑1
0    ; (11) 

And equation (3) gives the dimensionless moment of inertia about the (X=0) end of the 

bat 

  𝐽𝐽0 = ∫ 𝑋𝑋2𝑅𝑅2(𝑋𝑋)𝑑𝑑𝑑𝑑1
0    . (12) 

 
 A cubic profile was chosen to represent the radial profile of the baseball bat.  The 

radius, r, is taken to be a function of the distance along the bat, x, starting at the knob.  

The length of the bat is taken to be L, and x therefore has a range of 0 to L.  The global 

minimum radius is denoted as r

2.1 Cubic Profile 

0 and the global maximum radius is denoted as r1. 
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Figure 2.1: Cubic Radial Profile 

 
The function r(x) can be expressed as: 

  𝑟𝑟(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3 (13)   

where a, b, c and d are constants that determine the shape of the profile, and therefore the 

bat.  The distance along the bat, x, and the radius, r, can be non-dimensionalized by 

dividing by the overall bat length, L. 

  𝑋𝑋 = 𝑥𝑥
𝐿𝐿
  (14) 

  𝑅𝑅 = 𝑟𝑟
𝐿𝐿
   (15) 

The non-dimensional radial profile, R, can be written as a function of the non-

dimensional length, X.  The non-dimensional radius as a function of location on the bat is 

therefore: 

  𝑅𝑅(𝑋𝑋) = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶𝑋𝑋2 + 𝐷𝐷𝑋𝑋3   (16) 

 The constants A, B, C and D determine the shape of the profile, and therefore the 

bat.  Four boundary conditions must be specified to obtain a particular bat shape.  For this 

investigation, the boundary conditions that will be used are a minimum (Rmin) and 

maximum (Rmax) radius, and the locations at which the minimum (Rmin=R(P)) and 

maximum (Rmax=R(Q)) occur on the bat, where P is the coordinate in X at which the 

minimum radius exists, and Q is the coordinate in X at which the maximum radius exists.  
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These points can be used to solve for the constants A, B, C and D by differentiating 

equation (16) with respect to X and setting the derivative equal to 0.  By substituting 

(Rmin=R(P)) and (Rmax

  𝐷𝐷 = 2(𝑃𝑃−𝑄𝑄)(𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 −𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 )
𝑄𝑄4−4𝑄𝑄3𝑃𝑃+8𝑃𝑃𝑄𝑄3−5𝑃𝑃4−6𝑄𝑄𝑃𝑃2+6𝑃𝑃3   (17) 

=R(Q)) into the non-dimensional radial profile, equation (16), the 

constants A, B, C and D can be determined.   

  𝐶𝐶 = 3𝐷𝐷(𝑄𝑄2−𝑃𝑃2)
2(𝑃𝑃−𝑄𝑄)

   (18) 

  𝐵𝐵 = 3𝐷𝐷𝐷𝐷(𝑃𝑃2−𝑄𝑄2−𝑃𝑃)
𝑃𝑃−𝑄𝑄

  (19) 

  𝐴𝐴 = 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐵𝐵𝐵𝐵 − 𝐶𝐶𝑃𝑃2 − 𝐷𝐷𝑃𝑃3  (20) 

 The non-dimensional mass, center of mass and moment of inertia about the knob 

can all be calculated by substituting the non-dimensional radius profile into the non-

dimensional equations derived in Section 1. 

 The non-dimensional mass of the bat, M1, is given by substituting equation (16) 

into equation (10).  M1

  𝑀𝑀1 = 𝐴𝐴2 + 𝐴𝐴𝐴𝐴 + (2𝐴𝐴𝐴𝐴+𝐵𝐵2)
3

+ (𝐴𝐴𝐴𝐴+𝐵𝐵𝐵𝐵)
2

+ (2𝐵𝐵𝐵𝐵+𝐶𝐶2)
5

+ 𝐶𝐶𝐶𝐶
3

+ 𝐷𝐷2

7
  (21) 

The non-dimensional center of mass of the bat, 

 is therefore: 

X , is given by substituting 

equation (16) into equation (11).  X  is therefore: 

 𝑋𝑋� = 1
𝑀𝑀1
�𝐴𝐴

2

2
+ 2𝐴𝐴𝐴𝐴

3
+ (2𝐴𝐴𝐴𝐴+𝐵𝐵2)

4
+ (2𝐴𝐴𝐴𝐴+2𝐵𝐵𝐵𝐵)

5
+ (2𝐵𝐵𝐵𝐵+𝐶𝐶2)

6
+ 2𝐶𝐶𝐶𝐶

7
+ 𝐷𝐷2

8
� (22) 

The non-dimensional moment of inertia of the bat about the knob, J0, is given by 

substituting equation (16) into equation (12).  J0

 
 𝐽𝐽0 = 𝐴𝐴2

3
+ 𝐴𝐴𝐴𝐴

2
+ (2𝐴𝐴𝐴𝐴+𝐵𝐵2)

5
+ (𝐴𝐴𝐴𝐴+𝐵𝐵𝐵𝐵)

3
+ (2𝐵𝐵𝐵𝐵+𝐶𝐶2)

7
+ 𝐶𝐶𝐶𝐶

4
+ 𝐷𝐷2

9
 (23) 

 is therefore: 



 

12 
 

 
 A special case of this mathematical model of a baseball bat is the example of a 

linear radial profile.  This model represents the simplest case in which the radius varies 

with distance along the bat.  It can be used to compare the various effects of changing one 

property of the bat while holding all others constant.   

2.2 A Special Case: Linear Radial Profile 

 
Figure 2.2: Linear Radial Profile 

The dimensional radius of the bat at the knob end is denoted as r0, and the radius of the 

far end of the bat is denoted by r1

 𝑟𝑟(𝑥𝑥) =  𝑟𝑟0 + 𝑟𝑟𝑟𝑟 (24) 

where r is defined by equation (25).   

.  The length of this bat is defined as the variable L.  

The function that defines the linear profile of the radius of the bat is given by:  

 𝑟𝑟 = 𝑟𝑟1+𝑟𝑟0
𝐿𝐿

 (25) 

The first property of this bat to be calculated is the mass of the bat.  This can be found by 

substituting equation (24) into equation (1).  After integration this will be simplified to 

 𝑚𝑚1 = 𝜌𝜌𝜌𝜌𝐿𝐿3 �𝑟𝑟0
2

𝐿𝐿2 + 𝑟𝑟0𝑟𝑟
𝐿𝐿

+ 𝑟𝑟2

3
�   . (26) 

At this point the equation can be non-dimensionalized according to definitions (5) and (6) 

to use in later comparisons.   

 𝑀𝑀1 = 1
3

(𝑅𝑅1
2 + 𝑅𝑅0𝑅𝑅1 + 𝑅𝑅0

2) (27) 
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 Another important quality to consider is the location x  of the center of mass of 

the bat as the minimum and maximum radii change.  After substituting equation (1) into 

equation (2) we obtain   

  𝑥̅𝑥 = �𝜌𝜌𝜌𝜌𝐿𝐿
4

12𝑚𝑚1
� �6𝑟𝑟0

2

𝐿𝐿2 + 8𝑟𝑟0𝑟𝑟
𝐿𝐿

+ 3𝑟𝑟0�   . (28) 

This equation can also be non-dimensionalized according to definition (7) to smooth the 

progress of later comparisons; the non-dimensional values of r0 and r1

  𝑋𝑋� = 1
12𝑀𝑀1

(𝑅𝑅0
2 + 2𝑅𝑅0𝑅𝑅1 + 3𝑅𝑅1

2) (29) 

   An additional quantity to consider is the moment of inertia of the bat.  The 

moment of inertia about the end of the bat in this linear model is defined as 

 must also be 

substituted.  This results in a non-dimensional for the center of mass dependent on the 

non-dimensional radii.   

  𝐼𝐼0 = �𝜌𝜌𝜌𝜌𝐿𝐿
5

30
� �10𝑟𝑟0

2

𝐿𝐿2 + 15𝑟𝑟0𝑟𝑟
𝐿𝐿

+ 6𝑟𝑟2�   . (30) 

To ease in later comparison, this equation can be non-dimensionalized according to 

equations (5) and (8).  With the value of the non-dimensional moment of inertia from 

equation (8) and the non-dimensional radii at the knob and tip substituted into the 

equation, the non-dimensional equation can be derived.   

  𝐽𝐽0 = 𝑅𝑅0
2 + 3𝑅𝑅0𝑅𝑅1 + 6𝑅𝑅1

2 (31) 

Equations (27), (29), and (31) can be plotted and compared in several ways to help find 

the optimal characteristics of a baseball bat.   

 The first effect we examined is that of holding the mass of the bat constant while 

adjusting the magnitude of the radius at the knob end of the bat.  Figure 2.3 shows the 

variation of the dimensionless radius 𝑅𝑅1 = 𝑟𝑟1
𝐿𝐿

 at x = L with the corresponding radius 
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𝑅𝑅0 = 𝑟𝑟0
𝐿𝐿

 at x = 0 for M1 = 0.0006, 0.0008, 0.0010, 0.0012, and 0.0014.  These values of 

M1 were found by inputting maximum and minimum acceptable values of ρ, L, and m1 

into Equation (6).  As R0 increases, R1 must decrease to maintain a constant mass, as 

expected.  Figure 2.3 also demonstrates that for fixed values of R0, R1 increases as M1

 The second relationship that is considered is the location 𝑋𝑋� of the center of mass 

of the bat as R

 

increases, as expected.    

0 is changed and the overall mass of the bat M1 is held constant, which is 

demonstrated in Figure 2.4.  The values of non-dimensional mass used are the same 

values used for the previous example.  The location of the center of mass when R0 is at 

its maximum is 0.25 for each value of non-dimensional mass.  Similarly, the location of 

the center of mass when R0 is zero is 0.75 for all values of mass analyzed.  This indicates 

that the center of mass in each case varies from three quarters the distance along the bat 

to one quarter the distance along the bat.  The only difference in each case with different 

mass is the maximum values of R1 and R0.  Excepting the minimum and maximum 

values of R0, at a fixed value of R0, the axial location of the center of mass is located 

closer to the knob for decreasing values of mass.   

 The last analysis that is performed while holding non-dimensional mass M1 fixed, 

shown in Figure 2.5, is examining the moment of inertia about the knob end of the bat, 

J0.  As R0 increases, the value of J0 decreases for each fixed M1.  Also, for a fixed value 

of R0, the value of J0 decreases as M1 increases.   

 Similar graphs were created to compare the effects of holding the non-

dimensional moment of inertia of the bat constant, shown in Figure 2.6.  The values of J0 

that were used for these graphs were found by inputting reasonable maximum and  
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Figure 2.3: Variation of R1 with R0 for linear model for M1 = 0.0006, 0.0008, 0.0010, 0.0012, and 
0.0014. (MATLAB code 1, Appendix A) 
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Figure 2.4: Variation of 𝑿𝑿� with R0 for linear model for M1 = 0.0006, 0.0008, 0.0010, 0.0012, and 
0.0014. (MATLAB code 2, Appendix A) 
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Figure 2.5: Variation of J0 with R0 for linear model for M1 = 0.0002, 0.0004, 0.0006, 0.0008, and 
0.0010.  (MATLAB code 3, Appendix A) 
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Figure 2.6: Variation of R1 with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 0.008.  
(MATLAB code 4, Appendix A) 
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minimum values of ρ, L, and m1 into equation (8).  These values are 0.002, 0.004, 0.006, 

and 0.008.  As expected, the relationship between R0 and R1 while holding J0 constant is 

very similar to the relationship while holding M1 constant.  As R0 decreases, R1 must 

increase to maintain a constant J0.  A difference that can be noted is that the maximum 

value of R0 is not the same as the maximum value of R1.  This is because R1 has a much 

greater effect on J0 than does R0.  At a fixed value of R0, R1 increases as J0

 The relationship between R

 increases.   

0 and 𝑋𝑋� is analyzed in Figure 2.7 for constant J0.  As 

with the case of constant M1, the location of the center of mass is the same value for each 

value of J0 when R0 is equal to zero.  This is also true when R1 is equal to zero.  As with 

the model in which mass is held fixed, when R0 is held constant, the axial location of the 

center of mass moves closer to the knob as the value of the J0 decreases.   

 The last graph created for the linear model for the case of constant J0 is R0 versus 

M1, shown in Figure 2.8.  To maintain a constant J0, the mass of the bat increases as R0 

increases.  Also, as J0 increases the maximum value of R0 increases.  At a fixed value of 

R0, the mass increases as J0 increases.   

 
 As a special case of the general cubic profile given in equation (16), the locations 

of the zero slopes (that is the location of the minimum and maximum radius) are taken to 

be at the ends.  Therefore, P=0 and Q=1.  These profiles will be examined by first 

holding mass fixed and varying the end radii, and then by holding the moment of inertia 

fixed and varying the end radii.  These calculations are all completed in non-dimensional 

terms, but can be easily converted back into dimensional form. 

2.3 A Special Case of the Cubic Profile: Zero Slopes at the Ends 
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Figure 2.7: Variation of 𝑿𝑿� with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 0.008.  
(MATLAB code 5, Appendix A) 
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Figure 2.8: Variation of M1 with R0 for linear model for J0 = 0.002, 0.004, 0.006, and 0.008.  
(MATLAB code 6, Appendix A) 
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With P=0 and Q=1, equation (16) simplifies to: 

  𝑅𝑅(𝑋𝑋) = 𝐴𝐴 + 𝐶𝐶𝑋𝑋2 − 2
3
𝐶𝐶𝑋𝑋3 (32) 

 Equations for non-dimensional mass, M1

X

, non-dimensional location of the center 

of mass, , and non-dimensional moment of inertia about the knob, I0

  𝑀𝑀1 = 𝐴𝐴2 + 1
3
𝐴𝐴𝐴𝐴 + 13

315
𝐶𝐶2 (33) 

, can be obtained 

by substituting equation (32) into equations (10), (11) and (12).  These substitutions 

result in: 

  𝑋𝑋� = 1
𝑀𝑀1
�1

2
𝐴𝐴2 + 7

30
𝐴𝐴𝐴𝐴 + 2

63
𝐶𝐶2� (34) 

  𝐽𝐽0 = 1
3
𝐴𝐴2 + 8

45
𝐴𝐴𝐴𝐴 + 29

1134
𝐶𝐶2 (35) 

Since the minimum radius (Rmin) will be taken to occur at the handle (X=0), the value of 

A is always A=Rmin=R0.  The value of the radius at the barrel end will given as Rmax=R1.  

In the plots used to illustrate the effects of changing parameters, the value of the radius at 

the barrel end could become lower than the radius at the handle end.  However, the radius 

of the handle end will always be denoted as R0 and the radius at the barrel end will 

always be denoted as R1 for this special case.  

 The mass of a baseball bat is usually one of the two defining characteristics, along 

with the length, that are important to a player.  For this reason, we take a bat of constant 

length, in this case 33 inches, and fix the mass.  For simplicity of calculations, we work 

in non-dimensional values.  For each value of non-dimensional mass, the barrel radius R1 

is taken to be a function of R0.  This value of R1 X, as well as the center of mass, , and 

the moment of inertia about the knob, J0, are plotted against R0 for fixed values of M1. 
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 In Figure 2.9, R1 is plotted as a function of R0 for typical values of M1.  These 

values, M1=0.0006, 0.0008, 0.0010, 0.0012, and 0.0014, are all within a reasonable range 

of values calculated by equation (10) for typical bat shapes.  It is clearly seen that for a 

constant M1, as R0 increases, the value of R1 decreases.  That is, in order to maintain 

constant mass of the bat, as the handle radius is increases, the barrel radius must be 

decreased.  It is also clear that for fixed values of R0, the value of R1 increases with 

increasing M1.  That is, if the handle radius is held constant and the mass is increased, the 

barrel radius must increase as well.  It is important to note that the graphs of R1 versus R0 

for fixed M1 are symmetric about R1=R0, as expected. 

 In Figure 2.10, the non-dimensional center of mass is plotted against R0 for the 

same fixed values of M1. Note that R0 M4 was taken from 0 to a maximum value of , 

since any calculation with R0 greater than this maximum value will have an imaginary 

component.  It is obvious that with increasing R0 and constant M1, the location of the 

center of mass decreases, that is, the location of the center of mass moves towards the 

knob.  This is to be expected, as for a fixed mass, when the handle radius increases, the 

barrel radius must decrease, as seen in Figure 2.9.  Therefore, the mass becomes more 

concentrated at the handle end, producing the expected effect.  We also see that for a 

fixed value of R0, as M1 increases, the location of the center of mass will also increase.  

This is expected, as with a fixed handle radius, any increase in mass must increase the 

barrel radius, also seen in Figure 2.9, therefore concentrating the mass closer to the 

barrel.  Lastly, we see that for a handle radius of zero, the location of the center of mass 

will always be in the same place, independent of mass. 

 Figure 2.11 illustrates variations in the non-dimensional moment of inertia, J0,  
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Figure 2.9: Barrel Radius R1 as a function of Handle Radius R0 for values of M1=0.0006, 0.0008, 
0.0010, 0.0012, and 0.0014 (MATLAB code 7, Appendix A) 
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Figure 2.10: Location of center of mass 𝑿𝑿� as a function of Handle Radius R0 for values of M1=0.0006, 
0.0008, 0.0010, 0.0012, and 0.0014 (MATLAB code 8, Appendix A) 
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Figure 2.11: Moment of Inertia about the Knob, J0, as a function of Handle Radius R0 for values of 
M1=0.0006, 0.0008, 0.0010, 0.0012, and 0.0014 (MATLAB code 9, Appendix A) 
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about the knob end of the bat for fixed values of M1=0.0006, 0.0008, 0.0010, 0.0012, and 

0.0014, and varying handle radius, R0.  Note that R0

M4

 was taken from 0 to a maximum 

value of , since any calculation with R0 greater than this maximum value will have 

an imaginary component.  As expected, with increasing handle radius, the moment of 

inertia about the knob decreases.  As the handle radius increases and mass is held 

constant, the barrel radius must decrease, as seen in Figure 2.9.  Therefore, with a higher 

concentration of mass closer to the handle, the moment of inertia about the handle must 

decrease.  We also see that for a fixed handle radius, as mass increases, the moment of 

inertia increases.  This is expected because the increase of mass must occur towards the 

barrel end in order to maintain the fixed value of R0, so moment of inertia about the 

handle will increase with increased mass. 

 Though not commonly listed as a specification for a baseball bat, the moment of 

inertia (I0) about the knob is important in determining how fast a player can swing the 

bat.  Later in this paper, we will also illustrate the effects of moment of inertia on the exit 

velocity of the baseball after impact with the bat.  We take a bat of constant length, in this 

case 33 inches, and fix the moment of inertia about the knob end.  For simplicity of 

calculations, we work in non-dimensional values.  For each value of non-dimensional 

moment of inertia, the barrel radius R1 is taken to be a function of R0.  This value of R1

X

, 

as well as the center of mass, , and the non-dimensional mass of the bat, M1, are 

plotted versus R0 for fixed values of J0

 In Figure 2.12, R

.  

1 is plotted as a function of R0 for typical values of J0.  These 

values, J0=0.002, 0.004, 0.006, and 0.008, are all within a reasonable range of values 

calculated by equation (12) for typical bat shapes.  It is clearly seen that for a constant J0,  
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Figure 2.12: Barrel radius R1 as a Function of Handle Radius R0 with values of Jo

 

=0.002, 0.004, 
0.006 and 0.008 (MATLAB code 10, Appendix A) 
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as R0 increases, the value of R1 decreases.  That is, in order to maintain constant moment 

of inertia of the bat, as the handle radius is increases, the barrel radius must be decreased.  

It is also clear that for fixed values of R0, the value of R1 increases with increasing J0.  

That is, if the handle radius is held constant and the moment of inertia is increased, the 

barrel radius must increase as well.  Unlike with constant mass, as in Figure 2.9, the 

graphs of R1 versus R0 are not symmetric.  This is due to the non-symmetric effects of 

adding mass to either end.  Mass added to the barrel has a bigger effect on J0

 In Figure 2.13, the non-dimensional center of mass is then plotted against R

 than mass 

added to the handle end.   

0 for 

same fixed values of J0, which are J0=0.002, 0.004, 0.006, and 0.008.  Note that R0 was 

taken from 0 to a maximum value of �10229𝐽𝐽0
250

, since any calculation with R0 greater than 

this maximum value will have an imaginary component.  It is obvious that with 

increasing R0 and constant J0, the location of the center of mass decreases, that is, the 

location of the center of mass moves towards the knob.  This is to be expected, as for a 

fixed moment of inertia, as the handle radius increases, the barrel radius must decrease, 

as seen in Figure 2.12.  Therefore, the mass becomes more concentrated at the handle 

end, producing the expected effect.  We also see that for a fixed value of R0, as J0

 

 

increases, the location of the center of mass will also increase.  This is expected, as 

seenin Figure 2.12.  With a fixed handle radius, any increase in moment of inertia must 

increase the barrel radius, therefore concentrating the mass closer to the barrel.  Lastly, 

we see that for a handle radius of zero, the location of the center of mass will always be 

in the same place, independent of moment of inertia about the knob. 
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Figure 2.13: Location of center of mass 𝑿𝑿� as a function of Handle Radius R0 for values of J0=0.0002, 
0.0003, 0.0004, 0.0005, and 0.0006 (MATLAB code 11, Appendix A) 
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 Figure 2.14 illustrates variations in the non-dimensional mass, M1, versus R0 for 

fixed values of J0=0.002, 0.004, 0.006, and 0.008.  As expected, with increasing handle 

radius, and constant moment of inertia about the knob, the mass of the bat increases.  As 

seen in Figure 2.12, as handle radius increases with constant J0, the barrel radius 

decreases much more slowly.  The net effect is an increase in mass.  Therefore, as handle 

radius increases, with constant moment of inertia about the knob, the mass of the bat 

increases.  As expected, for a fixed value of R0, the mass of the bat increases as moment 

of inertia about the knob increases. 
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Figure 2.14: Mass M1 as a Function of Handle Radius R0 with values of Jo=0.0002, 0.0003, 0.0004, 
0.0005 and 0.0006 (MATLAB code 12, Appendix A) 
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Chapter 3 Rigid Body Dynamics 
 
 We focus here on an instantaneous collision between a ball and a bat.  At impact, 

both the ball and the bat move in the same plane, and the velocity of the ball just prior to 

impact is perpendicular to the longitudinal axis of the bat.  The mass of the ball is 2m and 

its velocity just prior to impact is 𝑣𝑣2.  The length of the bat is L , its mass is 1m , its 

moment of inertia about its center of mass is cI , and its angular velocity just prior to 

impact is ω .  The center of rotation of the bat just prior to impact is at a distance d off 

the bat along the longitudinal axis, the x -coordinate measures distance along the bat 

from the knob (so that 0 x L≤ ≤ ), the x -coordinate of the center of mass of the bat is x , 

and  the y -coordinate measures distance along the bat from the center of mass (so that 

x y L x− ≤ ≤ − ).  Defined in this way, the x - and y -coordinates are related by  

  𝑥𝑥 = 𝑥̅𝑥 + 𝑦𝑦   , (1) 

and the velocity cv  of the center of mass of the bat just prior to impact is given by 

  𝑣𝑣𝑐𝑐 = (𝑑𝑑 + 𝑥̅𝑥)𝜔𝜔   . (2) 

It is important to realize that the location of the center of rotation just after impact will 

not be the same as is just before impact. 

 In what follows, we focus on collisions in which the point of impact between the 

ball and the bat is at a location y  from the center of mass.  The velocity 𝑣𝑣1 of the contact 

point on the bat just prior to impact is therefore,  

  𝑣𝑣1 = 𝑣𝑣𝑐𝑐 + 𝜔𝜔𝜔𝜔   , (3) 

where cv itself depends on ω  according to equation (2). 
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 In a typical situation, the mass 2m of the ball, as well as the bat mass 1m , the 

location x of the center of mass, and the moment of inertia cI  of the bat are all known.  

In addition, the incoming velocity 𝑣𝑣2 of the ball, the location y of the contact point, the 

location d  of the center of rotation of the bat before impact, and the angular velocity ω  

of the bat before impact are also known.  The goal here is to use rigid body dynamics to 

predict the outgoing velocity 2v′  of the ball, the velocity 1v′  of the contact point just after 

impact, the velocity cv′  of the center of mass of the bat just after impact, the angular 

velocity ω′  of the bat just after impact, and the distance d ′  (measured positive off the 

bat) from the end of the bat to the center of rotation of the bat just after impact. 

 Because the impulsive force between the bat and the ball is so much larger than 

the forces that can be exerted by a batter on the bat during impact, these latter forces may 

be neglected when analyzing the dynamics of the collision between the bat and the ball.  

In this case, the bat is essentially free of external forces when it contacts the ball, and the 

conservation of linear momentum dictates that  

  𝑚𝑚2𝑣𝑣2 + 𝑚𝑚1𝑣𝑣𝑐𝑐 = 𝑚𝑚2𝑣𝑣′2 + 𝑚𝑚1𝑣𝑣′𝑐𝑐    , (4) 

while the conservation of angular momentum about the center of mass of the bat requires 

that  

  𝑚𝑚2𝑣𝑣2𝑦𝑦 + 𝐼𝐼𝑐𝑐𝜔𝜔 = 𝑚𝑚2𝑣𝑣′2𝑦𝑦 + 𝐼𝐼𝑐𝑐𝜔𝜔′   . (5) 

 The coefficient of restitution e  characterizes the energy lost in the collision, and 

is defined as the ratio of outgoing relative velocity to the incoming relative velocity 

according to 

  𝑒𝑒 = −(𝑣𝑣′ 1−𝑣𝑣2
′ )

(𝑣𝑣1−𝑣𝑣2)
   . (6) 
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When 1e = , the direction of the relative velocity is reversed, its magnitude remains 

unchanged, the collision is elastic and there is no energy dissipated.   

 Finally, the relation between the post-collisional velocity 1v′  of the contact point 

on the bat and the post collisional velocity cv′  of the center of mass of the bat is fixed 

kinematically by 

  𝑣𝑣′1 = 𝑣𝑣′𝑐𝑐 + 𝜔𝜔′𝑦𝑦   , (7) 

in which cv′  is given in terms of d ′  and ω′by the post-collisional analog of equation (2), 

  𝑣𝑣′𝑐𝑐 = (𝑑𝑑′ + 𝑥̅𝑥)𝜔𝜔′   . (8) 

 Equations (4), (5), (6), (7), and (8) are five equations that determine 1v′ , 2v′ , cv′ , ω′  

and d ′ .  Equation (4) may be rearranged to find 2 2( )v v′ −  in terms of the difference 

( )c cv v′ − , which by subtracting equation (3) from equation (7) gives ( )c cv v′ −  in terms of 

the differences 1 1v v′ −  and ( )ω ω′− .  Equations (6) and (7), in turn, may be used to write 

1v′  and ω′  in terms of 2v′ .  The result is a single equation for 2v′  that yields 

  𝑣𝑣′2 = 𝑣𝑣2 + 𝑚𝑚(1+𝑒𝑒)(𝑣𝑣𝑐𝑐−𝑣𝑣2+𝜔𝜔𝜔𝜔 )
�1+𝑚𝑚+(𝑚𝑚2

𝐼𝐼𝑐𝑐
)𝑦𝑦2�

   , (9) 

where 2 1/m m m=  and cv  is given by equation (2).  With 2v′  given by equation (9), 

equation (6) gives 1v′ : 

  𝑣𝑣′1 = 𝑣𝑣′2 + (𝑣𝑣2 − 𝑣𝑣1)𝑒𝑒   ; (10) 

and equation (5) givesω′ : 

  𝜔𝜔′ = 𝜔𝜔 + 𝑚𝑚2
𝐼𝐼𝑐𝑐

(𝑣𝑣2 − 𝑣𝑣′2)𝑦𝑦   . (11) 

Then with 1v′  given by equation (10), equation (7) gives cv′ : 

  𝑣𝑣′𝑐𝑐 = 𝑣𝑣′1 − 𝜔𝜔′𝑦𝑦  (12) 
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and with cv′  given by equation (12) and ω′  given by equation (11), equation (8) gives d ′ : 

  𝑑𝑑′ = −𝑥̅𝑥 + 𝑣𝑣′𝑐𝑐
𝜔𝜔′

   . (13) 

After the development of these equations for the rigid body dynamics of the 

baseball bat collision, we analyze these equations using typical values of the constants for 

an average major league baseball (MLB) bat.  These typical values were found both from 

average bat dimensions and through mathematical models of a common cubic profile.  

The typical profile used for the average bat is that with a handle radius of 0.5 inches and 

an end radius of 1.375 inches.  The handle radius was chosen so as to be thin enough to 

grip but thick enough to not cause breakage during a bat-ball collision.  The end radius 

was chosen as the maximum allowed by major league rules.  The locations of zero slope 

are at x=0 and x=L.  The length used was 36 inches.  From these parameters the cubic 

profile was determined, and from that profile the mass, the axial location of the center of 

mass, and the moment of inertia about the knob and the center of mass can be determined 

from equations (2.1), (2.2), (2.3), and (2.4).  The mass that is determined from this cubic 

profile and equation (2.1) is 34.5436 ounces; this mass is reasonable for an MLB baseball 

bat of that length.  Through similar calculations the moment of inertia about the center of 

mass calculated is 158.43 lb in3

The values of the incoming ball velocity, v

.  The axial location of the center of mass given by 

equation (2.2) and this cubic profile is 0.672907 times the length of the bat, which is a 

reasonable value for an average bat shape.  The standard mass of a MLB baseball is 5 

ounces.   

2, the coefficient of restitution, e, the 

location of the center of rotation, d, and the initial angular velocity of the baseball bat, ω, 

are all treated as known constants.  The average incoming ball velocity used is 90 mph 
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and the average angular velocity of the baseball bat before collision is 50 radians per 

second.  The axial location of the center of rotation is 2.5 inches from the knob in the 

negative x direction.  The average coefficient of restitution in the bat-ball collision is 0.5.   

All of these values can be non-dimensionalized and used to calculate and plot the 

outgoing ball velocity, v’2, versus the location of impact, x.  This relationship is shown in 

Figure 3.1.  Quantities have been non-dimensionalized such that velocity is given as a 

fraction of incoming ball velocity so that 𝑉𝑉′2 = 𝑣𝑣′2
−𝑣𝑣2

 and X is given as a fraction of the 

total bat length so that 𝑋𝑋 = 𝑥𝑥
𝐿𝐿
. We see that exit velocity is highly dependent upon the point 

of impact and is greatest a few inches in from the barrel end. This is the qualitative 

behavior we expect. Hitters try to make contact close to this point of maximum in order 

to obtain more distance. As shown in this figure, there is a location on the bat which 

provides a maximum outgoing ball velocity, v’2

 Equation (9) gives the exit velocity of a batted ball as a function of 𝑦𝑦, which is 

defined as the distance from the center of mass of the bat to the impact location. From 

this equation we wish to derive an expression for the value of 𝑦𝑦 at which the maximum 

velocity occurs for a given bat profile. By setting 𝑑𝑑𝑣𝑣2
′

𝑑𝑑𝑑𝑑
= 0, we can isolate the minimum  

.  This location of maximum is of great 

interest, and is evaluated further.  Interestingly, for values of X less than 0.14, batted ball 

speed is negative. This happens because collisions that occur close to the handle-end of 

the bat transfer less momentum to the ball than is required to change its direction (the 

pitched velocity is taken as negative). There are two reasons for this behavior. First, as 

the point of collision moves closer to the handle (and closer to the center of rotation), the 

linear velocity of the impact point is decreased. Also, the effective mass decreases as the 

impact point is moved from the bat center of mass.   
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Figure 3.1: Outgoing Ball Velocity, V'2, versus location of impact, X (MATLAB code 13, Appendix 
A) 
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and maximum values of the function. This results in two roots as follows: 

  𝑦𝑦 = 1
𝜔𝜔
�−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) ± �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 𝜔𝜔2(1 + 𝑚𝑚) � 𝐼𝐼𝑐𝑐

𝑚𝑚1
�� (14) 

By specifying that 𝑑𝑑
2𝑣𝑣2

′

𝑑𝑑𝑦𝑦2 < 0, we identify the point at which velocity is a maximum. We 

are left with a single value of y. 

  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝜔𝜔
�−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) + �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 𝜔𝜔2(1 + 𝑚𝑚) � 𝐼𝐼𝑐𝑐

𝑚𝑚1
�� (15) 

 We then apply a simple transformation to establish the optimal impact location in 

terms of 𝑥𝑥, the distance along the bat from the handle-end. 

  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥̅𝑥 + 1
𝜔𝜔
�−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) + �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 𝜔𝜔2(1 + 𝑚𝑚) � 𝐼𝐼𝑐𝑐

𝑚𝑚1
�� (16) 

 This value of 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  allows us to analyze a given bat shape in order to find the 

impact point which results in the highest ball output velocity. More importantly, by using 

expression (16) in equation (9), where 𝑦𝑦 = 𝑥𝑥 − 𝑥̅𝑥, we are able to determine the maximum 

ball exit speed, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , as a function of the geometry of a bat for a given 𝑣𝑣2, 𝑒𝑒,𝑑𝑑, and 𝜔𝜔. 

That is, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑣𝑣2
′ (𝑥𝑥 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ), where 𝑣𝑣2

′ (𝑥𝑥) is given by equation (9) and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  is given 

by equation (16).  

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑣𝑣2 +
𝑚𝑚(1+𝑒𝑒)�(𝑣𝑣𝑐𝑐−𝑣𝑣2)2+𝜔𝜔2(1+𝑚𝑚)( 𝐼𝐼𝑐𝑐𝑚𝑚1

)

1+𝑚𝑚+� 𝑚𝑚1
𝐼𝐼𝑐𝑐𝜔𝜔2��𝑣𝑣2−𝑣𝑣𝑐𝑐+�(𝑣𝑣𝑐𝑐−𝑣𝑣2)2+𝜔𝜔2(1+𝑚𝑚)� 𝐼𝐼𝑐𝑐𝑚𝑚1

��
2 (17)  

 

This analysis tool is useful in comparing the performance of different bat geometries.   

 All comparisons are done using dimensionless terms, to facilitate finding and 

analyzing trends.  All lengths were non-dimensionalized by dividing by the length of the 

bat, L .  This is done because the initial ball velocity is taken to be negative.   For 
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example, the distance on the bat from the center of mass to the impact point is non-

dimensionalized by the following: 

  𝑌𝑌 = 𝑦𝑦
𝐿𝐿
 and 𝑅𝑅 = 𝑟𝑟

𝐿𝐿
   . (18) 

All velocities were non-dimensionalized by dividing by the negative value of the initial 

velocity of the ball.  For example, the non-dimensional velocity of the center of mass of 

the bat and the impact point are given by  

  𝑉𝑉𝑐𝑐 = 𝑣𝑣𝑐𝑐
−𝑣𝑣2

  and 𝑉𝑉1 = 𝑣𝑣1
−𝑣𝑣2

   (19) 

respectively.  Angular velocity is non-dimensionalized by: 

  Ω = 𝜔𝜔𝜔𝜔
−𝑣𝑣2

   . (20) 

To create a non-dimensional term M for mass, the mass of the bat, 2m , is divided by the 

mass of the ball, 1m   The last terms that needs to be non-dimensionalized are the moment 

of inertia about the center of mass and about the knob (x=0).  This is done by:  

  𝐽𝐽𝑐𝑐 = 𝐼𝐼𝑐𝑐
𝑚𝑚1𝐿𝐿2   and  (21) 

  𝐽𝐽𝑜𝑜 = 𝐼𝐼𝑜𝑜
𝑚𝑚1𝐿𝐿2   . (22) 

Using each of these non-dimensional terms we can non-dimensionalize all equations that 

have been derived previously.  These equations are then used in our later comparisons.   

 

 
Figure 3.2 shows the variation of the bat handle-end radius with the barrel-end 

radius for a constant non-dimensional mass, M = 6.73. As one radius changes, the other 

must vary in such a way that the total mass is held constant. The maximum radius does  

3.1 Cubic Profile, Fixed Mass, Zero End Slopes 
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Figure 3.2: Variance of the bat handle-end radius versus the barrel-end radius for a constant mass 
scenario for e=0.5, ω =50 radians/second, and d=2.5 inches (MATLAB code 14, Appendix A) 
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not exceed a non-dimensionalized value of 0.0416, the MLB maximum for a 33 inch bat. 

It is interesting to note that this plot is symmetrical about the line R0=R1. This means that 

if a given value of R0=A has a corresponding R1=B, then a given value of R1=A will 

have a corresponding R0=B. In other words, any valid bat profile mirrored about the mid-

point of the bat is also a valid profile. 

 Figure 3.3 displays the movement of the optimal impact point along the bat as the 

barrel-end radius changes. As the barrel-end radius increases from a minimum value of 

0.015 to a maximum value of 0.0416, the optimal impact point moves toward the barrel-

end of the bat, from a point 33% of the length from the handle-end to a point 66% of the  

length from the handle-end. This result is intuitive, as the optimal impact point is 

expected to shift as the mass distribution shifts. 

 Figure 3.4 shows the corresponding maximum ball exit velocity as a function of 

the barrel-end radius. As the barrel-end radius increases from a minimum value of 0.015 

to a maximum value of 0.0416, the ball exit velocity increases from  a magnitude of 

87.5% of incoming ball velocity to a magnitude of 135% of incoming ball velocity. 

Again, this result is intuitive. As the mass is shifted further to the barrel-end, the profile 

begins to take the obvious form of a typical baseball bat. We expect this shape to perform 

better than a bat with more mass concentrated on the handle-end. If we imagine the 

extreme case, we would expect a batter holding the barrel-end of the bat and striking the 

ball with the handle-end to experience sub-optimal performance. According to these 

particular constraints (zero end slopes with minimum and maximum radii occurring at the 

bat ends), it is most beneficial to utilize the maximum allowable radius at the extreme  
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Figure 3.3: Location of the optimal impact point along the bat as the barrel-end radius changes for 
e=0.5, ω =50 radians/second, and d=2.5 inches (MATLAB code 15, Appendix A) 
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Figure 3.4: Maximum ball exit velocity as a function of the barrel-end radius for e=0.5, ω =50 
radians/second, and d=2.5 inches (MATLAB code 16, Appendix A) 
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barrel-end and the minimum selected radius at the extreme handle-end. In the following 

sections, we will observe the effects of moving the locations of minimum and maximum 

radii from the extreme ends toward the center of the bat. 

 

3.2 Cubic Profile, Fixed Minimum and Maximum Radii, Zero Handle 
Slope 

 In order to better understand how modifying the cubic profile affects the 

maximum outgoing ball velocity, the location of the maximum radius is varied along the 

axis of the bat while the location of the minimum radius is fixed at the handle.  For this 

case, the maximum radius is moved from x=23” to x=33”, which corresponds to X=0.70 

and X=1 in non-dimensional terms.  The maximum radius is set to 1.375 inches, and the 

minimum radius is set to 0.5 inches.  The minimum radius is located at the handle end of 

the bat, or X=0.  Non-dimensional values of bat mass, 𝑀𝑀 = 𝑚𝑚1
𝑚𝑚2

, moment about the handle 

end, 𝐽𝐽0 = 𝐼𝐼0
𝑚𝑚1𝐿𝐿2, and moment of inertia about the center of mass, 𝐽𝐽𝑐𝑐 = 𝐼𝐼𝑐𝑐

𝑚𝑚1𝐿𝐿2, the maximum 

outgoing ball velocity, VMAX, and the location on the bat that gives maximum outgoing 

ball velocity, XMAX, are each calculated as functions of the location of the maximum 

radius.  These values are plotted for comparison. 

 When the cubic radial profile is changed and the density is held constant, it is 

expected that the overall bat mass will change.  As seen in Figure 3.5, the non-

dimensional mass of the bat is at a maximum value of approximately 10.4e-4, which 

corresponds to 40.5 ounces, when the maximum radius is located at about X=0.76.  M at 

X=1 is significantly lower, at only about 8.9e-4.  Therefore, when constrained by a 

maximum radius of 1.375 inches and a minimum radius of 0.5 inches, located at X=0, the  
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Figure 3.5: Non-dimensional bat mass vs. location of max radius for e=0.5, ω=50 radians/second, and 
d=2.5 inches (MATLAB code 17, Appendix A) 
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heaviest bat occurs when the maximum radius is set to occur not at the end, but 

approximately 8 inches from the barrel end. 

 The moments of inertia about the handle end (X=0) and about the center of mass 

both vary with the movement of the location of the maximum radius.  Similar to the 

mass, the maximum value of moment of inertia occurs when the maximum radius is away 

from the end of the bat.  When taken about the handle end (X=0), the moment is 

maximum at approximately X=0.84, as seen in Figure 3.6.  When taken about the center 

of mass, the maximum moment occurs even farther from the end, at about X=0.82, as 

seen in Figure 3.7.  Because both these values and the overall bat mass contribute to the 

outgoing ball velocity, it is expected that the maximum outgoing ball velocity will be 

dependent on the location of maximum radius.   

 Finally, the maximum outgoing ball velocity and the location at which it is 

achieved are considered.  The non-dimensional VMAX is plotted as a function of the 

location of the maximum radius for three typical values of the angular velocity: ω=40, 50 

and 60 rad/s.  It is clear from Figure 3.8 that the maximum outgoing ball velocity is 

largest at approximately X=0.855, 0.86 and 0.865 for angular velocities ω=40, 50 and 60 

rad/s, respectively.  As the optimum location of the maximum radius purely in terms of 

maximum batted ball speed is further along the bat than the location that provides 

maximum values of mass and moment, but not at the end.  As seen above, the greatest 

masses and moments occur to the left of X≈0.86, but the value of X≈0.86 is still 

significantly removed from the end of the bat.  The competing effects that give this 

optimal location are the mass and moment, as mentioned previously, as well as the  
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Figure 3.6: Moment of inertia about x=0 vs. location of max radius for e=0.5, ω=50 radians/second, 
and d=2.5 inches (MATLAB code 18, Appendix A) 
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Figure 3.7: Moment of inertia about the center of mass vs. location of maximum radius for e=0.5, 
ω=50 radians/second, and d=2.5 inches (MATLAB code 19, Appendix A) 
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Figure 3.8: Non-dimensional VMAX vs. location of maximum radius (MATLAB code 20, Appendix A) 
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rotation of the bat, which increases the local bat velocity linearly along the bat, with a 

maximum linear velocity occurring at the barrel end.  This effect is best illustrated in  

Figure 3.9, as the location of impact that provides the maximum batted ball speed 

remains almost constant for values of X>0.90.  Even with the maximum radius moving 

away from the end of the bat, the combination of overall mass, moment and angular 

velocity produce insignificant change in the optimal location of impact.   

It should be noted that if the angular velocity of the bat is increased, the location 

of the maximum radius that provides maximum batted ball speed would move closer to 

the barrel end, as this effect would become more dominant. This is illustrated in Figure 

3.9.  The batted ball speed itself will also increase with increases in angular velocity, as 

seen in Figure 3.8.  It should also be noted that the net increase in batted ball speed 

achieved by moving the location of maximum radius away from the barrel end is 

approximately 2% of the incoming ball velocity.  In dimensional terms, this translates 

into about 2 mph.  Although this value is not large, it is an improvement over the bat with 

maximum radius occurring at the barrel end. 

3.3  

 Here we consider a special case of the cubic profile in which the maximum 

radius, the location of the minimum radius and the mass are held constant.  The location 

of the maximum radius is moved along the barrel end of the bat from x-coordinates 

x=23” to x=33” (which corresponds to the end of the bat.  Due to the restriction of 

constant mass, the value of the minimum radius will change with varying location of 

maximum radius.   

Cubic Profile, Fixed Mass and Maximum Radius, Zero Handle 
Slope 
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Figure 3.9: Location at which maximum outgoing velocity occurs (XMAX) vs. location of Max radius 
(MATLAB code 21, Appendix A) 
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 We see in Figure 3.10 that minimum radius reaches a minimum value when the 

location of the maximum radius is placed about three fourths of the way along the bat, or 

at X=0.76.  Since the mass of the bat is held constant, when the location of the maximum 

radius being placed at approximately X=0.76, the least amount of the mass is 

concentrated in the handle end, and therefore the greatest amount of mass is concentrated 

at the barrel end. 

 Figure 3.11 plots the moment of inertia about the handle end of the bat (X=0) as a 

function of the location of the maximum radius.  The moment about the handle end  

reaches a maximum when the location of the maximum radius is placed at approximately 

X=0.85.  This is due to the effect seen in Figure 3.10, where with the maximum radius 

placed away from the end of the bat, the minimum radius decreases, and more mass is 

concentrated in the barrel.  The moment of inertia is also increased.  If the maximum 

radius is moved too far, i.e. X<0.85, the concentration of mass begins to move away from 

the barrel end, reducing the moment. 

 In Figure 3.12, the moment of inertia about the center of mass is plotted as a 

function of the location of maximum radius.  In contrast to the moment about the end, the 

moment about the center of mass decreases as the maximum radius is moved away from 

the barrel end.  This is due to the concentration of mass moving closer to the center of 

mass.  This effect is more powerful than the concentrating of mass in the barrel, which is 

why we see a decrease in the moment. 

 Now that all relevant geometric properties have been described, the dynamic 

effects of the variation in the location of maximum radius are considered.  First we 

consider the optimal impact location, XMAX, as a function of the variable location of  
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Figure 3.10: Rmin versus the Location of the Maximum Radius X with m1=40 oz, l=33” and 
rmax=1.375” (MATLAB code 22, Appendix A) 
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Figure 3.11: Non-dimensional J0 versus the Location of the Maximum Radius X with m1=40 oz, 
l=33” and rmax=1.375” (MATLAB code 23, Appendix A) 
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Figure 3.12: Non-dimensional Jc versus the Location of the Maximum Radius X with m1=40 oz, l=33” 
and rMAX=1.375” (MATLAB code 24, Appendix A) 
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maximum radius, which is plotted in Figure 3.13 for three typical values of angular 

velocity, ω=40, 50 and 60 rad/s.  For locations of the maximum radius falling in the range 

0.90<X<1.0, the optimal impact location changes very little.  This is because movement 

of the maximum radius has a very small effect on mass and moment until it reaches 

approximately X = 0.90.  Once the location of the maximum radius is moved away from 

the barrel end beyond X < 0.90, the optimal impact location begins to move more 

dramatically.  As expected, with increased angular velocity, the optimal impact location 

is moved closer to the end of the bat, again due to linear velocity effects. 

Finally we consider the maximum outgoing ball velocity, VMAX

3.4  Effects of Coefficient of Restitution and Angular Velocity 

.  Although there 

are not large variations in maximum ball exit velocity with variations in the location of 

maximum radius, there are some interesting effects.  In Figure 3.14, the outgoing ball 

velocity is increased with increasing angular velocity.  However, for all three values of 

omega, there is an optimal location of the maximum radius.  For ω =40, 50 and 60 rad/s, 

this location is approximately X=0.87, 0.88, and 0.89.  This means that by moving the 

location of the maximum radius away from the end of the bat, effectively concentrating 

more mass at the barrel end, the outgoing ball velocity can be increased.   

 

 Here we investigate how varying the coefficient of restitution and angular 

velocity affects swing dynamics. 

To analyze the influence that the coefficient of restitution, e, has on the angular 

velocity of the bat after impact, Figure 3.15 plots Ω’
Ω

versus Y for a range values of e: 0.3,  
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Figure 3.13: Optimal impact location XMAX versus the Location of the Maximum Radius X with 
m1=40 oz, l=33”, rMAX=1.375”, and ω=40, 50 and 60 rad/s (MATLAB code 25, Appendix A) 
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Figure 3.14: Maximum ball exit velocity VMAX versus the Location of the Maximum Radius X with 
m1=40 oz, l=33”, rMAX=1.375”, and ω=40, 50 and 60 rad/s (MATLAB code 26, Appendix A) 
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Figure 3.15: Ω’/ Ω vs. Location of impact, Y, with e = 0.3, 0.5, 0.7 (MATLAB code 27, Appendix A) 
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0.5, and 0.7. Ω’
Ω

 represents the ratio of the post-impact angular velocity to the pre-impact 

angular velocity. In each case the relationship is linear, and as the impact location moves 

away from the knob, the value of Ω’
Ω

  decreases.  For a constant value of Y which is closer 

to the knob than the axial location of the center of mass, Ω’
Ω

  increases as e increases.  For 

a constant value of Y which is farther from the knob than the axial location of the center 

of mass, Ω’
Ω

  decreases as e increases.  Each line intersects at Y=0 (the location of the 

center of mass), and the value of Ω’
Ω

 at this point is 1, indicating that an impact at this 

location will not change the angular velocity of the bat.  An important note is that each 

line crosses Ω’
Ω

= 0.  This indicates that for each of these values of e there is an impact 

location which will result in an angular velocity after impact of zero.   

 The next value to be considered versus e is that of the post-collision location of 

the center of rotation of the bat, D’.  This parameter is highly dependent upon the location 

of the impact.  The initial location of the center of rotation, D, is assumed to be 2.5” off 

the knob and is extracted from experimental data from outside sources.  The location 

after impact, D’, is given by equation (13).  This equation is where the note from the 

previous analysis comes into play: when Ω’ is equal to zero, the equation is undefined.  

As the value of Ω’ approaches zero, the value of D’ becomes larger.  The limit of D’ as 

Ω’ approaches zero from the negative side is +∞.  However,  the limit of D’ as Ω’ 

approaches zero from the positive side is –∞.  Infinite values of D’ imply that the bat is 

moving with pure linear motion and does not rotate after collision. This effect is reflected 

in Figure 3.16 where 𝐷𝐷′
𝐷𝐷

 is taken to be the ratio of the post-collision distance to the center  

 



 

62 
 

 
Figure 3.16: D’/D vs. coefficient of restitution, e, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3 (MATLAB 
code 28, Appendix A) 
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of rotation over the pre-collision distance.  For the values of Y=0.1, 0, -0.1, and -0.2, the 

value of Ω’
Ω

 does not reach zero for the applicable range.  For these values of Y, the value 

of 𝐷𝐷′
𝐷𝐷

 becomes more negative as e increases.  Both the values of Y=0.2 and 0.3 contain a 

value of Ω’
Ω

= 0, which causes the dramatic curve in those graphs.  

 The final parameter that is analyzed versus the coefficient of restitution is the 

magnitude of VMAX, shown in Figure 3.17.  As expected, the value of VMAX increases 

linearly with the value of the coefficient of restitution, e.  The location of the maximum 

velocity, XMAX

 Several parameters are plotted versus Ω to examine its affect on the dynamic 

properties of the bat-ball impact, the first of which is 𝐷𝐷′
𝐷𝐷

 shown in Figure 3.18.  This 

relationship is similar to that of 𝐷𝐷′
𝐷𝐷

 versus e, as the locations of impact which produce 

Ω’
Ω

= 0 affect the behavior.  For the values of Y=0.1, 0, -0.1, and -0.2, the value of Ω’
Ω

 does 

not reach zero for the applicable range.  For these values 𝐷𝐷′
𝐷𝐷

 increases as Ω increases, and 

for a fixed value of Ω, 𝐷𝐷′
𝐷𝐷

 increases as Y increases.  For the values of Y = 0.2 and 0.3, there 

is a location of impact which results in Ω’
Ω

= 0.   

 Other parameters that are plotted versus Ω are V

, is not dependent upon the coefficient of restitution. 

MAX and XMAX, shown in Figures 

3.19 and 3.20 respectively.  As the value of Ω increases, the value of VMAX increases.  

Also, at a fixed value of Ω the value of VMAX increases as the mass of the bat increases.  

XMAX moves away from the knob of the bat as the angular velocity, Ω, increases.   
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Figure 3.17: Vmax versus coefficient of restitution, e, with M=3, 4, 5, 6, and 7 (MATLAB code 29, 
Appendix A) 
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Figure 3.18: D’/D vs. Ω, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3 (MATLAB code 30, Appendix A) 
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Figure 3.19: VMAX versus Ω, with M= 3, 4, 5, 6, and 7 (MATLAB code 31, Appendix A) 
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Figure 3.20: XMAX versus Ω, with M = 3, 4 , 5, 6, and 7 (MATLAB code 32, Appendix A) 
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Chapter 4 Dynamics of the Swing 

In this section, we further refine our model. First, we determine, for a fixed 

applied torque, the dependence of the angular velocity of the bat on its moment of inertia. 

In our previous analysis we assumed a constant rotational velocity independent of bat 

profile.  Now we consider the influence of moment of inertia on the swing speed as the 

radial profile changes. We will quantify the competing effects of increased moment of 

inertia and decreased swing speed as they affect hitting performance. Secondly, we will 

conduct an analysis of “cupping,” a practice in which a small, round cup is bored from 

the end of the bat to decrease moment of inertia and increase swing speed. Again this 

produces competing effects, as increased swing speed decreases the time of the swing, 

but lower mass diminishes the inertial effects imparted to the ball. In an anecdotal sense, 

the practice of cupping is widely considered among players to be beneficial to hitting 

performance. We will quantify the competing effects in order to comment more 

decisively on the net effect. 

4.1 Ω, as Dependent on Moment of Inertia about the Center of 
Rotation 

An aspect of the dynamics of the ball-bat collision that was omitted from the 

previous analysis to simplify the model was the dependence of the angular velocity, ω, on 

the moment of inertia about the center of rotation.  In the previous analysis, ω was 

considered a known variable, obtained from experimental data, which was held constant, 

even as the mass distribution of the bat varied.  In reality, changes in the distribution of 

the mass of the bat affect a batter’s ability to swing the bat up to maximum speed.  This 

effect is reflected in the torque required to swing the bat, 
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 𝑇𝑇 = 𝐼𝐼𝑅𝑅𝛼𝛼 (1) 

where IR

  𝐼𝐼𝑅𝑅 = 𝐼𝐼𝑐𝑐 + 𝑚𝑚1(𝑥̅𝑥 + 𝑑𝑑)2   . (2) 

This angular acceleration is related to the angular velocity, ω, by equation (3): 

 is the moment of inertia about the center of rotation (located a distance d off the 

handle) and α is the angular acceleration of the bat.  The moment of inertia about the 

center of rotation is given by: 

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼   .  (3) 

After integration with respect to t this equation becomes 

  𝜔𝜔 = 𝛼𝛼𝛼𝛼 (4) 

in which t is the time duration of the swing.  Similarly, the angular velocity of the bat can 

be equated to the angular displacement of the bat, θ, by  

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜔𝜔 = 𝛼𝛼𝛼𝛼 (5) 

which, after integration can be defined as 

  𝜃𝜃 = 1
2
𝛼𝛼𝑡𝑡2  . (6) 

To obtain an expression of ω in terms of IR

  𝑡𝑡 = �2𝜃𝜃
𝛼𝛼

 (7) 

and equation (1), solved for α, can be substituted into equation (7).   

, equation (6) must be solved for t  

  𝑡𝑡 = �2𝜃𝜃𝐼𝐼𝑅𝑅
𝑇𝑇

 (8) 

This expression for time in equation (8) and equation (1), solved for α, are substituted 

into equation (4) to find an equation for ω in terms of IR

  𝜔𝜔 = �2𝑇𝑇𝑇𝑇
𝐼𝐼𝑅𝑅

   . (9) 

:  
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However, due to the complex geometry of the swing, the bat is not accelerated purely by 

the torque.  There is a linear component to the acceleration, which is due to the 

movement of the center of rotation during the swing.  This relationship is largely 

dependent on the mass of the bat, which for the following analyses remains nearly 

constant.  For this reason, we introduce a constant angular velocity term, ω0

  𝜔𝜔 = �2𝑇𝑇𝑇𝑇
𝐼𝐼𝑅𝑅

+ 𝜔𝜔0. (10)  

, which 

represents the angular velocity resultant from the linear acceleration effects, which is then 

added to the previously calculated variable angular velocity, that is purely dependent on 

torque. 

Three constants are required for this equation, the angular displacement of the bat 

through the swing, θ, the torque required for the swing, 𝑇𝑇, and the constant angular 

velocity, ω0

  𝐽𝐽𝑅𝑅 = 𝐽𝐽𝑐𝑐 + (𝑋𝑋� + 𝐷𝐷)2   . (11) 

, which is due to other effects.  Through experimental data from several 

sources, the value for θ used in our analysis is 180 degrees, or 𝜋𝜋 radians.  A value for the 

torque, 𝑇𝑇, can also be found in experimental sources and was determined to be 

approximately 61Nm.  By substituting these values into equation (10), along with our 

typical value of 𝜔𝜔 = 50 rad/s, we obtain a reasonable value for the angular velocity due 

to other effects, 𝜔𝜔0 = 20 rad/s. 

 For the purpose of non-dimensional analysis, the moment of inertia about the 

center of rotation must be non-dimensionalized.  The non-dimensional form of equation 

(2) is  
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The torque equation need not be non-dimensionalized because the dimensional value of 

torque can be substituted into the dimensional equation for ω, which then can be non-

dimensionalized.   

4.2  Cubic Profile, Fixed Mass, Zero End Slopes, Omega-Moment 
Dependence 
 

Here we perform the same analyses as in Chapter 3, but now account for the 

effect of moment of inertia on rotational velocity.  First, we revisit the case in which we 

fix mass and zero slopes at each end of the bat and then vary the end radii. In this 

scenario, we begin with a standard-bat like profile at one extreme and a “reversed” 

profile at the other extreme. The effect of this variation on swing speed is quite 

pronounced and is shown in Figure 4.1. When the barrel radius is minimized, omega is 

approximately 64, 69 and 74 rad/s for applied torques of 49, 61 and 73 Nm, respectively. 

As we enlarge the barrel radius, this value drops by nearly 30 percent to 47, 50 and 53 

rad/s for applied torques of 49, 61 and 73 Nm, respectively. Our results from section 3.1 

(which do not take moment of inertia effects into account) indicated that outgoing 

velocity was at a maximum when the barrel radius was at a maximum. The results shown 

in Figure 4.1 show that there is a competing effect wherein increasing the barrel radius 

decreases swing speed and tends to lessen the outgoing ball velocity. 

 The net effect of varying barrel-radius on maximum outgoing ball velocity in this 

scenario is shown in Figure 4.2.  The increased angular velocity that results from the 

barrel radius being small helps to balance the negative effect of having a small effective 

mass.  As a result, the outgoing ball velocity does not decrease as sharply when the barrel 

radius is minimized.  In the case where the barrel radius is maximized, that is when the  
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Figure 4.1: Angular velocity ω versus non-dimensional barrel radius R1 for applied torques of T=49, 
61 and 73 Nm and with ω0 = 20 rad/s  (MATLAB code 33, Appendix A) 
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Figure 4.2: Maximum non-dimensional outgoing velocity VMAX versus non-dimnesional barrel radius 
R1 for applied torques of T=49, 61 and 73 Nm and with ω0 = 20 rad/s (MATLAB code 34, Appendix 
A) 
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bat profile matches our typical profile, and when the typical value of torque is utilized, 

the outgoing ball velocity and the swing speed exactly match those values calculated in 

previous sections, as expected.  

A final behavior noted here is the movement of the optimal impact location as we 

vary the end radii. Figure 4.3 shows that when the barrel radius is minimized, the optimal 

impact location occurs approximately at X = 0.53. When the barrel radius is maximized, 

this point moves to just over X = 0.80. This behavior is expected as the optimal impact 

point follows the variance in mass distribution. 

4.3  Fixed Minimum and Maximum Radii, Zero Handle Slope, 
Omega-Moment Dependence 
 
 In this section, as in Section 3.2, we set the minimum and maximum radii, and 

then vary the location of the maximum radius from the extreme barrel-end toward the 

handle. As the shape changes, we allow the mass and moment of inertia to vary 

accordingly. We again consider the effect of moment of inertia on the swing speed. 

 Figure 4.4 plots the maximum outgoing ball velocity as a function of the location 

of the maximum radius. The leftmost point represents the maximum radius located 

distance 70 percent of the total length from the handle end. The rightmost point 

represents the maximum radius located at the extreme barrel-end. We see here that the 

optimal bat profile in this scenario is that which has the maximum radius located at the 

extreme barrel-end for torques of T= 61 and 73 Nm.  However, for a lower applied 

torque, such as T= 49 Nm, there is an optimal location of Rmax, in this case 96 percent of 

the way along the bat from the handle end.  This is due to competing effects between both 

the actual and effective masses of the bat and the resultant swing speed, which is a  
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Figure 4.3: Non-dimensional location XMAX that give maximum outgoing velocity versus non-
dimensional barrel radius R1 for applied torques of T=49, 61and 72 Nm and with ω0 = 20 rad/s 
(MATLAB code 35, Appendix A) 
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Figure 4.4: Non-dimensional maximum outgoing velocity VMAX versus non-dimensional location of 
Rmax with torques T = 49, 61 and 73 Nm and with ω0 = 20 rad/s (MATLAB code 36, Appendix A) 
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function of the moment of inertia.  The bat mass as a function of the location of 

maximum radius is plotted in Figure 3.5 and the resultant swing speed is plotted in Figure 

4.5. 

4.4  Fixed Mass and Maximum Radius, Zero Handle Slope, Omega-
Moment Dependence 
 
 In this section, we vary the location of maximum radius as in Section 3.3 but let 

the extreme handle-end radius “adjust” in order to keep mass constant. Figure 4.6 shows 

the maximum outgoing ball velocity as a function of the maximum radius location. The 

behavior is similar to that in Figure 4.4. However, the greatest 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀  occurs when the 

maximum radius is located away for the barrel end for all cases, unlike in Figure 4.4 

where it was only for the low torque case that the optimal location was not at the extreme 

barrel end.  Optimal locations for the maximum radius are approximately 92, 94 and 96 

percent of the way along the bat from the handle end for torques of 49, 61 and 73 Nm, 

respectively.  This plot again illustrates the competing effects of effective mass and 

angular velocity as a function of moment of inertia.  Since the mass of the bat is held 

constant, it is only the distribution of that mass that effects the dynamics.  The changing 

values of the angular velocities are plotted in Figure 4.7. 

4.5  Analysis of Cupping 
 
 Here we consider a case where a small amount of material is removed from the 

interior of the end of the bat.  This process is commonly referred to as cupping, and is 

believed to have a positive effect on overall bat performance.  A mathematical 

approximation of this will be added to our model to investigate any effects this may have 

on performance.  A diagram of the cupping is shown in Figure 4.8.   
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Figure 4.5: Angular velocity ω versus non-dimensional locations of RMAX with torques T = 49, 61 and 
73 Nm and with ω0 = 20 rad/s (MATLAB code 37, Appendix A) 
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Figure 4.6: Non-dimensional maximum outgoing velocity VMAX versus non-dimensional location of 
RMAX with constant mass, torques T = 49, 61 and 73 NM and with ω0 = 20 rad/s (MATLAB code 38, 
Appendix A) 
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Figure 4.7: Angular velocity ω versus non-dimensional location of RMAX with constant mass, torques 
T = 49, 61 and 73 and with ω0 = 20 rad/s (MATLAB code 39, Appendix A) 
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Figure 4.8: Diagram of cupping analysis 
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 We will focus on a cup with a constant radius, Rc

  𝑧𝑧 = 𝐿𝐿 − 𝑥𝑥  (12) 

Since we want the bottom of the cup to be smooth, we take z to be a function of the 

radius, r

, at the extreme barrel end of the 

bat.  The radius of the cup will taper down to zero in a parabolic arc, at a variable depth 

into the bat, h.  We will consider here cup depths between 0 and 1 inch, as limited by 

MLB rules.   

 A temporary variable z is assigned to represent the depth into the bat from the 

barrel end, such that: 

i, for calculation purposes, enabling us to set the slope of z(ri

  𝑧𝑧 = 𝑓𝑓 + 𝑔𝑔𝑟𝑟𝑖𝑖 + 𝑘𝑘𝑟𝑟𝑖𝑖2 (13) 

where f, g and k are constants determined by the boundary conditions.  The boundary 

conditions as defined by the limits on cup shape and size are as follows. 

) equal to zero.  The 

parabola therefore takes the form: 

  𝑧𝑧(0) = ℎ (14) 

  𝑧𝑧′(0) = 0 (15) 

  𝑧𝑧(𝑅𝑅𝑐𝑐) = 0 (16) 

These are substituted into the parabolic equation and the constants f, g and k are solved 

for.  

  𝑓𝑓 = ℎ (17) 

  𝑔𝑔 = 0 (18) 

  𝑘𝑘 = −ℎ
𝑅𝑅𝑐𝑐2

 (19) 

Finally, these values are substituted into equation (13), the equation is solved for ri(z), 

and the relation for z (equation (12)) is substituted: 
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  𝑟𝑟𝑖𝑖 = �(ℎ−𝐿𝐿+𝑥𝑥)𝑅𝑅𝑐𝑐2

ℎ
 (20) 

 This equation for the radius of the cup as a function of x can be used to calculate 

the mass, first moment and moment of inertia of the cup by equations (2.1), (2.2) and 

(2.3).  These values can be subtracted from the calculated values for the uncapped bat, 

resulting in new values of mass, first moment and moment of inertia.  These combined 

values are then used in the dynamics equations. 

 Figure 4.9 plots the variation of the moment of inertia about the point of rotation 

versus ℎ. Without any cupping (ℎ = 0), the moment of inertia is equal to approximately 

2340 oz-in2. As we increase the cup depth, the moment of inertia decreases in a linear 

fashion to a value of about 2270 oz-in2

 Figure 4.10 shows how mass varies with ℎ. At ℎ = 0, the bat mass is equal to 

about 34.95 oz. As ℎ is increased, mass decreases in a linear fashion to about 34.4 oz, a 

difference of 1.6 percent. 

. This represents a decrease of 3 percent. 

 Figure 4.11 plots omega versus ℎ. We know that as ℎ increases, the moment of 

inertia decreases. This contributes to an increase in omega. As cup depth goes from 0 to 1 

inch, omega increases from 50 rad/s to 50.8 rad/s. This is an increase of 1.6 percent. 

 In Figure 4.12, we plot the effect of ℎ on 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 . It is apparent that the more a bat 

is cupped, the lesser 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀  will be. In this case, 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀varies from about 1.427 times the 

pitched ball speed to about 1.4245 the pitched ball speed, a difference of about 0.3 

percent. Ultimately, while the cupping of a bat does not have a positive contribution to 

𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 , the effect is quite small.  

 Finally, in Figure 4.13, we plot the movement of the optimal impact point with 

varying ℎ. Although this point moves in toward the handle-end as ℎ is increased, it only  
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Figure 4.9: Depth of cup versus the moment of inertia about the center of rotation (MATLAB code 
40, Appendix A) 
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Figure 4.10: Depth of cup, h, versus the mass of the bat (MATLAB code 41, Appendix A) 
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Figure 4.11: Angular velocity versus cup depth h for rMAX = 1.375”, rMIN = 0.5”, torque t = 61 Nm 
and ω0 = 20 rad/s (MATLAB code 42, Appendix A) 
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Figure 4.12: Non-dimensional maximum outgoing velocity versus cup depth for rMAX = 1.375”, rMIN = 
0.5”, torque T = 61 Nm and ω0
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Figure 4.13: Non-dimensional XMAX versus cup depth h for rMAX = 1.375”, rMIN = 0.5”, torque T = 61 
Nm and ω0 = 20 rad/s (MATLAB code 44, Appendix A) 
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moves by an amount equal to 0.002 times the length of the bat (0.8042 to 0.8022). This is 

an overall difference of 0.2 percent, a negligible effect. 
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Conclusion 
 
 We have developed a mathematical model that predicts the outgoing ball velocity 

as a function of impact point along the bat, coefficient of restitution, bat density, angular 

swing velocity, swing geometry and bat geometry.  This model can be utilized to predict 

at what point along the bat the outgoing ball velocity is maximized, and the resultant 

velocity from an impact at this location is used as a metric for overall bat performance.  A 

cubic function was utilized to represent the radial profile of the bat, and the bat geometry 

was varied by substituting different boundary conditions.  A relation was also developed 

that predicted bat angular velocity at the moment of impact as a function of the torque 

applied and the moment of inertia about the center of rotation.  These relations were 

combined to study the effects of variable bat geometry on the overall bat performance. 

We noted that the optimal bat in our analysis had a maximum radius near the barrel-end 

and a minimum radius at the handle-end. Using the maximum allowable bat radius 

yielded the highest outgoing ball speed. We also noted that the optimal location for the 

maximum radius is a few inches in from the extreme barrel-end.  Our model was then 

utilized to analyze the effects of “cupping.”  It was determined that cupping the bat 

decreased the outgoing ball velocity for a constant torque swing, but the swing speed was 

simultaneously increased.  Therefore, the choice of whether or not to cup the bat is a 

matter of individual batter preference.  If optimal swing speed is of the utmost concern, 

then cupping provides an advantage.  However, if maximizing outgoing ball speed is the 

dominant consideration, cupping the bat will yield negative effects. 
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Appendix A: MatLab Code 
 
MatLab File 1 
 
Ro vs. R1 
Linear Model – Constant Mass (Figure 2.3) 
 
 
M= 0.0006; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
plot(R0,R1, 'r'); 
hold on; 
M= 0.0008; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
plot(R0,R1, 'g'); 
hold on; 
M= 0.001; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
plot(R0,R1, 'm'); 
hold on; 
M= 0.0012; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
plot(R0,R1, 'c'); 
hold on; 
M= 0.0014; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
plot(R0,R1, 'k'); 
hold on; 
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MatLab File 2 
 
Ro vs. Center of Mass 
Linear Model – Constant Mass (Figure 2.4) 
 
M=0.0006; 
R0=0:0.001:sqrt(3*M); 
R1=(-R0+sqrt(12*M-3*R0.*R0))/2; 
X=(R0.*R0+2*R0.*R1+3*R1.*R1)/(12*M); 
plot(R0,X, 'r') 
hold on 
M=0.0008; 
R0=0:0.001:sqrt(3*M); 
R1=(-R0+sqrt(12*M-3*R0.*R0))/2; 
X=(R0.*R0+2*R0.*R1+3*R1.*R1)/(12*M); 
plot(R0,X, 'g') 
hold on 
M=0.001; 
R0=0:0.001:sqrt(3*M); 
R1=(-R0+sqrt(12*M-3*R0.*R0))/2; 
X=(R0.*R0+2*R0.*R1+3*R1.*R1)/(12*M); 
plot(R0,X, 'm') 
hold on 
M=0.0012; 
R0=0:0.001:sqrt(3*M); 
R1=(-R0+sqrt(12*M-3*R0.*R0))/2; 
X=(R0.*R0+2*R0.*R1+3*R1.*R1)/(12*M); 
plot(R0,X, 'c') 
hold on 
M=0.0014; 
R0=0:0.001:sqrt(3*M); 
R1=(-R0+sqrt(12*M-3*R0.*R0))/2; 
X=(R0.*R0+2*R0.*R1+3*R1.*R1)/(12*M); 
plot(R0,X, 'k') 
hold on 
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MatLab File 3 
 
Ro vs. Moment of Inertia about X=0 
Linear Model – Constant Mass (Figure 2.5) 
 
M= 0.0006; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
I=R0.*R0+3*R0.*R1+6*R1.*R1; 
plot(R0,I, 'r'); 
hold on 
M= 0.0008; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
I=R0.*R0+3*R0.*R1+6*R1.*R1; 
plot(R0,I, 'g'); 
hold on 
M= 0.001; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
I=R0.*R0+3*R0.*R1+6*R1.*R1; 
plot(R0,I, 'm'); 
hold on 
M= 0.0012; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
I=R0.*R0+3*R0.*R1+6*R1.*R1; 
plot(R0,I, 'c'); 
hold on 
M= 0.0014; 
R0= 0:0.001:sqrt(3*M); 
R1= (-R0+sqrt(12*M-3*R0.*R0))/2; 
I=R0.*R0+3*R0.*R1+6*R1.*R1; 
plot(R0,I, 'k'); 
hold on 
legend('M=0.0006', 'M=0.0008', 'M=0.001', 'M=0.0012', 'M=0.0014') 
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MatLab File 4 
 
Ro vs. R1 
Linear Model – Constant Moment of Inertia about X=0 (Figure 2.6) 
 
I=0.2; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
plot(R0,R1, 'r'); 
hold on 
I=0.4; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
plot(R0,R1, 'g'); 
hold on 
I=0.6; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
plot(R0,R1, 'm'); 
hold on 
I=0.8; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
plot(R0,R1, 'k'); 
hold on 
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MatLab File 5 
 
Ro vs. Center of Mass 
Linear Model – Constant Moment of Inertia about X=0 (Figure 2.7) 
 
I=0.2; 
R0=0:0.001:sqrt(6*I); 
R1=(-3*R0+sqrt(9*R0.*R0-4*(6*R0.*R0-I)))/2; 
X=(3/4)*(R0.*R0+R0.*R1+I)/(5*R0.*R0+3*R0.*R1+I); 
plot(R0,X, 'r'); 
hold on 
I=0.4; 
R0=0:0.001:sqrt(6*I); 
R1=(-3*R0+sqrt(9*R0.*R0-4*(6*R0.*R0-I)))/2; 
X=(3/4)*(R0.*R0+R0.*R1+I)/(5*R0.*R0+3*R0.*R1+I); 
plot(R0,X, 'g'); 
hold on 
I=0.6; 
R0=0:0.001:sqrt(6*I); 
R1=(-3*R0+sqrt(9*R0.*R0-4*(6*R0.*R0-I)))/2; 
X=(3/4)*(R0.*R0+R0.*R1+I)/(5*R0.*R0+3*R0.*R1+I); 
plot(R0,X, 'm'); 
hold on 
I=0.8; 
R0=0:0.001:sqrt(6*I); 
R1=(-3*R0+sqrt(9*R0.*R0-4*(6*R0.*R0-I)))/2; 
X=(3/4)*(R0.*R0+R0.*R1+I)/(5*R0.*R0+3*R0.*R1+I); 
plot(R0,X, 'k'); 
hold on 
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MatLab File 6 
 
Ro vs. Mass 
Linear Model – Constant Moment of Inertia about X=0 (Figure 2.8) 
 
I=0.2; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
M=(I-2*R0.*R1)/3; 
plot(R0,M, 'r'); 
hold on 
I=0.4; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
M=(I-2*R0.*R1)/3; 
plot(R0,M, 'g'); 
hold on 
I=0.6; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
M=(I-2*R0.*R1)/3; 
plot(R0,M, 'm'); 
hold on 
I=0.8; 
R1=0:0.01:sqrt(6*I); 
R0=(-3*R1+sqrt(9*R1.*R1-4*(6*R1.*R1-I)))/2; 
M=(I-2*R0.*R1)/3; 
plot(R0,M, 'k'); 
hold on 
legend('I=0.2', 'I=0.4', 'I=0.6', 'I=0.8') 
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MatLab File 7 
 
Ro vs. R1 
Cubic Model – Constant Mass (Figure 2.9) 
 
clear 
clc 
  
M2=0.0014; 
rho=0.347; 
l=33; d=2.5; 
rmin=0.5; 
D=d/l; 
  
A=rmin./l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
R0=A; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
J0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
Jc=J0-M2.*Xbar.^2; 
Jr=Jc+M2.*(Xbar+D).^2; 
  
hold on 
plot(R0,R1,'k') 
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MatLab File 8 
 
Ro vs. Center of Mass 
Cubic Model – Constant Mass (Figure 2.10) 
 
clear 
clc 
  
M2=0.0014; 
rho=0.347; 
l=33; d=2.5; 
rmin=0.5; 
D=d/l; 
  
A=rmin./l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
R0=A; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
J0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
Jc=J0-M2.*Xbar.^2; 
Jr=Jc+M2.*(Xbar+D).^2; 
  
hold on 
plot(R0,Xbar,'k') 
 
  



 

101 
 

MatLab File 9 
 
Ro vs. Moment of Inertia about X=0 
Cubic Model – Constant Mass (Figure 2.11) 
 
clear 
clc 
  
M2=0.0014; 
rho=0.347; 
l=33; d=2.5; 
rmin=0.5; 
D=d/l; 
  
A=rmin./l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
R0=A; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
J0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
Jc=J0-M2.*Xbar.^2; 
Jr=Jc+M2.*(Xbar+D).^2; 
  
hold on 
plot(R0,J0,'k') 
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MatLab File 10 
 
Ro vs. R1 
Cubic Model – Constant Moment of Inertia about X=0 (Figure 2.12) 
 
clear 
clc 
J0=.0008; 
  
l=33; 
  
Amax=sqrt(10229*J0/250); 
if Amax<1.375/l 
    Amax=sqrt(10229*J0/250) 
else 
    Amax=1.375/l; 
end 
  
A=0:.025/l:Amax; 
C=((-8/45)*A+sqrt((8/45)^2*(A.^2)-4*29/1134*((A.^2)/3-J0)))/(58/1134); 
  
R1=A+C/3; 
R0=A; 
  
M=A.^2+(1/3)*A.*C+(13/315)*C.^2; 
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM./M; 
  
  
hold on 
plot(R0,R1,'k') 
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MatLab File 11 
 
Ro vs. Center of Mass 
Cubic Model – Constant Moment of Inertia about X=0 (Figure 2.13) 
 
clear 
clc 
J0=.0008; 
  
l=33; 
  
Amax=sqrt(10229*J0/250); 
if Amax<1.375/l 
    Amax=sqrt(10229*J0/250) 
else 
    Amax=1.375/l; 
end 
  
A=0:.025/l:Amax; 
C=((-8/45)*A+sqrt((8/45)^2*(A.^2)-4*29/1134*((A.^2)/3-J0)))/(58/1134); 
  
R1=A+C/3; 
R0=A; 
  
M=A.^2+(1/3)*A.*C+(13/315)*C.^2; 
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM./M; 
  
  
hold on 
plot(R0,Xbar,'k') 
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MatLab File 12 
 
Ro vs. Mass 
Cubic Model – Constant Moment of Inertia about X=0 (Figure 2.14) 
 
clear 
clc 
J0=.0008; 
  
l=33; 
  
Amax=sqrt(10229*J0/250); 
if Amax<1.375/l 
    Amax=sqrt(10229*J0/250) 
else 
    Amax=1.375/l; 
end 
  
A=0:.025/l:Amax; 
C=((-8/45)*A+sqrt((8/45)^2*(A.^2)-4*29/1134*((A.^2)/3-J0)))/(58/1134); 
  
R1=A+C/3; 
R0=A; 
  
M=A.^2+(1/3)*A.*C+(13/315)*C.^2; 
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM./M; 
  
  
hold on 
plot(R0,M,'k') 
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MatLab File 13 
 
Outgoing Ball Velocity, V'2, versus location of impact, X (Figure 3.1) 
 
x=0:.025:0.9144; 
L=0.9144; 
X=x/L; 
A=0.0127; 
p=600; 
D=(A-.0349)/(0.5*L^3); 
  
m1=p*pi.*((D.^2).*(L^7)/7-
(D.^2).*(L^7)/2+(9.*D.^2).*(L^7)/20+(A.*D).*(L^4)/2-
(A.*D.*L^4)+(A^2)*(L)); 
  
xbar=(p*pi./m1).*((D.^2).*(L^8)/8-
(3.*D.^2).*(L^8)/7+(9.*D.^2).*(L^8)/24+(2*A.*D).*(L^5)/5-
(3*A.*D).*(L^5)/4+(A^2)*(L^2)/2); 
  
Io=(p*pi).*((D.^2).*(L^9)/9-
(3.*D.^2).*(L^9)/8+(9.*D.^2).*(L^9)/28+(A.*D).*(L^6)/3-
(3*A.*D).*(L^6)/5+(A^2)*(L^3)/3); 
  
Ic=Io-m1.*(xbar.^2); 
  
y=x-xbar; 
 
M=m1./0.145; 
v2=-40; 
w=50; 
d=0.0635; 
e=0.5; 
 
vc=w.*(d+xbar); 
  
v2prime=v2+(M.*(1+e).*(vc+w.*y-v2))./(1+M+(m1.*y.^2)./Ic); 
 
V2prime=v2prime./(-v2); 
 
plot(X,V2prime); 
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MatLab File 14 
 
Variance of the bat handle-end radius versus the barrel-end radius for a constant mass 
scenario for e=0.5, Ω=50 radians/second, and d=2.5 inches (Figure 3.2) 
 
l=33; r0=0.5:0.025:1.375; d=2.5; 
M2=0.00089245; M1=0.0001327; 
OMEGA=1.071; e=0.5; 
R0=r0/l; D=d/l; A=R0; 
  
C=((-A/3)+sqrt((A/3).^2-4*(A.^2-M2)*(13/315)))/(26/315); 
  
R1=R0+C/3; 
  
MOM=(1/2)*A.^2+(7/30)*A.*C+(2/63)*C.^2; 
XBAR=MOM/M2; 
J=(1/3)*A.^2+(8/45)*A.*C+(29/1134)*C.^2; 
I=J-M2*XBAR.^2; 
  
VC=(D+XBAR)*OMEGA; 
M=M2/M1; 
  
YMAX=(1/OMEGA)*(-(1+VC)+sqrt((VC+1).^2+OMEGA^2*(1+M).*I)); 
XMAX=YMAX+XBAR; 
VMAX=-1+((M.*(1+e).*(VC+OMEGA*YMAX+1))./(1+M+M.*YMAX.^2./I)); 
  
plot(R0,R1); 
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MatLab File 15 
 
Location of the optimal impact point along the bat as the barrel-end radius changes for 
e=0.5, Ω=50 radians/second, and d=2.5 inches (Figure 3.3) 
 
l=33; r0=0.5:0.025:1.375; d=2.5; 
M2=0.00089245; M1=0.0001327; 
OMEGA=1.071; e=0.5; 
R0=r0/l; D=d/l; A=R0; 
  
C=((-A/3)+sqrt((A/3).^2-4*(A.^2-M2)*(13/315)))/(26/315); 
  
R1=R0+C/3; 
  
MOM=(1/2)*A.^2+(7/30)*A.*C+(2/63)*C.^2; 
XBAR=MOM/M2; 
J=(1/3)*A.^2+(8/45)*A.*C+(29/1134)*C.^2; 
I=J-M2*XBAR.^2; 
  
VC=(D+XBAR)*OMEGA; 
M=M2/M1; 
  
YMAX=(1/OMEGA)*(-(1+VC)+sqrt((VC+1).^2+OMEGA^2*(1+M).*I)); 
XMAX=YMAX+XBAR; 
VMAX=-1+((M.*(1+e).*(VC+OMEGA*YMAX+1))./(1+M+M.*YMAX.^2./I)); 
  
plot(R1,XMAX); 
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MatLab File 16  
 
Maximum ball exit velocity as a function of the barrel-end radius for e=0.5, Ω=50 
radians/second, and d=2.5 inches (Figure 3.4) 
 
l=33; r0=0.5:0.025:1.375; d=2.5; 
M2=0.00089245; M1=0.0001327; 
OMEGA=1.071; e=0.5; 
R0=r0/l; D=d/l; A=R0; 
  
C=((-A/3)+sqrt((A/3).^2-4*(A.^2-M2)*(13/315)))/(26/315); 
  
R1=R0+C/3; 
  
MOM=(1/2)*A.^2+(7/30)*A.*C+(2/63)*C.^2; 
XBAR=MOM/M2; 
J=(1/3)*A.^2+(8/45)*A.*C+(29/1134)*C.^2; 
I=J-M2*XBAR.^2; 
  
VC=(D+XBAR)*OMEGA; 
M=M2/M1; 
  
YMAX=(1/OMEGA)*(-(1+VC)+sqrt((VC+1).^2+OMEGA^2*(1+M).*I)); 
XMAX=YMAX+XBAR; 
VMAX=-1+((M.*(1+e).*(VC+OMEGA*YMAX+1))./(1+M+M.*YMAX.^2./I)); 
  
plot(R1,VMAX); 
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MatLab File 17 
 
Non-dimensional bat mass vs. location of Max radius for e=0.5, Ω=50 radians/second, 
and d=2.5 inches (Figure 3.5)  
 
clear 
clc 
  
  
L=23:0.1:33; 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; omega=60; v1=-1575; rho=0.347; 
m1=5; 
P=0; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
  
vc=(d+xbar)*omega; 
m=m2/m1; 
  
y=(1/omega)*(-(vc-v1)+sqrt((vc-v1).^2+omega^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,M1,'g') 
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MatLab File 18 
 
Moment of Inertia about x=0 vs. location of Max radius for e=0.5, Ω=50 radians/second, 
and d=2.5 inches (Figure 3.6) 
 
clear 
clc 
  
  
L=23:0.1:33; 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; omega=60; v1=-1575; rho=0.347; 
m1=5; 
P=0; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
  
vc=(d+xbar)*omega; 
m=m2/m1; 
  
y=(1/omega)*(-(vc-v1)+sqrt((vc-v1).^2+omega^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,ndJ0,'g') 
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MatLab File 19 
 
Moment of Inertia about the center of mass vs. location of maximum radius for e=0.5, 
Ω=50 radians/second, and d=2.5 inches (Figure 3.7) 
 
clear 
clc 
  
  
L=23:0.1:33; 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; omega=60; v1=-1575; rho=0.347; 
m1=5; 
P=0; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
  
vc=(d+xbar)*omega; 
m=m2/m1; 
  
y=(1/omega)*(-(vc-v1)+sqrt((vc-v1).^2+omega^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,ndJc,'g') 
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MatLab File 20 
 
Non-dimensional VMAX vs. location of maximum radius (Figure 3.8) 
 
clear 
clc 
  
  
L=23:0.1:33; 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; omega=60; v1=-1575; rho=0.347; 
m1=5; 
P=0; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
  
vc=(d+xbar)*omega; 
m=m2/m1; 
  
y=(1/omega)*(-(vc-v1)+sqrt((vc-v1).^2+omega^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Vmax,'g') 
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MatLab File 21 
 
Location at which maximum outgoing velocity occurs (xmax) vs. location of Max radius 
(Figure 3.9) 
 
clear 
clc 
  
  
L=23:0.1:33; 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; omega=60; v1=-1575; rho=0.347; 
m1=5; 
P=0; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
  
vc=(d+xbar)*omega; 
m=m2/m1; 
  
y=(1/omega)*(-(vc-v1)+sqrt((vc-v1).^2+omega^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Xmax,'g') 
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MatLab File 22 
 
Non-dimensional minimum radius RMIN versus location of maximum radius (Figure 3.10) 
 
L=23:0.25:33; 
l=33; d=2.5; 
rmax=1.375;  m2=40; 
e=0.5;  v1=-1575; rho=0.347; 
m1=5; omega=50; 
P=0; 
  
a=l-2*l^3./L.^2+l^4./L.^3+9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6); 
b=rmax*(2*l^3./L.^2-l^4./L.^3-18*l^5./(5*L.^4)+4*l^6./L.^5-
8*l^7./(7*L.^6)); 
c=rmax^2*(9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6))-m2/(rho*pi); 
  
rmin=(-b+sqrt(b.^2-4*a.*c))./(2*a); 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Rmin=rmin/l; 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Rmin,'b') 
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MatLab File 23 
 
Moment of Inertia about x=0 versus the location of max radius (Figure 3.11) 
 
L=23:0.25:33; 
l=33; d=2.5; 
rmax=1.375;  m2=40; 
e=0.5;  v1=-1575; rho=0.347; 
m1=5; omega=50; 
P=0; 
  
a=l-2*l^3./L.^2+l^4./L.^3+9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6); 
b=rmax*(2*l^3./L.^2-l^4./L.^3-18*l^5./(5*L.^4)+4*l^6./L.^5-
8*l^7./(7*L.^6)); 
c=rmax^2*(9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6))-m2/(rho*pi); 
  
rmin=(-b+sqrt(b.^2-4*a.*c))./(2*a); 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Rmin=rmin/l; 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,ndJ0,'b') 
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MatLab File 24 
 
Moment of Inertia about the center of mass versus the location of max radius (Figure 
3.12) 
 
L=23:0.25:33; 
l=33; d=2.5; 
rmax=1.375;  m2=40; 
e=0.5;  v1=-1575; rho=0.347; 
m1=5; omega=50; 
P=0; 
  
a=l-2*l^3./L.^2+l^4./L.^3+9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6); 
b=rmax*(2*l^3./L.^2-l^4./L.^3-18*l^5./(5*L.^4)+4*l^6./L.^5-
8*l^7./(7*L.^6)); 
c=rmax^2*(9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6))-m2/(rho*pi); 
  
rmin=(-b+sqrt(b.^2-4*a.*c))./(2*a); 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Rmin=rmin/l; 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,ndJc,'b')  
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MatLab File 25 
 
Location at which maximum outgoing velocity occurs XMAX vs. location of Max radius 
(Figure 3.13) 
 
L=23:0.25:33; 
l=33; d=2.5; 
rmax=1.375;  m2=40; 
e=0.5;  v1=-1575; rho=0.347; 
m1=5; omega=50; 
P=0; 
  
a=l-2*l^3./L.^2+l^4./L.^3+9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6); 
b=rmax*(2*l^3./L.^2-l^4./L.^3-18*l^5./(5*L.^4)+4*l^6./L.^5-
8*l^7./(7*L.^6)); 
c=rmax^2*(9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6))-m2/(rho*pi); 
  
rmin=(-b+sqrt(b.^2-4*a.*c))./(2*a); 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Rmin=rmin/l; 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Xmax,'b') 
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MatLab File 26 
 
Non-dimensional VMAX vs. location of maximum radius (Figure 3.14) 
 
L=23:0.25:33; 
l=33; d=2.5; 
rmax=1.375;  m2=40; 
e=0.5;  v1=-1575; rho=0.347; 
m1=5; omega=50; 
P=0; 
  
a=l-2*l^3./L.^2+l^4./L.^3+9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6); 
b=rmax*(2*l^3./L.^2-l^4./L.^3-18*l^5./(5*L.^4)+4*l^6./L.^5-
8*l^7./(7*L.^6)); 
c=rmax^2*(9*l^5./(5*L.^4)-2*l^6./L.^5+4*l^7./(7*L.^6))-m2/(rho*pi); 
  
rmin=(-b+sqrt(b.^2-4*a.*c))./(2*a); 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Rmin=rmin/l; 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Vmax,'b') 
  



 

119 
 

MatLab File 27 
 
Ω’/ Ω vs Location of impact, Y, with e = 0.3, 0.5, 0.7 (Figure 3.15) 
 
M=6.90872; 
D=0.0756; 
X=0.672907; 
e=0.3; 
J=0.405646; 
  
Omega=1.067; 
  
Vc=Omega.*(D+X); 
Y=-0.672907:0.01:0.327093; 
x=Y+X; 
V2=Vc+Y.*Omega; 
V1=-1; 
  
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Omegap./Omega; 
plot(Y,F,'r'); 
hold on 
  
e=0.5; 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Omegap./Omega; 
plot(Y,F,'m'); 
hold on 
  
e=0.7; 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Omegap./Omega; 
plot(Y,F,'b'); 
hold on 
  
r=0; 
plot(Y,r,'k.'); 
  
legend('e=0.3','e=0.5','e=0.7'); 
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MatLab File 28 
 
D’/D vs. coefficient of restitution, e, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3  (Figure 3.16)  
 
%Set all constants 
M=6; 
D=0.0756; 
X=0.667; 
Omega=1.071; 
J=0.547; 
%We are varying e 
e=0.1:0.01:1; 
%now find all valiables dependent on those constants 
Vc=Omega.*(D+X); 
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.3; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'r'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.2; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'m'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.1; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'g'); 
hold on 



 

121 
 

  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'b'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=-0.1; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'k'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=-0.2; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(e,F,'c'); 
hold on 
  
Legend('Y=0.3','Y=0.2','Y=0.1','Y=0','Y=-0.1','Y=-0.2'); 
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MatLab File 29 
 
V1’max versus coefficient of restitution, e, with M=3, 4, 5, 6, and 7 (Figure 3.17)  
 
M=3; 
e=0.1:0.01:1; 
D=0.0756; 
X=0.667; 
Omega=1.071; 
J=0.547; 
x=0:0.01:1; 
Vc=(D+X)*Omega; 
V1max=-
1.+(M.*(1+e).*sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))./(1.+M+(M/(Ome
ga*J)).*(-1-Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))); 
plot(e,V1max,'r'); 
hold on 
M=4; 
V1max=-
1.+(M.*(1+e).*sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))./(1.+M+(M/(Ome
ga*J)).*(-1-Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))); 
plot(e,V1max,'b'); 
hold on 
M=5; 
V1max=-
1.+(M.*(1+e).*sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))./(1.+M+(M/(Ome
ga*J)).*(-1-Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))); 
plot(e,V1max,'m'); 
hold on 
M=6; 
V1max=-
1.+(M.*(1+e).*sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))./(1.+M+(M/(Ome
ga*J)).*(-1-Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))); 
plot(e,V1max,'c'); 
hold on 
M=7; 
V1max=-
1.+(M.*(1+e).*sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))./(1.+M+(M/(Ome
ga*J)).*(-1-Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1)*(Vc+1)+Omega*Omega*(1+M)*J/M))); 
plot(e,V1max,'k'); 
hold on 
legend('M=3','M=4','M=5','M=6','M=7'); 
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MatLab File 30 
 
D’/D vs. Ω, with Y= -0.2, -0.1, 0, 0.1, 0.2, and 0.3 (Figure 3.18)  
 
%Set all constants 
M=6; 
D=0.0756; 
X=0.667; 
e=0.5; 
J=0.547; 
%We are varying Omega 
Omega=0.5:0.01:1.5; 
%now find all valiables dependent on those constants 
Vc=Omega.*(D+X); 
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.3; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'r'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.2; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'m'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0.1; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'g'); 
hold on 
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%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=0; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'b'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=-0.1; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'k'); 
hold on 
  
%pick a value of Y to find V1 and V2 at.  Does not need to be max 
Y=-0.2; 
V2=Vc+Y.*Omega; 
V1=-1; 
%now find all the prime values 
V1p=(V1.*Y.*Y+J.*Omega.*Y+e.*J.*(V2-V1)+V1.*J./M+Vc.*J)/(Y.*Y+J+J./M); 
V2p=V1p+(V1-V2).*e; 
Omegap=Omega+(Y./J).*(V1-V1p); 
Vcp=V2p-Omegap.*Y; 
Dp=-X+Vcp./Omegap; 
F=Dp./D; 
plot(Omega,F,'c'); 
hold on 
  
Legend('Y=0.3','Y=0.2','Y=0.1','Y=0','Y=-0.1','Y=-0.2'); 
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MatLab File 31 
 
V’max versus Ω, with M= 3, 4, 5, 6, and 7 (Figure 3.19)  
 
M=3; 
e=0.5; 
D=0.0756; 
X=0.667; 
Omega=0.5:0.01:1.5; 
J=0.547; 
x=0:0.01:1; 
Vc=(D+X)*Omega; 
V1max=-
1+(M*(1+e)*sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))./(1+M+(M./(Ome
ga.*J)).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))); 
plot(Omega,V1max,'r'); 
hold on 
M=4; 
V1max=-
1+(M*(1+e)*sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))./(1+M+(M./(Ome
ga.*J)).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))); 
plot(Omega,V1max,'b'); 
hold on 
M=5; 
V1max=-
1+(M*(1+e)*sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))./(1+M+(M./(Ome
ga.*J)).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))); 
plot(Omega,V1max,'m'); 
hold on 
M=6; 
V1max=-
1+(M*(1+e)*sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))./(1+M+(M./(Ome
ga.*J)).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))); 
plot(Omega,V1max,'c'); 
hold on 
M=7; 
V1max=-
1+(M*(1+e)*sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))./(1+M+(M./(Ome
ga.*J)).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M)).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*J/M))); 
xmax=X+(1./Omega).*(-1-Vc+sqrt((Vc+1).*(Vc+1)+Omega.*(1+M)*(J/M))); 
plot(Omega,V1max,'k'); 
hold on 
legend('M=3','M=4','M=5','M=6','M=7'); 
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MatLab File 32 
 
X’max versus Ω, with M= 3, 4, 5, 6, and 7 (Figure 3.20)  
 
M=3; 
e=0.5; 
D=0.0756; 
X=0.667; 
Omega=0.5:0.01:1.5; 
J=0.547; 
x=0:0.01:1; 
Vc=(D+X)*Omega; 
xmax=X+(1./Omega).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*(J/M))); 
plot(Omega,xmax,'r'); 
hold on 
M=4; 
xmax=X+(1./Omega).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*(J/M))); 
plot(Omega,xmax,'b'); 
hold on 
M=5; 
xmax=X+(1./Omega).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*(J/M))); 
plot(Omega,xmax,'m'); 
hold on 
M=6; 
xmax=X+(1./Omega).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*(J/M))); 
plot(Omega,xmax,'c'); 
hold on 
M=7; 
xmax=X+(1./Omega).*(-1-
Vc+sqrt((Vc+1).*(Vc+1)+Omega.*Omega.*(1+M)*(J/M))); 
plot(Omega,xmax,'k'); 
hold on 
legend('M=3','M=4','M=5','M=6','M=7'); 
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Omega versus non-dimensional max radius R1 for T=49, 61 and 73 Nm (Figure 4.1)  
 
l=33; d=2.5; 
rmin=0.5:0.0125:1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=4000000; m2=35; 
M2=m2/(rho*pi*l^3); 
P=0; L=l; 
M=m2/m1; 
  
A=rmin/l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
  
rmax=R1*l; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
ndJ0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
J0=ndJ0*rho*pi*l^5; 
  
xbar=Xbar*l; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(R1,omega,'r') 
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Non-dimensional maximum outgoing velocity versus non-dimensional max radius R1 for 
T=49, 61 and 73 Nm (Figure 4.2)  
 
l=33; d=2.5; 
rmin=0.5:0.0125:1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=4000000; m2=35; 
M2=m2/(rho*pi*l^3); 
P=0; L=l; 
M=m2/m1; 
  
A=rmin/l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
  
rmax=R1*l; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
ndJ0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
J0=ndJ0*rho*pi*l^5; 
  
xbar=Xbar*l; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(R1,Vmax,'r') 
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Non-dimensional XMAX

 
l=33; d=2.5; 
rmin=0.5:0.0125:1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=4000000; m2=35; 
M2=m2/(rho*pi*l^3); 
P=0; L=l; 
M=m2/m1; 
  
A=rmin/l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
  
rmax=R1*l; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
ndJ0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
J0=ndJ0*rho*pi*l^5; 
  
xbar=Xbar*l; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(R1,Xmax,'r') 
 
  

 versus non-dimensional max radius R1 for T=49, 61 and 73 Nm 
(Figure 4.3) 
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Non-dimensional VMAX versus non-dimensional location of max radius for T=49, 61 and 
73 Nm (Figure 4.4) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=4000000; 
P=0; L=23:0.1:l; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,Vmax,'r') 
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Angular velocity ω versus non-dimensional location of max radius for T=49, 61 and 73 
Nm (Figure 4.5) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=4000000; 
P=0; L=23:0.1:l; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
xbar=mom./m2; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(ndL,omega,'r') 
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Non-dimensional maximum outgoing velocity VMAX versus non-dimensional location of 
max radius for constant mass and T=49, 61 and 73 Nm (Figure 4.6) 
 
l=33; d=2.5; 
rmin=0.5:0.0125:1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=2660000; m2=35; 
M2=m2/(rho*pi*l^3); 
P=0; L=l; 
M=m2/m1; 
  
A=rmin/l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
  
rmax=R1*l; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
ndJ0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
J0=ndJ0*rho*pi*l^5; 
  
xbar=Xbar*l; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(R1,Vmax,'r') 
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Angular velocity ω versus non-dimensional location of max radius for constant mass and 
T=49, 61 and 73 Nm (Figure 4.7) 
 
l=33; d=2.5; 
rmin=0.5:0.0125:1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=2660000; m2=35; 
M2=m2/(rho*pi*l^3); 
P=0; L=l; 
M=m2/m1; 
  
A=rmin/l; 
C=((-1/3)*A+sqrt((A.^2)/9-4*13/315*(A.^2-M2)))/(26/315); 
  
R1=A+C/3; 
  
rmax=R1*l; 
  
MOM=(A.^2)/2+(7/30)*A.*C+(2/63)*C.^2; 
Xbar=MOM/M2; 
ndJ0=(A.^2)/3+(8/45)*A.*C+(29/1134)*C.^2; 
J0=ndJ0*rho*pi*l^5; 
  
xbar=Xbar*l; 
Jc=J0-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(R1,omega,'r') 
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Moment of Inertia about the center of rotation IR
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=3494000; 
P=0; L=l; 
  
Rc=1; h=0:.01:1; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
  
mi=rho*pi*Rc^2*h/2; 
momi=rho*pi*Rc^2*(l*h/2-h.^2/6); 
J0i=rho*pi*Rc^2*(h.^3/12+l^2*h/2-l*h.^2/3); 
  
xbar=(mom-momi)./m2; 
Jc=(J0-J0i)-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(h,Jr,'k') 
  

 versus cup depth h (Figure 4.8) 
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Mass of the bat m1 versus cup depth h (Figure 4.9) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=3494000; 
P=0; L=l; 
  
Rc=1; h=0:.01:1; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
  
mi=rho*pi*Rc^2*h/2; 
momi=rho*pi*Rc^2*(l*h/2-h.^2/6); 
J0i=rho*pi*Rc^2*(h.^3/12+l^2*h/2-l*h.^2/3); 
  
xbar=(mom-momi)./m2; 
Jc=(J0-J0i)-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(h,(m2-mi),'k') 
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Angular velocity ω versus cup depth h (Figure 4.10) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=3494000; 
P=0; L=l; 
  
Rc=1; h=0:.01:1; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
  
mi=rho*pi*Rc^2*h/2; 
momi=rho*pi*Rc^2*(l*h/2-h.^2/6); 
J0i=rho*pi*Rc^2*(h.^3/12+l^2*h/2-l*h.^2/3); 
  
xbar=(mom-momi)./m2; 
Jc=(J0-J0i)-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(h,omega,'k') 
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MatLab File 43 
 
Non-dimensional maximum outgoing velocity VMAX versus cup depth h (Figure 4.11) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=3494000; 
P=0; L=l; 
  
Rc=1; h=0:.01:1; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
  
mi=rho*pi*Rc^2*h/2; 
momi=rho*pi*Rc^2*(l*h/2-h.^2/6); 
J0i=rho*pi*Rc^2*(h.^3/12+l^2*h/2-l*h.^2/3); 
  
xbar=(mom-momi)./m2; 
Jc=(J0-J0i)-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(h,Vmax,'k') 
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MatLab File 44 
 
Non-dimensional location of maximum outgoing velocity XMAX versus cup depth h 
(Figure 4.12) 
 
l=33; d=2.5; 
rmin=0.5;  rmax=1.375; 
e=0.5; v1=-1575; rho=0.347; 
m1=5; T=3494000; 
P=0; L=l; 
  
Rc=1; h=0:.01:1; 
  
D=(2.*(P-L).*(rmax-rmin))./(L.^4-4*L.^3*P+8*L.*P^3-5*P^4-
6*L.*P^2+6*P^3); 
C=(3*D.*(L.^2-P^2))./(2.*(P-L)); 
B=(3*D*P.*(P^2-L.^2-P))./(P-L); 
A=rmin-B.*P-C.*P^2-D.*P^3; 
  
m2=rho*pi*(A.^2*l+A.*B.*l^2+(2*A.*C+B.^2)*l^3/3+(2*A.*D+2*B.*C)*l^4/4+(
2*B.*D+C.^2)*l^5/5+2*C.*D*l^6/6+D.^2*l^7/7); 
mom=rho*pi*(A.^2*l^2/2+2*A.*B.*l^3/3+(2*A.*C+B.^2)*l^4/4+(2*A.*D+2*B.*C
)*l^5/5+(2*B.*D+C.^2)*l^6/6+2*C.*D*l^7/7+D.^2*l^8/8); 
J0=rho*pi*(A.^2*l^3/3+2*A.*B.*l^4/4+(2*A.*C+B.^2)*l^5/5+(2*A.*D+2*B.*C)
*l^6/6+(2*B.*D+C.^2)*l^7/7+2*C.*D*l^8/8+D.^2*l^9/9); 
  
mi=rho*pi*Rc^2*h/2; 
momi=rho*pi*Rc^2*(l*h/2-h.^2/6); 
J0i=rho*pi*Rc^2*(h.^3/12+l^2*h/2-l*h.^2/3); 
  
xbar=(mom-momi)./m2; 
Jc=(J0-J0i)-m2.*xbar.^2; 
Jr=Jc+m2.*(xbar+d).^2; 
  
omeganaught=20; 
theta=pi; 
omega=omeganaught+sqrt(2*T*theta./Jr); 
  
vc=(d+xbar).*omega; 
m=m2/m1; 
  
y=(1./omega).*(-(vc-v1)+sqrt((vc-v1).^2+omega.^2.*(1+m).*Jc./m2)); 
xmax=y+xbar; 
vmax=v1+(m.*(1+e).*(vc+omega.*y-v1))./(1+m+m2.*y.^2./Jc); 
  
Vmax=vmax/(-v1); 
Xmax=xmax/l; 
M1=m2/(rho*pi*l^3); 
ndJ0=30*J0/(rho*pi*l^5); 
ndJc=30*Jc/(rho*pi*l^5); 
ndL=L/l; 
  
hold on 
plot(h,Xmax,'k') 
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