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Abstract 
Clark University is currently building the Alumni and Student Engagement Center on 

Main Street in Worcester, MA. This report explores a Girder-Slab structural floor framing 

system for this building. Using Building Information Modeling software, a five-dimensional 

model of the building is developed to support the alternative design and associated construction 

planning. Additionally, the impact of Requests for Information on the management process is 

investigated.  The Girder-Slab design was found to be a time and cost efficient alternative 

design. 
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Capstone Design Statement 
The Alumni and Student Engagement Center will serve as Clark University’s new 

campus center after its completion in June of 2016.  This Major Qualifying Project (MQP) 

proposes an alternative floor framing system and analyzes exposed column connections based off 

of the original building structure.  To complement the alternative designs, a corresponding 

schedule and cost estimate were generated.  This work was supported by the use of design, 

structural analysis, and construction project management application software, as well as 

Building Information Modeling tools.  

The proposed design addresses the following construction and design constraints: 

economic, constructability, health and safety, social, and ethical. 

Economic 

The economic impact was addressed by creating and comparing a cost estimate and 

schedule for both the current and alternative design of the building, taking into account the 

changes in the materials and structural designs.  

Constructability 

Constructability was met through ensuring that the alternative design complied with the 

same loading and size constraints as the current design.  Building Information Modeling (BIM) 

design software was used to visually confirm the new steel structure design. BIM was also used 

for analysis of the schedules and cost estimates for the two building designs. 
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Health and Safety 

Health and Safety constraints were met through applying building and zoning codes to 

the alternative design.  These constraints were also met by following the ASCE 7 design 

standards as well as the AISC Specifications. 

Social 

Social constraints were met through attending owner’s meetings and learning about the 

challenges of constructing a building on land shared by two owners, Saint Peter’s Catholic 

Church and Clark University.  This was also met because the building maintains an open concept 

which promotes connections between students and alumni.  The open concept impacts the design 

of the building by creating larger loading conditions and increasing diversity in beam sizes.  

Ethical 

Ethical constraints were addressed through respecting both Clark University’s and 

Consigli Construction’s confidentiality.  This was met by withholding sensitive information from 

the report. 
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Professional Licensure Statement 
A Professional License is a document of verification that demonstrates that the engineer 

has exceptional skills and certification to perform his or her practice (NCEES, 2015).  According 

to the National Council of Examinations for Engineering and Surveying, NCEES, professional 

licensure protects the public by enforcing standards that restrict practice to qualified individuals 

who have met specific qualifications in education, work experience, and exams (NCEES, 2015). 

Although requirements vary from state to state, candidates must complete a series of 

steps to be fully licensed as a Professional Engineer.  The first step that the National Society of 

Professional Engineers recommends is to successfully complete the Fundamentals of 

Engineering, FE, exam after completing an ABET-accredited, undergraduate engineering degree.  

Upon passing the FE exam, the candidate is certified as an Engineer In Training, EIT, also 

known as an Engineering Intern, EI (Careers, 2015).  With this certification, the engineer in 

training can begin working as a civil engineer under the supervision of a Professional Engineer.  

An EIT or EI must typically have four years of experience as an engineer before taking the 

Principles and Practice of Engineering, PE, exam.  After successfully completing the PE exam, 

the candidate becomes certified as a Professional Engineer.  For the candidates who wish to 

specialize in structural engineering, some states require them to take the two-day Structural 

Engineering Exam, SE (Careers, 2015). 

Obtaining professional licensure is viewed as a distinguished achievement and a 

prestigious title by clients, government, employers, and the public.  Obtaining this license shows 

responsibility and authority because only Professional Engineers can “offer services to the 

public, be principal of a firm, perform consulting services, bid for government contracts, and 



 
viii 

 

stamp and seal designs,”(NCEES, 2015).  Those who have achieved licensure will also be able to 

enjoy the professional benefits that accompany this distinction.  

This project contains a significant design component complemented by the project 

management analysis for Clark University’s Alumni and Student Engagement Center. The 

completion of this MQP is a requirement for earning an engineering degree at WPI which is a 

requirement for obtaining a Professional Licensure.  This significant design experience has 

provided a realistic knowledge to apply concepts learned in class to a real-world project. 
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1 Introduction 
To promote engagement among students, alumni, and faculty, Clark University is 

building a new Alumni and Student Engagement Center (ASEC).  The ASEC, located on Main 

Street in Worcester, Massachusetts, is currently being constructed by Consigli Construction of 

Milford, Massachusetts. Architerra, Inc. is the architectural firm who designed the building and 

Odeh Engineering is the engineering firm who designed the building’s structural components.  

The building will serve as a collaboration center where alumni can communicate with 

undergraduate students on projects that involve the local community.  The ASEC will be a 

headquarters for Clark University’s Liberal Education & Effective Practice, LEEP, program 

which allows students to create a positive impact on their community using the knowledge 

gained from classwork.  After completion of construction, this building’s design will be 

recognized for its effective and sustainable building strategies and techniques by receiving a 

Leadership in Energy and Environmental Design, LEED, Platinum certification. 

The goal of this Major Qualifying Project, MQP, is to develop an alternative gravity load 

resisting system while considering the impacts of this structural design on the cost and the 

schedule of the project.  A new Girder-Slab floor framing system was created as a proposed 

design for comparison to the current slab-on-metal decking floor framing system.  Throughout 

the paper the original design will be referred to as either “current design” or “slab-on-metal 

decking building design” and the new design will be referred as either “alternative design” or 

“Girder-Slab building design”.  To gain knowledge about the construction process of Clark’s 

ASEC, owner’s meetings were attended. This knowledge was used to discover the impacts of 

RFI’s on the management process. Architecturally Exposed Structural Steel (AESS) columns are 
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found outside the front entrance of the building. Revised base connections for the AESS columns 

were designed to explore the impacts of a fixed design versus the current design.  Cost estimates 

were created for both the current and alternative designs of the foundations and floor framing 

systems.  A project schedule for the Girder-Slab floor framing system was developed. Lastly, 

two visual five-dimensional models were developed using Building Information Modeling (BIM) 

software tools for both the current and alternative design, incorporating their respective cost and 

schedule. This project determined that the Girder-Slab floor framing system was cost effective 

and time efficient while maintaining the structural integrity of the building.  
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2 Background  
There are a variety of design and construction methods being used in industry today, 

some methods more common than others.  Clark University’s ASEC uses a standard slab-on-

metal decking flooring design and AESS pinned columns, a less common column design.  

Construction management techniques are therefore standard for constructing the floor framing 

systems, and the AESS columns introduce specific requirements to the standard practices for 

contracting structural steel.  In this chapter, we will provide some background on the structural 

and construction management aspect of these designs.  We will also explore background 

information on the Girder-Slab floor framing system, as we plan to use this flooring system to 

create an alternative design to the current slab-on-metal decking flooring system. 

2.1 Alumni & Student Engagement Center 

Clark University’s Alumni & Student Engagement Center will serve as a place for 

academic and professional development to welcome both current and graduated students.  Clark 

University desires to expand their campus to provide a larger space for their students and alumni 

to engage amongst one another.   This prominent building is located on the opposite side of Main 

Street from the rest of the campus and shares a parking lot with the neighboring Saint Peter’s 

Catholic Church.   

This building will also serve as a headquarters for Clark University’s Liberal Education 

& Effective Practice, LEEP, efforts.  LEEP is the University’s way to connect their students’ 

liberal studies with real-world problems.  LEEP projects are able to be completed by seniors in 

good academic standing.  Projects are completed at off-site non-profits and must respond to the 

needs of the host organization.  The old LEEP center was located in a building that houses a 
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number of other departments.  By moving the location of the LEEP center into the ASEC, Clark 

University is building a greater focus on LEEP for students and alumni. 

The ASEC was designed to promote communication between alumni and students. One 

way to ensure that this happens is to implement a floor framing system that allows for larger, 

open areas. The current design accomplishes that goal by using a common type of floor framing 

system, slab-on-metal decking. The alternative Girder-Slab floor framing system design also 

satisfies that requirement, by allowing for greater open spaces. 

2.2 Floor Framing Systems 

This section provides a detailed explanation of the existing slab on metal decking and the 

alternative Girder-Slab floor framing systems.  

2.2.1 Slab-on-Metal Decking  

The current flooring system in the ASEC consists of slab-on-metal decking floor framing 

system, which involves four main elements: metal decking, mesh reinforcement, concrete slabs 

and shear connectors.  The metal decking in the ASEC is three inches deep and spans from beam 

to beam.  The metal decking sits on top of the beams, with the corrugated valleys running 

perpendicular to the beams.  The metal decking is connected to the beam with screws, fasteners 

or welds.  The mesh reinforcement is then laid on top of the metal decking (Porter & Ekberg Jr., 

1975).  This mesh reinforcement is 6X6 W2.9X2.9, meaning the mesh creates six inch by six 

inch squares and the area of the rebar’s cross section is 0.029 inches squared.  The concrete slab 

on top of the connectors, decking and mesh reinforcement is five inches thick.  The concrete has 

a 28-day compressive strength of 4000 psi and is lightweight. Figure 1 is taken from the 

construction of the ASEC as an example of slab-on-metal decking. 
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Figure 1 Slab-on-metal decking in the ASEC 

2.2.2 Girder-Slab  

The Girder-Slab System is used in construction as a floor framing system.  Materials used 

in the system are prefabricated off-site which makes for efficient construction.  The main 

components of the Girder-Slab System are structural steel and precast hollow-core slabs (Stein, 

2008).  During the fabrication process, slabs are connected to the structural steel with 

cementitious grout to maintain the shape and hold the slabs in place.  A unique component to this 

flooring system is the open-web dissymmetric beam, often referred to as a “D-beam” (Stein, 

2008).  A D-beam is structural steel that supports precast, prestressed hollow core slabs on the 

lower flange.  Often beams are cut in half and then corrugated to allow for grout to flow through 

the opening in the web.  Figure 2 below shows typical D-beam section cuts.  
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Figure 2 D-Beam Web Sections (Stein, 2008) 

From the figure above, you’ll notice that the cuts in the web may separate to allow for 

more or less grout flow.  The distance between the cut ends of the beam will not only affect the 

strength of the D-beam, but also the thickness of the floor.  It’s very important that the D-beam’s 

cut is balanced for both thickness regulations and structural integrity.  

Steel fabricators make D-beams in their own shops but the lead time is no different than 

for a conventional steel job (Fisher, 2105). Lead time is defined as how long it takes to design, 

fabricate, and deliver materials. Installing precast planks can take approximately one day to set 

6,000 to 10,000 square feet according to Mack Industries Inc. (Mack Industries, 2015). This 

company specializes in installing planks for Girder-Slab systems and was referred by The 

Girder-Slab System. The installation time also is dependent on the weather conditions, type of 

structure, plank elevation, site conditions, and set start time. Mack Industries also predict that the 

grouting process requires an additional day per 24,000 square feet of planking. The planks can be 

set on the steel immediately after the steel is completely secured (Mack Industries, 2015). Once 

fabrication has proceeded on the D-beam and precast system, any changes to the structure will 

cause further delays as fabrication will have to stop. 
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The ASEC’s current slab-on-metal decking floor framing system is a very common 

system used for the construction of steel-framed buildings all over the country.   A steel frame 

and metal deck system allows for more flexibility with any changes to the mechanical shafts, 

elevator size changes, room shifting, etc. The current floor framing system at the ASEC was 

constructed on-site and integrated within the overall construction process.  The Girder-Slab floor 

framing systems are becoming more well-known, but are not as widely used as slab-on-metal 

decking floor framing systems.  

2.3 Structural Design 

In order to build a structure in the United States, different types of codes must be 

followed: building codes and structural design codes specific to both the city and state. 

Typically, building codes for specific cities are found in Ordinances, which is true for the city of 

Worcester, Massachusetts.  Building codes specific to the state are found in the form of state-

specific amendments to the International Building Code (IBC), which is true for Massachusetts. 

The governing building code for this project is the 8th Edition of the Massachusetts Building 

Code, which is comprised of the 2009 IBC and amendments. The governing structural design 

code for this project is the standards of the American Society of Civil Engineers (ASCE) dealing 

with structural design and ethics. ASCE 7-05 contains structural requirements and is used by the 

project engineers to determine the structural capabilities of the building. The structural design 

amendments within the MA Building Code Amendments are derived from ASCE 7-05.  

2.3.1 8th Edition of Massachusetts State Building Code 

The ASEC must comply with Massachusetts Amendments to the 2009 International 

Building Code. The project must comply with an addition to section 1604 (1604.11).  Section 
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1604 deals with structural design values specific to each region.  This addition is a table that 

contains various structural design values specific to the city of Worcester, MA, as seen in Table 

1.  The value pg represents the ground snow load in psf, pounds per square foot.  The value V 

represents wind speed in a three second gust specific to the region in miles per hour.  The value 

Ss represents the mapped spectral acceleration for short periods in g (meters per second squared).  

The value S1 represents the mapped spectral acceleration for a one second period in g, meters per 

second squared.  A spectral response acceleration parameter relates to how violent an earthquake 

would be in that region for a given amount of time ("8th Edition 780 CMR Base Code MA 

Amendments to the IBC 2009," 2015). 

Table 1 Structural Design Values for the City of Worcester, MA 

("8th Edition 780 CMR Base Code MA Amendments to the IBC 2009," 2015)  

City/Town pg V Ss S1 

Worcester 55 100 0.24 0.067 

 

The project must comply with an addition to section 1605.3.1 (1605.3.1 Equation 16-13). 

Equation 1 Loading Combination Equation  

("8th Edition 780 CMR Base Code MA Amendments to the IBC 2009," 2015)  

2
3
ሾ1.2D ൅ ሺ1.6W	or	1.0Eሻ ൅ fଵL ൅ 0.5ሺL୰	or	S	or	Rሻ ൅ 1.6Hሿ 

 
 

The above equation replaced the original in the IBC, where D represents dead load, L 

represents live load, Lr represents roof live load, S represents snow load, R represents rain load, 

all of which are gravity loads. W represents wind load, E represents earthquake load, H 

represents load due to lateral earth pressures, all of which are lateral loads. The second term in 
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the equation should be disregarded if a beam or girder is being analyzed. The value f1 is 1 for 

places of public assembly, such as parking garages where live loads exceed 100 pounds per 

square foot; it is 0.5 for other live loads ("8th Edition 780 CMR Base Code MA Amendments to 

the IBC 2009," 2015).  

To implement an alternative floor framing system into the proposed alternate design, the 

manufacturing aspect of the alternate flooring system must comply with an added section to the 

IBC (780 CMR 110.R3). If any part of the proposed design contains manufactured parts, those 

parts and their installation must comply with Section 110.R.3. of the 8th Edition of MA Building 

Code Amendments.  

 The project must comply with Massachusetts amendments to the appendix of the IBC 

("8th Edition 780 CMR Base Code MA Amendments to the IBC 2009," 2015), specifically those 

dealing with structural design. The new design had to comply with all ASCE codes dealing with 

structural design, specifically ASCE 7-05.  

2.3.2 Design of Girder-Slab System 

In order to design a Girder-Slab floor framing system, D-beams must be selected based 

on the dimensions of the building and the specified loading conditions. The design must follow 

ASCE design standards, specifically ASCE 7-05.  

Loading Combination Calculations 

In order to calculate the loading on a member, it must be determined which method of 

design will be utilized, either Load and Resistance Factor Design (LRFD) or Allowable Strength 

Design (ASD). This project follows the LRFD method. Given values needed to evaluate the 

loading combination equation values and determine the critical design loading are outlined in the 

table below: 
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Table 2 Units of Loading Combination Equation Values 

Value Unit 

Length of member feet 

Weight of member pounds per foot 

Tributary width  feet 
Loading 
condition(s) pounds per square foot 

  

If the member is a W-shape, the weight of the member is the second number in the name 

of the W-shape. For example, the weight (in lb/ft) of a W18X35 member is 35 lb/ft. The weight 

in pounds per foot of all other shapes can be found in the AISC Design Manual. 

The tributary width is the half of the distance from each parallel support, as seen in 

Figure 3. 

 

Figure 3 Tributary Width Definition Visual 

Once the tributary width is obtained, the applicable loading conditions must be defined. 

Possible loading conditions are outlined in Equation 1 in Section 2.3.1. All loading combination 

equations can be found in Chapter 2 of ASCE 7-05. The equation used for this design’s 
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calculations is Equation 2 in Section 2.3.2 of ASCE 7-05. In the third value in the equation, the 

largest value of roof live load, snow and rain load is used; the remaining are disregarded.          

Equation 2 Loading Combination Equation 

 

Before substituting values into the equation, the loading conditions in pounds per square 

foot of floor area are multiplied by the tributary width. In the dead load calculation, after the first 

value ”D” loading condition has been multiplied by the tributary width and the value is now in 

lb/ft, the weight of the beam is added onto that value. Then, that value is multiplied by the factor 

specified in the loading combination equation (1.2 in Equation 2). The live load and snow load 

both must be multiplied by the tributary width and factor specified in the loading combination 

equation to obtain a lb/ft value.  As a result, the final loading combination value is in pounds per 

foot.  

D-beam Selection 

To select D-beams, the Girder-Slab Excel Design sheet (The Girder-Slab System LRFD 

Version Design Guide) is used. The length, tributary width, slab thickness and loading conditions 

must be known. Those values are input into their respective cells and the design tool selects a D-

beam. Based on the given information, the design tool performs the following checks. 

Noncomposite/Composite moment 
The noncomposite/composite moment is the moment due to the factored load (w୳) and 

the length of the member (L). The factored load is measured in pounds per inch and the length of 

the member is measured in inches.  

 
Equation 3 Noncomposite/composite Moment 

M୳ ൌ
w୳Lଶ

8
lb ⋅ in 
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The noncomposite/composite moment (ܯ௨ሻ must be less than the design moment 

capacityሺΦୠM୬ሻ.  The factor Φୠ, should be taken as 0.9.  The design moment capacity is the 

yield strength multiplied by the plastic section modulus with respect to the x axis (ܼ௫ሻ.  

Equation 4 Design Moment Capacity 

ΦୠM୬ ൌ 	Φୠf୷Z୶	, lb ⋅ in 

 

Horizontal Shear (Noncomposite) 
The noncomposite vertical shear capacity is used to determine if the strength and spacing 

of the welds holding the flange and web together and the geometry of the D-beam will 

sufficiently support the given loading conditions. This is used to ensure that the D-beams will 

sufficiently support all construction loadings, before the concrete grout has cured. The vertical 

shear capacity (ΦV୬) is calculated using Equation 5, where Φ= 0.75, ݖ݅ݎ݋݄ܸߔis the the shear 

strength of the weld between the top bar and the web of the noncomposite D beam, in 
୪ୠ

୧୬మ
 ,	I୶ is 

the moment of inertia with respect to the x axis in inchesସ, Q is the centroid of the D-beam cross 

section, in inches and L is the spacing between the centerlines of adjacent welds along the span 

of the D-beam, in inches.  This value must be at least as great as the average factored vertical 

shear, V୳.  which is the demand shear strength created by the given loading conditions and length 

of the D-beam. The average factored vertical shear is calculated as shown below in Equation 6, 

where w୳the unfactored load in pounds per foot and L is the length of the D-beam, in feet. 

Equation 5 Vertical Shear Capacity 

ΦV୬ ൌ ΦV୦୭୰୧୸
I୶
QL

 

Equation 6 Average Factored Vertical Shear 

ΦVn ൒ 	V୳ ൌ
୵౫୐

ଶ
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Horizontal Shear (Composite) 
The demand shear strength (V୳ሻmust be less than the available shear strength of the full 

composite section (Φ୴V୬ሻ. This is used to ensure that the D-beam will sufficiently support the 

given loading conditions after the concrete grout has cured. The demand shear strength is found 

by using Equation 6.  The shear strength of the full composite section is provided by just the web 

of the D beam; it can be calculated by using Equation 7, where Φ୴ ൌ 1.00	(as specified by the 

Girder-Slab design tool), f୷୵ is the yield strength of the web which is 50 ksi and A୵is the area of 

the web. 

Equation 7 Shear Strength of Full Composite Section 

Φ୴Vn ൌ 0.6fywAw 

 

Floor live load deflection 

The deflection of girders due to live loads must be less than the length of the beam or 

girder divided by 360, in inches.  The deflection of a simply supported beam due to live loads is 

calculated in Equation 8, where ݓ	is the unfactored load, in pounds per foot, L is the length of 

the beam or girder, in inches, E is the modulus of elasticity, in psi, and I୶	is the moment of inertia 

with respect to the x axis, in inchesସ. 

Equation 8 Deflection Due to Live Load 

Δ୐୐ ൌ
5
384

ሺ
Lସݓ

EI୶
ሻ	 

 

Flexural Ductility Check 

The strain at the bottom of the flange (ε୵ୣୠ/୤୪ୟ୬୥ୣ	୧୬୲ୣ୰ୱୣୡ୲୧୭୬ሻ must be at least twice the 

yield strain (ߝ௬ሻ of the D-beam material.  The yield strain of the D-beam material multiplied by 

two (2ε୷ሻis assumed to be 0.003 at the extreme compression fiber of the cementitious material 

farthest away from the plastic neutral axis ("The Girder-Slab System LRFD Version Design 

Guide v3.2," 2015).  The strain at the bottom of the flange (ε୵ୣୠ/୤୪ୟ୬୥ୣ	୧୬୲ୣ୰ୱୣୡ୲୧୭୬ሻis calculated 
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using Equation 9, where E is the modulus of elasticity, in psi, A is the area underneath the plastic 

neutral axis, in inchesଶ and qu is the factored load on the D-beam, in pounds. 

Equation 9 Strain at the Bottom of the Flange 

ε୵ୣୠ/୤୪ୟ୬୥ୣ	୧୬୲ୣ୰ୱୣୡ୲୧୭୬ ൌ
௨ݍ
AE

 

 

In order for a particular D-beam to be acceptable, it must pass the requirements for both 

composite and noncomposite moment and shear.  

2.3.3 Design of Baseplates and Footing for Steel Columns Exposed to 
Weather. 

 The AESS columns were designed to support the canopy of the building using elegantly 

designed pinned connections that were attention grabbing and visually pleasing, since the 

connections themselves would be exposed for anyone to see. The study of the AESS columns 

consisted of changing the pinned base connections to fixed connections to investigate how the 

loadings would change on the column. In order to design the fixed connections on the columns, 

however, the steel baseplate and footing of each column needed to be redesigned to support the 

existing loadings as well as a moment that would be generated with the fixed connections. Due 

to the columns being external from the building, combined effects of vertical and lateral wind 

loads must also be considered in the design. The following procedures were used to design the 

new fixed connections for the AESS columns. 

Wind Load Design Factors 

The wind design loads are an important consideration when determining the loads acting 

on the AESS columns. Wind loads can be very complex, having both positive and negative 

lateral loads acting on a single object. Additionally, buildings can generate wind uplift and 

downlift depending the extent of the roof overhang. There are two methods used to analyze the 
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wind loads acting on a building, Method 1 is used if the height of the building is below 60 feet 

and Method 2 if the height of the building is above 60 feet. The following design procedure 

follows Method 1 for component and cladding due to the columns being outside of the building, 

having a total length under 60 feet and not being a part of the Main Wind-Force Resisting 

System (MWFRS). For details on the design process of Method 2, please refer to Chapter 6 of 

ASCE 7-05.  

Using the simplified procedure outlined in Method 1, the net wind design pressure must 

be determined with equation 6-2 from ASCE 7-05.  

Equation 10 Net Wind Design Pressure 

 

The net wind design pressure acting on the external columns of the building depends on the wind 

speed as well as many factors including adjustment, topographical and importance which vary 

depending on locations. The variables above can be found using the exposure category and mean 

height of the building applied to ASCE 7-05, Chapter 6. 

Table 3 Net Wind Design Pressure Variable Table 

 

The building has a wind exposure category B and utilizes a flat roof. Using this information, 

Figure 6-3 from ASCE 7-05 is used to determine net wind design pressure at a height of 30 feet 

applied to the different zones of the building. The positive and negative pressures taken from 

Figure 6-3 in ASCE 7-05 are then applied to the above equation to find the positive and negative 

design wind pressures acting laterally on the exposed columns. 
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Steel Baseplate 

The design process for a moment resisting steel baseplate is outlined below. 

First, the following values must be known. 

Table 4 Steel Baseplate Design Values 

Notation Description Unit 

SDL dead load psf 

LL live load psf 

c column diameter inches 

column weight  Weight of column lb/ft 

L  Height of column feet 

Neg. Wind negative wind load  psf 

Pos. wind positive wind load psf 

TW tributary width feet 

TL tributary length feet 

Fy yield strength of plate ksi 

f'c yield strength of concrete ksi 
 

First, the factored axial load in kips (Pu) must be determined by Equation 11. 
 

 

 

Figure 4 Wind Design Zones on a Flat Roofed Building 
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Equation 11 Factored Axial Load 

P୳ ൌ
1.2ሺweight	of	column	X	height	of	column ൅ SDL	X	TW	X	TLሻ ൅ 1.6	X	LL	X	TW	X	TL

1000
 

Next, the governing wind load value must be determined. It is taken as the larger of the 

absolute values of the positive and negative wind load values. Then, the lateral load due to wind 

can be found in pounds per foot (wwind), using Equation 12. The wind load value is in psf and the 

diameter of the column is in inches.  

Equation 12 Wind Load 

w୵୧୬ୢ ൌ wind	load	value	X	
diameter	of	column
12	inches	per	foot

 

Then the resulting moment due to lateral loads must be determined in ft-kips (Mu), using 

Equation 13, where wwind is in pounds per foot and L is height of the column in feet.  

Equation 13 Moment due to Lateral Loads 

M ൌ
w୵୧୬ୢLଶ

8
 

Then the eccentricity (e) can be determined using Equation 14, where Pu is the factored 

axial load and M is the moment due to lateral loads. The eccentricity is the location of the 

resulting force from the axial force and bending moment, measured in inches from the left side 

of the plate.  

Equation 14 Eccentricity 

e ൌ
M	X	12	inches	per	foot

P୳
 

The resulting stress in the baseplate due to the axial load (f) in ksi, dependent on the 

geometry of the plate, is determined next. It can be calculated in ksi using Equation 15, where Pu 

is the factored axial load in kips, e is the eccentricity in inches, c is the diameter of the column in 

inches and plate side lengths are measured in inches. It is taken as the larger of the absolute 

values of the positive and negative calculated values.  
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Equation 15 Stress in Baseplate due to Axial Load 

f ൌ െ
P୳

plate	side	lengthଶ
േ

P୳ec
1
12 	X	plate	side	length

ସ
 

 

Geometric properties must be defined for simplicity in calculations. The value a is the 

length from the edge of the baseplate to the column, in inches. Next the moment on the column 

(Mu) must be calculated. It can be calculated in in-kip by using Equation 16, where is a is 

measured in inches, c is measured in inches and f is measured in ksi. 

Equation 16 Moment on Column 

M୳ ൌ
aଶ

2
fሺa ൅ cሻ ൅

2aଶ

3
fሺ2a ൅ cሻ 

Next, a geometric property n, measured in inches must be determined. It can be 

calculated using Equation 17, where c and the plate side length are both measured in inches. 

Equation 17 Geometric Property 

n ൌ
plate	side	length െ 0.8c

2
 

The average resulting stress in the baseplate (fp) in ksi, can be determined using Equation 

18, where a is measured in inches, c is measured in inches and f is measured in ksi.  

Equation 18 Average Resulting Stress in Baseplate 

f୮ ൌ
fሺ1 ൅ plate	side	lengthሻ

2
 

The geometric property n and average resulting stress in the baseplate can now be used to 

calculate the bending moment in the transverse direction in in-kip (Mu,trans), where fp is measured 

in ksi and n is measured in inches.  

Equation 19 Moment in Transverse Direction 

M୳,୲୰ୟ୬ୱ ൌ f୮
nଶ

2
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In order for the baseplate to be considered sufficient to support the axial and lateral 

forces, the moment on the right side of the column (Mu) must be greater than the bending 

moment in the transverse direction (Mu,trans). 

If that is the case, then the thickness of the plate (t) can be determined in inches using 

Equation 20, where Mu is measured in in-kip, Φb = 0.9 and Fy is measured in ksi. 

Equation 20 Thickness of Baseplate 

t ൌ ඨ
6M୳

ΦୠF୷
 

The plate is selected by side length dimensions and thickness, both in inches, from the AISC 

Manual.                                                                                                                                                                      

2.3.4 Footing Design 

To select the pier and footing dimensions for the AESS columns, knowledge from CE 

3008 (Design of Reinforced Concrete) is used, as well as methods outlined in ACI 318-14 

(American Concrete Institute, 2014). The foundation type is determined using Fig R13.1.1 in 

ACI 318-14 and material properties of the concrete is determined in chapter 19 of ACI 318; the 

concrete for this project has a 28-day compressive strength of 4000 psi. The total loads acting on 

the column are taken and applied to equations in ACI 318-14 to determine the required area of 

the footing. 

Equation 21 Required Footing Area 

 

The equation is applied for dead loads, dead plus live loads and dead plus live plus earthquake 

loads and the largest required area governs the dimensions of the footing. The soil pressure is 

determined with geographical knowledge of the area applied to equations in ACI 318-14 and 
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used to determine the footing area. The soil pressure is calculated using three separate load cases 

and the highest value governs. With the soil pressure, the effective depth of the footing can be 

calculated as well as rebar configuration. Since the new connection column connections will be 

fixed, the footing needs to be able to withstand the added moment. To do so, the resultant 

eccentric force from the vertical force and moment should lie within the middle third of the 

footing base length. The figure below illustrates the changes made on the loadings to have the 

load lie within the middle third of the footing base length. 

 

The loading, P, is moved in order to account for the moment, M, that is created from the fixed 

column. The distance, e, can be found using the following equation. 

Equation 22 Moment using Load and ⅓ footing Base Length 

Finally, the base dimensions of the footing can be calculated using the found value of, e. The 

base dimension, b, is approximately equal to 6*e. When the dimensions of the footing are 

calculated, it’s important to check that the maximum soil pressure, qmax, does not exceed the 

allowable soil pressure, qu. The maximum soil pressure can be calculated using the following 

equation. 

Figure 5 Footing Base Design 
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Equation 23 Max Soil Pressure Check 

2.4 Project Management 

This section will discuss four major aspects associated with project management: cost 

estimating, project scheduling/control, project communication, and lean construction. 

2.4.1 Construction Cost Estimating 

Cost estimating is used to predict the cost of a project. Construction management firms 

provide pre-construction services that include cost estimating during the design process. This 

service allows contractors to bid or provide a cost estimate on construction projects in their scope 

of work.  The more accurate the cost estimate, the more likely the construction company will 

stay on budget and make a profit, which in turn satisfies the owner.  Inaccuracies within the cost 

estimate can cause projects to go over budget and companies to lose money on projects.  Going 

over budget can cause a company to go out of business (Halpin, 2010). 

Types of Cost Estimates 

There are four main types of cost estimates used during the design and construction 

process of a building.  They are conceptual estimate, preliminary estimate, engineer’s estimate, 

and bid estimate (Halpin, 2010).  The conceptual estimate and preliminary estimate take place 

during the design phase and are both reviewed by the owner.  This allows the owner to review 

the project progress and provide input to the project before making the final budget.  Once the 

final design of the project is completed, the engineer drafts an engineer’s estimate with the 

projected project cost and estimated unit quantities for all of the bid items.  This estimate is used 

to compare the bidding price for all construction firms bidding the project.  The bid estimate is 

produced by the construction firm bidding on the project, and often but not always, includes a 
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unit price for each item in the bid list. Various factors associated with the cost of materials, labor, 

equipment, and man hours are incorporated into the unit price.  This estimate also includes a 

markup, which is additional money allocated for overhead, non-project related costs associated 

with running a business, and the money the construction company expects to make on the job, 

known as profit (Halpin, 2010). 

Cost Estimating Methods 

The most common way of generating these preliminary cost values is through a unit cost 

estimate.  A unit cost estimate is generated by multiplying the unit quantity of an item with an 

estimated price per unit of the item.  Most contractors have their own unit cost databases that 

they rely on for generating estimates.  For this project, the source for unit pricing values is the 

R.S. Means Company’s Building Construction Cost Data (Halpin, 2010). 

2.4.2 Construction Scheduling 

Project management encompasses a wide variety of tasks including scheduling, 

organizing, controlling, and coordinating.  Each of these functions play a large role in the project 

management process, and these tasks are usually carried out by a project manager.  Table 5 

below shows each of these functions and why they are important to the project process 

("Planning, Scheduling and Construction Management," 2014). 

Table 5 Functions of Project Management ("Planning, Scheduling and Construction Management," 2014) 

Function Importance 

Planning Determines what needs to be accomplished and how it will be accomplished. 

Scheduling Outlines project duration and establishes task completion dates. 

Organizing Compiles project tasks and assigns them to their respective departments. 

Controlling Tracks project progress and makes adjustments to stay on track. 

Coordinating Forms collaboration between all involved departments to ensure synergy. 
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Importance of Scheduling 

The objective of scheduling is to execute the project plan while sticking to a time-line.  

Project scheduling shows the duration and order of various tasks to be carried out.  In creating 

this schedule, the projected start and finish dates for the overall project are determined.  There 

are many advantages to creating a schedule such as determining the best method of executing the 

project.  It allows for the quantity of workers, material and equipment to be determined at 

different stages of the process.  Additionally, scheduling enables progress to be tracked which 

determines if the project is staying on target.  A Gantt chart or network diagram creates a visual 

representation of the project time-frame to facilitate coordination among all parties involved on 

the project. This shows the durations and precedence logic for project tasks. Weather is very 

unpredictable and is therefore addressed after the fact.  An important part of the schedule is the 

critical path.  This is the connection of tasks that make up the longest pathway in the schedule 

and determines the initial start and end dates of the project.  The critical path is very significant 

because any delay to the tasks along the critical path will result in a delay to the overall project 

schedule (Sheba, 2015). 

2.4.3 Project Communication 

Communication plays a large role in the success of a construction project.  It is the 

construction manager’s responsibility to coordinate communication among all parties involved in 

the construction process, mainly the owner, architect, and subcontractors.  A breakdown in 

communication among these various parties often leads to problems during the construction 

process.  A process often used to minimize these problems and encourage communication is 

owner’s meetings. 
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Owner’s Meetings 

Owner’s meetings, also commonly referred to as Owner/Architect/Contractor (OAC) 

meetings, usually occur on-site on a weekly basis as a source of project communication.  These 

meetings allow the owner/owner’s representative, architect, and construction manager (CM) to 

discuss the project progress.  The agenda is created by the CM, who also runs the meeting.  The 

following table summarizes topics most commonly addressed during these meetings 

(Radosavljevic, Bennett, & Ebrary Academic, 2012). 

Table 6 Common Topics of Discussion at OAC Meetings (Radosavljevic et al., 2012) 

Common Topics of Discussion 

Submittal, RFI, and Change Order Status 

Payment Requisition Status 

Budget 

Schedule 

Resolve Drawing Discrepancies 

Safety Report 

 

The CM follows a similar format to Table 6 during their owner’s meetings.  Discussing 

all of these topics while the owner, architect, and CM are all in same room allows for efficient 

conflict resolution and decision making (Radosavljevic, et al., 2012).  When there is a lack of 

information in the drawings or specifications, the CM will submit a Request For Information 

(RFI) to the designer, usually the architect or engineer, for clarification.  The CM’s goal is to 

identify and clarify the missing information as quickly as possible to prevent any delays and 

added costs to the project.  However, a quick response to the RFI is not always possible or does 

not always happen because the engineer or the architect may need more time when responding.  
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2.4.4 Lean Construction 

Lean construction is a process used to reduce “cost, materials, time and effort:” (Mackie, 

2014).   Lean construction originated from the idea of lean production, which was developed by 

Toyota led by Engineer, Taiichi Ohno.  The idea of lean production was developed to eliminate 

waste in mass production and create more efficiency in the production line. 

In the construction management field, the goal of lean construction is to maintain 

maximum production while having minimal waste and time delay.  Lean construction entails 

implementing management practices to increase construction efficiency; these practices include 

increasing communication among all involved, increasing worker accountability, and increasing 

schedule reliability.  Project managers now use lean construction techniques to efficiently plan 

and control construction sites.  Using lean construction helps prevent future problems by 

identifying possible communication issues (Mackie, 2014). 

Lean methods increase schedule reliability, predictability, and productivity as a result of a 

higher rate of planning, increased profits and turnovers, customer satisfaction, worker 

accountability and job satisfaction.  Incorporating BIM with lean practices is very common in the 

preconstruction stages of the building to prevent any MEP conflicts and lack of material storage 

space.  Lean construction also improves the overall project results due to improved 

communication (Mackie, 2014). 

Consigli Construction uses lean construction methods throughout all of their projects.  

“Lean efforts focus on identifying opportunities to reduce inefficient use of resources, and to 

create more value through our work.  It is about encouraging continuous improvement on a daily 

basis while maintaining respect for people,” (Consigli Construction, 2015).  Specifically for the 

ASEC project, Consigli uses a variety of Lean construction practices on and off of the job site.  

For efficiency, Consigli encourages their subcontractors to shop build as much as possible before 
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bringing items to the site.  To prevent large amounts of stockpiled material on the site, Consigli 

brings in portions of a material delivery instead of the whole delivery at one time.  Consigli 

manages deliveries so that no more than one week's worth of material is brought into the 

building at one time to prevent turning the building into a warehouse.  All materials being stored 

in the building are kept on wheels so that they can be easily moved out of the way (Condon, 

2016). 

2.4.5 Software Tools Used 

This section will discuss the various software tools that were used to complete this 

project such as On-Screen Takeoff 3, Autodesk Revit 2016, Microsoft Project, and Autodesk 

Navisworks.  Each software is presented as a summary of its main functions and how it was used. 

Building Information Modeling, BIM, is also be discussed. 

Building Information Modeling (BIM) 
Building Information Modeling is “a digital representation of physical and functional 

characteristics of a facility. As such it serves as a shared knowledge resource for information 

about a facility forming a reliable basis for decisions during its lifecycle from inception onward.” 

(National Institute of Building Sciences, 2007).  Many of these technologies are software tools 

such as Autodesk Revit 2016, Microsoft Project, and Navisworks, which are used to develop a 5D 

model of a building.  With the increasing pressure of bid competition, production deadlines and 

continually increasing quality expectations, BIM is a common approach in the construction 

industry (Popov, Juocevicius, Migilinskas, Ustinovichius, & Mikalauskas, 2010).  Some identify 

BIM as dealing with only 3D modeling and visualization.  Using the process of BIM, one would 

have the capability of creating a three dimensional (3D), four dimensional (4D), and/or five 

dimensional (5D) representation of a future structure.  A 4D model is a visual representation of 
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the planned building incorporating the construction schedule.  Integrating construction cost data 

into the 4D model creates a 5D model. 

BIM software packages cover virtually all phases of the construction process such as the 

planning, design, cost estimating, scheduling, construction, fabrication, maintenance and facility 

management. According to the National Institute of Building Sciences, BIM’s primary goal is to 

“eliminate re-gathering or reformatting of facility information,” (Smith & Edgar, 2008). BIM’s 

most important objective is to improve business function so that both the owner and the project 

management firm benefit from a faster and more cost effective completion date. BIM is used in 

this project to produce a 5D visual representation of both the current building and the new 

design.  

On-Screen Takeoff 3 

On-Screen Takeoff 3 is a construction software that allows the user to view the 

construction drawings in pdf format, complete quantity takeoffs, perform estimations, and 

execute project management tasks.  Plan viewing of construction drawings and quantity takeoffs 

were the two features most commonly used for this project.  The plan viewing tools and quantity 

takeoffs allow the user to measure unmarked lengths, angles, areas, and volumes.  For example, 

using the correct dimensions specified on the plans, the measuring tool can be used to obtain 

correct linear dimensions.  To use the measuring tool, click on the first spot where the 

measurement starts and then drag the cursor to the spot where the measurement ends.  The 

software allows the user to download and view in multiple windows the constructions drawings 

being used (On Center Software, 2015). 

Autodesk Revit 2016 

Autodesk Revit 2016, also known as Revit, is a software for structural engineers, 

architects, designers and MEP engineers that is used to create 3D models using BIM.  This 
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software allows users to create 2D views, such as a floor plan, and to create and design 3D 

buildings, structures, and components.  Revit users can create a 4D model by using tools to plan 

and track various stages in a building's lifecycle.  Revit has architectural plan templates, 

structural plan templates, and MEP plan templates for the user to create a building.  Revit allows 

the user to implement pre-made component families as well as loadable families which can be 

made from scratch to construct the desired design.  Families can range from furniture and light 

fixtures components to columns and beam components.  Revit also allows the user to create 

renderings of their design to show a more realistic representation of the 3D model.  Revit also 

allows the user to create walkthroughs and fly-around animations (Revit, 2015). 

Microsoft Project 
Microsoft Project is a software package that allows project managers to analyze budgets, 

timelines and resources.  Using Microsoft Project, project managers can also measure the 

construction progress and anticipate project needs through monitoring the schedule.  Project 

executives are able to measure strategic impacts and view project status.  Microsoft Project 

improves collaboration between contractors and subcontractors because it notifies both parties 

when another party has made a change to the schedule (Project, 2015). CM’s have access to the 

scheduling software to make any changes to the schedule which are then sent to the other parties.  

This program also allows the user to sync the schedule and cost estimate together so that the user 

can develop a 5D model in Navisworks combined with the 3D Revit Model.   

 Autodesk Navisworks 

Navisworks is software package that enables the architect, project manager, and owner to 

visualize the project schedule and cost through animation.  Navisworks allows the user to import 

Revit files and Microsoft Project files to develop 5D models.  Navisworks allows the user to 

create a video of the building that shows the phases of the construction and the cost of each 
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phase throughout the project (Navisworks, 2015).  With the combination of these building 

information modeling softwares, a 5D model is created. 

Now that the key background elements for the work have been explained, the next six 

chapters explain the methodology and results. Chapters 3 and 4 focus on the structural aspects of 

the alternative design. Chapters 5 and 6 explain the cost estimating and scheduling processes and 

outcomes for the current and Girder-Slab design. Chapter 7 is about the methodology used to 

generate the 5D models for the current and alternative design.  Chapter 8 is about the 

methodology and results used to carry out an RFI analysis. 
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3 Design of an Alternative Floor Framing System 
One objective of this project was to design a Girder-Slab floor framing system to replace 

the current slab-on-metal decking floor framing system. Using the original structural drawings, 

D-beams were selected using a design tool provided by the Girder-Slab website. Angle sections 

were added onto W shapes that were being kept in certain area of the floor framing systems to 

keep the precast concrete planks in place. All calculations done for this design followed the 

design processes outlined in the background section.   

3.1 Loading Combination Calculation Process 

In order to design a new floor framing system, existing dimensions from the original 

floor framing system were established.  Before dimensions could be recorded, all beams and 

girders were assigned a number by floor.  From the original drawings with labeled beams and 

girders members, the lengths and tributary widths for all beams and girders were recorded.  

Some dimensions could be determined from the plans alone but ones that could not were 

determined using On-Screen Takeoff 3. Lengths and tributary widths were recorded on an Excel 

sheet, as seen in Appendix A. Loading combination results were obtained by the process outlined 

in the section “Loading Combination Calculations” of the background. 

The different types of loads considered for the beams and girders were determined from 

the structural plans.  There are several beams and girders that are under two types of live loads. 

For example, there are multiple cases where one part of a beam or girder has two different values 

for a live load because of the varying uses for the building, visually represented in Figure 6. 
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A sample heading of the loading combination Excel sheet can be seen in Figure 7. 

On levels two and four, the beam or girder would have a separate row on the Excel sheet 

for each different loading condition; the length and tributary width are for only one loading 

condition.  Beams or girders with two or more loading conditions have a box around the member 

size. On level three, beams or girders under multiple loading conditions had multiple columns for 

each loading condition. Next to the first “Loading Combination” column is a column labeled 

“Subtracted/Added”. If the cell is filled red, then the tributary area and loading on the right was 

subtracted from the value in the first “Loading Combination” cell. This indicates that the loading 

specified in the first column occupies a greater amount of space within the tributary area of the 

beam or girder. If the cell is filled green, then the tributary area and loading on the right was 

Figure 6 Visualization of Different Loadings Acting on a Beam 

Figure 7 Loading Combination Excel Sheet Heading 
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added instead. The loading value used for design is the one in the first “Loading Combination” 

column; this value has additional loadings subtracted or added to the original. 

Loading conditions were specified under the columns labeled “SDL”, CDL”, “LL” and 

“SNOW” in pounds per square foot.  “SDL” stands for superimposed dead load, meaning the 

weight of the structural, architectural & MEP components. “CDL” stands for cladding dead load, 

meaning the weight of all components attached to exterior or partition walls. “LL” stands for live 

load, meaning the expected weight of occupancy.  “SNOW” means the expected loading of the 

snow. This is only measured on exposed parts of the structure, i.e. on the roof. All possible 

loading condition values taken from the structural drawings are outlined in the table below: 

Table 7 Types of Loads 

Loading Condition Specified Values (in psf) 

SDL 20 

CDL 20, 40 

LL 100, 85 

SNOW 40 

3.2 D-Beam Selection 

Once dimensions and loading conditions on all original beams and girders were recorded, 

D-beams were selected.  D-beams were only selected to replace girders (beams running east to 

west).  A design spreadsheet was obtained from the Girder-Slab website (Fisher, 2015) that 

selects D-beams based on loading conditions, length and tributary width, as seen in Figure 

8.  First, the D-beam selection was set to the lightest one, 8X37. The slab thickness was set to the 

minimum possible value in the design spreadsheet, 8 inches, to minimize the loading on the 

structure and the overall cost.  Then, the D-beam span (length) and tributary width of load of the 

original beam were entered into their respective cells.  The additional composite dead load 

(SDL), partition live load (CDL) and basic live load (LL) were also entered into their respective 
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cells.  If a girder was subject to multiple types of loads and values, the largest magnitude was 

input for each type of load.  Floor live load reduction was considered for all girders.  The unit 

weight of grout was kept at 140 pounds per cubic feet for all girders.  D-beam camber was kept 

at 0 inches for all girders.  Once all values were correctly entered, the test was run.  The D-beam 

was sufficient if all checks on the right side of the spreadsheet were labeled “OK” in blue.  In 

order to determine if the D-beam could sufficiently support the specified loading conditions with 

the specified length and tributary width, the design checks outlined in section 2.3.2 on D-beam 

selections of the Chapter 2 Background had to be satisfied.  The Girder-Slab spreadsheet 

automatically completes the necessary strength and deflection checks.   
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Figure 8 Girder-Slab Design Tool Screenshot 
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3.3 D-Beam Selection Outcomes & Analysis 

  The final Girder-Slab floor framing system D-beam configuration for the second, third and fourth floor can be seen below in 

Figures 9, 10 & 11 respectively. Highlighted members are members that are being kept as either D-beams or W shapes. All others are 

omitted.  

Figure 9 Second Floor Girder-Slab Floor Framing System Configuration 
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Figure 10 Third Floor Girder-Slab Floor Framing System Configuration 
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Figure 11 Fourth Floor Girder-Slab Floor Framing System Configuration 
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All exterior dimensions of the building remain the same, the only change is the 

configuration and type of beams and girders within the building’s footprint. Final quantities of 

D-beams on the second, third and fourth floor can be found in Table 8 below and in Appendix B: 

Table 8 D-Beam Size & Quantities 

D-beam size Quantity 
8X37 37
8X39 2
8X61 5
9X45 1
9X46 1
9X49 1
9X52 2
9X65 6

 

The total number of beams and girder in the new Girder-Slab floor framing system is 

significantly less than the number of beams and girders in the original, yet the structural 

capabilities remain the same. Although this project contained a very varied loading plan, the 

Girder-Slab floor framing system was still able to be implemented.  

The most challenging aspect of this new design was configuring the beams and D-beams 

to incorporate precast concrete planks. Simply replacing all girders in the original design would 

not have allowed precast planks to be properly installed. As a result, the design thought process 

not only contained structural considerations in terms of the D-beams but also constructability 

considerations in terms of installing the precast planks. The precast concrete planks had to be 

visualized first, following with D-beam placement.  
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3.4 W-Shape Selection Process 

 It was not possible to use D-beams exclusively to support the precast concrete planks. 

The precast planks could not be supported along the border of the structure by D-beams. In order 

to incorporate the new design, W-shapes had to be added in on the second and fourth floor. An 

Excel workbook (found in Appendix C) was created to select appropriate W-shape sizes. In order 

to select a W-shape, the following process must be followed. 

W-Shape Selection 

 First, the design load (w୳ሻ must be calculated. The length, tributary width, SDL value 

and LL value of the supported beam are needed.  Then, ݓ௨is found by Equation 24. 

 
Equation 24 Loading Combinations Equation for DL, LL, & Snow (in lb/ft) 

1.2D	 ൅ 	1.6L	 ൅ 0.5S	
ൌ 	1.2	X	ሾ	ሺSDL ൅Weight	of	Concreteሻ	X	Tributary	Width	ሿ 	
൅ 	ሺ1.6	X	LL	X	Tributary	Widthሻ ൅ ሺ0.5	X	SNOWሻ	 

 

Equation 3 was used to find the design moment, which is the bending moment in the W 

shape due to the force from the D-beam and precast plank. 

The design moment is then used to find the plastic section modulus limit (Z୶ሻ, meaning 

that the plastic section modulus of the selected W shape must not exceed the limit. In this case, 

M୳is the design moment found in Equation 25, Φ	 ൌ 	0.9 and f୷ ൌ 36ksi. 

Equation 25 Plastic Section Modulus Limit 

Z୶ 	ൌ 	
M୳

Φf୷
 

With the calculated Z୶value, the AISC shapes database (Construction, 2011) is used to find a W-

shape.  The W-shape with the Z୶value greater than or equal to the calculated value is selected. 

 The Excel workbook contains three sheets: “2ND FLOOR”, “4TH FLOOR” and “W-

Shape Selection Tool”. The first two sheets are final results of the inputs from the “W-Shape 
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Selection Tool”. The “W-Shape Selection Tool” contains the beam reference number 

corresponding to the labeled plans. The “Length” column represents the length of the member in 

feet, the “TW” column represents the tributary width of the member in feet, “SDL” represents 

the dead load in psf and “LL” represents the live load in psf. The loading combination equation 

column represents the factored load in lb/ft, the “Mu” column represents the design moment in 

lb-ft, the “Zx” column represents the calculated plastic section modulus in inches cubed. The “Zx 

BOOK” column represents the plastic section modulus value of the selected W-shape, in inches 

cubed. The “SELECT” column is the selected W-shape. All results were manually input into 

tables in their respective sheets. 

3.5 W-Shape Selection Outcomes & Analysis 

The final Girder-Slab floor framing system configuration, including new W-shapes can 

be found in Figures 9, 10 & 11. The new W-shapes that were selected are listed in Table 9. 

 

Table 9 W-Shape Selection Results 

 Beam # New W Shape 
2
N
D 
F
L
O
O
R 

29 W12X152 

49 W14X109 

73 W18X76 

A W12X16 
4T
H 
F
L
O
O
R 

A W6X20 

B W8X35 

C W21X73 

D W16X77 

H W12X190 
 



 
41 

 

The W-shapes named with a letter refer to additional members that were needed to 

incorporate precast concrete planks into the design. They were added to ensure that concrete 

planks could be installed in rectangular sections. If concrete planks could have been installed in 

any shape, then all of the W shape entries in Table 9 would have not been necessary to add.  

The W-shapes named with a number represent an instance where an existing member was 

extended to incorporate rectangular or square planks. The selected W-shape indicated in the table 

above represents the W-shape for the entire length, including the existing member. For the length 

of the existing member, this member is most likely overdesigned. However, the member must be 

designed for the new length.  

The decision to include in W-shapes was not based on structural capacities. It was purely 

based on the geometry of concrete planks.   

3.6 Angle Section Selection Process 

Girders along the perimeter of the building were not replaced with D-beams.  Instead, 

these girders were kept as the original W-shapes, and angle sections (sometimes known as L 

shapes) were welded onto the web of the original W-shape.  These angle sections serve as a shelf 

to support the D-beams and precast concrete planks. See Figure 12 for more details on the 

configuration of the angle section design 
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Figure 12 Exterior Beam Design with Angle Sections 

 

Angle sections were picked based on loading conditions, length and tributary widths of 

their supported beams. 

Angle Section Selection  
First, the design load (w୳ሻ must be calculated. The length, tributary width, SDL value 

and LL value of the supported beam are needed.  Then, ݓ௨is found by Equation 26. 

The weight of the D-beams is found by counting the number of D-beams supported by 

the angle section and adding up their weights.  For example if there were 4 DB8X37 D-beams 

supported by one angle section, then the weight of the D-beams would be 4X(37 pounds per 

foot) = 148 pounds per foot. 
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Equation 26 Loading Combinations Equation for DL, LL, & Snow (in lb/ft) 

1.2D	 ൅ 	1.6L	 ൅ 0.5S	
ൌ 	1.2	X	ሾሾ	ሺSDL ൅Weight	of	Concreteሻ	X	Tributary	Width	ሿ ൅ Weight	of	D
െ beamsሿ 	൅	ሺ1.6	X	LL	X	Tributary	Widthሻ ൅ ሺ0.5	X	SNOWሻ	 

 

Equation 27 was used to find the design moment, which is the bending moment in the 

angle leg due to the force from the D-beam and precast plank. 

Equation 27 Design Moment 

M୳ ൌ
w୳Lଶ

2
 

 

The design moment is then used to find the plastic section modulus limit (Z୶ሻ, meaning 

the selected angle section with the Z୶value greater than or equal to the calculated value is 

selected, found by using Equation 25 in section 3.4. 

With the calculated Z୶value, Table 2 in Elastic and Plastic Section Moduli of Steel 

Angles About Principal Axes was used to find an angle section (Ding, 2004).  The angle section 

with the closest Z୵value to that would not exceed the calculated Z୶ was selected and recorded. 

Sample hand calculations for angle section selection can be found in Appendix D. 

An Excel workbook was created to select angle sections based on the process outlined 

above, as found in Appendix E. In the first column, the beam or girder number is recorded. In the 

next column, the section is indicated. If there is only one letter, then the angle section will be the 

length specified in the length column. If there is more than one letter, then the load could not be 

supported by a single angle section. This means that the calculated plastic section modulus 

exceeded all of the plastic section moduli found. In that case, the length was split into two equal 

parts and the angle sections were reanalyzed using the new lengths. The number of sections 

correspond to the number of pieces that the original desired length was split into. The sections 
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run west to east or south to north, meaning section A would be the furthest angle section on the 

west/north side followed by section B, etc. Corresponding values were inputted into the 

“Length”, tributary width (“TW”), dead load (“D”), live load (“L”) and weight of concrete 

(“conc”). The columns labeled “d beam wt” is how much of a D-beam in lb/ft the angle section 

is supporting. It is calculated by adding up all of the weights of the D-beams supported by the 

angle section within the tributary width. The next column represents the factored load in lb/ft. 

The following two columns represent the design moment and plastic section modulus, 

respectively. The next two columns contain geometric properties used to determine a Zx value. 

Once the calculated Zx value was found, the Zw value found from Table 2 in Elastic and Plastic 

Section Moduli of Steel Angles About Principal Axes was recorded in the “Select” column 

(Ding, 2004). All final selections were copied onto separate sheets within the same workbook, 

specified by floor.  

3.7 Angle Section Selection Outcomes & Analysis 

The final Girder-Slab floor framing system contained roughly 166 angle sections, all 

varying in types and lengths. The final angle section selections can be found in Appendix E 

under the sheets labeled “L 2 Final”, “L 3 Final” and “L 4 Final”. In the labeled plans in found in 

Section 3.3, angle sections were added to every W-shape that was either kept or added.  

In some cases, one angle section was not strong enough to hold up the load for every 

length of a W-shape; some members required multiple sections of an angle section to be added. 

As seen in Figure 13, four angle sections are attached to a W-shape. They vary in size because of 

different loading conditions.  
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Figure 13 Angle Section Configuration Example 

 If the tributary widths of the angle sections were not so large, there would have been 

fewer cases where it was necessary to split the angle section into multiple sections. Splitting the 

angle sections poses no inconvenience from the design perspective, but definitely requires more 

time and money to implement in the field.  
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4 Design of the Alternative Weather-Exposed Column 
Connections.         
 The current pinned connection design for the AESS columns is intricately designed to 

resist weathering and to appeal to viewers and building users, due to being exposed from the 

building and in plain view. Although pinned connections are often times a lot simpler than fixed 

connections, the added detail in the current pinned connection designs can typically lead to 

higher manufacturing and installation times. Simpler, fixed column connections designs were 

investigated focusing on the base of the columns. The fixed design would not only increase the 

strength of the columns themselves by reducing the slenderness ratio 	௄௅
௥

 , but also resist a 

moment along with the current axial and lateral loads. In order to investigate a simpler design a 

structural analysis on the building’s current column connection design was performed. 

4.1 Structural Analysis Process  

The structural analysis on the current column connection design was used as a basis for 

the fixed connection design. ASCE 7-05 procedures were used in order to determine loadings 

acting on the exposed columns. Using information obtained from the structural drawing notes 

and Massachusetts State Building Codes, an Excel sheet was generated with equations from 

ASCE 7-05, noted in Sections 2.3.3, and completed with known variables. Since the AESS 

columns were only supporting the canopy, any loads from the second, third or fourth floor were 

disregarded in determining the gravity loading system of the columns. The loads from the 

canopy acting on the column were used in the loading combination calculations to determine the 

forces acting within the column as shown in the table below. 
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The lateral wind loads acting on the AESS columns were investigated using figures and 

charts taken from IBC 2009 and applying the values to equations outlined in Method 1 of wind 

load calculations, found in ASCE 7-05 and discussed in Section 2.3.3. Positive and negative 

wind pressures were calculated acting laterally on the column using the building wind exposure 

category and wind speed as shown in Table 11 applied to the equations discussed in Section 

2.3.3. 

Table 11 Wind Loads 

 

All the variables known were inputted into the variables specified in the Excel sheet and 

the design wind loading was calculated acting on the columns.  The spreadsheets that were 

created using the current design were used as a template to design the fixed column connections. 

The figure below illustrates the combined of the axial and wind lateral loads acting on each 

column. 

Table 10 Canopy Loads 
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The Canopy Axial Load was determined by applying the canopy loads taken from the 

drawings, and applying them to the seven LRFD load combination equations. Due to the loads 

being in pounds per square foot, the loads were applied to the tributary width and length of the 

columns to obtain an axial point load on the column. Table 12 shows the axial load acting on the 

columns, with the largest value being the governing load. 
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Figure 14 Free Body Diagram of Loads Acting on Columns 



 
49 

 

 

Fixed Column Connection Design 

The design of the fixed column connections started with sizing of the metal baseplates at 

the base of each column. The current baseplate dimensions of 2 ft x 2 ft were taken as a basis for 

design. The current design took into account the four A490 1” diameter bolts used to connect the 

plate to the footing. Using the information calculated regarding the current gravitational loading 

system, see table above, hand calculations to determine the dimensions of the moment resisting 

steel baseplate can be found in Appendix F. With modification made to the equations to adhere 

to the AESS column HSS-shape, the values derived from drawings and the previous calculations 

are below. 
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Table 12 LRFD Loading Combinations Acting on the Columns 
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The new required area of the baseplate was calculated. With changes in the baseplate 

design, a new pier and footing area that would match the newly designed steel baseplate area 

were determined. 

Due to the added moment that comes with a fixed connection design, the footing also 

needed to be redesigned to resist a moment and adhere to the changes in the dimensions of the 

steel baseplate. The rebar configuration in the footing was disregarded due to time constraints, 

but the added strength in the footing was generated with the newly designed area. The new 

footing area was calculated using procedures from ASCE 7-05 as described in Section 2.3.3. 

4.2 Outcomes & Analysis  

The calculations performed for the steel plate selection yielded the following results: 

Table 14 Steel Plate Dimensions 

COLUMN Area (Square 
Inches) 

Side Length 
(Inches) 

 ௥௘௤ௗ (Inches) ௬݂ (psi)ݐ

A6 365.77 19.25 1.25 36,000 
B6 365.77 19.25 1.25 36,000 
C6 365.77 19.25 1.25 36,000 
D6 365.77 19.25 1.25 36,000 

 

Table 13 Variable Used in Metal Baseplate Design 
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The bolt configuration remains the same, 4 1” diameter A490 bolts per plate. For a visualization 

of these dimensions, please see Figure 15 steel baseplate design. 

 

 

Compared to the original dimensions, the new steel plate dimensions are slightly larger. The 

original dimensions are as follows: 

Table 15 Original Steel Plate Dimensions 

 

The calculations performed for the footing dimensions yielded the following results: 

Figure 15 Steel Baseplate 
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Table 16 Pier Dimensions 

 

Compared to the original dimensions of the pier and footing, the dimensions didn’t change for 

the new steel plate area. 

The new steel baseplate dimensions are larger than the original dimensions due to the 

added moment from the fixed connection design. The dead and live loads on columns A6, B6, 

C6 and D6 remained the same since there was no added loading, just the change in the 

connection. The geometric constraints on the original steel baseplate were not as restricting on 

the new one, but still ultimately drove the design decision. 

The required steel baseplate areas for both the old and new loading conditions were 

smaller than the cross-section of the connection attached to its top.  The original steel baseplate 

required area was smaller than the cross-sectional area of the pin and the new steel baseplate 

required area was smaller than the cross-sectional area of the column. Therefore, both steel 

baseplates were selected based on geometry, not on loading capacity in order to comply with the 

welding of the baseplate to the column. If the column or pin were smaller than the required steel 

baseplate area, then the selection of the baseplates would have been driven by the loading 

capacity of the baseplate. 

Although the steel plate dimensions increased to account for the new fixed design, the 

footing dimensions remained the same. When calculating the dimensions of the footing using the 

equations outlined in Section 2.3.3, the dimensions calculated were much smaller than the 

original dimensions. This was due to the small loadings that the AESS columns had to withstand, 
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because they were only supporting a marginal load from the canopy and the wind loads weren’t 

significant. It was determined that the original dimensions of the footings were designed 

primarily on the geometry of the connections, so for ease of construction the footing dimensions 

will remain the same due to little to no change in the original dimensions. 
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Figure 16 Cost Estimate Process Flowchart 

5 Cost Estimates 
 The objective of this chapter is to develop a cost estimate for both the current and 

alternative designs of the foundations and floor framing systems.  The type of cost estimate used 

to for this project is a unit cost estimate.  The cost estimates take into account material costs, 

labor costs, equipment costs, and overhead and profit for the CM.  The source of cost data used 

for this project is the RS Means Construction Cost Data Books published in 2012.  The majority 

of the material quantities were obtained by generating material schedules from the Revit models, 

explained in Chapter 7, for the current and Girder-Slab design and exporting them to Excel 

spreadsheets. When the quantities could not be generated from the BIM model, the information 

was taken off the scanned copies of the blueprints with the aid of On-Screen Takeoff 3, which is 

explained in Chapter 7.1. Figure 16 below shows a summary of the process used to generate the 

cost estimates.  
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5.1. Cost Estimate Preparation for the Existing Structural Systems 

To create a cost estimate for the foundations, structural steel framing and slab-on-metal 

decking for the current building, an Excel document with all of the RS Means Cost data was 

compiled.  The material quantities from the material schedules generated in Revit (see Chapter 

7.1) were entered into this Excel sheet. The total cost of the items were obtained by direct 

multiplication of the total quantity of the item with its corresponding unit price.  For the steel 

beams and columns, a cost calculator spreadsheet was generated.  This spreadsheet was used to 

break the cost of the steel structure down by phase.  After the cost estimate was generated, an 

annual cost index, 1.104, for the year 2015 was applied because the RS Means books presented 

cost data for 2012. This adjustment factor accounts for the increases of cost over time.  A 

location adjustment factor, 1.06, was also applied because the project takes place in Worcester, 

Massachusetts, which has higher construction costs than the national average.  This process of 

creating a cost estimate was carried out for the steel frame, foundations, and slab-on-metal 

decking/precast concrete planks of the current design.  See Appendix G for the foundation cost 

estimate, Appendix H for the slab-on-metal decking cost estimate, and Appendix I for the steel 

cost calculator used to generate the cost of each steel beam by linear foot. 

5.2. Cost Estimate Preparation for the Girder-Slab Design 

Using a similar method, a second cost estimate was then created for the structural steel 

frame and precast concrete planks of the Girder-Slab design.  From the Revit model (discussed in 

Chapter 7.2) of the alternative design, material schedules were exported into Excel spreadsheets 

and used for the cost estimate.  A cost estimate for the foundation was not re-calculated as the 

foundation for the alternative design did not change from the current design to the alternative 

design.  The cost estimate for the precast concrete planks was generated by multiplying the 
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quantity (square feet) of precast concrete planks by the provided unit cost from the RS Means 

data.   

The RS Means Construction Costs Data Books do not contain cost data for D-beams.  To 

establish an average price per pound of steel for the D-beams, the cost of 26 different W-shapes 

were averaged and divided by the total pounds.  The cost estimate for the D-beams was then 

generated by multiplying the total weight of the steel by the calculated average price per pound.   

After the cost estimate for the alternative floor system was generated, the time and 

location adjustment factors used for the current structure cost estimate were applied  See 

Appendix J for the precast concrete planks cost estimate and Appendix K for the calculations 

used to find the average price of the D-beams. 

To determine the least expensive building design the cost estimates for the foundation, 

steel, and slab-on-metal decking/ precast concrete planks for the current and alternative design 

were compared with one another and as a whole. 

5.3 Cost Estimate Outcomes 

The following results provide a breakdown of the cost estimates for foundation, steel, and 

concrete flooring for both the existing and alternative designs.  The costs were determined for 

level one through the roof level. Overall, as shown below in Table 17, the total cost estimate of 

the existing design is $2,205,052 which includes the cost estimate of the foundation, structural 

steel and concrete flooring.  The total cost estimate for the Girder-Slab design is $2,002,912 

which includes the foundation, structural steel, and concrete flooring.  The cost of the Girder-

Slab design ended up being $202,140, which is about 10% less than the current design. 
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Table 17 Cost Estimate of Current Design vs. New Design 

  Existing Design New Design Savings 

Foundation $294,707 $294,707 $0 

Steel $1,241,862 $1,138,776 $103,086 

Concrete Flooring $668,483 $569,428 $99,054 

Total $2,205,052 $2,002,912 $202,140 

 

The cost estimate of the foundation for both the current and alternative designs is 

$294,707.  This estimate includes the price of the concrete footings, piers, foundation walls, 

elevator and stairwell shafts, and mat slab foundations for the elevator and stairwells.  This 

estimate did not change as there were no design changes to the foundation in the Girder-Slab 

building design.   

A breakdown of the estimate by phase is shown below in Table 18.  Phase 1 is four 8FT 

by 8FT interior footings. Phase 2 is the elevator mat slab. Phase 3 is the stair mat slabs and 5 LF 

of piers. Phase 4 is two 8FT by 8FT interior footings, nine 7FT by 7FT exterior footings, four 

11FT by 11FT footings, and 109 LF of piers. Phase 5 is the cinderblock walls for the stairwell.  

Phase 6 is the foundation walls.  Phase 7 is the cinderblock walls for the elevator. 

Table 18 Foundation Cost Estimate by Phase 
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The cost of the steel frame for the current design is $1,241,862 which includes the cost of 

all of the steel beams (W-shapes), girders (W-shapes), and columns in the building.  The estimate 

for the Girder-Slab design is $1,138,776 which includes all of the steel beams (W-shapes), 

girders (D-beams), and columns.  The cost of the steel frame was $103,086 less for the 

alternative design due to the replacement of W-shape girders with a lighter weight system of D-

beams. The reduced weight of steel simply translated into reduced cost.  A breakdown of the 

estimate by level is shown in Table 19 below.  Below, Columns 1-3 refer to all structural 

columns for levels one through three and the exterior AESS columns which run from level one to 

the canopy.  Columns 4 through Canopy are the columns that run from level four to the canopy. 

The cost of the AESS columns does not include the extra coatings for weatherproofing. 

Table 19 Steel Cost Estimate by Level 

 

The cost estimate for the concrete flooring for the current building design was $668,483 

which includes the slab-on-grade of the first floor, and slab-on-metal-decking for floors two, 

three, four and the roof.  The cost estimate for the concrete flooring for the new design is 

$569,428 which includes the slab-on-grade of the first floor, precast concrete planks for floors 

two, three, and four, and slab-on-metal decking for the roof.  The cost difference between the 



 
59 

 

two concrete flooring designs is $99,054.  A breakdown of the estimate by floor is shown below 

in Table 20. 

Table 20 Concrete Flooring Cost Estimate by Floor 

 

 The cost impact to the current and Girder-Slab design is further explored in Chapter 7 

where it is implemented into a 5D model of the structures. 
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6 Girder-Slab Project Schedule  
The objective of this chapter was to develop a project schedule for the Girder-Slab floor 

framing system. Owner’s meetings on the ASEC site were attended to gain information on the 

current building. The meetings provided insight about the project progress by obtaining meeting 

minutes, participating in site tours, and asking questions about the project to the Project Manager 

(PM) and the Assistant Project Manager (APM). The meeting minutes contained four-week look 

ahead schedules which have assisted with the process of generating project schedules. 

6.1 Scheduling Process 

To create this schedule, the structural activities of the CM’s project schedule were 

entered into the scheduling software, Microsoft Project, found in Appendix L.  The Girder-Slab 

floor framing design can be found in Appendix M. Information about the installation process 

provided by Mack Industries, Inc (Mack Industries, 2015). for the Girder-Slab materials such as 

precast concrete planks and D-beams can be found in the background section. The Girder-Slab 

schedule takes into account the lead-time information for obtaining the Girder-Slab materials. To 

create the new Girder-Slab schedule the tasks “Place SOMD” (slab-on-metal decking) were 

replaced with “Place Concrete Planks”.  A new task was added following placement of the 

precast concrete planks titled “Grout Floor #”.  Also, the tasks titled “Install Metal 

Decking/Detail Metal Deck” were deleted for the girder-slab schedule.  Figure 17 shows the 

comparison of the two schedules for installing the concrete flooring. 
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Figure 17 Floor Framing System Schedules 



 
62 

 

The green arrows indicate the activities that are different between the slab-on-metal decking 

schedule to the Girder-Slab schedule. These differences are due to the distinct elements of each 

floor system. The red highlighted tasks in Figure 17 are referring to the critical path. The total 

construction time of the current floor framing system and the Girder-Slab floor framing system 

were compared.  

6.2 Scheduling Outcomes 

The schedules created for the both the current building design and the Girder-Slab 

building design consist of the preconstruction and construction tasks for the development of the 

structural aspects of the building.  To aid creation of the Girder-Slab schedule, information about 

the installation process for the D-beams and the precast concrete planks provided by Mack 

Industries, Inc. was used (Mack Industries, 2015).  The CM’s provided schedule was compared 

with the four-week look ahead schedules provided in the owner’s meeting minutes to determine 

delays while placing the concrete on the floors.  From attending the owner’s meetings, it was 

determined that there was a three day delay caused by rain which affected the pouring of the 

concrete. The CM was notified by the structural engineers that the order in which the floors were 

to be placed was not reflected in the original schedule.  In the schedule, the order of placing the 

floors was supposed to be level two, level three, and then level four.  However, due to loading 

constraints the order of placing the floor was level three, all of level two except for the balcony, 

level four, and then the balcony on level two. 

The main focus of comparing the two schedules is to discover the differences in the 

installation process of the two separate floor framing systems and the impact of the proposed 

alternative on the schedule. The figure belows shows an excerpt of the installation process for the 

two designs. 
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Figure 18 Floor Framing System Schedules Comparison 

Through comparison of the critical path (highlighted in red) of both schedules for constructing 

the floor framing systems, it was determined that the installation process for the Girder-Slab 

design is nine working days faster than that for the slab-on-metal decking process. The start date 

for the structural floor framing system for the current design is 7/31/15 and the end date is 

9/17/15.  The start date for the structural floor framing system for the current design is 7/31/15 
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and the end date is 9/3/15.  Both schedules have the same start date (3/12/15), but the critical 

path was shortened by nine days. Therefore the critical path for the Girder-Slab floor framing 

schedule would have ended on 9/28/15 and the current floor framing schedule ended on 10/9/15. 

The concrete planks had a faster installation rate compared to that for the slab-on-metal decking. 

However, it is important to note that typically the metal decking and concrete are readily 

available versus the precast plank system. Therefore, Girder-Slab schedules must incorporate lag 

and lead times for the material production. 
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7 Current & Alternative Design 5D Models 
The main objective of this chapter was to create 5D models using BIM software tools for 

both the current and alternative design, incorporating the cost and schedule. This section 

discusses the steps taken to complete the final 5D models of both the current and the alternative 

structural layouts the results.  While using the ASEC’s construction structural drawings provided 

by the construction management firm, a 3D Revit model was created of the current building with 

measurements taken using On-Screen Takeoff 3.  Once the new Girder-Slab design was 

established, another 3D Revit model was created using a similar layout of the current building 

and replacing the current floor framing system with the proposed Girder-Slab system.  To 

produce a simulation of the construction process, the costs and the project schedules for both 

building models were implemented into a Navisworks model also known as a BIM model.  This 

process resulted in two separate BIM models of the current and alternative building designs 

which were used to compare the two designs in terms of construction efficiency and cost 

effectiveness. 

7.1 Current Building Revit Model Process & Outcome 

Autodesk Revit 2016 was used to create a 3D model of the current building.  The 

structural floor framing plans were used to create the current building by using 3D building 

objects representing the actual sizes and materials as used in the current design.  On-Screen 

Takeoff 3 was used to establish values for the dimensions which were not given in the drawings. 

Figure 19 is a visual representation of how this software was used to obtain dimensions not 

explicit provided in the drawings. 
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Figure 19 On-Screen Takeoff 3 Measurement Example 

On-Screen Takeoff 3 was a valuable software tool when creating the foundation walls of 

this building which helped the modeling process move smoothly due to the changing geometry 

of the walls. The current building design model consists of 3D objects representing steel W-

shapes, HSS beams, structural columns, slab-on-metal decking flooring, and the foundation of 

the building. The model also provides a phasing breakdown that allows the user to make graphic 

representations of the gradual construction of the project which was determined in Chapter 6. 

The schedule was modified into 23 phases to support the Revit model of the current design. The 

phasing plan was a useful tool because it allowed for all of the building objects in the model to 

be assigned to a corresponding construction phase.  Revit provides schedules or lists that help 

identify the quantity, family, type of material and the phase in which it was created. This tool can 

provide a variety of information about the model. The schedules created in the Revit file were 

used for the cost estimates found in Chapter 5.  Material schedules with quantities of work can 

then be generated by phase and used to create a cost estimate for each phase of the construction 

process. Figure 20 provides an example of the information extracted from the Revit model to 

produce a cost estimate. 
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Figure 20 Structural Steel Framing Material Schedule 

This figure shows a list of structural steel framing elements that are part of the current 

building model. The following figure presents a 3D visual representation of the current building. 

 

Figure 21 Current Building Design Revit Model 
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For a more detailed visual representation and specifications please refer to Appendix N, 

the Revit Model file for the current building design. This model is only to be used to show a 

visual representation of the building, it does not contain all the details of the structural 2D 

drawings.  

7.2 Girder-Slab Building Design Revit Model Process & Outcome 

The 3D model of the current building was used as a template for implementing the new 

Girder-Slab design.  Once the elements of the new design were established, a 3D model was 

created.  The new design was based off the calculations and marked construction drawings as 

seen in Section 3.3.  The girders of the current building model were replaced with D-beams in 

the Girder-Slab model on the second, third, and fourth floor as shown in the figure below. 

Girder-Slab System provided all 3D D-beam objects which were implemented into the Girder-

Slab design model for ASEC. The D-beam layout of each floor was designed to have D-beams 

span north-south to eliminate W-shaped beams. The figure below compares a section of the 

structural configuration of the 4th floor structural plan of the current design with the same section 

of the Girder-Slab Design of the 4th floor. 
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Figure 22 Current vs. Girder Slab Building Design Level 4 

The figure above shows both the current and Girder-Slab design focused on the fourth 

floor of each design. Please note that flooring elements and the exterior framing were hidden in 

the figure to allow easy viewing. The arrows are pointing to the same beam location.  The arrow 

on the left is pointing to a W18X35 in the current building design which was then replaced by a 

DB9X65 in the Girder-Slab building design. Differences between the two models can be 

observed from the figure. For example, the current building design shows more W-shaped beams 

on the fourth floor running both north-south and east-west to support the required load. The 

Girder-Slab building design shows that infill beams were omitted because the Girder-Slab has 

the capacity for longer spans. 
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Figure 23 Precast Concrete Planks Layout for Level 3 

The Girder-Slab precast concrete planks are designed to be installed in sections. Precast 

concrete slabs were 3D objects used in the Girder-Slab model replacing the slab-on-metal 

decking. Figure 23 above shows an example of the layout sections on the third floor. The 

different colors in the figure are used to show the different precast slab sections.  The precast 

concrete slabs are only installed on the second, third, and fourth floor. The roof remains slab-on-

metal decking and the first floor remains slab-on-grade. The roof, canopy, and the column design 

remains the same as in the current building design for the Girder-Slab building design. The major 

changes pertain to the second, third, and fourth floor as well as a minor adjustment to the 

foundation steel plates.  For a more detailed visual representation and specifications please refer 

to Appendix O, the Revit Model for the Girder-Slab design file. This model is only to be used to 

show a visual representation of the building, it does not contain all the details of the structural 2D 

drawings. 
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7.3 Implementation 5D Models (Project Schedule and Cost 
Estimate) in Navisworks 

The current design project schedule and the Girder-Slab project schedule were 

incorporated into the corresponding 3D models using Navisworks software.  The schedule was 

added to the 3D model to enable a simulations of the construction process.  Each 3D model was 

represented in separate Autodesk Navisworks files with the corresponding project schedules 

created in Microsoft Project. These schedules were broken down into twenty-three construction 

phases and linked to the model’s objects. This created a 4D model that visually aligns the 

schedule and construction process. Figure 24 shows an example of how the schedule for the 

Girder-Slab building design is represented in Navisworks.  

 

Figure 24 Girder-Slab Building Design Schedule Example 

The cost estimates of both designs were also applied to the corresponding Autodesk 

Navisworks models to integrate the cost of installing the different gravity load resisting systems. 

The price of each task can be found in the total cost column of the model. Adding the cost from 

the cost estimates from the Chapter 5 into the 4D models created two separate 5D models, one 

for each approach to the structural design. 

7.4 Final 5D Model Rendering Process & Outcome 

         The separate models were rendered to show the gradual construction process of both the 

current and alternative building designs as shown in Appendix P and Appendix Q.  The models 

show the cost and duration of each phase.  The current building design and the new Girder-Slab 
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design 5D models are used to show the differences in the construction process and the cost.  This 

is done by playing the models simultaneously to visually see the different construction durations 

and costs.  The figures below are side-by-side comparisons of the two building designs. 

 

Figure 25 Current vs. Girder-Slab Building Design Week 1 

 The figure above shows both models at the start of the project. The start dates are the 

same and the total cost of the work for week one is zero dollars. On this week the interior 

footings are being constructed but they are not yet completed. 

 

Figure 26 Current vs. Girder-Slab Building Design Week 4 

The figure above shows both building design models at week four which is the 

completion of the foundation footings, piers, stairwell mat/concrete slab, and the elevator 
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mat/concrete slab. The total cost of the project at week four is $173,702.30 for both models on 

6/14/2015. The items that are translucent are currently being built.  

 

Figure 27 Current vs. Girder-Slab Building Design Week 8 

 Figure 27 portrays both buildings at week eight on 7/15/2015 which show the completion 

of the foundation walls, the elevator shaft tower and the stairwell shaft towers. The total cost of 

the project at week eight is $294,707.03 for both projects.  

 

Figure 28 Current vs. Girder-Slab Building Design Week 11 

 The figure above represents week 11 for both building designs. The columns of levels 

one to three were constructed and level two structural steel beam construction was started. This 

resulted in the current building design model total cost to be $483,810.31 and the Girder-Slab 
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building design total cost to be $483,040.99 at week 11. The Girder-Slab building design is 

lower because there are less beams being constructed compared to the current building design on 

level two. 

 

Figure 29 Current vs. Girder-Slab Building Design Week 13 

The figure above shows both models at week 13. The current building design shows that 

the construction of columns for level four through canopy and the construction of level three 

structural steel beams were started. The current building design during this week resulted in a 

total cost of $813,281.32. The Girder-Slab building design model shows the completion of the 

level two and three structural steel beams during this week. Also the construction of the columns 

for level four through canopy and the slab on grade at level one were started. The Girder-Slab 

design model resulted in a total cost of $801,790.08 at week 13. The Girder-Slab building design 

was more time effective when constructing the floor framing system, and its cost was $11,491.24 

less than the current building design model at this week. 
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Figure 30 Current vs. Girder-Slab Building Design Week 14 

 The figure above shows both models at week 14. In the current building design the 

construction of columns for level four through canopy and the construction of the structural steel 

beams on level three were completed. The construction of level four structural steel beams was 

just started. The current building design during this week resulted in a total cost of $956,041.17. 

The Girder-Slab building design model shows the completion of the columns for level four 

through canopy and the slab on grade at level one during this week. Also, the construction of the 

level four structural steel beams and the installation of the precast concrete planks on level two 

were started. The Girder-Slab design model resulted in a total cost of $932,526.14 at week 14. 

The Girder-Slab building design was more time efficient when constructing the floor framing 

system, and its cost was $12,023.79 less than the current building design model at this week 

which leads to a total savings of $23,515.03. 
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Figure 31 Current vs. Girder-Slab Building Design Week 15 

The figure above represents both models at week 15. The construction of level four 

structural steel beams and installation of slab-on-metal decking for levels two and three were 

started. The current building design during this week resulted in a total cost of $1,028,491.78. 

The Girder-Slab building design model shows the completion of level four structural steel beams 

and the installation of the precast concrete planks for level two and three during this week. Also 

the roof’s structural steel beams construction was started. The Girder-Slab design model resulted 

in a total cost of $1,284,518.27 at week 15. The Girder-Slab building design was more time 

efficient when constructing the floor framing system. During this week the cost of the current 

building model was $232,508.46 less than the Girder-Slab design because the Girder-Slab 

building design has more phases completed than the current building design. The Girder-Slab 

building design has higher percent completion during this week, and therefore has more 

expenditures to date. 
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Figure 32 Current vs. Girder-Slab Building Design Week 16 

The figure above represents both models at week 16. The construction of level four, the 

roof, and the canopy’s structural steel beams and installation of slab-on-metal decking for levels 

two and three were started. The current building design during this week resulted in a total cost 

of $1,256,524.66. The Girder-Slab building design model shows the completion of the roof’s 

structural steel beams and the installation of the precast concrete planks for level four during this 

week. Also the construction of the canopy’s structural steel beams were started. The Girder-Slab 

design model resulted in a total cost of $1,534,875.98 at week 16. The Girder-Slab building 

design was more time effective when constructing the floor framing system. During this week 

the cost of the current building model was $278,351.32 less than the Girder-Slab design because 

the Girder-Slab building design has more phases completed than the current building design. The 

Girder-Slab building design has higher percent completion during this week therefore has more 

expenditures to date. 



 
78 

 

 

Figure 33 Current vs. Girder-Slab Building Design Week 20 

The figure above represents both models at week 20. The construction of level four, the 

roof, and the canopy’s structural steel beams, installation of slab-on-metal decking for levels 

two, three and four were completed The installation of the new TPO roofing has started. The 

current building design during this week resulted in a total cost of $2,125,695.58. The Girder-

Slab building design model shows the completion of the canopy’s structural steel beams. Also 

the construction of the new TPO roofing has started. The Girder-Slab design model resulted in a 

total cost of $1,914,310.35 at week 20. The Girder-Slab building design was more time efficient 

when constructing the floor framing system, and its cost was $211,385.23 less than the current 

building design model with all phases leading up to this week. 

 

 
 
 
 

THIS SPACE HAS BEEN INTENTIONALLY LEFT BLANK 

 



 
79 

 

 

Figure 34 Current vs. Girder-Slab Building Design Week 23 

The figure above represents both models at week 23 with the final end date of 10/26/15.  

The current building design resulted in a total cost of $2,205,052.11. The Girder-Slab design 

model resulted in a total cost of $2,002,912.31.  

It was concluded that the Girder-Slab building design was more time effective when 

constructing the floor framing system. However, the installation of the roof resulted in the same 

end date for both designs because the flooring system did not affect the critical path. It was 

concluded that the Girder-Slab building design is also more cost effective by saving $202,139.80 

throughout the entire construction process. 

For a more detailed visual representation and specifications please refer to Appendices P 

and Q of the BIM models for the current and Girder-Slab building designs. These models are 

only to be used to show a visual representation of the building, they do not contain all the details 

of the structural 2D drawings.  
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8 Project Communication Through Requests for 
Information. 

To determine the effect of Requests for Information (RFIs) on the management process, 

owner’s meetings were attended to identify issues with the project and to develop understanding 

about the communication among attending parties.  Through attending these meetings and 

analyzing RFI data, the purpose of RFI’s was investigated. 

8.1 Owner’s Meetings 

Owner’s meetings were attended every other Tuesday from September 2015 through 

March 2016 on the ASEC site to learn about project progress and obtain meeting minutes, a 

summary of the topics covered at the meeting, which contain 4-week look ahead schedules.  The 

meeting minutes contain updates about the status of the RFI’s.  Often during the owner’s 

meetings, a discussion was held about the open RFI’s, which provided more detailed information 

than was written in the meeting minutes.  This data was recorded during the meetings and used 

for the RFI analysis.  Another source of information about RFI’s is a website, Procore, used by 

the CM which is used for organizing and communicating all project related information to the 

Owner and Architect.  This website specifically contains recorded information about all of the 

RFI’s as well as the detailed project schedule.  The majority of the RFI data was downloaded 

from this website.  The major information downloaded was description of the RFI, the RFI 

initiated date, due date, and closed date, as shown in Table 22 below. 

8.2 RFI Analysis 

An analysis of 147 RFI’s was carried out to determine the use of RFI’s during the 

construction process and whether long reply times to RFI’s made the construction process less 
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efficient.  The RFI’s ranged from being initiated on March 24, 2015 through January 28, 

2016.  The RFI data from the Procore website was downloaded into an Excel spreadsheet and 

then sorted by comparing the due date to the closed date of an RFI.  This spreadsheet can be 

found in Appendix R.  The focus of the analysis was on three of the ten RFI’s that had the 

highest response delays: RFI 69, 73 and 128.  These RFI’s with high delays (14-29 days) were 

individually investigated for two factors: 

1.      Did the delay in response affect the scheduled date related to that task? 

a.       If so, by how many days/weeks was the task delayed? 

2.      Was the task in the critical path? 

This information was used to determine whether RFI’s make the construction process less 

efficient.  Table 21 below shows a summary table with all of the RFI’s with delays of 14-29 

days.  Through further analysis of the RFI’s, it was determined that the column, # of days late, 

represented in Table 22 is sometimes longer than the delay of response.  This is suspected to be 

caused by a lag time between receiving the response to an RFI and doing the official paperwork 

to close the RFI. 

Table 21 RFI Sorting Format 

 

Traditionally RFI’s are used for documenting a request for information about an aspect of 

the project, often involving conflicting or missing information on the plans.  However, through 



 
82 

 

analysis of the RFI process used by the CM for the ASEC, it seems that the RFI is also used as 

an identification method to communicate an issue that has risen about the project. 

For example, RFI number 69, shown in Table 21, deals with the transformer on the 

ASEC site.  The Owner was originally responsible for the transformer, but during construction 

ownership was transferred to National Grid.  As a result of this ownership change, the XFMR 

transformer grounding and pad had to follow the specification provided by National Grid instead 

of the one provided in the contract documents.  The RFI for this topic is a summary of the 

changes directing the readers to the new specification provided by National Grid and a CCD 

(Change to the Contract Documents).  It seems that this RFI was used as a method to officially 

alert everyone working on the project about the change.  This task was not on the critical path so 

there was no delay to the schedule. 

The RFI process was also studied to determine the effect of RFI turnaround on the 

construction process.  There is a high volume of RFI’s from start to finish of a construction 

project.  It is important for those responding to the RFI to reply quickly, as it helps to prevent 

delays in construction.  It is particularly important to get quick replies to the RFI’s that deal with 

critical path items, as any delay to the critical path will extend the end date of the project.  The 

table below shows a summary of how the RFI’s were sorted by the delays in response.  As 

shown there was a 29-day delay for RFI number 69 and a 14-day delay for RFI number 73. 

Table 22 RFI Delay Tracking 
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RFI number 73 is an example of a situation in which the CM developed a design solution 

in a RFI to prevent a 5 week delay to the critical path.  This RFI appeared to have a submittal 

delay of 14 days; however, it was determined through analysis that the RFI was replied to on 

time. The delay reflects a time lag in doing the official paperwork to close the RFI.  The issue at 

hand was that the Miscellaneous Metals contractor required an extra five weeks to provide 

galvanized sleeves for a guardrail, which needs to be installed before placing concrete around 

it.  Waiting five weeks for the guardrail sleeve would prevent building a concrete wall and 

backfilling.  This was necessary to prepare to bring a lift onto the site used for steel 

detailing.  The steel detailing was a critical path item so a five-week delay would have set the 

project schedule back.  The CM developed a design solution to use a wood block the same size 

as the sleeves to be placed while the concrete is placed and replaced by the galvanized sleeves 

once they arrive on site.  They requested a fast reply time for the RFI which was replied to that 

day.  This allowed the problem to be fixed and prevented any delay to the schedule.  This RFI 

serves as a “pro-active approach” used by the CM for the construction management process. 

On the other hand, RFI number 128 is an example in which the critical path was 

affected.  This RFI deals with a clarification to the placement of electrical rough-in in various 

locations throughout the building, as the electrical and architectural drawings did not 

correspond.   Installation of the rough-ins was originally scheduled for January 8th of 2016, but 

the installation was pushed back because the response to the RFI didn’t come until the 20th of 

January.  The electrical rough-in is a critical path item because it needs to be completed before 

the drywall can be installed.  As a result, the 28-day delay to closing this RFI had a major impact 

to the schedule. 
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Through analysis of the information gathered from the owner’s meeting, meeting 

minutes, and Procore RFI data of the previous three requests for information, it seems that RFI 

use falls into three different categories: official communication, pro-active approach, and 

common use.   
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9 Conclusions 
This project determined that using the Girder-Slab floor framing system design is a cost 

effective and time efficient alternative while maintaining the structural integrity of the building.  

The structural capacity of the building remained the same, even though fewer beams and 

girders were required. Additional angle sections provided support for the precast planks along 

the perimeter of the building and along open areas. The new fixed connection for the exterior 

columns offered more support to the structure without a negative impact on the cost or schedule.  

The Girder-Slab building design is more time effective when constructing the floor 

framing system. Both schedules have the same start date (3/12/15), but the critical path was 

shortened by nine days. Therefore the critical path for the Girder-Slab floor framing schedule 

would have ended on 9/28/15 and the current floor framing schedule ended on 10/9/15. It was 

concluded that the Girder-Slab building design is also more cost effective by saving $202,139.80 

throughout the entire construction process.  

The RFI analysis showed that RFI’s are commonly used for the purpose of requesting 

information about a project, but can also be used to officially document information about the 

project and notify all involved.  The study also determined that RFI’s with long response times 

can cause delays to the project schedule, especially for RFI’s dealing with critical path items. 

In this situation, through research, the Girder-Slab floor framing system design is was 

shown to be a cost effective and time efficient alternative. However, in practice this may not 

always be the case due to the precise construction and installation processes required by this new 

type of floor framing system.  
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Appendices 

All Appendices are electronic files that can be found in the “Appendices zip-folder." 

Appendix A Final Loading Combination Results  

Appendix B Final Girder-Slab Results  

 Appendix C Final W Shape Selection Results 

Appendix D Sample Angle Section (L-shape Hand Calculations) 

Appendix E Final Angle Section Selection Results 

Appendix F Hand Calculations for Steel Baseplate Selection  

Appendix G Foundation Cost Estimate 

Appendix H Slab-On-Metal Decking Cost Estimate 

Appendix I Steel Cost Estimate 

Appendix J Precast Concrete Planks Cost Estimate 

Appendix K Explanation of D-beam Cost 

Appendix L Current Building Design Schedule  

Appendix M Girder-Slab Building Design Schedule 

Appendix N Current Building Design Revit Model 

Appendix O Girder-Slab Building Design Revit Model 
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Appendix P Current Building Design BIM Model 

Appendix Q Girder-Slab Building Design BIM Model 

Appendix R RFI Analysis 

Appendix S MQP Gannt Chart 

Appendix T MQP Proposal 
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