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Abstract 

Sailboats have played an integral part in history and development of modern society.  The 

scope of this project focuses on one particular aspect of the operation of this boat: the 

crew.  The crew is the secondary boat operator sitting toward the front of the boat and the 

primary need for the crew is to simply shift his/her weight in the boat in order to keep the boat 

at the desired angle.  By replicating this action with an autonomous device, the crew can be 

eliminated.  By setting a desired heel angle on a control panel, a mass driven by a motor can be 

moved laterally along a track in order to adjust the heel angle accordingly.  The goal of this 

project is to allow a sailor to safely operate a Flying Junior dinghy without a crew and be able to 

maintain full control of the boat.   
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Executive Summary 

Throughout history sailboats have been involved in the daily lives of human beings, built 

and controlled by manpower. The more recent sport of sailing and development in robotics 

presents an opportunity for change. This MQP team posed the question: what if a robotic 

system could replace the role of a sailor. The scope of this project focuses on one particular 

aspect of the operation of a boat: the crew.  The crew is the secondary boat operator sitting 

toward the front of the boat and the primary need for the crew is to simply shift his/her weight 

in the boat in order to keep the boat at the desired angle of heel.  What if this motion could be 

replicated with an autonomous device; could it replace the crew?   In order to understand the 

details of this problem the team did an analysis of the role of the crew as well as the Flying 

Junior Dinghy in order to develop an understanding of the requirements for the robotic system. 

The purpose of the project was to try to replicate the motion of a crew and in order to do 

that the team analyzed the crew's role in two ways. The first and simpler method was to take 

the average crew and determine how much righting moment they could generate. The selected 

crew size was a person 5 feet and 8 inches tall and weighing 150 pounds. They were able to 

generate 425 ft-lbs of righting for by hiking out the side of the Flying Junior. In order to further 

understand the true righting force needed by the system a full system analysis was done. By 

using the sail area of a Flying Junior while close-hauled, measured and calculated centroids of 

the sail and centerboard, and a maximum wind condition of 15 knots, the team determined 

that a device would need to generate 398 ft-lbs of torque in order to hold the boat at a 

constant heel. The first approach yielded a higher torque so the 425 ft-lbs was selected as our 

project's righting moment requirement. The second very important part of the analysis was 
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determining the location on the boat within which the system could operate. This was 

important because the deck of the Flying Junior vessel is very crowded so the system must be 

clear of the other parts of the boat, such as the mast and rigging, in order to not impact 

operation. Measurements were taken and the available space was noted and used as a 

parameter during the design phase. 

Several challenges were present in designing a device to accomplish this task.  First, all of 

the electronics involved would need to be sealed in waterproof boxes to prevent shorting due 

to splashing water.  Second, all of the materials used need to be resistant to rust and corrosion, 

also due to the wet and potentially salty environment.  Finally, energy restrictions were an issue 

when dealing with an isolated system that requires a significant amount of power.  Batteries 

are heavy, and keeping the weight of the device less than the weight of an average crew is 

another important restriction.  The final design of our project is able to overcome all of these 

challenges.  Dry boxes were used to keep all electronics safe, 6061 aluminum alloy was used for 

all track components, and a 70 pound marine battery was selected that will provide 10 hours of 

continuous use on a single charge, and will also be used as the mass that creates the force 

necessary to stabilize the boat. 

The electrical system consists of a custom designed PCB board containing a 

microprocessor, gyroscope, magnetometer, accelerometer, and inputs for the various sensors 

and user controls.  This PCB, along with a Talon motor controller, is housed in a waterproof box.  

The microprocessor receives input signals that determine the position of the boom, position of 

the mass along the track, the heel angle of the boat, and the desired heel angle set by the 

skipper.  With these inputs, the microprocessor is able to send PWM signals to the motor 
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controller in order to adjust the position of the mass resulting in a righting moment that will 

heel the boat to within a threshold of the desired heel angle. 

The design of the mechanical system is a horizontal two-stage bidirectional telescopic 

slide.  This allows the track and mass system to be extended beyond the edge of the boat on 

both sides while heeled, and completely within the boat when centered.  Movement of the 

mass along the track is controlled by a CIM motor driving a chain and sprocket assembly for the 

first stage and a rope and pulley system for the second stage.  The two stages of the track are 

mounted with sealed ball bearings to reduce friction.  An easy to remove clamp system was 

also implemented to make installing and uninstalling of the entire device quick and easy and 

without requiring any modification to the boat itself. 

The final system successfully implemented the use of a Inertial measurement unit to 

determine the angle of heel and a PID control loop to maintain the desired heel angles. The 

system's final weight was 130 pounds, underneath the average crew weight of 150 pounds. It 

was able to generate a righting moment of 466 ft-lbs, higher than the 425 ft-lbs determined 

during our analysis. Functionality was tested in the laboratory on a custom built testing 

apparatus. The results showed that the system was in fact able to constantly adjust to hold the 

set heel angle and perform correctly based off of a series of user controls. The system 

performed the desired tasks stated in our project proposal: easy to install, weighs less than 150 

pounds, provides at least 425 ft-lbs of righting torque, and can operate for several hours on one 

charge. 

 

 



 
 

1.0 Introduction 

Sailboats have played an integral part in the history and development of modern 

society.  The oldest known record of a boat driven by sails dates back to 5000 BC. For thousands 

of years, sailboats were the optimal mode of transportation through water and were used for 

commercial transportation, fishing, and warfare.  Today, sailboats are rarely used for 

commercial purposes; however, sailing has become a widely enjoyed sport and recreational 

activity. Sport sailing has been around since the 17th century and has since spread worldwide 

with hundreds of different classes and types of races. 

This project focused primarily on boats involved in sport sailing, specifically dinghy 

vessels.  The boat selected for this project is the Flying Junior dinghy, and sailing a boat this size 

requires two people to operate.  However, there are many situations in which someone may 

either want to sail alone, or just doesn’t have a sailing partner available.  If one tries to sail 

alone, he/she is extremely susceptible to capsizing due to not having enough weight to counter 

the roll of the boat.  These factors make sailing alone in a two person boat a very unwise 

choice. 

The scope of this project focused on one particular aspect of the operation of this boat: 

the crew.  The crew is the secondary boat operator sitting toward the front of the boat and the 

primary need for the crew is to simply shift his/her weight in the boat in order to keep the boat 

at the desired angle of heel.  This action can be performed both autonomously and more 

efficiently.  By replicating this action with an autonomous device, the crew would be eliminated 

and it would then be possible to operate a Flying Junior solo.  Using an inertial measurement 
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unit, the heel angle of the boat in the water can be measured.  By setting a desired heel angle 

on a control panel, a mass driven by a motor can be moved laterally along a track in order to 

adjust the heel angle accordingly.  The goal of this project is to allow a sailor to safely operate a 

Flying Junior dinghy without a crew and be able to maintain full control of the boat.  The project 

objectives include: 

 Design a weighted mechanical system to replicate the righting force of a 150 lb. 

crew 

 Adjust a moving mass along a track to correct the heel to the desired angle 

 Create a device that weighs less than 150 lbs. 

 Provide enough energy for multiple hours of continuous use. 

The end result of this project is a device that can be easily attached to any Flying Junior 

dingy, weighs less than an average human being, and can efficiently maintain a specific heel 

angle as well as an experienced crew is able to. 

 

Figure 1: Sailboat Stabilization System  
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2.0 Literature Review 

 This chapter functions to deliver the background necessary in order to research and 

develop an autonomous stabilization system for a sailboat. First we discuss sailing, including 

sailboat boat terminology, the basics of sailing, and the physics of sailing. Second, we focus on 

the stability of a sailboat, introducing gravitational and buoyant forces as well as the stability 

curve. Lastly, we focus on stabilization systems, both passive and active, employed on boats 

today.  

2.1 Sailing 

To understand the scope of this project, one must first know some key aspects of sailing, 

including the parts of a sailboat, how to sail a vessel, and how one is able to sail.  The world of 

sailing has its own unique set of terms to describe the various parts of sailboats.  These are the 

terms that will be used throughout the report so it is important to become familiar with them.   

2.1.1 Sailboat Terminology  

Sailboats are complex pieces of engineering that have been finely tuned over their 

several thousand years in existence in order to optimize utilization of wind speed and 

direction.  There are many styles of sailboats with different quantities, shapes, sizes, and 

configurations of sails that are specialized for different wind and ocean conditions.  The type of 

sailboat involved in this project is known as a sloop rig.  This type of boat has a single mast with 

two sails.  The mainsail is located aft of (behind) the mast and is also connected to a boom, a 

free swinging horizontal beam that controls the angle of the mainsail.  The foresail is called the 

jib and is located at the front of the boat.  The purpose of the jib is primarily to increase speed 
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and improve handling of the boat. A sloop rig requires two people to operate. In the stern of 

the boat is the skipper. This person controls the angle of the boom and the rudder and has 

almost complete control of the operation of the boat. The other operator, located toward the 

bow, is known as the crew. The primary need for this person is to use their weight to influence 

the roll of the boat through a method called hiking. Hiking is essentially the act of leaning out of 

the boat so as to shift one’s center of gravity away from the center of rotation of the boat in 

order to generate a torque that opposes the torque created by the wind on the sails. The crew 

adjusts his/her hiking position in order to achieve the desired angle of heel. In addition to this, 

the crew is also responsible for adjusting the tension of the jib.   

The bottom of the sail is known as the foot and on the main sail it is connected to the 

outhaul, which is the line used to control the tension of the lower section of the sail.  The top of 

the sail is the head; this is connected to the top of the mast with the halyard, which is the line 

used to hoist the sail to the top of the mast.  The leading edge of the sail is the luff which is 

tensioned by a line called the Cunningham.  The tailing edge of the sail is the leech, and in some 

cases is tightened by a leech line to prevent fluttering of the sail. In addition, the boom-vang is 

a line that effects the leech because it controls the vertical angle of the boom which pivots at a 

set point on the mast. This tightens the whole sail, but because it is pivoting off of the mast the 

tail edge experiences the most displacement, thus the most tension.   The leading bottom 

corner of the sail is the tack; this is connected to a fixed point for both the mainsail and the 

jib.  The aft bottom corner of the sail is the clew; in the case of the jib, it is the point of the sail 

that is not connected to any fixed point and is used to control the boat. The foot of the mainsail 

is attached to the boom which is attached to the mainsheet, the line that controls the trim of 
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the sailboat. A line is the term used to describe a rope that is in use.  The word ‘rope’ is only 

used for a rope that is not currently in use or serving any purpose.  In addition, the term sheet 

is used to describe a line that is used to control the movable corners, or clews, of the sails.  The 

main body of the boat is known as the hull; the front of the hull is the bow, while the rear is the 

stern.  The left and right sides of the boat are referred to as port and starboard respectively.  At 

the stern, there is a rudder that is used to steer the boat. A tiller is attached to the rudder to 

control its angle relative to the boat, thus controlling its heading.  Protruding from the bottom 

of the center of the boat is the centerboard which is a foil fixed in place that helps greatly in 

stabilizing the boat. Figure 2 provides visualization for parts of the sailboat mentioned above. 

 

Figure 2: Parts of the Sailboat (Kylander, 2013) 
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2.1.2 Basics of Sailing  

 An important aspect in sailing a boat is the orientation of the sailboat relative to the 

wind. Figure 3 below shows the seven general positions a sailboat can travel relative to the 

direction of the wind.  

 

Figure 3: Orientation of Boat Relative to True Wind (Lochhaas, 2013) 

 

 As shown in Figure 3, one cannot sail directly into the wind; however, the sailboat can 

travel at approximately 45° against the wind, commonly referred to as close hauled. Sailing 

perpendicular to the wind’s direction is known as beam reach, with the wind coming directly 

over either side of the beam, the widest part of the boat. Broad reach is acquired when the 

sailboat is oriented 135° relative the wind’s direction. When the wind is blowing directly in line 

with the sailboat, also known as running, the sailboat travels in the same direction as the wind.  

 The motion of a sailboat affects the relative wind direction and magnitude because the 

boat’s movement through the air creates its own relative wind. This idea can be seen onshore 

as well by simply running. As a runner moves directly into the wind, the wind seems much 

stronger than when he was standing still. This is because the apparent wind is the vector sum of 
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the inverse of velocity forward and the actual wind. Figure 4 below shows the wind speed 

relative to the boat in red, the boats velocity in blue and the true wind in green. One can 

observe that when a boat is running from the wind the apparent wind is low, because the true 

wind vector and velocity vector oppose each other.  

 

Figure 4: Boat Velocity relative to True and Apparent Wind (Erwan, 1972) 

 For a boat to travel in a forward motion, the sails must be adjusted to provide lift and 

drag forces. The contact of the wind and the sail creates a roll force that makes the sailboat 

rotate around the centerline of the boat, also known as heeling. The sailor can counteract this 

force by positioning their center of mass on the windward side, stabilizing the roll of the 

sailboat. To increase the speed of the sailboat, one must pull the sheets of the mainsail and jib, 

bringing the corners closer to the boat and allowing the wind to fill the sail. Pulling the sheets 

until the sails stop luffing, oscillations in the shape of the sail due to the wind traveling on each 

side, allows the force produced by the sails to move the boat forward. The motion of adjusting 

these sheets is known as trimming, allowing the sail to take the best shape for the direction you 

are sailing relative to the wind. When trimming, the sail must be tight enough so that the luff of 

the sail is not flapping; however, an over tightened sail only allows the wind to blow against one 
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side, causing the boat to heel over. Trimming is commonly associated with the turning of a boat 

relative to the wind; as a boat turns towards the wind (heading up), the sails are pulled in and 

when a boat turns away from the wind (heading down), the sheets are eased out.  

In order to turn the boat towards port, the tiller must be moved to starboard. Moving 

the tiller in one direction rotates the rudder to the other side, where the resulting forces create 

a turning moment about the center of the boat. Moving from starboard tack to port tack, as 

depicted in Figure 5, involves two motions: turning the boat and either tacking or gybing. These 

two terms describe the manner in which the sail crosses over to the opposite side of the boat.  

 

Figure 5: Port Tack and Starboard Tack (Northern Light, 2009)  

These are two distinct turns: turning 90 degrees through the wind from close hauled to 

close hauled (tacking) and turning so that the wind crosses the stern, a run to a run (gybing). 

Tacking involves oncoming wind while gybing occurs going down wind and differs from tacking 

in that the sails and boom move from one side to the other very aggressively. This is because 

before gybing the boat is on a run, where the sails are fully out. When the wind begins crossing 
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the opposite side of the boat, the boom must travel a large distance across the boat and can 

reach dangerous speeds. Gaining speed before tacking ensures that the boat will not stall when 

turning into and through the wind. As the boat crosses the wind and stops heeling, the crew 

must shift their weight to the opposite side. Additionally after a tack or a gybe, the jib sheet 

must be moved to the other side, similar to the mainsail. 

2.1.3 Physics of Sailing 

Sailboats are able to move forward as a result of the interactions between the sails and 

the wind as well as the interactions between the centerboard and the water. The four forces 

which primarily affect the boats movement are the following: the force of the wind on the sail, 

the force of water on the centerboard and rudder, the buoyancy force on the hull, and the 

hiking force from the boat’s skipper and crew. 

 There are two main components of the force exerted by the wind, the drag component 

and the lift component. These components maintain a constant direction relative to the wind 

but the magnitude of each varies. The lift component comes from the difference between the 

air pressures on each side of the sail. This difference is attributed to Bernoulli’s principle, which 

states that for an ideal flow, an increase in the speed of a fluid occurs simultaneously with a 

decrease in pressure or a decrease in the fluid’s potential energy. The air travels at different 

speeds over each side of the sail due to its shape, as seen in Figure 6 below.  
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Figure 6: Pressure of Air on Sails (Thriveni, 2007) 

The air must travel on both sides of the sail in an equal amount of time; however, the 

distance traveled on each side is different, resulting in different air speeds. Therefore, the air 

traveling on the convex side of the sail travels a larger distance at a faster speed, but in the 

same amount of time. This side of the sail now has reduced pressure so a pressure driven lift 

force is created. This resulting lift force occurs perpendicular to the wind and varies in 

magnitude. The drag is the force exerted on the sail to push it downwind. This force is parallel 

to wind and is dependent on the aerodynamic properties of the boat, rig and sails. 

 The lift force combined with the drag force produce the resultant force, as shown 

below. This resultant force is the overall force due to the wind and when trimmed correctly is 

perpendicular to the sail at its centroid. By knowing this force, it is possible determine the force 

driving the boat forward as well as the force causing the boat to heel. Figure 7, shows how 

these forces work when traveling upwind on a close hauled course. 
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Figure 7: Resultant Force Vectors (Lafforgue, 2007) 

 Figure 7 illustrates how the resultant force, perpendicular to the sail, is the vector sum 

of the drag and lift forces. Figure 8 below shows how adjusting the sail relative to the wind 

affects the resultant force. For example, going directly with the wind is driven predominantly by 

the drag force, whereas close hauled; the main component is the lift force.  

 

Figure 8: Sail Adjustments Relative to Wind (Salu, 2009) 

As the boat travels through the water, it experiences a drag force in the direction of the 

oncoming water and a perpendicular lift force from the water traveling over the centerboard. 

When a boat is traveling at a constant speed, the resultant force of the water acting on the 
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centerboard is equal and opposite of the force on the sails as depicted in Figure 9 below. The 

combination of the forces from the wind and forces from the water creates forward motion. 

 

Figure 9: Forces Acting on Sailboat (Wolfe, 2002) 

The boat rotates primarily around the centerline of the boat from bow to stern. This 

rotation is caused by the forces discussed above as well as the buoyancy of the boat and the 

weight of the crew. As the boat heels over, the center of buoyancy moves further from the 

centerline of the boat and provides a stabilization force. However, as the boat heels, the 

effectiveness of the crew begins to decrease, as shown in Figure 10. 
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Figure 10: Crew Force vs Angle of Heel 

The crew uses their weight to maintain a desired heel angle, one of their main roles. As 

the boat heels, the force component perpendicular to the lever arm decreases due to 

downward gravitational force.  

2.2 Stability 

Archimedes principle, the physical law of buoyancy, states that any body completely or 

partially submerged in a fluid (gas or liquid), at rest, is acted upon by an upward, or buoyant, 

force, the magnitude of which is equal to the weight of the fluid displaced by the body. These 

gravitational and buoyant forces are those which act upon the boat at rest, neglecting the 

external forces, such as wave motion and wind, which significantly decrease stability at sea.  

2.2.1 Gravitational and Buoyant Forces 

There are three types of equilibrium that can occur on a sailing vessel: stable, neutral, 

and unstable. Stable equilibrium implies that the boat will return to its original position, having 

positive stability, if acted upon by an external force. Neutral equilibrium implies the boat will 

remain in its displaced location after acted upon by an external force, having the characteristic 
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of neutral stability. Unstable equilibrium occurs when the boat continues to move in the same 

direction of the external force and continues to do so after the force has been removed. For 

this case, the boat is initially unstable. (Edwad V. Lewis, 1988) 

Gravitational forces are downward forces distributed along the body’s length, for which 

the resultant force is found by using the mass of the body and the acceleration due to gravity 

(g). The buoyant forces act vertically upwards on the body and can be found by first knowing 

this gravitational force, which is equal to the weight or mass of displaced fluid for which it is 

submerged in. Knowing the weight of the body (W), one can calculate the volume of 

displacement (∆) using equation 1, where 𝑝 is the mass density of the fluid and 𝑔 is the 

acceleration due to gravity.  

∆ =  
𝑊

𝑝𝑔
 

Equation 1: Volume of Displacement  

The centroid of the underwater portion of a submerged object is the center of 

buoyancy, a point at which the resultant buoyant force vertically passes through. The center of 

buoyancy, the center of gravity for the displaced fluid, can constantly change at sea; however, 

the center of gravity for the boat is fixed. The center of gravity is the point for which a resultant 

weight force passes through, which tend to be located near the middle of the body. For the 

body to float, the buoyant force must be equal to or greater than the gravitational force. For 

this reason, a designer must take into account any content which will be added onto the vessel 

to achieve the proper distance of the bow to the waterline to minimize resistance.  
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The interaction of gravitational and buoyant forces determines the attitude of the 

object. If no other forces act on the object, the object will settle once the buoyant force is equal 

to its weight, and will continue to rotate until two conditions are met. First, the center of 

buoyancy and center of gravity must lie on the same vertical axis. Second, any rotation from 

this position will cause equal gravitational and buoyant forces to rotate the object back to its 

original position, resulting in stable equilibrium. (Edwad V. Lewis, 1988) 

2.2.2 Stability Curve 

In order to keep a boat stabilized, it is important to understand the stability curve.  The 

stability curve shows the relationship between the center of gravity and center of buoyancy of a 

boat.  The center of gravity of the boat always remains the same; however the center of 

buoyancy is dependent on the volume and relative location of air displaced below sea level by 

the hull of the boat.  The location and magnitude of this moment varies based on the heel of 

the boat since the hull is not perfectly circular.  The righting moment, which is the force the 

boat is exerting toward a vertical orientation, is greatest when the center of gravity and center 

of buoyancy are at a maximum horizontal distance.  In the example in Figure 11, this occurs at 

60 degrees from vertical.   
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Figure 11: Stability Curve (Simpson, 2014) 

This angle is known as the Angle of Maximum Stability (AMS).  As the angle increases 

past this point, the righting moment decreases.  The Angle of Vanishing Stability (AVS) is the 

point at which the relationship between center of gravity and center of buoyancy tend to 

capsize the boat rather than right it.  The boat then enters a state of inverted stability that 

follows the same dynamics as upright stability. 

2.3 Stabilization Systems 

Both active and passive systems are employed in stabilizing marine vessels due to the 

effects of gravitational, buoyant, and external forces. Active systems require power to operate 

the system while passive systems do not, consisting of only mechanical components. 

2.3.1 Passive Systems 

A bilge keel, as shown in Figure 12, is a passive system added onto the boat to reduce 

the amount of roll on the boat. Primarily, two bilge keels are welded to each side of the craft, 

toward the lower portion of the hull to decrease the draft of the vessel. The purpose of the 
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bilge keel is to increase the hydrodynamic resistance to roll; however, bilge keels tend to 

increase hydrodynamic resistance to forward motion (Kasten, 2012). Although this is a fairly 

simple and relatively inexpensive addition to a boat, it slows down forward motion and its 

effectiveness is far less than most other methods of stabilization.  Bilge keels are often used on 

smaller fishing boats. 

 

Figure 12: Examples of keels (Encyclopedia Britannica, 1994) 

Another passive system involves an outrigger, which is incorporated into the boat’s 

rigging on the main hull. The outrigger extends beyond the side of the boat, acting as another 

hull parallel to the main hull used to reduce roll and increase stability (Kasten, 2012). 

Depending on the size of the outrigger and the utilization of either one or two outriggers, they 

are extremely effective in maintaining stability of a boat.  The downsides are that they are quite 

expensive, large, and heavy, creating large amounts of drag and rendering the efficiency 

minimal.  For these reasons, they are rarely used on monohull sailboats.  
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Figure 13: Outrigger on Sailboat (Tenacity, 2005) 

Anti-roll tank systems incorporate tanks fitted into the ship to stabilize roll motion. 

Commonly known as Flume tanks, free surface tanks run the entire width of the vessel, where 

liquid will move from side to side in response to roll. Each tank is fitted with several baffles to 

slow the rate of water transfer from the port side to the starboard side. U-tube tanks also span 

the entire width of the vessel; however, a crossover duct and an air column connect the tanks. 

The partially filled tanks create a gap of air on top of each tank for fluid to flow from tank to 

tank as the boat begins to roll. This system utilizes less space than free surface tanks because 

the space above and below the cross-over duct is available. Lastly, external stabilizing tanks, 

used in the early 1900s, consisted of the same concept used in U-tanks; however, the two tanks 

are only connected by the air column. Water flows into and out of the tanks through an 

opening in the ship’s hull to the sea. This system is susceptible to high levels of corrosion due to 

sea water and hydrodynamic resistance. The resistance to forward motion is created by the 

holes in the hull and momentum drag force, the force required to drive seawater outside the 

boat to the speed of the boat as the water moves in. Antiroll tanks can be large and add 

significant weight and drag to small boats.  They are intended to only reduce roll motion so if 

the boat is at a constant heel, the antiroll tank becomes less effective as water slowly shifts to 
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the lower side of the tank, eventually rendering it useless and even detrimental to the boats 

stability.  (Edward V. Lewis, 1988) 

Paravanes, as shown in Figure 14, are mainly used to stabilize trawlers and slow moving 

vessels. They are essentially weighted water kites dragged underwater on both sides of the 

boat, hanging from an outrigger pole to well below the surface of water. As these weights are 

pushed through the water, they resist being pulled up through the water by the rolling 

movements of the boat (Kasten, 2012). Paravanes are very effective at stabilizing a boat, and 

are relatively cheap and easy to install.  Despite this, they are rarely used on sailboats as their 

physical configuration often interferes with the operation and performance of the sails. 

 

Figure 14: Paravanes on a Boat (Kasten, 2012) 

2.3.2 Active Systems 

As compared to the passive stabilization systems, an alternative method widely used 

today involves the application of active stabilization.  Active stability systems are defined by the 

need to input energy to the system in the form of a pump, hydraulic piston, or electric actuator 

(Wikipedia, 2013). Many vessels today are fitted with active stability systems which can range 

from stabilizer fins, U-tube tanks, and even gyroscopic inertial stabilizers. With the harsh 
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conditions and effects on ships out at sea, the use of these stabilization methods proves to be a 

necessity and a solution for many ongoing mariners.    

Stabilizer fins can be helpful in reducing the effects of roll on a ship. They are typically 

mounted beneath the waterline and work by producing lift or down force when the vessel is in 

motion. Furthermore, these devices can be used with gyroscopes to change the angle of the fin 

in order to counteract roll.  When the ship begins to roll to the left or right, the fins counter that 

motion and keep it upright. This technology has made marine travel easier, calming the fear of 

a vessel turning over. Active stabilizer fins are extremely efficient at attenuating roll.  The 

efficiency is a function of velocity, so they become more effective as velocity of the vessel 

increases.  Unfortunately stabilizer fins are quite expensive, difficult to install and rarely used 

on small vessels. (Sheng, Liang, Gao-yun, & Bing, 2008) 

 

Figure 15: Active Stabilization on a Boat (Foure Lagadec, 2006) 

Active tank stabilizers use an axial flow pump and servo-controlled valve system to force 

the water from one side of the ship to the other rather than allowing it to move freely. 

Furthermore, they are used to control the flow of air and liquid throughout the tanks. The main 

disadvantage to this system is when the pump is operated there is a time lag for a sizeable 
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amount of fluid to arrive at a tank, limiting instant stabilization, imposing and issue for small 

vessels.  

Flywheel gyroscopes are another technology used in active stabilization today. This 

device is used to measure or maintain balance based on the principle of angular momentum. A 

gyroscope is comprised of three different axes: spin, input, and output. The spin axis is the axis 

about which the flywheel is spinning and is vertical for a boat gyro. The input axis is the axis 

about which input torques are applied (Townsend, Murphy, & Shenoi, 2007). For a boat, the 

principal input axis is the longitudinal axis of the boat since that is the axis around which the 

boat rolls. What this means is that the gyro will rotate about this longitudinal axis also known as 

a transverse axis in reaction to an input. This system functions similar to a spinning top.  As the 

rotational speed increases, the tendency to stand straight and maintain an upright position 

increases. Flywheel gyroscopic stabilizers are a very effective stabilization method, but they are 

very heavy, expensive, have high power consumption, and take a significant amount of time to 

spool up to operating RPM (Wikipedia, 2013).  

It is clear that for small sailboats, there are very few viable options for effective 

stabilization.  There is a strong need for a stabilization system that is easy to install, light-

weight, and inexpensive. 

 



 
 

3.0 Methodology 

 The objective of this project is to develop an autonomous stabilizations system for a 

Flying Junior sailboat. First, we performed a mechanical analysis to determine the physical 

characteristics of the sailboat and to calculate the forces and torques necessary to replace the 

crew. Next, we analyzed the power requirements and determined the motor required to 

perform the tasks set forth from the mechanical analysis. We also investigated the types of 

sensors that are required to provide the necessary information to control the system. Finally we 

calculated what size battery is necessary to provide a long duration of use as well as provide 

sufficient power for the circuitry. 

3.1 Mechanical Analysis 

 This section covers the process of examining the mechanical aspects of the system. This 

entails the analysis of the boat’s physical characteristics, examination of the role of a crew, and 

desired mechanical properties of the system. 

 

3.1.1 Boat Analysis 

 The boat we have selected to design this system around is the Flying Junior Dinghy. This 

boat has low stability and relies on two members to keep the boat flat by hiking. This project 

aims to eliminate the second crew and to allow for solo sailing. In order to accomplish this, it is 

vital to examine the forces acting on the system to determine how the system responds 

without any crew. 
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Figure 16: Flying Junior Characteristics (Browning, 2014)   

3.1.2 Force and Torque Calculations 

 The main driving force of the system is the force caused by the wind, which can be 

calculated for a specific sail area and wind speed. Using an apparent wind speed of 15 knots, 

which is at the higher end of comfortable sailing conditions, and a sail area of 100 square feet, 

which is the combined area of a typical FJ mainsail and jib, it is possible to determine the forces 

acting on the boat. The magnitude of the force can be calculated using the equation: 

Sail Force=0.0034 x Sail area (ft2) x Force Coefficient x Wind Speed2 (knots2) 

 The equation above is given in Royce’s Sailing Illustrated sailing bible (Royce, 1993). The 

average force coefficient for similar boats is 1.1 and varies depending on the sail and rig design. 

It can also be noted that the wind speed is squared, resulting in an exponential increase in sail 

force with a linear increase in wind speed.  
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Sail Force = 0.0034 x 100 x 1.1 x 152 = 84.2 lbs.  

 This is the force applied at the centroid of the sails, which was calculated using 

SolidWorks software. This was accomplished by modeling the two sails in an appropriate 

relation to each other and determining the center point as shown in Figure 17. 

 
Figure 17: Centroid of Sails 

 Before we are able to determine the torque about the centerline caused by the wind we 

must determine the position of the boom relative to the centerline. The maximum torque 

occurs on closed hauled so the boom position was calculated for this boat on the ideal close 

hauled position, in which the tip of the boom is over the air tank of the dinghy. The boom angle 

is calculated by using the boom’s length and the distance of the tip of the boom from 

centerline, resulting in a boom angle of 18.2 degrees. From this it is possible to determine the 

force on the sail perpendicular to the lever arm. The resulting force is 80 lbs. applied to the 
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centroid as shown in Figure 14. This force is equal and opposite to the force generated on the 

centerboard of the boat. The centroid of the centerboard was also used for the location of the 

force from the water. The torques were examined about the centerline of the boat at the level 

of the rail as depicted in Figure 18.  

 

Figure 18: Torque Calculations (*units are in inches) 

The following table contains values that were calculated or measured based of the dimensions 

of the boat. 

Source of force Magnitude of force (lbs.) Lever arm (Ft) Torque about centerline(ft-lbs) 

Force of sail 80 5.1 408  

Force of board 80 4.81 385 

Force of skipper 
(on rail/hiked) 

150 
150 

2.63 
2.83 

-395 
-425 

Total Torque 
 (on rail/hiked) 

  398 
368 

Table 1: Table of Forces  
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 This table is based off of the boat under the following conditions; the absence of the 

crew, a level boat, close hauled, sails trimmed correctly, 15 knots of breeze, and a 150 lbs. 

skipper who is 5’ 8” tall. It is clear that at this angle it is possible to hold the boat steady with 

398 ft-lbs of force. If the system can provide the same torque as a crew hiked out (425 ft-lbs) it 

will be capable of maintaining this heel angle.  

3.2 Power Analysis 

Delivering power to the stabilization system is a challenging aspect of this project.  We 

will need to calculate the power consumption of the computer and motor that we will be 

selecting and determine how large of a battery will be required to adequately power the 

system for a specified amount of time.  We will need to take into consideration the weight of 

the battery, as weight is a crucial limiting factor for this system.  The goal is to keep the weight 

minimal, while still having enough battery capacity to allow for several hours of continuous 

operation.  Depending on the final weight of the stabilizer, the size of the battery can be 

adjusted to meet weight specifications.  Deep cycle lead acid batteries will be used to power 

this system since they are extremely durable, have a large capacity, can be regularly deeply 

discharged, and are relatively inexpensive.  Lithium batteries would be a much more 

lightweight solution; however they are not cost effective for this project. 

3.3 Motor Analysis 

From the power analysis, we calculated that the motor needs to output at least 145 

watts in order to handle moving a 70 lb. load up a 30 degree frictionless incline.  The motor 

suggested to accomplish this is the CIM motor.  This motor has a maximum power output of 
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337 Watts and runs off of a 12V power supply.  This motor has a 2.5 inch diameter and a 4.34 

inch body and weighs only 2.8 lbs.  This motor fits all of our power requirements, will be able to 

handle the required load extremely well, and is also very cost effective.  

The motor should not be active when the system is at rest so a braking system will need 

to be implemented.  A brake must be able to hold the mass at any position along the track 

without it shifting and should be able to actuate and release quickly in order to allow for 

movement to resume.  One way to achieve this is with a friction brake that clamps to the track 

and holds the mass in place.  Another solution would be a disk brake attached to the motor 

shaft.  A third method of braking would be a pin that actuates and is inserted into a slot in 

either the track or a disk attached to the motor.  Any of these solutions would effectively stop 

and hold the mass in place; however, the first two braking methods using friction would require 

significantly more power than the actuated pin.  Conversely, the actuated pin method would 

require significantly more precision in order to line up the pin and slot reliably.   

3.4 Sensor Analysis 

 This section covers the sensors needed to provide information on the orientation of the 

boat, position of the mass, the position of the boom, end of track sensor, and skipper controls 

to adjust and control the system. 

3.4.1 Orientation of the Boat 

This system requires the use of an Inertial Measurement Unit (IMU) in order to properly 

measure and calculate the orientation of the boat. One variation of this sensor to be analyzed 

are Micro-Electro-Mechanical Systems, or MEMS (Esfandyari, De Nuccio, & Xu, 2012). This is a 
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technology that in its most general form can be defined as miniaturized mechanical and electro-

mechanical elements that are made using the techniques of micro fabrication in this projects 

case, the 9 Degrees of Freedom (9DOF) Razor IMU from SparkFun Electronics. The 9DOF Razor 

IMU incorporates three sensors, an ITG-3200 (MEMS triple-axis gyro), ADXL345 (triple-axis 

accelerometer), and HMC5883L (triple-axis magnetometer) to give you nine degrees of inertial 

measurement. The outputs of all sensors are processed by an on-board ATmega328, a high-

performance Atmel 8-bit AVR RISC based microcontroller, and output over a serial interface 

(Encyclopedia Britannica, 2013). This enables the 9DOF Razor to be used as a very powerful 

control mechanism for UAVs, autonomous vehicles, and in this projects implementation for 

stabilization systems. Figure 19 shows the 9DOF Razor IMU which will be used for the purpose 

of this projects initial testing.  

 
Figure 19: 9DOF Razor IMU (left), FTDI Breakout Board (right) (SparkFun, 2014) 

The 9DOF IMU operates at 3.3V DC and any power supplied to the white JST connector 

will be regulated down to this operating voltage. The output header is designed to mate with 

the 3.3V FTDI Basic Breakout board, for the purpose of easily connecting the board to a 

computer's USB port. Additionally, the board can be connected to the Bluetooth Mate or an 

XBee Explorer for wireless or blutooth applications. In the case of this project, the 5V port is 

used, which is equipped with a step down converter to properly provide the 3.3 V needed to 

http://www.sparkfun.com/products/9793
https://www.sparkfun.com/products/9045
http://www.sparkfun.com/products/10494
http://www.sparkfun.com/commerce/product_info.php?products_id=9358
http://www.sparkfun.com/commerce/product_info.php?products_id=9132
http://www.sparkfun.com/commerce/product_info.php?products_id=9132
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power the IMU. For more information on the individual characteristics of the sensors, the IMU, 

or the FTDI see Appendices A, B, and C which includes detail spec sheets on each sensor. 

The use of the IMU is beneficial to this project it is being used as a sensor for angular 

acceleration while the mass on the track will be responsible for the actual stabilization. To 

further understand this concept one must understand how the sensor uses the Coriolis Effect in 

order to give an output. This works through deflection of moving objects being viewed from a 

certain reference point. In a reference frame with clockwise rotation, the deflection is to the 

left of the motion of the object; in the case of counter-clockwise rotation, the deflection is to 

the right. When the Coriolis Effect is detected, the continuous movement of the driving mass 

will cause a capacitance change ∆C which is picked up by the sensing structure and then ∆C is 

converted to a voltage signal by the internal circuitry. These electrical signals are what can be 

converted to digital signals using an analog to digital converted ADC in the ATMega328. When 

programing the microcontroller, theses bits will be used in deciding thresholds for the 

mechanical devices such as calibration of the mass position to the angle of roll on the boat. 

This gyroscope is essential to the scope of this project since the goal of the stabilizing 

system is to limit the roll to no more than 15 degrees. As discussed previously, attempting to 

measure the boats orientation using more than one axis can be difficult, thus limiting the axes 

to measure only the roll of the boat will minimize this complexity. As the mass moves back and 

forth, the angle measurements must be quickly relayed to the microprocessor controlling the 

motor which will provide a smooth counteract against rolling thus providing stabilization.  
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3.4.3 Position of the Mass 

The microprocessor needs to be aware of the position of the mass along the track in 

order to confirm that the mass is in the proper location.  One of the ideas for this 

accomplishment, is through the use of an incremental rotary encoder will be implemented on 

the motor shaft that will count the number of revolutions in either direction and associate this 

number with a corresponding position on the track.  This type of optical encoder has a two bit 

output that allows it to communicate the direction of the motor rotation as well as 

speed.  There are two sets of sensors positioned on opposite sides of a disk as shown in Figure 

20 below. 

 
 

Figure 20: Rotary Encoder (Stephens, 2006) 

By offsetting the sensors slightly, the sensor is able to obtain two signals that are out of 

phase.  By determining which signal is ahead of the other, the motor’s direction can be 

determined. 

http://hades.mech.northwestern.edu/index.php/File:Encoder_diagram.png
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Figure 21: Rotary Encoder Two Bit Output (Pepperl+Fuchs, 2014) 

Sensing the position of the mass can also be accomplished by using a potentiometer and 

associating the output voltage to a position along the track. 

3.4.4 Position of the Boom 

Another sensor that will be implemented is a boom position sensor.  A simple switch will 

be attached to the mast just below the boom that will make contact with the boom as it passes 

the midpoint to determine what side of the boat the boom is on.  This is important to know for 

tacking purposes.  The boom is always leaning toward the lower side of the boat so we can use 

this information on boom position to prevent the weight from accidentally moving to the lower 

side of the boat for any reason.  The weight will be programmed to only be able to travel along 

the track on the opposite side from the boom so it will never erroneously put the boat at risk 

for capsizing.  Some amount of hysteresis will need to be programmed into the processing of 

this input to account for the possibility that the boom remains centered for a significant 

amount of time and triggers the sensor repeatedly. 
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3.4.5 End of Track Sensors 

It is very important for the system to understand when it has reached the end of the 

track, so with the use of a toggle switch or button, the microprocessor can stop the movement 

of the mass in order to prevent it from traveling too far and damaging the system. Bumpers can 

also be implemented at the end of the track and with the use of the magnetic sensor; the mass 

on the track can slow down as it approaches the bumper thus deceasing its forward 

momentum. 

3.4.6 Skipper Controls 

Located within reach of the skipper will be a panel with several controls that the skipper 

can use to adjust and control various aspects of the system.  Most prominently, there will be a 

large button that can be depressed to automatically center the mass on the track.  This can be 

used if the skipper does not need any automated assistance, or if a problem arises and the 

system needs to be disabled.  The skipper will also be able to adjust the heel of the boat to a 

desired angle via a dial on the panel.  This is important because different heels are preferable in 

different conditions.  In conjunction with the boom position sensor, the heel will automatically 

shift to the other side of the boat as the boat tacks.  Other controls to adjust various aspects of 

the system will be added as needed, such as a trim control to adjust for possible drift in the 

gyroscope. 

3.5 Control Analysis 

Upon initialization, the system will begin by reading in the position of the mass on the 

track through the mass position sensor which as described before will be a ten turn 
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potentiometer. Then it should read in the heel set value through the skipper control box which 

also includes the auto center button.  This heel set dial has a limit from 0 to 20 degrees and is 

labeled for the skipper to easily set his desired heel angle. Next, the system will check to see 

whether or not the auto center button is pressed. If this condition is met, the mass will be 

moved to the center position determined by the voltage from the potentiometer. If not 

pressed, then the system will be in stabilization mode and the microcontroller will read the 

boom position sensor and select whether or not the boat should be heeled to port or 

starboard, by negating the heel angle value set by the skipper. Use of these two sensors only 

requires the skipper to set an absolute heel angle.  The microprocessor will determine which 

tack the boat is on and provide an appropriate righting moment accordingly. 

Afterwards, the system will move forward and compare the current heel set value to 

that of the measured angle from the IMU sensors. This will generate an error value that 

initializes a point from which the PID controls have to begin error correction. If the new 

measured angle of the boat is within a threshold of the desired heel angle, then the system 

loops back into reading the heel set dial and begins the process over again. If the measured 

angle of heel is not within the threshold of the desired heel angle, then the system will adjust 

the mass to meet this condition. A visual representation of the overall system design is located 

in Appendix E of this document. 



 
 

4.0 Results 

The objective of this project was to develop an autonomous stabilizations system for a 

Flying Junior sailboat. First, we manufactured the mechanical design, including the track system 

and the active and passive movement systems. Then we constructed our printed circuit board 

(PCB), potentiometer housing, toggle switch system, push button switch, and watertight 

housings for all the other electronics. Refer to Appendices F, G, and H to view SolidWorks 

designs for the track system. Refer to Appendices I and J to view the PCB schematics and board 

layout. 

 

4.1 Mechanical 

                The mechanical system of this device consists of a horizontal two-stage bidirectional 

telescopic slide.  The mass is nested inside of a track that allows it to slide from one end to the 

other on sealed ball bearings. This entire track system is nested inside a secondary track that 

allows movement of the first track within the second track, also on sealed ball bearings.  

Movement of the mass within the first stage of the track is controlled by a motor and sprocket 

that is guided by a chain fixed to either end of the track.  Movement of the first stage of the 

track along the second stage of the track is controlled by a passive line and pulley system that 

reacts in conjunction to the movement of the mass along the first stage.  This then creates 

simultaneous movement of both stages of the track system.  The track itself was constructed 

from 6061 aluminum alloy and weighs approximately 55 lbs. (without the battery), however it is 

possible to reduce a significant amount of this weight by cutting material from non-structural 

areas of the track allowing for greater overall efficiency of the system. With the center of mass 



47 
 

extending 5.2 feet out from the center of the boat, the final system is able to create 466 ft-lbs 

of righting moment, while only weighing 130 pounds. 

 

 

4.2 Power 

                The battery used to power the system is a 12 volt, 200 amp-hour deep cycle sealed 

lead acid marine battery.  At an estimated continuous power consumption of 20 amps from the 

motor and computer, this allows for up to 10 hours of continuous usage.  A 40 amp fuse keeps 

the motor controller and sensitive electronics from experiencing damaging power surges, as the 

battery is capable of outputting 800 amps peak.  For the power to the PCB and signal level 

Passive 

Active 

Figure 22: Active and Passive Lines 
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inputs, 3.3 and 5 volt regulators were used to step the voltage down to readable signal levels.  

The battery itself weighs approximately 70 lbs., which accounts for the majority of the 75 lbs. 

required to achieve the desired torque on the boat. 

4.3 Motor 

The CIM motor selected to power the movement of the track provided sufficient torque 

and speed to achieve the desired traversal speed of the mass along the track, even at heel 

angles steeper than what is normally expected to occur on this boat.  At maximum power, the 

motor is capable of outputting 337 watts. This is greater than the calculated power 

requirement of 150 watts to move the mass from one end of the track to the other, in roughly 4 

seconds, at a heel angle of 30 degrees, 200 watts at 45 degrees, and even 250 watts at 60 

degrees. Theoretically the system should still be able to operate at a heel angle of 90 degrees, 

which requires 290 watts of power, however this has not yet been tested. 

Using the TB3 gearbox, as shown in Appendix L with a reduction ratio of 33.8:1 from 

AndyMark, the speed of the CIM motor was reduced from approximately 4300 RPM to 127 

RPM.  The sprocket driven by the motor has a circumference of 5.67 inches, requiring 9.2 

revolutions for a full traversal of the track, which can be accomplished in just 4.3 seconds. 

4.4 Sensors 

This section covers the sensors chosen to provide information on the orientation of the 

boat, position of the mass, the position of the boom, and skipper controls to adjust and control 
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the system. Each component was deliberately chosen to serve its purpose as well as work well 

in a wet environment and maintain durability for this project. 

4.4.1 Orientation of Boat 

This project requires an IMU to measure and calculate the orientation of the boat. 

Although the 9DOF Razor could accomplish this, it does not have any input/output (I/O) pins 

that can be used to implement the sensors for the position of the boom and mass, or the 

skipper controls.  To address this issue, a custom PCB was created, identical to the 9DOF Razor, 

which incorporates 18 I/O pins to supply power and allow various sensors to be connected.  

To perform the task of creating the circuit, the team obtained the circuit schematics of 

the 9DOF Razor and created a new circuit schematic, found in Appendix I, using the same 

components with an addition of the 18 I/O pins. The program used to create the schematic is 

CadSoft EAGLE PCB Design Software, where the user can also create a PCB layout from the 

schematic. Creating this layout involved placing the components on a 3 x 2.5 inch board and 

tracing the components for connection through copper lines. Each component was chosen to 

be either through hole or surface mount technology (SMT) to minimize board size and easily 

create the connection traces. For connection between through hole and SMT components, the 

designer must add vias, a hole that is lined with metal to allow connection from the top layer of 

the board to the bottom layer. Using the steps provided above, the team created a two layered 

circuit board to order, as seen in Figure 23 below. The layout of the PCB can be found in 

Appendix J. The company the team used to create this board was Advanced Circuits, contacted 

through 4pcb.com.  
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Figure 23: Two Layered PCB 

Having the PCB complete, the team organized a parts list which can be found in 

Appendix K. Parts were ordered from Mouser Electronics, DigiKey Electronics, and Sparkfun. 

Some components, such as capacitors and resistors, are extremely small in size, an upwards of 

0.6 x 0.3 mm, where a microscope was necessary to solder these components to the board.  

During the soldering process, flux was used to help the solder flow from the soldering iron to 

the components. Once all soldering was complete, the team used flux remover to clean the PCB 

and solder joints. Once the PCB was completely populated with components, the next step was 

to burn a bootloader on the Atmel microprocessor (Atmega328p) to use the Arduino IDE 

Software to implement the team’s program code onto the PCB.  This can be done on the 

Arduino IDE with an In-System Programming (ISP) connection to USB cable for communication 

to a computer. The ISP uses the MOSI, MISO, RESET, VCC, GND, and SCK pins for the 

bootloader; however, once burned, the pins can be used as I/O if needed. The PCB was placed 
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inside a Pelican 1050 watertight case for protection in a wet environment as shown in Figure 

24.  

 

Figure 24: Watertight Pelican 1050 case 

4.4.2 Sensor Calibration  

With the Razor AHRS software we can calibrate the IMU to better position the sensor to 

resemble the boats movement. This data can be found in the Appendix M and the calibration 

was done through the help from the SparkFun electronics guide (Bartz, 2013). This code was 

implemented and modeled using Processing 2.1, a programming language and development 

environment, which was used to simulate the orientation of the IMU. Figure 18 shown below 

shows the GUI based environment used by Processing 2.1.  
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Figure 25: Computer Simulation of Gyroscope (Bartz, 2013) 

4.4.3 Position of Mass 

In measuring the position of the mass on the track, a 10K ohm 10 turn wire wound 

potentiometer, shown below in Figure 26, is used.  There are several reasons the team chose to 

use a 10 turn potentiometer. First, the length of the track is approximately 9.2 turns with the 

gear ratio provided by the gear box. Second, the microprocessor takes a voltage input using a 

5V reference to the potentiometer and correlates this voltage level with where the mass is 

positioned. The potentiometer is encased in a 3D printed housing and surrounded by silicon to 

prevent water from damaging this component. 

  

Figure 26: Mass Position Sensor 
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pinMode(MASSPOS_PIN, INPUT); 

 

Shown above is the code used to read the mass position sensor. Using the Arduino 

software, one can easily read the data from the potentiometer and constrain these values from 

-50 to 50. These values where chosen because the track measures to approximately 5 ft. and 

the team decided to have the corresponding mapping intervals of ten from the center to the 

end of the track on one end. This would therefore improve measuring accuracy and allow each 

increment to be one tenth of a foot from the center position to the edge of the track. 

4.4.4 Position of Boom 

To indicate whether the boom is port or starboard, a toggle switch, shown in Figure 27, 

was implemented. Using bungee cord and hooks, the toggle switch is triggered when the boom 

swings in either direction. This is critical to measure when the skipper is using the heel set dial 

from the skipper control panel.   

 

Figure 27: Boom Position Sensor 
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Source Code is as follows: 

 

As shown in the code above, notice how basic the implementation is because this boom 

position simply functions in negating the heel set value. This is important because the skipper 

needs the heel of the boat to be opposite to that of the boom's position. In Figure 27, notice 

how the toggle switch moves back and forth as a bungee cord creates the pull necessary to 

switch states. The bungee cord proved to be very successful because it could have some give 

from stretching therefore creating some hysteresis. This form of hysteresis allowed the toggling 

to occur after the boom has moved to a far enough position and eliminated the scenario of 

what to do if the boom was in a center position  or within the a range at the center.  

4.4.5 End of Track Sensors 

In sensing the end of the track, the team decided to not implement push button 

bumpers or magnetic sensors; however, the team used the mass position sensor to determine 

the boundaries for each end of the track system. Using the microprocessor, the team 

implemented these boundaries in code shown below.  
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The segment of code on the previous page checks for two conditions, the first being the 

position of the mass on the track, the second being the measured heel angle limits. The “pval” 

shown above refers to the value of the mass position sensor and the “sensVal” refers to the 

measured heel angle of the boat. The code checks to see whether or not the position of the 

boat is beyond the set limits which are -45 and 45. The actual max is -50 and 50 for the 

potentiometer mapping of extremes but for safety, we only go to -45 and 45 since we never 

want to reach the max limit of the potentiometer. These values are chosen because since the 

track length is approximately 5 ft., the track from center to end can be broken into 10 sections 

where one section is one tenth of a foot. Additionally, the code above moves the motor in the 

opposite direction of its current traverse if the measured heel angle goes above the skippers set 

heel angle.  The x value in “myservo.write()” is the PID output which is being added to that 

center point at 90 for the servo motor Arduino controls which go from 0 to 180 where 90 is the 

break.  

4.4.6 Skipper Controls 

The skipper controls include an auto-center button and heel set dial that are within 

reach of the skipper. The auto-center button is a push button switch that when pressed, moves 

the weight to the middle of the boat. The heel set dial is a 100 ohm one turn potentiometer 

that sets the angle of heel between zero and fifteen degrees. The skipper control panels, shown 

below in Figure 28 (left), uses a cat5 cable to wire the potentiometer and switch to an electrical 

box positioned on the mast. This watertight electrical box, shown in Figure 28 (right), is used to 

make a connection between the cat5 cable and a spiral bound telephone wire. As depicted in 

Figure 29, the reason for this is to allow ample movement of the weigh platform and electronics 
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without having issues of tightening or breaking cables. The code involved in the skipper control 

panel is shown below. 

 

            

Figure 28: Watertight Electrical Box (left), Skipper Control Panel (right) 

 

Figure 29: Spiral Wire for Boom Sensor and Skipper Controls 
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 Upon initialization, the skipper sets the heel angle the system reads in this value. Notice 

how in the “hvalset” we used the map function to set a range for the heel set which we set 

from -20 to 20 degrees but in reality and for testing purposes this is limited to -15 and 15 

degrees. This code checks whether or not the auto center button has been pressed and either 

centers the mass to position zero then stops or stabilizes the boat at the skippers set heel angle 

from the dial. As mentioned in the previous section on the about the end of track sensor, one 

can notice how it is now implemented as part of the skipper controls shown in the code above.  

4.5 System Block Diagram  

 The system block diagram, shown below in Figure 30, illustrates the connections 

between the input sensors, input controls, and the output signal to drive the motor. First, our 

12V power supply drives the talon motor controller as well as the 3.3V regulator, data sheet in 

Appendix N, to operate the microprocessor. The boom position sensor, mass position sensor, 

and IMU are all connected to the microprocessor, which interprets this information to drive the 
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motor controller. The heel set dial and auto center button also connect to the microprocessor; 

however, the microprocessor will not perform any functions in accordance with these inputs 

unless the skipper manually uses them. As the microprocessor outputs a velocity value between 

0 and 180, where the value of 90 corresponds to braking the motor, the motor controller, 

shown in Appendix O, outputs a PWM signal to create a duty cycle that correlates to that 

velocity value. The values of 0-89 move the mass starboard while the values of 91-180 move 

the mass to the port side. Having a value of 0 or 180 means the mass must move port or 

starboard as quickly as possible to counteract the forces acting on the boat. 

 

Figure 30: System Block Diagram 

4.5 Stabilization Loop 

An important aspect in combining all the different sensors and mechanical systems 

together is through the controls which can be seen in Appendix P. This portion of the document 

explains how all the sensors come together then feed into the microcontroller, PID, motor 

controller and ultimately driving the motor on the track. As you can see from the flow chart in 

Appendix E the system for this design needs to be robust and smooth since the team is dealing 
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with unstable conditions on the water. These unstable conditions create low frequency noise to 

the system therefore there must be some sort of damping to the IMU sensor’s output which 

will go to out PID.  

With the small signal noise calculated, the system can begin its process of damping the 

noise for better stability measurements. This can be done through the implementation of a 

lowpass filter in two ways; through the Arduino library’s own filtering tools or through hard 

coding of a Kalman filter. Smooth is a simple digital low-pass filter that is useful for smoothing 

sensor jitter or creating a delayed response to fast moving data. It uses a buffer variable and 

limits the amount of new data that reaches the output each time through the loop. Old data is 

used to make up the difference so that the response of the filter is slowed down (Badger, 

2007). The Kalman filter is useful because it is not a filter in terms of frequencies, but an 

optimal estimator. This means that since it is recursive, new measurements can be processed as 

they arrive. This greatly minimizes Gaussian noise which is beneficial to eliminating the jitters 

from the boat merely sitting in the water. In the code in the next page you can see how the 

Kalman filter is set up and how the Arduino uses the smoothing function.  
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Arduino Smoothing Implementation Prototype 
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Kalman Filter Implementation Prototype 
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After filtering the measured angle of the boat, the system then needs to create a form 

of taking this measured value and comparing it to the skippers set heel value. This introduces 

the PID into the system which is extremely important to the control of how the motor reacts in 

stabilization. The code for the PID on the next page shows how the team set up the PID which 

then is called in the main loop. The function prototype is called “updatePid” which takes in the 

target position, current position, a gain K, Kp, Ki, and Kd. This implementation requires multiple 

trial and errors because the PID tuning process is quite tedious.  

In the next bit of code from the main loop “updatePid” is called for the heel set 

stabilization and also for the auto center control. The “if” statement controls how aggressive 

the motor should move with respect to a margin of error, which in this case can be seen as 2 

degrees. In stabilizing the boat through the heel set dial “x’ is represented as the PID output 

dealing with angles. The “y” integer is used when the auto center button is pressed where the 

target position is 0, “pval” is the measured position, and 1,3,0,0 refer to the gain (K) and Kp, Ki, 

Kd constants for the PID.  
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PID Prototype 
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PID Call in main loop() 

 

 

 

 As previously described, the code above shows how we used the PID prototype to input 

our tuning parameters. These values can change based on the conditions on the water for 

either an aggressive or more conservative motor. Loop control plays a major role to this design 

and overall the concept of a mechanical system for the purpose of stabilization was proved to 

be achievable.  

 

 

 

 



 
 

5.0 Discussion 

In this section, the team performs an evaluation of the project, including how well the 

mechanical and electrical systems operate. The team also offers recommendations for future 

work on the project as well as several obstacles overcame while manufacturing and testing the 

product.  

5.1 Mechanical  

Several aspects of the mechanical design were altered during the build process due to 

factors such as availability of resources, cost limitations, or time limitations.  One of the first 

modifications necessary was the reduction from two bearings per bracket to only one bearing 

per bracket. It was calculated that one bearing could support the force of the mass at full 

extension with 3G's of down force, which was calculated to be less than 225 pounds on a single 

bearing. The bearings selected had a working radial load of 300 pounds which would work for 

our application.  In order to reduce cost, only one bearing was implemented in each bracket 

and preliminary tests confirmed that these brackets could withstand the forces applied from 

the track system without fault. The brackets that housed the bearings were also adjusted from 

the initial design. In order to allow for smooth transitions of the track the brackets were ground 

down to create a ramp up towards the bearing. Another design aspect that changed during the 

build process was the method of mounting the track to the boat.  The initial design of an 

aluminum block milled to the contour of the boat’s rail proved too heavy and costly to 

implement, so a lighter and more cost effective solution was devised.  The simple solution 

involved mounting a length of PVC pipe to a screw-clamp mechanism that would fit underneath 
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the rail of the boat and be able to firmly clamp the track to the boat. The two main advantages 

of this system are that it is able to fit securely under the rail and it could bend to the contours 

of the boat. 

 

Figure 31: Mounting Clamp  

It was also found that an active braking system was not necessary to implement.  The 

gear ratio of the gearbox combined with the torque of the motor were sufficient to hold the 

mass at a specific position at any heel angle. 

                In addition, some aspects of the final design were overlooked during the design 

process, but were easily implemented during the build process.  Once such addition was the 

foam spacers mounted underneath each bearing bracket.  These allow for the elevation of the 

bearing to be adjusted in order to remove any gaps between the bearings and tracks that may 

have occurred during machining.  Also, tapering of the ends of the tracks was necessary to aid 
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in the smooth transition of the track on and off of the bearings.  Finally, it was necessary to add 

foam padding to many of the sharp edges of the track in order to reduce risk of the skipper 

injuring him/herself should they be thrown toward the device in rough waters. 

5.2 Electrical   

 The PCB for this project functions identical to the 9DOF Razor used for initial testing 

purposes with the addition of adding more sensors to perform the tasks required. While testing 

the PCB, the team noticed that the voltage regular provided 3.3V to the entire board. All traces 

were complete and the PCB provided full functionality. During the implementation of the mass 

position sensor, the potentiometer was defective. Once this component was replaced, the 

project sensed the position of the mass as expected.  Upon first creating the boom position 

sensor with a small toggle switch, the team decided to use a different toggle switch that can 

implement using a bungee cord which is hooked to the boom and the toggle switch, where the 

boom has six inches of wiggle room when directly in the center of the boat to toggle the switch. 

This proved to be a better solution for our project to give the mass addition time to adjust and 

stabilize the boat while the boom swings from port to Starboard. Additionally, the code for this 

project performed all the necessary tasks our goals aimed towards. Stabilization at a desired 

heel was achieved, an auto center feature was implemented, the device senses whether the 

boom is port or starboard, and different traversal speeds are achieved for different scenarios.  

5.3 Challenges 

 One challenge the team overcame was to solder such small devices onto the PCB board. 

With the help of Robert Boisse of the ECE Department, who soldered the magnetometer, 
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accelerometer, gyroscope, and microprocessor, the team was able to populate the circuit 

board. Along with soldering, the team was unaware of the process to burn a bootloader onto a 

microprocessor chip. The current design of the PCB had not incorporated an ISP connection to 

easily perform such a task. The team proceeded to solder additional wires where necessary to 

burn the bootloader using the AVR ISP to USB board and the help of Joseph St. Germain. A 

recommendation for anyone creating a custom PCB which uses a microprocessor is to add an 

ISP connection to implement burning a bootloader in an easy fashion.  

 The second challenge dealt with feedback control and speeds for the motor moving 

across the track. As much as the skipper would want the motor to traverse as fast as possible, 

there needed to be some form of slowing the motor down as it got to its expected position. 

Without slowing down, the motors momentum would quickly jerk the boat as it abruptly 

stopped at its destination. This is not practical when needing a boat to properly remain stable, 

therefore, a solution was found by linking the PID response to the motor controller’s speed 

control.  

This project was very metal work intensive, and the group ran into several problems 

trying to get access to the right tools. One of the problems was the difficulty of getting into the 

on campus machine shops. Each time the members went in to try to use a machine they were 

pushed off onto another employee a few days later, who then pushed us off to another 

employee in a seemingly endless cycle. Fortunately, Robert Boisse allowed the use of machines 

in his lab to get a lot of the metal working done. However, the most difficult metal cut could not 
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be done one his band saw, so the team had to use a metal grinder and a straight board to cut 

the quarter inch rectangular tubing in half, a timely process. 

5.4 Recommendations 

This project has the potential for several follow-on projects in order to create a fully 

autonomous sailing vessel. It is also possible for the project teams to continue or work on the 

current stabilization system. Some work that could be done on the project is an adjustment of 

the PID loop and current code to potentially provide faster response times. The weight of the 

mechanical system can also be reduced by perforating the aluminum channels. This would 

allow additional weight to be added to the plate in order to increase righting moment while 

staying under the maximum weight requirement of 150 pounds. 

Add on projects include the development of an auto-trimming device for controlling the 

trim of the gybe. This can be accomplished by measuring the air flow over both sides of the sail 

and trimming the sail to the ideal wind currents. Another possible extension to the project 

would be to add additional weight to the current system and to develop a robotic apparatus 

that can control the rudder, ultimately controlling the steering. This would be able to create the 

righting force of the skipper as well as drive the boat, the other main role of the skipper.  



 
 

6.0 Social Implications 

In developing a robotic system to be used in a confined and user compatible 

environment, it is important to consider the societal impact. This includes looking into safety 

measures going along with creating this device, as well as the implications of introducing an 

automated machine to a recreational sport.  

The first main concern with this device is that the user will be in very close quarters to 

this robot and raises the potential for the device to harm them or to act in a manner that could 

cause the user to be harmed. Isaac Asimov devised three laws of robotics, which helped guide 

our initial concerns, and are listed below (Powerhouse Museum, 2002). 

1. A robot may not injure a human being, or, through inaction, allow a human to 

come to harm 

2. A robot must obey orders given to him by human beings except where such 

orders would conflict with the first law 

3. A robot must protect its own existence, as long as such protection does not 

conflict with the first and second laws. 

Looking at the first law, there are two main components, harm through action or harm 

through inaction. On the Flying Junior vessel, the user is placed in close proximity to the device, 

presenting need risk factors that needed to be addressed. Even without a robotic system the 

Flying Junior is dangerous and it is easy for the skipper to injure themselves when moving at 

high speeds around the boat. The project had to incorporate safety factors for even the static 

system, including covering all sharp edges and locations where the user could be cut. To 
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accomplish this, padding was added to all exposed edges of the project so that the skipper 

would not be able to cut themselves on the sharp aluminum. In addition, the bolts used in the 

project were capped so that contact with them would not result in injury. Since the system is in 

an aquatic environment safety factors around electricity were addressed. All sensors were 

housed in water tight casing in order to avoid damage as well as the risk of electrocution. This 

was important because there are two sensors which the user comes in direct contact with. The 

second major concern with water and electricity was the battery. The battery that was selected 

has the ability to move as high speeds without releasing battery acid, which was essential for 

this application. A sealed absorbed glass-mat deep cycle battery was used, which has a sealed 

case and a spill proof design, both protecting the user as well as the environment. The second 

aspect of the battery is the risk of the battery being submerged and providing the skipper, who 

may be in the water, with an electrical shock. To address this rubber caps were placed on the 

top of the battery to create a water tight seal.  

The second component of the first of Asimov’s laws is the dangers of inaction. The 

system must be able to sense when it needs to move in order to adjust the heel of the boat. If 

the mass remained stationary when a large gust of wind came it is possible for the boat to flip 

without the needed righting force to hold it flat. In addition if the user began to lose control of 

the boat it is important for the system to have an emergency center button as to allow the 

skipper to right the boat if it does flip. This also allows the user to center the robot if they want 

to operate the system independently. It is important to incorporate user functionality as much 

as possible in this device. This is where the second law is used, where the robot must obey 
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orders given to him by the human. By creating an override button the robot will center and 

allow the user to decide where to go from there. 

There are social implications with integrating a robotic system into a sport competition 

with actions usually performed by humans. The main aspect of the crew that this system 

replaces is the crew’s movement of weight which includes, sitting in the boat, leaning to 

windward or leeward, and hiking out. The latter of those options require the use of both leg 

and abdominal muscles, which overtime causes fatigue in the sailor. This system would not 

experience the buildup of lactic acid and, debatably, gives the system an unfair advantage over 

the competition. Although it does not have the ability to preemptively sense changes in the 

wind, it has the ability to hold a set heel angle very well. This gives it a performance advantage 

of human beings in some aspects. Robots like the TOPIO 3.0 robot, which has the ability to play 

and beat humans in Ping Pong, have been at the center of debate about integrating robotics 

into sports. A computer has the ability to process information at higher speeds than human 

beings giving it an advantage over the competition. Arguments have been made that robotic 

devices in sports would be unbeatable and are not fair competitors against human beings. 

Putting our system into a competition against humans would create societal problems and 

debates resisting the integration. 

The robotic stabilization device has several social implications associated with it. It was 

important to address and resolve many of these issues such as user safety, environmental 

effects and public acceptance. The final stabilization system produced by the team incorporates 
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safety factors, emergency prevention measures and overall user compatibility in order to 

provide a safe and functional robotic system. 



 
 

7.0 Conclusion 

In conclusion, the scope of this project focused on one particular aspect of the 

operation of this boat: the crew.  By replicating this action with an autonomous device, the 

crew would be eliminated and it would then be possible to operate a Flying Junior solo.  Using 

an IMU, the heel angle of the boat in the water can be measured.  By setting a desired heel 

angle on a control panel, a mass driven by a motor is moved laterally along a track in order to 

adjust the heel angle accordingly.  The goal of this project is to allow a sailor to safely operate a 

Flying Junior dinghy without a crew and be able to maintain full control of the boat.  The team’s 

objectives were to design a weighted mechanical system to replicate the righting force of a 150 

lb. crew, adjust a moving mass along a track to correct the heel to the desired angle, create a 

device that weighs less than 150 lbs., and to provide enough power for multiple hours of 

continuous use. The end result of this project, based on ground simulation results, is a device 

that can be easily attached to any Flying Junior dingy, weighs less than an average human 

being, and can maintain a specific heel angle as well as an experienced crew is able to.  

The device is a weighted track system made of 6061 aluminum alloy in a two rail 

elevator design that can extend in both direction, providing a righting force of 466 ft-lbs. Sealed 

ball bearings line the rails to allow for smooth travel of the rails and weight platform. The 

mechanism is driven by active and passive lines which allow the platform to travel at 4 ft. /sec. 

The electrical components include a CIM motor, Talon motor controller, deep cycle marine 

battery, and a custom PCB that replicates the function of SparkFun’s 9DOF Razor. Various 

sensor inputs including potentiometers and switch are implemented to sense the position of 
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the boom, the position of the mass, and a skipper control panel which allows the user to set a 

desired heel angle and center the mass. The total system weighed in at 130 lbs., less than that 

of an average crew. Refer to Appendix Q for the total cost of the project.   
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Appendix M 

/************************************************************************************
****** 
* Test Sketch for Razor AHRS v1.4.2 
* 9 Degree of Measurement Attitude and Heading Reference System 
* for Sparkfun "9DOF Razor IMU" and "9DOF Sensor Stick" 
* 
* Released under GNU GPL (General Public License) v3.0 
* Copyright (C) 2013 Peter Bartz [http://ptrbrtz.net] 
* Copyright (C) 2011-2012 Quality & Usability Lab, Deutsche Telekom Laboratories, TU Berlin 
* Written by Peter Bartz (peter-bartz@gmx.de) 
* 
* Infos, updates, bug reports, contributions and feedback: 
* https://github.com/ptrbrtz/razor-9dof-ahrs 
*************************************************************************************
*****/ 
 
/* 
NOTE: There seems to be a bug with the serial library in Processing versions 1.5 
and 1.5.1: "WARNING: RXTX Version mismatch ...". 
Processing 2.0.x seems to work just fine. Later versions may too. 
Alternatively, the older version 1.2.1 also works and is still available on the web. 
*/ 
 
import processing.opengl.*; 
import processing.serial.*; 
 
// IF THE SKETCH CRASHES OR HANGS ON STARTUP, MAKE SURE YOU ARE USING THE RIGHT SERIAL 
PORT: 
// 1. Have a look at the Processing console output of this sketch. 
// 2. Look for the serial port list and find the port you need (it's the same as in Arduino). 
// 3. Set your port number here: 
final static int SERIAL_PORT_NUM = 0; 
// 4. Try again. 
 
 
final static int SERIAL_PORT_BAUD_RATE = 57700; 
 
float yaw = 0.0f; 
float pitch = 0.0f; 
float roll = 0.0f; 
float yawOffset = 200.0f; 
 
PFont font; 
Serial serial; 
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boolean synched = false; 
 
void drawArrow(float headWidthFactor, float headLengthFactor) { 
  float headWidth = headWidthFactor * 200.0f; 
  float headLength = headLengthFactor * 200.0f; 
   
  pushMatrix(); 
   
  // Draw base 
  translate(0, 0, -100); 
  box(100, 100, 200); 
   
  // Draw pointer 
  translate(-headWidth/2, -50, -100); 
  beginShape(QUAD_STRIP); 
    vertex(0, 0 ,0); 
    vertex(0, 100, 0); 
    vertex(headWidth, 0 ,0); 
    vertex(headWidth, 100, 0); 
    vertex(headWidth/2, 0, -headLength); 
    vertex(headWidth/2, 100, -headLength); 
    vertex(0, 0 ,0); 
    vertex(0, 100, 0); 
  endShape(); 
  beginShape(TRIANGLES); 
    vertex(0, 0, 0); 
    vertex(headWidth, 0, 0); 
    vertex(headWidth/2, 0, -headLength); 
    vertex(0, 100, 0); 
    vertex(headWidth, 100, 0); 
    vertex(headWidth/2, 100, -headLength); 
  endShape(); 
   
  popMatrix(); 
} 
 
void drawBoard() { 
  pushMatrix(); 
 
  rotateY(-radians(yaw - yawOffset)); 
  rotateX(-radians(pitch)); 
  rotateZ(radians(roll)); 
 
  // Board body 
  fill(255, 0, 0); 
  box(250, 20, 400); 
   
  // Forward-arrow 
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  pushMatrix(); 
  translate(0, 0, -200); 
  scale(0.5f, 0.2f, 0.25f); 
  fill(0, 255, 0); 
  drawArrow(1.0f, 2.0f); 
  popMatrix(); 
     
  popMatrix(); 
} 
 
// Skip incoming serial stream data until token is found 
boolean readToken(Serial serial, String token) { 
  // Wait until enough bytes are available 
  if (serial.available() < token.length()) 
    return false; 
   
  // Check if incoming bytes match token 
  for (int i = 0; i < token.length(); i++) { 
    if (serial.read() != token.charAt(i)) 
      return false; 
  } 
   
  return true; 
} 
 
// Global setup 
void setup() { 
  // Setup graphics 
  size(640, 480, OPENGL); 
  smooth(); 
  noStroke(); 
  frameRate(50); 
   
  // Load font 
  font = loadFont("Univers-66.vlw"); 
  textFont(font); 
   
  // Setup serial port I/O 
  println("AVAILABLE SERIAL PORTS:"); 
  println(Serial.list()); 
  String portName = Serial.list()[SERIAL_PORT_NUM]; 
  println(); 
  println("HAVE A LOOK AT THE LIST ABOVE AND SET THE RIGHT SERIAL PORT NUMBER IN THE CODE!"); 
  println(" -> Using port " + SERIAL_PORT_NUM + ": " + portName); 
  serial = new Serial(this, portName, SERIAL_PORT_BAUD_RATE); 
} 
 
void setupRazor() { 
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  println("Trying to setup and synch Razor..."); 
   
  // On Mac OSX and Linux (Windows too?) the board will do a reset when we connect, which is really 
bad. 
  // See "Automatic (Software) Reset" on http://www.arduino.cc/en/Main/ArduinoBoardProMini 
  // So we have to wait until the bootloader is finished and the Razor firmware can receive commands. 
  // To prevent this, disconnect/cut/unplug the DTR line going to the board. This also has the advantage, 
  // that the angles you receive are stable right from the beginning. 
  delay(3000); // 3 seconds should be enough 
   
  // Set Razor output parameters 
  serial.write("#ob"); // Turn on binary output 
  serial.write("#o1"); // Turn on continuous streaming output 
  serial.write("#oe0"); // Disable error message output 
   
  // Synch with Razor 
  serial.clear(); // Clear input buffer up to here 
  serial.write("#s00"); // Request synch token 
} 
 
float readFloat(Serial s) { 
  // Convert from little endian (Razor) to big endian (Java) and interpret as float 
  return Float.intBitsToFloat(s.read() + (s.read() << 8) + (s.read() << 16) + (s.read() << 24)); 
} 
 
void draw() { 
   // Reset scene 
  background(0); 
  lights(); 
 
  // Sync with Razor 
  if (!synched) { 
    textAlign(CENTER); 
    fill(255); 
    text("Connecting to Razor...", width/2, height/2, -200); 
     
    if (frameCount == 2) 
      setupRazor(); // Set ouput params and request synch token 
    else if (frameCount > 2) 
      synched = readToken(serial, "#SYNCH00\r\n"); // Look for synch token 
    return; 
  } 
   
  // Read angles from serial port 
  while (serial.available() >= 12) { 
    yaw = readFloat(serial); 
    pitch = readFloat(serial); 
    roll = readFloat(serial); 
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  } 
 
  // Draw board 
  pushMatrix(); 
  translate(width/2, height/2, -350); 
  drawBoard(); 
  popMatrix(); 
   
  textFont(font, 20); 
  fill(255); 
  textAlign(LEFT); 
 
  // Output info text 
  text("Point FTDI connector towards screen and press 'a' to align", 10, 25); 
 
  // Output angles 
  pushMatrix(); 
  translate(10, height - 10); 
  textAlign(LEFT); 
  text("Yaw: " + ((int) yaw), 0, 0); 
  text("Pitch: " + ((int) pitch), 150, 0); 
  text("Roll: " + ((int) roll), 300, 0); 
  popMatrix(); 
} 
 
void keyPressed() { 
  switch (key) { 
    case '0': // Turn Razor's continuous output stream off 
      serial.write("#o0"); 
      break; 
    case '1': // Turn Razor's continuous output stream on 
      serial.write("#o1"); 
      break; 
    case 'f': // Request one single yaw/pitch/roll frame from Razor (use when continuous streaming is off) 
      serial.write("#f"); 
      break; 
    case 'a': // Align screen with Razor 
      yawOffset = yaw; 
  } 
} 
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Appendix P 

/*************************************************************************************************************** 
* Razor AHRS Firmware v1.4.2 
* 9 Degree of Measurement Attitude and Heading Reference System 
* for Sparkfun "9DOF Razor IMU" (SEN-10125 and SEN-10736) 
* and "9DOF Sensor Stick" (SEN-10183, 10321 and SEN-10724) 
* 
* Released under GNU GPL (General Public License) v3.0 
* Copyright (C) 2013 Peter Bartz [http://ptrbrtz.net] 
* Copyright (C) 2011-2012 Quality & Usability Lab, Deutsche Telekom Laboratories, TU Berlin 
* 
* Infos, updates, bug reports, contributions and feedback: 
*     https://github.com/ptrbrtz/razor-9dof-ahrs 
* 
* 
* History: 
*   * Original code (http://code.google.com/p/sf9domahrs/) by Doug Weibel and Jose Julio, 
*     based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel. Thank you! 
* 
*   * Updated code (http://groups.google.com/group/sf_9dof_ahrs_update) by David Malik (david.zsolt.malik@gmail.com) 
*     for new Sparkfun 9DOF Razor hardware (SEN-10125). 
* 
*   * Updated and extended by Peter Bartz (peter-bartz@gmx.de): 
*     * v1.3.0 
*       * Cleaned up, streamlined and restructured most of the code to make it more comprehensible. 
*       * Added sensor calibration (improves precision and responsiveness a lot!). 
*       * Added binary yaw/pitch/roll output. 
*       * Added basic serial command interface to set output modes/calibrate sensors/synch stream/etc. 
*       * Added support to synch automatically when using Rovering Networks Bluetooth modules (and compatible). 
*       * Wrote new easier to use test program (using Processing). 
*       * Added support for new version of "9DOF Razor IMU": SEN-10736. 
*       --> The output of this code is not compatible with the older versions! 
*       --> A Processing sketch to test the tracker is available. 
*     * v1.3.1 
*       * Initializing rotation matrix based on start-up sensor readings -> orientation OK right away. 
*       * Adjusted gyro low-pass filter and output rate settings. 
*     * v1.3.2 
*       * Adapted code to work with new Arduino 1.0 (and older versions still). 
*     * v1.3.3 
*       * Improved synching. 
*     * v1.4.0 
*       * Added support for SparkFun "9DOF Sensor Stick" (versions SEN-10183, SEN-10321 and SEN-10724). 
*     * v1.4.1 
*       * Added output modes to read raw and/or calibrated sensor data in text or binary format. 
*       * Added static magnetometer soft iron distortion compensation 
*     * v1.4.2 
*       * (No core firmware changes) 
* 
* TODOs: 
*   * Allow optional use of EEPROM for storing and reading calibration values. 
*   * Use self-test and temperature-compensation features of the sensors. 
***************************************************************************************************************/ 
#include <avr/io.h> 
#include <PID_v1.h> 
#include <math.h> 
 
#include <Servo.h>  
  
Servo myservo; 
 
/* 
  "9DOF Razor IMU" hardware versions: SEN-10125 and SEN-10736 
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  ATMega328@3.3V, 8MHz 
 
  ADXL345  : Accelerometer 
  HMC5843  : Magnetometer on SEN-10125 
  HMC5883L : Magnetometer on SEN-10736 
  ITG-3200 : Gyro 
 
  Arduino IDE : Select board "Arduino Pro or Pro Mini (3.3v, 8Mhz) w/ATmega328" 
*/ 
 
 
/* 
  Axis definition (differs from definition printed on the board!): 
    X axis pointing forward (towards the short edge with the connector holes) 
    Y axis pointing to the right 
    and Z axis pointing down. 
     
  Positive yaw   : clockwise 
  Positive roll  : right wing down 
  Positive pitch : nose up 
   
  Transformation order: first yaw then pitch then roll. 
*/ 
 
/* 
  Serial commands that the firmware understands: 
   
  "#o<params>" - Set OUTPUT mode and parameters. The available options are: 
   
      // Streaming output 
      "#o0" - DISABLE continuous streaming output. Also see #f below. 
      "#o1" - ENABLE continuous streaming output. 
       
      // Angles output 
      "#ob" - Output angles in BINARY format (yaw/pitch/roll as binary float, so one output frame 
              is 3x4 = 12 bytes long). 
      "#ot" - Output angles in TEXT format (Output frames have form like "#YPR=-142.28,-5.38,33.52", 
              followed by carriage return and line feed [\r\n]). 
       
      // Sensor calibration 
      "#oc" - Go to CALIBRATION output mode. 
      "#on" - When in calibration mode, go on to calibrate NEXT sensor. 
       
      // Sensor data output 
      "#osct" - Output CALIBRATED SENSOR data of all 9 axes in TEXT format. 
                One frame consist of three lines - one for each sensor: acc, mag, gyr. 
      "#osrt" - Output RAW SENSOR data of all 9 axes in TEXT format. 
                One frame consist of three lines - one for each sensor: acc, mag, gyr. 
      "#osbt" - Output BOTH raw and calibrated SENSOR data of all 9 axes in TEXT format. 
                One frame consist of six lines - like #osrt and #osct combined (first RAW, then CALIBRATED). 
                NOTE: This is a lot of number-to-text conversion work for the little 8MHz chip on the Razor boards. 
                In fact it's too much and an output frame rate of 50Hz can not be maintained. #osbb. 
      "#oscb" - Output CALIBRATED SENSOR data of all 9 axes in BINARY format. 
                One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z. 
      "#osrb" - Output RAW SENSOR data of all 9 axes in BINARY format. 
                One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z. 
      "#osbb" - Output BOTH raw and calibrated SENSOR data of all 9 axes in BINARY format. 
                One frame consist of 2x36 = 72 bytes - like #osrb and #oscb combined (first RAW, then CALIBRATED). 
       
      // Error message output         
      "#oe0" - Disable ERROR message output. 
      "#oe1" - Enable ERROR message output. 
     
     
  "#f" - Request one output frame - useful when continuous output is disabled and updates are 
         required in larger intervals only. Though #f only requests one reply, replies are still 
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         bound to the internal 20ms (50Hz) time raster. So worst case delay that #f can add is 19.99ms. 
          
          
  "#s<xy>" - Request synch token - useful to find out where the frame boundaries are in a continuous 
         binary stream or to see if tracker is present and answering. The tracker will send 
         "#SYNCH<xy>\r\n" in response (so it's possible to read using a readLine() function). 
         x and y are two mandatory but arbitrary bytes that can be used to find out which request 
         the answer belongs to. 
           
           
  ("#C" and "#D" - Reserved for communication with optional Bluetooth module.) 
   
  Newline characters are not required. So you could send "#ob#o1#s", which 
  would set binary output mode, enable continuous streaming output and request 
  a synch token all at once. 
   
  The status LED will be on if streaming output is enabled and off otherwise. 
   
  Byte order of binary output is little-endian: least significant byte comes first. 
*/ 
 
 
 
/*****************************************************************/ 
/*********** USER SETUP AREA! Set your options here! *************/ 
/*****************************************************************/ 
 
// HARDWARE OPTIONS 
/*****************************************************************/ 
// Select your hardware here by uncommenting one line! 
//#define HW__VERSION_CODE 10125 // SparkFun "9DOF Razor IMU" version "SEN-10125" (HMC5843 magnetometer) 
#define HW__VERSION_CODE 10736 // SparkFun "9DOF Razor IMU" version "SEN-10736" (HMC5883L magnetometer) 
//#define HW__VERSION_CODE 10183 // SparkFun "9DOF Sensor Stick" version "SEN-10183" (HMC5843 magnetometer) 
//#define HW__VERSION_CODE 10321 // SparkFun "9DOF Sensor Stick" version "SEN-10321" (HMC5843 magnetometer) 
//#define HW__VERSION_CODE 10724 // SparkFun "9DOF Sensor Stick" version "SEN-10724" (HMC5883L magnetometer) 
 
 
// OUTPUT OPTIONS 
/*****************************************************************/ 
// Set your serial port baud rate used to send out data here! 
#define OUTPUT__BAUD_RATE 57600 
 
// Sensor data output interval in milliseconds 
// This may not work, if faster than 20ms (=50Hz) 
// Code is tuned for 20ms, so better leave it like that 
#define OUTPUT__DATA_INTERVAL 20  // in milliseconds 
 
// Output mode definitions (do not change) 
#define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration 
#define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees 
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes 
#define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes 
#define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes 
// Output format definitions (do not change) 
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text 
#define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float 
 
// Select your startup output mode and format here! 
int output_mode = OUTPUT__MODE_ANGLES; 
int output_format = OUTPUT__FORMAT_TEXT; 
 
// Select if serial continuous streaming output is enabled per default on startup. 
#define OUTPUT__STARTUP_STREAM_ON true  // true or false 
 
// If set true, an error message will be output if we fail to read sensor data. 
// Message format: "!ERR: reading <sensor>", followed by "\r\n". 
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boolean output_errors = false;  // true or false 
 
// Bluetooth 
// You can set this to true, if you have a Rovering Networks Bluetooth Module attached. 
// The connect/disconnect message prefix of the module has to be set to "#". 
// (Refer to manual, it can be set like this: SO,#) 
// When using this, streaming output will only be enabled as long as we're connected. That way 
// receiver and sender are synchronzed easily just by connecting/disconnecting. 
// It is not necessary to set this! It just makes life easier when writing code for 
// the receiving side. The Processing test sketch also works without setting this. 
// NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect! 
#define OUTPUT__HAS_RN_BLUETOOTH false  // true or false 
 
 
// SENSOR CALIBRATION 
/*****************************************************************/ 
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs 
// Put MIN/MAX and OFFSET readings for your board here! 
// Accelerometer 
// "accel x,y,z (min/max) = X_MIN/X_MAX  Y_MIN/Y_MAX  Z_MIN/Z_MAX" 
#define ACCEL_X_MIN ((float) -281) 
#define ACCEL_X_MAX ((float) 272) 
#define ACCEL_Y_MIN ((float) -280) 
#define ACCEL_Y_MAX ((float) 281) 
#define ACCEL_Z_MIN ((float) -280) 
#define ACCEL_Z_MAX ((float) 240) 
 
// Magnetometer (standard calibration mode) 
// "magn x,y,z (min/max) = X_MIN/X_MAX  Y_MIN/Y_MAX  Z_MIN/Z_MAX" 
#define MAGN_X_MIN ((float) -460) 
#define MAGN_X_MAX ((float) 669) 
#define MAGN_Y_MIN ((float) -595) 
#define MAGN_Y_MAX ((float) 545) 
#define MAGN_Z_MIN ((float) -540) 
#define MAGN_Z_MAX ((float)  766) 
 
// Magnetometer (extended calibration mode) 
// Uncommend to use extended magnetometer calibration (compensates hard & soft iron errors) 
#define CALIBRATION__MAGN_USE_EXTENDED true 
const float magn_ellipsoid_center[3] = {108.674, -42.9559, -38.7677}; 
const float magn_ellipsoid_transform[3][3] = {{0.948064, -.00572107, -0.0170356}, {-0.00572107, 0.989783, 0.0132464}, {-0.0170356, 
0.0132464, 0.970555}}; 
 
// Gyroscope 
// "gyro x,y,z (current/average) = .../OFFSET_X  .../OFFSET_Y  .../OFFSET_Z 
#define GYRO_AVERAGE_OFFSET_X ((float) -5.07) 
#define GYRO_AVERAGE_OFFSET_Y ((float) 22.40) 
#define GYRO_AVERAGE_OFFSET_Z ((float) -10.05) 
 
/* 
// Calibration example: 
 
// "accel x,y,z (min/max) = -277.00/264.00  -256.00/278.00  -299.00/235.00" 
#define ACCEL_X_MIN ((float) -277) 
#define ACCEL_X_MAX ((float) 264) 
#define ACCEL_Y_MIN ((float) -256) 
#define ACCEL_Y_MAX ((float) 278) 
#define ACCEL_Z_MIN ((float) -299) 
#define ACCEL_Z_MAX ((float) 235) 
 
// "magn x,y,z (min/max) = -511.00/581.00  -516.00/568.00  -489.00/486.00" 
//#define MAGN_X_MIN ((float) -511) 
//#define MAGN_X_MAX ((float) 581) 
//#define MAGN_Y_MIN ((float) -516) 
//#define MAGN_Y_MAX ((float) 568) 
//#define MAGN_Z_MIN ((float) -489) 
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//#define MAGN_Z_MAX ((float) 486) 
 
// Extended magn 
#define CALIBRATION__MAGN_USE_EXTENDED true 
const float magn_ellipsoid_center[3] = {91.5, -13.5, -48.1}; 
const float magn_ellipsoid_transform[3][3] = {{0.902, -0.00354, 0.000636}, {-0.00354, 0.9, -0.00599}, {0.000636, -0.00599, 1}}; 
 
// Extended magn (with Sennheiser HD 485 headphones) 
//#define CALIBRATION__MAGN_USE_EXTENDED true 
//const float magn_ellipsoid_center[3] = {72.3360, 23.0954, 53.6261}; 
//const float magn_ellipsoid_transform[3][3] = {{0.879685, 0.000540833, -0.0106054}, {0.000540833, 0.891086, -0.0130338}, {-0.0106054, -
0.0130338, 0.997494}}; 
 
//"gyro x,y,z (current/average) = -40.00/-42.05  98.00/96.20  -18.00/-18.36" 
#define GYRO_AVERAGE_OFFSET_X ((float) -42.05) 
#define GYRO_AVERAGE_OFFSET_Y ((float) 96.20) 
#define GYRO_AVERAGE_OFFSET_Z ((float) -18.36) 
*/ 
 
 
// DEBUG OPTIONS 
/*****************************************************************/ 
// When set to true, gyro drift correction will not be applied 
#define DEBUG__NO_DRIFT_CORRECTION false 
// Print elapsed time after each I/O loop 
#define DEBUG__PRINT_LOOP_TIME false 
 
 
/*****************************************************************/ 
/****************** END OF USER SETUP AREA!  *********************/ 
/*****************************************************************/ 
 
 
 
 
 
 
 
 
 
 
// Check if hardware version code is defined 
#ifndef HW__VERSION_CODE 
  // Generate compile error 
  #error YOU HAVE TO SELECT THE HARDWARE YOU ARE USING! See "HARDWARE OPTIONS" in "USER SETUP AREA" at top of 
Razor_AHRS.ino! 
#endif 
 
#include <Wire.h> 
 
// Sensor calibration scale and offset values 
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f) 
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f) 
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f) 
#define ACCEL_X_SCALE (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET)) 
#define ACCEL_Y_SCALE (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET)) 
#define ACCEL_Z_SCALE (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET)) 
 
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f) 
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f) 
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f) 
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET)) 
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET)) 
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET)) 
 
 



115 
 

// Gain for gyroscope (ITG-3200) 
#define GYRO_GAIN 0.06957 // Same gain on all axes 
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second 
 
// DCM parameters 
#define Kp_ROLLPITCH 0.05f 
#define Ki_ROLLPITCH 0.0005f 
#define Kp_YAW 1.0f 
#define Ki_YAW 0.000002f 
 
// Stuff 
#define STATUS_LED_PIN 13  // Pin number of status LED 
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration 
#define TO_RAD(x) (x * 0.01745329252)  // *pi/180 
#define TO_DEG(x) (x * 57.2957795131)  // *180/pi 
 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////// 
///////           MQP          /////////////////////////////////////////////////////////////////////////////// 
 
//#define HEELSET_PIN 10   //Skipper desired heel angle 
#define BOOM_PIN 14     //boom sensor which negates the HEELSET value for the motor  
#define MASSPOS_PIN A1 // potentiometer wiper (middle terminal) connected to analog pin 24 
                       // outside leads to ground and +5V 
#define AUTOC_PIN 7  
#define HEELSET_PIN A2 
 
 
//Define Variables we'll be connecting to 
//double Setpoint, Input, Output; 
//Specify the links and initial tuning parameters 
//float PID myPID(&Input, &Output, &Setpoint,2,5,1, INVERSE); 
 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
// Sensor variables 
float accel[3];  // Actually stores the NEGATED acceleration (equals gravity, if board not moving). 
float accel_min[3]; 
float accel_max[3]; 
 
float magnetom[3]; 
float magnetom_min[3]; 
float magnetom_max[3]; 
float magnetom_tmp[3]; 
 
float gyro[3]; 
float gyro_average[3]; 
int gyro_num_samples = 0; 
 
// DCM variables 
float MAG_Heading; 
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector 
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector 
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data 
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction 
float Omega_I[3]= {0, 0, 0}; // Omega Integrator 
float Omega[3]= {0, 0, 0}; 
float errorRollPitch[3] = {0, 0, 0}; 
float errorYaw[3] = {0, 0, 0}; 
float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; 
float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}}; 
float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}; 
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// Euler angles 
float yaw; 
float pitch; 
float roll; 
 
// DCM timing in the main loop 
unsigned long timestamp; 
unsigned long timestamp_old; 
float G_Dt; // Integration time for DCM algorithm 
 
// More output-state variables 
boolean output_stream_on; 
boolean output_single_on; 
int curr_calibration_sensor = 0; 
boolean reset_calibration_session_flag = true; 
int num_accel_errors = 0; 
int num_magn_errors = 0; 
int num_gyro_errors = 0; 
 
void read_sensors() { 
  Read_Gyro(); // Read gyroscope 
  Read_Accel(); // Read accelerometer 
  Read_Magn(); // Read magnetometer 
} 
 
// Read every sensor and record a time stamp 
// Init DCM with unfiltered orientation 
// TODO re-init global vars? 
void reset_sensor_fusion() { 
  float temp1[3]; 
  float temp2[3]; 
  float xAxis[] = {1.0f, 0.0f, 0.0f}; 
 
  read_sensors(); 
  timestamp = millis(); 
   
  // GET PITCH 
  // Using y-z-plane-component/x-component of gravity vector 
  pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2])); 
  
  // GET ROLL 
  // Compensate pitch of gravity vector  
  Vector_Cross_Product(temp1, accel, xAxis); 
  Vector_Cross_Product(temp2, xAxis, temp1); 
  // Normally using x-z-plane-component/y-component of compensated gravity vector 
  // roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2])); 
  // Since we compensated for pitch, x-z-plane-component equals z-component: 
  roll = atan2(temp2[1], temp2[2]); 
   
  // GET YAW 
  Compass_Heading(); 
  yaw = MAG_Heading; 
   
  // Init rotation matrix 
  init_rotation_matrix(DCM_Matrix, yaw, pitch, roll); 
} 
 
// Apply calibration to raw sensor readings 
void compensate_sensor_errors() { 
    // Compensate accelerometer error 
    accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE; 
    accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE; 
    accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE; 
 
    // Compensate magnetometer error 
#if CALIBRATION__MAGN_USE_EXTENDED == true 
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    for (int i = 0; i < 3; i++) 
      magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i]; 
    Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom); 
#else 
    magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE; 
    magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE; 
    magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE; 
#endif 
 
    // Compensate gyroscope error 
    gyro[0] -= GYRO_AVERAGE_OFFSET_X; 
    gyro[1] -= GYRO_AVERAGE_OFFSET_Y; 
    gyro[2] -= GYRO_AVERAGE_OFFSET_Z; 
} 
 
// Reset calibration session if reset_calibration_session_flag is set 
void check_reset_calibration_session() 
{ 
  // Raw sensor values have to be read already, but no error compensation applied 
 
  // Reset this calibration session? 
  if (!reset_calibration_session_flag) return; 
   
  // Reset acc and mag calibration variables 
  for (int i = 0; i < 3; i++) { 
    accel_min[i] = accel_max[i] = accel[i]; 
    magnetom_min[i] = magnetom_max[i] = magnetom[i]; 
  } 
 
  // Reset gyro calibration variables 
  gyro_num_samples = 0;  // Reset gyro calibration averaging 
  gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f; 
   
  reset_calibration_session_flag = false; 
} 
 
void turn_output_stream_on() 
{ 
  output_stream_on = true; 
  digitalWrite(STATUS_LED_PIN, LOW); 
} 
 
void turn_output_stream_off() 
{ 
  output_stream_on = false; 
  digitalWrite(STATUS_LED_PIN, LOW); 
} 
 
// Blocks until another byte is available on serial port 
char readChar() 
{ 
  while (Serial.available() < 1) { } // Block 
  return Serial.read(); 
} 
 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////// 
//////   SETUP /////////// 
 
void setup() 
{ 
  // Init serial output 
  Serial.begin(OUTPUT__BAUD_RATE); 
   
  myservo.attach(6, 1000, 2000); 
  pinMode(BOOM_PIN, INPUT); 
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  pinMode(MASSPOS_PIN, INPUT); 
  pinMode(AUTOC_PIN, INPUT); 
  pinMode(HEELSET_PIN, INPUT); 
  digitalWrite(AUTOC_PIN, LOW); 
 
 
 
///////////////////////////////////////////////////////////////////// 
  // Init status LED 
  pinMode (STATUS_LED_PIN, OUTPUT); 
  digitalWrite(STATUS_LED_PIN, LOW); 
 
  // Init sensors 
  delay(50);  // Give sensors enough time to start 
  I2C_Init(); 
  Accel_Init(); 
  Magn_Init(); 
  Gyro_Init(); 
   
  // Read sensors, init DCM algorithm 
  delay(20);  // Give sensors enough time to collect data 
  reset_sensor_fusion(); 
 
  // Init output 
#if (OUTPUT__HAS_RN_BLUETOOTH == true) || (OUTPUT__STARTUP_STREAM_ON == false) 
  turn_output_stream_off(); 
#else 
  turn_output_stream_on(); 
#endif 
} 
 
 
 
int hval;    //heel value -20 to 20 
int boomval;   //boom switch 0 or 1  
int autoc; 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////// 
 
// Main loop 
void loop() 
{ 
   
autoc = digitalRead(AUTOC_PIN); 
/* 
if (autoc < 560) 
  ac = 0; 
else  
  ac = 1; 
*/ 
Serial.print("autoc=");  
Serial.print(autoc); Serial.print(","); 
   
  int PVAL; 
  PVAL = analogRead(MASSPOS_PIN);     //Read in potentiometer for location of the mass on the track 
  int pval = map(PVAL, 0, 1023, -50, 50); 
   
int heelset = analogRead(HEELSET_PIN);     //Reads in the heel set dial  
int hvalset = map(heelset, 0, 1023, -20, 20);  //Constrains the limits from -20 to 20  
 
 
///initializes the boom val to 0 or 1 (for testing purposes without the boom sensor plugged in ) 
  
 
  boomval = analogRead(BOOM_PIN); 
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  if (boomval == 1){  
     hval = -abs(hvalset); 
  } 
  else{ 
     hval = abs(hvalset); 
  } 
 
   
   
     
//////////////////////// SENSOR SMOOTHING FOR JITTER/////////////////////////////// 
 
  double sensVal = -TO_DEG(roll)+2;           // for raw sensor values  
  float filterVal;       // this determines smoothness  - .0001 is max  1 is off (no smoothing) 
  double smoothedVal = TO_DEG(roll);     // this holds the last loop value just use a unique variable for every different sensor that needs 
smoothing 
  int i, j;              // loop counters or demo   
 
    
    filterVal = .2 * .15;  
 
      // sensVal = analogRead(0);   this is what one would do normally 
    
  smoothedVal =  smooth(sensVal, filterVal, smoothedVal);   // second parameter determines smoothness  - 0 is off,  .9999 is max smooth   
  
  double rollDegrees = smoothedVal; 
   
   
  Serial.print("angin=");  
  Serial.print(rollDegrees); Serial.print(","); 
  Serial.print("hset="); 
  Serial.print(hval); Serial.print(","); 
 
 
///////////////////////////// PID CALLS////////////////// 
 
int gapDist = 2; 
 
//Aggressive Reaction 
double aggK=1, aggKp=5, aggKi=0, aggKd=0; 
//Conservative Reactions 
double consK = 1, consKp= 3, consKi=0, consKd=0; 
 
double gap = abs(hval-sensVal); //distance away from setpoint 
  
int x; 
 
 if (gap<gapDist) 
  { //we're close to setpoint, use conservative tuning parameters 
    x = updatePid(hval, sensVal, consK, consKp, consKi, consKd); 
  //   int pwm = map(drive, 127, 255) 
  } 
  else{ 
     //we're far from setpoint, use aggressive tuning parameters 
     x= updatePid(hval, sensVal, aggK, aggKp, aggKi, aggKd); 
  } 
   
  int y = updatePid(0, pval, 1, 3, 0, 0);      //pid for the auto center button and stop  
   
  
Serial.print("pidoutx="); 
Serial.print(x); Serial.print(","); 
 
Serial.print("pin=");  
Serial.print(pval); Serial.print(","); 
Serial.print("set="); 
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Serial.print(0); Serial.print(","); 
Serial.print("pidouty="); 
Serial.print(y); Serial.print(","); 
//////////////////////////////////////////////// AUTO CENTER BUTTON ///////////////////////// 
int z= ((36-pval)/72)*180; 
 
 
    if (autoc == HIGH){       //checks to see if the auto center button is high 
      if(pval==0)             
         myservo.write(90);   //stops the motor 
      else      
        myservo.write(90+y);  //centers the motor based on the mass position PID 
    } 
    else { 
     if ( pval < - 45 || pval > 45 || sensVal < -30 || sensVal > 30  ) //end of track & max heel check 
        myservo.write(90+x);   //moves the motor in the opposite direction 
     else  
        myservo.write(90-x);   //centers the motor at the heel set angle based on the measured heel PID 
    } 
     
    int autocoff = 90-x; 
    int autocon =  90-y; 
 
 
 
/*    
  int range = map(angerr, 0, 20, 0, 3); 
 
  // speed of the motor depending on the 
  // difference value of the angle error(faster speed for a higher delta change) 
 /* switch (range) { 
  case 0:    // slow 
    pwm(SLOW); 
    break; 
  case 1:    // medium 
    pwm(MEDIUM); 
    break; 
  case 2:    // fast 
    pwm(FAST); 
    break; 
  case 3:    // full 
    pwm(FULL); 
    break; 
  }   
   
   
  */ 
  // Read incoming control messages 
  if (Serial.available() >= 2) 
  { 
    if (Serial.read() == '#') // Start of new control message 
    { 
      int command = Serial.read(); // Commands 
      if (command == 'f') // request one output _f_rame 
        output_single_on = true; 
      else if (command == 's') // _s_ynch request 
      { 
        // Read ID 
        byte id[2]; 
        id[0] = readChar(); 
        id[1] = readChar(); 
         
        // Reply with synch message 
        Serial.print("#SYNCH"); 
        Serial.write(id, 2); 
        Serial.println(); 
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      } 
      else if (command == 'o') // Set _o_utput mode 
      { 
        char output_param = readChar(); 
        if (output_param == 'n')  // Calibrate _n_ext sensor 
        { 
          curr_calibration_sensor = (curr_calibration_sensor + 1) % 3; 
          reset_calibration_session_flag = true; 
        } 
        else if (output_param == 't') // Output angles as _t_ext 
        { 
          output_mode = OUTPUT__MODE_ANGLES; 
          output_format = OUTPUT__FORMAT_TEXT; 
        } 
        else if (output_param == 'b') // Output angles in _b_inary format 
        { 
          output_mode = OUTPUT__MODE_ANGLES; 
          output_format = OUTPUT__FORMAT_BINARY; 
        } 
        else if (output_param == 'c') // Go to _c_alibration mode 
        { 
          output_mode = OUTPUT__MODE_CALIBRATE_SENSORS; 
          reset_calibration_session_flag = true; 
        } 
        else if (output_param == 's') // Output _s_ensor values 
        { 
          char values_param = readChar(); 
          char format_param = readChar(); 
          if (values_param == 'r')  // Output _r_aw sensor values 
            output_mode = OUTPUT__MODE_SENSORS_RAW; 
          else if (values_param == 'c')  // Output _c_alibrated sensor values 
            output_mode = OUTPUT__MODE_SENSORS_CALIB; 
          else if (values_param == 'b')  // Output _b_oth sensor values (raw and calibrated) 
            output_mode = OUTPUT__MODE_SENSORS_BOTH; 
 
          if (format_param == 't') // Output values as _t_text 
            output_format = OUTPUT__FORMAT_TEXT; 
          else if (format_param == 'b') // Output values in _b_inary format 
            output_format = OUTPUT__FORMAT_BINARY; 
        } 
        else if (output_param == '0') // Disable continuous streaming output 
        { 
          turn_output_stream_off(); 
          reset_calibration_session_flag = true; 
        } 
        else if (output_param == '1') // Enable continuous streaming output 
        { 
          reset_calibration_session_flag = true; 
          turn_output_stream_on(); 
        } 
        else if (output_param == 'e') // _e_rror output settings 
        { 
          char error_param = readChar(); 
          if (error_param == '0') output_errors = false; 
          else if (error_param == '1') output_errors = true; 
          else if (error_param == 'c') // get error count 
          { 
            Serial.print("#AMG-ERR:"); 
            Serial.print(num_accel_errors); Serial.print(","); 
            Serial.print(num_magn_errors); Serial.print(","); 
            Serial.println(num_gyro_errors); 
          } 
        } 
      } 
#if OUTPUT__HAS_RN_BLUETOOTH == true 
      // Read messages from bluetooth module 
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      // For this to work, the connect/disconnect message prefix of the module has to be set to "#". 
      else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1") 
        turn_output_stream_on(); 
      else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0") 
        turn_output_stream_off(); 
#endif // OUTPUT__HAS_RN_BLUETOOTH == true 
    } 
    else 
    { } // Skip character 
  } 
 
  // Time to read the sensors again? 
  if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL) 
  { 
    timestamp_old = timestamp; 
    timestamp = millis(); 
    if (timestamp > timestamp_old) 
      G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time) 
    else G_Dt = 0; 
 
    // Update sensor readings 
    read_sensors(); 
 
    if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS)  // We're in calibration mode 
    { 
      check_reset_calibration_session();  // Check if this session needs a reset 
      if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor); 
    } 
    else if (output_mode == OUTPUT__MODE_ANGLES)  // Output angles 
    { 
      // Apply sensor calibration 
      compensate_sensor_errors(); 
     
      // Run DCM algorithm 
      Compass_Heading(); // Calculate magnetic heading 
      Matrix_update(); 
      Normalize(); 
      Drift_correction(); 
      Euler_angles(); 
       
      if (output_stream_on || output_single_on) output_angles(); 
    } 
    else  // Output sensor values 
    {       
      if (output_stream_on || output_single_on) output_sensors(); 
    } 
     
    output_single_on = false; 
     
#if DEBUG__PRINT_LOOP_TIME == true 
    Serial.print("loop time (ms) = "); 
    Serial.println(millis() - timestamp); 
#endif 
  } 
#if DEBUG__PRINT_LOOP_TIME == true 
  else 
  { 
    Serial.println("waiting..."); 
  } 
#endif 
} 
 
/* This file is part of the Razor AHRS Firmware */ 
 
void Compass_Heading() 
{ 
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  float mag_x; 
  float mag_y; 
  float cos_roll; 
  float sin_roll; 
  float cos_pitch; 
  float sin_pitch; 
   
  cos_roll = cos(roll); 
  sin_roll = sin(roll); 
  cos_pitch = cos(pitch); 
  sin_pitch = sin(pitch); 
   
  // Tilt compensated magnetic field X 
  mag_x = magnetom[0] * cos_pitch + magnetom[1] * sin_roll * sin_pitch + magnetom[2] * cos_roll * sin_pitch; 
  // Tilt compensated magnetic field Y 
  mag_y = magnetom[1] * cos_roll - magnetom[2] * sin_roll; 
  // Magnetic Heading 
  MAG_Heading = atan2(-mag_y, mag_x); 
} 
 
/* This file is part of the Razor AHRS Firmware */ 
 
// DCM algorithm 
 
/**************************************************/ 
void Normalize(void) 
{ 
  float error=0; 
  float temporary[3][3]; 
  float renorm=0; 
   
  error= -Vector_Dot_Product(&DCM_Matrix[0][0],&DCM_Matrix[1][0])*.5; //eq.19 
 
  Vector_Scale(&temporary[0][0], &DCM_Matrix[1][0], error); //eq.19 
  Vector_Scale(&temporary[1][0], &DCM_Matrix[0][0], error); //eq.19 
   
  Vector_Add(&temporary[0][0], &temporary[0][0], &DCM_Matrix[0][0]);//eq.19 
  Vector_Add(&temporary[1][0], &temporary[1][0], &DCM_Matrix[1][0]);//eq.19 
   
  Vector_Cross_Product(&temporary[2][0],&temporary[0][0],&temporary[1][0]); // c= a x b //eq.20 
   
  renorm= .5 *(3 - Vector_Dot_Product(&temporary[0][0],&temporary[0][0])); //eq.21 
  Vector_Scale(&DCM_Matrix[0][0], &temporary[0][0], renorm); 
   
  renorm= .5 *(3 - Vector_Dot_Product(&temporary[1][0],&temporary[1][0])); //eq.21 
  Vector_Scale(&DCM_Matrix[1][0], &temporary[1][0], renorm); 
   
  renorm= .5 *(3 - Vector_Dot_Product(&temporary[2][0],&temporary[2][0])); //eq.21 
  Vector_Scale(&DCM_Matrix[2][0], &temporary[2][0], renorm); 
} 
 
/**************************************************/ 
void Drift_correction(void) 
{ 
  float mag_heading_x; 
  float mag_heading_y; 
  float errorCourse; 
  //Compensation the Roll, Pitch and Yaw drift.  
  static float Scaled_Omega_P[3]; 
  static float Scaled_Omega_I[3]; 
  float Accel_magnitude; 
  float Accel_weight; 
   
   
  //*****Roll and Pitch*************** 
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  // Calculate the magnitude of the accelerometer vector 
  Accel_magnitude = sqrt(Accel_Vector[0]*Accel_Vector[0] + Accel_Vector[1]*Accel_Vector[1] + Accel_Vector[2]*Accel_Vector[2]); 
  Accel_magnitude = Accel_magnitude / GRAVITY; // Scale to gravity. 
  // Dynamic weighting of accelerometer info (reliability filter) 
  // Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0) 
  Accel_weight = constrain(1 - 2*abs(1 - Accel_magnitude),0,1);  //   
 
  Vector_Cross_Product(&errorRollPitch[0],&Accel_Vector[0],&DCM_Matrix[2][0]); //adjust the ground of reference 
  Vector_Scale(&Omega_P[0],&errorRollPitch[0],Kp_ROLLPITCH*Accel_weight); 
   
  Vector_Scale(&Scaled_Omega_I[0],&errorRollPitch[0],Ki_ROLLPITCH*Accel_weight); 
  Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);      
   
  //*****YAW*************** 
  // We make the gyro YAW drift correction based on compass magnetic heading 
  
  mag_heading_x = cos(MAG_Heading); 
  mag_heading_y = sin(MAG_Heading); 
  errorCourse=(DCM_Matrix[0][0]*mag_heading_y) - (DCM_Matrix[1][0]*mag_heading_x);  //Calculating YAW error 
  Vector_Scale(errorYaw,&DCM_Matrix[2][0],errorCourse); //Applys the yaw correction to the XYZ rotation of the aircraft, depeding the 
position. 
   
  Vector_Scale(&Scaled_Omega_P[0],&errorYaw[0],Kp_YAW);//.01proportional of YAW. 
  Vector_Add(Omega_P,Omega_P,Scaled_Omega_P);//Adding  Proportional. 
   
  Vector_Scale(&Scaled_Omega_I[0],&errorYaw[0],Ki_YAW);//.00001Integrator 
  Vector_Add(Omega_I,Omega_I,Scaled_Omega_I);//adding integrator to the Omega_I 
} 
 
void Matrix_update(void) 
{ 
  Gyro_Vector[0]=GYRO_SCALED_RAD(gyro[0]); //gyro x roll 
  Gyro_Vector[1]=GYRO_SCALED_RAD(gyro[1]); //gyro y pitch 
  Gyro_Vector[2]=GYRO_SCALED_RAD(gyro[2]); //gyro z yaw 
   
  Accel_Vector[0]=accel[0]; 
  Accel_Vector[1]=accel[1]; 
  Accel_Vector[2]=accel[2]; 
     
  Vector_Add(&Omega[0], &Gyro_Vector[0], &Omega_I[0]);  //adding proportional term 
  Vector_Add(&Omega_Vector[0], &Omega[0], &Omega_P[0]); //adding Integrator term 
   
#if DEBUG__NO_DRIFT_CORRECTION == true // Do not use drift correction 
  Update_Matrix[0][0]=0; 
  Update_Matrix[0][1]=-G_Dt*Gyro_Vector[2];//-z 
  Update_Matrix[0][2]=G_Dt*Gyro_Vector[1];//y 
  Update_Matrix[1][0]=G_Dt*Gyro_Vector[2];//z 
  Update_Matrix[1][1]=0; 
  Update_Matrix[1][2]=-G_Dt*Gyro_Vector[0]; 
  Update_Matrix[2][0]=-G_Dt*Gyro_Vector[1]; 
  Update_Matrix[2][1]=G_Dt*Gyro_Vector[0]; 
  Update_Matrix[2][2]=0; 
#else // Use drift correction 
  Update_Matrix[0][0]=0; 
  Update_Matrix[0][1]=-G_Dt*Omega_Vector[2];//-z 
  Update_Matrix[0][2]=G_Dt*Omega_Vector[1];//y 
  Update_Matrix[1][0]=G_Dt*Omega_Vector[2];//z 
  Update_Matrix[1][1]=0; 
  Update_Matrix[1][2]=-G_Dt*Omega_Vector[0];//-x 
  Update_Matrix[2][0]=-G_Dt*Omega_Vector[1];//-y 
  Update_Matrix[2][1]=G_Dt*Omega_Vector[0];//x 
  Update_Matrix[2][2]=0; 
#endif 
 
  Matrix_Multiply(DCM_Matrix,Update_Matrix,Temporary_Matrix); //a*b=c 
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  for(int x=0; x<3; x++) //Matrix Addition (update) 
  { 
    for(int y=0; y<3; y++) 
    { 
      DCM_Matrix[x][y]+=Temporary_Matrix[x][y]; 
    }  
  } 
} 
 
void Euler_angles(void) 
{ 
  pitch = -asin(DCM_Matrix[2][0]); 
  roll = atan2(DCM_Matrix[2][1],DCM_Matrix[2][2]); 
  yaw = atan2(DCM_Matrix[1][0],DCM_Matrix[0][0]); 
} 
 
  int smooth(int data, float filterVal, float smoothedVal){ 
   
    if (filterVal > 1){      // check to make sure param's are within range 
      filterVal = .99; 
    } 
    else if (filterVal <= 0){ 
      filterVal = 0; 
    } 
   
    //feeds back the output into the input 
    smoothedVal = (data * (1 - filterVal)) + (smoothedVal  *  filterVal);    
   
    return (int)smoothedVal; 
  } 
 
 
    float Q_angle  =  0.001; //0.001 
    float Q_gyro   =  0.003;  //0.003 
    float R_angle  =  0.03;  //0.03 
 
    float x_angle = 0; 
    float x_bias = 0; 
    float P_00 = 0, P_01 = 0, P_10 = 0, P_11 = 0;       
    float dt, y, S; 
    float K_0, K_1; 
 
  float kalmanCalculate(float newAngle, float newRate,int looptime) { 
    dt = float(looptime)/1000;                                     
    x_angle += dt * (newRate - x_bias); 
    P_00 +=  - dt * (P_10 + P_01) + Q_angle * dt; 
    P_01 +=  - dt * P_11; 
    P_10 +=  - dt * P_11; 
    P_11 +=  + Q_gyro * dt; 
     
    y = newAngle - x_angle; 
    S = P_00 + R_angle; 
    K_0 = P_00 / S; 
    K_1 = P_10 / S; 
     
    x_angle +=  K_0 * y; 
    x_bias  +=  K_1 * y; 
    P_00 -= K_0 * P_00; 
    P_01 -= K_0 * P_01; 
    P_10 -= K_1 * P_00; 
    P_11 -= K_1 * P_01; 
     
    return x_angle; 
  } 
 
/* This file is part of the Razor AHRS Firmware */ 
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// Computes the dot product of two vectors 
float Vector_Dot_Product(const float v1[3], const float v2[3]) 
{ 
  float result = 0; 
   
  for(int c = 0; c < 3; c++) 
  { 
    result += v1[c] * v2[c]; 
  } 
   
  return result;  
} 
 
// Computes the cross product of two vectors 
// out has to different from v1 and v2 (no in-place)! 
void Vector_Cross_Product(float out[3], const float v1[3], const float v2[3]) 
{ 
  out[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]); 
  out[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]); 
  out[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]); 
} 
 
// Multiply the vector by a scalar 
void Vector_Scale(float out[3], const float v[3], float scale) 
{ 
  for(int c = 0; c < 3; c++) 
  { 
    out[c] = v[c] * scale;  
  } 
} 
 
// Adds two vectors 
void Vector_Add(float out[3], const float v1[3], const float v2[3]) 
{ 
  for(int c = 0; c < 3; c++) 
  { 
    out[c] = v1[c] + v2[c]; 
  } 
} 
 
// Multiply two 3x3 matrices: out = a * b 
// out has to different from a and b (no in-place)! 
void Matrix_Multiply(const float a[3][3], const float b[3][3], float out[3][3]) 
{ 
  for(int x = 0; x < 3; x++)  // rows 
  { 
    for(int y = 0; y < 3; y++)  // columns 
    { 
      out[x][y] = a[x][0] * b[0][y] + a[x][1] * b[1][y] + a[x][2] * b[2][y]; 
    } 
  } 
} 
 
// Multiply 3x3 matrix with vector: out = a * b 
// out has to different from b (no in-place)! 
void Matrix_Vector_Multiply(const float a[3][3], const float b[3], float out[3]) 
{ 
  for(int x = 0; x < 3; x++) 
  { 
    out[x] = a[x][0] * b[0] + a[x][1] * b[1] + a[x][2] * b[2]; 
  } 
} 
 
// Init rotation matrix using euler angles 
void init_rotation_matrix(float m[3][3], float yaw, float pitch, float roll) 
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{ 
  float c1 = cos(roll); 
  float s1 = sin(roll); 
  float c2 = cos(pitch); 
  float s2 = sin(pitch); 
  float c3 = cos(yaw); 
  float s3 = sin(yaw); 
 
  // Euler angles, right-handed, intrinsic, XYZ convention 
  // (which means: rotate around body axes Z, Y', X'')  
  m[0][0] = c2 * c3; 
  m[0][1] = c3 * s1 * s2 - c1 * s3; 
  m[0][2] = s1 * s3 + c1 * c3 * s2; 
 
  m[1][0] = c2 * s3; 
  m[1][1] = c1 * c3 + s1 * s2 * s3; 
  m[1][2] = c1 * s2 * s3 - c3 * s1; 
 
  m[2][0] = -s2; 
  m[2][1] = c2 * s1; 
  m[2][2] = c1 * c2; 
} 
 
/* This file is part of the Razor AHRS Firmware */ 
 
// Output angles: yaw, pitch, roll 
 
 
void output_angles() 
{ 
   
  if (output_format == OUTPUT__FORMAT_BINARY) 
  { 
    float ypr[3];   
    ypr[0] = TO_DEG(yaw); 
    ypr[1] = TO_DEG(pitch); 
    ypr[2] = TO_DEG(roll); 
    Serial.write((byte*) ypr, 12);  // No new-line 
  } 
  else if (output_format == OUTPUT__FORMAT_TEXT) 
  { 
    Serial.print("#YPR="); 
    Serial.print(TO_DEG(yaw)); Serial.print(","); 
    Serial.print(TO_DEG(pitch)); Serial.print(","); 
    Serial.print(TO_DEG(roll)); Serial.print(","); 
    Serial.println(); 
    delay(30); 
  } 
} 
 
void output_calibration(int calibration_sensor) 
{ 
  if (calibration_sensor == 0)  // Accelerometer 
  { 
    // Output MIN/MAX values 
    Serial.print("accel x,y,z (min/max) = "); 
    for (int i = 0; i < 3; i++) { 
      if (accel[i] < accel_min[i]) accel_min[i] = accel[i]; 
      if (accel[i] > accel_max[i]) accel_max[i] = accel[i]; 
      Serial.print(accel_min[i]); 
      Serial.print("/"); 
      Serial.print(accel_max[i]); 
      if (i < 2) Serial.print("  "); 
      else Serial.println(); 
    } 
  } 
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  else if (calibration_sensor == 1)  // Magnetometer 
  { 
    // Output MIN/MAX values 
    Serial.print("magn x,y,z (min/max) = "); 
    for (int i = 0; i < 3; i++) { 
      if (magnetom[i] < magnetom_min[i]) magnetom_min[i] = magnetom[i]; 
      if (magnetom[i] > magnetom_max[i]) magnetom_max[i] = magnetom[i]; 
      Serial.print(magnetom_min[i]); 
      Serial.print("/"); 
      Serial.print(magnetom_max[i]); 
      if (i < 2) Serial.print("  "); 
      else Serial.println(); 
    } 
  } 
  else if (calibration_sensor == 2)  // Gyroscope 
  { 
    // Average gyro values 
    for (int i = 0; i < 3; i++) 
      gyro_average[i] += gyro[i]; 
    gyro_num_samples++; 
       
    // Output current and averaged gyroscope values 
    Serial.print("gyro x,y,z (current/average) = "); 
    for (int i = 0; i < 3; i++) { 
      Serial.print(gyro[i]); 
      Serial.print("/"); 
      Serial.print(gyro_average[i] / (float) gyro_num_samples); 
      if (i < 2) Serial.print("  "); 
      else Serial.println(); 
    } 
  } 
} 
 
void output_sensors_text(char raw_or_calibrated) 
{ 
  Serial.print("#A-"); Serial.print(raw_or_calibrated); Serial.print('='); 
  Serial.print(accel[0]); Serial.print(","); 
  Serial.print(accel[1]); Serial.print(","); 
  Serial.print(accel[2]); Serial.println(); 
 
  Serial.print("#M-"); Serial.print(raw_or_calibrated); Serial.print('='); 
  Serial.print(magnetom[0]); Serial.print(","); 
  Serial.print(magnetom[1]); Serial.print(","); 
  Serial.print(magnetom[2]); Serial.println(); 
 
  Serial.print("#G-"); Serial.print(raw_or_calibrated); Serial.print('='); 
  Serial.print(gyro[0]); Serial.print(","); 
  Serial.print(gyro[1]); Serial.print(","); 
  Serial.print(gyro[2]); Serial.println(); 
} 
 
void output_sensors_binary() 
{ 
  Serial.write((byte*) accel, 12); 
  Serial.write((byte*) magnetom, 12); 
  Serial.write((byte*) gyro, 12); 
} 
 
void output_sensors() 
{ 
  if (output_mode == OUTPUT__MODE_SENSORS_RAW) 
  { 
    if (output_format == OUTPUT__FORMAT_BINARY) 
      output_sensors_binary(); 
    else if (output_format == OUTPUT__FORMAT_TEXT) 
      output_sensors_text('R'); 



129 
 

  } 
  else if (output_mode == OUTPUT__MODE_SENSORS_CALIB) 
  { 
    // Apply sensor calibration 
    compensate_sensor_errors(); 
     
    if (output_format == OUTPUT__FORMAT_BINARY) 
      output_sensors_binary(); 
    else if (output_format == OUTPUT__FORMAT_TEXT) 
      output_sensors_text('C'); 
  } 
  else if (output_mode == OUTPUT__MODE_SENSORS_BOTH) 
  { 
    if (output_format == OUTPUT__FORMAT_BINARY) 
    { 
      output_sensors_binary(); 
      compensate_sensor_errors(); 
      output_sensors_binary(); 
    } 
    else if (output_format == OUTPUT__FORMAT_TEXT) 
    { 
      output_sensors_text('R'); 
      compensate_sensor_errors(); 
      output_sensors_text('C'); 
    } 
  } 
} 
 
#include <math.h> 
 
unsigned long lastTime; 
int last_error = 0; 
int integrated_error = 0; 
int pTerm = 0, iTerm = 0, dTerm = 0; 
int error; 
 
int updatePid(int targetPosition, int currentPosition, float K, int Kp, int Ki, int Kd) { 
  
   
  /*How long since we last calculated*/ 
   unsigned long now = millis(); 
   double timeChange = (double)(now - lastTime); 
   
  error = targetPosition - currentPosition; 
   
  integrated_error += (error*timeChange); 
   
  if (abs(error) < 2) 
            error = 0; 
             
  pTerm = Kp * error; 
   
  iTerm = Ki * integrated_error; 
  dTerm = Kd * (error - last_error)/timeChange; 
   
  last_error = error; 
  lastTime = now; 
   
   
  return  constrain(K*(pTerm + iTerm + dTerm), -100, 100 ); 
 
  
 
  
} 
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/* This file is part of the Razor AHRS Firmware */ 
 
// I2C code to read the sensors 
 
// Sensor I2C addresses 
#define ACCEL_ADDRESS ((int) 0x53) // 0x53 = 0xA6 / 2 
#define MAGN_ADDRESS  ((int) 0x1E) // 0x1E = 0x3C / 2 
#define GYRO_ADDRESS  ((int) 0x68) // 0x68 = 0xD0 / 2 
 
// Arduino backward compatibility macros 
#if ARDUINO >= 100 
  #define WIRE_SEND(b) Wire.write((byte) b)  
  #define WIRE_RECEIVE() Wire.read()  
#else 
  #define WIRE_SEND(b) Wire.send(b) 
  #define WIRE_RECEIVE() Wire.receive()  
#endif 
 
 
void I2C_Init() 
{ 
  Wire.begin(); 
} 
 
void Accel_Init() 
{ 
  Wire.beginTransmission(ACCEL_ADDRESS); 
  WIRE_SEND(0x2D);  // Power register 
  WIRE_SEND(0x08);  // Measurement mode 
  Wire.endTransmission(); 
  delay(5); 
  Wire.beginTransmission(ACCEL_ADDRESS); 
  WIRE_SEND(0x31);  // Data format register 
  WIRE_SEND(0x08);  // Set to full resolution 
  Wire.endTransmission(); 
  delay(5); 
   
  // Because our main loop runs at 50Hz we adjust the output data rate to 50Hz (25Hz bandwidth) 
  Wire.beginTransmission(ACCEL_ADDRESS); 
  WIRE_SEND(0x2C);  // Rate 
  WIRE_SEND(0x09);  // Set to 50Hz, normal operation 
  Wire.endTransmission(); 
  delay(5); 
} 
 
// Reads x, y and z accelerometer registers 
void Read_Accel() 
{ 
  int i = 0; 
  byte buff[6]; 
   
  Wire.beginTransmission(ACCEL_ADDRESS);  
  WIRE_SEND(0x32);  // Send address to read from 
  Wire.endTransmission(); 
   
  Wire.beginTransmission(ACCEL_ADDRESS); 
  Wire.requestFrom(ACCEL_ADDRESS, 6);  // Request 6 bytes 
  while(Wire.available())  // ((Wire.available())&&(i<6)) 
  {  
    buff[i] = WIRE_RECEIVE();  // Read one byte 
    i++; 
  } 
  Wire.endTransmission(); 
   
  if (i == 6)  // All bytes received? 
  { 
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    // No multiply by -1 for coordinate system transformation here, because of double negation: 
    // We want the gravity vector, which is negated acceleration vector. 
    accel[0] = (((int) buff[3]) << 8) | buff[2];  // X axis (internal sensor y axis) 
    accel[1] = (((int) buff[1]) << 8) | buff[0];  // Y axis (internal sensor x axis) 
    accel[2] = (((int) buff[5]) << 8) | buff[4];  // Z axis (internal sensor z axis) 
  } 
  else 
  { 
    num_accel_errors++; 
    if (output_errors) Serial.println("!ERR: reading accelerometer"); 
  } 
} 
 
void Magn_Init() 
{ 
  Wire.beginTransmission(MAGN_ADDRESS); 
  WIRE_SEND(0x02);  
  WIRE_SEND(0x00);  // Set continuous mode (default 10Hz) 
  Wire.endTransmission(); 
  delay(5); 
 
  Wire.beginTransmission(MAGN_ADDRESS); 
  WIRE_SEND(0x00); 
  WIRE_SEND(0b00011000);  // Set 50Hz 
  Wire.endTransmission(); 
  delay(5); 
} 
 
void Read_Magn() 
{ 
  int i = 0; 
  byte buff[6]; 
  
  Wire.beginTransmission(MAGN_ADDRESS);  
  WIRE_SEND(0x03);  // Send address to read from 
  Wire.endTransmission(); 
   
  Wire.beginTransmission(MAGN_ADDRESS);  
  Wire.requestFrom(MAGN_ADDRESS, 6);  // Request 6 bytes 
  while(Wire.available())  // ((Wire.available())&&(i<6)) 
  {  
    buff[i] = WIRE_RECEIVE();  // Read one byte 
    i++; 
  } 
  Wire.endTransmission(); 
   
  if (i == 6)  // All bytes received? 
  { 
// 9DOF Razor IMU SEN-10125 using HMC5843 magnetometer 
#if HW__VERSION_CODE == 10125 
    // MSB byte first, then LSB; X, Y, Z 
    magnetom[0] = -1 * ((((int) buff[2]) << 8) | buff[3]);  // X axis (internal sensor -y axis) 
    magnetom[1] = -1 * ((((int) buff[0]) << 8) | buff[1]);  // Y axis (internal sensor -x axis) 
    magnetom[2] = -1 * ((((int) buff[4]) << 8) | buff[5]);  // Z axis (internal sensor -z axis) 
// 9DOF Razor IMU SEN-10736 using HMC5883L magnetometer 
#elif HW__VERSION_CODE == 10736 
    // MSB byte first, then LSB; Y and Z reversed: X, Z, Y 
    magnetom[0] = -1 * ((((int) buff[4]) << 8) | buff[5]);  // X axis (internal sensor -y axis) 
    magnetom[1] = -1 * ((((int) buff[0]) << 8) | buff[1]);  // Y axis (internal sensor -x axis) 
    magnetom[2] = -1 * ((((int) buff[2]) << 8) | buff[3]);  // Z axis (internal sensor -z axis) 
// 9DOF Sensor Stick SEN-10183 and SEN-10321 using HMC5843 magnetometer 
#elif (HW__VERSION_CODE == 10183) || (HW__VERSION_CODE == 10321) 
    // MSB byte first, then LSB; X, Y, Z 
    magnetom[0] = (((int) buff[0]) << 8) | buff[1];         // X axis (internal sensor x axis) 
    magnetom[1] = -1 * ((((int) buff[2]) << 8) | buff[3]);  // Y axis (internal sensor -y axis) 
    magnetom[2] = -1 * ((((int) buff[4]) << 8) | buff[5]);  // Z axis (internal sensor -z axis) 
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// 9DOF Sensor Stick SEN-10724 using HMC5883L magnetometer 
#elif HW__VERSION_CODE == 10724 
    // MSB byte first, then LSB; Y and Z reversed: X, Z, Y 
    magnetom[0] = (((int) buff[0]) << 8) | buff[1];         // X axis (internal sensor x axis) 
    magnetom[1] = -1 * ((((int) buff[4]) << 8) | buff[5]);  // Y axis (internal sensor -y axis) 
    magnetom[2] = -1 * ((((int) buff[2]) << 8) | buff[3]);  // Z axis (internal sensor -z axis) 
#endif 
  } 
  else 
  { 
    num_magn_errors++; 
    if (output_errors) Serial.println("!ERR: reading magnetometer"); 
  } 
} 
 
void Gyro_Init() 
{ 
  // Power up reset defaults 
  Wire.beginTransmission(GYRO_ADDRESS); 
  WIRE_SEND(0x3E); 
  WIRE_SEND(0x80); 
  Wire.endTransmission(); 
  delay(5); 
   
  // Select full-scale range of the gyro sensors 
  // Set LP filter bandwidth to 42Hz 
  Wire.beginTransmission(GYRO_ADDRESS); 
  WIRE_SEND(0x16); 
  WIRE_SEND(0x1B);  // DLPF_CFG = 3, FS_SEL = 3 
  Wire.endTransmission(); 
  delay(5); 
   
  // Set sample rato to 50Hz 
  Wire.beginTransmission(GYRO_ADDRESS); 
  WIRE_SEND(0x15); 
  WIRE_SEND(0x0A);  //  SMPLRT_DIV = 10 (50Hz) 
  Wire.endTransmission(); 
  delay(5); 
 
  // Set clock to PLL with z gyro reference 
  Wire.beginTransmission(GYRO_ADDRESS); 
  WIRE_SEND(0x3E); 
  WIRE_SEND(0x00); 
  Wire.endTransmission(); 
  delay(5); 
} 
 
// Reads x, y and z gyroscope registers 
void Read_Gyro() 
{ 
  int i = 0; 
  byte buff[6]; 
   
  Wire.beginTransmission(GYRO_ADDRESS);  
  WIRE_SEND(0x1D);  // Sends address to read from 
  Wire.endTransmission(); 
   
  Wire.beginTransmission(GYRO_ADDRESS); 
  Wire.requestFrom(GYRO_ADDRESS, 6);  // Request 6 bytes 
  while(Wire.available())  // ((Wire.available())&&(i<6)) 
  {  
    buff[i] = WIRE_RECEIVE();  // Read one byte 
    i++; 
  } 
  Wire.endTransmission(); 
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  if (i == 6)  // All bytes received? 
  { 
    gyro[0] = -1 * ((((int) buff[2]) << 8) | buff[3]);    // X axis (internal sensor -y axis) 
    gyro[1] = -1 * ((((int) buff[0]) << 8) | buff[1]);    // Y axis (internal sensor -x axis) 
    gyro[2] = -1 * ((((int) buff[4]) << 8) | buff[5]);    // Z axis (internal sensor -z axis) 
  } 
  else 
  { 
    num_gyro_errors++; 
    if (output_errors) Serial.println("!ERR: reading gyroscope"); 
  } 
} 
 



 
 

Appendix Q 

Part Cost 

6061 Aluminum  $300 

CIM Motor $30 

Talon Motor Controller $60 

TB3 Tough Box Gearbox $200 

Duracell Battery $210 

Sealed Bearings $150 

IMU PCB $115 

Various Parts (wires, hardware, etc.) $300 

Total $1365 
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