
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2018

Non-Invasive Neural Controller
Patrick Polley
Worcester Polytechnic Institute

Walter Gage Gallati
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Polley, P., & Gallati, W. G. (2018). Non-Invasive Neural Controller. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3684

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212991427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3684?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3684&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

NON-INVASIVE NEURAL CONTROLLER
A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Robotics Engineering

By

Walter Gallati

Patrick Polley

Advisor: Marko Popovic

Co-Advisor: Joseph Beck

This report represents work of WPI undergraduate students submitted to the faculty as evidence of

a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer

review. For more information about the projects program at WPI, see

http://www.wpi.edu/Academics/Projects.

1

Table of Contents
Table of Figures ... 3

Abstract ... 4

Acknowledgements .. 5

Introduction ... 6

Project Goals ... 7

Evaluation Criteria ... 7

Control Schema ... 8

Hand Positions... 9

Survey Questions ... 10

Methodology .. 11

Hardware ... 11

Headset .. 11

Electrodes .. 12

Microcontroller .. 14

Software ... 15

Data Processing ... 15

Neural Network ... 16

Neural Tree .. 18

Unsure Network .. 20

Continuous Neural Network .. 22

Unity Output.. 23

Testing Procedure .. 24

Test Preparation ... 24

Test Procedure ... 24

Neural Net ... 25

Neural Tree .. 26

Unsure Network .. 26

Continuous Neural Network .. 27

Post Test Procedure ... 28

Test Results and Data Analysis ... 29

Preliminary Testing .. 29

Survey Results .. 30

2

Final Results ... 31

Survey Results .. 33

Conclusion and Future Work ... 34

Bibliography ... 35

Appendix A: Final Testing Data ... 36

Appendix B: Preliminary Testing Data ... 38

Raw Data ... 38

Processed Data .. 40

Survey Responses ... 41

Appendix C: Code .. 43

CertaintyPrompt.cs... 43

ContinuousNeuralNetForm.cs ... 43

KFoldData.cs ... 49

NeuralNet.cs .. 49

NeuralNetForm.cs ... 54

NeuralTreeWindow.cs .. 59

Node.cs .. 72

NodeSavingReading.cs ... 73

PatsControlScheme.cs .. 76

Program.cs ... 79

SerialReader.cs ... 79

SetPoint.cs ... 84

Threshold.cs ... 86

UnityCommunicationHub.cs .. 86

UnsureNetworkForm.cs ... 92

WelcomeScreen.cs .. 98

3

Table of Figures
Figure 1: The Seven Hand Positions ... 9

Figure 2: Completed Testing Headset ... 11

Figure 3: The OpenBCI Mk III Nova .. 12

Figure 4: TDE-210 Dry EEG Electrode .. 13

Figure 5: Electrode locations in the 10-10 system ... 13

Figure 6: OpenBCI Cyton Biosensing Board .. 14

Figure 7: The Neural Network UI .. 16

Figure 8: The Neural Tree UI ... 18

Figure 9: The Unsure Network ... 20

Figure 10: The Continuous Neural Network UI ... 22

4

Abstract
With the prevalence of microcontrollers in modern society, the field of prosthetics has

advanced rapidly towards neuro-electric control systems. Utilizing technologies such as

electroencephalography (EEG), patients can exert a more holistic, natural control of artificial

appendages. However, most of the work in the field of EEG control has been related to direct

neural network processing- taking input data from an EEG cap, processing it through a deep neural

net, and directly correlating that to a desired output for a limb.

This project seeks to evaluate alternative means of controlling a prosthetic (in this case, a

hand) using EEG control. The project consists of four methods; an unsure-feedback neural

network, a neural network which lets the user know where it assumes the user wants to go, if unsure;

a neutrally-iterated tree, which stores a preset list of locations that the user moves between based on

how intently they focus on a task; a continuously-trained neural network, which tries to assume the

user’s hand position and trains relative to that; and a direct neural network, as described above. The

selected methods will be tested on a group of seven individuals, comparing the results of each to

determine training efficiency, accuracy, and response time relative to each other on a universal

platform.

5

Acknowledgements
 The researchers would like to thank Dr. Marco Popovic, Dr. Joseph Beck, and Popovic labs

for their support and guidance in this project. Printing assistance for the hardware was provided by

Matthew Bowers and the WPI Rapid Prototyping Lab; their knowledge of and assistance with 3D

printing was greatly appreciated and essential to our project. The researchers would also like to

thank Evan King for his editorial, technical, and motivational assistance throughout this project.

Finally, the researchers would like to thank Worcester Polytechnic Institute, without which we

would not be here.

6

Introduction
 Electroencephalography (EEG) is defined as the measurement of electrical activity in

different parts of the brain (Oxford University). It has applications in a variety of fields, such as

neuroscience, computer interfacing, and medicine. While EEG is a relatively new technology, it has

grown rapidly because of a wide array of possible applications, particularly prosthetic limb design.

EEG can be used to offer a wide range of control to amputees with intuitive, nonphysical

commands. A 2016 study published in Nature demonstrated the effectiveness of this type of

prosthetic command. Using 62 EEG sensors (referred to as “nodes”), the researchers obtained

between 85 and 93.1 percent accuracy of a robotic hand by developing an artificial intelligence to

associate signals from the EEG sensors with particular hand motions. (Meng, et al., 2016).

Meng et al accomplished this by developing a neural network intended to recognize patterns

found in the EEG inputs. Using the past signal patterns it had identified, the network was able to

accurately predict the most likely desired hand position by comparing unseen input with old input.

Neural networks for prosthetic control have been attempted by many organizations. A 2015

Imperial College of London study obtained 80% accuracy on a prosthetic hand using only 31 EEG

nodes distributed evenly across the skull (Walker, 2015).

While an effective design and implementation of a network is important, acquiring accurate

sensor data is a prerequisite. To produce the most relevant sensor data, nodes are placed proximal to

the most project-relevant areas of the brain. This practice is known as localization, and demonstrably

increases accuracy, especially in near-subcortical processes occurring closer to the center of the brain

(Song, et al., 2015). Data filtration is also an effective means of increasing accuracy, as it refines the

data to only include relevant inputs.

 While neural networks show promise, they do not have an effective active control scheme;

users will find that the system behaves erratically without their explicit instruction to do so. Another

method of control involves direct intervention from the user. EEG nodes are capable of reliably

measuring the level of focus a user has. By instructing the user to associate levels of focus with limb

positions, the user can control the limb by focusing with a specific intensity. Prior research at WPI’s

Popovic Labs has achieved an average accuracy of 80.25% across three distinct hand positions using

only one EEG sensor (Saint-Elme, et al., 2017).

7

Despite the variance in the approaches to prosthetic control, there has not been much effort

made to categorically compare them in a standardized testing format. As the hardware, software,

testing environments, and goals differ greatly between studies, quantifiable comparison of these

methods are difficult to substantiate. This project fills that void by evaluating different control

schemes in a standardized, unitary environment.

Project Goals
 The initial goal of this project was to evaluate and compare three control schemes (“Control

Schema Goals”, below) across four criteria (impulse registry, accuracy, time delay, and stability) on

seven distinct hand positions. The project later added a fourth control scheme, the Continuous

Neural Network, and a fifth evaluation criterion, accuracy deviation. Qualitative data on the schema

was to be obtained by a three-question survey. The original test plan called for comprehensive

testing of all control schemes on 30 subjects. Given the significant logistical challenges associated

with conducting wide-scale human testing, however, tests were limited to seven per schema, and

each subject tested on a single control scheme.

Evaluation Criteria

 The evaluation criteria are the metrics which determine the effectiveness of a given schema.

• Registered Impulse: How often the hand moved to any position, even if incorrect.

• Accuracy: A percentage representing what portion of the attempts resulted in a correct hand

motion.

• Time Delay: How long the hand took to move to position.

• Stability: How long the hand can remain in position.

• Accuracy Deviation: A derivative metric produced from the accuracy that measures the

standard deviation of the accuracy at a given position.

8

Control Schema

 The four control schema developed are evaluated based on the above criteria. They are all

implemented separately, and implement a variety of different approaches.

• Neural Network: A program that, using a neural network, receives information from EEG

nodes localized to the motor cortex and attempts to classify input as one of the available

hand positions based on the input.

• Neural Tree: An adjustable program that allows users to define hand positions they want to

move to based on the level of focus measured. Users can also set the program to move to

different hand positions depending on the position they are starting from (akin to a tree data

format)

• Unsure Network: A variant of the Neural Network, but alerts the user if the network’s

certainty in its prediction is below a certain threshold. If so, the user must confirm if the

position is accurate before proceeding.

• Continuous Neural Network: The Continuous Neural Network is another derivative of the

Neural Network. Unlike the Neural Network, however, the Continuous Neural Network

captures not only positional data, but data points while the user is moving their hand.

9

Hand Positions

 The hand position goals were the hand positions to be implemented to measure the above

evaluation criteria. Hand positions are all measured moving from Open Palm position; Open Palm is

measured moving from Hook Grip position. The seven positions are:

• Hook Grip

• Open Palm

• Peace Sign

• Pinch Grip

• Thumbs Up

• Finger Guns

• Active Index Grip

Figure 1: The seven hand positions: Hook Grip, Open Palm, Peace Sign, Pinch Grip, Thumbs Up, Finger Guns, and Index Grip

10

Survey Questions

 Three survey questions were developed to gain a qualitative understanding of user comfort

and preference regarding the control schema used.

• On a scale of 1-5, how natural did the arm feel?

• On a scale of 1-5, how much active thought was needed to control the arm?

• How long did you feel you took to learn how to control the arm?

11

Methodology

Hardware

Figure 2: Completed Testing Headset

Headset

To properly conduct test comparisons of the various control schemes, the test equipment

had to be standardized to the best ability possible. A rigid headset was chosen to allow for a

consistent, firm node placement on the head. All test schemes would use the same helmet, board,

and electrodes, though specific electrode count and location would vary based on the needs of the

control schema tested.

The headset used was an OpenBCI Ultracortex MkIII Nova. Files for 3D printing the

headset are provided free of charge by OpenBCI and are made to interface with OpenBCI products.

It provides a rigid frame with modular positions for electrodes following the 10-10 and 10-20

electrode format (see Figure 5: Electrode locations in the 10-10 system. Measured nodes are in red

while ground nodes are in yellow. Original image by Brylie Oxley under Creative Commons license).

The modularity allows the electrode positions to be localized for their respective control schemes,

while the rigid frame ensures proportional spacing for each subject regardless of head size. The

frame of the headset was printed by the WPI Rapid Prototyping Lab with peripherals printed by

Popovic Labs.

12

Figure 3: The OpenBCI Mk III Nova - http://docs.openbci.com/Headware/03-Ultracortex-Mark-III-Nova

Electrodes

The nodes used to obtain EEG signals in this project are TDE-210 EEG electrodes from

Florida Research Instruments. They are dry electrodes that can operate through 5mm of flattened

hair. Dry electrodes were chosen over wet electrodes as the motor cortex is located high up on the

head and would be difficult to test without subjects shaving much of their hair. Electrode positions

for the Neural Network, Unsure Network, and Continuous Neural Network were determined based

on proximity to the motor cortex, specifically the location of motor function in the hand. For the

Neural Tree control schema, which relies on focus, an electrode position is also placed at the

prefrontal cortex (position FpZ) and is only connected for said schema. Ground nodes were placed

in positions A1 (left earlobe) and P8 (proximal to the temporal lobe) to provide input voltage

context to the microcontroller. These locations were chosen due to their distance from project-

relevant neural processes. See Figure 5: Electrode locations in the 10-10 system. Measured nodes are

in red while ground nodes are in yellow. Original image by Brylie Oxley under Creative Commons license for

specific node locations.

13

Figure 4: TDE-210 Dry EEG Electrode - https://fri-fl-shop.com/product/new-longer-5mm-spike-disposable-reusable-dry-eeg-electrode-tde-210/

Figure 5: Electrode locations in the 10-10 system. Measured nodes are in red while ground nodes are in yellow. Original image by Brylie Oxley under

Creative Commons license

14

Microcontroller

The microcontroller used was an OpenBCI Cyton. It is a 32-bit microcontroller that supports up to

eight measured electrodes with two to three grounding electrodes. The Cyton board was selected

due to its nodal measurement capabilities, predetermined interoperability with rigid headsets, and

extensive support and documentation. The device collects sampling data at a rate of 250 Hz and

transmits it wirelessly to a USB dongle. The sample rate for this project was increased to 500 Hz to

facilitate filtration of high-frequency nodal signals.

Figure 6: OpenBCI Cyton Biosensing Board - https://shop.openbci.com/products/cyton-biosensing-board-8-channel?variant=38958638542

15

Software

Data Processing

Data processing plays an important role in the uniform processing of EEG information. The

OpenBCI Cyton sends data over a serial connection as a 33-byte packet consisting of a header, index

number, set of eight three-byte node readings (one for each node), accelerometer data, and a footer.

This information must be caught, processed, and stripped to obtain usable data.

Upon opening, the program waits for a header, then begins to log serial data. If it gets something

other than a header, it waits until a header is given to it. Once a header is received, the program

collects the next 32 bytes of input data. The first 24 bytes (the node readings) are collected and split

into eight sets of three bytes; the remaining data in the packet is discarded as the accelerometer data

is not relevant to the project. As the node information is three bytes signed, it does not innately

convert to the Int32 (four bytes) or Int16 (two bytes) data format. To compensate for this, the

program uses a function published by OpenBCI to convert the input to Int32.

Filtration can also be used to increase accuracy by removing less relevant nodal input.

Filtering is done after node information is converted to Int32 and is performed to isolate relevant

nodal signals. Motor activity is found to be most significant at 76-100 Hz (Miller, et al., 2010), while

active thought and problem solving is best captured at 13-30 Hz (West Pomeranian University of

Technology, 2014). By only measuring amplitudes in these frequency bands, data can be tailored to

the specific control schema. Modifying code publicly provided by GitHub user nekrodezynfekator

(nekrodezynfekator), the program runs two band-pass filters on the data: one reads amplitudes only

in the 15-50 Hz range to isolate conscious thought, while the other reads amplitudes in the 75-100

Hz range to isolate motor activity. The filtered data from both are appended into the same array and

stored in the SerialReader class, where it can be accessed by control schema programs.

16

Neural Network

Figure 7: The Neural Network UI

The Neural Network control scheme utilizes a neural network and eight localized EEG nodes to

predict the position a user wishes to move their hand to. As the schema is measuring motor activity,

the program retrieves node data filtered to the 75-100 Hz range from the SerialReader class. The

neural network used in the Neural Network control scheme is from the Accord module for C#. The

code used for the Neural Network can be found in Appendix B.

Neural Net structure

The structure of the Neural Network consists of a fixed input and output size (eight, the filtered

node input, and seven, the number of hand positions involved in this test), along with an

indiscriminate number of hidden nodes. By default, the program has three hidden layers consisting

of 100 nodes each. Preliminary testing versions only had 10 nodes per layer; that number was

increased after early testing results suggested the network was not adequately sized.

 The Neural Network program contains a function to perform K-Fold Cross Validation, which can

reshape the network to best suit the training inputs and outputs required by the user. To reshape the

network, the user clicks “Reconfigure Network”. This procedure runs K-Fold Cross Validation

using the data collected in training, splitting it into 80% for training and 20% for testing. Once

complete, it replaces the old neural network with a new one shaped optimally based on the training

data.

17

Training the Neural Network

 The Neural Network needs to be trained on a user-specific data set before it returns

nonrandom hand positions. To train the Neural Network, the user selects a hand position in the list

menu and clicks “Log Position”. When “Log Position” is clicked, the user moves their hand to the

selected position from Open Hand (unless they are moving to Open Hand, in which case they move

from Hook Grip). The Neural Net records 100 samples from the eight localized EEG nodes over

0.5 seconds and adds them to a list of arrays, with the position being moved to stored in a separate

list under the same indexes. Once sufficient data has been collected, the user can train the Neural

Net by clicking the “Train Network” button. When this button is clicked, the Neural Network runs

for 1000 training epochs, using the Accord ResiliantBackPropagation class. The default learn rate is

0.1. Both the number of training epochs and the learn rate are evaluated in K-Fold Cross Validation

and are changed based on the validation outcome.

Saving the Neural Network

 All the data in the Neural Network (the neural network, K Fold values, and collected

input/output data) can be saved and loaded. To save data, the user clicks “Save Data”. All

information is saved to and read from in the folder C:/BCIDataDirectory. Information is

automatically loaded when the program starts, and initializes with aforementioned default values if

no files are available.

Using the Neural Network

 To predict a hand position with the Neural Network, the user clicks the “Test” button in the

upper left-hand corner, then moves their hand from Open Hand to the desired position. The

headset collects filtered data from the localized EEG nodes, and inputs it into the neural network.

The network outputs the probabilities the user intended to move to each location, and selects the

one with the highest probability. This is then output to the shared file system.

18

Neural Tree

Figure 8: The Neural Tree UI

The Neural Tree control schema is the outlier of the four tested, deriving its operation through

focus intensity in the prefrontal cortex rather than motor neuron firing in the motor cortex. As such,

it is the only schema that reads from the 15-50 Hz band. The code used for the Neural Tree can be

found in Appendix B.

19

Tree Configuration

 The Neural Tree schema uses the amplitude of filtered nodal input relative to a maximum

and minimum input to select a certain hand position in a list of hand positions. To obtain a

maximum and minimum for each user, the user selects “Configure hand for controlling” in the

lower right side of the window. This creates a popup that tells the user to let their mind wander;

when the user clicks “Okay”, the Neural Tree program records node activity for a period of five

seconds, averages it, and stores it as the minimum focus value. It then prompts the user with a

popup to focus intently on something. When the user clicks “Okay”, the program records node

activity for five seconds, averages it, and stores it as the maximum focus value. If the maximum

value is lower than the minimum value, it starts the process over again by prompting the user to let

their mind wander. If not, it informs the user that it has been properly calibrated, and displays the

focus values in the Current Max and Current Min boxes on the bottom of the window.

Using the Neural Tree

 Hand positions in the Neural Tree are displayed on the lefthand side of the window in a

dropdown menu format. Each layer has a set number of positions it can move to, with a default of

4 positions. The number of positions can be changed by entering the desired number in the text box

above “Set number of positions per layer” and clicking the button. Layers can be added under a

hand position by selecting the hand position and clicking the “Add layer” button. In the same way, a

layer can be removed by selecting the parent position and clicking the “Remove layer under selected

one” button. To select a hand position in a layer, the user clicks the “Move hand” button. Once

clicked, the Neural Tree program reads the filtered node data for the desired delay time (200

milliseconds by default) and averages it. The delay time can be changed by entering the desired time

in milliseconds in the text box above “Set delay for hand movement” and clicking that button. The

average amount of focus is displayed in the Current Goal box to facilitate biofeedback in training.

Once the delay time has elapsed, the final average is converted to a percentage of the user’s

maximum focus; this percentage is then used relative to the number of positions per layer to

determine the desired hand position. On the default 4 positions, any percentage range 0-25% returns

the first hand position, 25-50% returns the second hand position, and so on. If a hand position has a

layer of other positions underneath it, it informs the user and runs the process again; if the same

hand position is selected (closest to max focus), the hand stays in the position that it is and the

processing ends.

20

Saving the Neural Tree

 Positions entered in the Neural Tree, along with number of positions per layer and iteration

time, can be saved by clicking the “Save Command Structure” button. Hand positions can be edited

by selecting the position, phalange, and joint to edit, then entering the joint angle in the text box

above the “Set” button and pressing “Enter”. Hand positions can be saved by clicking the “Save

Hand Position” button; if not pressed, selecting another hand position will undo all unsaved work.

Unsure Network

Figure 9: The Unsure Network

The Unsure Network is a combination of the Neural Network and the Neural Tree. Identical to the

Neural Network schema in inputs, outputs, structure, training, and stored data, the program

operates akin to the Neural Network until it is unsure if it predicted the right hand position. At that

point, it uses the focus controls used in the Neural Tree to allow the user to confirm or deny the

hand position in question. The program uses seven nodes operating in the 75-100 Hz band and a

singular “focus node” operating in the 15-50 Hz band.

21

Unsure Network Configuration

Configuration of the Unsure Network is similar to that of the Neural Tree. Using the focus node,

the program collects a maximum and minimum focus value for each user by having the user click

the “Configure Focus” button. This creates a popup that tells the user to let their mind wander.

When the user clicks “Okay”, the Unsure Network program records the focus node activity for a

period of five seconds, averages it, and stores the average as the minimum focus value. Once stored,

the program creates a popup telling the user to focus intently on something. Upon clicking “Okay”,

the program records node activity, averages it, and stores the average as the maximum focus value.

If the maximum value is lower than the minimum value, it starts the process over again by

prompting the user to let their mind wander. If not, it informs the user that it has been properly

calibrated.

Unsure Network Operation

The Unsure Network is operated similarly to the Neural Network. To predict a hand position, the

user clicks “Test”, then moves their hand from the Open Hand position to the desired position. The

headset collects filtered data from the EEG nodes, and inputs it into the network. The network

outputs the probabilities the user intended to move to. If the highest value is below a certain

confidence threshold (in this case, 95% confidence), the program prints the position it assumes to

be moved to in the “Position” text box. The user has 5 seconds to position their focus level above

or below the threshold: the current focus level, and whether or not that will confirm or deny the

position, is displayed in the “Focus” text box. Once a position is confirmed, the program moves to

that position. The program continues until a position is confirmed or all possible positions are

denied; if this happens, the hand does not move.

22

Continuous Neural Network

Figure 10: The Continuous Neural Network UI

The Continuous Neural Network is identical to the Neural Network schema in inputs, outputs,

structure, use, and stored data. The only difference between the two is the training process.

Continuous Neural Net Training

The Continuous Neural Net is trained based on its assumptions. Once training is initiated by the

user, the schema moves to the Hook Grip position. The user then moves to that position as the

program reads and stores the user’s node activity created by movement. It then repeats this for the

remaining six hand positions. Once all of these positions are logged, the network enters the last

logged input into the neural network and outputs the highest probability position. The user then

moves to that position as the program records the node activity. This node data is stored and used

to briefly train the neural network using the Accord ResilientBackPropagation class. The program

then takes the last logged input and repeats the process. This is intended to provide a sort of

biofeedback to the user, allowing them to alter their behaviors in a way conducive to more accurate

training. Prior to preliminary testing, the program started with a random position; after poor

performance in preliminary tests, it was modified to sample all positions first so it would not leave

out un-sampled positions.

23

Unity Output

To mimic a prosthetic limb, a program was created in Unity game engine. The program was

chosen to provide visual feedback for control in a more stochastic environment. Actual prosthetics

were not used as mechanical failure could muddle results. Control schemes communicated with

Unity through the use of the UnityCommunicationHub class. The class communicates with Unity

through the transferInfo.txt file in the C:/BCIDataDirectory folder; when the class wants to send

data, it edits the transferInfo.txt file with the joint positions it wants to send, deletes an existing

WFATurn.mutex file if it exists, and creates a new file titled UnityTurn.mutex. When Unity

discovers that the UnityTurn.mutex file exists, it opens transferInfo.txt, sets the joints in the model

accordingly, then writes its current position to transferInfo.txt, deletes UnityTurn.mutex, and creates

a new WFATurn.mutex file. The UnityCommunicationHub class reads this, stores the current

position, and waits until it needs to send information again. Given that desired joint positions are

saved prior to processing in the UnityCommunicationHub, the program can be easily modified to

output to any file format required for a prosthetic.

24

Testing Procedure

Test Preparation

Testing was performed on a group of 8 test subjects. Prior to arrival at testing, each subject

was assigned a control scheme by random dice roll. Preliminary tests were assigned by rolling a six-

sided die and dividing by 2, rounded up (implementation of Unsure Neural Network was incomplete

at time of testing). Final tests were assigned by rolling an eight-sided die and dividing by two,

rounded up. All wires connecting electrodes to the Cyton board were unplugged, and all electrodes

were unscrewed to the maximum allowable sizing configuration for the headset.

Upon arrival, subjects were briefed on their rights as a participant of the study and were

allowed to answer any questions regarding the study or their role. Once all questions were answered

satisfactorily, the test subjects were seated, and the headset was placed on their head according to

the positioning displayed in Figure 5: Electrode locations in the 10-10 system. Measured nodes are in

red while ground nodes are in yellow. Original image by Brylie Oxley under Creative Commons license

Electrodes in positions P8 and F7 were screwed in first, and continued to be until seated firmly

against the test subject’s skull. Electrodes in position P7 and F8 were then screwed in until seated

similarly firm. The test subject was then asked if they were uncomfortable with the tightness; if so,

the electrodes were adjusted until the subject felt comfortable. With the headset now locked into

place on the head, the ear clip electrode was then placed in position A1. From there, the Cyton

board was turned on and the OpenBCI USB dongle inserted into the testing computer. To ensure

node connectivity, OpenBCIHub.exe and OpenBCI_GUI.exe, programs both provided by

OpenBCI, were run. From there, the setup procedure differed depending on control schema. For

the Neural Tree, the electrode in position FpZ was connected to input 2 on the Cyton board and

slowly screwed in until readings were displayed in the OpenBCI GUI. For all other control schema,

the electrode in position F3 was connected to input 1 on the Cyton board and slowly screwed in

until it displayed readings in the OpenBCI GUI. This process was repeated for the nodes Fz, C3,

FC1, Cz, CP1, P3, and Pz in order. Once all nodes read properly and consistently in the OpenBCI

GUI, testing on the individual schema began.

Test Procedure
 All test procedure began with opening and running the Unity program, followed by opening the

program to the designated control schema. Once the respective window was opened, the test subject was

briefed in its use as outlined in the Methodology section, as well as briefed on test procedure. The subject was

25

then allowed to ask questions regarding operation of the schema. Once all questions were satisfactorily

answered, testing began.

Neural Net

 The Neural Net testing procedure began with training the data set. The test subject was

instructed to raise their hand in a manner they felt comfortable holding for an extended period of

time (often resulting in the subject resting their elbow on the table). Maintaining the hand in position

reduced the number of confounding variables in the study. Once their hand was raised, the test

subject was instructed to move to Open Palm position. From there, they were instructed to go to

Hook Grip when they hear a click and remain there. The test administrator then audibly clicked the

“Log Position” button, and the test subject moved to position. After one second, the test

administrator gave the command “Release” to let the subject know to return to the Open Palm

position. This was repeated four more times. Once the fifth Hook Grip was logged, the test subject

remained in Hook Grip and the process was repeated for Open Palm. This process was repeated for

all hand positions, starting from Open Palm and transitioning to the logged position, such that each

hand position had been logged five times. Once complete, the process started over again with Hook

Grip, and continued until all positions had been logged 10 times. Once this was complete, the

“Train Network” button was pressed to train the network with the stored data. The time taken from

the beginning of data logging to the end of network training was recorded. Following completion of

network training, the “Save Network” button was pressed to ensure a backup of the neural network

and the training data. The test subject was then instructed to go to the Open Palm position. Similar

to the training of the Neural Network, the subject was instructed to go to Hook Grip when they

heard a click and remain there until told to release their grip. The test administrator then audibly

clicked “Test”, recorded the position the hand moved to given the position the test subject

attempted, then gave the test subject the command to release their grip. Similar to training, the

process was repeated four more times, then performed five times for every remaining hand position.

Once all positions had been attempted five times, the test subject started over again at Hook Grip,

and attempted each position another five times. The attempted position and the position moved to

for each was recorded, and the test concluded.

26

Neural Tree

 The Neural Tree testing procedure began with the test subject configuring the program with

their minimum and maximum focus values. Once complete, they were allowed to practice up to

three hours or until they felt comfortable enough in their skills to operate the Neural Tree. The time

between the completion of configuration and the beginning of the testing period is recorded. In this

time they were allowed to change the order of hand positions in the tree, the number of positions

per layer, the location of layers, and the time delay for aggregating and averaging input data. They

were also allowed to reconfigure the program, but the time would not restart should this be the case.

Once ready, the subject was instructed to move to Hook Grip. The subject would then click

“Control hand”, with the final resting position of the hand being recorded. This was continued for

another four times, then performed five times for every remaining hand position. Once all positions

had been attempted five times, the test subject started over again at Hook Grip, and attempted each

position another five times. The attempted position and the position moved to for each was

recorded along with the final time delay used by the test subject. Once all data was collected, the test

was concluded.

For the second iteration, the tree control schema was modified into something of a list of

positions with binary inputs. Instead of being able to access any number of positions from some

position, each position was linked to another in a list. During the operation of the hand, the

program would iterate through every hand position and stop on some position when the user

focused. This allowed the user to remain in low focus until the program highlighted the position

they wanted to move to.

Unsure Network

 The Unsure Network schema began with training the neural network. This process was

performed identical to the Neural Network schema, where each position was logged 10 times by the

test subject and used to train the neural network. Following that, the “Configure Focus” button was

pressed by the test subject, and maximum and minimum focus values set. Once complete, testing

was performed the same way as the Neural Network, with each position being attempted by the test

subject five times with the results recorded, followed by each position being attempted and recorded

another five times for a total of 10 attempts per position.

27

Continuous Neural Network

 Similar to the Neural Network schema, the Continuous Neural Network began with the test

subject instructed to raise their hand in a manner they felt comfortable and to move to the Open

Palm position. Once situated, the test subject was then told to click the “Train” button when ready.

When clicked, the hand moves to Hook Grip, which the user follows. The program then moved the

Unity model hand to Open Palm position, then to Peace Sign, and continued through the seven

hand positions until all had been trained once. Every time the hand moved, the test subject moved

their hand to match position. Once all positions had been iterated through, the Continuous Neural

Network moved the model hand to the position it believes the hand to currently be at. The user

then moved to that position, or, if the hand location was the same as the user currently was, remains

in the same position. The Continuous Neural Network then processed the information and moved

the model hand to the position it believes the user to be in based on the most recent data. The

process continued for 20 iterations. Once completed, testing proceeded identically to the Neural

Network scheme; from Open Palm, the test subject was asked to move to Hook Grip when they

heard a click and remain in that position until told to release their hand. The test administrator then

audibly clicked “Test”, recorded the position the hand moved to given the position attempted, then

gave the test subject the command to release their grip. This process was performed five times for

each hand position, then performed another five times for each hand position for a total of 10

attempts for each hand position. Attempted positions and the actual position moved to by the

control schema were recorded, and the test concluded.

 For preliminary testing, the initial seven hand positions were not included, and the program

initiated with a single random hand position. From there, it would go to the position it believed to

be accurate. This lead to certain positions not getting trained, resulting in poor accuracy.

28

Post Test Procedure

 At the conclusion of testing, the test subjects were thanked for their participation and asked

to fill out a survey consisting of the following:

• On a scale of 1-5, how natural did the arm feel?

• On a scale of 1-5, how much active thought was needed to control the arm?

• How long did you feel you took to learn how to control the arm?

Survey results were recorded with the user data. Survey results were aggregated and the average

values used to evaluate user perception of each scheme.

Different survey questions were asked in preliminary testing to gather general quantitative data

about the control schemes for future improvement. The questions asked were:

• How well they thought they did

• How comfortable they were while training/testing

• Ways they feel the scheme or testing could be improved

• Things they think they did well relative to others

• Things they think they did poorly relative to others

Preliminary survey responses can be found in Appendix A, Preliminary Testing Data.

29

Test Results and Data Analysis

Preliminary Testing

Scheme Average Accuracy Average Standard Deviation

Neural Tree 26.67% 34.75%

Neural Network 10.95% 16.30%

Continuous Neural Net 15.71% 31.36%

Table 1: Scheme Accuracy and Standard Deviation in Preliminary Testing

Based on the data collected (see Appendix A, Preliminary Testing Data), the Neural Tree was the

most accurate of the control schemes, with an average accuracy for any given hand position of

26.67% and a peak accuracy of 100% with certain hand positions for certain subjects. The Neural

Net and the Continuous Neural Net fared worse, with 10.95% and 15.71% accuracy respectively.

Given the accuracy of randomly assigning hand positions is 14.29%, the Neural Net performed

worse than random selection, and the Continuous Neural Net fared only marginally better. Given

the similar values, the discrepancy appeared to be an issue with the neural network’s shape and

learning characteristics.

 To determine the source of error in the Neural Network, a test environment was used to

train independently on saved input and output data from user tests. The test environment used was

provided by GitHub user Ares513 using the Python Keras module (King). Evaluating across

multiple network depths and breadths, using different loss functions, the library was able to achieve

between 18 and 36% accuracy depending on the dataset.

 As mentioned above, the Neural Tree had the highest accuracy, with a peak of 100% in the

hand positions assigned to maximum and minimum values. Mid-tree positions, however, were not as

easily reachable, obtaining between 0% and 40% accuracy. As the focus control allowed for such

high accuracy at distinctive points, changing the tree to operate using binary commands could allow

for it to perform with similar high accuracies but across all points.

Despite the inaccuracies, the Neural Network scheme has a significantly lower standard deviation

than the Neural Tree scheme, indicating a more even distribution of positional accuracy, even if

lower. In this regard, improvements to the accuracy of the neural network may lead the program to

exceed the Neural Tree in usability. The Continuous Neural Network, however, possesses a standard

deviation near that of the Neural Tree, indicating discrepancies in differentiating between types of

30

nodes. This was likely due to node training, as certain positions during training were never reached,

resulting in the network excessively focusing on certain positions and completely ignoring others.

Survey Results

Analysis of survey responses return a common theme of disappointment. All but two test

subjects reported feeling that they performed poorly - however, none suggested that the training

time was inadequate or that it should be extended. The Neural Tree users found that they were easily

able to move to two or three positions (most often Open Palm and Hook Grip), while neural

network-based users did not feel particularly effective moving to any specific position. More

accurate hardware would likely return the best net benefit based off of survey responses, as it would

provide for better data for schema processing without any change in training strategy or time.

31

Final Results

Scheme Avg. Accuracy Avg. Standard

Deviation

Avg. Impulses

per Position

Avg. Stability

per Position

Time Delay

Neural

Network

23.57% 23.62% 6.71 2.79 0.5s

Neural Tree 78.57% 18.64% 2.43 6 20s

Unsure

Network

61.43% 21.21% 5.28 3.79 20s

Continuous

Neural

Network

14.29% 37.80% 0 10 0.5s

Table 2: Final Calculations

Based on the data collected (see Appendix A, Final Testing Data), the Neural Tree was the most

accurate of the four control schemes tested. Evaluations were broken down as follows:

• Accuracy: Percentage of times scheme moved hand to position attempted by test subject.

• Standard Deviation: Standard deviation between accuracy values for each position attempted

by each test subject.

• Impulses per Position: Number of times hand position changes while attempting same

position.

• Stability per Position: Longest sequence of unchanged positions (accurate or not) while

attempting same position.

• Time Delay: Calculated program time to move to position from test administrator command

to move.

Given the above data, the accuracy appears independent of the impulses and stability per

position. The Neural Tree has the second smallest average impulses per position and second largest

average stability per position, yet the Continuous Neural Network has the smallest impulses per

position and the largest average stability per position and performs no better than a randomly

assigned hand position. The Neural Tree, however, has an average accuracy of 78.57%, with some

hand positions achieving 100% accuracy.

32

 The Neural Network performed better than it did in preliminary testing, more than doubling

its accuracy from 10.95% to 23.57%. Reducing the network input to only process 75-100 Hz, along

with reducing the training epochs to 300 from 1000, removed noise and mitigated the threat of

overfitting the neural network. Standard deviation increased in the process, however, implying that a

ground between the two will return more consistent results at better accuracies.

 The Neural Tree drastically increased in functionality, almost tripling in accuracy from

26.67% to 78.57%. This can be attributed to reducing the tree to a binary, which allowed for more

accurate control by the user. The average standard deviation was also reduced from 34.75% to

23.62%, likely a result of all nodes being assigned easily-achievable focus ranges as opposed to

varying intensities on the earlier tree using a wider brachiating factor.

 The Unsure Network, while not evaluated in preliminary testing, performed remarkably well

given the previous performance of its parent, the Neural Network. The high accuracy can be

attributed to a conscious “fact-checking” by the test subject, where errors can be caught and dealt

with before the hand can move. Though slower than the Neural Network, the program should be

able to exceed the speed of the Neural Tree as it can “preselect” a position instead of having to wait

its way through a tree. The speed of the Unsure Network, as such, relies on the accuracy of its

neural network program.

 The Continuous Neural Network was the outlier in the final testing, having decreased rather

than increased in accuracy (14.29%, compared to 15.71% in preliminary testing). The changes made

after preliminary testing, to reduce the training rate and ensure the program iterates through every

hand position during training, did not have the intended effect, instead overtraining the network to

the point where it only returns a singular value.

33

Survey Results

Scheme Naturality of Control Thought Required

Neural Network 2.75 2.5

Neural Tree 4 5

Unsure Network 4 2.5

Continuous Neural Network 1 2.5

Table 3: Survey Results

Results from the survey indicated a distinct difference in how natural each control scheme

feels to use, but less of a difference in the amount of thought required. The Neural Tree and Unsure

Network, the two control schemes with the greatest accuracy, were both considered the most

natural to control, with the Unsure Network requiring half as much thought (qualitatively) as the

Neural Tree. The Neural Network and the Continuous Neural Network both had as much thought

required, but the Neural Network was reported as feeling more natural to use. The naturality of

control appears to scale relative to how well test subjects did, while the thought required appears to

be based distinctly on operation (while the network-based programs require the user to move their

limbs to control the prosthetic, the Neural Tree requires the user to focus). This implies that the

perceived level of thought required to control the prosthetic is based solely upon the mechanics of

how input is obtained, while control of the prosthetic is deemed more natural the more accurate the

control scheme is. Potentially, “natural” control of prosthetics can be unrelated to actual motor

function, as long as the scheme operates successfully.

Time-based survey results seem to have similar opinions on time spend relative to their

schemes, but not between them. Neural Network test subjects did not believe that they spent much

time learning their control schemes, while Continuous Neural Network subjects believed they spent

more time than they did (one test subject claimed that they spent 20 minutes reviewing, when in

reality they only spent three). The Neural Tree user, meanwhile, felt the learning process only took

five minutes while it instead took upwards of 15. Unsure Network users understood that they spent

time, but believed that they recognized how to use the scheme earlier than expected. The amount of

time each believed they spent on the network appears to factor into perceived naturality of control.

34

Conclusion and Future Work
In conclusion, the Neural Tree was the most successful from an accuracy and consistency

standpoint, with over 75% average accuracy across all seven hand positions. The Continuous Neural

Net was a success in the evaluations of impulses registered and stability, but was not successful in

terms of accuracy, with a success rate equal to that of a random distribution. The Unsure Network

achieved similar success to the Neural Tree, while the Neural Network, though underperforming,

made drastic improvements between iterations. As such, the researchers may conclude that the

Neural Tree, Unsure Network, and Neural Network control schemes can be effective controllers for

prosthetic appendages, while the Continuous Neural Network control scheme is unlikely to be

successful. Furthermore, perceptions of neural network ease-of-use appear to be affected by success

rate, while the amount of perceived conscious effort relies on the methods involved.

For future work, testing on superior hardware would provide great benefit. Improvements

observed in the Neural Network showed that isolating frequencies to remove noise greatly benefits

the success rate of the schema. More inputs with increased accuracy in measurement could

drastically improve performance. Furthermore, research into more accurate filtering may improve

results by isolating important signals even more. Increasing the number of nodes for the Neural

Tree averaging may also be of benefit, as it may detect more relevant firing of electrodes. If this

option is pursued, the implementation of a neural network in the Neural Tree inputs may prove

beneficial for additional data processing. Finally, the improvement of the underlying neural network

program would prove beneficial to research, as improvements in that field can better detect subtle

patterns in EEG inputs.

35

Bibliography
King, E. (n.d.). NonInvasive Neural Controller. Retrieved from GitHub:

https://github.com/Ares513/NonInvasiveNeuralController

Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., & He, B. (2016, December 14). Noninvasive

Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks. Nature.

Retrieved from https://www.nature.com/articles/srep38565

Miller, K. J., Schalk, G., Fetz, E. E., den Nijs, M., Ojemann, J. G., & Rao, R. P. (2010, March 2). Cortical

activity during motor execution, motor imagery, and imagery-based online feedback.

Proceedings fo the National Acadamy of Sciences of the United States of America, 4430-4435.

nekrodezynfekator. (n.d.). OpenBCI_GUI. Retrieved from GitHub:

https://github.com/nekrodezynfekator/OpenBCI_GUI

Oxford University. (n.d.). Electroencephalography. Oxford English Dictionary. Oxford University Press.

Saint-Elme, E., Larrier, Jr., M. A., Kracinovich, C., Renshaw, D., Troy, K., & Popovic, M. (2017). Design of a

Biologically Accurate Prosthetic Hand. International Symposium on Wearable Robotics. Houston,

Texas (USA).

Song, J., Davey, C., Poulsen, C., Luu, P., Turovets, S., Anderson, E., . . . Tucker, D. (2015, Decembeer 30).

EEG Source Localization: Sensor Density and Head Surface Coverage. Journal of Neuroscience

Methods, 9-21. Retrieved from

https://www.sciencedirect.com/science/article/pii/S0165027015003064

Walker, I. (2015). Deep Convolutional Neural Networks for Brain Computer Interface using Motor

Imagery. London: Imperial College of London. Retrieved from

http://www.doc.ic.ac.uk/~mpd37/theses/DeepEEG_IanWalker2015.pdf

Wentrup, M. G., Gramann, K., Wascher, E., & Buss, M. (2005). EEG Source Localization for Brain-

Computer Interfaces. 2- International IEEE EMBS Conference on Neural Engineering (pp. v-viii).

Arlington, VA: IEEE. Retrieved from

http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/GrosseWentrup20

05_NeuralEngConf_[0].pdf

West Pomeranian University of Technology. (2014, February). Processing and spectral analysis of the

raw EEG signal from the MindWave. Przeglad Elektrotechniczny, 169-173.

36

Appendix A: Final Testing Data
1 2 3 4 5 6 7

Subject 1 2 2 1 5 7 2 2

Neural Network 1 2 2 5 2 2 1

Gender: M 2 7 2 2 1 2 6

Age: 22 2 2 4 2 2 2 2

Training Time: 15:32 6 2 2 6 5 2 5

Survey Results: 3 2 3 2 2 2 7

Naturality: 2.5 2 2 2 2 1 2 7

Thought Required: 3 1 2 2 1 1 2 7

7 2 3 2 5 3 6

2 2 6 7 1 2 2

Impulses 8 2 7 6 8 2 7

Stability 2 7 2 2 2 8 3

Accuracy 20.00% 90.00% 20.00% 0.00% 20.00% 0.00% 30.00%

Subject 2 1 1 1 1 1 1 1

Continuous Neural Net 1 1 1 1 1 1 1

Gender: M 1 1 1 1 1 1 1

Age: 22 1 1 1 1 1 1 1

Training Time: 3:27 1 1 1 1 1 1 1

Survey Results: 1 1 1 1 1 1 1

Naturality: 1 1 1 1 1 1 1 1

Thought Required: 4 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Impulses 0 0 0 0 0 0 0

Stability 10 10 10 10 10 10 10

Accuracy 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Subject 3 1 7 3 1 3 6 7

Unsure Neural Net 1 2 3 4 5 3 7

Gender: M 6 4 3 4 1 7 3

Age: 21 1 6 3 3 3 7 7

Training Time: 22:21 1 2 3 4 3 1 3

Survey Results: 3 3 3 5 3 6 5

Naturality: 3 4 2 3 4 2 5 7

Thought Required: 2 1 2 3 7 7 6 7

1 3 3 4 5 6 7

1 3 3 3 5 1 7

Impulses 5 7 0 8 6 7 5

Stability 3 2 10 2 2 2 4

Accuracy 70.00% 40.00% 100.00% 50.00% 30.00% 40.00% 70.00%

Subject 4 2 2 3 2 5 6 7

Neural Tree 2 2 3 1 5 6 2

Gender: F 1 2 3 3 5 6 2

Age: 21 2 2 1 4 5 6 2

Training Time: 17:30 2 2 3 4 5 6 7

Survey Results: 1 2 3 4 5 6 7

Naturality: 4 1 2 3 4 1 6 7

Thought Required: 5 1 2 2 1 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 5

Impulses 3 0 4 5 2 0 3

Stability 5 10 3 3 6 10 5

Accuracy 60.00% 100.00% 80.00% 60.00% 90.00% 100.00% 60.00%

It didn't take too long to

learn, arm movements

simple

About 20 minutes

Longer than it should have. I

picked up on tendencies but

took too long testing them

5 minutes

37

Subject 5 1 2 3 1 5 6 6

Unsure Neural Net 2 2 3 4 4 6 7

Gender: F 1 2 3 4 5 6 3

Age: 22 1 6 3 6 6 6 6

Training Time: 42:00 4 2 3 4 5 6 5

Survey Results: 1 3 3 2 5 6 7

Naturality: 5 1 5 6 6 7 6 7

Thought Required: 3 1 7 3 6 2 6 3

2 2 2 4 5 6 7

6 2 6 4 5 6 7

Impulses 6 6 4 6 7 0 7

Stability 3 3 6 2 2 10 2

Accuracy 60.00% 60.00% 80.00% 50.00% 60.00% 100.00% 50.00%

Subject 6 6 7 7 4 1 6 4

Neural Net 7 6 1 6 2 1 1

Gender: M 6 3 6 1 6 5 7

Age: 22 2 6 6 6 1 6 7

Training Time: 9:19 6 1 7 1 5 1 1

Survey Results: 6 2 1 7 1 1 6

Naturality: 3 1 2 7 1 2 6 1

Thought Required: 2 4 6 6 1 7 6 6

1 1 4 6 1 1 6

1 6 4 7 7 6 7

Impulses 7 8 7 9 9 7 7

Stability 2 2 2 2 1 2 2

Accuracy 30.00% 20.00% 0.00% 10.00% 10.00% 50.00% 30.00%

Subject 7 1 1 1 1 1 1 1

Continuous Neural Net 1 1 1 1 1 1 1

Gender: M 1 1 1 1 1 1 1

Age: 22 1 1 1 1 1 1 1

Training Time: 12:13 1 1 1 1 1 1 1

Survey Results: 1 1 1 1 1 1 1

Naturality: 1 1 1 1 1 1 1 1

Thought Required: 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Impulses 0 0 0 0 0 0 0

Stability 10 10 10 10 10 10 10

Accuracy 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

*Test subject 6: Not that long in comparison to w hat I originally thought. It did require intensive focus, but I think it took approximately about 45-60 minutes to feel comfortable

Not long at all. It w as easy

to pick up once explained.

I w as not able to control this

arm.

See below*

38

Appendix B: Preliminary Testing Data

Raw Data

1 2 3 4 5 6 7

1/Neural Net 4 3 5 5 5 5 5

5 4 3 4 5 5 5

3 5 5 5 5 5 5

4 5 4 5 4 3 5

4 5 5 3 5 5 3

5 3 3 5 4 5 4

3 5 4 3 4 3 5

5 5 3 3 3 3 5

5 5 5 5 3 5 3

4 3 4 5 5 3 5

2/Neural Tree 1 2 1 1 4 2 2

2 1 1 1 1 2 2

2 1 3 1 3 2 2

1 1 3 4 1 2 3

1 1 1 3 1 5 1

1 1 1 3 5 2 2

1 2 1 3 3 1 1

1 1 2 1 1 1 2

1 1 1 1 1 1 1

1 1 1 2 3 1 1

3/Neural Tree 1 2 2 3 7 3 2

1 2 1 3 3 3 1

1 2 1 3 3 7 3

1 2 1 7 2 1 1

1 2 3 7 1 2 2

1 2 1 1 2 1 1

1 2 3 3 6 2 1

1 2 3 2 7 2 3

1 2 3 3 2 2 1

1 2 2 3 1 1 3

4/Neural Net 1 1 1 1 6 6 1

1 1 5 1 6 1 1

6 6 6 1 6 1 6

6 6 1 6 3 1 3

6 1 1 1 6 5 6

5 5 5 5 5 5 3

5 5 3 3 3 5 3

5 5 5 3 3 5 5

3 5 5 3 3 5 3

5 5 3 5 5 5 5

5/Neural Net 2 2 2 2 2 2 7

2 2 7 2 2 7 2

7 7 2 2 2 7 2

2 7 2 7 2 2 2

2 7 2 7 2 2 2

2 2 2 2 7 7 2

2 7 7 7 7 2 2

2 7 7 7 2 2 7

2 2 2 2 2 7 2

2 2 2 2 2 2 2

6/Cont. Neural Net 1 1 1 1 1 7 1

1 7 7 1 1 1 1

1 7 1 7 1 7 1

1 1 1 7 7 7 1

1 1 1 1 1 1 7

7 1 1 1 1 1 7

1 1 1 1 1 1 7

1 7 7 7 7 1 1

1 7 1 7 2 7 1

1 7 7 1 1 1 1

7/Neural Tree 1 6 3 1 2 3 1

1 2 2 3 1 1 2

1 2 3 1 1 1 1

3 3 1 3 1 6 1

3 3 3 4 1 1 1

1 3 1 1 3 1 2

1 1 7 1 3 4 1

1 3 1 1 2 1 1

1 2 1 1 2 4 1

1 2 3 1 2 1 1

8/Cont. Neural Net 1 7 7 7 7 1 7

1 1 7 7 1 1 7

7 7 1 7 7 7 7

1 7 1 1 1 7 7

7 7 7 7 1 1 1

1 7 7 7 7 7 1

7 7 7 7 7 7 7

1 7 1 1 7 7 7

7 7 7 7 7 7 7

7 7 7 7 1 1 7

6/Cont. Neural Net 1 1 1 1 1 7 1

1 7 7 1 1 1 1

1 7 1 7 1 7 1

1 1 1 7 7 7 1

1 1 1 1 1 1 7

7 1 1 1 1 1 7

1 1 1 1 1 1 7

1 7 7 7 7 1 1

1 7 1 7 2 7 1

1 7 7 1 1 1 1

7/Neural Tree 1 6 3 1 2 3 1

1 2 2 3 1 1 2

1 2 3 1 1 1 1

3 3 1 3 1 6 1

3 3 3 4 1 1 1

1 3 1 1 3 1 2

1 1 7 1 3 4 1

1 3 1 1 2 1 1

1 2 1 1 2 4 1

1 2 3 1 2 1 1

8/Cont. Neural Net 1 7 7 7 7 1 7

1 1 7 7 1 1 7

7 7 1 7 7 7 7

1 7 1 1 1 7 7

7 7 7 7 1 1 1

1 7 7 7 7 7 1

7 7 7 7 7 7 7

1 7 1 1 7 7 7

7 7 7 7 7 7 7

7 7 7 7 1 1 7

39

1 2 3 4 5 6 7

1/Neural Net 4 3 5 5 5 5 5

5 4 3 4 5 5 5

3 5 5 5 5 5 5

4 5 4 5 4 3 5

4 5 5 3 5 5 3

5 3 3 5 4 5 4

3 5 4 3 4 3 5

5 5 3 3 3 3 5

5 5 5 5 3 5 3

4 3 4 5 5 3 5

2/Neural Tree 1 2 1 1 4 2 2

2 1 1 1 1 2 2

2 1 3 1 3 2 2

1 1 3 4 1 2 3

1 1 1 3 1 5 1

1 1 1 3 5 2 2

1 2 1 3 3 1 1

1 1 2 1 1 1 2

1 1 1 1 1 1 1

1 1 1 2 3 1 1

3/Neural Tree 1 2 2 3 7 3 2

1 2 1 3 3 3 1

1 2 1 3 3 7 3

1 2 1 7 2 1 1

1 2 3 7 1 2 2

1 2 1 1 2 1 1

1 2 3 3 6 2 1

1 2 3 2 7 2 3

1 2 3 3 2 2 1

1 2 2 3 1 1 3

4/Neural Net 1 1 1 1 6 6 1

1 1 5 1 6 1 1

6 6 6 1 6 1 6

6 6 1 6 3 1 3

6 1 1 1 6 5 6

5 5 5 5 5 5 3

5 5 3 3 3 5 3

5 5 5 3 3 5 5

3 5 5 3 3 5 3

5 5 3 5 5 5 5

5/Neural Net 2 2 2 2 2 2 7

2 2 7 2 2 7 2

7 7 2 2 2 7 2

2 7 2 7 2 2 2

2 7 2 7 2 2 2

2 2 2 2 7 7 2

2 7 7 7 7 2 2

2 7 7 7 2 2 7

2 2 2 2 2 7 2

2 2 2 2 2 2 2

6/Cont. Neural Net 1 1 1 1 1 7 1

1 7 7 1 1 1 1

1 7 1 7 1 7 1

1 1 1 7 7 7 1

1 1 1 1 1 1 7

7 1 1 1 1 1 7

1 1 1 1 1 1 7

1 7 7 7 7 1 1

1 7 1 7 2 7 1

1 7 7 1 1 1 1

7/Neural Tree 1 6 3 1 2 3 1

1 2 2 3 1 1 2

1 2 3 1 1 1 1

3 3 1 3 1 6 1

3 3 3 4 1 1 1

1 3 1 1 3 1 2

1 1 7 1 3 4 1

1 3 1 1 2 1 1

1 2 1 1 2 4 1

1 2 3 1 2 1 1

8/Cont. Neural Net 1 7 7 7 7 1 7

1 1 7 7 1 1 7

7 7 1 7 7 7 7

1 7 1 1 1 7 7

7 7 7 7 1 1 1

1 7 7 7 7 7 1

7 7 7 7 7 7 7

1 7 1 1 7 7 7

7 7 7 7 7 7 7

7 7 7 7 1 1 7

6/Cont. Neural Net 1 1 1 1 1 7 1

1 7 7 1 1 1 1

1 7 1 7 1 7 1

1 1 1 7 7 7 1

1 1 1 1 1 1 7

7 1 1 1 1 1 7

1 1 1 1 1 1 7

1 7 7 7 7 1 1

1 7 1 7 2 7 1

1 7 7 1 1 1 1

7/Neural Tree 1 6 3 1 2 3 1

1 2 2 3 1 1 2

1 2 3 1 1 1 1

3 3 1 3 1 6 1

3 3 3 4 1 1 1

1 3 1 1 3 1 2

1 1 7 1 3 4 1

1 3 1 1 2 1 1

1 2 1 1 2 4 1

1 2 3 1 2 1 1

8/Cont. Neural Net 1 7 7 7 7 1 7

1 1 7 7 1 1 7

7 7 1 7 7 7 7

1 7 1 1 1 7 7

7 7 7 7 1 1 1

1 7 7 7 7 7 1

7 7 7 7 7 7 7

1 7 1 1 7 7 7

7 7 7 7 7 7 7

7 7 7 7 1 1 7

40

Processed Data

ID NUMBER 1 2 3 4 5 6 7 ACCURACY

1/Neural Net 0.00% 0.00% 20.00% 40.00% 40.00% 0.00% 0.00% 0.00%

0.00% 0.00% 30.00% 10.00% 60.00% 0.00% 0.00% 0.00%

0.00% 0.00% 30.00% 30.00% 40.00% 0.00% 0.00% 30.00%

0.00% 0.00% 30.00% 10.00% 60.00% 0.00% 0.00% 10.00%

0.00% 0.00% 20.00% 30.00% 50.00% 0.00% 0.00% 50.00%

0.00% 0.00% 40.00% 0.00% 60.00% 0.00% 0.00% 0.00%

0.00% 0.00% 20.00% 10.00% 70.00% 0.00% 0.00% 0.00%

Mean 0.00% 0.00% 27.14% 18.57% 54.29% 0.00% 0.00% 12.86%

St. Dev 0.00% 0.00% 7.56% 14.64% 11.34% 0.00% 0.00% 19.76%

2/Neural Tree 80.00% 20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00%

80.00% 20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 20.00%

70.00% 10.00% 20.00% 0.00% 0.00% 0.00% 0.00% 20.00%

50.00% 10.00% 30.00% 10.00% 0.00% 0.00% 0.00% 10.00%

50.00% 0.00% 30.00% 10.00% 10.00% 0.00% 0.00% 10.00%

40.00% 50.00% 0.00% 0.00% 10.00% 0.00% 0.00% 0.00%

40.00% 50.00% 10.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mean 58.57% 22.86% 12.86% 2.86% 2.86% 0.00% 0.00% 20.00%

St. Dev 17.73% 19.76% 13.80% 4.88% 4.88% 0.00% 0.00% 27.69%

3/Neural Tree 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

40.00% 29.00% 40.00% 0.00% 0.00% 0.00% 0.00% 40.00%

10.00% 10.00% 60.00% 0.00% 0.00% 0.00% 20.00% 0.00%

20.00% 30.00% 20.00% 0.00% 0.00% 10.00% 20.00% 0.00%

30.00% 40.00% 20.00% 0.00% 0.00% 0.00% 10.00% 0.00%

50.00% 20.00% 30.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mean 35.71% 32.71% 24.29% 0.00% 0.00% 1.43% 7.14% 34.29%

St. Dev 33.09% 32.53% 21.49% 0.00% 0.00% 3.78% 9.51% 47.21%

4/Neural Net 20.00% 0.00% 10.00% 0.00% 40.00% 20.00% 0.00% 20.00%

30.00% 0.00% 0.00% 0.00% 50.00% 20.00% 0.00% 0.00%

30.00% 0.00% 20.00% 0.00% 40.00% 10.00% 0.00% 20.00%

40.00% 0.00% 30.00% 0.00% 20.00% 10.00% 0.00% 0.00%

0.00% 0.00% 40.00% 0.00% 20.00% 40.00% 0.00% 20.00%

40.00% 0.00% 10.00% 0.00% 50.00% 10.00% 0.00% 10.00%

20.00% 0.00% 40.00% 0.00% 20.00% 20.00% 0.00% 0.00%

Mean 25.71% 0.00% 21.43% 0.00% 34.29% 18.57% 0.00% 10.00%

St. Dev 13.97% 0.00% 15.74% 0.00% 13.97% 10.69% 0.00% 10.00%

5/Neural Net 0.00% 90.00% 0.00% 0.00% 0.00% 0.00% 10.00% 0.00%

0.00% 50.00% 0.00% 0.00% 0.00% 0.00% 50.00% 50.00%

0.00% 70.00% 0.00% 0.00% 0.00% 0.00% 30.00% 0.00%

0.00% 60.00% 0.00% 0.00% 0.00% 0.00% 40.00% 0.00%

0.00% 80.00% 0.00% 0.00% 0.00% 0.00% 20.00% 0.00%

0.00% 60.00% 0.00% 0.00% 0.00% 0.00% 40.00% 0.00%

0.00% 80.00% 0.00% 0.00% 0.00% 0.00% 20.00% 20.00%

Mean 0.00% 70.00% 0.00% 0.00% 0.00% 0.00% 30.00% 10.00%

St. Dev 0.00% 14.14% 0.00% 0.00% 0.00% 0.00% 14.14% 19.15%

6/Cont. Neural Net 10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 90.00% 10.00%

20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 0.00%

2.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 0.00%

10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 90.00% 0.00%

20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 80.00%

Mean 10.29% 0.00% 0.00% 0.00% 0.00% 0.00% 85.71% 12.86%

St. Dev 7.78% 0.00% 0.00% 0.00% 0.00% 0.00% 7.87% 29.84%

7/Neural Tree 80.00% 0.00% 20.00% 0.00% 0.00% 0.00% 0.00% 80.00%

10.00% 40.00% 40.00% 0.00% 0.00% 10.00% 0.00% 40.00%

40.00% 10.00% 40.00% 0.00% 0.00% 0.00% 10.00% 40.00%

70.00% 0.00% 20.00% 10.00% 0.00% 0.00% 0.00% 10.00%

40.00% 40.00% 20.00% 0.00% 0.00% 0.00% 0.00% 0.00%

60.00% 0.00% 10.00% 20.00% 0.00% 10.00% 0.00% 10.00%

80.00% 20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mean 54.29% 15.71% 21.43% 4.29% 0.00% 2.86% 1.43% 25.71%

St. Dev 25.73% 18.13% 14.64% 7.87% 0.00% 4.88% 3.78% 29.36%

8/Cont. Neural Net 50.00% 0.00% 0.00% 0.00% 0.00% 0.00% 50.00% 50.00%

10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 90.00% 0.00%

30.00% 0.00% 0.00% 0.00% 0.00% 0.00% 70.00% 0.00%

20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 0.00%

40.00% 0.00% 0.00% 0.00% 0.00% 0.00% 60.00% 0.00%

40.00% 0.00% 0.00% 0.00% 0.00% 0.00% 60.00% 0.00%

20.00% 0.00% 0.00% 0.00% 0.00% 0.00% 80.00% 80.00%

Mean 30.00% 0.00% 0.00% 0.00% 0.00% 0.00% 70.00% 18.57%

St. Dev 14.14% 0.00% 0.00% 0.00% 0.00% 0.00% 14.14% 32.88%

41

Survey Responses

Test Subject 1 (Neural Net):
1. I don’t think I did very well, as the training didn’t seem to get the hand to do what it was

supposed to during testing. Oh, and I am not the best at doing the right gesture at the right
time.

2. Emotionally/Mentally - fine. The cap was a bit uncomfy but tolerable-ish. When I needed a
break I got one, the testers were very accomodating.

3. I think it’d be good if maybe there was a “cheat sheet” just showing each gesture + the name
of the gesture. Other than that, I thought it was cool!

4. I think I sat there and tried? Not really thinking I’m better than the other participants. It’s
not really that kind of test.

5. I am bad at going to the right position sometimes, and messed up some. I figure everyone
probably messes up sometimes too! I had fun!

Test Subject 2 (Neural Tree):
1. I thought I put in a fair effort, however performance was mediocre.
2. I was slightly uncomfortable from the brainwave probes of the apparatus digging into my

skull.
3. Use a more ergonomic design for the cap; include gel cushioning.
4. I think I was pretty good at generating a fist hand position. However, getting the different

levels of concentration (rather than just 0/1 input) was difficult.
5. Perhaps other participants were able to generate higher or more distinguished levels of

concentration than I was able to.
Test Subject 3 (Neural Tree):

1. I do not think I did well. I had difficulty moving the hand to positions that required
intermediate levels of concentration.

2. I was comfortable.
3. I would have liked a clearer indication of which positions required more/less concentration.

I tried to move the hand by watching the ‘current goal’ value and concentrating more or less
to shift the value. Because that was the way I tried to move the hand, I would have liked an
indicator of how much time I had left and more frequent updates of the current goal.

4. I could easily move the hand to the extended hand and fist positions.
5. I had difficulty moving the hand to positions that required intermediate levels of

concentration.
Test Subject 4 (Neural Net):

1. Hard to tell; was not clear that it was a classification algorithm until the end
2. Pretty uncomfortable, but c'est la vie
3. If the inputs are dynamic but the outputs are classification, invest time into making more

distinct actions
4. Kept hand in same position to reduce confounding variables
5. "Open hand" had fingers spread, which I think later confused the model

Test Subject 5 (Neural Net):
1. Not well. At least it was working
2. Physically: Head itched on top. Otherwise, just fine
3. Method seemed fine, better than what I would do.
4. Not thinking during the calibration
5. Others probably had more/different movements intentionally.

Test Subject 6 (Continuous Neural Net)

42

1. I believe I performed terribly. The hand seemed to favor only index grip, and any deviation
was more random than derived. A random number generator could move that hand better
than I did

2. Aside from the headset, the constant hand movement became uncomfortable the longer the
program went on

3. It would be nice if it actually learned where my hand is moving. Whether that is training it
more or less, I don’t know.

4. I moved to index grip better than most, but not by choice.
5. I’m pretty sure other people could control the limb.

Test Subject 7 (Neural Tree)
1. I thought I did alright, considering that controlling how much you concentrate is difficult
2. I was very comfortable doing the experiment
3. The experiment could be improved by displaying the ranges for each type of configuration,

instead of just giving percentages
4. I heard some people only got one or two hand positions, but I was able to get 3 on a regular

basis
5. Near the end of the experiment, the consistency and accuracy of results was reduced, and I

rarely got the hand configuration I wanted
Test Subject 8 (Continuous Neural Net) neglected to give a response

43

Appendix C: Code
All code available at https://github.com/pjpolley/Gallati_Polley_MQP_Code

CertaintyPrompt.cs
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Sender

{

 public partial class CertaintyPrompt : Form

 {

 public bool Continue;

 public CertaintyPrompt()

 {

 InitializeComponent();

 }

 private void ContinueButton_Click(object sender, EventArgs e)

 {

 Continue = true;

 this.DialogResult = DialogResult.OK;

 this.Close();

 }

 private void CancelButton_Click(object sender, EventArgs e)

 {

 Continue = false;

 this.DialogResult = DialogResult.OK;

 this.Close();

 }

 }

}

ContinuousNeuralNetForm.cs
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Sender

{

 public partial class ContinuousNeuralNetForm : Form

https://github.com/pjpolley/Gallati_Polley_MQP_Code

44

 {

 private NeuralNet net;

 private SerialReader serial;

 private int currentHandPosition;

 private List<double[]> inputTrainingData;

 private List<double[]> outputTrainingData;

 private object dataLock = new object();

 private Dictionary<int, SetPoint> setPointList;

 private SetPoint lastSetPoint;

 private int expirationTimer = 10;

 private List<int> positionsToVisit = new List<int>();

 private string ANNfilename = Globals.NeuralNetSaveLocation;

 private string KFoldFilename = Globals.KFoldDataSaveLocation;

 public ContinuousNeuralNetForm()

 {

 InitializeComponent();

 net = new NeuralNet(8, 7, ANNfilename, KFoldFilename);

 inputTrainingData = new List<double[]>();

 outputTrainingData = new List<double[]>();

 if (inputTrainingData.Count > expirationTimer)

 {

 inputTrainingData.RemoveAt(0);

 outputTrainingData.RemoveAt(0);

 }

 serial = new SerialReader();

 serial.Read();

 UnityCommunicationHub.InitializeUnityCommunication();

 UnityCommunicationHub.TwoWayTransmission();

 Random rand = new Random(23);

 setPointList = Globals.GetBasicPositions();

 var firstPoint = setPointList[3];

 Globals.A1DesiredPosition = firstPoint.A1Position;

 Globals.A2DesiredPosition = firstPoint.A2Position;

 Globals.A3DesiredPosition = firstPoint.A3Position;

 Globals.B1DesiredPosition = firstPoint.B1Position;

 Globals.B2DesiredPosition = firstPoint.B2Position;

 Globals.B3DesiredPosition = firstPoint.B3Position;

 Globals.C1DesiredPosition = firstPoint.C1Position;

 Globals.C2DesiredPosition = firstPoint.C2Position;

 Globals.C3DesiredPosition = firstPoint.C3Position;

 Globals.D1DesiredPosition = firstPoint.D1Position;

 Globals.D2DesiredPosition = firstPoint.D2Position;

 Globals.D3DesiredPosition = firstPoint.D3Position;

 Globals.T1DesiredPosition = firstPoint.T1Position;

 Globals.T2DesiredPosition = firstPoint.T2Position;

45

 lastSetPoint = firstPoint;

 UnityCommunicationHub.WriteData(true);

 }

 private void Test()

 {

 lock (dataLock)

 {

 var percievedPosition = new

SetPoint(0,0,0,0,0,0,0,0,0,0,0,0,0,0);

 var rand = new Random();

 //UnityCommunicationHub.WriteData(true);

 var percievedPositionArray = new double[7];

 if (inputTrainingData.Count != 0)

 {

 percievedPositionArray =

net.Think(inputTrainingData[inputTrainingData.Count - 1]);

 double bestVal = 0;

 SetPoint bestSetPoint = new SetPoint();

 for (int i = 0; i < percievedPositionArray.Length; i++)

 {

 if (percievedPositionArray[i] > bestVal)

 {

 bestVal = percievedPositionArray[i];

 bestSetPoint = setPointList[i];

 }

 }

 if (lastSetPoint.Equals(bestSetPoint))

 {

 percievedPosition = setPointList[rand.Next(0, 7)];

 }

 else

 {

 percievedPosition = bestSetPoint;

 }

 }

 else

 {

 percievedPosition = setPointList[rand.Next(0, 7)];

 }

 if (positionsToVisit.Count > 0)

 {

 percievedPosition =

setPointList[positionsToVisit.First()];

46

 for (int i = 0; i < 7; i++)

 {

 if ((7-i) == positionsToVisit.Count)

percievedPositionArray[i] = 1;

 }

 positionsToVisit.RemoveAt(0);

 }

 Globals.T1DesiredPosition = percievedPosition.T1Position;

 Globals.T2DesiredPosition = percievedPosition.T2Position;

 Globals.A1DesiredPosition = percievedPosition.A1Position;

 Globals.A2DesiredPosition = percievedPosition.A2Position;

 Globals.A3DesiredPosition = percievedPosition.A3Position;

 Globals.B1DesiredPosition = percievedPosition.B1Position;

 Globals.B2DesiredPosition = percievedPosition.B2Position;

 Globals.B3DesiredPosition = percievedPosition.B3Position;

 Globals.C1DesiredPosition = percievedPosition.C1Position;

 Globals.C2DesiredPosition = percievedPosition.C2Position;

 Globals.C3DesiredPosition = percievedPosition.C3Position;

 Globals.D1DesiredPosition = percievedPosition.D1Position;

 Globals.D2DesiredPosition = percievedPosition.D2Position;

 Globals.D3DesiredPosition = percievedPosition.D3Position;

 UnityCommunicationHub.WriteData(true);

 lastSetPoint = percievedPosition;

 Thread.Sleep(200);

 for (int i = 0; i < 250; i++)

 {

 var input = serial.GetData();

 double[] inputData = new double[8];

 for (int j = 0; j < 8; j++)

 {

 inputData[j] = input[j];

 }

 UnityCommunicationHub.ReadData();

 inputTrainingData.Add(inputData);

 outputTrainingData.Add(percievedPositionArray);

 Thread.Sleep(1);

 }

 }

 }

 private void Train()

 {

 lock (dataLock)

 {

 var networkTrainingInput = new

double[inputTrainingData.Count][];

 var networkTrainingOutput = new

double[outputTrainingData.Count][];

 for (int i = 0; i < inputTrainingData.Count; i++)

 {

 networkTrainingInput[i] = inputTrainingData[i];

 networkTrainingOutput[i] = outputTrainingData[i];

 }

47

 net.Train(networkTrainingInput, networkTrainingOutput, 10,

.1f);

 }

 }

 private void SaveButton_Click(object sender, EventArgs e)

 {

 net.Save();

 }

 private void TestButton_Click(object sender, EventArgs e)

 {

 UnityCommunicationHub.WriteData(true);

 for (int i = 0; i < 7; i++)

 {

 positionsToVisit.Add(i);

 }

 for (int i = 0; i < 22; i++)

 {

 Thread testThread = new Thread(Test);

 testThread.Start();

 Thread trainingThread = new Thread(Train);

 trainingThread.Start();

 Thread.Sleep(1000);

 }

 }

 private void ReconfigureButton_Click(object sender, EventArgs e)

 {

 var inDataArray = new double[inputTrainingData.Count][];

 var outDataArray = new double[outputTrainingData.Count][];

 for (int i = 0; i < inputTrainingData.Count; i++)

 {

 inDataArray[i] = inputTrainingData[i];

 outDataArray[i] = (outputTrainingData[i]);

 }

 net.dataset_in = inDataArray;

 net.dataset_out = outDataArray;

 CertaintyPrompt prompt = new CertaintyPrompt();

 if (prompt.ShowDialog() == DialogResult.OK && prompt.Continue)

 {

 net.Validate(8, 6);

 }

 }

 private double[] ScaleOutputStorageData(double[] inputData)

 {

 var returnData = new double[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = inputData[i] / 90;

48

 }

 return returnData;

 }

 private float[] ScaleOutputData(double[] inputData)

 {

 var returnData = new float[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = (float)inputData[i] * (90);

 }

 return returnData;

 }

 private void Run()

 {

 lock (dataLock)

 {

 var input = serial.GetData();

 double[] inputData = new double[8];

 for (int j = 0; j < 8; j++)

 {

 inputData[j] = input[j];

 }

 var percievedPositionArray = net.Think(inputData);

 double bestVal = 0;

 SetPoint bestSetPoint = new SetPoint();

 for (int i = 0; i < percievedPositionArray.Length; i++)

 {

 if (percievedPositionArray[i] > bestVal)

 {

 bestVal = percievedPositionArray[i];

 bestSetPoint = setPointList[i];

 }

 }

 var percievedPosition = bestSetPoint;

 Globals.T1DesiredPosition = percievedPosition.T1Position;

 Globals.T2DesiredPosition = percievedPosition.T2Position;

 Globals.A1DesiredPosition = percievedPosition.A1Position;

 Globals.A2DesiredPosition = percievedPosition.A2Position;

 Globals.A3DesiredPosition = percievedPosition.A3Position;

 Globals.B1DesiredPosition = percievedPosition.B1Position;

 Globals.B2DesiredPosition = percievedPosition.B2Position;

 Globals.B3DesiredPosition = percievedPosition.B3Position;

 Globals.C1DesiredPosition = percievedPosition.C1Position;

 Globals.C2DesiredPosition = percievedPosition.C2Position;

 Globals.C3DesiredPosition = percievedPosition.C3Position;

49

 Globals.D1DesiredPosition = percievedPosition.D1Position;

 Globals.D2DesiredPosition = percievedPosition.D2Position;

 Globals.D3DesiredPosition = percievedPosition.D3Position;

 UnityCommunicationHub.WriteData(true);

 }

 }

 private void Reader_Click(object sender, EventArgs e)

 {

 Thread.Sleep(200);

 Thread testThread = new Thread(Run);

 testThread.Start();

 }

 }

}

KFoldData.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Sender

{

 public class KFoldData

 {

 public int Breadth { get; }

 public int Depth { get; }

 public double TrainingSpeed { get; }

 public int Iterations { get; }

 public double K { get; }

 public KFoldData(int breadth, int depth, double trainingSpeed, int

iterations, double k)

 {

 this.Breadth = breadth;

 this.Depth = depth;

 this.TrainingSpeed = trainingSpeed;

 this.Iterations = iterations;

 this.K = k;

 }

 }

}

NeuralNet.cs
using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Threading.Tasks;

using System.Windows.Media.Imaging;

using Accord.Math;

50

using Accord.Neuro;

using Accord.Neuro.Learning;

namespace Sender

{

 class NeuralNet

 {

 public double[][] dataset_in;

 public double[][] dataset_out;

 private ActivationNetwork network;

 private KFoldData topResults;

 private string ANNfilename;

 private string KFoldFilename;

 //private CrossValidation<ActivationNetwork, double, double>

validator;

 public NeuralNet(int inputs, int outputs, string ANNfilename, string

KFoldFilename)

 {

 NodeSavingReading reader = new NodeSavingReading();

 this.ANNfilename = ANNfilename;

 this.KFoldFilename = KFoldFilename;

 try

 {

 network = (ActivationNetwork)Network.Load(ANNfilename);

 topResults = reader.GetKFoldDataFromFile(KFoldFilename);

 }

 catch (FileNotFoundException e)

 {

 Console.WriteLine("Could not find file, generating new one");

 network = new ActivationNetwork(new SigmoidFunction(),

inputs, new int[4] {10, 10, 10, outputs});

 }

 }

 public double Train(double[][] input, double[][] outputs)

 {

 var teacher = new ResilientBackpropagationLearning(network);

 teacher.LearningRate = topResults.TrainingSpeed;

 double error = 0;

 for (int iteration = 0; iteration < topResults.Iterations;

iteration++)

 {

 error = teacher.RunEpoch(input, outputs);

 }

51

 return error;

 }

 public double Train(double[][] input, double[][] outputs, int

iterations, float rate)

 {

 var teacher = new ResilientBackpropagationLearning(network);

 teacher.LearningRate = rate;

 var inVal = input;

 var outVal = outputs;

 double error = 0;

 for (int iteration = 0; iteration < iterations; iteration++)

 {

 error = teacher.RunEpoch(inVal, outVal);

 }

 return error;

 }

 public double[] Think(double[] input)

 {

 return (network.Compute(input));

 }

 public void Save()

 {

 NodeSavingReading reader = new NodeSavingReading();

 network.Save(ANNfilename);

 reader.pushDataToFile(KFoldFilename,topResults);

 }

 public async void Validate(int inputSize, int outputSize)

 {

 List<KFoldData> inputsList = new List<KFoldData>();

 for (double trainingweights = 0.01; trainingweights <= 1.6;

trainingweights += 0.1)

 {

 for (int breadth = 10; breadth <= 1000; breadth += 50)

 {

 for (int depth = 1; depth < 5; depth++)

 {

 inputsList.Add(new KFoldData(breadth, depth,

trainingweights, 0, 0));

 }

 }

 }

 var kFoldList = await Task.WhenAll(inputsList.Select(i =>

kfold(inputSize, outputSize, i.Breadth, i.Depth, i.TrainingSpeed)));

 KFoldData returnedKFoldData = new KFoldData(0, 0, 0, 0,

double.MaxValue);

 KFoldData[] KFoldArray = kFoldList;

52

 foreach (var tempKFoldData in KFoldArray)

 {

 if (tempKFoldData.K < returnedKFoldData.K)

 {

 returnedKFoldData = tempKFoldData;

 }

 }

 Console.WriteLine("Best value is:");

 Console.WriteLine("Depth: " + returnedKFoldData.Depth);

 Console.WriteLine("Breadth: " + returnedKFoldData.Breadth);

 Console.WriteLine("Training Speed: " +

returnedKFoldData.TrainingSpeed);

 Console.WriteLine("Avg K Value: " + returnedKFoldData.K);

 int[] returnArray = new int[returnedKFoldData.Depth];

 for (int fillVal = 0; fillVal < returnedKFoldData.Depth;

fillVal++)

 {

 if (fillVal == returnedKFoldData.Depth - 1)

 {

 returnArray[fillVal] = outputSize;

 }

 else

 {

 returnArray[fillVal] = returnedKFoldData.Breadth;

 }

 }

 topResults = returnedKFoldData;

 network = new ActivationNetwork(new SigmoidFunction(), inputSize,

returnArray);

 network.Randomize();

 Save();

 Console.WriteLine("Done!");

 }

 async Task<KFoldData> kfold(int inputSize, int outputSize, int

breadth, int depth, double trainingweights)

 {

 await Task.Delay(1).ConfigureAwait(false);

 double bestKVal = double.MaxValue;

 KFoldData bestVal = new KFoldData(0, 0, 0, 0, 0);

 for (int iterations = 10; iterations < 10000; iterations =

iterations * 10)

 {

 int[] nodeArray = new int[depth + 1];

 for (int fillVal = 0; fillVal < depth; fillVal++)

 {

 if (fillVal == 0) // depth - 1)

 {

 nodeArray[0] = outputSize;

 }

 else

 {

53

 nodeArray[fillVal] = breadth;

 }

 }

 double kSumAvg = 0;

 for (int i = 0; i < 5; i++)

 {

 var testNet = new ActivationNetwork(new

SigmoidFunction(), inputSize, nodeArray);

 var testLearner = new

ResilientBackpropagationLearning(testNet);

 testLearner.LearningRate = trainingweights;

 int length = dataset_in.GetLength(0) / 5;

 var trainingArrayIn = new double[dataset_in.GetLength(0)

* 4 / 5][];

 var trainingArrayOut = new

double[dataset_out.GetLength(0) * 4 / 5][];

 var testingArrayIn = new double[dataset_in.GetLength(0) /

5][];

 var testingArrayOut = new double[dataset_out.GetLength(0)

/ 5][];

 dataset_in.Take(i *

length).ToArray().CopyTo(trainingArrayIn, 0);

 dataset_in.Skip((i * length) + length).Take((length * 5)

- (i * length + length)).ToArray().CopyTo(trainingArrayIn, i * length);

 testingArrayIn = dataset_in.Skip(i *

length).Take(length).ToArray();

 dataset_out.Take(i *

length).ToArray().CopyTo(trainingArrayOut, 0);

 dataset_out.Skip((i * length) + length).Take((length * 5)

- (i * length + length)).ToArray().CopyTo(trainingArrayOut, i * length);

 testingArrayOut = dataset_out.Skip(i *

length).Take(length).ToArray();

 for (int iteration = 0; iteration < iterations;

iteration++)

 {

 testLearner.RunEpoch(trainingArrayIn,

trainingArrayOut);

 }

 double kSum = 0;

 for (int k = 0; k < testingArrayIn.GetLength(0); k++)

 {

 var testResults = testNet.Compute(testingArrayIn[k]);

 for (int j = 0; j < testResults.Length; j++)

54

 {

 kSum += Math.Abs(testResults[j] -

testingArrayOut[k][j]);

 }

 kSumAvg += kSum;

 }

 }

 kSumAvg = kSumAvg / dataset_in.GetLength(0);

 if (kSumAvg == 0)

 {

 bestKVal = kSumAvg;

 bestVal = new KFoldData(breadth, depth, trainingweights,

iterations, bestKVal);

 Console.WriteLine("Thread Complete " + breadth+ " " +

depth + " " + trainingweights + " " + iterations + " " + bestKVal);

 return bestVal;

 }

 if (kSumAvg < bestKVal)

 {

 bestKVal = kSumAvg;

 bestVal = new KFoldData(breadth, depth, trainingweights,

iterations, bestKVal);

 }

 }

 Console.WriteLine("Thread Complete " + breadth + " " + depth + "

" + trainingweights + " " + bestVal.Iterations + " " + bestKVal);

 return bestVal;

 //return new Task<KFoldData>(() => helperFunction(inputSize,

outputSize, breadth,depth,trainingweights));

 }

 //KFoldData helperFunction(int inputSize, int outputSize, int

breadth, int depth, double trainingweights)

 //{

 //}

 }

}

NeuralNetForm.cs
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading;

55

using System.Threading.Tasks;

using System.Windows.Controls;

using System.Windows.Forms;

using System.Windows.Media.Converters;

using Accord.Neuro.Learning;

namespace Sender

{

 public partial class NeuralNetForm : Form

 {

 private NeuralNet net;

 private SerialReader serial;

 private int currentHandPosition;

 private List<double[]> inputTrainingData;

 private List<double[]> outputTrainingData;

 private object dataLock = new object();

 private Dictionary<string, int> indexList;

 private Dictionary<int, SetPoint> setPointList;

 private string ANNfilename = Globals.NeuralNetSaveLocation;

 private string KFoldFilename = Globals.KFoldDataSaveLocation;

 public NeuralNetForm()

 {

 InitializeComponent();

 NodeSavingReading reader = new NodeSavingReading();

 net = new NeuralNet(8, 7, ANNfilename, KFoldFilename);

 inputTrainingData =

reader.GetStoredDataFromFile(Globals.inputDataStorage);

 outputTrainingData =

reader.GetStoredDataFromFile(Globals.outputDataStorage);

 //inputTrainingData = new List<double[]>();

 //outputTrainingData = new List<double[]>();

 serial = new SerialReader();

 serial.Read();

 UnityCommunicationHub.InitializeUnityCommunication();

 UnityCommunicationHub.TwoWayTransmission();

 indexList = Globals.GetBasicValues();

 setPointList = Globals.GetBasicPositions();

 foreach (KeyValuePair<string, int> position in indexList)

 {

 DefaultPositionsBox.Items.Add(position.Key);

 }

 }

56

 private void NeuralNetForm_Load(object sender, EventArgs e)

 {

 }

 private void Run()

 {

 //while (true)

 {

 lock (dataLock)

 {

 var input = serial.GetData();

 double[] inputData = new double[8];

 for (int j = 0; j < 8; j++)

 {

 inputData[j] = input[j];

 }

 var percievedPositionArray = net.Think(inputData);

 double bestVal = 0;

 SetPoint bestSetPoint = new SetPoint();

 for (int i = 0; i < percievedPositionArray.Length; i++)

 {

 if (percievedPositionArray[i] > bestVal)

 {

 bestVal = percievedPositionArray[i];

 bestSetPoint = setPointList[i];

 }

 }

 var percievedPosition = bestSetPoint;

 Globals.T1DesiredPosition = percievedPosition.T1Position;

 Globals.T2DesiredPosition = percievedPosition.T2Position;

 Globals.A1DesiredPosition = percievedPosition.A1Position;

 Globals.A2DesiredPosition = percievedPosition.A2Position;

 Globals.A3DesiredPosition = percievedPosition.A3Position;

 Globals.B1DesiredPosition = percievedPosition.B1Position;

 Globals.B2DesiredPosition = percievedPosition.B2Position;

 Globals.B3DesiredPosition = percievedPosition.B3Position;

 Globals.C1DesiredPosition = percievedPosition.C1Position;

 Globals.C2DesiredPosition = percievedPosition.C2Position;

 Globals.C3DesiredPosition = percievedPosition.C3Position;

 Globals.D1DesiredPosition = percievedPosition.D1Position;

 Globals.D2DesiredPosition = percievedPosition.D2Position;

 Globals.D3DesiredPosition = percievedPosition.D3Position;

 UnityCommunicationHub.WriteData(true);

 }

 }

 }

57

 private void Train()

 {

 lock (dataLock)

 {

 var networkTrainingInput = new

double[inputTrainingData.Count][];

 var networkTrainingOutput = new

double[outputTrainingData.Count][];

 for (int i = 0; i < inputTrainingData.Count; i++)

 {

 networkTrainingInput[i] = inputTrainingData[i];

 networkTrainingOutput[i] = outputTrainingData[i];

 }

 net.Train(networkTrainingInput, networkTrainingOutput, 100,

0.1f);

 }

 }

 private void DefaultPositionsBox_SelectedIndexChanged(object sender,

EventArgs e)

 {

 var inputItemName = (System.Windows.Forms.ListBox) sender;

 currentHandPosition =

indexList[(string)inputItemName.SelectedItem];

 }

 private void SaveButton_Click(object sender, EventArgs e)

 {

 NodeSavingReading reader = new NodeSavingReading();

 net.Save();

 reader.pushDataToFile(Globals.inputDataStorage,

inputTrainingData);

 reader.pushDataToFile(Globals.outputDataStorage,

outputTrainingData);

 }

 private void logButton_Click(object sender, EventArgs e)

 {

 Thread.Sleep(200);

 for (int i = 0; i < 50; i++)

 {

 double[] inData = serial.GetData();

 double[] inputData = new double[8];

 for (int j = 0; j < 8; j++)

 {

 inputData[j] = inData[j];

 }

 inputTrainingData.Add(inputData);

 double[] outputData = new double[7];

 outputData[currentHandPosition] = 1;

 outputTrainingData.Add(outputData);

 Thread.Sleep(1);

58

 }

 }

 private void TrainButton_Click(object sender, EventArgs e)

 {

 Thread trainingThread = new Thread(Train);

 trainingThread.Start();

 }

 private void TestButton_Click(object sender, EventArgs e)

 {

 Thread.Sleep(200);

 Thread testThread = new Thread(Run);

 testThread.Start();

 }

 private void ReconfigureButton_Click(object sender, EventArgs e)

 {

 var inDataArray = new double[inputTrainingData.Count][];

 var outDataArray = new double[outputTrainingData.Count][];

 for (int i = 0; i < inputTrainingData.Count; i++)

 {

 inDataArray[i] = inputTrainingData[i];

 outDataArray[i] = (outputTrainingData[i]);

 }

 net.dataset_in = inDataArray;

 net.dataset_out = outDataArray;

 CertaintyPrompt prompt = new CertaintyPrompt();

 if (prompt.ShowDialog() == DialogResult.OK && prompt.Continue)

 {

 net.Validate(8, 7);

 }

 }

 private double[] ScaleOutputStorageData(double[] inputData)

 {

 var returnData = new double[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = inputData[i] /90;

 }

 return returnData;

 }

 private float[] ScaleOutputData(double[] inputData)

 {

 var returnData = new float[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = (float)inputData[i] * (90);

 }

59

 return returnData;

 }

 }

}

NeuralTreeWindow.cs
using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Drawing;

using System.Linq;

using System.Windows.Forms;

namespace Sender

{

 public partial class NeuralTreeWindow : Form

 {

 TreeNode activeNode = null;

 PatsControlScheme controls;

 private int fingerSelected = Globals.THUMB;

 private int jointSelected = Globals.OUTERJOINT;

 volatile bool continueControlling = true;

 long numInputs = 0;

 TreeNode lastNode = null;

 Stopwatch timer = new Stopwatch();

 Node currentNode;

 SerialReader reader = new SerialReader();

 int rate;

 public NeuralTreeWindow()

 {

 this.Size = new System.Drawing.Size(1710, 1301);

 this.FormClosing += Globals.CloseAllForms;

 InitializeComponent();

 updateFingerDisplay();

 UnityCommunicationHub.InitializeUnityCommunication();

 //initialize tree structure

 controls = new PatsControlScheme();

 controls.Initialize();

 loadPositions(controls.root);

 List<Node> newList = controls.allNodes.Values.ToList<Node>();

 //order the list from lowest to highest to ensure all nodes are

populated in order

 newList.OrderBy(o => o.id);

 //make sure the list of nodes is clear

 NeuronTreeView.Nodes.Clear();

60

 //sequentially add all the nodes to the tree

 foreach (Node n in newList)

 {

 if (n.id != Globals.CONTROLNODE)

 {

 //figure out what the parent id is

 int parentID = n.parent;

 //if it's the root node, just add it to the tree

 if (parentID == Globals.NULLPARENT)

 {

 TreeNode newNode = new TreeNode(n.name);

 newNode.Tag = n.id;

 NeuronTreeView.Nodes.Add(newNode);

 activeNode = newNode;

 }

 //in the case that it's a child node, figure out what

display node to add it to

 else

 {

 //iterate through until you find the parent

 TreeNode parentNode = findNodeInTree(parentID);

 //once we find the parent, add it to the parent's

children

 TreeNode newNode = new TreeNode(n.name);

 newNode.Tag = n.id;

 parentNode.Nodes.Add(newNode);

 }

 }

 }

 foreach (Node n in newList)

 {

 if (n.id != Globals.CONTROLNODE &&

n.children.Contains(Globals.CONTROLNODE))

 {

 TreeNode tn = findNodeInTree(n.id);

 bool done = false;

 foreach (TreeNode tnn in tn.Nodes)

 {

 if (!done && (int)tnn.Tag == Globals.CONTROLNODE)

 {

 tnn.Remove();

 done = true;

 }

 }

 TreeNode newControlNode = new TreeNode("Controls");

 newControlNode.Tag = Globals.CONTROLNODE;

 tn.Nodes.Add(newControlNode);

 }

 }

 }

 private void NeuronTreeView_NodeClicked(object sender,

TreeNodeMouseClickEventArgs e)

 {

 Console.WriteLine(e.Node.Text + " Clicked");

 Console.WriteLine("Tag is: " + e.Node.Tag);

61

 if ((int)e.Node.Tag != Globals.CONTROLNODE)

 {

 activeNode = e.Node;

 Node thisNode = controls.allNodes[(int)e.Node.Tag];

 loadPositions(thisNode);

 Console.WriteLine("Not a control node");

 }

 else

 {

 Console.WriteLine("A control node");

 }

 }

 private void loadPositions(Node thisNode)

 {

 Globals.A1DesiredPosition = thisNode.A1Position;

 Globals.A2DesiredPosition = thisNode.A2Position;

 Globals.A3DesiredPosition = thisNode.A3Position;

 Globals.B1DesiredPosition = thisNode.B1Position;

 Globals.B2DesiredPosition = thisNode.B2Position;

 Globals.B3DesiredPosition = thisNode.B3Position;

 Globals.C1DesiredPosition = thisNode.C1Position;

 Globals.C2DesiredPosition = thisNode.C2Position;

 Globals.C3DesiredPosition = thisNode.C3Position;

 Globals.D1DesiredPosition = thisNode.D1Position;

 Globals.D2DesiredPosition = thisNode.D2Position;

 Globals.D3DesiredPosition = thisNode.D3Position;

 Globals.T1DesiredPosition = thisNode.T1Position;

 Globals.T2DesiredPosition = thisNode.T2Position;

 UnityCommunicationHub.TwoWayTransmission();

 }

 private void setHandPositionButton_Click(object sender, EventArgs e)

 {

 UnityCommunicationHub.ReadData(true);

 SetPoint newPoint = new SetPoint

 {

 A1Position = Globals.A1DesiredPosition,

 A2Position = Globals.A2DesiredPosition,

 A3Position = Globals.A3DesiredPosition,

 B1Position = Globals.B1DesiredPosition,

 B2Position = Globals.B2DesiredPosition,

 B3Position = Globals.B3DesiredPosition,

 C1Position = Globals.C1DesiredPosition,

 C2Position = Globals.C2DesiredPosition,

 C3Position = Globals.C3DesiredPosition,

 D1Position = Globals.D1DesiredPosition,

 D2Position = Globals.D2DesiredPosition,

 D3Position = Globals.D3DesiredPosition,

 T1Position = Globals.T1DesiredPosition,

 T2Position = Globals.T2DesiredPosition

 };

 controls.allNodes[(int)activeNode.Tag].setHandPosition(newPoint);

}

 private void AddAnotherLayerButton_Click(object sender, EventArgs e)

 {

62

 Node thisNode = controls.allNodes[(int)activeNode.Tag];

 if (thisNode.children.Count != 0)

 {

 return;//node already has children. do nothing

 }

 for (int i = 0; i < controls.childrenPerNode; i++)

 {

 //calculate the id for the new node

 int newID = (thisNode.id * 10) + i + 1;

 //create a new node in the backend

 controls.createNewNode(newID, controls.childrenPerNode,

thisNode.id);

 //and then add it to the frontend

 TreeNode newDisplayNode = new

TreeNode(controls.allNodes[newID].name);

 newDisplayNode.Tag = controls.allNodes[newID].id;

 activeNode.Nodes.Add(newDisplayNode);

 }

 controls.allNodes[thisNode.id].children.Add(Globals.CONTROLNODE);

 TreeNode newControlNode = new TreeNode("Controls");

 newControlNode.Tag = Globals.CONTROLNODE;

 activeNode.Nodes.Add(newControlNode);

 }

 private void removeLayerButton_Click(object sender, EventArgs e)

 {

 Node thisNode = controls.allNodes[(int)activeNode.Tag];

 List<int> children = thisNode.children;

 foreach (int i in children)

 {

 if (i != Globals.CONTROLNODE)

 {

 controls.allNodes.Remove(i);

 }

 }

 activeNode.Nodes.Clear();

 thisNode.children.Clear();

 }

 private void changeNameButton_Click(object sender, EventArgs e)

 {

 activeNode.Text = desiredNameBox.Text;

 controls.allNodes[(int)activeNode.Tag].name =

desiredNameBox.Text;

 }

 private void purgeChildren(TreeNode node)

 {

 if (node != null && (int)node.Tag != Globals.CONTROLNODE)

 {

 foreach (TreeNode n in node.Nodes)

 {

 purgeChildren(n);

 }

 node.Remove();

 controls.allNodes.Remove((int)node.Tag);

 }

63

 else

 {

 //the controls option

 if (node != null)

 {

 node.Remove();

 }

 }

 }

 private TreeNode findNodeInTree(int id)

 {

 if (id == Globals.CONTROLNODE)

 {

 return null;

 }

 TreeNode root = NeuronTreeView.Nodes[0];

 if ((int)root.Tag == id)

 {

 return root;

 }

 else

 {

 foreach (TreeNode n in root.Nodes)

 {

 TreeNode checkedNode = recursiveFindNode(n, id);

 if (checkedNode != null)

 {

 return checkedNode;

 }

 }

 return null;

 }

 }

 private TreeNode recursiveFindNode(TreeNode n, int id)

 {

 if (id == Globals.CONTROLNODE)

 {

 return null;

 }

 if ((int)n.Tag == id)

 {

 return n;

 }

 else

 {

 TreeNode foundNode;

 foreach (TreeNode child in n.Nodes)

 {

 foundNode = recursiveFindNode(child, id);

 if (foundNode != null)

 {

 return foundNode;

 }

 }

 return null;

64

 }

 }

 private void handDelayButton_Click(object sender, EventArgs e)

 {

 controls.timeNeededForChange =

System.Convert.ToInt32(handDelayBox.Text);

 }

 private void saveCommandStructure_Click(object sender, EventArgs e)

 {

 controls.pushDataToFile();

 }

 private void hardResetButton_Click(object sender, EventArgs e)

 {

 //purge all nodes

 NeuronTreeView.Nodes.Clear();

 //and reset the tree

 controls.instantiateNewTree(1,

System.Convert.ToInt32(handDelayBox.Text));

 TreeNode newNode = new TreeNode(controls.root.name);

 newNode.Tag = controls.root.id;

 NeuronTreeView.Nodes.Add(newNode);

 NeuronTreeView.ExpandAll();

 }

 private void ThumbSelectButton_Click(object sender, EventArgs e)

 {

 fingerSelected = Globals.THUMB;

 InnerJointButton.Hide();

 if (jointSelected == Globals.INNERJOINT)

 {

 jointSelected = Globals.MIDDLEJOINT;

 }

 updateFingerDisplay();

 }

 private void IndexSelectButton_Click(object sender, EventArgs e)

 {

 fingerSelected = Globals.POINTER;

 updateFingerDisplay();

 InnerJointButton.Show();

 }

 private void MiddleSelectButton_Click(object sender, EventArgs e)

 {

 fingerSelected = Globals.MIDDLE;

 updateFingerDisplay();

 InnerJointButton.Show();

 }

 private void RingSelectButton_Click(object sender, EventArgs e)

 {

 fingerSelected = Globals.RING;

 updateFingerDisplay();

65

 InnerJointButton.Show();

 }

 private void PinkySelectButton_Click(object sender, EventArgs e)

 {

 fingerSelected = Globals.PINKY;

 InnerJointButton.Hide();

 if (jointSelected == Globals.INNERJOINT)

 {

 jointSelected = Globals.MIDDLEJOINT;

 }

 updateFingerDisplay();

 }

 private void OuterJointButton_Click(object sender, EventArgs e)

 {

 jointSelected = Globals.OUTERJOINT;

 updateFingerDisplay();

 }

 private void MiddleJointButton_Click(object sender, EventArgs e)

 {

 jointSelected = Globals.MIDDLEJOINT;

 updateFingerDisplay();

 }

 private void InnerJointButton_Click(object sender, EventArgs e)

 {

 jointSelected = Globals.INNERJOINT;

 updateFingerDisplay();

 }

 private void updateFingerDisplay()

 {

 currentlyModifyingBox.Text = "Modifying " +

Globals.valuesToStrings[fingerSelected] + " " +

Globals.valuesToStrings[jointSelected];

 if (fingerSelected == Globals.THUMB)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 DesiredAngleInput.Text =

Globals.T2DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 DesiredAngleInput.Text =

Globals.T1DesiredPosition.ToString();

 }

 }

 else if (fingerSelected == Globals.POINTER)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 DesiredAngleInput.Text =

Globals.A3DesiredPosition.ToString();

66

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 DesiredAngleInput.Text =

Globals.A2DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 DesiredAngleInput.Text =

Globals.A1DesiredPosition.ToString();

 }

 }

 else if (fingerSelected == Globals.MIDDLE)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 DesiredAngleInput.Text =

Globals.B3DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 DesiredAngleInput.Text =

Globals.B2DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 DesiredAngleInput.Text =

Globals.B1DesiredPosition.ToString();

 }

 }

 else if (fingerSelected == Globals.RING)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 DesiredAngleInput.Text =

Globals.C3DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 DesiredAngleInput.Text =

Globals.C2DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 DesiredAngleInput.Text =

Globals.C1DesiredPosition.ToString();

 }

 }

 else if (fingerSelected == Globals.PINKY)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 DesiredAngleInput.Text =

Globals.D2DesiredPosition.ToString();

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

67

 DesiredAngleInput.Text =

Globals.D1DesiredPosition.ToString();

 }

 }

 }

 private void setDesiredAngle()

 {

 float desiredAngle =

(float)System.Convert.ToDouble(DesiredAngleInput.Text);

 if (fingerSelected == Globals.THUMB)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 Globals.T2DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 Globals.T1DesiredPosition = desiredAngle;

 }

 }

 else if (fingerSelected == Globals.POINTER)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 Globals.A3DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 Globals.A2DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 Globals.A1DesiredPosition = desiredAngle;

 }

 }

 else if (fingerSelected == Globals.MIDDLE)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 Globals.B3DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 Globals.B2DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 Globals.B1DesiredPosition = desiredAngle;

 }

 }

 else if (fingerSelected == Globals.RING)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 Globals.C3DesiredPosition = desiredAngle;

 }

68

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 Globals.C2DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.INNERJOINT)

 {

 Globals.C1DesiredPosition = desiredAngle;

 }

 }

 else if (fingerSelected == Globals.PINKY)

 {

 if (jointSelected == Globals.OUTERJOINT)

 {

 Globals.D2DesiredPosition = desiredAngle;

 }

 else if (jointSelected == Globals.MIDDLEJOINT)

 {

 Globals.D1DesiredPosition = desiredAngle;

 }

 }

 }

 private double configuredMidPoint;

 private void IncreaseAngleButton_Click(object sender, EventArgs e)

 {

 float desiredAngle =

(float)System.Convert.ToDouble(DesiredAngleInput.Text) + 1.0f;

 DesiredAngleInput.Text = desiredAngle.ToString();

 setDesiredAngle();

 UnityCommunicationHub.TwoWayTransmission();

 }

 private void DecreaseAngleButton_Click(object sender, EventArgs e)

 {

 float desiredAngle =

(float)System.Convert.ToDouble(DesiredAngleInput.Text) - 1.0f;

 DesiredAngleInput.Text = desiredAngle.ToString();

 setDesiredAngle();

 UnityCommunicationHub.TwoWayTransmission();

 }

 private void DesiredAngleInput_KeyDown(object sender, KeyEventArgs e)

 {

 if (e.KeyCode == Keys.Enter)

 {

 setDesiredAngle();

 UnityCommunicationHub.TwoWayTransmission();

 e.Handled = e.SuppressKeyPress = true;

 }

 }

 private void beginControllingHandButton_Click(object sender,

EventArgs e)

 {

 int desiredMillisecondDelay = controls.timeNeededForChange;

 int arraySize = (desiredMillisecondDelay / 1000) * rate;

69

 reader.Read();

 rate = reader.getRate();

 double lowConcentration = 0;

 double highConcentration = 0;

 //first get threshholds

 bool done = false;

 while (!done)

 {

 int reads = 0;

 decimal allReads = 0;

 MessageBox.Show("First try to let your mind wander until the

next popup appears. Hit OK when ready.", string.Empty, MessageBoxButtons.OK);

 timer.Start();

 while (timer.ElapsedMilliseconds <

Globals.threshholdAquisitionTime)

 {

 decimal currentIn =

(decimal)Math.Abs(reader.GetData()[Globals.inputNode]);

 allReads += currentIn;

 reads++;

 currentAverageBox.Text = (allReads / reads).ToString();

 currentInputBox.Text = currentIn.ToString();

 }

 timer.Reset();

 lowConcentration = (double)(allReads / reads);

 midpointTextBox.Text = lowConcentration.ToString();

 Console.WriteLine("Low concentration was: " +

lowConcentration);

 reads = 0;

 allReads = 0;

 MessageBox.Show("Next try to focus as hard as possible

something. Hit OK when ready.", string.Empty, MessageBoxButtons.OK);

 timer.Start();

 while (timer.ElapsedMilliseconds <

Globals.threshholdAquisitionTime)

 {

 decimal currentIn =

(decimal)Math.Abs(reader.GetData()[Globals.inputNode]);

 allReads += currentIn;

 reads++;

 currentAverageBox.Text = (allReads / reads).ToString();

 currentInputBox.Text = currentIn.ToString();

 }

 timer.Reset();

 highConcentration = (double)(allReads / reads);

 configuredMidPoint = ((highConcentration + lowConcentration)

/ 2);

 midpointTextBox.Text = configuredMidPoint.ToString();

70

 Console.WriteLine("High concentration was: " +

highConcentration);

 if (highConcentration > lowConcentration)

 {

 done = true;

 }

 }

 MessageBox.Show("Ready to control hand. Press OK when ready.",

string.Empty, MessageBoxButtons.OK);

 }

 private void stopButton_Click(object sender, EventArgs e)

 {

 continueControlling = false;

 }

 private void iterateButton_Click(object sender, EventArgs e)

 {

 runTree();

 }

 private void runTree()

 {

 continueControlling = true;

 currentNode = controls.root;

 int desiredMillisecondDelay = controls.timeNeededForChange;

 TreeNode n = findNodeInTree(currentNode.id);

 n.BackColor = Color.Yellow;

 lastNode = n;

 timer = new Stopwatch();

 while (continueControlling)

 {

 //get the inputs and average them for the desired output

 double averageInput = 0;

 if (currentNode.children.Count < 1)

 {

 continueControlling = false;

 loadPositions(currentNode);

 break;

 }

 Random rand = new Random();

 numInputs = 0;

 decimal accruedValues = 0;

 timer.Reset();

 timer.Start();

 decimal currentIn;

 while (timer.ElapsedMilliseconds < desiredMillisecondDelay)

 {

 currentIn =

(decimal)Math.Abs(reader.GetData()[Globals.inputNode]);

 accruedValues += currentIn;

 numInputs++;

71

 currentAverageBox.Text = (accruedValues /

numInputs).ToString();

 timeLeftBox.Text = (desiredMillisecondDelay -

timer.ElapsedMilliseconds).ToString();

 currentInputBox.Text = currentIn.ToString();

 }

 averageInput = (double)(accruedValues / numInputs);

 currentAverageBox.Text = averageInput.ToString();

 if (averageInput >= configuredMidPoint)

 {

 //set current hand position as the one to move to

 continueControlling = false;

 timeLeftBox.Text = "Done";

 }

 else

 {

 continueControlling = true;

 currentNode =

controls.allNodes[currentNode.children.First()];

 }

 n = findNodeInTree(currentNode.id);

 n.BackColor = Color.Yellow;

 lastNode.BackColor = Color.White;

 lastNode = n;

 Console.WriteLine(averageInput);

 numInputs = 0;

 accruedValues = 0;

 Console.WriteLine("Desired was " + currentNode.name);

 if (currentNode.id == Globals.CONTROLNODE)

 {

 continueControlling = false;

 loadPositions(currentNode);

 }

 else

 {

 if (!continueControlling)

 {

 loadPositions(currentNode);

 }

 }

 }

 }

 private void handDelayBox_KeyDown(object sender, KeyEventArgs e)

 {

 if (e.KeyCode == Keys.Enter)

 {

 controls.timeNeededForChange =

System.Convert.ToInt32(handDelayBox);

72

 e.Handled = e.SuppressKeyPress = true;

 }

 }

 private void desiredNameBox_KeyDown(object sender, KeyEventArgs e)

 {

 if (e.KeyCode == Keys.Enter)

 {

 activeNode.Text = desiredNameBox.Text;

 controls.allNodes[(int)activeNode.Tag].name =

desiredNameBox.Text;

 e.Handled = e.SuppressKeyPress = true;

 }

 }

 }

}

Node.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Sender

{

 public class Node

 {

 public string name;

 public int id;

 public List<int> children = new List<int>();

 public int parent = Globals.NULLPARENT;//indicates the root node

 public float T1Position = 0.0f;

 public float T2Position = 0.0f;

 public float A1Position = 0.0f;

 public float A2Position = 0.0f;

 public float A3Position = 0.0f;

 public float B1Position = 0.0f;

 public float B2Position = 0.0f;

 public float B3Position = 0.0f;

 public float C1Position = 0.0f;

 public float C2Position = 0.0f;

 public float C3Position = 0.0f;

 public float D1Position = 0.0f;

 public float D2Position = 0.0f;

 public float D3Position = 0.0f;

 public Node(string name, SetPoint handPosition, int id, List<int>

children, int parent)

 {

 this.name = name;

 this.id = id;

 this.children = children;

 this.parent = parent;

73

 this.setHandPosition(handPosition);

 }

 public void setHandPosition(SetPoint input)

 {

 //needed for error catching

 if (input != null)

 {

 this.T1Position = input.T1Position;

 this.T2Position = input.T2Position;

 this.A1Position = input.A1Position;

 this.A2Position = input.A2Position;

 this.A3Position = input.A3Position;

 this.B1Position = input.B1Position;

 this.B2Position = input.B2Position;

 this.B3Position = input.B3Position;

 this.C1Position = input.C1Position;

 this.C2Position = input.C2Position;

 this.C3Position = input.C3Position;

 this.D1Position = input.D1Position;

 this.D2Position = input.D2Position;

 this.D3Position = input.D3Position;

 }

 }

 public SetPoint getHandPosition()

 {

 return new SetPoint()

 {

 T1Position = this.T1Position,

 T2Position = this.T2Position,

 A1Position = this.A1Position,

 A2Position = this.A2Position,

 A3Position = this.A3Position,

 B1Position = this.B1Position,

 B2Position = this.B2Position,

 B3Position = this.B3Position,

 C1Position = this.C1Position,

 C2Position = this.C2Position,

 C3Position = this.C3Position,

 D1Position = this.D1Position,

 D2Position = this.D2Position,

 D3Position = this.D3Position,

 };

 }

 }

}

NodeSavingReading.cs
using Newtonsoft.Json;

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

74

namespace Sender

{

 public class NodeSavingReading

 {

 public void pushDataToFile(String fileLocation, List<Node>

nodesToSave)

 {

 List<Node> listOfNodes = nodesToSave.ToList<Node>();

 string output = JsonConvert.SerializeObject(listOfNodes);

 using (StreamWriter sw = new

StreamWriter(Globals.TreeSaveLocation))

 {

 sw.WriteLine(output);

 }

 }

 public void pushDataToFile(String fileLocation, List<SetPoint>

pointsToSave)

 {

 List<SetPoint> listofSetPoints = pointsToSave.ToList<SetPoint>();

 string output = JsonConvert.SerializeObject(listofSetPoints);

 using (StreamWriter sw = new StreamWriter(fileLocation))

 {

 sw.WriteLine(output);

 }

 }

 public void pushDataToFile(String fileLocation, List<double[]>

pointsToSave)

 {

 List<double[]> listofSetPoints = pointsToSave.ToList<double[]>();

 string output = JsonConvert.SerializeObject(listofSetPoints);

 using (StreamWriter sw = new StreamWriter(fileLocation))

 {

 sw.WriteLine(output);

 }

 }

 public void pushDataToFile(String fileLocation, KFoldData dataPoint)

 {

 string output = JsonConvert.SerializeObject(dataPoint);

 using (StreamWriter sw = new StreamWriter(fileLocation))

 {

 sw.WriteLine(output);

 }

 }

 public List<Node> GetDataFromFile(String fileLocation)

 {

 if (File.Exists(fileLocation))

 {

 string inputData = File.ReadAllText(fileLocation);

 try

 {

 return

JsonConvert.DeserializeObject<List<Node>>(inputData);

75

 }

 catch (Exception e)

 {

 return new List<Node>();

 }

 }

 else

 {

 return new List<Node>();

 }

 }

 public List<double[]> GetStoredDataFromFile(String fileLocation)

 {

 if (File.Exists(fileLocation))

 {

 string inputData = File.ReadAllText(fileLocation);

 try

 {

 return

JsonConvert.DeserializeObject<List<double[]>>(inputData);

 }

 catch (Exception e)

 {

 return new List<double[]>();

 }

 }

 else

 {

 return new List<double[]>();

 }

 }

 public List<SetPoint> GetSetPointDataFromFile(String fileLocation)

 {

 if (File.Exists(fileLocation))

 {

 string inputData = File.ReadAllText(fileLocation);

 try

 {

 return

JsonConvert.DeserializeObject<List<SetPoint>>(inputData);

 }

 catch (Exception e)

 {

 return new List<SetPoint>();

 }

 }

 else

 {

 return new List<SetPoint>();

 }

 }

 public KFoldData GetKFoldDataFromFile(String fileLocation)

 {

 if (File.Exists(fileLocation))

76

 {

 string inputData = File.ReadAllText(fileLocation);

 try

 {

 return

JsonConvert.DeserializeObject<KFoldData>(inputData);

 }

 catch (Exception e)

 {

 return null;

 }

 }

 else

 {

 return null;

 }

 }

 }

}

PatsControlScheme.cs
using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Newtonsoft.Json;

namespace Sender

{

 class PatsControlScheme : ControlSystemInterface

 {

 public int timeNeededForChange = 10000;//in milliseconds

 public Node root = null;

 public Dictionary<int, Node> allNodes = new Dictionary<int, Node>();

 //max value is 9 due to indexing implementation

 public int childrenPerNode = 1;//default value

 public void DetermineSetpointsFromInputs()

 {

 }

 public void PushInformationToHand()

 {

 }

 public void Initialize()

 {

 if (!GetDataFromFile())

 {

 instantiateNewTree(1, 10000);

 childrenPerNode = 1;

 }

 else

77

 {

 if (root.children.Count > 0)

 {

 childrenPerNode = root.children.Count - 1;

 }

 else

 {

 childrenPerNode = 1;

 }

 }

 }

 public bool GetDataFromFile()

 {

 if (File.Exists(Globals.TreeSaveLocation))

 {

 string inputData =

File.ReadAllText(Globals.TreeSaveLocation);

 List<Node> retrievedNodes = null;

 try

 {

 retrievedNodes =

JsonConvert.DeserializeObject<List<Node>>(inputData);

 }

 catch (Exception e)

 {

 return false;

 }

 if (retrievedNodes == null)

 {

 return false;

 }

 for(int i = 0; i < retrievedNodes.Count; i++)

 {

 if(retrievedNodes[i].name == null || (

(retrievedNodes[i].id < 0 || retrievedNodes[i].getHandPosition() == null) &&

retrievedNodes[i].id != Globals.CONTROLNODE))

 {

 //check each node to make sure they saved correctly

 return false;

 }

 }

 if (retrievedNodes != null)

 {

 bool foundRoot = false;

 foreach (Node n in retrievedNodes)

 {

 allNodes.Add(n.id, n);

 if (!foundRoot && n.parent == Globals.NULLPARENT)

 {

 root = n;

 foundRoot = true;

 }

 if (n.id != Globals.CONTROLNODE &&

!n.children.Contains(Globals.CONTROLNODE) && n.children.Count > 0)

 {

78

 n.children.Add(Globals.CONTROLNODE);

 }

 }

 foreach(Node n in allNodes.Values)

 {

 if (n.id != Globals.CONTROLNODE &&

n.children.Contains(Globals.CONTROLNODE))

 {

 n.children.Remove(Globals.CONTROLNODE);

 n.children.Add(Globals.CONTROLNODE);

 }

 }

 return true;

 }

 return false;

 }

 else

 {

 return false;

 }

 }

 public void instantiateNewTree(int positionsPerSplit, int delay)

 {

 this.allNodes.Clear();

 this.root = createNewNode(Globals.ROOTNODE, positionsPerSplit,

Globals.NULLPARENT);

 this.childrenPerNode = positionsPerSplit;

 this.timeNeededForChange = delay;

 }

 public Node createNewNode(int id, int positionsPerSplit, int

parentID)

 {

 Node newNode = new Node("Extended Hand", new SetPoint(), id, new

List<int>(positionsPerSplit), parentID);

 if (id != Globals.CONTROLNODE)

 {

 this.allNodes.Add(newNode.id, newNode);

 }

 if(parentID != Globals.NULLPARENT && id != Globals.CONTROLNODE)

 {

 allNodes[parentID].children.Add(id);

 }

 return newNode;

 }

 public void pushDataToFile()

 {

 List<Node> listOfNodes = allNodes.Values.ToList<Node>();

 string output = JsonConvert.SerializeObject(listOfNodes);

 using (StreamWriter sw = new

StreamWriter(Globals.TreeSaveLocation))

 {

 sw.WriteLine(output);

 }

79

 }

 public void cleanupReferences()

 {

 List<Node> everyNode = allNodes.Values.ToList().OrderBy(k =>

k.id).ToList();

 foreach (Node n in allNodes.Values)

 {

 if(!everyNode.Exists(node => node.parent == n.parent)){

 allNodes.Remove(n.id);

 }

 }

 }

 }

}

Program.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace Sender

{

 static class Program

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Globals.welcomeScreen = new WelcomeScreen();

 Application.Run(Globals.welcomeScreen);

 }

 }

}

SerialReader.cs
using System;

using System.Collections.Generic;

using System.IO.Ports;

using System.Linq;

using System.Runtime.Serialization;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using System.Windows;

using Accord;

using Newtonsoft.Json.Linq;

namespace Sender

{

 class SerialReader

 {

80

 private volatile double[] dataOut;

 private volatile double[] betaDataOut;

 private volatile List<double[]> lastDataOut;

 private Mutex bciDataLock;

 private SerialPort serialPort1;

 private int rate;

 //Scale for OpenBCI data to mV (highest setting)

 private static float scale = 0.02235f;

 //Previous data for filter

 static double[,] prev_x_notch = new double[8, 5];

 static double[,] prev_y_notch = new double[8, 5];

 static double[,] prev_x_standard = new double[8, 5];

 static double[,] prev_y_standard = new double[8, 5];

 static double[,] prev_x_notchBeta = new double[8, 5];

 static double[,] prev_y_notchBeta = new double[8, 5];

 static double[,] prev_x_standardBeta = new double[8, 5];

 static double[,] prev_y_standardBeta = new double[8, 5];

 public SerialReader()

 {

 bciDataLock = new Mutex();

 serialPort1 = new SerialPort("COM5", 115200);

 serialPort1.Open();

 serialPort1.Write("s");

 serialPort1.Write("~5");

 dataOut = new double[16];

 lastDataOut = new List<double[]>();

 setRate(250);

 }

 public int getRate()

 {

 return this.rate;

 }

 //Set rate in Hz

 public void setRate(double desiredRate) { rate = (int)(desiredRate *

255 / 250); }

 //Starts board output

 public void Start() { serialPort1.Write("b"); }

 //Stops board output

 public void Stop() { serialPort1.Write("s"); }

 //Reads board output

 public void Read()

 {

 Start();

 Task dataReader = new Task(getData);

 dataReader.Start();

 }

81

 public double[] GetData()

 {

 bciDataLock.WaitOne();

 double[] returnData = dataOut;

 bciDataLock.ReleaseMutex();

 return returnData;

 }

 private void getData()

 {

 var inData = new Byte[32];

 bool frequencyToggle = true;

 while (true)

 {

 try

 {

 bciDataLock.WaitOne();

 }

 catch (AbandonedMutexException e)

 {

 bciDataLock.ReleaseMutex();

 }

 if (serialPort1.ReadByte() == 0xA0)

 {

 serialPort1.Read(inData, 0, 32);

 if (inData[31] > 0xBF && inData[31] < 0xD0 &&

inData[0] <= rate)

 {

 var loggingData = new double[8];

 for (int i = 0; i < 8; i++)

 {

 int outVal = interpret24bitAsInt32(inData[i *

3 + 1], inData[i * 3 + 2],

 inData[i * 3 + 3]);

 dataOut[i] = (double) (outVal * scale);

 if (frequencyToggle)

 {

 dataOut[(i+8)] = FilterBeta(dataOut[i],

i);

 }

 dataOut[i] = Filter(dataOut[i], i);

 loggingData[i] = dataOut[i];

 if (lastDataOut.Count > 5 && dataOut[i] ==

lastDataOut.First()[i])

 {

 dataOut[i] = double.NaN;

 Console.WriteLine("Node " + (i+1) +" is

not connected");

 }

 else if (i == 7 && lastDataOut.Count > 5) {

 Console.WriteLine("Node " + (i + 1) + "

is connected with value " + dataOut[i]);

82

 lastDataOut.RemoveAt(0);

 }

 else

 {

 Console.WriteLine("Node " + (i + 1) + "

is connected with value " + dataOut[i]);

 }

 }

 lastDataOut.Add(loggingData);

 }

 frequencyToggle = !frequencyToggle;

 }

 bciDataLock.ReleaseMutex();

 }

 }

 //Provided by OpenBCI

 public int interpret24bitAsInt32(byte byte1, byte byte2, byte byte3)

 {

 int newInt = (

 ((0xFF & byte1) << 16) |

 ((0xFF & byte2) << 8) |

 (0xFF & byte3)

);

 if ((newInt & 0x00800000) > 0)

 {

 newInt = (int)((uint)newInt | (uint)0xFF000000);

 }

 else

 {

 newInt = (int)((uint)newInt & (uint)0x00FFFFFF);

 }

 return (newInt);

 }

 //Filtering function for OpenBCI Nodes

 //Adapted from nekrodezynfekator's OpenBCI_GUI repository

 private double Filter(double inputVal, int i)

 {

 double returnVal = 0;

 var b = new double[5] { 0.1173510367246093, 0, -

0.2347020734492186, 0, 0.1173510367246093 };

 var a = new double[5] { 1, -2.137430180172061, 2.038578008108517,

-1.070144399200925, 0.2946365275879138 };

 var b2 = new double[5] { 0.9650809863447347, -0.2424683201757643,

1.945391494128786, -0.2424683201757643, 0.9650809863447347 };

 var a2 = new double[5] { 1, -0.2467782611297853,

1.944171784691352, -0.2381583792217435, 0.9313816821269039 };

 for (int j = 4; j > 0; j--)

 {

83

 prev_x_notch[i, j] = prev_x_notch[i, j - 1];

 prev_y_notch[i, j] = prev_y_notch[i, j - 1];

 prev_x_standard[i, j] = prev_x_standard[i, j - 1];

 prev_y_standard[i, j] = prev_y_standard[i, j - 1];

 }

 prev_x_notch[i, 0] = inputVal;

 double score = 0;

 for (int j = 0; j < 5; j++)

 {

 score += b2[j]*prev_x_notch[i, j];

 if (j > 0)

 {

 score -= a2[j]*prev_y_notch[i, j];

 }

 }

 prev_y_notch[i, 0] = score;

 prev_x_standard[i, 0] = score;

 score = 0;

 for (int j = 0; j < 5; j++)

 {

 score += b[j]*prev_x_standard[i, j];

 if (j > 0)

 {

 score -= a[j]*prev_y_standard[i, j];

 }

 }

 prev_y_standard[i, 0] = score;

 returnVal = score;

 return returnVal;

 }

 //Filter modified for Beta waves while recording at higher

frequencies

 private double FilterBeta(double inputVal, int i)

 {

 double returnVal = 0;

 var b = new double[5] { 0.1173510367246093, 0, -

0.2347020734492186, 0, 0.1173510367246093 };

 var a = new double[5] { 1, -2.137430180172061, 2.038578008108517,

-1.070144399200925, 0.2946365275879138 };

 var b2 = new double[5] { 0.96508099, -1.19328255, 2.29902305, -

1.19328255, 0.96508099 };

 var a2 = new double[5] { 1, -1.21449347931898, 2.29780334191380,

-1.17207162934772, 0.931381682126902 };

 for (int j = 4; j > 0; j--)

 {

 prev_x_notchBeta[i, j] = prev_x_notchBeta[i, j - 1];

 prev_y_notchBeta[i, j] = prev_y_notchBeta[i, j - 1];

 prev_x_standardBeta[i, j] = prev_x_standardBeta[i, j - 1];

 prev_y_standardBeta[i, j] = prev_y_standardBeta[i, j - 1];

84

 }

 prev_x_notchBeta[i, 0] = inputVal;

 double score = 0;

 for (int j = 0; j < 5; j++)

 {

 score += b2[j] * prev_x_notchBeta[i, j];

 if (j > 0)

 {

 score -= a2[j] * prev_y_notchBeta[i, j];

 }

 }

 prev_y_notchBeta[i, 0] = score;

 prev_x_standardBeta[i, 0] = score;

 score = 0;

 for (int j = 0; j < 5; j++)

 {

 score += b[j] * prev_x_standardBeta[i, j];

 if (j > 0)

 {

 score -= a[j] * prev_y_standardBeta[i, j];

 }

 }

 prev_y_standardBeta[i, 0] = score;

 returnVal = score;

 return returnVal;

 }

 }

}

SetPoint.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Sender

{

 public class SetPoint

 {

 public float T1Position = 0.0f;

 public float T2Position = 0.0f;

 public float A1Position = 0.0f;

 public float A2Position = 0.0f;

 public float A3Position = 0.0f;

 public float B1Position = 0.0f;

 public float B2Position = 0.0f;

 public float B3Position = 0.0f;

 public float C1Position = 0.0f;

 public float C2Position = 0.0f;

 public float C3Position = 0.0f;

85

 public float D1Position = 0.0f;

 public float D2Position = 0.0f;

 public float D3Position = 0.0f;

 public SetPoint()

 {

 this.T1Position = 0.0f;

 this.T2Position = 0.0f;

 this.A1Position = 0.0f;

 this.A2Position = 0.0f;

 this.A3Position = 0.0f;

 this.B1Position = 0.0f;

 this.B2Position = 0.0f;

 this.B3Position = 0.0f;

 this.C1Position = 0.0f;

 this.C2Position = 0.0f;

 this.C3Position = 0.0f;

 this.D1Position = 0.0f;

 this.D2Position = 0.0f;

 this.D3Position = 0.0f;

 }

 public SetPoint(float T1, float T2, float A1, float A2, float A3,

float B1, float B2, float B3, float C1, float C2, float C3, float D1, float

D2, float D3)

 {

 this.A1Position = A1;

 this.A2Position = A2;

 this.A3Position = A3;

 this.B1Position = B1;

 this.B2Position = B2;

 this.B3Position = B3;

 this.C1Position = C1;

 this.C2Position = C2;

 this.C3Position = C3;

 this.D1Position = D1;

 this.D2Position = D2;

 this.D3Position = D3;

 this.T1Position = T1;

 this.T2Position = T2;

 }

 public double[] ConvertToDoubles()

 {

 var returnArray = new double[14];

 returnArray[0] = A1Position;

 returnArray[1] = A2Position;

 returnArray[2] = A3Position;

 returnArray[3] = B1Position;

 returnArray[4] = B2Position;

 returnArray[5] = B3Position;

 returnArray[6] = C1Position;

 returnArray[7] = C2Position;

 returnArray[8] = C3Position;

 returnArray[9] = D1Position;

 returnArray[10] = D2Position;

 returnArray[11] = D3Position;

86

 returnArray[12] = T1Position;

 returnArray[13] = T2Position;

 return returnArray;

 }

 }

}

Threshold.cs
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Sender

{

 public class Threshhold

 {

 public double min;

 public double max;

 public Threshhold(double min, double max)

 {

 this.min = min;

 this.max = max;

 }

 public bool Contains(double input)

 {

 if(input >= min && input < max)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 public void Set(double INmin, double INmax)

 {

 this.min = INmin;

 this.max = INmax;

 }

 }

}

UnityCommunicationHub.cs
using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.IO;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

87

namespace Sender

{

 public static class UnityCommunicationHub

 {

 private static string directoryPath = @"c:\BCIDataDirectory";

 private static string filePath =

@"c:\BCIDataDirectory\transferInfo.txt";

 private static string mutexFileTurn =

@"c:\BCIDataDirectory\WFATurn.mutex";

 private static string mutexUnityTurn =

@"c:\BCIDataDirectory\UnityTurn.mutex";

 private static string unityReadyToGo =

@"c:\BCIDataDirectory\UnityReady.txt";

 private static string WFAReadyToGo =

@"c:\BCIDataDirectory\WFAReady.txt";

 private static bool initialized = false;

 public static bool connected = false;

 //initializes file communication system with Unity. Should ONLY be

called once at program start.

 public static bool InitializeUnityCommunication()

 {

 if (initialized)

 {

 Console.WriteLine("ERROR: TRYING TO INITIALIZE AFTER

INITIALIZATION SUCCESSFUL");

 return true;

 }

 // Determine whether the directory exists.

 if (Directory.Exists(directoryPath))

 {

 Console.WriteLine("Directory path exists already. Proceeding

as normal.");

 }

 else

 {

 // Try to create the directory.

 Console.WriteLine("Creating directory path.");

 DirectoryInfo di = Directory.CreateDirectory(directoryPath);

 }

 //make sure to clean up any excess data from last run

 if (File.Exists(filePath))

 {

 File.Delete(filePath);

 }

 if (File.Exists(mutexFileTurn))

 {

 File.Delete(mutexFileTurn);

 }

 if (File.Exists(mutexUnityTurn))

 {

 File.Delete(mutexUnityTurn);

 }

 using (StreamWriter sw = new StreamWriter(mutexFileTurn))

88

 {

 sw.WriteLine("g");

 }

 using (StreamWriter sw = new StreamWriter(WFAReadyToGo))

 {

 sw.WriteLine("g");

 }

 using (StreamWriter sw = new StreamWriter(filePath))

 {

 sw.WriteLine("START");

 }

 //wait for confirmation step

 Stopwatch watch = Stopwatch.StartNew();

 watch.Start();

 while (!File.Exists(unityReadyToGo))

 {

 if(watch.ElapsedMilliseconds > Globals.TimeToConnectToUnity)

 {

 Console.WriteLine("Unity connection attempt stopped");

 return false;

 }

 }

 initialized = true;

 connected = true;

 return true;

 }

 //performs both the read and write

 public static bool TwoWayTransmission()

 {

 if (!ReadData(false))

 {

 Console.WriteLine("ERROR IN READING FROM UNITY");

 return false;

 }

 if (!WriteData(false))

 {

 Console.WriteLine("ERROR IN WRITING TO FILE TO TRANSMIT TO

UNITY");

 return false;

 }

 switchToUnity();

 return true;

 }

 //returns true if it was able to aquire the file to read and then

write to the file, false otherwise

 //input true unless using as an intermediate step

 public static bool ReadData(bool turnOverToUnityAfter = true)

 {

 if (File.Exists(mutexFileTurn))

 {

 //first get the position from the hand

 string line = "";

 using (StreamReader sr = new StreamReader(filePath))

 {

 if((line = sr.ReadLine()) != null){

89

 //make sure we're the recipient

 if(line.Equals("TO WFA"))

 {

 //get data if we're the recipient

 while ((line = sr.ReadLine()) != null)

 {

 switch (line.Substring(0, 2))

 {

 case "T1":

 Globals.T1ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "T2":

 Globals.T2ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "A1":

 Globals.A1ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "A2":

 Globals.A2ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "A3":

 Globals.A3ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "B1":

 Globals.B1ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "B2":

 Globals.B2ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "B3":

 Globals.B3ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "C1":

 Globals.C1ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "C2":

 Globals.C2ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "C3":

 Globals.C3ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "D1":

 Globals.D1ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "D2":

90

 Globals.D2ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 case "D3":

 Globals.D3ActualPosition =

(float)System.Convert.ToDouble(line.Substring(2));

 break;

 }

 }

 }

 }

 }

 if (turnOverToUnityAfter)

 {

 switchToUnity();

 }

 return true;

 }

 else

 {

 return false;

 }

 }

 //write the global variables to the file to transmit to unity.

automatically switches to unity reading after

 public static bool WriteData(bool turnOverToUnityAfter)

 {

 //get the most recent data

 switchToUnity();

 Stopwatch timer = new Stopwatch();

 timer.Start();

 while (!File.Exists(mutexFileTurn))

 {

 if(timer.ElapsedMilliseconds > 5000)

 {

 Console.WriteLine("Could not read from unity");

 throw new Exception();

 }

 }

 //and now write your own data to the file

 File.Delete(filePath);

 using (StreamWriter sw = new StreamWriter(filePath))

 {

 sw.WriteLine("TO UNITY");

 sw.WriteLine("T1" + Globals.T1DesiredPosition);

 sw.WriteLine("T2" + Globals.T2DesiredPosition);

 sw.WriteLine("A1" + Globals.A1DesiredPosition);

 sw.WriteLine("A2" + Globals.A2DesiredPosition);

 sw.WriteLine("A3" + Globals.A3DesiredPosition);

 sw.WriteLine("B1" + Globals.B1DesiredPosition);

 sw.WriteLine("B2" + Globals.B2DesiredPosition);

 sw.WriteLine("B3" + Globals.B3DesiredPosition);

 sw.WriteLine("C1" + Globals.C1DesiredPosition);

91

 sw.WriteLine("C2" + Globals.C2DesiredPosition);

 sw.WriteLine("C3" + Globals.C3DesiredPosition);

 //sw.WriteLine("D1" + Globals.D1DesiredPosition);

 sw.WriteLine("D2" + Globals.D2DesiredPosition);

 sw.WriteLine("D3" + Globals.D3DesiredPosition);

 sw.WriteLine("From sender");

 }

 if (turnOverToUnityAfter)

 {

 switchToUnity();

 }

 return true;

 }

 public static void switchToUnity()

 {

 bool ready = false;

 while (!ready)

 {

 try

 {

 File.Delete(mutexFileTurn);

 ready = true;

 }

 catch (Exception e)

 {

 }

 }

 using (StreamWriter sw = new StreamWriter(mutexUnityTurn))

 {

 sw.WriteLine("G");

 }

 }

 private static bool isMyTurn()

 {

 if (File.Exists(mutexFileTurn))

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 //deletes all files from transmission directory. Should ONLY be

called upon program exit.

 public static void PurgeFileSystem()

 {

 File.Delete(unityReadyToGo);

 File.Delete(WFAReadyToGo);

 File.Delete(filePath);

 File.Delete(mutexFileTurn);

 File.Delete(mutexUnityTurn);

 connected = false;

92

 initialized = false;

 }

 }

}

UnsureNetworkForm.cs
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

using System.Windows.Controls;

using System.Windows.Forms;

using System.Windows.Media.Converters;

using Accord.Math;

using Accord.Neuro.Learning;

namespace Sender

{

 public partial class UnsureNetworkForm : Form

 {

 private NeuralNet net;

 private SerialReader serial;

 private int currentHandPosition;

 private List<double[]> inputTrainingData;

 private List<double[]> outputTrainingData;

 private object dataLock = new object();

 private Dictionary<string, int> indexList;

 private Dictionary<int, string> reverseIndexList;

 private Dictionary<int, SetPoint> setPointList;

 Stopwatch timer = new Stopwatch();

 private List<Threshhold> ranges;

 PatsControlScheme controls;

 int rate;

 private string ANNfilename = Globals.NeuralNetSaveLocation;

 private string KFoldFilename = Globals.KFoldDataSaveLocation;

 public UnsureNetworkForm()

 {

 InitializeComponent();

 NodeSavingReading reader = new NodeSavingReading();

 net = new NeuralNet(7, 7, ANNfilename, KFoldFilename);

 inputTrainingData =

reader.GetStoredDataFromFile(Globals.inputDataStorage);

 outputTrainingData =

reader.GetStoredDataFromFile(Globals.outputDataStorage);

93

 //inputTrainingData = new List<double[]>();

 //outputTrainingData = new List<double[]>();

 controls = new PatsControlScheme();

 controls.Initialize();

 controls.timeNeededForChange = 7000;

 serial = new SerialReader();

 serial.Read();

 UnityCommunicationHub.InitializeUnityCommunication();

 UnityCommunicationHub.TwoWayTransmission();

 indexList = Globals.GetBasicValues();

 reverseIndexList = Globals.GetBasicValuesReversed();

 setPointList = Globals.GetBasicPositions();

 foreach (KeyValuePair<string, int> position in indexList)

 {

 DefaultPositionsBox.Items.Add(position.Key);

 }

 }

 private void Run()

 {

 //while (true)

 {

 lock (dataLock)

 {

 var input = serial.GetData();

 double[] inputData = new double[7];

 for (int j = 0; j < 8; j++)

 {

 if (j < 1) inputData[j] = input[j];

 else if (j > 1) inputData[j - 1] = input[j];

 }

 var percievedPositionArray = net.Think(inputData);

 double bestVal = 0;

 SetPoint bestSetPoint = new SetPoint();

 bool goodToMove = false;

 while (!goodToMove)

 {

 var index = 0;

 for (int i = 0; i < percievedPositionArray.Length;

i++)

 {

 if (percievedPositionArray[i] > bestVal)

 {

 bestVal = percievedPositionArray[i];

94

 index = i;

 bestSetPoint = setPointList[i];

 }

 }

 if (bestVal > 0.95)

 {

 goodToMove = true;

 }

 else

 {

 PositionTextBox.Text = reverseIndexList[index];

 goodToMove = RunFocus();

 if (!goodToMove)

 {

 percievedPositionArray[index] = 0;

 bestVal = 0;

 }

 }

 }

 var percievedPosition = bestSetPoint;

 Globals.T1DesiredPosition = percievedPosition.T1Position;

 Globals.T2DesiredPosition = percievedPosition.T2Position;

 Globals.A1DesiredPosition = percievedPosition.A1Position;

 Globals.A2DesiredPosition = percievedPosition.A2Position;

 Globals.A3DesiredPosition = percievedPosition.A3Position;

 Globals.B1DesiredPosition = percievedPosition.B1Position;

 Globals.B2DesiredPosition = percievedPosition.B2Position;

 Globals.B3DesiredPosition = percievedPosition.B3Position;

 Globals.C1DesiredPosition = percievedPosition.C1Position;

 Globals.C2DesiredPosition = percievedPosition.C2Position;

 Globals.C3DesiredPosition = percievedPosition.C3Position;

 Globals.D1DesiredPosition = percievedPosition.D1Position;

 Globals.D2DesiredPosition = percievedPosition.D2Position;

 Globals.D3DesiredPosition = percievedPosition.D3Position;

 UnityCommunicationHub.WriteData(true);

 }

 }

 }

 private void Train()

 {

 lock (dataLock)

 {

 var networkTrainingInput = new

double[inputTrainingData.Count][];

 var networkTrainingOutput = new

double[outputTrainingData.Count][];

 for (int i = 0; i < inputTrainingData.Count; i++)

 {

 networkTrainingInput[i] = inputTrainingData[i];

 networkTrainingOutput[i] = outputTrainingData[i];

 }

95

 net.Train(networkTrainingInput, networkTrainingOutput, 100,

.10f);

 }

 }

 private void DefaultPositionsBox_SelectedIndexChanged(object sender,

EventArgs e)

 {

 var inputItemName = (System.Windows.Forms.ListBox)sender;

 currentHandPosition =

indexList[(string)inputItemName.SelectedItem];

 }

 private void SaveButton_Click(object sender, EventArgs e)

 {

 NodeSavingReading reader = new NodeSavingReading();

 net.Save();

 reader.pushDataToFile(Globals.inputDataStorage,

inputTrainingData);

 reader.pushDataToFile(Globals.outputDataStorage,

outputTrainingData);

 }

 private void logButton_Click(object sender, EventArgs e)

 {

 Thread.Sleep(200);

 for (int i = 0; i < 50; i++)

 {

 double[] inData = serial.GetData();

 double[] inputData = new double[7];

 for (int j = 0; j < 8; j++)

 {

 if (j < 1) inputData[j] = inData[j];

 else if (j > 1) inputData[j - 1] = inData[j];

 }

 inputTrainingData.Add(inputData);

 double[] outputData = new double[7];

 outputData[currentHandPosition] = 1;

 outputTrainingData.Add(outputData);

 Thread.Sleep(1);

 }

 }

 private void TrainButton_Click(object sender, EventArgs e)

 {

 Thread trainingThread = new Thread(Train);

 trainingThread.Start();

 }

 private void TestButton_Click(object sender, EventArgs e)

 {

 Thread.Sleep(200);

96

 //Thread testThread = new Thread(Run);

 //testThread.Start();

 Run();

 }

 private double[] ScaleOutputStorageData(double[] inputData)

 {

 var returnData = new double[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = inputData[i] / 90;

 }

 return returnData;

 }

 private float[] ScaleOutputData(double[] inputData)

 {

 var returnData = new float[inputData.Length];

 for (int i = 0; i < inputData.Length; i++)

 {

 returnData[i] = (float)inputData[i] * (90);

 }

 return returnData;

 }

 private void FocusButton_Click(object sender, EventArgs e)

 {

 int desiredMillisecondDelay = controls.timeNeededForChange;

 int arraySize = (desiredMillisecondDelay / 1000) * rate;

 serial.Read();

 rate = serial.getRate();

 double lowConcentration = 0;

 double highConcentration = 0;

 //first get threshholds

 bool done = false;

 while (!done)

 {

 int reads = 0;

 decimal allReads = 0;

 MessageBox.Show("First try to let your mind wander until

the next popup appears. Hit OK when ready.", string.Empty,

MessageBoxButtons.OK);

 timer.Start();

 while (timer.ElapsedMilliseconds <

Globals.threshholdAquisitionTime)

 {

 decimal currentIn =

(decimal)Math.Abs(serial.GetData()[Globals.inputNode]);

 allReads += currentIn;

 reads++;

 }

97

 timer.Reset();

 lowConcentration = (double)(allReads / reads);

 Console.WriteLine("Low concentration was: " +

lowConcentration);

 reads = 0;

 allReads = 0;

 MessageBox.Show("Next try to focus as hard as possible

something. Hit OK when ready.", string.Empty, MessageBoxButtons.OK);

 timer.Start();

 while (timer.ElapsedMilliseconds <

Globals.threshholdAquisitionTime)

 {

 decimal currentIn =

(decimal)Math.Abs(serial.GetData()[Globals.inputNode]);

 allReads += currentIn;

 reads++;

 }

 timer.Reset();

 highConcentration = (double)(allReads / reads);

 Console.WriteLine("High concentration was: " +

highConcentration);

 if (highConcentration > lowConcentration)

 {

 done = true;

 }

 }

 double differenceInConcentrations = highConcentration -

lowConcentration;

 double deltaBetweenThreshholds = differenceInConcentrations /

2;

 //make ranges for this run

 ranges = new List<Threshhold>(2);

 //make sure all reads work for it

 ranges.Add(new Threshhold(Double.MinValue,

lowConcentration + (deltaBetweenThreshholds)));

 ranges.Add(new Threshhold(lowConcentration +

(deltaBetweenThreshholds), Double.MaxValue));

 MessageBox.Show("Ready to control hand. Press OK when

ready.", string.Empty, MessageBoxButtons.OK);

 }

 private bool RunFocus()

 {

98

 int desiredMillisecondDelay = controls.timeNeededForChange;

 timer = new Stopwatch();

 //get the inputs and average them for the desired output

 double averageInput = 0;

 Random rand = new Random();

 var numInputs = 0;

 decimal accruedValues = 0;

 timer.Start();

 decimal currentIn;

 while (timer.ElapsedMilliseconds < desiredMillisecondDelay)

 {

 currentIn =

(decimal)Math.Abs(serial.GetData()[Globals.inputNode]);

 accruedValues += currentIn;

 numInputs++;

 double currentVal = (double)(accruedValues / numInputs);

 if (currentVal > ranges[0].max)

 {

 FocusTextBox.Text = "Yes, " + currentVal;

 }

 else

 {

 FocusTextBox.Text = "No, " + currentVal;

 }

 }

 averageInput = (double)(accruedValues / numInputs);

 if (averageInput > ranges[0].max)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 private void FocusTextBox_TextChanged(object sender, EventArgs e)

 {

 }

 }

}

WelcomeScreen.cs
namespace Sender

{

 partial class WelcomeScreen

 {

 /// <summary>

99

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.IContainer components = null;

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 /// <param name="disposing">true if managed resources should be

disposed; otherwise, false.</param>

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.NeuralTreeButton = new System.Windows.Forms.Button();

 this.NeuralNetButton = new System.Windows.Forms.Button();

 this.BasicFunctionalityButton = new

System.Windows.Forms.Button();

 this.clearDataButton = new System.Windows.Forms.Button();

 this.UnsureNetworkButton = new System.Windows.Forms.Button();

 this.SuspendLayout();

 //

 // NeuralTreeButton

 //

 this.NeuralTreeButton.Location = new System.Drawing.Point(32,

11);

 this.NeuralTreeButton.Margin = new

System.Windows.Forms.Padding(2);

 this.NeuralTreeButton.Name = "NeuralTreeButton";

 this.NeuralTreeButton.Size = new System.Drawing.Size(108, 77);

 this.NeuralTreeButton.TabIndex = 0;

 this.NeuralTreeButton.Text = "Neural Tree";

 this.NeuralTreeButton.UseVisualStyleBackColor = true;

 this.NeuralTreeButton.Click += new

System.EventHandler(this.NeuralTreeButton_Click);

 //

 // NeuralNetButton

 //

 this.NeuralNetButton.Location = new System.Drawing.Point(224,

11);

 this.NeuralNetButton.Margin = new

System.Windows.Forms.Padding(2);

 this.NeuralNetButton.Name = "NeuralNetButton";

 this.NeuralNetButton.Size = new System.Drawing.Size(108, 77);

 this.NeuralNetButton.TabIndex = 1;

100

 this.NeuralNetButton.Text = "Neural Net";

 this.NeuralNetButton.UseVisualStyleBackColor = true;

 this.NeuralNetButton.Click += new

System.EventHandler(this.NeuralNetButton_Click);

 //

 // BasicFunctionalityButton

 //

 this.BasicFunctionalityButton.Location = new

System.Drawing.Point(32, 100);

 this.BasicFunctionalityButton.Margin = new

System.Windows.Forms.Padding(2);

 this.BasicFunctionalityButton.Name = "BasicFunctionalityButton";

 this.BasicFunctionalityButton.Size = new System.Drawing.Size(108,

77);

 this.BasicFunctionalityButton.TabIndex = 2;

 this.BasicFunctionalityButton.Text = "Continuous Neural Net";

 this.BasicFunctionalityButton.UseVisualStyleBackColor = true;

 this.BasicFunctionalityButton.Click += new

System.EventHandler(this.BasicFunctionalityButton_Click);

 //

 // clearDataButton

 //

 this.clearDataButton.Location = new System.Drawing.Point(147,

218);

 this.clearDataButton.Margin = new

System.Windows.Forms.Padding(2);

 this.clearDataButton.Name = "clearDataButton";

 this.clearDataButton.Size = new System.Drawing.Size(108, 77);

 this.clearDataButton.TabIndex = 3;

 this.clearDataButton.Text = "Clear All Data";

 this.clearDataButton.UseVisualStyleBackColor = true;

 //

 // UnsureNetworkButton

 //

 this.UnsureNetworkButton.Location = new System.Drawing.Point(224,

100);

 this.UnsureNetworkButton.Margin = new

System.Windows.Forms.Padding(2);

 this.UnsureNetworkButton.Name = "UnsureNetworkButton";

 this.UnsureNetworkButton.Size = new System.Drawing.Size(108, 77);

 this.UnsureNetworkButton.TabIndex = 4;

 this.UnsureNetworkButton.Text = "Unsure Network";

 this.UnsureNetworkButton.UseVisualStyleBackColor = true;

 this.UnsureNetworkButton.Click += new

System.EventHandler(this.UnsureNetworkButton_Click);

 //

 // WelcomeScreen

 //

 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(400, 335);

 this.Controls.Add(this.UnsureNetworkButton);

 this.Controls.Add(this.clearDataButton);

 this.Controls.Add(this.BasicFunctionalityButton);

 this.Controls.Add(this.NeuralNetButton);

 this.Controls.Add(this.NeuralTreeButton);

 this.Margin = new System.Windows.Forms.Padding(2);

101

 this.Name = "WelcomeScreen";

 this.Text = "WelcomeScreen";

 this.ResumeLayout(false);

 }

 #endregion

 private System.Windows.Forms.Button NeuralTreeButton;

 private System.Windows.Forms.Button NeuralNetButton;

 private System.Windows.Forms.Button BasicFunctionalityButton;

 private System.Windows.Forms.Button clearDataButton;

 private System.Windows.Forms.Button UnsureNetworkButton;

 }

}

	Worcester Polytechnic Institute
	Digital WPI
	April 2018

	Non-Invasive Neural Controller
	Patrick Polley
	Walter Gage Gallati
	Repository Citation

	Non-invasive neural controller

