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Abstract

WinSight is a distributed firewall and network monitoring system capable of consid-

ering packets’ host context when making flow decisions and is developed for Windows

7. With WinSight, machines on a given network have an agent installed which reports

incoming and outgoing packet flows to a controller, which sends a response if the flow

is deemed safe. Machines with WinSight will not accept a packet flow unless the con-

troller approves that flow. To increase defense against internal network threats, such

as worms and compromised machines, we developed both an agent and a controller

which follows a popular standard called OpenFlow. Our testing showed WinSight is

able to successfully block traffic based on context data and deep packet inspection with

a moderate performance impact, with the first packet of each flow most affected. There

were also rare, yet significant delays when reinjecting packets into the host’s network

stack.
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1 Introduction

Networks, especially enterprise networks, are a vital component of communication.

The importance of networks brings the motivation to attack them. It is possible to

disrupt or halt network services through denial of service (DoS) and malware attacks.

These attacks can come externally from the Internet or internally from a machine

on the network. In either case, the severity can vary from minor inconveniences to

catastrophic data leaks and system failures.

To combat these attacks, systems like personal firewalls, distributed firewalls, and

network access control lists (ACL), have been created. Broadly speaking, these systems

monitor the traffic on the network to prevent unauthorized and malicious packets from

circulating. These systems can deter and halt malicious traffic on the network, but

they are limited. The information they draw from to analyze traffic is often limited

to networking data, such as source and destination addresses. While this is useful for

blocking known exterior threats, it is less useful in blocking unknown interior threats.

For example, if a trusted machine becomes compromised by a worm, most firewalls lack

the sophistication to detect and block the malicious traffic without human intervention.

To enable and expand malicious traffic detection and prevention, we present Win-

Sight. WinSight combines host context extraction with OpenFlow control for end

hosts, creating a distributed firewall with simple whole-network monitoring. To realize

WinSight on the Windows 7+ platform we develop the following:

• An extension to OpenFlow PacketIns allowing for context to be transmitted in-

band

• A Windows OpenFlow Agent, which captures incoming and outgoing packets

flows, sends them to the controller, and re-injects approved packet flows

• A Windows OpenFlow datapath prototype, which provides the functionality that

enables the OpenFlow Agent, and proposal for future work

• A Windows Host context extraction, which extracts relevant context to be ap-

pended to PacketIns

WinSight’s context extraction is powerful because it allows the monitor to consider

the environment from which the traffic originated. This includes the current username,
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process ID, path to executable and executable name, and the window title. Including

this data when monitoring a network greatly increases the scope of the network’s

security, as it allows network monitors to infer the intent of the application sending the

packet. Host context data can be used to analyze traffic more deeply and automatically

determine if the traffic is malicious. For instance, the network monitor can have a list

of usernames who are allowed to send and receive HTTP packets. If a user not on that

list, such as a guest or back-door user, attempts to send HTTP traffic, that flow can

be blocked.

WinSight has a few key advantages over existing network security systems in ad-

dition to host context data. Unlike a standard firewall which operates only on traffic

going to and from the Internet, WinSight operates on all traffic being sent within the

network. This allows internal threats, such as compromised computers connected to

the network, to be addressed. Additionally, WinSight does not require the computers

to enforce security policy. In a traditional distributed firewall, when there is an update

to security policy, that update must be pushed to the computers in the network. If the

network is under constant threat, this makes new attacks difficult to react to. With

WinSight, security policy is enforced by the OpenFlow controller, meaning security

policy updates need only be installed on a single machine. This allows the monitor

to immediately react to new attacks, and avoids the need to constantly push security

policy updates.

To provide this protection, WinSight makes a few assumptions. It assumes the

trusted computing base includes the operating system and all subsystems it is running

on top of; this means that we do not protect against attacks that compromise the oper-

ating system, such as rootkits. WinSight also assumes that the OpenFlow controller is

secure. Due to the nature of SDN, WinSight introduces a DoS vector: if the controller

becomes unavailable, the host machines will be unable to forward packet flows. This

is an inherent limitation of centralized software-defined networking controllers and is

an active area of research for SDN [28].

In this paper, we discuss the following. Section 2 provides background information

and research previously done in the field of network security which relates to WinSight,

including an overview of software-defined networking and it’s uses for security. Section

3 details the inner workings and design rational of WinSight. Sections 4 and 5 detail
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the performance and usability testing conducted on WinSight, as well as the outcomes.

Section 6 details our final thoughts of WinSight, potential areas of improvement, and

a trial deployment. While WinSight is designed to expand security policy design, we

do not discuss policy design in this paper.

2 Background and Related Work

A network allows computers to transmit data packets to other machines that are con-

nected. A local area network (LAN) is a type of network which is confined to a small

area, such as an enterprise or home. Many LANs are connected to the Internet, and

serve as a medium for computers to access Internet sites and services. An enterprise

network is a type or LAN which is used by a business to connect its various departments.

Enterprise networks allow businesses to efficiently share resources across departments,

and often employ special security to control the network privileges of users and defend

the network from malware.

2.1 Malicious Software (Malware)

Malware describes any unwanted program which engages in malicious activity on a

computer. The impact of malware can have a variety effects, including unwanted

pop-ups, data leakage, engaging in denial of service (DoS) attacks, and creation of

back-door entrances to otherwise secure software. Some forms of malware are designed

to propagate. For instance, a virus is a form of malware which inserts copies of itself

into another program, becoming part of it. As the program is used, the virus spreads

itself to other programs and machines, leaving a wake of infection. A worm is a form of

malware which spreads across networks by exploiting vulnerabilities in target systems.

Worms use file-transport features in target systems to spread autonomously, limiting

the need for assistance from its creator or its victims. A trojan is a form of malware that

masquerades as a legitimate piece of software. They are not inherently self-replicating,

but can be sent across networks by malicious or naive users and other forms of malware.

Through malware, it is possible for a computer to become part of a botnet, a network

of machines infected with malware that all report to a central machine. Botnets can

be used for flood-based attacks or mass data collection [11].
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If a computer storing sensitive data is compromised by some form of malware, the

damages can be costly. According to a survey presented by Ponemon Institute, the

average company losses attributed to cybercrime in the United States was roughly

$15.42 billion as of August 2015 [1]. In a survey of types of cyber attacks in 2015,

by Ponemon Institute, 100% of respondents reported attacks from viruses, worms, and

trojans; 97% reported attacks from general malware; and 36% reported denial of service

(DoS) attacks [2]. It was also estimated by the Identity Theft Research Center that

roughly 781 million data breaches had occurred within the United States in 2015, with

an estimated 169 million records exposed [3].

Further evidence of the impact of malware is described by Kuchan Lan [18], who

ran an experiment to describe the impact of DDoS and Worm attacks on a network.

To detect attacks, Kuchan Lan [18] captured packets and ran them through a detec-

tion script which flags packets if a large number of source IPs connect to the same

destination IP in a second. Once packets were flagged, they were manually analyzed to

confirm the presence of an attack. Packet flow latency for flows less than 100KB and

Domain Name System (DNS) look-up latency were measured to analyze the impact of

an attack. Unsurprisingly, DDoS attacks were found to slow down both packet flow

latency and DNS look-up time. Kuchan Lan [18] also describes worms to be able to

infect many hosts in a short period of time. The Apache mod_ssl worm, also described

as the Slapper Worm in the paper, infected hosts and can automatically trigger DDoS

attacks. The Slapper Worm did not cause significant traffic by itself, but a coordinated

attack from infected machines could cause a widespread DDoS.

In order to understand the dynamics of malware protection, Lelarge [20] models

the risks of malware epidemics and the dynamics of overall security in a network. In

the model, users who do not protect their computers by consistently updating their

anti-virus software and operating system put a network at risk when connecting to

it. The model assumes that infected computers can spread their infection due to the

nature of the malware, and studies the epidemic spread of worms and viruses, as well

as alerts and patches, in a network. In situations where all agents (owners of computers

connected to a network) invest greatly in self protection, the general security of the

network is higher. However, self-interested agents may not maintain their level of

security as the overall security of the network is high enough that the cost of self-
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security is hard to justify. This leads to greedy agents discontinuing their protection

to save costs, creating a downward spiral which results in an insecure network. In

situations where protection is monopolized by a provider who is not responsible for the

well-being of individual agents also results in an insecure network, as the provider has

little incentive to provide quality protection. From this research, we can conclude that

requiring agents to manage their own security in an enterprise network is not optimal.

2.2 Trusted Computing Base

Developing software to combat malware can be tricky, so developers must know the

attack vectors they intend to close. This means we must define a trusted computing

base. The trusted computing base (TCB) is the set of hardware and software which we

must implicitly trust, whether trustworthy or not, to make any progress in a security

analysis of a system [19]. Without specifying a trusted computing base, it could always

be argued that some portion, such as the operating system or worse the boot-time rou-

tine of the hardware, is vulnerable. However, advances in security-related computing

have led to a secure bootstrap, allowing us to trust that the low level components of our

system have not been tampered with [4]. This means we trust that our BIOS, kernel,

and operating system have not been compromised. It does not mean, however, that we

can trust that there are no vulnerabilities in any of these systems. When developing

WinSight, we assume every subsystem running below our userspace application and

kernel module is trusted.

2.3 Firewalls

One of the most common protections against malware is a firewall. Firewalls were

proposed in various forms as a way to protect vulnerable systems from a malicious

network. The “modern” incarnation of a firewall is a packet filtering firewall invisible

to the user of a network. It detects malicious traffic based on sophisticated rules

created from years of observations of exploits, and it prevents any activity matching

those rules from entering. Many of these rules are in the form of an a network access

control list (network ACL). They can also be extended to represent user permissions to

certain objects within the network, in addition to basic Internet restrictions. Network
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ACLs are able to explicitly block a user from accessing a certain resource on a network

based on the networking information of their request, such as their IP address or port

number.

A firewall is responsible for enforcing network security policy at the junction of two

networks by controlling which traffic is allowed to pass through it. Policy is defined

as the decision-making process behind a firewall. There are many kinds of firewalls.

A traditional firewall is a system at the boundary between two networks which has

some mechanism to allow or disallow the passage of traffic [16]. A personal firewall is

often used to enforce policy for a single machine. When describing the security base

of a traditional firewall, we can imagine that the host is the single node interior of

the network and everything else the exterior. The assumption that all firewalls have

to make is that traffic on the inside of a network is trusted, because without user

specifications or previous configuration they have no basis upon which to discriminate.

This does not necessarily always prove to be true, as anything from unaware and

compromised users to malicious users might engage in attacks which the firewall cannot

detect.

Firewalls became necessary in the late 1980s as Internet use became more widespread

and grew as an attack target. For example, when the Morris worm was released [26],

the United States government realized German spies were extracting information from

computer systems, and security quickly began requiring further attention. Securing

systems at the user level was the first step, but many of the systems in use had bugs

and vulnerabilities that left them exposed [6].

2.4 Distributed Firewalls

In the case of traditional and personal firewalls, both have room for improvement.

A traditional firewall provides no insight into network-wide traffic, and a personal

firewall provides no centralized control. The lack of centralized control with personal

firewalls can make the overall security state of the network ambiguous, as well as make

network-wide security updates tedious. The middle ground between these two is a

distributed firewall which combines centralized control with distributed enforcement [6].

A distributed firewall is not a physical box in the way that a traditional firewall might
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be, but rather a specification of policy for all users of a network. Various schemes have

been proposed, but all distributed firewalls must consist of a way to express network

policy, a mechanism for distributing policy to end hosts securely, and a mechanism for

enforcing policy at end hosts. With all three specified, any trusted end-host will enforce

policy as specified by network operators. A distributed firewall removes the assumption

of restricted network topology, removes entirely the performance bottlenecks inherent

in such a restricted topology, and ensures that all network interior communication

follows a specified security policy.

Ioannidis et al. [17] implement a demonstration distributed firewall using their

proposed policy language KeyNote. The authors specify the language and policy en-

forcement, even a signing scheme, but not the distribution of policy. Instead they state

that it could be distributed using various boot-time techniques or file sharing services.

The advantage of distributed firewalls is that they do not depend on restricting

network topology. The often-cited example is that policy can still apply to a telecom-

muting user, reducing risk that security vulnerabilities might be transmitted over a

VPN. However, while distributed firewalls are effective at blocking known malicious

traffic, they are not as effective at detecting new threats. Similarly, a network ACL

is only effective at blocking traffic based on defined rules, and can only block based

on networking information. A traditional distributed firewalls and network ACLs are

unable to see the context from which the packet was sent. Such context can include

the current user logged into the source computer, the executable file name of the pro-

gram sending the traffic, and even the window title of said program. If the context

were included in the evaluation space, network administrators could have the ability

to prevent whole programs or users from sending traffic, rather than just IP addresses

and port numbers.

2.5 Software-defined Networking

A rising recent method of network management that is somewhat similar to distributed

firewalls is software-defined networking (SDN). SDN separates two planes of operation

in networking which are normally coupled together: the control plane and the data

plane. The control plane describes the functions that dictate packets’ immediate desti-
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nations in order to reach their final destination. The data plane describes the functions

that dictate the method in which packets are forwarded to their immediate destina-

tions. With SDN, the control plane is handled by an external SDN controller and the

data plane is handled by the network switches. This allows network traffic control to

be accessed from a single device, making it programmable. When applied to network

security, SDN can be used to block malicious traffic from traversing the network. How-

ever, many forms of SDN for security are limited to only networking information, such

as the source and destination IP address of a packet, when evaluating traffic. A policy

that is set on a specific set of addresses is usually referred to as a fine-grained policy,

whereas a coarse-grained policy will operate on larger groupings such as subnets or an

entire protocol.

SDNs incorporate these ideas in varying ways, and one of the most common SDN

standards is OpenFlow. OpenFlow is described as the first standard communications

interface defined between the control and forwarding layers of an SDN architecture. It

allows networks to be highly programmable and flexible by allowing remote manage-

ment of a switch’s packet forwarding tables. As its name suggests, OpenFlow is freely

distributed and open source.

OpenFlow was built off of Ethane, presented by Casado et al. [10], which was

a network configuration that implemented a central controller that enforces a global

network policy on all network traffic. In order to give the controller full visibility, special

switches are placed in the network which send all received packet flows, sequences of

packets with the same source and destination, to the controller for evaluation. These

switches can be implemented without any host modification and can be installed with

minimal network interruption. Ethane offers the benefit of tracking the entire network

topology on a single machine, which makes network state changes easier to account

for. Ethane also enables a way to reconstruct all network activity, which is useful for

diagnosing configuration faults and discovering unwanted activity.

A year later, McKeown et al. [22] presented OpenFlow, a standard which expands on

Ethane to allow network protocol experimentation without exposing the internal work-

ings of the switches. Similar to Ethane, OpenFlow works by having special switches

placed in the network, which communicate traffic information to a controller. Open-

Flow switches contain a packet flow table, and an action associated with each flow.
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Figure 1: Heterogeneous network devices controlled by standardized OpenFlow

protocol

Each unmatched packet flow is escalated to the controller via an OpenFlow header

specified as a PacketIn message. The controller then makes a decision on the flow

and relays it to the switch using a PacketOut, or in some cases a FlowModification

(FlowMod). Based on the message from the controller, the switch will take one of

several actions on the flow. These actions include forwarding the packets along the

network, and dropping them entirely. OpenFlow specifies a standardized interface for

flow matching and control protocols, as depicted in Figure 1, preventing network ad-

mins from having to write their own control protocols, and making the entire network

programmable from the controller. This makes it possible for network administrators

to write and implement network applications. These applications can perform actions

such as granting special privileges to certain machines and blocking packet flows with

specific values in their headers.

2.6 Software-defined Networking for Security Applications

Software-defined Networking presents a unique opportunity for security applications.

It combines the policy enforcement power of middleboxes and firewalls as described

above, with the lack of topology restrictions of a distributed firewall. This is all enabled

by a standardized programmatic interface, allowing for arbitrary applications to be

developed and possibly combined in novel ways [23]. This standardized interfaces makes
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applications broadly applicable to networks; they need not be aware of implementation

details at the network layer. Applications are completely orthogonal to the network

itself, allowing both to evolve independently.

Given this confluence of factors, many different security applications have been

explored using SDN for enforcement. Firewalls have of course been re-implemented and

distributed through the network [14] with later extensions to handle the statefulness

of transport protocols [12]. Anomaly detection, normally a very expensive operation,

was made computationally cheap by using OpenFlow PacketIn messages [23]. In a

similar vein, OpenFlow made it simpler for a network to detect and mitigate a DDoS

[9], though caveats about saturating a network’s uplink still apply.

An interesting concept has recently been explored where policy resolution and en-

forcement are decoupled [7]. If an OpenFlow controller performs computationally ex-

pensive policy resolution calculations we might quickly overwhelm it, especially as it

continues its role in policy enforcement. Instead we might be able to forward PacketIns

or even redirect flows through “traditional” middlebox network appliances. The middle-

boxes can then perform some computationally expensive policy resolutions and return

a response to the OpenFlow controller, which enforces the policy across the network

in the form of flow table entries. In this way the negative side effects of middleboxes

can be avoided. Only traffic which needs policy resolution traverses the middlebox,

avoiding sub-optimal routing, and similarly the middlebox is not overwhelmed trying

to process unrelated traffic.

2.7 Security of Software-defined Networking

Software-defined Networking provides new and exciting opportunities, for both network

operators and attackers. The network operator has new found power and control over

their network, but so too does the would-be network intruder [29]. SDN suffers from

some of the same pitfalls as do traditional networks, and introduces several new ones.

The switch and data plane open up new vulnerabilities. An OpenFlow switch has

limited resources for storing flow table entries, so an attacker could wreak havoc by

generating traffic which causes the flow table to become filled. With a full flow table

the switch now has to make a full PacketIn round trip for each new flow and network
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performance deteriorates significantly [13].

Attackers can also target the OpenFlow controller. If not properly hardened, an

attacker could attack the host operating system in any number of ways and disrupt

network availability. An attacker can impersonate the OpenFlow controller using a

simple man-in-the-middle attack if the OpenFlow channel is left unencrypted. Worse

yet, it is possible for attackers to infiltrate the OpenFlow controller and silently create

fraudulent flow table entries. With such control, the attacker will have great power

over the network [15].

2.8 Host Context and Security

Network security applications can leverage user-generated context to inform policy

decisions.

Shirley and Evans [30] used context to determine whether traffic originated from a

user action or not. In the latter case, attempts to access a previously-unknown address

were manually validated by users with a modal dialogue. The authors use data gathered

from a university campus to show that most users have relatively regular Internet usage

habits. Accordingly, this approach would incur only a small initial workload and an

even smaller ongoing overhead for the user. The authors described that future work

might collect and aggregate acceptance and refusal from users to make decisions on a

network rather than per user level. However, they provide no mechanism for collection

of this information nor enforcement of network policy.

MacFarland and Shue [21] explore a slightly different take on context for security,

allowing information extracted from a graphical user interface to highlight periods

when “sensitive” activity is taking place on a machine. With this information system

logs can be scanned during sensitive activity to identify malicious behavior. This same

technology has been demonstrated on Windows in [32] using a tool called Detours

which allows system calls to be replaced by arbitrary functions. This was used to

implement an interceptor which pulled text from the GUI into logs for analysis. Both

of these technologies can be used to enable real-time context extraction without user

intervention.

Taylor et al. [31] develop a system that is the inspiration for our own. It allows
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Figure 2: High Level Diagram

centralized control of network policy with fast updates similar to OpenFlow. Unlike

the original conception of OpenFlow, it uses host machines for enforcement of policy

rather than commodity Ethernet switches. This has the benefit that there is no possi-

ble way for the network to become saturated with rules. If a host wanted to perform

communication with some other host, it needs at least the memory available for a filter

rule, and with memory capacity growing so quickly the point is nearly moot. This

implementation was designed for Linux and leans heavily on the Linux kernel subsys-

tem netfilter chains which are optimized for high performance. Unfortunately, the

original prototype was plagued with connection setup latency because the agent that

installed filter rules was written in Python and ran slowly. Additionally the implemen-

tation was not compliant with OpenFlow, making integration into existing networks

difficult at best.

3 System Architecture

In this chapter, we introduce the design of our OpenFlow-compatible and context-aware

distributed firewall, WinSight, and the details of its implementation on Windows 7+.

Further, the libraries we use claim to be compatible with Windows Vista.
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3.1 Overview

Our design consists of three main components: WinDivert, a kernel space packet filter

for intercepting and reinjecting network traffic; a hand-written OpenFlow Agent, inter-

facing with WinDivert and extracting contextual information; and POX, a widely-used

OpenFlow controller. The kernel filter catches all the traffic sent to or from the host

machine that is not destined for or sent from the controller. The OpenFlow agent gets

packets from the kernel datapath and checks for an existing matching rule. If a rule

is not present, the agent gathers context for the packet then escalates it to our POX

module. When the agent receives a response from POX, the packet is either dropped

or re-injected depending on the decision. POX is an OpenFlow controller written in

Python which makes decisions about whether to allow or reject a network flow. We

created a module for POX to extract our context information and make decisions based

on it.

Our project targets Windows 7, but should be backwards-compatible to Win-

dows Vista and forwards-compatible to Windows 8 or 10 as well. This assumption

is untested, but is based on information reported by the documentation for the Mi-

crosoft Developers Network and external libraries. Since WinSight is targeted towards

corporations and large businesses, it is in our interests to develop primarily for Win-

dows 7 as it is currently the most common OS used. However, support for Windows

10 is desirable given Microsoft is encouraging businesses to update to it as the new

standard, and it may be widely adopted in the coming years.

The libraries used are exclusively native Windows APIs defined as having long-term

support, including the WinSock and Windows Driver Framework libraries. Some li-

braries are included for function calls when providing context, such as libpsapi and

libiphlpapi. These libraries also are cited as being both backwards- and forwards-

compatible with other versions of the Windows operating system. We are using

MingW32 for compilation of the Win32API and WinSock code [25]. Next we examine

the various pieces of our system architecture.
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3.1.1 OpenFlow Agent

The OpenFlow agent is the heart of WinSight. The agent enforces network policy by

inspecting all traffic, escalating unidentified flows to a central controller, and gathering

contextual information from the operating system. Network traffic flows in and out

of the agent through WinDivert, a kernel driver that interfaces with the Windows

Filtering Platform. When a packet comes in, the agent checks it against our existing

flow tables; if it matches the agent passes it along, and if not the agent escalates it

to a central controller. If there is no match in the flow table, an explicit DROP rule is

added per the OpenFlow version 1.3 specification as an optimization. On escalation,

the agent calls into a number of Windows APIs to gather information about the flow,

which are discussed later, that describes what process originated the packet and who

started that process.

When deciding whether to drop or re-inject a packet, our application inspects a

flow table. This table is represented as a binary tree and stores an action (represented

as an integer) and expiration time (a configurable time_t value, seconds since the

Unix epoch) as its values. The table is indexed using an integer representation of the

traditional network 5-tuple, consisting of the binary representation of the source and

destination IP, the source and destination port, and the protocol. If the flow table does

not contain an entry for the tuple generated from the packet headers, it will buffer the

packet. Next, the agent sends an OpenFlow PacketIn message to the controller to

determine if the flow should be allowed.

This PacketIn message contains a copy of the source packet and appended context

data, formatted as described in subsubsection 3.2.2. If no context data could be found,

a binary zero is appended. Prior to sending the PacketIn, the packet is appended to

a ring buffer, allowing us to look up a packet by a continually increasing 32 bit buffer

ID instead of requiring the controller to return the packet data.

We chose a circular buffer as opposed to a map because we consider the relative ef-

ficiency of O(n) versus O(1) a reasonable loss when compared to the memory overhead.

This holds particularly because in the case of a “drop” decision, a PacketOut will not

be sent, requiring manual tracking of old packets and removal of an old node from the

map. However, a circular buffer will wrap around and overwrite an old value without
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Figure 3: Thread Functionality

any additional statefulness. The ring buffer is indexed by a truncated ID, but also

contains a non-truncated ID to allow verification that the packet was not overwritten

by buffer overflowing between sending a PacketIn and receiving a PacketOut. If the full

ID between the PacketOut and the entry in the buffer do not match, the PacketOut is

ignored as we have already dropped the old data. If a packet is dropped, it is left in the

buffer until the ID sequence wraps around and it is overwritten with a new packet. The

buffer is currently sized for 2048 packets, but this is trivially modifiable if in testing

that is found to be insufficient.

To avoid blocking and thereby increase performance in our agent, we employ pairs

of threads. The number of thread pairs is passed in as a command line argument.

The first of each pair sets up a communication channel with the OpenFlow controller,

spawns its partner thread which is responsible for re-injecting packets, and then blocks

on receiving a packet from the WinDivert handle (which is thread-safe according to

their documentation and our tests). When the first of the two threads receives data

from the handle, it either immediately re-injects it or escalates the packet to the con-

troller depending on the existence and value of a flow table entry. Since both threads

share a socket connected to the controller, the re-injection thread is able to block on

a WinDivertRecv call without impeding the primary thread, which is responsible for

receiving packets from the network stack. When the second thread receives a Pack-

etOut from the controller, it then checks the packet for a buffer ID and re-injects the

appropriate packet, if the buffer IDs are an exact match. It then adds an entry to

the flow table indicating the appropriate action. The flow table that the thread pairs
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use is shared globally, but the packet buffer is only shared between the two threads in

the pair. This optimizes the program such that there are not duplicate PacketIns for

the same flow and each set of threads can buffer their own packets, minimizing buffer

overrun.

3.2 WinDivert

Windows Packet Divert [5], or WinDivert, is a kernel mode driver that interfaces with

the Windows Filtering Platform to divert traffic out of the kernel and into userspace.

During initialization, WinDivert creates a handle into the Windows Filtering Platform

[24] and registers callouts for the transport layer. When the Windows Filtering Plat-

form kernel-mode filtering engine receives traffic it calls out to the WinDivert code.

This code classifies the traffic according to a user-specified filter, detaining any that

match. After blocking the specified traffic, WinDivert places it in a queue to be read

by a userspace client. WinDivert also exposes the Windows Filtering Platform injec-

tion APIs, thereby allowing userspace code to inject packets into the network stack.

Communication with WinDivert happens through a Windows file; all interaction with

WinDivert from userspace is actually through IO controls (ioctls). WinSight uses Win-

Divert to pull all traffic into userspace where it can process it and reinject compliant

traffic only.

From userspace we initialize WinDivert by calling WinDivertOpen with a filter. The

WinDivert driver gets installed and runs through its initialization routines. WinDivert

sets up a Windows Driver Framework I/O device, opens a Windows Filtering Platform

handle with FwpmEngineOpen0, creates a Windows Filtering Platform injection handle

with FwpsInjectionHandleCreate0, and installs its callouts into the Windows Filter-

ing Platform. There are two injection handles created, one for IPv4 and another for

IPv6. A total of six callouts are installed: three each for IPv4 and IPv6 in the inbound,

outbound, and forward layers.

The Windows Filtering Platform kernel-mode filtering engine consists of the fol-

lowing elements: shims, the filtering engine, layers, sublayers, and callouts. Shims are

closed systems provided by Microsoft that extract information for each layer of the

filtering engine, which consists of multiple layers that correspond roughly to the OSI
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layered-network model. Each layer consists of sublayers, where filters and callouts can

be installed. Finally, callouts are independently-developed code that performs some

kind of packet analysis not possible with the filtering engine, such as WinDivert.

A filter or a callout can result in one of four actions: CONTINUE, BLOCK, ACCEPT, or

VETO. A filter will statically match against packets, and if it matches some action is

applied, otherwise it will return CONTINUE.

CONTINUE is a no-op. The MSDN documentation does not include FWP_ACTION_CONTINUE,

but it does exist in the APIs. BLOCK and ACCEPT do as their names suggest. VETO is

used for blocking even a higher-priority filter, which is critical for an application such

as ours.

Within a layer in the filtering engine, many filters could come to different decisions

about a packet. There are filter arbitration rules to handle this. Each sublayer is a

set of filters which are ordered by priority. These filters are executed until one of them

matches and returns an action other than CONTINUE. All sublayers are executed for a

given layer, and higher-priority sublayers take precedence. If two sublayers return con-

flicting actions, arbitration determines which sublayer has higher priority. WinDivert

installs its callouts into a separate high-priority sublayer in six different layers. It does

this to avoid ever being preempted or skipped by some other filter, and to ensure that

its decision always takes precedence.

When a packet reaches the Windows Filtering Platform network layer it calls out

to windivert_classify_callout. It first checks to make sure that a packet was not

injected by itself. Without this verification, then a packet would be filtered, reinjected,

and filtered again endlessly in an infinite loop. Next it calls windivert_filter to check

the packet against an internal filter generated by parsing a string provided by the user.

WinSight wants all traffic in the network, so it uses the filter “true”, excluding the

traffic sent to or from the controller. If the packet does not match the filter, it is

immediately reinjected into the network without ever leaving kernel space, or copying

the packet inside of WinDivert. If it does match the filter, then the packet gets blocked

and copied into a reader queue awaiting a user application, and all pending applications

are notified.

The read queue is a standard I/O queue from the Windows Driver Framework with

manual dispatching. Manual dispatching means that WinDivert maintains full control
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over when read requests are serviced. WinDivert needs to maintain control because

network activity is unpredictable and, once it accepts a read request, it either has to

service it or cancel it; therefore if it blocks waiting for a packet, the kernel blocks with

it. To avoid that, WinDivert keeps user applications blocked until it has a packet to

deliver. Read requests are serviced by WDF work items, which are basically kernel-

mode worker pools. A work item services a request by pulling a copied packet out of

the head of the read queue and copying it into a buffer in user space, using standard

WDF APIs.

As with all queues in networking applications, this read queue can become filled;

WinDivert has two strategies for handling this. The queue has a maximum size of 1024

entries: and if a packet arrives and exceeds this length, it gets dropped. In addition

WinDivert has a timer which manages a Boolean ticktock and purges from the read

queue any packets that do not match. By default, the time runs with a period of 512

ms. WinDivert drops from the tail in a fairly conventional way, and then purges the

head of the queue periodically to keep the queue from getting overly stale.

From userspace, WinDivert provides a DLL that includes a simple API for clients

to use. WinDivertRead handles creating an IOCTL representing a read request and

submitting it to the file object that WinDivert exposes. WinDivertWrite similarly

handles a write to the WinDivert device and initiates an injection into the Windows

Filtering Platform.

The write side of WinDivert is more straightforward. A user-space application

issues an IOCTL write request and WinDivert immediately serves it by calling out

into one of three Windows Filtering Platform functions depending on the destina-

tion of the packet: FwpsInjectForwardAsync0, FwpsInjectNetworkSendAsync0, or

FwpsInjectNetworkReceiveAsync0. These are all asynchronous calls which return

immediately, before the injection operation has actually completed and the packet

data is no longer needed. Instead, WinDivert registers a callback with these functions

and when injection is completed, it frees the memory used for storing the packet and

completes the write request, unblocking the calling application.

We do not fully understand WinDivert’s decision to block an application until the

injection completes. It is logical for an application that wants to be sure that the

injection succeeds, but it does not match the needs of WinSight. WinDivert has to
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copy the packet out of userspace to submit it to the Windows Filtering Platform, so

the application does not have to be blocked for memory safety. WinSight does not care

if injection fails, and if reinjection fails WinDivert could indicate that a network buffer

is full. In that case, the traffic should just get dropped, as is standard in most network

appliances, thereby eliminating the need for blocking behavior.

3.2.1 OpenFlow Controller

We use POX to act as our OpenFlow controller. We selected POX due to the Python

development environment and ease of extension. POX has an event-driven architecture,

allowing us to hook directly into the PacketIn event to parse the additional context

data our system sends. The work done on POX was trivial: we simply installed a

current version and added a module capable of understanding the additional context

we were appending to the packet.

This module inspects all PacketIns for context data and makes some policy decision

based on it using hard-coded logic, as we simply needed to test that what was being

sent was correct and actionable. If the PacketIn describes a flow that complies with our

basic policy expressions, the module generates a PacketOut message corresponding to

the flow and communicates it to our OpenFlow Agent. If the flow does not comply then

we send nothing and exit the handling function; the flow will be silently dropped by

the host OpenFlow agent due to the default DROP rule that is installed automatically.

3.2.2 Context

For the scope of this project, we define context as additional information associated

with a flow and its resultant PacketIn, which allow a controller to make better-informed

policy decisions. There is tremendous value in this data, but collecting it is nontrivial

and it complicates the packet escalation process. Context can only be extracted in

a user-space scope where we have access to local processes, their security descriptors,

and other similar information. This means that there is some necessary computation

and delay getting information in and out of kernel space. Once this data is collected

we have to send it along to our central controller. OpenFlow provides no standardized

mechanism to do this.

There are several options for sending additional contextual information associated
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Figure 4: Context within OpenFlow PacketIn message

with a PacketIn. Our OpenFlow agent could send a PacketIn, and our controller

could query the agent for information it desires. This approach has the benefit of

saving some communication cost if context information is discarded, but forces the

controller to have deep buffers for PacketIns while it waits for context query responses.

To mitigate this controller-side buffering expense, we could instead send the context

information appended to our PacketIn. This forces the buffering burden on the agent,

which prevents us from easily overloading a single point of failure. The cost to this

approach is we have to decide how we are going to append this information.

One option is to append the context information to the TCP stream, outside of

the OpenFlow PacketIn message envelope. If we do this, then we have to strip this

information out of the TCP stream, before it reaches the OpenFlow controller. This is

problematic as our implementation would require either modifying the TCP stream or

performing a man-in-the-middle attack our OpenFlow channel to insert and strip this

data. If we directly modify the TCP stream, we would need to write low-level code

for the kernel of our controller host to transparently strip the information and deliver

it to the controller over another path. This couples our deployment to a particular

operating system and also violates the semantics of TCP streams. We could instead

man-in-the-middle attack our OpenFlow channel and have a userspace context stripper,

which decouples us from an operating system, but requires us to establish some other

secondary channel to the OpenFlow controller.

The other option for appending context is to insert it inside the message envelope.

The OpenFlow specification states that the data portion of a PacketIn is meant to
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contain a partial Ethernet frame, but we found no part of our system that actually

enforces this assumption. We can then just insert whatever data we want into the

data field, including our context. In our demonstration, we send entire packets in our

PacketIns, meaning that our controller can do full deep packet inspection if it wants

to, and the context data will not interfere, as it is distinguishable from the rest of the

packet due to the included size. We acknowledge that the ability to arbitrarily append

data to an OpenFlow PacketIn is a viable attack vector, as there is no reason malicious

data could not be inserted in the position of our context. However since we assume

that the subsystems are trusted, no other program with access to the packets should

be able to intercept and modify them maliciously.

In appending data to PacketIns, we used a hard-coded set of fields. The data

constituting the context is newline-delimited, and should a newline be present in any

of the context data, it is replaced by a space. We extract context data by finding

the process originating a flow, and using that knowledge to look at the source and

destination ports and matching them to a pairing in the TCP or UDP state tables.

We can then extract the following:

• [int] Process ID

• [char, <256 bytes] Path to executable, including executable name

• [char, <256 bytes each] User and domain the process is running under

• [char, <256 bytes] Service name if associated

• [char, <256 bytes] Window title, if the process created one

• [int] Length of above information, or binary zero if none found

Together, this information tells us about what the process is, what it is doing, and

who is running it. One particularly interesting field is the “window title”. The content

of the field is often not particularly useful, but its absence indicates a background

process of some kind. If not also associated with a service, this sort of application

invites suspicion and should be scrutinized closely.
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4 Experimental Design

To test WinSight on Windows, we devise a number of methods to both explore its

functionality and the various vagaries of Windows. We run a series of tests which

attempt to block network connections from being setup to verify the capabilities of

WinSight. We also characterize the performance of WinSight, in particular its effect on

connection setup latency and overall connection throughput. Finally, we gather traces

from the controller while a user engages in typical office environment tasks: browsing

the web, reading email, and editing documents in a word processor and spreadsheet

tool. With these traces we characterize the behavior of Windows to inform policy

decisions made with context information.

All of these tests were run within VirtualBox using a Intel i7 quad-core 4.0 GHz

CPU, of which the virtual machines were given two logical cores and 4 GB of RAM.

4.1 Blocking Tests

We performed numerous blocking tests, which can be broken down into the two broad

groupings of categorical and content. Categorical blocks refer to blocks made on a field

of the packet header and context tuple, such as the username or application path. A

content block, on the other hand, is performed against the content of a packet as seen

by the controller. This kind of block typically would be performed using deep packet

inspection, but can also be used in the PacketIn handler in the OpenFlow controller.

We perform the following types of categorical block:

Application A block against the end of the executable path in context, blocks against

the name of an application

User A block against an NT user name or domain

Window Title A block against the current window title of an application

Each of these blocks is accomplished with a simple conditional in our OpenFlow

controller logic. If WinSight matches one of these fields, it does not return a Pack-

etOut or FlowMod. Otherwise, the controller returns a PacketOut or FlowMod and

communication continues normally.

We can additionally block against any of the traditional packet header tuple fields,
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but this is trivial in OpenFlow, needing only a flow table modification message. These

tests exercise the capability of the host agent extracting context and the controller

properly reading it.

We perform a single proof of concept content block. In this test we block any

datagram which contains the string “virus”. This allows us to test our system’s ability

to perform a deep packet inspection block. To ensure that our OpenFlow controller

sees the packet we are looking for we use the utility netcat over the UDP protocol. In

this way, we ensure that the first packet sent over a flow is a datagram containing the

string virus, as opposed to something like an empty SYN packet.

4.2 Performance Tests

To characterize the performance impact of WinSight, we run connection setup latency

and throughput tests.

The connection setup latency tests are evaluated by browsing to various benchmark

websites. Using the Google Chrome web browser, we are able to get a trace of network

activity. From this we get an understanding of the total time spent loading a page, a

correlate for throughput and user experience, and for each connection made the Time

To First Byte (TTFB). TTFB lets us see the impact that WinSight has on TCP stream

setup.

We tested against the following websites:

example.com a very simple website with only a single HTTP GET request to load

cnn.com a complex website, consisting of many multimedia components all served

from various Content Distribution Networks

wpi.edu a typical Content Management System website with mostly local content

nasa.gov another website with mostly local content but lots of multimedia assets

The distinction between local and non-local assets is important to WinSight, as with

non-local assets the packet header will change (different IP address) and the system

will have to negotiate a new flow. While wpi.edu will have only a few different packet

header tuples, cnn.com might have many and require significantly more flow setup and

will take longer to load.
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In addition to these tests on HTTP performance, we also run an ICMP ping latency

test. For all tests, we run the test both with and without WinSight to see the impact

that it has. The test is duplicated to illustrate the overhead required by PacketIns

versus the latency introduced by the agent itself.

4.3 Agent Profiling

To test the internal performance of our application, we used the QueryPerformance-

Counter function set. These functions provide an API that does not suffer from pro-

cessor affinity or rely on RDTSC, which may be skewed. To ensure that the readings are

not affected by processor frequency, power optimizations are disabled and minimum

processor utilization is set to 100%. Overhead between measurements is taken to en-

sure that the times represented are accurate depictions of the calls they encapsulated

and do not count the time required by the performance counter function calls. Due

to the volume of data, measurements are logged to files such that every section of

the code, excepting code responsible for behavior including variable initialization or

memory allocation, is included.

5 Results and Discussion

We present and discuss the results of our experiments on WinSight’s performance and

functionality. The graphs above were generated from multiple trial runs, so any dis-

crepancies in the counts of data are due to updated metrics. We discarded any outliers

beyond 3 standard deviations, the count of which are listed below their respective

graphs.

WinSight performed well, with a few performance impacts. We were able to block

traffic based on several context matches, including the process, path to executable,

and service name. In terms of performance, The first packet of each flow sent through

WinSight is delayed significantly, but the sequential flow is virtually unhindered. There

are also rare times when packet reinjection takes much longer than normal, a flaw which

we attribute to the Windows Filtering Platform.
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(a) Processing time for parsing packet headers,

n=163,721 with 282 outliers. (0.172%) This in-

cludes network state table lookup resulting in

the associated process ID.
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(b) Time required for packet context extraction,

n=6,407 with 101 outliers (1.55%) This includes

all context extraction based on process ID: user-

name, executable path, service name, and first

window title.

Figure 5: Context extraction steps, these take a mostly negligible but non-zero

time.
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(a) Reinjection time for all packets including

those not matching flow rules, n=81,696 with

64 outliers (0.08%)
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(b) Handling time only for packets matching

flow rules, n=76,708 with 72 outliers (0.09%)

Figure 6: Time taken to reinject packets into the network with blocking func-

tions. These functions block until packet is redelivered by network stack, and

occasionally have very large latency.
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(a) Reinjection time for packet all packets in-

cluding those not matching flow rules, n=18,826

with 49 outliers (0.26%)
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(b) Reinjection time only for packets matching

flow rules, n=17,192 with 76 outliers (0.44%)

Figure 7: Time taken to reinject packets into the network with asynchronous

functions. These functions do not block until packet is redelivered, so these

results show that queuing a packet for redelivery is fast.
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(a) Flow escalation end-to-end, from diversion

to reinjection and including controller round

trip, n=1,566 with 41 outliers (2.55%)
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(b) Round Trip Time to controller, n=3,136

with 77 outliers (2.4%)

Figure 8: Comparison of total end to end time for an escalated flow and con-

troller round trip times. Flow escalation is clearly dominated by the controller

round trip, and not the reinjection.
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Figure 9: HTTP load times for example.com, blocking
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Figure 10: HTTP load times for example.com, asynchronous
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Figure 11: HTTP load times for cnn.com, blocking
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Figure 12: HTTP load times for cnn.com, asynchronous

0 1 2 3 4

Without

WinSight

2nd Run

Time in seconds
DNS Connection TTFB Download

Figure 13: HTTP load times for wpi.edu, blocking
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Figure 14: HTTP load times for wpi.edu, asynchronous
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Figure 15: HTTP load times for nasa.gov, blocking
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Figure 16: HTTP load times for nasa.gov, asynchronous

5.1 Blocks

At the highest level, we ran a series of tests expected to block various types of traffic.

Our tests were able to block Internet traffic based off of the user or domain the process

was running under, as well as a path to the executable. Partial matches on the window

title were also found to be effective, but should not be relied upon as the sole basis of

discrimination. Window titles are subject to complications such as non-standard titles

between various applications and the ability for one process to spawn multiple windows.

Additionally, the service name is included for the process, which allows detection of

many malware processes which attempt to contact either a command node or download

more malware. These could likely be identified by a network flow that does not have

an associated service or window created, though it is of course possible for another

legitimate process to have the same behavior. The final block was a UDP datagram

with the content “virus”, showing that our module has access to the full packet contents.
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Figure 17: ICMP ping latencies reported by Windows ping.exe (in ms)

5.2 Performance

Figure 17 shows the results of the first test, a 10-packet ICMP ping to google.com.

The times matched almost exactly, with the exception of the first ping on the WinSight

client taking 283 milliseconds to perform the PacketIn/PacketOut communication. The

numbers for asynchronous communication were very similar, with an initial connection

of 280 milliseconds and a sequential average of 79 ms.

Figure 9 through Figure 16 show the results of our website load performance test.

The webpage load times are scaled relatively, so on a page like cnn.com with a large

number of video or image CDN requests, load times of something like a JavaScript

file which takes less than a quarter or half a second are discounted, whereas on WPI’s

homepage, a few hundred milliseconds are significant. A final note is that due to

Chrome’s parallelization of network requests, the times shown here do not represent

real-time, rather the time required to complete the given operation.

In general, the initial load times are significantly higher than the legacy load times,

but this is to be expected due to the need to approve every flow connection. The average

difference between a given file transfer on the first WinSight run vs. legacy was between

2 to 4 times longer, though some of them were significantly longer, as the graphs showed.

A number of the requests would be blocked on one of the categories (usually connection

initiation or content download) for between 5-10 seconds, but occasionally more. These

delays were caused by packet reinjection and details are described in the next section.

Typically, on the second run, the disparity in load times is greatly decreased to around
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1.5 to 3 times longer. However, this is still rather high for a cached entry. After reading

through the WinDivert source code, we found that they used a tick-tock queue purging

algorithm, in which some amount of the queued packets (both inbound and outbound)

are dropped every 512 milliseconds. Another possible reason for the high overhead is

discussed later and deals with the reinjection of packets. These are issues that may

potentially be solved if packets were not all buffered into userspace and the flow table

was at least partially implemented in kernelspace, as it would bypass WinDivert.

5.3 OpenFlow Agent Performance

This section follows the path of a packet through our OpenFlow agent and performance

bottlenecks along the way. A quick review of subsubsection 3.1.1, a packet follows these

steps when passing through our OpenFlow Agent:

• A packet is received from the kernel through WinDivert

• The agent extracts header information and determines whether escalation is nec-

essary

• If not, the packet is returned to kernel through WinDivert

• Otherwise, context extraction proceeds

• TCP/UDP state tables are acquired and interrogated for a process ID associated

with a flow

• Other context is examined based on process ID

• The packet is stored in a circular buffer for later resending

• A PacketIn message is constructed and sent to the OpenFlow controller with

context appended

• A PacketOut message may be received at a later time, at which point the packet

is returned to the kernel through WinDivert.

Of these steps, the ones of most significance are header parsing, context extraction,

and the reinjection function calls.

The expenses of header parsing are illustrated in Figure 5a. The median perfor-

mance for this grouping of operations took 442 microseconds, and 95% fell under 1.08

34



milliseconds. However, the top 1% were above 3.57 milliseconds. The reason for the

relatively expensive top percentage is the cost of translating a TCP/UDP port pairing

to the owning process ID. The principal cost appears to be in the retrieval of the state

table, and there was no discernible difference between the TCP and UDP protocols.

Figure 5b shows that when performing context extraction, half of the samples took

under 1.06 milliseconds, and 95% below 5.65 milliseconds. The largest expenses of

context extraction are split between username processing and associating the PID to

a service.

As another part of the host agent, we also had to implement a flow table for Open-

Flow. This implementation was efficient, with the tuple look-up taking negligible time,

99% of 81,800 measurements finishing in under 11 microseconds. All other operations

performed similarly, so we do not believe this to be worthy of future analysis. The

operations that are used to prepare for communication to and from the controller

were found to be uninteresting. These steps include interacting with the buffer and

creating/parsing OpenFlow messages.

After OpenFlow processing, whether escalated to the controller or passed back to

the kernel, Figure 7a shows the time required to reinject a packet. As is visible, most

packets can be reinjected quickly, with 95% of all reinjections taking less than 226 mi-

croseconds. Using the asynchronous method, the 99th percentile was 962 microseconds.

However, synchronously, some reinjections took extremely long, into low single-digit

seconds. These are not represented in the graphed data as this data was asynchronous

and, even with synchronous calls, those data points are statistical outliers. Regardless,

those spikes occurred approximately 0.1% of the time, which is significant in network

traffic. We provide no complete explanation for why the code exhibits this behavior,

and the asynchronous calls may simply move this delay out of the foreground and not

solve the underlying issue. Our review on the code indicates that requests are blocked

waiting on completion of a request inside of the Windows Filtering Platform, and that

source code is not available.

Figure 7b illustrates the full time required to receive a packet, check the flow ta-

bles, and reinject the packet. Figure 8a shows the same situation, but also entailing

a full round-trip to the controller. The network times are depicted in Figure 8b. The

passthrough chart is relatively uninteresting, the 95th percentile shows that packets are
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reinjected within 1.21 milliseconds, which is within tolerances due to the slight ineffi-

ciencies mentioned previously. However, the round-trip times incurred are significantly

more expensive. Note the approximate shape and order of magnitude of both graphs.

At the 50th percentile, the round-trip time requires 41.73 milliseconds, and the full es-

calation time is 41.62 milliseconds. This suggests that packet escalation is dominated

by the round trip communication with the controller. At the 95th percentile, the total

time is 243.95 milliseconds versus a RTT of 273.8 milliseconds, which again suggests

the round trip dominates and that it is more volatile. This is reasonable considering

the use of a Python controller running inside a virtual machine.

Finally, we note that timing the receipt of a packet is difficult due to the blocking

nature of the WinDivertRecv function and asynchronous calls to WinDivertSendEx.

We cannot differentiate between either blocking on an empty queue and time spent

copying a packet, or the time spent between dispatching a packet and its reinjection,

without modifying WinDivert.

5.4 Discussion

Our results suggest that an approach using a divert socket into userspace like WinDivert

has surprisingly good performance in the median case, and bad performance in the

worst case. By far, our performance is dwarfed by expensive reinjection, which should

be the target of future improvements. There are improvements to be made by using

a controller with better performance characteristics and possibly in context extraction

where the network state table look-up can block for a long time.

We think there are two plausible explanations to the poor worst case performance

for reinjection. Either the Windows Filtering Platform injection handle queue is full

and applying back-pressure against our injection requests, or we are being negatively

impacted by process scheduling. The injection handle queue filling up seems unlikely

as the queue should be getting drained at about line rate for the system, and it is

very unlikely our userspace application is generating traffic that quickly. Instead,

we believe that our OpenFlow Agent is getting preempted in the middle of servicing

an I/O request, causing artificially bad results. The Windows process scheduler will

context-switch away from the application when it blocks on a call to WinDivertSend.
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WinDivert will then receive a request and service it, calling into the Windows Filtering

Platform and waiting for an asynchronous callback indicating completion of the injec-

tion. WinDivert will then complete the applications request, unblocking it. At this

point the scheduler can resume execution of the OpenFlow agent, but it does not have

to. Another high priority process could be running, and several other high priority

I/O requests and interrupts may need to be serviced first. In this way we could see in

really pathological cases a multi-second delay while blocking on WinDivertSend. We

discuss possibilities for mitigating this in subsection 6.1

6 Concluding Remarks

Distributed firewalls allow network controllers to block malicious traffic and prevent

attacks. However, the information given to these controllers is limited, as the context

for the traffic is not normally specified. WinSight provides a tool which enables an

OpenFlow controller to make a more informed decision when filtering network flows by

including host context with every PacketIn. We were able to make a basic OpenFlow

agent, collect contextual information, and provide that to a custom PacketIn handler

in the POX OpenFlow controller. Excluding statistical outliers, our implementation

incurs reasonable overheads and applies fine-grain filter rules informed by contextual

information. Coarse grained contextual ACLs can be enforced in a similar fashion as

fine-grain OpenFlow rules.

6.1 Future Work

There are clear directions for future work on WinSight on Windows. The current

implementation suffers from poor performance in the worst case, but there are several

possible strategies for mitigating this. The adaptation of the Linux subsystem for

Windows 10 may provide the ability to use software we were unable to port. Policy

with host context data also needs exploration: what kinds of new applications and

monitoring does it allow? Finally WinSight could make several existing OpenFlow-

SDN applications more practically applicable by moving filtering burden onto end

hosts. All of these avenues can and should be explored.
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Performance of the existing WinSight prototype on Windows is not quite ready for

a trial deployment. We have shown that in the median case performance is actually

quite good, but in the worst case performance is bad, with the two separated by a

significant four orders of magnitude (when blocking). We believe that this is caused

by pathological user-space process scheduling behavior and the use of a synchronous

blocking programming model in our prototype. The Windows process scheduler does

not treat our user-space filtering prototype with a high enough priority and causes

us to see multi-second delays in packet reinjection. The blocking programming model

means that we ignore new packets arriving on the divert socket and traffic gets un-

necessarily blocked. With the switch to the asynchronous model, the performance

increased significantly, but we cannot confidently say that the performance issue seen

in the synchronous model was not merely pushed into the background.

We think that adopting an asynchronous event-based model will reduce the amount

of time that the OpenFlow agent spends being blocked, and make this inherently

concurrent application easier to reason about. All of the interactions with WinDivert

can be done asynchronously with WinDivertRecvEx and WinDivertSendEx, allowing us

to relinquish control to callbacks from the kernel. The callback for WinDivertRecvEx

places a packet on the queue for flow table filtering and possible escalation. A thread

or thread poll reads from the filtering queue and either escalates the packet or puts it

in a queue for reinjection. The callback for WinDivertSendEx removes an enqueued

packet from the reinjection queue. This architecture would avoid blocking except on

the internal queues, which will be notified by external events from the kernel. This

mitigates the poor performance seen when WinDivertSend calls block for a long time,

but appears to not fully resolve the issue seen by the blocking WinDivertSend function.

Performance can further be improved by filtering in the kernel and avoiding the

user-space scheduler and copying costs all together. This can be achieved with simple

improvements to WinDivert. The primary limitation of WinDivert is that it has a

static filter described by a filter. While this fits the exploratory divert socket use case

quite well, it does not fit for a dynamic OpenFlow flow table and filter.

We can extend WinDivert to be dynamic without modifying the kernel driver.

Recall that in the Windows Filtering Platform, all sublayers in a filtering layer are

evaluated, but a sublayer is traversed in priority ordering until a filter matches and
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returns a decision. We can perform dynamic filtering simply by placing WinDivert in

the lowest priority in a sublayer and inserting filters in the same sublayer. This filter

management can be done entirely from user-space, meaning that this approach does

not even require significant kernel-level development.

However, this approach will not allow for more complicated forms of OpenFlow

actions, only dropping traffic. For the initial purposes of WinSight, this should be

sufficient, and future work could also develop a feature-rich OpenFlow table filtering

callout for the Windows Filtering Platform. Such a system should mimic the archi-

tecture of Open Virtual Switch [27] and start with an exact match “microflow” cache.

This could similarly be placed in higher priority than the divert socket callout. If this

solution has poor performance because of cache thrashing, the OVS “megaflow” cache

could similarly be inserted between the “microflow” cache and the divert socket.

While we demonstrated deep packet inspection capabilities with our system, at

present they are rather limited. The traditional OpenFlow model only generates a

PacketIn for the first message in a flow, which keeps network usage and computational

costs down at the expense of visibility into traffic. Our current system would only be

able to examine the first packet of a flow, and since most traffic in a network is carried

over TCP and the first packet in a TCP flow is the empty SYN message, there is no

content from the stream available for analysis. If deep packet inspection is required,

a practical approach could be to combine the host-based enforcement and context of

WinSight with the distributed enforcement and centralized policy decision model of

EnforSDN. In EnforSDN, a traditional network appliance makes policy decisions for

the network, but the network enforces the policy [7].

Further, the context gathering or transmission portion of WinSight currently is

not optimized. For example, a virus could name itself winword.exe and the current

dataset would have nothing to validate or discriminate between Microsoft Word and

a file masquerading as Microsoft Word. Including a signature for executables could

distinguish a malicious file from a Microsoft- or otherwise-certified binary. Additionally,

the protocol for storing and transmitting the context can greatly increase the amount

of data required to transmit a PacketIn, due to the ability to store up to 255 characters

in fields such as paths and executable names. A compression scheme could likely reduce

the size of data that is required to be sent.
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6.2 Trial Deployment

For a trial deployment of WinSight, the POX OpenFlow controller would be set up on a

LAN, with the WinSight agent installed on computers connected to the LAN. WinSight

creates the ability to examine packet context information, but it does not come with

any rules on context by default. Rules can be implemented on the controller by adding

to the _handle_PacketIn function in the POX module. For instance, in order to

add a rule which blocks packets from a program with the window title “badprogram”,

an if-statement can be placed which checks the title portion of the context data for

the string “badprogram”. If the string exists in the title, a return statement can be

added to prevent the controller from sending back a PacketOut message. Without this

PacketOut message, the agent will never re-inject the packet into the network stack,

successfully blocking the traffic.

WinSight does not require every computer to have an agent, but those without

the agent will not benefit from the security enhancements. As such, it is possible for

a computer to operate on the network normally without the agent. If this computer

sends traffic to another computer with the WinSight agent installed, the traffic will

be evaluated by the controller. With this in mind, it is possible to do an incremental

deployment on a LAN, where only some computers have WinSight installed. This is

desirable because WinSight could be deployed on a subset of the available systems

without requiring full commitment. The ability to be partially deployed is also useful

for when computers connecting to the LAN are not permanent residents, such as laptops

and smart-phones. With this functionality, WinSight can protect core computers with

sensitive data, while leaving the network accessible to temporary connections.

To test the trial deployment, there are two high-level attack vectors to consider:

from within the network, and from beyond the network. An attack within the network

involves the source of the attack to be connected to the LAN with WinSight. The

attacker would attempt to spread malware through the LAN while WinSight would

have to prevent it. This test should be done both with and without WinSight installed

on the attacking computer. In a real-world scenario, this would likely be carried out

through corporate espionage or social engineering, such as malware left on a “lost”

flash drive. An attack from beyond the network is similar to the aforementioned test,
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except the attacking computer attempts to reach the LAN from across the Internet.

This attack cannot be carried out with WinSight installed on the attacking computer,

as the attacker is not connected to the LAN. The attacker would likely attempt similar

attacks against WinSight and legacy networks.

A WinDivert Installation

I. Enable test driver signing: bcdedit.exe -set testsigning on

This allows a locally generated certificate to be used without being signed by

some trusted root certificate authority.

II. Obtain WinDivert from https://www.reqrypt.org/windivert.html

III. Create a certificate and store for the WinDivert driver: MakeCert -r -pe -ss

WinDivertStore -n "CN=WinDivert" WinDivert.cer.

IV. Add the new certificate to the machine’s trusted root store: CertMgr /add

WinDivert.cer /s /r localMachine root.

V. Sign WinDivert driver with certificate used in last command: SignTool sign /v

/s WinDivertStore /n WinDivert WinDivert[32|64].sys

VI. Restart machine. On restart driver will be loaded.

B Alternate Approaches

This appendix discusses optimizations and alternative approaches that we believe are

noteworthy.

One of our major concerns regarding our design and implementation is that every

packet must cross the boundary between kernel and user space. While the performance

timings reveal this is not as severe as expected, it is still significant. Because of the

nature of kernel memory, the kernel/user-space crossover we rely upon means that

a packet must be fully copied into user space, and then copied back to kernel space

again. Including the step to get the packet from a network device into kernel space

and back out, there are four total copies made, and our approach has doubled the
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number. Copying packets in memory can be expensive, so we expect to see this affect

our throughput and latency, as discussed in Figure 5.

We do believe that the fundamental design, using OpenFlow with context in-band

on host agents, allows for more flexible control of network policy. The following ap-

proach merely changes the way our host agent is implemented.

B.1 Kernel Fast Path

To overcome the throughput and latency limitations created by having to buffer packets

between the user-space OpenFlow Agent and kernel-space WinDivert driver, we suggest

that the agent be split in half, providing a “slow path” and a “fast path.”

The “slow path” sits in userspace and behaves similarly to our current OpenFlow

Agent. If it does not have an entry for a flow, it generates a PacketIn and the con-

troller responds with a FlowMod or a PacketOut as normal. When the agent receives

the FlowMod, in addition to updating the user space flow tables, it additionally com-

municates the flow information to the kernel space “fast path.”

The kernel space “fast path” avoids the expensive copying of packets by keeping a

cache of flow information and only communicates with the user space agent on a cache

miss. This means that there will still be at least user to kernel space latency on the

startup of a flow, but once it is permitted or blocked it never has to leave the kernel

space fast path. This echoes the construction of most OpenFlow switches, which have

a software slow path for handling OpenFlow table misses and a fast path consisting of

specialized hardware and TCAM. It also echoes the design of Open Virtual Switch, a

host based OpenFlow agent for the Linux operating system whose design is described

in [27].

We believe that though modification of the WinDivert driver could feasibly provide

this method, it would not be significantly easier than designing a module by hand.

However, as the next section details, we had many challenges in our attempts to do so.

B.2 Kernel Driver

We attempted to develop our own kernel driver using the community edition of Visual

Studio 2015 in place of WinDivert. However, we ran into significant challenges setting
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up the debugging environment, whether using physical media, network transmission, or

other methods, both on virtual and physical machines. This method will likely perform

better than the WinDivert user-space interaction, but due to time constraints and the

challenges we ran into, we decided to abandon this approach. One of the challenges

we ran into while delving into the Windows kernel and networking API was finding

that the MSDN documentation is inconsistent and often impossible to replicate listed

feature sets. We also contacted a student who had successfully completed a Windows

driver as part of his project the about two months prior to our efforts. He was unable

to successfully recreate his kernel development environment, at which point we decided

to proceed with other options.

The library we primarily attempted to develop in was the Windows Filtering

Platform (WFP). Additionally, we researched Network Driver Interface Specification

(NDIS), but ultimately found it to be too low-level to be useful. What follows is what

we consider the relevant knowledge in the WFP API obtained through our research for

any other projects looking for guidance in this domain.

The Windows Filtering Platform (WFP) is a set of APIs and services that allow

the creation of network filtering applications, which can be used for the OpenFlow

Agent datapath. WFP operates on multiple layers of the network stack and allows

the interception of packets before they are transmitted to the network or pushed up

to the receiving application. The WFP API allows control via userspace applications,

but will do the majority of its processing in kernel space. This means packets do not

have to be passed into or out of kernel space for processing, making it inherently faster

than the system we chose to use.

A session to WFP’s filter engine can be opened by calling the function FwpmEngine-

Open0, which returns an engine handle. A filter can be added by calling FwpmFilterAdd0,

which takes in the engine handle and a filter defined by the struct FWPM_FILTER0. The

arguments to FWPM_FILTER0 contains a layer key, an array of filter conditions, and an

action, amongst other fields. The layer-key is the GUID of the layer where the filter re-

sides, such as FWPM_LAYER_INBOUND_IPPACKET_V4. The filter conditions are defined by

the struct FWPM_FILTER_CONDITION_0, which contains the field to be tested, a match

type, and the value for the field to be matched against. The action is defined by the

struct FWPM_ACTION0, and can be set to block or permit packet flows. The action
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can also be set to invoke a callout on the packet, which can be either a built-in or

user-written function.

To implement WinSight’s datapath using WFP, callouts for sending packet flows

to and receiving packet flows from the controller are needed. Doing so will avoid

sending decision requests on traffic destined for the controller, to the controller, as

this will create a cycle. Until a response is received from the controller, the function

FwpsPendOperation0 can be used to postpone a classification decision on a packet

flow. Once a packet flow is ready to be fully processed, packet operations can be

resumed by calling FwpsCompleteOperation0. If the packet flow is deemed safe by

the controller, a filter with a permit action will be installed on that flow. If the packet

flow is deemed dangerous, a filter with a block action can be installed. When a flow

is deemed dangerous, packets from that flow can be silently dropped to prevent the

origin machine from detecting a block.

B.3 xDPd as an OpenFlow Agent

As a final mention, we looked into using an existing OpenFlow agent instead of writing

our own from scratch. The eXtensible DataPath Daemon (xDPd), a project of the

Berlin Institute for Software Defined Networks (BISDN), aims to provide a common

set of tools for creating OpenFlow switches and is intended to ease the implementation

burden when trying to prototype a new OpenFlow device or perform research [8]. In

that regard it is a perfect match for our needs. It consists of three major parts from

the Revised OpenFlow Library (rofl): rofl-common which handles an OpenFlow chan-

nel and turns messages into internal events, rofl-pipeline which implements a software

OpenFlow switch with flow tables, and rofl-hal which provides API hooks for a hard-

ware abstraction layer. With xDPd, we need only write platform support for Windows

that hooks into the rofl-hal API, and we would get a full OpenFlow switch. Unfor-

tunately xDPd makes numerous assumptions about the target system, namely that it

is a POSIX system, and worse has certain Linux APIs exposed. These assumptions

made it difficult to bring xDPd into the Windows environment; significant effort would

have to be invested to port it for actual use. However, rofl-pipeline is largely platform

independent and implements fast flow table search algorithms. If developing a fast
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OpenFlow switch implementation, it may be a good starting point. However, we did

not believe it was worth the time for this version, as we were looking to prove the idea is

feasible and the efficiency difference did not warrant the expenditure of effort required.

With the recent addition of the Linux subsystem to Windows 10 insider builds, this

may be a worthwhile topic to investigate.
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