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Abstract 

In this project, we investigate authentication systems that utilize fuzzy extractors and Physically 

Unclonable Functions (PUFs) to uniquely identify hardware components.  More specifically, we 

seek to verify authenticity using PUFs based on Static Random Access Memory (SRAM).  We 

propose an implementation of a fuzzy extractor in software which allows for the extraction of 

uniquely identifying information from this type of PUF.  Included is a working prototype and 

framework for this authentication system to facilitate future research on this topic.  
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1 Introduction 

In today’s world of globalization in the electronics industry, the continuing search for the lowest 

bidder often results in components that underperform, perform incorrectly or simply don’t perform at 

all.  In the consumer electronics market, this is usually only a minor annoyance as a legitimate supplier 

will generally refund or replace the components in question.  However, in a secure or other high-risk 

situation, not only must the components perform reliably and correctly, but they must also only perform 

the operations the original manufacturer specifies.  Many companies manufacture components outside 

of their supervision where defects or malicious functionality can be easily introduced.  For example, it is 

often cheaper for a company to design a component in the U.S. and have it manufactured in another 

country with cheaper labor rates.  To put this into perspective, the Pentagon produces in secure facilities 

only about two percent of the components used in military systems [1].  Recently, in 2008, the F.B.I. and 

the Pentagon discovered that a large amount of counterfeit networking components were being used by 

U.S. military agencies [2].  While these components in particular were not constructed with malicious 

intent, the possibility of a hostile entity hiding the relatively small amount of functionality needed to 

compromise secure systems within the highly complex hardware used today is very real and dangerous.   

To solve this problem, we need an inexpensive form of hardware authentication for both 

components within secure systems and components that interface with those systems.  This 

authentication is beneficial for all parties involved with the secure application.  For the designers of the 

secure application, it ensures that they are using the correct components within their system and that 

those components will withstand given tolerances and handle given situations.  For the manufacturers 

of the components, it ensures that the components being used in a system are produced following their 

specifications and are not counterfeit or otherwise defective.  For the users of the system, it ensures 

that both the system and the user are legitimately engaging in use of the system and activities on that 

system are done so over a defined set of rules and security levels.  For example, the components of a life 

support system must be of the highest quality so that those relying on the system are not put in danger.  

At any given point during the life cycle of the system, we should know that every component is working 

as specified. 

To achieve these goals in a hardware-based environment, we call upon the services of PUFs or 

Physically Unclonable Functions.  The term PUF is used to describe a broad class of algorithms and 

measuring protocols that produce uniquely random data thanks to miniscule differences in construction 

brought about by the fact that we live in an analog world.  We can use these PUFs as a sort of fingerprint 

for hardware devices, a way to identify and differentiate them from the time they are born, that is when 
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they are manufactured.  In addition, these PUFs are impossible to reproduce or tamper with without 

destroying the hardware that generates the unique fingerprint. 

One particular source of PUFs is Static Random Access Memory.  SRAM produces large quantities of 

unique static data.  However, a portion of this data is corrupted by random noise.  Nonetheless, we can 

still produce valuable fingerprints with this data through the use of a fuzzy extractor.  In general a fuzzy 

extractor eliminates noise to a certain degree while retaining the uniqueness of the static data.  With 

careful analysis of the data provided we can produce a fuzzy extractor that performs an integral role in a 

hardware authentication system. 

A company interested in secure hardware authentication is defense contractor General Dynamics 

C4 Systems (GDC4S).  GDC4S develops and integrates communication systems in a wide variety of secure 

scenarios.  GDC4S thoughtfully provided our project group with equipment and resources that allowed 

us to complete this project and we thank them for their efforts.  In addition, a previous MQP performed 

at GDC4S had the goal of producing and analyzing PUF data.  The PUF source they used was SRAM 

startup values from two Field Programmable Gate Arrays (FPGAs).  This data was provided to us for use 

in our project and we thank them for their work as well.   

To approach this problem we first analyzed the data provided to us.  We extracted properties from 

this data such as correlation between data bits, entropy, and noise levels.  Using this analysis, we were 

able to determine a suitable bit-extraction procedure and optimal parameters for a fuzzy extractor 

tailored to this PUF.  Simultaneously, we took a closer look at the underlying mechanics of a fuzzy 

extractor authentication system and produced a framework for rapidly building and testing specific 

system configurations.  Finally, we implemented a fuzzy extractor system using this framework based on 

our analysis of the data provided.  Additionally, we developed some of the more complex components 

required to deploy this system in a real-world setting such as encoding and decoding implementations 

for BCH codes. 

 

How to Read this Paper 

This report covers the process of designing and implementing this fuzzy extractor authentication system 

from a top-down perspective.  While the entire process is detailed in this report, those with a more 

focused interest should refer to specific sections.  For those interested in simply using the framework 

developed in this project, refer to Section 4.2, Building a Simple Authentication System.  For those 

interested in extending or modifying the existing system, refer to the entirety of Section 4.  For those 
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interested in using this system as a foundation for a hardware or system-level software implementation, 

refer to Sections 2 and 5.  
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2 Background 

In this project, we seek to construct an authentication system that uses a Physically Unclonable 

Function, or PUF, as a means of verification.  Based on previous research, we know that the unique 

properties of a specific kind of PUF, known as a challenge-response PUF, can be harnessed for 

authentication purposes through the use of a fuzzy extractor.  However, before delving into the design 

and construction of the fuzzy extractor authentication system that utilizes PUFs based on Static Random 

Access Memory, or SRAM, it is essential that we first obtain an understanding of its theoretical 

background.  Many of the design considerations of this system are based on these underlying 

mathematical foundations.  Therefore, we will briefly look into the core aspects of these foundations as 

they apply to this project. 

In this section, we examine the basic structure of a fuzzy extractor and how it is used with Physically 

Unclonable Functions.  Next, we will obtain a more in-depth understanding of a fuzzy extractor by 

examining the concept of BCH coding theory and that of universal families of hash functions.  Finally, we 

assemble this information into a concise set of processes that summarize the basic functionality of a 

fuzzy extractor authentication system.  The individual subsections that are of particular relevance to the 

scope of this project are sections 2.1 and 2.4, which cover only the essential elements of information 

required to understand the basic, higher-level functionality of a fuzzy extractor authentication system.  

While the remaining sections, 2.2 and 2.3, cover useful theory behind the lower-level encoding and 

hashing mechanisms of a fuzzy extractor, only a minimal understanding of these concepts is needed to 

design an effective authentication system from an engineering perspective. 

 

2.1 Fuzzy Extractors and Physically Unclonable Functions 

As discussed previously, we seek to build a fuzzy extractor authentication system that utilizes 

Physically Unclonable Functions.  More specifically, we seek to utilize the properties of challenge-

response PUFs based on Static Random Access Memory, or SRAM.  Before discussing SRAM and how it 

presents a suitable PUF, let us first establish a definition for a general PUF.  In Authentication Schemes 

based on Physically Unclonable Functions, a PUF is defined as “a practical device or process with a 

measurable output that strongly depends upon physical parameters” [3].  In other words, a PUF can 

provide us with a quantifiable output from a function that is greatly affected by one or more physical 

properties.  Regarding the scope of this project, we are primarily concerned with the family of challenge-

response PUFs, which returns a physically-dependent response when given a particular challenge.  As a 
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trivial example, we can imagine a circuit that simply consists of a pulse generator connected to an 

arbiter by two wires.  When given a challenge, the pulse generator produces a signal that travels 

through both wires and the arbiter outputs either a 0 or 1 depending on which wire the signal arrived 

from first.  In other words, the output of this circuit is dependent on a race condition.  In this case, slight 

variations in the properties of the physical circuit, such as differing wire lengths, can easily affect the 

output.  Therefore, the response of one circuit may be different than the output of another circuit when 

given the same challenge. 

Let us now discuss how SRAM can be used as a challenge-response PUF.  SRAM is a type of 

memory that consists of multiple memory cells made up of several transistors.  The manufacturing 

processes used introduce miniscule variations in these cells that bias their start-up values.  As in typical 

computer memory, these are binary values.  These variations form the basis for our SRAM PUF. 

Since we know that the contents of SRAM are heavily dependent on the characteristics of the 

physical implementation, then we can take advantage of this to produce a unique fingerprint of the 

device.  However, the process of generating unique information based on this PUF is greatly impeded by 

noise, which can be introduced by numerous sources.  If two individual readings of SRAM from the same 

device are not exactly identical as a result of noise, we cannot expect to use this data for identification 

without some form of error correction. 

An efficient means by which to remove this inherent noise and extract a unique key from the 

contents of SRAM is to use a fuzzy extractor.  A fuzzy extractor is a process that accomplishes this by first 

averaging multiple readings of SRAM data in order to estimate a single noiseless reading.  This reading is 

then used to create two elements of information: a hashed value and a “secure sketch”.  The hashed 

value is generated by first hashing the noiseless reading using a universal family of hash functions.  The 

resulting digest is then passed through a second, cryptographic hash function to produce the final 

hashed value.  The secure sketch is generated by using a Code-Offset construction, which in this phase, 

adds the reading to a randomly selected codeword from a set of error correcting codes using a bitwise 

XOR operation.  In this project, we use BCH codes for this construction.   

This secure sketch and hashed value can then be used to efficiently authenticate noisy SRAM 

readings by first subtracting a reading from the secure sketch to produce a codeword with added noise.  

An error-correcting scheme is then used to decode the original codeword, which is subsequently 

subtracted from the secure-sketch to produce the original noiseless reading.  Finally, this noiseless 

reading is hashed and compared to the original hashed value.  This result can be used to verify the 

authenticity of a device. 
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In addition to providing an efficient means of error-correction, the fuzzy extractor also allows for 

privacy to be maintained if only the hash and secure sketch are stored in the authentication system.  The 

universal family of hash functions provides what is known as “privacy amplification” by producing a 

uniformly distributed set of output values from a set of input values that are not uniformly distributed.  

In other words, for every hashed digest produced by this universal hash function, there are always an 

equal number of possible input values from which it could have been derived.  Take for example that the 

input to a particular universal hashing function is of size 8 and the output is of size 4.  For any given 

output, there are 2(8−4), or 16, possible input values.  The secure sketch also provides minimal 

information regarding the original noiseless reading due to the fact that it is masked by a randomly-

selected codeword of equal length. 

 

2.2 BCH Codes 

As we discussed earlier, an important portion of the fuzzy extractor system is noise removal.  To 

achieve this noise reduction, we employ BCH error correcting codes.  BCH codes are a family of error 

correcting codes which were created by Hocquenghem and independently by Bose and Ray-Chaudhuri 

at around the same time.  Error-correcting codes are a class of schemes for encoding messages so that 

they can be recovered correctly when there is noise introduced in the sending or receiving of the 

message.  For example, a simple coding scheme over a binary message would replace every 0 with 000 

and every 1 with 111.  To decode this on the receiver’s end, we simply look at each triplet and reduce it 

to either a 0 or 1 based on which value appeared more often in the triplet.  This allows us to correct one 

binary error per binary triplet but increases the length of the code to three times the message length.  

BCH codes are a very flexible set of codes in that within certain bounds there is a great amount of choice 

in code parameters and are relatively efficient in message length and error correction.  The code 

parameters are as follows: 

 q – A prime power which will determine the number of symbols used (e.g., q =  2 is binary) 

 m – The power to which to raise q to generate a Galois Field for the construction of the 

code. 

 d – The minimum Hamming distance between distinct codewords. 

These parameters lead to several derived parameters which are standard parameters of linear codes: 

 n – The block length of the code; for our special case, n = qm – 1 

 t – The number of errors that can be corrected; this is the largest integer satisfying d ≥ 2t + 1 

 k – The number of message bits in a codeword; in our case, this satisfies k ≥ n - mt 
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Any choice of parameters following these guidelines will result in a valid code.   

 Much of the math in this section comes from Elwyn R. Berlekamp’s book Algebraic Coding 

Theory[4].   

 

2.2.1 Galois Fields 

Galois fields or finite fields are fields which contain only finitely many elements.  Informally, a field 

is a number system in which we may add, subtract, multiply and divide.  For example, we can consider 

the integers modulo 7.  Addition, subtraction, multiplication and division (by nonzero elements) on the 

integers modulo 7 receive as parameters integers between 0 and 6 and each produce a result in the 

same integer range.  Galois fields are classified by size and there are Galois field of size 4, 8, 9, 16, 25, 27, 

etc.  In fact there is exactly one Galois field of size pm for every prime p and every positive integer m.  

Each field contains pm elements, two of which are called 0 and 1, and has defined on it two binary 

operations, addition and multiplication.  These two operations, given any field elements x and y, yield 

field elements x + y and x * y.  The axioms require that we may freely move parentheses, reorder a sum 

or product, distribute a product over sums and that there are special elements 0 and 1 that obey the 

following rules: 

 0 + x = x; for any x 

 0 * x = 0; for any x 

 1 * x = x; for any x 

 

The rest of the outcomes of the two operations must be defined such that they take in only 

elements from the field and output only elements from the field.  For example, here we have a field with 

p = 2 and m = 2, called GF(22) or GF(4): the addition (Cayley) table and multiplication table are 

 

+ 0 1 A B 

0 0 1 A B 

1 1 0 B A 

A A B 0 1 

B B A 1 0 

 

 

* 0 1 A B 

0 0 0 0 0 

1 0 1 A B 

A 0 A B 1 

B 0 B 1 A 
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Each element appears exactly once in each row and column of either table, with the exception 

that the 0 * x = 0 for any element x. 

 

2.2.2 Primitive Polynomials 

A primitive polynomial for a Galois field GF(pm) is a polynomial f(x) with coefficients in GF(p) that 

has a root α in GF(pm) which is very special: α, when raised to each power up to pm – 2, generates pm – 2 

different elements in the field.   

In fact, tools from abstract algebra allow us to identify the elements of GF(pm) with exactly the set 

of polynomials of degree less than m over GF(p), but the multiplication of polynomials requires a 

modular reduction (as in the Division Algorithm) based on the irreducible (i.e. unfactorable) polynomial 

f(x) of degree m.  From this viewpoint, α is identified with the polynomial x and raising the α to every 

power from 0 to pm - 2   generates the entire field except 0.  For example, a primitive polynomial for 

GF(8) is f(x) = x3+x+1. 

Power Binary Polynomial 

0 000 0 

1 001 1 

α 010 α 

α
2 

100 α
2
 

α
3
 011 α+1 

α
4
 110 α

2
+ α 

α
5
 111 α

2
+ α + 1 

α
6
 101 α

2 
+ 1 

 

While generating the field, the Division Algorithm can be implemented by a simple substitution:  

when some power of α, in polynomial form, reaches degree m (e.g.  m = 3 in our example), the primitive 

polynomial is used to substitute x3 = x + 1 to reduce the polynomial to one of degree less than m.  In 

addition, because we are working in GF(23), i.e. p = 2, all of the coefficients are binary.  This means that if 

we raise α to the sixth power, we get α5 * α = (α2 + α + 1)* α = α3 + α2 + α.  Substituting the primitive 

polynomial α3 = α + 1, this becomes α2 + α + α + 1 = α2 + 1.  Likewise, taking α to the seventh power 

brings the value back to 1:  (α2 + 1)*α = α3 + α = α + α + 1 = 1.  Alternatively, we can use the curious fact 

that, over the binary field, (y + z)2 = y2 + z2 and find α6 = (α3)2 = (α + 1)2 = α2 + 1. 
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2.2.3 Minimal Polynomials 

The next step toward BCH encoding is generating the minimal polynomials for elements in GF(pm).  

To create the BCH generator polynomial, we must multiply together the minimal polynomials of αk for k 

= 1 to k = d-1: g(x) = m1(x) * m2(x)*…*md-1(x).  To generate each minimal polynomial we must solve a 

linear system containing powers of α according to the above rules for polynomial multiplication.  First, 

to get the ith minimal polynomial, we take powers of α following αik where k is a positive integer (or 

zero) and find the first linear combination of powers which when added together produce 0.  These 

powers then become the exponents of the minimum polynomial.  For example, continuing with the 

primitive polynomial f(x) = x3 + x + 1 and using the table above, to find the minimal polynomial of α we 

generate consecutive powers of α1:   

 

Power Binary Polynomial 

α
0
 001 1 

α
1
 010 α 

α
2
 100 α

2
 

α
3
 011 α + 1 

 

Clearly α3 + α1 + 1 = 0 and no lower degree combination will give us zero.  So our minimal 

polynomial for α1 is m1(x) = x3 + x1 + x0 = x3 + x + 1.  Notice that this minimal polynomial is always equal 

to the primitive polynomial f(x) used to generate the Galois field.  To generate the minimal polynomial 

of α2, we generate powers of α2 until we find a linearly dependent set:  

  

Power 

(of x) 

Power 

(of α
2
) 

Binary Polynomial 

0 α
0 

001 1 

1 α
2
 100 α

2
 

2 α
4
 110 α

2
 + α 

3 α
6
 101 α

2
 + 1 

 

In this case adding together α6, α2 and α0 equals zero.  So the polynomial x3 + x + 1 has α2 as a root 

and no polynomial of smaller degree achieves this.   So we have our minimal polynomial: m2(x) = x3 + x1 + 

x0 = x3 + x + 1.  In this case, we have gotten the same result as the first example.  This is because m1(x) = 
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m2(x) in the binary case.  In fact, the equation (y + z)2 = y2 + z2, that whenever β is a root of m(x), so also 

are β2, β4, … 

  Finally, we will take a look at an example which will result in a minimal polynomial that is not 

equal to the primitive polynomial we use.  For this example, we use the primitive polynomial f(x) = x4 + x 

+ 1 and attempt to find the third minimal polynomial.   

Power 

(of x) 

Power 

(of α
3
) 

Binary Polynomial 

0 α
0 

0001 1 

1 α
3
 1000 α

3
 

2 α
6
 1100 α

3
 + α

2
 

3 α
9
 1010 α

3
 + α 

 

 In this case, computing only four powers is not enough to find a linear combination.  Notice that 

there is a 1 to be cancelled but no other power has a 1.  We must continue generating powers until we 

find a linear combination: 

Power 

(of x) 

Power 

(of α
3
) 

Binary Polynomial 

0 α
0 

0001 1 

1 α
3
 1000 α

3
 

2 α
6
 1100 α

3
 + α

2
 

3 α
9
 1010 α

3
 + α 

4 α
12

 1111 α
3
 + α

2
 + α

 
+ 1 

 We see that the fourth power of x finally gives us a linear combination between all of the 

powers.  Since we use all of the powers of x, the third minimal polynomial for the primitive polynomial 

f(x) = x4 + x + 1 is m3(x) = x4 + x3 + x2 + x + 1. 

 

2.2.4 BCH Generator Polynomial 

Now that we have minimal polynomials, creating the BCH generator polynomial is simply a matter 

of multiplying the odd numbered minimal polynomials together from m1(x) to md-1(x).  We must 

remember that we are still working with q-order coefficients at this point, and in the binary case this 

means even coefficients are cancelled out and odd coefficients are reduced to 1.  For example, if we 

want to find the BCH generator polynomial for a code with length 15 and distance of anywhere from 2 

to 3, which are all the same code, we find the case where the generator polynomial is simply m1(x).  If 
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we want to find the polynomial for a code with length 15 and a distance of 4 or 5, we must multiply 

m1(x) by m3(x): 

 m1(x) = x4 + x + 1 

 m3(x) = x4 + x3 + x2 + x + 1 

   (x4 + x + 1)( x4 + x3 + x2 + x + 1) 

 = x8 + x7 + x6 + x5 + x4 + x5 + x4 + x3 + x2 + x + x4 + x3 + x2 + x + 1 

 = x8 + x7 + x6 + x5 + x4 + x5 + x4 + x3 + x2 + x + x4 + x3 + x2 + x + 1 

 = x8 + x7 + x6 + x4 + 1 

This polynomial is the BCH generator polynomial for a code with parameters q = 2, m = 4 and d = 

5. 

  

2.2.5 BCH Encoding 

The final step in encoding a message with BCH is fairly brief.  First, we convert the message to be 

encoded into a polynomial with q-order coefficients and pad the right with a number of zeros equal to 

the order of the BCH generator polynomial.    Second, divide the message by the BCH generator 

polynomial.  The remainder of this division is padded with zeros on the left as necessary to have it be 

the same order as the generator polynomial and then appended to the message to form the codeword.  

For example, if we want to encode the number 5 with the code of length 15 and distance 5 from the 

previous section: 

 BCH Generator Polynomial = x8 + x7 + x6 + x4 + 1 

 Message = x2 + 1 

Since we are using a binary code, the polynomials we are dividing have binary coefficients, this 

allows us to do the division as a series of shifted XORs between bit strings. 

 BCH Generator Polynomial = 111010001 

 Message = 0000101 

 Padded Message = 10100000000  

  

111010001 | 10100000000 

            111010001 

             100100010 

             111010001 

              111100110 
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              111010001 

                 110111 

 Remainder = 110111 

 Padded Remainder = 00110111 

 Codeword = 000010100110111 

2.2.6 Syndrome Computation 

Now that we can encode messages, we will move on to decoding messages.  The first step in 

decoding messages is to compute the syndromes of the received codeword.  If our code can correct t 

errors, we must compute 2t syndromes.  We compute the ith syndrome Si(x) by taking a modulo 

reduction of the codeword by the ith minimal polynomial mi(x).  We perform this modulo reduction by 

dividing and taking the remainder as we did for the final step of encoding.  If all of the syndromes in 

terms of x are zero, the codeword was received without error and we can stop the decoding here.  

However, if they are nonzero we must move on to the next step, which involves substituting increasing 

powers of α for x and reducing the resulting equation to a single term power of α.  For example, let us 

first assume we have received the codeword calculated in the previous section without error: 

 Codeword = 000010100110111 

The code has a distance of 5 so it can correct 2 errors.  For 2 errors, we must construct 4 

syndromes. 

m1(x) = x4 + x + 1 

m2(x) = x4 + x + 1 

m3(x) = x4 + x3 + x2 + x + 1 

m4(x) = x4 + x + 1 

 

Since 3 of the 4 syndromes are the same, to compute syndromes of x we need only compute two 

modulos. 

 

10011 | 10100110111 

        10011 

          11111 

          10011 

           11000 

           10011 

            10111 
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            10011 

              10011 

              10011 

                  0                  

We could also remember the fact that we can use x4 + x + 1 as x4 = x + 1 and reduce as follows: 

 Codeword = x10 + x8 + x5 + x4 + x2 + x + 1 

=  x4x4x2 + x4x4 + x4x + x4 + x2 + x + 1 

= (x+1)(x+1)x2 + (x+1)(x+1) + (x+1)x + x + 1 + x2 + x + 1 

= (x2 + 1)x2 + x2 + 1 + x2 + x + x2  

= x4 + x2 + x2 + x + 1 

= x + 1 + x + 1 

= 0 

 

Computing the other syndrome:  

 

11111 | 10100110111 

        11111 

         10111 

         11111 

          10001 

          11111 

           11100 

           11111 

              11111 

              11111 

                  0 

                

 

Since all of the syndromes are zero, we know the codeword was received without error and to 

retrieve the message, we simply remove the 8 parity check bits added by the encoding.  Next we 

will compute the syndromes of a more interesting example: 

Codeword = 10100110111 

Codeword with errors = 10001110111 
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First, second and fourth syndromes:  

 

10011 | 10001110111 

        10011 

           10110 

           10011 

             10111 

             10011 

               1001 

 

Third syndrome: 

 

11111 | 10001110111 

        11111 

         11101 

         11111 

            10101 

            11111 

             10101 

             11111 

              10101 

     11111 

               1010 

 

Now we have the syndromes in terms of x: 

S1(x) = x3 + 1 

S2(x) = x3 + 1 

S3(x) = x3 + x 

S4(x) = x3 + 1 

 

We now compute the syndromes in terms of increasing powers of α: 

S1(α) = α3 + 1 
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S2(α
2) = (α2)3 + 1 

S3(α
3) = (α3)3 + α3  

S4(α
4) = (α4)3 + 1 

To reduce these equations to single term powers of α, remember that we can multiply powers of 

α as normal, but when adding we must XOR the values because we have binary coefficients.  

Finally once we have a single value, we must look at the GF table generated by our primitive 

polynomial and find the power of α that the value corresponds to. 

 

S1(α) = α3 + 1 = α14 

S2(α) = α6 + 1 = α4 α2 + 1 = α3+ α2 + 1 = α13 (remember that we are working modulo x4 + x + 1) 

S3(α) = α9 + α3 = α4 α4 α + α3 = (α+1)( α+1) α + α3 = α3 + α + α3 = α 

 S4(α) = α12 + 1 = α4 α4 α4 + 1 = α3 + α2 + α + 1 + 1 = α3 + α2 + α = α11 

 

2.2.7 Error Locator Polynomial 

Now that we have our syndromes, we can move on to the next step, which is computing the error 

locator polynomial.  For this we use the Peterson-Gorenstein-Zierler algorithm, which uses matrices to 

compute the coefficients of the polynomial.  We use the formula Stxtλtx1 = Ctx1, where Stxt is a t by t matrix 

of the syndrome values as follows:  

Stxt =

 
 
 
 
 
𝑆1 𝑆2 𝑆3 … 𝑆𝑡
𝑆2 𝑆3 𝑆4 … 𝑆𝑡+1

𝑆3 𝑆4 𝑆5 … 𝑆𝑡+2

… … … … …
𝑆𝑡 𝑆𝑡+1 𝑆𝑡+2 … 𝑆2𝑡+1 

 
 
 
 

 

and Ctx1 is a t by 1 matrix of syndrome components as follows: 

 Ctx1= 

𝑆𝑡+1

𝑆𝑡+2

…
𝑆2𝑡

  

 

The error locator polynomial is the values in λ, which we must compute.  To do this, we must find 

the inverse of Stxt and then multiply both sides by the inverse.  However, if the determinant of Stxt is 

zero, we cannot find the inverse.  If this is the case, we reduce t by 1 and start the Peterson-Gorenstein-

Zierler algorithm over.  If t reaches 0 and we have still not found an inverse, there are too many errors in 

the received codeword to be decoded properly.  For example, using the syndromes we computed 

above: 
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S2x2 =  𝛼
14 𝛼13

𝛼13 𝛼1   

C2x1 =  𝛼
1

𝛼11  

We next compute the determinant of S2x2: 

det(S2x2) = α14 α1 – α13 α13 = α15 – α26 = 0001 ⊕ 1110 = 1111 = α12  

Now we can calculate the inverse of S2x2: 

 Matrix of minors:  𝛼
1 𝛼13

𝛼13 𝛼14  

Inverse:  𝛼
4 𝛼1

𝛼1 𝛼2  

Now that we have the inverse of S2x2, we multiply by C2x1 to get the coefficients of the error 

locator polynomial: 

  𝛼
4 𝛼1

𝛼1 𝛼2 x 
𝛼1

𝛼11 = 
𝛼5 + 𝛼12

𝛼2 + 𝛼13 = 
(𝑥2 + 𝑥) + (𝑥3 + 𝑥2 + 𝑥 + 1) 

 𝑥 +  (𝑥3 + 𝑥2 + 1)
 = 𝑥

3 + 1
𝑥3 + 1

 = 𝛼
14

𝛼14  

 The coefficients given by the array from the Peterson-Gorenstein-Zierler are in decreasing order, 

with the bottom coefficient having order 1 in the polynomial, so the final error locator polynomial is 

α14x2+ α14x + 1. 

 

2.2.8 Chien’s Search  

Now that we have an error locator polynomial, we can use a method known as Chien’s Search 

[5]to find the actual locations of the errors in the received codeword.  To perform the search, we take 

the coefficients of the error locator polynomial and multiply them by αi where i is the power of x of the 

coefficient in the polynomial.  We multiply by these powers of α until adding all the coefficients together 

yields 1 and count the number of times we multiplied.  We then subtract the count from the length of 

the code n to get the location of the error in the received codeword.  We repeat this procedure of 

multiplying until the coefficients add to 1 until we have done it t times.  For example, using the error 

locator polynomial computed previously: 

 α14x2 + α14x + 1 

Both coefficients are α14, however we raise them to different powers of α. 

  

 x x
2
 Result 

Initial Value α
14

 = α
3
 + 1 α

14
 = α

3
 + 1 0 

1 Shift α
15

 = α
0
 = 1 α

16
 = α

1
 = α α + 1 
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2 Shifts α
16

 = α
1
 = α α

18
 = α

3
 α

3
 + α 

3 Shifts α
17

 = α
2
 α

20
 = α

5
 = α

2
 + α α 

4 Shifts α
18

 = α
3
 α

22
 = α

7
 = α

3
 + α + 1 α + 1 

5 Shifts α
19

 = α
4
 = α + 1 α

24
 = α

9
 = α

3
 + α α

3
 + 1 

6 Shifts α
20

 = α
5
 = α

2
 + α α

26
 = α

11
 = α

3
 + α

2
 + α α

3
 

7 Shifts α
21

 = α
6
 = α

3
 + α

2
 α

28
 = α

13
 = α

3
 + α

2
 + 1 1 

8 Shifts α
22

 = α
7
 = α

3
 + α + 1 α

30
 = α

0
 = 1 α

3
 + α 

9 Shifts α
23

 = α
8
 = α

2
 + 1 α

32
 = α

2
 1 

 

Notice we have a 1 in the result column at 7 and 9 shifts.  We subtract 7 and 9 from 15 to get 8 

and 6, which are the locations of the errors in the codeword (with the right most bit being bit 0).  Since 

we are using a binary code, we can simply flip the erroneous bits in the received codeword to get the 

correct codeword. 

 

Codeword = 10100110111 

Codeword with errors = 10001110111 

Flip bits 8 and 6: 10100110111 

 

2.3 Hashing 

Another integral component to the fuzzy extractor is the hashing mechanism, which is employed 

through a set of hash functions.  In general, a hash function is used to produce a uniformly distributed 

output from an input with an insecure or non-uniform distribution without sacrificing entropy.  This 

allows for us to reduce the input in size while still reflecting the actual information in the output [3].  The 

hashing mechanism in a fuzzy extractor is essential to enabling the enrollment and authentication 

phases, while at the same time amplifying privacy. 

The underlying process in the hashing mechanism of a fuzzy extractor, as illustrated in Figure 

2-1, essentially involves two steps.  The first is to use a universal hash function with a randomly selected 

seed to hash the input values, of 𝑤 and 𝑤′.  This universal hash function is guaranteed to generate a 

uniform distribution of hash values and also amplify privacy.  The second step in this process is to hash 

the result of the universal hash function using a one-way cryptographic hash function.  The 

cryptographic hash function adds an additional layer of security and privacy by ensuring that the original 

input, 𝑤 or 𝑤′, cannot be retrieved from the resulting hash, 𝑕.  In this section, we are primarily 
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concerned with the universal hashing component of this system.  Therefore, we will discuss the 

theoretical background of this topic and one specific implementation. 

 

Figure 2-1.  Fuzzy Extractor Hash Component 

 

2.3.1 Universal Hashing 

 Families of universal hash functions are one of the computationally simplest classes of hash 

functions [6], which create a near evenly distributed, many-to-one relationship between a set of inputs 

and a set of outputs.  An implementation of one of these families of hash functions is essential in the 

fuzzy extractor, as we need to be able to make strong statements regarding the probability of collisions 

that come about from two inputs having the same output.  In other words, we need an implementation 

that gives absolutely no additional information to an attacker regarding an input value, given an output 

value.  This will also ensure some degree of privacy, as the outputs of these functions are passed to 

cryptographic hash functions which require a certain distribution of inputs for maximum proven 

security. 

 

2.3.2 Theoretical Background 

 In terms of universal hashing, a family of hash functions can be described as k-universal or 

strongly k-universal, which is defined as follows [6]: 

 

Let 𝑈 be a universe with  U ≥ n and let V = {0,1, … , n − 1}.  A family of hash functions ℋ from U to V is 

said to be k-universal if, for any elements x1, x2, … , xk  and for a hash function h chosen uniformly at 

random from ℋ, we have: 
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Pr 𝑕 𝑥1 = 𝑕 𝑥2 = ⋯ = 𝑕 𝑥𝑘  ≤
1

𝑛𝑘−1
 

A family of hash functions ℋ from U to V is said to be strongly k-universal if, for any elements 

x1, x2, … , xk , any values y1, y2, … , yk ∈ {0,1, … , n − 1}, and a hash function h chosen uniformly at random 

from ℋ, we have: 

Pr  𝑕 𝑥1 = 𝑦1 ∩  𝑕 𝑥2 = 𝑦2 ∩ ⋯∩=  𝑕 𝑥𝑘 = 𝑦𝑘  =
1

𝑛𝑘
 

 

 For the purpose of this project, we are primarily concerned with the family of hash functions 

that are 2-universal.  When a hash function is chosen randomly from this family, the probability of any 

two elements, 𝑥1 and 𝑥2, having the same hash is exactly 1/𝑛. 

 

2.3.3 Privacy Amplification 

Following the definition above, we know that a randomly selected hash function will produce 

the same hash for a given number of inputs within a known probability.  That is, given a hash function, 𝑕 

from ℋ, and a hashed value, 𝑦, we know that the possible values of 𝑥, where 𝑕 𝑥 = 𝑦, are distributed 

evenly over the domain.  From a privacy perspective, this tells us that given any single hashed value, 𝑦, 

an attacker obtains no information whatsoever. 

 

2.3.4 Universal Class of Hash Functions Used in this System 

In their paper, Universal Classes of Hash Functions, J.  Lawrence Carter and Mark N.  Wegman 

propose several universal families of hash functions that can be evaluated quickly and efficiently.  One 

such family of hash functions, ℋ, is defined as follows  [7]: 

 

Let A be the set of i-digit numbers written in base α, and B as the set of binary numbers of length j.  Then 

 A = αi  and  B =  2j .  Let M be the class of arrays of length iα, each of whose elements are bit strings of 

length j.  For m ∈ M, let m(k) be the bit string which is the k
th

 element of m, and for x ∈ A, let xk  be the k
th

 

digit of x written in base α.  We define the hash function, fm (x), as follows: 

𝑓𝑚  𝑥 =  𝑚 𝑥1 + 1 ⊕𝑚 𝑥2 + 𝑥1 + 2 ⊕…⊕𝑚   𝑥𝑘

𝑖

𝑘=1

 + 𝑘  

 Due to their simplicity, this family of hash functions is attractive for a software or hardware 

implementation of a fuzzy extractor.  However, we must first prove that this family of hash functions is 

2-universal [7]: 
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Claim:  The family of hash functions, ℋ, defined above is 2-universal. 

Proof:  For 𝑥 and 𝑦 in 𝐴, suppose 𝑓𝑚 (𝑥) is the exclusive-or of the rows 𝑟1 , 𝑟2 , … , 𝑟𝑠  of 𝑚, and 𝑓𝑚 (𝑦) is 

𝑟𝑠+1 ⊕…⊕ 𝑟𝑡 .  Notice that 𝑓𝑚  𝑥 = 𝑓𝑚 (𝑦) if and only if  𝑟𝑠+1 ⊕…⊕ 𝑟𝑡 = 0.  Assuming 𝑥 ≠ 𝑦, there will 

be some 𝑘, such that 𝑟𝑘  is involved in the calculation of only one of 𝑓𝑚  𝑥  or 𝑓𝑚(𝑦).  Then 𝑓𝑚(𝑥) will equal 

𝑓𝑚 (𝑦) if and only if 𝑟𝑘  is the exclusive-or of the other 𝑟𝑖 ’s.  Since there are 2𝑗 = 𝐵 possibilities for that 

row, 𝑥 and 𝑦 will collide for one 𝐵
th

 of the possible functions 𝑓𝑚 .  Thus, the class of all 𝑓𝑚 ’s is 2-universal. 

 

 Since this family of universal hash functions is proven to be 2-universal, we can use its 

implementation in the hashing mechanism of our fuzzy extractor in unison with a cryptographic hash 

function. 

 To better understand this universal family of hash functions, let us now follow a simple example 

in the context of our fuzzy extractor system.  For the sake of simplicity, let us assume that we are 

extracting 4 bits of data from an SRAM reading in order to obtain a 2-bit key.  That is, we need our 

universal family of hash functions to compress these 4 bits of raw data into 2 bits of key data.  In this 

example, let the data bits, 𝑥, be equivalent to the following: 

 

𝑥 = 1011 

 

 We must now construct and populate our two-dimensional array, 𝑚 ∈ 𝑀, with random bits.  

According to the definition by Carter and Wegman above, 𝑚 has a size of 𝑖𝛼 × 𝑗, where 𝑖 = 4 (length of 

the input data), 𝛼 = 2 (as our input data is represented in base 2), and 𝑗 = 2 (the length of the key 

data).  In this example, let this array be equivalent to the following: 

 
 
 
 
 
 
 
 
0 1
1 0
0 0
1 1
0 0
1 0
1 1
1 0 

 
 
 
 
 
 
 

 

 

 Now that we have constructed and populated 𝑚, we can begin the process of generating our 

output hash.  We begin by first initializing our array index, which we will call 𝑖𝑛𝑑𝑒𝑥, to 0 (we will assume 

that our array is 1-indexed), and our hashed value, 𝑕, to the following: 
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𝑕 = 0000 

 

 We now follow the algorithm as shown below in the following pseudocode: 

 

for x = 1 to i 

                index = index + input_data[x] + 1; 

                h = h ⊕ m[index]; 

            end 

  

 The values of 𝑖𝑛𝑑𝑒𝑥 and 𝑕 for every iteration of this algorithm are listed in the table below: 

 

𝒙 𝒊𝒏𝒅𝒆𝒙 𝒉 

1 2 10  (00 ⊕ 10) 

2 3 10  (10 ⊕ 00) 

3 5 10  (10 ⊕ 00) 

4 7 01  (10 ⊕ 11) 

 

 This leaves us with a final hashed value of 10 as our key bits. 

 

2.4 Enrollment and Authentication 

With our working knowledge of a fuzzy extractor, we can now apply this theory to construct an 

authentication system.  This authentication system is composed of two high-level processes, known as 

enrollment and authentication.  For the purposes of this project, we define enrollment as the process by 

which an entity is registered into the authentication system.  In this project, these entities are referred 

to as devices, since the primary scope is that of authenticating hardware devices based on the physical 

properties of SRAM.  We define authentication as the process by which the system determines whether 

or not a given entity, or device, is enrolled in the system.  Using the functionality provided by fuzzy 

extractors, we may implement these two processes to create an authentication system tailored to SRAM 

PUFs. 
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2.4.1 The Enrollment Process 

The enrollment process is essentially the means by which new devices are registered into the 

authentication system.  Ideally, enrollment would only be performed once per every new device.  This 

process is illustrated in the UML sequence diagram in Figure 2-2. 

 

 

Figure 2-2.  UML Sequence Diagram of the Enrollment Process 

 

 The general sequence of events as shown by this sequence diagram is as follows:  

 

1. Request Enrollment 

A new device sends a request to the authentication system to seeking to enroll. 

 

2.  Authorize Enrollment 

The authentication system verifies that the device is “OK to enroll” by the administrators of the 

system.  This sub-process would typically be handled by a higher-level protocol. 

 

3. Request Baseline Fingerprint 

The authentication system sends a request back to the new device for a reliable baseline 

reading of its SRAM contents, 𝑤. 

New Device System System Storage

Request Enrollment

Request Noiseless Fingerprint

Send Noiseless Fingerprint

Generate Hash

Store Hash

Generate Helper Data

(Optional) Store Helper Data

Send Helper Data (or ID to Helper Data)

Authorize Enrollment
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4. Send Baseline Fingerprint 

The new device sends some baseline fingerprint, 𝑤, to the authentication system.  In practice, 

this may be achieved via repeated sampling of the device with additional (e.g.  statistical) 

processes.  This sub-process can be performed on either the device or the authentication 

system, or the tasks can be distributed among the two. 

 

5. Generate Hash 

The hashing mechanism in the system, as described in Section 2.3, will produce a hash value, 𝑕, 

of 𝑤. 

 

6. Store Hash 

The hash value generated, 𝑕, is stored on some medium in the authentication system for future 

verification of the device. 

 

7. Generate Helper Data 

A helper string is generated by the system that is used to reconstruct the noiseless fingerprint 

from the noisier samples that will be obtained during the authentication process.  The helper 

string consists of the secure sketch generated by the fuzzy extractor and any other information 

needed in the authentication process, such as the seed used for the randomly selected universal 

hash function. 

 

8. (Optional) Store Helper Data 

In some implementations, the helper data produced by the fuzzy extractor might be too large in 

size to feasibly send and retain in storage on the new device.  If this is the case, the helper data 

can also be stored in the authentication system;  at the cost of a bit more communication, the 

device may later retrieve this data by sending an identifier that is much smaller in size. 

 

9. Send Helper Data (or ID that Maps to Helper Data) 

The authentication system sends the helper data produced by the fuzzy extractor back to the 

new device.  At this point, the new device is successfully enrolled in the system.  Alternatively, if 
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Step 8 above is invoked, the system by instead send a short identifier which enables quick 

retrieval of the helper data from system storage. 

 

2.4.2 The Authentication Process 

The purpose of the authentication process is to verify that a requesting device has been 

registered in the authentication system through the enrollment process.  This process is summarized in 

the UML sequence diagram in Figure 2-3. 

 

 

Figure 2-3.  UML Sequence Diagram of the Authentication Process 

 

 The general sequence of events as shown by this sequence diagram is detailed in the items 

below.  In this particular example, we assume that the device being authenticated has previously been 

enrolled in the system. 

Enrolled Device System System Storage

Request Authentication

Check if Device Exists in System

Request Fingerprint and Helper Data

Send Fingerprint and Helper Data

Reconstruct Noiseless Fingerprint

Hash Reconstructed Fingerprint

Retrieve Stored Hash

Send Stored Hash

Check if Hash Exists

Check if Hashes Match

Send Authentication Result
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1. Request Authentication 

A device that has been previously enrolled in the authentication system makes a request to the 

system to verify its identity.  The details of this event are dependent on the specific 

implementation.  For example, the device might send a hardware address or serial number for 

higher level verification procedures. 

 

2. Check if Device Exists in System 

The system verifies that the requesting device has enrolled in the system based on any initial 

data provided in the previous step.  As with the previous step, the details of this step are 

dependent on the implementation. 

 

3. Request Fingerprint and Helper Data 

The system responds to the requesting device by requesting its helper data (or an index to the 

helper data) and a single reading of SRAM, 𝑤′. 

 

4. Send Fingerprint and Helper Data 

The device send 𝑤′ and its helper data (or an index to the helper data), which was provided to it 

through the enrollment process, to the authentication system. 

 

5. Reconstruct Noiseless Fingerprint 

Upon receiving 𝑤′ and the helper data from the device, the system attempts to reconstruct 𝑤 by 

using the Code-Offset construction process discussed in Section 2.3.1. 

 

6. Hash Reconstructed Fingerprint 

The system hashes 𝑤 using the same hashing mechanism that was used to enroll the device. 

 

7. Retrieve Stored Hash 

The system requests a copy of the hashed fingerprint in storage for comparing. 

 

8. Check if Hash Exists 

The system checks if a hash of the fingerprint exists in storage. 
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9. Send Stored Hash 

A copy of the stored hash is retrieved from storage. 

 

10. Check if Hashes Match 

The system checks if the reconstructed hash and the hash in storage match.  A match indicates a 

successful verification of the device. 

 

11. Send Authentication Result 

The system sends the result of the authentication process to the requesting device.  Depending 

on the specific implementation, this would include higher-level processes, such as allowing the 

device to join a network. 
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3 System Design 

In the previous section, we surveyed the theoretical background necessary to attack the problem at 

hand.  In this section, we perform an information-theoretic analysis of the SRAM device and use this 

together with the theory to devise an appropriate fuzzy extractor for this device.  The system must have 

a degree of error tolerance that is sufficient to mitigate the inherent noise in SRAM.  However, it must 

also retain privacy and efficiency without sacrificing any of this error tolerance.  Therefore, we must 

analyze the SRAM contents to identify any factors that might impact our bit selection, our choice of BCH 

code, or how many key bits we can extract.  In this section, we will use the contents of SRAM extracted 

by a previous group of researchers as the sample space for our analysis.  We will then convert this data 

into other formats, analyze any patterns in the data, and calculate optimal parameters for our 

authentication scheme. 

3.1 Data Analysis 

In order to utilize the SRAM device as a source for our fuzzy extractor, several steps need to be 

taken.  We will analyze the format of the data we are working with and consider converting it into 

formats better suited for any calculations we will perform.  Then we shall examine whether any bits are 

better suited than others to be used as input for our fuzzy extractor.  We will also undertake an 

examination to ensure that the bits we choose to use as input do not have any correlations that are 

unacceptable from a security perspective.  This will allow us to choose an optimal pattern to select the 

bits that we will pass as input to our fuzzy extractor. 

3.1.1 Data Format 

The initial format for our data is a collection of readings each of which is represented by a 

5x262144 double array in MATLAB.  Each number is 8 bits, except the 1st row, which has only 4 bits of 

data representing the 4 parity bits from the board.  The remaining 36 bits of a column make up a word.  

To simplify our data analysis we discard the double containing 4 bits of parity data.  This leaves us with 

32 bits of data per word, and a 4x262144 double array.  In order to work with the data in C as well as in 

MATLAB, we store our data in binary format as a stream of bytes prefixed by a header indicating how 

many bytes are in the file.  To make analyzing the data easier, we also convert the data in MATLAB into a 

1x8388608 array of doubles with values of 0 or 1, each double representing a single bit. 
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Figure 3-1.  Original Data Format as Extracted from SRAM.  Each word consists of 5 rows of 8 bits each.  The first row of each 
word contains the parity bits from the SRAM as the first 4 bits of the byte.  The remaining 4 bits are the first 4 bits of the 32-

bit word. 

In addition to simply being able to see which bits are noisy, it will be helpful if we can see how 

biased bits are as well.  The easiest way to do this is simply to sum up the values a bit has across every 

reading from a single board.  If a bit from board 1 has a sum of 1432, we know it is a stable 1, because 

we have 1432 readings of board 1.  Likewise, a sum of 0 means it is a stable 0, while all numbers 

between 0 and 1432 indicate the bit has some level of noise. 

3.1.2 Selecting Bit Extraction Pattern 

The first step to constructing our fuzzy extractor is identifying which bits we are going to use to 

generate our key.  The SRAM reading is over 8 million bits long, but we will only need a fraction of these 

bits to generate our strong key.  When choosing which of these bits we will use to generate our key, it is 

important to determine if any bits are particularly biased.  Running a histogram over the 32 bit positions 

in a word allows us to make sure that within a word no particular bits are more or less likely to be biased 

one way or another.   
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Figure 3-2.  Estimated bit values for SRAM locations based on the relative position of the bit in a word.  The horizontal axis 
on the left indicates which relative bit position is being examined, from the 1

st 
bit from every word to the 32

nd
 bit in every 

word.  Locations were each read 1432 times.  Horizontal axis on right is number of readings returning 1 (0-1432).  A result of 
0 would mean the bit was a stable 0, while a result of 1432 would indicate the bit was a stable 1.  Vertical axis is the number 

of occurrences of that particular noise level. 

As we can see, the probability that a bit is a stable 0, a stable 1, or noisy is approximately the 

same regardless of the where the bit is located within a word.  Whether we examine the 1st bits of each 

word or the 20th bits, they have approximately the same distribution of noise.  With that knowledge, the 

remaining factor which might impact our bit selection is whether any of the bits are dependent on each 

other.  For instance, if a bit being 1 means the bit next to it is more likely to be 1, we might not want to 

take consecutive bits. 
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To determine whether there are any correlations between bits, we run a MATLAB script that 

looks at whether bits are a stable 1, stable 0, or noisy, then looks at adjacent bits and sees how often 

those bits are a stable 1, stable 0, or noisy.  If we for instance saw that 60% of the bits following a 1 are 

1, but only 30% of the bits following a 0 are 1, that would indicate an unacceptable correlation, as our 

knowledge of the value an unknown bit might have would chance if we knew a previous bit.  Even 

correlations much smaller than that extreme example might be significant enough from a security 

position to impact how we select our bits.  Our script repeats this analysis for bits farther and farther 

away from the bit we treat as known.  Running this over the entire SRAM reading allows us to see 

whether knowledge about 1 bit allows us to determine approximately what other bits are going to be.   

 

Figure 3-3.  Estimating the bit values for SRAM locations compared to known values in nearby locations.  The horizontal axis 
indicates the offset being considered – a value of 1 indicates how often the bit immediately adjacent bit to a stable 1 is going 
to be a stable 1.  The vertical axis indicates the fraction of bits that are 1 that follow a 1 with the given offset.  In this graph, 
the bit immediately adjacent to a stable 1 has a 35.6% chance of being a stable 1, while the bit 32 bits away in the SRAM has 

a 34.3% chance of being a stable 1. 
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A very interesting trend seems to appear.  If a bit is 1, bits farther and farther away are slightly 

less and less likely to be 1, until the matching bit in the next word (which is 32 bits away).  The matching 

bit in the next word then seems to be slightly less likely to be 1 than any other bits (and inversely, 

slightly more likely to be 0).  The trend then continues in the other direction, until the matching bit two 

words away (a 64 bit offset) is slightly more likely to be 1 again – with about the same probability as the 

immediately adjacent bit! This cycle seemingly repeats for the entire dataset.  While seemingly small, 

these deviations are unacceptable from a security perspective. 

 We need to figure out what this trend means.  If there is a correlation between bits, why is it the 

same strength or slightly stronger on bits that are farther away? The graph has peaks and valleys at 

offsets that are multiples of 32.  When we think about this more, an offset of 32 is when we are 

comparing every single bit to the matching bit in the next word.  If we look at an offset of 31 where it 

first approaches that valley, almost every bit is being compared to an earlier bit in the next word.  Every 

bit except the first bit in a word, which is being compared to the last bit in the same word.  This leads us 

to an idea – perhaps the reason we get values that progress evenly back and forth from peaks to valleys 

is because the primary factor that is impacting the relationship between bits is which word the bit is in.  

If this was the case, bit 1 would have approximately the same correlation to bits 33 through bit 64, 

changing only at bit 65 when it was being compared to another word.  We get a midpoint at 16 because 

at an offset of 16 exactly half of bits are being compared to the same word, and half to the next word, so 

it averages to be about in the middle.  This explains the overall shape we are getting with our figure, 

though not where the correlation is from in the first place. 

 To test the theory that odd numbered words trend towards one value while even numbered 

trend towards the other, we run a histogram of noise values over sets of even and odd words.  We 

divide our memory up into 64 bit blocks and perform a histogram on each individual bit from the set.  

The first 32 bits on our histogram then show us our odd numbered words while the 33rd through 64th 

bits show us the noise distribution of our even words.  This helps us to see if the correlation we 

observed earlier is tied primarily to whether a bit is in an odd or even word.   
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Figure 3-4.  Estimated bit values for SRAM locations based on the relative position of a bit in odd or even words.  Horizontal 
axis on left indicates which relative bit position is being examined.  Bits 1 through 32 indicate the 1

st
 through 32

nd
 bits of all 

odd words, while bits 33 through 64 indicate the 1
st

 through 32
nd

 bits of all even words.  Locations were each read 1432 
times.  Horizontal axis on right is number of readings returning 1 (0-1432).  A result of 0 would mean the bit was a stable 0, 

while a result of 1432 would indicate the bit was a stable 1.  Vertical axis is the number of occurrences of that particular 
noise level in a given bit position. 

 An analysis of this histogram shows what is happening.  The odd numbered words represented 

by bits 1 through 32 are more likely to be a stable 0 than they are a stable 1.  For example, if you 

examine the first bit in an odd numbered word there will be approximately 60,000 occurrences where 

the bit is a stable 0, but only approximately 50,000 occurrences where the bit is a stable 1.  On the other 

hand, the first bit in an even numbered word (bit 33, in this figure) is a stable 1 on approximately 

50,0000 occasions and a stable 0 on approximately 60,000 occasions.  While it would be interesting to 

examine why this might be happening, for the purposes of our fuzzy extractor all we care about is 

keeping it from impacting our extracted bits.  One potential solution to solve this discrepancy would 

simply be to extract alternating words.  For instance, we could extract only odd words or only even 
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words.  The problem with this idea is that it leaves us with an uneven distribution of zeros and ones, 

since either of those sets is not balanced.  This is easy to picture just by looking at the previous 

histogram and imagining we were working with just one half or the other.  Fortunately, there is a 

different solution that will balance out the words – we perform an exclusive or operation on alternating 

words.   

𝑁𝑒𝑤 𝑊𝑜𝑟𝑑0 =  𝑊𝑜𝑟𝑑0 ⊕𝑊𝑜𝑟𝑑1

𝑁𝑒𝑤 𝑊𝑜𝑟𝑑1 =  𝑊𝑜𝑟𝑑2 ⊕𝑊𝑜𝑟𝑑3…
𝑁𝑒𝑤 𝑊𝑜𝑟𝑑𝑥 =  𝑊𝑜𝑟𝑑2𝑥 ⊕𝑊𝑜𝑟𝑑2𝑥+1.

 

We will call this new data the transformed data, and the original unmodified data the original 

data.  We repeat our 32 and 64 bit histograms on the transformed data to verify that we have avoided 

introducing a bit level bias towards zero or one, while eliminating the above-mentioned dependency 

between consecutive words.   

 

Figure 3-5.  Using the transformed data, the estimated bit values for SRAM locations based on the relative position of the bit 
in a word.  The horizontal axis on the left indicates which relative bit position is being examined, from the 1

st 
bit from every 

word to the 32
nd

 bit in every word.  Locations were each read 1432 times.  Horizontal axis on right is number of readings 
returning 1 (0-1432).  A result of 0 would mean the bit was a stable 0, while a result of 1432 would indicate the bit was a 

stable 1.  Vertical axis is the number of occurrences of that particular noise level. 
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Figure 3-6.  Using the transformed data, the estimated bit values for SRAM locations based on the relative position of a bit in 
odd or even words.  Horizontal axis on left indicates which relative bit position is being examined.  Bits 1 through 32 indicate 

the 1
st

 through 32
nd

 bits of all odd words, while bits 33 through 64 indicate the 1
st

 through 32
nd

 bits of all even words.  
Locations were each read 1432 times.  Horizontal axis on right is number of readings returning 1 (0-1432).  A result of 0 

would mean the bit was a stable 0, while a result of 1432 would indicate the bit was a stable 1.  Vertical axis is the number of 
occurrences of that particular noise level in a given bit position. 

 As we can see, the exclusive or operation does not introduce a bias in the level of zeros and 

ones, while correcting the balance issues we had with the original data.  Now we need to make sure that 

this operation removed the correlation between bits.  To simplify the comparison between the 

correlation we had in the original data and any correlation we might find in the transformed data, we 

plot the knowledge we are able to obtain about other bits from a given bit for both data sets.  For 

example, one data set might indicate that if we know that a given bit is 1, the bit immediately following 

it is a 1 35% of the time, while if we know a given bit is 0 the bit immediately following it is a 1 30% of 

the time.  If that was the case, the value located at 1 on the x axis (an offset of 1, to represent the 

immediately adjacent bit) would be .05 for that data set, or 5%.  The more the y values of the graph 

deviate from 0, the more information an attacker will have about other bits if they know the value of 

one bit.  The closer this value is to 0, the less knowledge we are able to obtain about other bits based on 

any other given bit.  Since we are only interested in the areas in which the correlation is particularly 

strong in either direction, we will plot every 32nd offset. 
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Figure 3-7.  When given the value of a bit, the probability that a later bit will be a stable 1.  The horizontal axis indicates the 
offset that is being considered – 1024 being the probability change of the bit 1024 bits away from your given bit.  The vertical 

axis indicates the actual probability change – a value of .01 would indicate that if you are given the value of a bit as 1, the 
offset bit is 1% more likely to be a stable 1 than if you were told your given bit was a stable 0. 

Compared to our previous correlation, the transformed data has negligible correlation between bits.  

We can now use the transformed data as the input for our fuzzy extractor.  It is worth noting that this 

latest graph displays other interesting correlations that are no longer present in the transformed data.  

In addition to peaking at offsets which are multiples of 32, the correlation peaked especially high at 

offsets which are powers of 2.  The correlation is even higher than the other peaks at offsets which are 

multiples of 512, then higher still at offsets of 1024 and offsets of 2048.  Since the correlation is no 

longer present in our transformed data it does not impact our work, but it could prove interesting to 

explore in the future. 

We conclude this section with a summary of the processing that we will perform on the SRAM data 

to obtain the input to our fuzzy extractor 

 Discard all parity bits. 
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 Replace each consecutive pair of 32-bit words by the 32-bit exclusive or of this pair. 

 This bitstream is then fed directly into the fuzzy extractor. 

3.2 Calculating Optimal Parameters 

In the previous section we talked about how we select the bits we will use as the input to our fuzzy 

extractor.  This is only one consideration when it comes to designing our system.   In order to deal with 

the inherent noise in the data readings, we need to select a BCH code that will properly achieve balance 

between conflicting needs.  The fuzzy extractor system needs to meet the following conditions: 

 Tolerate errors in measurement of the same device. 

 Minimize an opponent’s ability to achieve authentication of an unenrolled device. 

 Utilize a BCH code of a length feasible for efficient computation and implementation. 

 Provide sufficient entropy in the final hash value of the fuzzy extractor. 

 The BCH code that we select must provide enough error tolerance that our noisy readings are all 

identified as belonging to the same device.  On the other hand, we must ensure that there is not 

excessive error tolerance such that it would be possible for an opponent to authenticate an unenrolled 

device.  In this section we work on calculating optimal parameters by taking into account the needs of 

our system.  We discuss the equations we will use to calculate valid length and dimension values for the 

BCH code we use in our fuzzy extractor, as well as the entropy and the bit error rate of the SRAM model. 

 

3.2.1 Calculating Range of N and K Values 

In the paper, “CDs Have Fingerprints Too” [8], Hammouri and Sunar give the following equation 

which characterizes an optimal, average-case (𝑀,𝑚, ℓ, 𝑡, 𝜀)-fuzzy extractor: 

ℓ = 𝑚 + 𝑘𝑓 − 𝑛𝑓 − 2 log  
1

𝜀
 +  2 . 

The variables appearing here are:  

ℓ = key length 

𝑚 = min-entropy (entropy-per-bit times the length of our code) 

𝑘 = number of message bits 

𝑛 = length of codeword 

𝑓 = number of bits required to store a field element (in our case, 𝑓 = 1) 

𝜀 = a security parameter that measures deviation from a uniform distribution (we consider both 

𝜀 = 2−64 and 𝜀 = 2−80 ). 
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This equation helps us to determine what key lengths ℓ we will be able to obtain from various 

combinations of  𝑛 and 𝑘 (once we estimate the min-entropy and the bit-error rate (BER)).  The steps we 

will follow to obtain our ℓ values are as follows: 

 

1. Estimate the bit-error rate of our source data. 

2. Estimate the minimum entropy per bit of our source data.   

3. Determine whether the Shannon entropy of the bit-error rate is less than our minimum 

entropy per bit. 

4. Simplify equation to calculate ℓ such that the only unknowns are 𝑛, 𝑘, and ℓ. 

5. Find BCH codes with a probability of failure less than one in a billion. 

6. Calculate ℓ values based on those BCH codes. 

7. If necessary, explore concatenating multiple codes together. 

 

Let us first consider the bit-error rate, which is in our case the noise level between a perfect 

noiseless board and a normal noisy reading.  Of course, we cannot actually get a reading from the board 

that has no noise, so we instead simulate a noiseless reading by averaging many noisy readings 

together.  We would get a reading closest to ideal if we simply used every reading that we had of the 

board.  However, if we do that we will be unable to properly compare a given noisy reading to our ideal 

reading.  The comparison would be biased, since that very same noisy reading went into creating our 

noiseless reading.  Instead we divide our sample space of 1432 readings into two randomly selected sets 

and combine 715 readings together for our ideal reading.  Note that each set must have an odd size in 

order to ensure that no bits are computed as being 0 and 1 equally often.  We then compare our ideal 

reading to the other 717 readings.  The actual comparison is easiest if we simply use a bitwise exclusive 

or - we can then compute the Hamming weight to find out how many bits did not match between the 

two readings.  Once we average the number of noisy bits we obtained among all our comparisons, we 

find the fraction of bits that are noisy by dividing by the total number of bits per reading, 8388608.  We 

get a value of .0361 noisy bits for our regular data and .0693 noisy bits for the data on which we 

performed the word-wise exclusive or. 

Now that we have our bit error rate, we move on to estimate the minimum entropy per bit of 

our source data.  In “The Context Tree Weighting Method: Basic Properties” [9] a method was proposed 

to estimate entropy called Context Tree Weighting (CTW).  Context Tree Weighting is a sequential 

universal data compression procedure that achieves the Rissanen lower bound [9].  To remove the 
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entropy of the noise from the equation, we take our data and discard all values that were not identical 

over all readings from a single board.  Excluding the noise in this fashion allows us to calculate the 

entropy of the actual data bits.  We then run our data through the CTW program and it produces a value 

of 7.44 as the entropy per byte.  So, we get a per-bit entropy of 𝛿 = 0.93. 

Before determining values of 𝑛 and 𝑘, we must also ensure that the Shannon entropy, 𝐻2, of the 

bit-error rate is less than the min-entropy per bit, 
𝛿

𝑓
=

0.93

1
= 0.93.  We calculate that 

 

𝐻2 𝑝 =  −𝑝 ∗ 𝑙𝑜𝑔2 𝑝 −  1 − 𝑝 ∗ log2(1 − 𝑝) 

𝐻2 𝐵𝐸𝑅 =  𝐻2 0.0693 = 0.3633 < 0.93. 

 

Since the entropy of the noise is significantly less than the entropy per bit, we are able to 

proceed.  If this condition was not met, we would not be able to use the SRAM readings as a source for 

the input of a fuzzy extractor and meet all of our design goals. 

 Now that we have calculated the min-entropy per bit and the bit-error rate of our data, we can 

derive an equation that will produce the maximum key-length ℓ from a given 𝑛 and 𝑘, and a chosen 𝜀.  

The difference between setting 𝜀 = 2−64 and setting 𝜀 = 2−80 is that the smaller value will provide 

more security at the cost of having less useable key bits.  For  𝜀 =  2−64 we get the following equation: 

 

ℓ = 0.93𝑛 + 𝑘 − 𝑛 − 2 log  
1

2−64
 +  2 

ℓ = 0.93𝑛 + 𝑘 − 𝑛 − 126 

ℓ =  𝑘 − 0.07𝑛 − 126. 

This gives us how many usable key bits we obtain using 𝜀 = 2−64 for a code of length 𝑛 and dimension 

𝑘.  For 𝑛 ≤ 128 this does not look promising.  However, for sufficiently large 𝑛 we may even have 

enough slack to use 𝜀 =  2−80 for enhanced security; the corresponding equation is: 

ℓ =  𝑘 − 0.07𝑛 − 158. 

 So we see that in general that key length decreases by 32 bits when we pass from 𝜀 = 2−64 to 

𝜀 = 2−80.  For example if we use 𝑛 = 210 −  1 = 1023 we might find a code with 𝑘 = 808 and get 

𝑙 = 610 for 𝜀 = 2−64 and 𝑙 = 578 for 𝜀 = 2−80. 

 



 

39 
 

3.2.2 Calculating Number of Errors to Correct 

We must now construct a second bound for our BCH code that will determine the minimum 

error-correcting capabilities needed to satisfy a pre-determined probability of failure, 𝑃𝐹𝑎𝑖𝑙 .  The 

parameter 𝑃𝐹𝑎𝑖𝑙  is the probability that our BCH code will fail to successfully reconstruct the transmitted 

codeword from the received bitstring.  For our purposes, we require 𝑃𝐹𝑎𝑖𝑙 ≤ 10−9, or at most a one in a 

billion chance of failure. 

Assuming that bit errors within a given transmitted codeword are independent events, the 

probability of success is the probability that we get a number of errors less than or equal to the 

maximum number of correctable errors.  In other words, the sum of the probability that we have 0 

errors, 1 error, 2 errors, and so on up to 𝑡 errors, and subtract the overall probability of these good 

scenarios from 1.0 to find: 

𝑃𝐹𝑎𝑖𝑙 = 1 −  
𝑛
𝑖
 𝑝𝑖 1 − 𝑝 𝑛−𝑖

𝑡

𝑖=0

 

The variables appearing here are: 

𝑡 = number of errors the code can correct 

𝑛 = length of the code 

𝑝 = bit-error probability 

Using this equation, we can determine the minimum value of 𝑡 that satisfies our value of 𝑃𝐹𝑎𝑖𝑙 , 

given a value of 𝑛.  Since we know that 𝑛 must be one less than a power of 2, (𝑛 = 63, 127, 255, etc.), 

we choose multiple valid values of 𝑛 and calculate the maximum value of k which will still give us at least 

t correctable errors.  This gives us the parameters we need for our BCH code.  We then calculate the 

value of ℓ using these BCH codes to determine the number of key bits we can extract using each 

scheme. 

 

3.2.3 Optimal Parameters for Single Codeword 

We run the 𝑛 and 𝑘 combinations that our 𝑃𝐹𝑎𝑖𝑙  calculation indicated provided the necessary 

error tolerance through our formula to obtain ℓ, or the maximum number of key bits we can obtain 

from the code.  Negative values can be treated as producing a maximum key length of 0, since they do 

not produce any legitimate key bits.   
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Optimal BCH Codes for 1/billion failure Rate 

Key Length ℓ  𝑛 Value BCH Code Used      

[𝑛, 𝑘, 𝑡] 𝜺 = 𝟐−𝟔𝟒 𝜺 = 𝟐−𝟖𝟎 

0 0 63 No Valid Codes 

0 0 127 No Valid Codes 

0 0 255 [255, 29, 47] 

0 0 511 [511, 76, 85] 

0 0 1023 [1023, 153, 125] 

138 106 2047 [2047, 408, 218] 

Table 3-1.  The 𝒏 Value column indicates the 𝒏 value we were considering on that row.  The BCH Code Used column indicates 
the dimensions of the BCH code that fit our requirements.  The 𝓵 columns indicate the maximum number of key bits we can 

obtain with 𝜺 = 𝟐−𝟔𝟒 and  𝜺 = 𝟐−𝟖𝟎, respectively. 

 

Disappointingly, we can’t produce any key bits until we use a codeword of size 2047, and even then we 

do not produce enough for a 256 bit key. 

 

3.2.4 Concatenation 

 Given the size of the BCH codes that are required to generate sufficient size keys from our data, 

and the inefficiencies that come with larger size BCH codes [10], it is worthwhile to explore 

concatenating multiple codes together.  By concatenating multiple codes it is possible to increase the 

value of ℓ while still using smaller, more efficient BCH codes.  It is necessary to update our  𝑃𝐹𝑎𝑖𝑙  

calculation to take into account that we are using multiple codes.  The probability of success changes 

from being the probability that a single received codeword will have less than the maximum correctable 

number of errors, to the probability that all of the received bitstrings will individually have less than the 

maximum number of errors.  In other words, it is the probability that the first bitstring will be 

successfully recovered multiplied by the probability that the second bitstring will be successfully 

recovered, continued in that fashion for all received bitstrings.  The new equation for the probability of 

failure changes as we would expect: 

 

𝑃𝐹𝑎𝑖𝑙 = 1 −    
𝑛
𝑖
 𝑝𝑖 1 − 𝑝 𝑛−𝑖

𝑡

𝑖=0

 

𝑐

 

The variables appearing here are: 

𝑡 = number of errors the codeword can correct 
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𝑛 = length of the codeword 

𝑝 = bit-error probability 

𝑐 = number of times the code is concatenated. 

 

 It would be possible to concatenate different code sizes together (for instance, concatenate a 

511-bit codeword with a 255-bit codeword).  However, it would be complex to compute minimum t 

values for such concatenation, since increasing the correctable errors for one codeword might allow you 

to decrease them for another.  It would also make decoding more complicated, as our system would 

need to be able to decode different codes.  Instead, we want to ideally find a single codeword size such 

that we can concatenate multiple codewords of the same dimensions together to produce our key. 

Since we will not be mixing different codes together, the only dimension we add here is the 

number of concatenations we are using for each code.  There are two primary ways this can impact the 

functionality of our system – it changes the overall amount of bits we need, and it affects the time 

decoding might take.  We generate a list consisting of valid codes and a value indicating how many times 

we would repeat that code.  For this list we exclude values that do not produce an ℓ of at least 128.  To 

constrict the size of our table further, we restrict the both the maximum number of extracted bits and 

the maximum size of the BCH code.  This results in removing from our table all values which do not fit 

the following criteria: 

ℓ ≥ 128 

𝑛𝑐 ≤ 213 

𝑛 ≤ 211 −  1. 

The variables appearing here are: 

ℓ = maximum obtainable key length   

𝑛 = length of the codeword 

𝑐 = number of times the code is concatenated. 

 

 An addition to our script of some timing calculations will allow us to incorporate decoding time 

into our BCH code selection.  Our timing script decodes 100 strings with a number of errors ranging from 

0% to 99% of the maximum correctable errors.  The script performs this timing calculation for each BCH 

code that fits our 𝑃𝐹𝑎𝑖𝑙  equation, and uses the average decode time of each code as the baseline time 

for that particular code.  If we have concatenated 𝑐 copies of the same code and we estimate 𝑡 seconds 

for decoding a message in one copy, we model overall decoding time 𝑡′ for the concatenated codes as 
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𝑡′ = 𝑐𝑡.  An alternative timing model is based on the assumption that the generator polynomial must be 

calculated at the beginning of each authentication; in this scenario where the same code is used 

throughout, subsequent decodings require less time and our model, 𝑡′ = 𝑐𝑡, would be invalid.  For our 

particular implementation we plan on preselecting a BCH code, so we will not need to regenerate the 

generator polynomial whenever we attempt to authenticate a device and our model remains valid.  In 

addition, we are performing these timings in the MATLAB implementation of our fuzzy extractor – 

different decoding algorithms may behave differently in other implementations. 

Optimal BCH Codes for 10-9 Failure Rate 

Key Length ℓ  Number of 

Bits Harvested 

Number of 

Concatenations 

BCH Code Used 

[𝑛, 𝑘, 𝑡]        

Decode Time 

(seconds) 𝜺 = 𝟐−𝟔𝟒 𝜺 = 𝟐−𝟖𝟎 

138 106 2047 1 [2047,408,218] 0.053089 

155 123 3577 7 [ 511, 76, 85] 0.036267 

159 127 4092 4 [1023,143,126] 0.058397 

180 148 5115 5 [1023,133,127] 0.07384 

195 163 4088 8 [ 511, 76, 85] 0.041448 

236 204 4599 9 [ 511, 76, 85] 0.046629 

242 210 6138 6 [1023,133,127] 0.088608 

276 244 5110 10 [ 511, 76, 85] 0.051811 

303 271 7161 7 [1023,133,127] 0.103376 

316 284 5621 11 [ 511, 76, 85] 0.056992 

356 324 6132 12 [ 511, 76, 85] 0.062173 

365 333 8184 8 [1023,133,127] 0.118144 

396 364 6643 13 [ 511, 76, 85] 0.067354 

403 371 4094 2 [2047,408,218] 0.106178 

437 405 7154 14 [ 511, 76, 85] 0.072535 

477 445 7665 15 [ 511, 76, 85] 0.077716 

517 485 8176 16 [ 511, 76, 85] 0.082897 

668 636 6141 3 [2047,408,218] 0.159267 

932 900 8188 4 [2047,408,218] 0.212356 

Table 3-2.  Table illustrating what 𝓵 values we obtain from particular BCH codes concatenated a given number of times.  
Highlighted are the fastest decoding times that produce 𝓵 ≥ 𝟏𝟐𝟖 and 𝓵 ≥ 𝟐𝟓𝟔 for each 𝜺 value we consider.  Highlighted in 

blue are the codes chosen for 𝜺 = 𝟐−𝟔𝟒.  Highlighted in green are the codes chosen for 𝜺 = 𝟐−𝟖𝟎. 
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As we expected, concatenation greatly increases our supply of codes; we now have several options 

to generate sufficient length keys.  The SRAM has over 8 million bits that we already determined were 

adequate to use in our key generation, so for our purposes decoding time is a more important metric 

than the overall bits a particular code is going to require.  Examining the table we notice an exciting 

correlation.  The fastest codes at ɛ = 2−64  are 7 concatenations of code [511, 76, 85] for ℓ ≥ 128, and 

10 concatenations of code [511, 76, 85] for ℓ ≥ 256.  Then the fastest codes at ɛ = 2−80 are 8 and 11 

concatenations of that same code.  The BCH code with 511 total bits, 76 data bits, and 85 correctable 

errors is a clear winner in this implementation.  Whether we aim for ℓ ≥ 128 or for ℓ ≥ 256,, this 

particular code is faster than the alternatives. 
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4 MATLAB Framework 

One of the requirements for this project was to develop an implementation of an authentication 

system based on fuzzy extractors in MATLAB as a proof of concept.  This particular implementation 

serves as a framework that makes use of the object-oriented programming paradigm to provide 

modularity and robustness.  The state and behavior of each software component is encapsulated in a 

MATLAB class and most of the coupling between classes is accomplished through abstract classes and 

interfaces.  The behavior in this system as a whole is also organized in a small hierarchy of class 

composition and aggregation.  The end goal of this architecture is that users of this framework should be 

able to rapidly build a fuzzy extractor authentication system with only a limited knowledge of the 

underlying details of the system.  In addition to this, end-users should also have a sufficient amount of 

freedom to extend the functionality of the system, without having to modify existing code.  However, 

end-users of this system should first have at least a basic understanding of the architecture of this 

framework.  In this section, we will examine the overall design and process flow of this software system.  

We will also build a simple prototype that will test the enrollment and authentication procedures for 

two sets of SRAM readings from different devices using this framework. 

 

4.1 Architecture 

Each class in this authentication system framework is compartmentalized into higher-level 

groupings, known as packages.  A package structure tends to be useful in large software applications, 

where the natural grouping that occurs at the class-level is too specific to perform high-level analysis on 

the overall system.  While this authentication system is by no means a large software application, the 

package structure still provides additional organization, which mitigates the task of understanding and 

eventually extending the software.  Higher-level analysis on the system is also useful to a degree, as it 

provides insight into how it might evolve or how it can be improved in future iterations. 

The package structure of this system consists of four packages, which is illustrated in Figure 4-1.  

The “Core” package consists of the classes that make up the high-level enrollment and authentication 

protocols.  This package is dependent on three other packages, which are the “Encoder”, “Hash”, and 

“Device” packages.  The “Encoder” and “Hash” packages contain the classes relevant to the encoding 

and hashing functionality of the fuzzy extractor, respectively.  The “Device” package contains the classes 

that encapsulate the behavior for reading and extracting data from varying sources. 
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Figure 4-1.  UML Package Diagram of Authentication System 

 

 The aspect of this system that best represents the high-level behavior of a fuzzy extractor 

authentication system is the relationship between the Core package and the Device package.  The Core 

package consists of two classes, one of which is the DeviceAuthenticator class.  As the name 

might suggest, the DeviceAuthenticator class handles the high-level behavior of authentication in 

this system through the enroll and authenticate methods.  These methods are used to enroll 

and authenticate objects that extend the ADeviceReader abstract class, which is a member of the 

Device package.  The enroll and authenticate methods create an association between the Core 

and Device packages, as shown in Figure 4-2, where DeviceAuthenticator class must interface 

directly with the ADeviceReader.  Since the DeviceAuthenticator class depends on the 

ADeviceReader class, the Core package is dependent on the Device package.  In other words, 

changes that occur to the contents of the Device package will directly affect the Core package.  

However, changes in the Core package will not affect the contents of the Device package.  Regardless of 

dependencies, this relationship models the interaction between the fuzzy extractor authentication 

system and the devices interacting with the system. 

  

 

  

Core

Device Encoder Hash
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Figure 4-2.  Relation Between Core and Device Package 

 

This relationship is further illustrated in the following pseudocode: 

 

% Setup the DeviceAuthenticator 
devAuth = DeviceAuthenticator(...); 

  
% Setup a SimpleDeviceReader, where SimpleDeviceReader < ADeviceReader 
devReader = SimpleDeviceReader(...); 

  
% Enroll the device 
devAuth.enroll(devReader); 

  
% Authenticate the device 
isEnrolled = devAuth.authenticate(devReader); 

 

 In this pseudocode, a single instance of a DeviceAuthenticator and a 

SimpleDeviceReader, which extends ADeviceReader, is instantiated.  Next, the 

SimpleDeviceReader is enrolled into the system through the enroll method.  Finally, a Boolean 

value indicating whether or not the SimpleDeviceReader is enrolled is returned by calling the 

authenticate method.  The details regarding setting up both the ADeviceReader and the 

DeviceAuthenticator will be covered in the sections to follow. 

Now that we have a basic understanding of the overall structure of this framework, let us take a 

more in-depth look into the individual system packages.  In the remainder of this section we will first 

examine the Device package in order to understand how device entities are represented in this system.  

Next we will look at the Core package to see how these devices interact and are incorporated into the 

fuzzy extractor authentication system.  Finally, we will inspect the Encoder and Hash packages to 

understand how the lower-level encoding and hashing functionality is modeled and implemented.   
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4.1.1 The Device Package  

One of the more difficult tasks in the design of this system is determining how to model the 

devices that interact with the fuzzy extractor system.  Since the scope of this project involves 

authenticating devices based on the contents of SRAM, the system should be able to interact with 

devices regardless how the SRAM data is accessed and provided.  In addition to this, the specific data 

that the system needs from the device might be different or vary from the entirety of the data that can 

be accessed from the device.  These two design considerations are implemented in this system in the 

Device package through the ADevice and ADeviceReader abstract classes.  These two abstract 

classes provide a common interface for varying classes representing physical devices to interact with the 

system. 

Let us first look at the ADevice abstract class, which is shown in Figure 4-3.  This class provides 

an interface for varying types of devices to provide their SRAM contents or other unique data in a 

common format.  Each class extending the ADevice abstract class must implement the getData 

abstract method.  Although MATLAB is inherently loosely typed, the getData method is intended to 

return a vector of doubles ranging in value from 0 to 1.  The format of this data-type is referred to as 

Bits as it is intended to represent individual bits of data.  The ADevice abstract class also includes a 

getUID method, which is used to uniquely identify a device through non-cryptographic means.  From 

the ADevice abstract class, we can derive concrete classes that represent both physical and virtual 

devices that will be able to interface with the fuzzy extractor authentication system.  In this system, 

there are currently two classes that extend this abstract class, which are VirtualDevice and 

VirtexBoardDevice.   
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Figure 4-3.  UML Class Diagram of the Device Package 

+getUID() : string

+getData() : Bits

#uid : Bits

ADevice

+getUID() : string

+getData() : Bits

+getNoiselessData() : Bits

+getErrorCount() : int

+getNoiseRatio() : double

+setNoiseRatio(in newNoiseRatio : double)

#uid : string

-noiselessData : Bits

-noiseRatio : double

VirtualDevice

+getUID() : string

+readData(in length : int) : Bits

+estimateNoiselessData(in length : int) : Bits

#averageData(in readings : Bits, in dataLength : int, in numReadings : int) : Bits

#device : ADevice

ADeviceReader

-Has

*

1

+getUID() : string

+readData(in length : int) : Bits

+estimateNoiselessData(in length : int) : Bits

#device : ADevice

SimpleDeviceReader

+getUID() : string

+readData(in length : long) : Bits

+estimateNoiselessData(in length : int) : Bits

#device : ADevice

WordXorDeviceReader

+getUID() : string

+getData() : Bits

#uid : string

-fileList : string

VirtexBoardDevice
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The VirtualDevice class models a device by providing data with a set amount of noise 

added at runtime.  It is intended to act as a “mock object”, that can be used to verify correct 

functionality of other components in the system that depend on this class, without having to provide 

actual SRAM readings.  The VirtualDevice class contains an instance of Bits, noiselessData, 

and a double value representing its noise level, noiseRatio, where 0 ≤  noiseRatio ≤ 1.  Upon 

instantiation of a VirtualDevice object, noiselessData is randomly populated with 1’s and 0’s 

and the value of noiseRatio is provided by the constructor.  The getData method is implemented 

by returning the contents of noiselessData, but with a number of bits flipped determined by the 

value of noiseRatio.  The number of bits flipped, 𝑛, is determined by the following simple equation: 

 

𝑛 =  noiseRatio ∗   noiselessData   

 

The bit position of each flipped bit is randomly selected at runtime for each call of getData.  

The behavior of this implementation is intended to simulate random noise as would be expected from 

readings of SRAM data based on the results of the data analysis in Section 3.1. 

While the VirtualDevice class is intended to test only correct system behavior and 

functionality, the VirtexBoardDevice class is additionally intended to show system behavior 

similar to that which it would show when interfacing with actual physical devices.  Although the 

VirtexBoardDevice does not interface directly with a physical device, it does provide data from a 

collection of over 1000 readings of SRAM contents.  Similar to how the implementation in the 

VirtualDevice class adds noise, this class implements the getData method by returning a 

randomly selecting an SRAM reading from a list of readings at runtime.  Using the 

VirtexBoardDevice class allows for accurate results to be collected when using differing 

parameters for a particular system configuration, as it mimics the data that would be returned from an 

actual physical device. 

Now that we have a common interface by which to provide the fuzzy extractor authentication 

system with unique data, we need a means by which to select a subset of this data to be used for 

enrollment and authentication.  Otherwise, the authentication system would have to process millions of 

bits for each device.  This behavior is provided by another abstract class, ADeviceReader.  Each class 

extending ADeviceReader has an instance of one object that extends ADevice as a protected class 

variable.  This allows for classes extending ADeviceReader to have access to a single source of data, 

from which to select data that is to be provided to the authentication system.  This subset of data from 
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the objects extending ADevice is returned by the ADeviceReader through the readData abstract 

method.  Classes extending ADeviceReader must also implement the estimateNoiselessData 

abstract method, which is intended to be the means by which it returns the same subset of data as 

returned by readData, but with noise removed. 

In the current state of this system, there are two classes available that extend the 

ADeviceReader class, which are SimpleDeviceReader and WordXorDeviceReader.  The 

SimpleDeviceReader is relatively simple, as it implements the readData abstract method by 

returning the first 𝑛 bits from the device’s Bits vector with a given bit position offset.  The 

WordXorDeviceReader class is slightly more complicated, as it implements the word-wise XOR 

method as described in Section 3.1.2.  Both of these classes can be used with any of the two classes 

currently extending ADevice, as should be expected given the inherent loose coupling between 

ADeviceReader and ADevice. 

 

4.1.2 The Core Package 

Now that we have a basic understanding Device package, we can examine the interface 

between the authentication system and the devices in more detail by reviewing the contents of the Core 

package.  As discussed in the beginning of Section 4.1, the Core package is responsible for enrolling and 

authenticating these devices through the coupling between the ADeviceReader abstract class and 

the DeviceAuthenticator class.  This package consists of two classes, shown in Figure 4-4, which 

are the DeviceAuthenticator class and the FuzzyExtractor class.  Similar to how 

ADeviceReader and ADevice are connected through aggregation, these two classes are related 

through composition, where the DeviceAuthenticator contains a single instance of a 

FuzzyExtractor object. 

 

+enroll(in dev : ADeviceReader) : bool

+authenticate(in dev : ADeviceReader) : bool

-fuzzyExtractor : FuzzyExtractor

-enrolledHashes : StringToBitsMap

-enrolledHelperData : StringToBitsMap

DeviceAuthenticator

+generateSecureSketch(in noiselessData : Bits) : Bits

+generateHash(in noiselessData : Bits) : Bits

+recoverHash(in noisyData : Bits, in secureSketch : Bits) : Bits

-encoder : IEncoder

-universalHasher : IUniversalHasher

-cryptoHasher : ICryptoHasher

FuzzyExtractor

-Has

0..1 1

 

Figure 4-4.  UML Class Diagram of the Core Package 
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In addition to the FuzzyExtractor object, the DeviceAuthenticator class contains a 

mapping from device UID’s to the hashed value of the data extracted from the respective device, which 

is stored in the enrolledHashes class variable.  It also contains a mapping of device UID’s to the 

respective helper data of the device, which is stored in the enrolledHelperData class variable.  

Both of these mappings are implemented through the containers.Map object provided by the 

standard library in MATLAB.  Keys and values are added to these two variables on successful device 

enrollment through the methods provided by the FuzzyExtractor class.  During the authentication 

procedure, the data in these two variables is used to reconstruct and verify the hash of the device being 

authenticated.  As discussed previously, the enrollment and authentication procedures are carried out 

by the enroll and authenticate methods, respectively. 

While the DeviceAuthenticator class handles the high-level enrollment and 

authentication procedures, the FuzzyExtractor class is responsible for the functionality of the fuzzy 

extractor in the authentication system.  This class contains three methods, which are 

generateSecureSketch, generateHash, and recoverHash.  The 

generateSecureSketch method is used to generate the helper data for a device during the 

enrollment phase, while the generateHash method is used to construct the hash for the device in 

both the enrollment and authentication phases.  The recoverHash method is used only during the 

authentication phase, which verifies that the hash constructed for an authenticating device matches the 

hash constructed during the enrollment phase.   

Similar to how the DeviceAuthenticator class is responsible for only the high-level 

authentication procedures, the FuzzyExtractor class is only responsible for the higher-level 

functionality of a fuzzy extractor.  The details of the encoding and hashing procedures are delegated to 

classes implementing the IEncoder and hashing interfaces respectively, as shown in Figure 4-5.  A 

single instance of each of these classes is contained in the DeviceAuthenticator class through 

composition.  This essentially allows for different encoding and hashing procedures and schemes to be 

“swapped” in and out of a FuzzyExtractor object without having to modify the 

FuzzyExtractor class.  However, before we discuss how to these FuzzyExtractor objects are 

constructed, we must first understand the encoding and hashing components, which are covered in the 

following two sections. 
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Figure 4-5.  Dependency of Core Package on Encoder and Hash Packages 

 

4.1.3 The Encoder Package 

The Encoder package is responsible for implementing the encoding and decoding procedures 

needed to perform the lower-level operations in the FuzzyExtractor class, such as generating 

codeword and recovering device data from a noisy source.  As shown in the UML class diagram in Figure 

4-6, this package consists of only a single interface, the IEncoder interface, which contains three 

methods: generateCodeword, decode, and getCodeLength.  The generateCodeword 

method is used to generate a randomly selected codeword from a linear BCH code.  In the 

FuzzyExtractor class, this method is used to generate a codeword to be used in the code-offset 

construction.  The decode method is used to decode codewords from the same set of codewords 

provided by the generateCodeword method.  Finally, the getCodeLength method returns the 

length of the codewords that are returned from the generateCodeword method.  This allows for the 

FuzzyExtractor class to know how many bits are needed from the device data to be used in the 

code-offset construction. 
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Figure 4-6.  UML Class Diagram of the Encoder Package  

 

 Now that we know how the IEncoder interface is defined, let us look into the two classes that 

implement this interface, BCHEncoder and ConcatenatedBCHEncoder.  The BCHEncoder class 

uses the BCH encoding scheme discussed in Section 3.2.4 through the functionality provided by MATLAB 

in the Communications Toolbox.  This class contains two class variables, n and k, which correspond to 

the length of the codeword and the number of message bits in the codeword, respectively.  The 

codewords that are generated and decoded are expected to be BCH codewords having these 

parameters.  The BCHEncoder class implements the getCodeLength method by simply returning 

the value of n. 

 The ConcatenatedBCHEncoder class is essentially identical to the BCHEncoder class, 

except that it constructs and decodes BCH codewords that are concatenated together.  See Section 3.2.4 

for the mathematics of this construction.  In addition to n and k, this class has another class variable, 

numConcatenations, which contains the value of the number of concatenations to use when 

generating and decoding a codeword.  For example, if the value of n is 15 and the value of 

numConcatenations is 4, the length of a generated codeword is 60.  The decode method will also 

expect codewords of length 60 and will split the concatenations automatically when decoding the 

individual BCH codewords. 

  

+generateCodeword() : Bits

+decode(in codeword : Bits) : Bits

+getCodeLength() : int

«interface»

IEncoder

+generateCodeword() : Bits

+decode(in codeword : Bits) : Bits

+getCodeLength() : int

-n : int

-k : int

BCHEncoder

+generateCodeword() : Bits

+decode(in codeword : Bits) : Bits

+getCodeLength() : int

-n : int

-k : int

-numConcatenations : int

ConcatenatedBCHEncoder
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4.1.4 The Hash Package 

The Hash package is responsible for implementing the hashing procedures used by the 

FuzzyExtractor class.  As discussed in Section 2.3, the fuzzy extractor first uses a universal hash 

function to compress the input data into an approximately uniformly distributed output of a fixed 

length.  It then uses a cryptographic hash function to perform a one-way hash on this output for added 

security.  These two types of hash functions are modeled through the IUniversalHasher and 

ICryptoHasher interfaces, which are members of this Hash package as shown in Figure 2-1.  Both of 

the interfaces have a single abstract method that take in a vector of doubles ranging in value from 0 to 1 

as a parameter.  The IUniversalHasher takes in an additional parameter, seed, which determines 

the seed of the pseudorandom number generator used to generate the random binary vector in the 

hash function.  The FuzzyExtractor class contains an instance of a class that implements 

IUniversalHasher and an instance of a class that implements ICryptoHasher, which allows it 

to implement the hashing task of the fuzzy extractor. 

 

+hash(in data : Bits) : Bits

«interface»

ICryptoHasher

+hash(in data : Bits) : Bits

-hashMethod : string

SimpleCryptoHash

+hash(in data : Bits, in seed : int) : Bits

«interface»

IUniversalHasher

+hash(in data : Bits, in seed : int) : Bits

-length : int

ArrayHash

 

Figure 4-7.  UML Class Diagram of the Hash Package 

 

In the Hash package, there is only one class that implements IUniversalHasher and one 

class that implements ICryptoHasher, which are the ArrayHash and SimpleCryptoHash 

classes, respectively.  The ArrayHash class implements the family of universal hash functions as 

discussed in Section 2.3.4.  This class contains a single class variable, which is the length of the output 

values of this hash function.  The SimpleCryptoHash uses a third-party implementation that makes 

use of the cryptographic hashing functionality provided by Java.  This class contains a single class 

variable, which contains the string representation of the desired hash function (valid values of which are 

“MD2”, “MD5”, “SHA-1”, “SHA-256”, “SHA-384”, and “SHA-512”).   
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4.2 Building a Simple Authentication System 

Now that we have an understanding of the architecture of this system, let us walk through the 

construction of a basic fuzzy extractor authentication system using this framework in MATLAB.  In this 

example, we will use a VirtexBoardDevice object to make use of real SRAM readings for our 

device data and a WordXorDeviceReader object to extract data from this device.  For the fuzzy 

extractor component of this system, we will use a ConcatenatedBCHEncoder object for encoding, 

while using ArrayHash and SimpleCryptoHash objects for the universal and cryptographic 

hashing respectively.  The parameters for this system are listed below in the following table: 

 

System Parameter Value 

BCH Code [𝑛,𝑘,𝑡] [511,76,85] 

Number of Copies Concatenated 8 

Key-Length 128 

Cryptographic Hashing Function SHA-512 

 

 Let us begin by first setting up the device component of this system.  We start by instantiating 

an instance of a VirtexBoardDevice object.  This is performed through the following MATLAB 

code: 

 

fileList = dir('C:\mat_data\*.mat'); 
dev = VirtexBoardDevice('device_1',fileList); 

 

  The first line of this MATLAB code creates a file list containing all “.mat” files in the 

“C:\mat_data” directory.  These files are expected to contain the SRAM reading data in the form of 

binary vectors, as described in Section 3.1.1.  The second line calls the constructor for the 

VirtexBoardDevice class.  The constructor for this class requires two parameters, which are the 

device UID and the list of files returned by the dir function from the first line of code.   

Before moving on, we note that the device UID has two purposes.  The first is for developers to be 

able to easily distinguish between device objects in a testing environment or to be used in higher-level 

protocols.  The second is that it allows the DeviceAuthenticator to quickly determine whether or not a 

given device is enrolled in the system before authenticating.  This allows the developer or tester to 
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simulate adversarial cloning of a device by incorporating into their model a UID identical to that of a 

device that is already enrolled. 

Now that our VirtexBoardDevice object is initialized, we can instantiate our 

WordXorDeviceReader object, which will allow the VirtexBoardDevice object to indirectly 

interface with the authentication system.  This is performed through the following MATLAB code: 

 

devReader = WordXorDeviceReader(0,dev,9); 

 

This line of MATLAB code calls the constructor for the WordXorDeviceReader class, which has 

three arguments.  The first parameter is the bit position offset used to begin extracting identification 

bits from the device data.  In this case, we are using an offset of 0, which tells the device reader to begin 

extracting bits at the first bit position.  The second parameter is an object extending the ADevice 

abstract class.  This object is the device that data is read from which, in this case, is the 

VirtexBoardDevice object that we created earlier.  The last parameter is the number of readings 

taken from the device to be used in the averaging function.  This averaging function is used to estimate 

and produce a noiseless set of device data to the authentication system. 

 At this point, we have completed the process of setting up a single device to be used with the 

fuzzy extractor authentication system.  Let us now complete the system construction process by 

focusing on the authentication system component.  We begin by instantiating our encoding and hashing 

objects through the following MATLAB code: 

 

encoder = ConcatenatedBCHEncoder(511,76,8); 
universalHasher = ArrayHash(128); 

cryptoHasher = SimpleCryptoHash('SHA-512'); 

 

 The first line of this MATLAB code calls the constructor for the ConcatenatedBCHEncoder 

object, which has three parameters.  The first two are the length 𝑛 and dimension 𝑘 of the BCH code.  

The last parameter is the number of codewords that are concatenated together.  The second line of 

code calls the constructor for the ArrayHash class, which has one parameter.  This parameter is 

simply the size of the output value produced by the hash function.  The last line of code calls the 

constructor for the SimpleCryptoHash class, which simply takes in the string value of the hash 

function to be used.  In this case, we are using the SHA-512 algorithm, which is represented by the string 

value, “SHA-512”. 
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 Now that we have instantiated the lower-level components of this system, we can initialize the 

final components of the authentication system by instantiating the FuzzyExtractor and 

DeviceAuthenticator classes.  This is achieved through by the following two lines of MATLAB 

code: 

 

fuzzyExtractor = FuzzyExtractor(encoder,universalHasher,cryptoHasher); 
devAuth = DeviceAuthenticator(fuzzyExtractor); 

  

 The first line in this code calls the constructor for the FuzzyExtractor class.  This 

constructor has three parameters, which are the individual objects extending IEncoder, 

IUniversalHasher, and ICryptoHasher, in that order.  In this case, we are simply using the 

encoder and hashing objects we created earlier.  Finally, the last line of code calls the constructor for the 

DeviceAuthenticator class, which simply takes in the FuzzyExtractor object as its only 

parameter. 

 At this point, we have completed the setup process for this example of a fuzzy extractor 

authentication system.  The following MATLAB code sums up the individual steps that we have 

completed in this process: 

 

% Retrieve the list of files containing the SRAM readings 
    fileList = dir('C:\mat_data\*.mat'); 

     
    % Setup a single device 
    dev = VirtexBoardDevice('device_1',fileList); 
    devReader = WordXorDeviceReader(0,dev,9); 

 

% Setup the authentication system 

encoder = ConcatenatedBCHEncoder(511,76,8); 

universalHasher = ArrayHash(128); 
cryptoHasher = SimpleCryptoHash('SHA-512'); 

     
    fuzzyExtractor = FuzzyExtractor(encoder,universalHasher,cryptoHasher); 
    devAuth = DeviceAuthenticator(fuzzyExtractor); 

 

 Now that the authentication system is fully constructed, we can perform the enrollment and 

authentication procedures on the device that we created earlier.  These procedures are executed by the 

following MATLAB code: 

 

devAuth.enroll(devReader); 

isEnrolled = devAuth.authenticate(devReader); 
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 As the name suggests, the enroll method called from the DeviceAuthenticator object 

enrolls the WordXorDeviceReader that we created earlier into the system.  Next, the 

authenticate method performs the authentication procedures on the device reader to determine if 

the device is enrolled in the system.  The result of this operation is returned from this method, which is 

stored in the isEnrolled variable. 

 By now, we have covered the entire procedure by which we set up a fuzzy extractor 

authentication system.  We have also covered how the two basic operations of enrollment and 

authentication are executed using this framework.  Using these simple procedures, we can construct 

varying types of fuzzy extractor authentication systems.  In turn, these systems can be used to observe 

the behavior of authenticating different types of devices or other media that present a suitable PUF. 

 

4.3 Extending the Framework 

At some point during the lifecycle of this prototype system, it may be necessary to extend its 

functionality.  Fortunately, this framework was developed with extendibility in mind and was designed 

to make the extension process as simple as possible.  New components can be added to the framework 

by simply extending the appropriate abstract components.  For example, if we discovered a new, more 

efficient universal family of hash functions, we could add an implementation of this to the framework by 

creating a class that extends the IUniversalHash interface.  To better illustrate how this framework 

can be extended, we will follow the process of adding a new class that extends the ADevice abstract 

class using MATLAB 7.9.0 (R2009b).  We will also briefly review some of the object-oriented MATLAB 

syntax and semantics as they are needed. 

 

4.3.1 Creating a New Class File 

Let us begin by first navigating to the Device package in the source folder of this framework in 

MATLAB, as shown in Figure 4-8.  It is assumed that the source code for the framework is readily 

accessible on the host machine and that the necessary working folders have been configured in 

MATLAB. 
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Figure 4-8.  Device Package in MATLAB 

 Next, we create a new MATLAB class by right-clicking the device folder and creating a new “Class 

M-File”, as shown in Figure 4-9. 

 

Figure 4-9.  Creating a New MATLAB Class File 

 For the purposes of this example, we will name this file “SimpleDevice.m”, which will also 

effectively require the class name to be SimpleDevice as well. 

 

4.3.2 Implementing the New Class 

With our new class file created, we can now begin implementing this class.  We start this 

process by first defining our class in the following code: 

classdef SimpleDevice < ADevice 
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    %SIMPLEDEVICE A simple implementation of ADevice 
    %    
    %   The SimpleDevice class extends the ADevice abstract class by 
    %   providing user-defined data. 
    % 
    %   Worcester Polytechnic Institute 
    %   General Dynamics C4 Systems 
    %   Fuzzy Extractors MQP 
    % 
    %   Author(s):  Isaac Edwards 
    %               Patrick Newell 
    %               Chris Trufan 
    % 
    %   Copyright 2010 

     
end 

 

 In the above code, we first define our class, SimpleDevice, by using the classdef 

keyword.  We then indicate that this class extends the ADevice class by adding “< ADevice”.  In Java, 

this would be synonymous with “class SimpleDevice extends ADevice”, or in C# with 

“class SimpleDevice : ADevice”.  This class definition is terminated with the end keyword. 

 It is also important to note the formatting of the comments (denoted by the ‘%’ character) 

directly underneath the class definition.  This is more or less the standard MATLAB documentation 

format for MATLAB classes.  In addition to providing other developers with useful information regarding 

the class, these comments also allow for documentation to be auto-generated by MATLAB when the 

doc command is invoked.  For example, when the command, doc SimpleDevice, is invoked in the 

MATLAB interpreter, a window similar to that shown in Figure 4-10 would be displayed.  This help 

window displays the details of the SimpleDevice class, such as its properties, methods, and 

superclasses.  This command can also be invoked on any of the existing classes in the framework. 
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Figure 4-10.  Auto-generated MATLAB Documentation for the SimpleDevice Class 

 We can now begin to fill in the details of this class to finish our implementation of 

SimpleDevice.  Let us first define the class properties for this class.  Class properties are variables 

that are members of their parent class.  For the purposes of this example, these properties are 

essentially synonymous with class variables in Java and C#.  Below, we first define a “class properties” 

section by using the properties keyword and then list our single class property as shown below: 

 

    % =============================================== 
    % Private Properties 
    % =============================================== 
    properties(SetAccess='private',GetAccess='private') 

         
        data    % Authentication data 

         
    end 
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 In the above code, we define a single class variable, data, which will contain the data for this 

device.  We also set the variable access to private through the SetAccess and GetAccess meta-

properties so that the variable is only visible inside the class and cannot be accessed outside the class.  It 

should be noted that the SetAccess and GetAccess default to public when their values are not 

specified. 

 Now that we have our class property, we can define the methods for this class.  We start by 

writing the method stubs for the constructor and the implementation of the abstract method, 

getData.  This is shown in the code below: 

 

    % =============================================== 
    % Public Methods 
    % =============================================== 
    methods 

         
        function self = SimpleDevice(uid,data) 
            % SimpleDevice(data) 
            % 
            %   Constructor for the SimpleDevice class. 
            % 
            %   Parameters: 
            %   - data      data to be used for authentication 

             
        end 

         
        function retData = getData(self) 
            % retData = getData(self) 
            % 
            %   Retrieves the data for this device. 
            % 
            %   Parameters: 
            %   - self      calling SimpleDevice object 
            %    
            %   Returns: 
            %   - data      the device data 

             
        end 

         
    end 

 

 Note that the methods for this class must also be defined within a method block using the 

method keyword, similar to how we defined the class properties.  The individual methods in this block 

are defined using the function keyword.  The first method in this block is the constructor for the 

class.  For this constructor, we require two parameters, which are the UID and the data for this device.  

The second method in this block is the getData method, which is the implementation of the abstract 
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method in ADevice.  The getData method has a single parameter, self, which is required for all 

non-static methods in MATLAB classes.  This is similar to how class methods are defined in Python.  

However, this parameter is not required for the constructor. 

 Let us now implement both the constructor and the getData method.  The constructor is 

relatively simple in this case, as all we need to do is set the value of the class variable, data, and the 

inherited class variable, uid.  This is accomplished through the following code: 

   

  function self = SimpleDevice(uid,data) 
            % SimpleDevice(data) 
            % 
            %   Constructor for the SimpleDevice class. 
            % 
            %   Parameters: 
            %   - data      data to be used for authentication 

 

% Set the UID 
            self.uid = uid;             

 
            % Set the value of data 
            self.data = data; 
        end 

 

 The implementation of the getData method is also simple in this case, as shown by the 

following code: 

 

  function retData = getData(self) 
            % retData = getData(self) 
            % 
            %   Retrieves the data for this device. 
            % 
            %   Parameters: 
            %   - self      calling SimpleDevice object 
            %    
            %   Returns: 
            %   - data      the device data 

             
            % Return the data 
            retData = self.data; 

             
        end 

 

 In the above code, the variable, retData, is the return value for the function.  In this particular 

case, we simply set the value of retData to the value of the class variable, data.  Also note that in both 

the constructor and in the getData method, the class variable is referred to by adding the prefix, 

“self.”, to the variable.  This indicates that the variable is a member of the containing class. 
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 At this point, our implementation of the SimpleDevice class is complete.  The entirety of this 

implementation is shown in the MATLAB code below: 

classdef SimpleDevice < ADevice 
    %SIMPLEDEVICE A simple implementation of ADevice 
    %    
    %   The SimpleDevice class extends the ADevice abstract class by 
    %   providing user-defined data. 
    % 
    %   Worcester Polytechnic Institute 
    %   General Dynamics C4 Systems 
    %   Fuzzy Extractors MQP 
    % 
    %   Author(s):  Isaac Edwards 
    %               Patrick Newell 
    %               Chris Trufan 
    % 
    %   Copyright 2010 

     
    % =============================================== 
    % Private Properties 
    % =============================================== 
    properties(SetAccess='private',GetAccess='private')   
        data    % Authentication data    
    end 

     
    % =============================================== 
    % Public Methods 
    % =============================================== 
    methods  
        function self = SimpleDevice(uid,data) 
            % SimpleDevice(data) 
            % 
            %   Constructor for the SimpleDevice class. 
            % 
            %   Parameters: 
            %   - data      data to be used for authentication 
 

   % Set the UID 
             self.uid = uid; 

 
            % Set the value of data 
            self.data = data; 
        end 

         
        function retData = getData(self) 
            % retData = getData(self) 
            % 
            %   Retrieves the data for this device. 
            % 
            %   Parameters: 
            %   - self      calling SimpleDevice object 
            %    
            %   Returns: 
            %   - data      the device data 
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            % Return the data 
            retData = self.data; 
        end 
    end   
end 

 

 

4.3.3 Testing the New Class 

Now that we have implemented the SimpleDevice class, we can test its functionality with the 

rest of the framework.  Just as we did in Section 4.2, let us start by constructing and initializing the 

device components.  This time, however, we will use our newly created SimpleDevice class as our 

object that extends ADevice.  We start by instantiating an instance of the SimpleDevice class 

through the following code: 

 

data = randi([0 1],10000,1); 
dev = SimpleDevice('device_1',data); 

 

 The first line of code simply populates the contents of the vector, data, with 10,000 random 0’s 

and 1’s using the randi function provided by MATLAB.  The second line of code calls the constructor 

for our SimpleDevice class.  As we know from its implementation earlier, the constructor for this 

class requires a device UID and a vector of data.   Here, we simply provide the value, “device_1”, for the 

device UID and the contents of the vector, data, for the device data. 

 After instantiating the SimpleDevice object, we can follow the steps provided in Section 4.2 

to create a simple fuzzy extractor authentication system and then test the enrollment and 

authentication operations on this new device object.  If the system is correctly implemented, a 

SimpleDevice object should never fail to authenticate if it is enrolled, simply because it always 

produces the same, noise-free data.  While this may not seem very useful, it does provide a baseline for 

varying constructions of a fuzzy extractor authentication system.  Since we know that any 

SimpleDevice object should authenticate correctly every time when it is enrolled in the system, we 

can quickly detect if errors are present in the system if a SimpleDevice fails to authenticate. 
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5 BCH C Implementation 

In practice, a fuzzy extractor authentication system would most likely be implemented as an 

embedded system.  Although an object-oriented framework is ideal for prototyping and modularity, a 

more concise system-level software or even hardware implementation would be more appropriate in 

terms of efficiency.  In this section, we discuss an implementation of the BCH encoder and decoder 

component of the fuzzy extractor in the C programming language. 

    

5.1 Mathematical Representation 

There are two types of values that we store for our BCH computations: polynomials with binary 

coefficients and powers of alpha.   To store the polynomials with binary coefficients, any data type we 

can perform binary operations on is acceptable.  Unsigned integers were initially chosen for ease of use 

and debugging, however a single variable will not handle BCH codes of any significant length.  To solve 

this problem, we use a C structure which contains an array of unsigned integers and another unsigned 

integer to provide a length of the data contained within the structure. 

typedef struct Polynomial_s { 

unsigned int* poly; 

unsigned int length; 

} Polynomial; 

To work with the structures we use several functions that recreate operators that work with single 

unsigned integers.  There are several bitwise functions, including XOR, AND, OR and set of logical shifts 

that all work on Polynomial structures of any length.  A few other miscellaneous functions include 

functions to check equality or a bit position and functions to initialize and destroy the data structure.   

The code that uses single unsigned integers remains in the code listing as a way to familiarize 

oneself to the code without worrying about the specific handling of the data structures that must be 

done, such as memory allocations. 

 The other values that need to be represented are powers of alpha which are used when working 

with the Galois fields.  However we can simply use a single unsigned integer which can handle 

sufficiently large codes for most purposes.   

 

5.2 Finding Primitive Polynomials 

We take a naïve approach when searching for a primitive polynomial to use for our BCH code.  The 

function generateMinimumPrimitivePolynomial takes in the order of the polynomial to find, 
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computes the minimum and maximum values of the possible polynomials of that order and searches 

through all the possible values by passing the value to the isPrimitivePoly function.  The minimum 

value is calculated as 2order + 1 and the maximum value is 2order + 1.  The range is reduced by half if we take 

into consideration the fact that for a polynomial to be primitive it must be irreducbile so it must contain 

a 1 coefficient for x0, or else it would be divisible by some power of x.  With this in mind, we count 

upward from the minimum to the maximum by two.   The isPrimitivePoly takes in a polynomial to 

test and an order.  The function first tests that the polynomial does not have an even number of terms, 

as this would cause it to be divisible by x + 1.  It then continues by checking to see if raising the 

polynomial to higher and higher powers of alpha causes a 1 to appear before it should.  In this way, the 

function checks if the polynomial generates the entire field and thus is primitive. 

 

5.3 Generating Minimal Polynomials 

To generate the minimal polynomials, we use the function generateMinPoly which takes in a 

primitive polynomial, the order of the unsigned polynomial and a number indicating which minimal 

polynomial to calculate.  The function builds a list of polynomials which are the values of αik, and at 

every new polynomial calls findMinimalPolynomialZeros which attempts to find a linear 

combination of the polynomials which when added together equals zero.  The 

findMinimalPolynomialZeros function simply looks through all possible combinations of 

polynomials until it finds a combination that XOR’s to 0.  Along the way, it keeps track of a resulting 

minimal polynomial by XOR’ing a result variable by the index of the polynomial in the array it receives 

from generateMinPoly. 

 

5.4 Generating BCH Generator Polynomials and BCH Encoding 

To generate the BCH generator polynomial, we build off of the functions we already have to find a 

primitive polynomial and the minimal polynomials we need.  We then multiply the minimal polynomials 

together using the polynomialMultiply function which shifts and XORs because we are working 

with binary coefficients.   

To encode a message with BCH we simply use a BCH generator polynomial and some bitwise 

operations followed with a call to polynomialDivideRemainder which finds the remainder of 

dividing the generator polynomial and the shifted message that we passed in.  We then OR the result to 

the shifted message to make the completed codeword. 
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5.5 Computing Syndrome Components 

To compute the syndrome components of a received codeword, we use the 

computeSyndromeComponents function.  The function takes in the received codeword and the 

parameters of the BCH code.  It generates a primitive polynomial and some minimal polynomials and 

then uses the polynomialDivideRemainder function to take the modulo reduction of the codeword 

by the ith minimal polynomial.  We then pass the computed syndrome components to 

computeSyndromePowerComponents which plugs in the consecutive powers of α to compute the 

power componets.  It does this by looping through each component and checking if the current bit is set, 

if it is the function XORs the remainder variable by the row value of the power of α equal to the bit 

position multiplied by the index of the current component.  Since we know that the power components 

will always be a single power of α, we can get the α power that corresponds to the value computed and 

return that for each component. 

 

5.6 Computing the Error Locator Polynomial 

To compute the error locator polynomial, we use the computeErrorLocatorPolynomial 

function.  This function takes in the power components computed in the previous step and fills in the 

arrays following the Peterson-Gorenstein-Zierler alrgorithm.  We then use the matrixInverseGF 

function to find the inverse of the S matrix which contains powers of α.  If the inverse is not successful 

and our t is still greater than zero, we recursively call the error locator function with a decremented t.  If 

the inverse is not successful and our t is zero, the algorithm fails and we return null.  However, if the 

inverse is successful, we call another function matrixMultiplyGF which multiplies the S-1 and the C 

matrices containing powers of α.  This gives us the coefficients of the error locator polynomial and we 

cleanup the output a bit before returning the values. 

 

5.7 Chien’s Search and BCH Correction and Decoding 

To perform Chien’s Search, we call the chienSearch function, passing in the coefficients of the 

error locator polynomial and a few other parameters.  The function loops through all of the coefficients, 

which are powers of α and increases their power by their position in the array.  It then checks if XOR’ing 

all of their values together equals 1.  If the values do not equal 1 then it continues increasing the powers 

of α.  If they do equal 1, it adds the current error location to the array by subtracting the power increase 

from the length of the code and continues.  Once it has found error locations equal to the number of 

coefficients it received, it returns the array of error locations. 
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 To correct the received codeword, we build upon the previous sections by using the functions to 

compute the syndromes, compute the power components, compute the error locator polynomial and 

find the error locations.  If the syndrome components are all zero, we know that the codeword was 

received without error so we can return the received codeword without correction and skip the other 

steps.  If not, we pass the values down through the functions until we receive error locations from 

Chien’s Search.  Once we have the error locations, we simply flip the bit at each error location and 

return the codeword as corrected.  To decode, we simply call the correction function and return the 

corrected codeword with the error check bits shifted out. 
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6 Future Work 

There are a myriad of ways in which this project could be extended.  It would be useful to gather 

SRAM readings from devices of the same model to ensure that the characteristics such as noise and 

entropy remain similar from board to board.  Similarly, it could be useful to try and test boards that are 

not only the same model but were also produced consecutively out of the same production process.  

This would help us to determine the source of uniqueness between devices.  It would also be useful to 

test a single board under a wide variety of conditions.  For example, we could observe how noise 

changes with respect to changing temperatures or exposure to electromagnetic radiation.  In order for 

our fuzzy extractor to be functionally useful, it is necessary to know whether we can consistently expect 

a board to provide the same readings within a given error tolerance even after a modest amount of 

wear and tear.   

 Timing analysis could also prove to be a useful area for future work.  While we examined the 

timing of BCH decoding in MATLAB, different physical systems may have different timing results or 

memory requirements, particularly depending on how they perform the decoding process.  Other non-

MATLAB implementations of a fuzzy extractor would benefit from a more thorough examination of what 

the time and space requirements of each BCH code are.  Coding theory also provides yet another 

avenue of advancement for the project.  The use of codes other than BCH codes could be examined.  

The use of BCH codes themselves could also be extended – for example, there are more powerful ways 

to concatenate codes than the ones which we used for this project. 

 Perhaps the most interesting way in which to extend this project is to automate the process of 

calculating optimal parameters.  Our system could fairly easily be extended to automatically calculate 

the bit-error rate and entropy, and perform the calculations necessary to determine what BCH codes are 

optimal.  Even the process of taking readings from a device could conceivably be incorporated into our 

fuzzy extractor, such that you someone could simply connect new devices and the system would pick a 

BCH code and bit extraction pattern. 

 Finally, one could perform more work to examine the bit correlation that we found in the SRAM.  

One could also look for more patterns and correlations between bits.  More boards of the same model 

could be used to try and gain more information about the SRAM behavior, or different model boards 

could be examined for patterns.  It could prove fascinating to try and determine whether the bias 

towards more zeros or ones in a given word had a relationship to the physical layout of the SRAM. 

As was already stated, there are a myriad of ways in which this project could be extended.  As a 

result of that, there are far too many to enumerate here.  Our fuzzy extractor is modular enough that it 
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would be relatively simple to extend any given section of it, and there are still many ways in which SRAM 

data itself could be analyzed.   

  



 

72 
 

7 Works Cited 

1. Markoff, John. Cyberwar - Secure Sources Lacking for Weapons Electronics. The New York Times. 

[Online] October 26, 2009. [Cited: March 6, 2010.] 

http://www.nytimes.com/2009/10/27/science/27trojan.html. 

2. —. F.B.I. Says the Military Had Bogus Computer Gear. The New York Times. [Online] May 9, 2008. 

[Cited: March 6, 2010.] 

http://www.nytimes.com/2008/05/09/technology/09cisco.html?_r=2&ref=technology. 

3. Dailey, Matthew D. and Shomorony, Ilan. Authentication Schemes based on Physically Unclonable 

Functions. s.l. : Worcester Polytechnic Institute, 2009. 

4. Berlekamp, Elwyn R. Algebraic Coding Theory. New York : McGraw-Hill, 1968. 978-0894120633. 

5. Chien, R. T. Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes. IEEE Transactions 

on Information Theory. 1964, Vols. IT-10, October 1964. 

6. Mitzenmacher, Michael and Upfal, Eli. Probability and Computing, Randomized Algorithms and 

Probabilistic Analysis. New York : Cambridge University Press, 2005. 

7. Carter, J. Lawrence and Wegman, Mark N. Universal Classes of Hash Functions (Extended Abstract). 

Proceedings of the ninth annual ACM symposium on Theory of computing. 1977, pp. 106 - 112. 

8. CDs Have Fingerprints Too. Hammouri, Ghaith, Dana, Aykutlu and Sunar, Berk. Heidelberg, 

Germany : Springer-Verlag, 2009, In: Clavier, C., Gaj, K., (eds.) Proceedings of the 11th Workshop on 

Cryptographic Hardware and Embedded Systems (CHES 2009), LNCS, Vol. 5747, pp. 348-362. 

9. The Context Tree Weighting Method: Basic Properties. Willems, Frans M. J., Shtarkov, Yuri M. and 

Tjalkens, Tjalling J. 1995, IEEE Transactions on Information Theory, Vol. 41, pp. 653-664. 

10. Near-Optimum Decoding of Product Codes: Block Turbo Codes. Pyndiah, R. M. 8, August 1998, 

Communcations, IEEE Transactions on, Vol. 46, pp. 1003-1010. 0090-6778. 

 


	Worcester Polytechnic Institute
	Digital WPI
	March 2010

	SRAM PUF Analysis and Fuzzy Extractors
	Christopher J. Trufan
	Isaac Clark Edwards
	Patrick Joseph Newell
	Repository Citation


	tmp.1535548689.pdf.3YCrM

