
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2014

Intelligent Vision-Driven Robot For Sample
Detection And Return
Peng Ren
Worcester Polytechnic Institute

Tianci Zhao
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Ren, P., & Zhao, T. (2014). Intelligent Vision-Driven Robot For Sample Detection And Return. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/3461

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3461?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

MXC-380

Intelligent Vision-Driven Robot For

Sample Detection And Return

-A Study in Artificial Intelligence

A Major Qualifying Project Report:

Submitted to the faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

__________________ __________________

Tianci Zhao (RBE) Peng Ren (CS)

Approved:

Michael J. Ciaraldi

i

Abstract

This project explores various vision methodologies to locate and return a user-specified

object. The project involves building an automatic robotic unit with an all-terrain chassis vehicle

and integrated camera. The high level vision control system uses serial communication to direct

the low level mechanical parts. The chosen approach for vision analysis is comparison of color

thresholds. This solution provides generally accurate detection even in an environment which is

noisy but has good color contrast.

ii

Table of Contents

Chapter 1: Introduction to the project ... 3

Project Goal .. 3

Report organization .. 4

Chapter 2: Background Research ... 5

History of Robots .. 5

Mars Sample Return Mission ... 6

NASA-WPI Sample Return Robot Challenge ... 8

Computer Vision ... 9

Chapter 3: Methodology .. 12

Robot Hardware ... 12

Robot Chassis.. 12

Robot Controller ... 14

Camera ... 15

Robot Software ... 16

Programming Language .. 16

Embedded Programming and Communication Toolkit .. 17

Vision Software ... 18

Chapter 4: Implementation .. 21

Physical Construction ... 21

Structure ... 21

iii

Custom Components .. 21

Wiring ... 23

Software Design.. 24

Software Architecture .. 24

Software Design and Relationship .. 25

User Interface Program .. 26

Vision Controller ... 28

Serial Controller .. 29

Navigation System .. 30

Robot Vision ... 35

SURF Algorithm ... 36

Haar Cascade Classification .. 38

Color Filtering Algorithm .. 40

Chapter 5: Results .. 45

Chapter 6: Conclusion .. 50

Chapter 7: Future Work .. 51

Mechanical Recommendations .. 51

Software Recommendations .. 52

Appendix ... 54

References .. 56

1

Table of Figures

Figure 2 - 1: Curiosity [3] .. 7

Figure 2 - 2: Basic Concept of Mars 2020 Rover [5] ... 8

Figure 2 - 3: Robot used in the 2012 NASA-WPI Sample Return Robot Challenge 9

Figure 2 - 4: Guzman’68 [9] Figure 2 - 5: Ohta Kanade’78[9] ... 10

Figure 2 - 6: Turk and Pentland’91[9] ... 10

Figure 2 - 7: Turtlebot 2 Figure 2 - 8: map generated by Turtlebot 2 by using gmapping 11

Figure 3 - 1: A representative model of the first rover design ... 13

Figure 3 - 2: Dagu Wild Thumper 4WD All-Terrain Chassis .. 14

Figure 3 - 3: T’ReX Robot/Motor Controller ... 15

Figure 3 - 4: Axis M1033-W Network Camera, Logitech WebCam C610 HD .. 16

Figure 3 - 5: Axis M1033-W Network Camera, Logitech WebCam C610 HD .. 18

Figure 3 - 6: OpenCV Logo .. 19

Figure 4 - 1: Battery to T’ReX controller adaptor ... 22

Figure 4 - 2: camera to T’ReX controller adaptor ... 23

Figure 4 - 3: Top view with components .. 24

Figure 4 - 4: Software architecture ... 25

Figure 4 - 5: Graphic User Interface for teleoperation ... 27

Figure 4 - 6: Computer Vision Graphic User Interface ... 28

Figure 4 - 7: Overall Robot Navigation ... 32

Figure 4 - 8: Robot Navigation 1 ... 32

Figure 4 - 9: Robot Navigation 2 ... 33

2

Figure 4 - 10: Robot Navigation 3 ... 34

Figure 4 - 11: Robot Navigation 4 ... 35

Figure 4 - 12: Using SURF to detect phone ... 37

Figure 4 - 13: Usage of the Haar cascade classification algorithm ... 39

Figure 4 - 14: Color tracking method to find the area of the target color ... 42

Figure 4 - 15: Color tracking red object and marking the moving trace .. 43

Figure 5 - 1: Testing Sample Return Robot 1 .. 46

Figure 5 - 2: Testing Sample Return Robot 2 .. 47

Figure 5 - 3: Testing Sample Return Robot 3 .. 48

Figure 5 - 4: Testing Sample Return Robot 4 .. 49

Appendix - 1: Specifications for Wild Thumper All-Terrain Chassis ... 54

Appendix - 2: Specifications of T’ReX Robot/Motor Controller Processor... 54

Appendix - 3: Specifications of TReX Robot/Motor Controller Power Supply 55

3

Chapter 1: Introduction to the project

During recent years, there is an increasing need for autonomous robots in research and

military areas. For tasks such as sampling and investigating, objects and videos need to be taken

while moving for analysis purposes. Often times it is inconvenient or impossible for humans to

finish such tasks due to environmental restrictions. A feasible solution to this problem is a device

able to autonomously find a path to the desired location with the capability of taking images and

videos, identifying and carrying the desired objects, and responding to various commands given

by a human. Such a device could be used in an extreme environment like Mars to collect and

return samples for scientific analysis, or it could be used in warfare for investigation purposes.

Project Goal

The goal for this project is to create a four wheel mobile robot that would be able to

autonomously find a path to the desired location by using an efficient computer vision method.

The robot should have a robust mechanical support that allows it to travel through rough terrain.

The robot also needs to have accurate detection and a user-friendly interface program. Ideally the

robot would be able to recognize the desired item using the camera, retrieve the object, and

navigate a path to the destination. The robot needs to be able to switch between autonomous

finding and teleportation control, and send video back to the user while traveling.

This goal was broken down into various objectives. First a graphic user interface needed

to be created to give the user the option to control the robot remotely. Video analyzing is very

important; to accomplish autonomous path finding the robot must be able to recognize the item

and drive toward it. After these two objectives are accomplished, the resulting functions can be

4

merged into the next objective, which is to have the robot find and return the sample

autonomously.

Report organization

The organization of the report is as follows. In Chapter 2, background information is

presented on the research topic. Relevant external study is discussed, which includes a brief

history of robots, introduction to the Mars Sample Return Mission, the NASA-WPI Sample

Return Robot Challenge, and a summary of the history of computer vision. Chapter 3 introduces

hardware and software used in the project. Chapter 4 expresses the methodology of how the

project was implemented to fulfill the requirements. Chapter 5 illustrates the results of the

system design, including testing of the final product. Conclusions are drawn and a summary of

the project is given in Chapter 6. Possible improvements and future work are given in Chapter 7.

5

Chapter 2: Background Research

 History of Robots

 Although robotics are considered a cutting-edge technology in the 21st century, the basic

idea of robots has occupied the human mind for a long time before the technology had been

developed. Novelists and movie directors have dreamed and written about stories of robotic

technology, and many of these science fiction stories have become classics in literature. One

example is Frankenstein, which is a fiction novel about an artificial man who goes out of control

and become a monster. Other examples such as the movie The Day the Earth Stood Still in the

1950s, and the movie WALL.E in 2008 both show a robot as advanced saviors for human. So

what is a robot? The Robot Institute of America defines a robot as “A reprogrammable,

multifunctional manipulator designed to move material, parts, tools, or specialized devices

through various programmed motions for the performance of a variety of tasks.”

The earliest robots were built in the early 1950s by George C. Devol, an inventor from

Louisville, Kentucky. He invented and patented a reprogrammable manipulator called

"Unimate," from "Universal Automation."[12] Devol attempted to sell his robots to industry, but

did not find success. In the late 1960s, Joseph Engleberger, a American businessman and

engineer, acquired Devol's robot patent and modified it into an industrial robot; he formed a

company called Unimation to produce and market the robots. [12] For his successes, Engleberger

is considered the father of the modern robotics industry.

6

As computer technology became more advanced and affordable, scientists became more

interested in developing robotic technology that could eventually create robots which think as

humans do. Today, robotic applications are used in various fields such as military, medical,

space exploration, industry, research task and police work. They are used to perform tasks that

are undesirable or too dangerous for humans, such as repetitive assembly work or bomb disposal.

Estimated by the International Federation of Robotics, the number of industrial robots world-

wide will reach over 1,659,500 units by the end of 2016. [13]

Mars Sample Return Mission

Mars sample return has been studied as back as far as the 1960s by the National

Aeronautics and Space Administration. The idea of the mission was to send a robot to Mars for

the purpose of collecting and bringing back to Earth samples of rock, soil and dust from Mars. A

Mars sample return mission would give scientists the capability to explore, analyze and study

Mars to a high level of detail in Earth laboratories. The mission would help to develop new

technologies since there are always new things to be studied during the development phase. It

would also allow us to explore for signs of life on Mars. Until now, several missions have been

planned but none of the proposed missions have gone beyond the planning phase. The last three

Mars sample returns proposed are a NASA-ESA proposal (Mars 2020 rover mission), a Russian

proposal (Mars-Grunt), and a Chinese proposal [1].

In the year 2012, NASA’s Mars Science Laboratory successfully sent the rover Curiosity

to the surface of Mars and the rover began sending back images immediately after it landed

safely. From images Curiosity sent back, there is evidence of an ancient streambed where water

once flowed knee-deep [2], which could be a sign of life in the past. The rover Curiosity is a car

size rover; it can travel up to 300 feet per hour on its six-wheeled rocker-bogie system. Curiosity

7

also has 17 cameras [3], which gives it the capability to capture stunning image of the red planet.

A picture of the rover could be seen in Figure 2.1, which shows the front view of Curiosity.

Figure 2 - 1: Curiosity [3]

In order to go further in investigating the ancient environment, past habitability and

geological processes on Mars, NASA has announced the Mars 2020 rover mission in December

2012. The Mars 2020 rover mission is a Mars planetary rover mission study by NASA with a

possible launch in 2020 [4]. The mission is not only designed to accomplish the science research

goal but also be an important step to prepare sending humans to Mars in the 2030s. The rover’s

design for the Mars 2020 rover mission will be driven from the Curiosity rover, which landed on

Mars in August 2012. The entire rover chassis would be essentially same as the Curiosity rover,

which reduces overall technical risk and saves time and funds for the project. The basic structure

given by NASA could be seen in Figure 2.2.

8

Figure 2 - 2: Basic Concept of Mars 2020 Rover [5]

NASA-WPI Sample Return Robot Challenge

In order to find innovative solutions in autonomous navigation and robotics technologies

for NASA’s space program, the NASA-WPI Centennial Challenge has been held since 2012.

The challenge required each team to create a robot that can locate and collect geologic samples

from varied terrain, operating without human control [6]. The first running of the Sample return

Robot Challenge took place in 2012, at WPI, where six team showed up to the competition but

none of them succeeded. The second competition was held in 2013, at WPI. Ten teams competed

for level one, which required the robot to leave the platform, retrieve a sample and return to the

platform within the 15-minute limit [7]. There was one team which successfully completed level

one, but no teams advanced to level 2. Figure 2.3 shows a robot used in the previous year

NASA-WPI Sample Return Robot Challenge.

9

Figure 2 - 3: Robot used in the 2012 NASA-WPI Sample Return Robot Challenge

Computer Vision

Computer vision is the ability of computers to see. From the engineering point of view,

computer vision aims to build recognition systems which could mimic or even surpass some of

the tasks which the human visual system can perform. Computer vision first started in the 1960s

at MIT as a graduate thesis, which discussed the possibilities of extracting 3D geometrical

information from 2D perspective views of blocks. [8] Many researchers followed this work and

interpreted computer vision in synthetic worlds. Later in 1970s, scientists realized the importance

of analyzing images from the real world. Thus, research was focused on interpreting selected

images such as edge detecting and segmentation. In the 1980s, computer vision technology

shifted toward geometry and increased mathematical rigor. In the 1990s, face recognition

technology came out, which is widely used in security and many other areas. [9] In recent years,

10

computer vision technology has grown at a fast rate. Large annotated datasets are available for

analyzing and video processing has also started. This is now being applied to robot vision.

Figure 2 - 4: Guzman’68 [9] Figure 2 - 5: Ohta Kanade’78[9]

Figure 2 - 6: Turk and Pentland’91[9]

Nowadays, computer vision has become part of our daily life. Computer vision can be

used in the medical field to support medical research by image data, which provides various

information such as blood flow, the structure of an organ, or assessing the quality of medical

treatments. It is also largely used in industry to support manufacturing processes. Tasks such as

measuring the position and orientation of an object to be picked up by robot arm and inspecting

the final product in order to find defects are all done by computer vision. Military applications

are one of the largest areas for computer vision. One example is to use computer vision for

11

missile guidance, which uses locally acquired image data to reduce complexity and to fuse

information from multiple sensors to increase reliability. [10]

One of the upcoming fields is autonomous vehicles, which includes aerial vehicles, land-

based vehicles, and unmanned aerial vehicles (UAV). Autonomous vehicle technologies can be

classified by the level of automation, ranging from using a computer vision based system to

support a driver, to more autonomous vehicles, and fully driverless vehicles. Fully autonomous

vehicles typically use computer vision for navigation. One example is the Turtlebot robot used in

the course RBE 3002: UNIFIED ROBOTICS IV, where the robot sensor data and computer

vision technology are used to produce a map of its environment (SLAM) and detect obstacles. In

2012, Google has developed the Google driverless car, where the car takes several maps

generated by a range finder mounted on the vehicle and combines the generated map with maps

of the world to produce different types of data models that allow it to drive itself. [11]

Autonomous vehicles have already being used in space exploration, such as ESA’s ExoMars

Rover and NASA’s Mars Exploration Rover.

Figure 2 - 7: Turtlebot 2 Figure 2 - 8: map generated by Turtlebot 2 by using gmapping

12

Chapter 3: Methodology

 For this project, a robot had to be constructed that had enough power to grab and move

the aimed object as well as to power the necessary surveillance equipment. After discussion, we

decided that the size of the robot should be relatively small because it would require less power

and construction expense. The robot needed to use a computer vision method to navigate a path

to the destination, without using encoders or sensors. For testing purposes, the robot needed to be

able to run for at least an hour before recharging the battery.

Robot Hardware

 Several different solutions were considered in the process of designing this robot; the

primary concerns were the ease of construction and time consumption since the team only

contains two team members. In this section, robot hardware, including chassis, robot controller

and camera, will be introduced. The implementation of this hardware will be introduced in the

next chapter.

Robot Chassis

The first choice for the team was to make a custom six wheel rover. The design focused

on modularity in order to easily keep a consistent design for the base while still being able to add

specialized features depending on the terrain that the rover will have to traverse. A rigid chassis

would initially be used, but suspension could easily be added to the rover if testing proved it

would be helpful. The top plate would have a grid of tapped holes to allow for easy interfacing of

other components such as the arm, camera boom, and sample storage container. It was later

decided that the design would be time consuming, and using plastic would make it susceptible to

breakage in an outdoor environment.

13

Figure 3 - 1: A representative model of the first rover design

 Later in the term, the team found a four wheel drive chassis from Dagu Electronics which

was at a reasonable price and decided to purchase it. The rover is designed to drive on rough

terrain, which makes it a great platform for robot that needs to perform tasks in an outdoor

environment. The size of the robot is 11 by 12 by 5 inches, which was big enough to carry all the

necessary equipment. The movement of the robot was provided by four DC motors with brass

brushes and 75:1 steel gearboxes that drive 120mm diameter spiked tires. These motors are

designed to run between 2V and 7.2V. A rechargeable 7.2 volt Nickel-Metal Hydride battery

pack would supply power to these motors. When powered at 7.2v, the chassis can reach a top

speed around 3 kilometers per hour. The stall torque of each motor is roughly around 11kg-cm,

which is far from powerful. The robot also has a spring suspension system which keeps each

wheel in contact with the ground for maximum traction. The chassis is made from a 2mm thick

corrosion-resistant anodized aluminum plate; nuts and bolts are made from stainless steel, which

14

made the chassis robust enough for all terrain. Specifications of the robot would be seen in the

Appendix, Table 1.

Figure 3 - 2: Dagu Wild Thumper 4WD All-Terrain Chassis

Robot Controller

 There were primarily two choices for onboard processor: the T’ReX Robot/Motor

Controller or the Raspberry Pi Controller. The team first considered the Raspberry Pi controller.

This controller was served with a reasonable price and is programming compatible with Arduino

IDE. After more researching, the team found that the Raspberry Pi Controller would not be

powerful enough for this project. Later in the term, the team found the T’ReX Robot/Motor

Controller and decided to use it since the portability, compactness and power were all desirable.

The T’ReX Robot/Motor Controller is an Arduino compatible robot controller that allows

up to 2 analog input, and 4 digital input devices to be controlled from a single USB port. The

controller also has motor input and output, which allows motors to be directly connected to it;

the motor drivers can supply up to 40 A. A Bluetooth module could also be connected to it to

achieve wireless control. Attached to this controller are the following:

15

One servo mounted on the bottom of the robot arm to raise the arm, one servo mounted

on the end of the robot arm to control the gripper, and four DC motors which provided

movement to the robot. The specification of T’ReX Robot/Motor Controller can be seen in the

Appendix, Table 2 and 3.

Figure 3 - 3: T’ReX Robot/Motor Controller

Camera

This robot also needed an “eye” that would allow it to recognize the world around it and

be able to detect the desired object. Three different cameras were used in this project in order to

achieve better performance. The first camera used by the team was the Axis M1033-W Network

Camera. This camera used a Wi-Fi connection which allowed the team to achieve wireless

control. However, the video quality was heavily dependent on the network speed. So the team

tried the second camera, which was the Logitech WebCam C610 HD. A USB cable was used to

connect between camera and computer. The detection range of the robot was limited since the

camera required a wire for the connection. The last camera the team tried out is Pixy, also known

as CMUcam5. It is a fast vision sensor that the user can quickly “teach” to find objects, and it

16

can connect directly to an Arduino-compatible controller. Since Pixy does vision processing

itself, this reduces the load on the other computers in the system. However, Pixy is a brand-new

product, and our Pixy only arrived during mid-April. The team did not have enough time to

change the program design, so we used the Logitech WebCam C610 HD instead.

Figure 3 - 4: Axis M1033-W Network Camera, Logitech WebCam C610 HD

Robot Software

Programming Language

Our team decided to use the Java programming language as our primary programming

interface to build the software. Java is a very powerful language, which promotes portable

applications. Specifically, Java offers different types of portability: the source code portability,

the CPU architecture portability and the OS and GUI portability. The portability is very

important to our project since robotic research always involves programming on several different

17

platforms. A software system with high portability enables it to be exported from one platform to

another. For instance, when we have finished the software system under Windows platform and

want to import it to the Linux, and maybe integrate with the ROS framework, we could probably

do it without rewriting everything for Linux, due to the high portability of the Java language.

Another important reason for our team to choose Java is that it is an object-oriented

language with concurrent safety. The object oriented feature could make our code more reusable

and make the code more maintainable. Also, by taking advantage of design patterns, we could

easily make the coding more flexible and sustainable. With the object oriented design, we could

easily add new modules to the existing software without modifying large amounts of code.

Embedded Programming and Communication Toolkit

The low level robot control software is a small embedded software system on the T’ReX

microcontroller. Since the controller supports the Processing language interface, we choose the

Arduino IDE to perform the software development. Also, the sample code of the controller

provided by the manufacturer is written in Arduino; therefore it is convenient if we choose

Arduino to do the task.

18

Figure 3 - 5: Axis M1033-W Network Camera, Logitech WebCam C610 HD

In the software system, the high level part of the software on the laptop needs to

communicate with the robot connected to a serial port. The serial port communication is usually

connected through the USB cable such as shown in figure 3.5. To make sure the high level part

could easily communicate with the low level Arduino code, we decided to use the RXTXcomm

library. With RXTX, our team could access serial ports through the RXTXcomm.jar file. Along

with the jar file, the pre-compiled binaries are readily available to provide the interface to the

operating system’s virtual UART ports. With the help of the RXTX, the amount of work to

establish the serial communication is greatly reduced, so that we could focus our attention on the

vision analysis programming. [15]

Vision Software

Since our team concentrated on computer vision to solve the problem, having suitable

vision software is critical for the team to achieve success. There are many vision software

systems already in the market for both commercial and educational usage, and all of them have

19

their own advantages and disadvantages. After researching along with consultation from the WPI

Sample Return Challenge team, our team decided to choose OpenCV as the primary computer

vision tool to complete the task.

Figure 3 - 6: OpenCV Logo

Before heading to details about the vision analysis and algorithms, we will first briefly

introduce OpenCV. OpenCV, short for Open Source Computer Vision, is a project launched in

1999 by the Intel Corporation. It was first announced as an optimization research aiming for

advancing CPU-intensive application, part of a series of projects including real-time ray tracking

and 3D display walls [14].

The initial public release of OpenCV was in 2000 at the IEEE Conference on Computer

Vision and Pattern Recognition. Until 2005, there were another five beta versions released.

However, the first major version of OpenCV was released in 2006, labeled as the 1.0 version of

OpenCV. The second primary release, i.e. OpenCV 2, was on October 2009, which contained

20

major changes to the C++ interface. The official release of OpenCV now occurs about every 6

months and the OpenCV has already been taken over by OpenCV.org, a non-profit organization.

The reasons for our team choosing OpenCV are:

1. OpenCV is released under a BSD license so that it is free for both commercial and

educational use. Our project is an academic research focusing on the reusable and

improvable solution to a real world problem. The limited budget suggests that open

source software should be our first choice. Moreover, by choosing an open source

software as our toolkit, it is easy for the successor teams to improve or add modules

built on our project.

2. OpenCV is a multi-platform software system and supports different programming

language interfaces. OpenCV has C and C++, Python and Java interfaces and

supports Windows, Linux, Mac OS, iOS and Android. The powerful portability of

OpenCV offers us a good way to integrate our software system to different platforms.

And our team could free to choose the programming language to develop the vision

system.

3. OpenCV is open source and has more than 7 million downloads by users. OpenCV is

still in development and has a user community of about 47 thousand people. The

large user pool guarantees that we will always have technical support from the

official software community. Moreover, it is easy for us to find resources and

tutorials if our team encounters any problems in the process of development.

21

Chapter 4: Implementation

Physical Construction

Structure

 The structural components of the robot are made up mainly of pieces from a Dagu Wild

Thumper kit. These pieces are held together with bolts and hex nuts which are also part of the kit.

On top of this frame rides the T’ReX controller which provides processing power for the gripper

and the arm. The movement of the robot is driven by four Dagu Wild Thumper wheels. Each

wheel is directly driven by a DC motor which is built inside the frame. The four DC motors are

powered by a rechargeable 7.2 volt Nickel-Metal Hydride battery pack. The first camera (Axis

M1033-W Network Camera) the team used is mounted directly to the frame with 6-32 machine

screws and nuts. The camera is mounted in the center of the top frame and it is powered by the

T’ReX controller through a custom made power cable. Later in the term, the team changed to

using the Logitech WebCam C610 HD. The team used pieces from a Vex robotics kit to build a

stand to provide enough height for the camera to “see” the ground and then used a zip tie to

secure the camera on the stand.

Custom Components

Since the robot used several different units that were not designed to work together, some

custom components were made to adapt from one system to another. The custom pieces were the

following: a connector that connects two rechargeable 7.2 volt Nickel-Metal Hydride batteries,

and a power cable that connect between the Axis M1033-W Network Camera and T’ReX motor

controller.

22

The battery used to provide power to the robot was the standard rechargeable 7.2 volt

Nickel-Metal Hydride battery. The voltage of the battery was within the lower end of the

acceptable range of the motor controller, but the controller board may be damaged due to the low

voltage. Thus, a connector was needed to connect two batteries together in series. A positive end

of a battery and a negative end of the other battery are wired together by using wire nuts.

Figure 4 - 1: Battery to T’ReX controller adaptor

 The first camera the team used was the Axis M1033-W Network Camera. This camera

provides a Wi-Fi connection, but the power cable it uses needs to be wired. In order to achieve

wireless control, the team decided to change the power cable to allow it to directly connect to

T’ReX motor controller. We cut the power cable and connected it to the leads by using electrical

tape.

23

Figure 4 - 2: camera to T’ReX controller adaptor

Wiring

 In order for the software to correctly interface with the hardware, components need to be

connected in a particular manner. The two Vex batteries were connected to the custom made

battery to controller adaptor. The battery to controller adaptor was connected to the motor input

and motor output on the T’ReX motor controller. The servo that controlled the arm was

connected to pin D7 and the motor that controlled the gripper was connected to pin D12. The

T’Rex motor controller board and Logitech WebCam C610 HD were each connected to the

laptop via USB.

24

Figure 4 - 3: Top view with components

Software Design

Software Architecture

A design diagram of the software architecture is presented in Figure 4.4. It describes how

each software unit integrates with the robot. In this section, we will discuss what each of these

nodes does, and explain why such software design decisions were made.

25

Figure 4 - 4: Software architecture

Software Design and Relationship

This section will review the software design for our robot through discussing all major

software component and their functions. While there are some very powerful robotic software

platforms such as Robot Operating System (commonly known as ROS), we still decided to

develop our own framework for the robot. As shown in the picture above, the software system

consists of two parts, the high level part that sits on the laptop and the lower level part that is on

the robot. The communication bridge of the two parts is through serial port communication. Our

team uses the external java library RXTXcomm to do the serial communication. While the

RXTXcomm library provides a convenient communication framework it was still necessary to

develop our own organization of tasks to facilitate teleoperated control and autonomous sample

return functionality.

26

User Interface Program

The user interface program is the place where the user could interact with the robot. It

provides the user a graphic user interface to control the robot or let the user know what happens

when the robot is automatically undertaking the sample return mission. The GUI is programmed

using Java Swing to guarantee the portability of the program. The user interface shown in the

figure 4.5 is very foolproof and simple to use. We cut all the cumbersome features on the GUI to

reduce confusion and only maintained the key features to provide full functionalities. The user

could control the robot from the GUI by clicking the buttons and check the robot status through

the consoles on the GUI. By using this GUI, the user could teleoperate to drive the robot and

control the robot arm and gripper. On the console, the user could see the moving direction of the

robot, angle of the robot arms and the gripper status, i.e. if the gripper is open or closed. The left

side of the GUI provides a video frame to show the raw image from the camera so that the user

could monitor the vision of the robot. Although our final goal is to make the robot accomplish

the sample return task autonomously, we still decided to provide the user a GUI to control the

robot for some other usage.

27

Figure 4 - 5: Graphic User Interface for teleoperation

 Since the primary object detection algorithm is the color tracking method, we provide a

computer vision GUI for the user to specify the target color that he or she wants the robot to

detect. The vision control GUI is shown in figure 4.6. Basically, the vision GUI consists of three

components: two window frames and one control panel. The window frame called “Video Feed”

will always display the raw video captured from the camera on the robot so that the user could

see the original image from the camera in this window. The window named “Object Tracking”

will show the processed image by the vision controller. We will describe our vision algorithm in

detail in a later section of this report. The image processed by the vision controller will mark the

center of the detected object as a yellow point. If the detected object moves on the frame, the

program will draw a line between the previous center and the center of object after moving so the

user could see the moving track of the target object. In figure 4.6, since we did not provide a

28

specific color for the program to detect, the program will just draw a point in the center of the

screen. The control panel is the place where the user could specify the color to detect. However,

the user must provide the hue, saturation and value of the target color. The reason for this will be

fully explained in the vision algorithm section. Simply speaking, the HSV color space is the most

suitable color space for segmentation of colors. When the user articulates the color to detect via

the control panel, the robot will target to detect the object, and mark the position of the target in

the “Object Tracking” window.

Figure 4 - 6: Computer Vision Graphic User Interface

Vision Controller

 The vision controller is the control center for handling the computer vision task. Since the

primary goal of the robot is to complete the sample return mission, the vision controller, as the

29

vision analyzing center, plays the crucial role in the software system. The proper functionality of

the vision controller directly determines the success of the project. In other words, the vision

controller is the heart of the software system. Moreover, our team added some useful

functionality to the vision controller to do some processing of the image even though the sample

return mission may not need these features. For example, the vision controller could draw lines

or polygons on the screen to help the user markup a particular screen area or to help the robot to

navigate the path. The robot navigation part of the report will explain how we use lines to

navigate the robot. Also, the vision controller could process the source image to convert it to a

binary image, or blur the image, or convert it to a greyscale image, and so on.

Serial Controller

 The serial controller is the bridge connecting the vision controller and the low level

robotic software. When the vision controller finishes analyzing the image captured from the

camera, it will send a command to the serial controller and let the serial controller be the delegate

to convey the command to the low level. The serial controller will convert the command from

the vision controller to the corresponding serial signals and establish serial communication with

the low level part through the serial port. And finally, the serial controller will send the processed

serial signal to the microcontroller in the low level part of the software system via the USB cable.

After that, the microcontroller will control the robot according to the command given to it. When

the microcontroller completes the task, it may want to send the operation feedback back to the

high level to notify the user. At this time, the serial controller will again act as the messenger

between the high level and the low level software system. It gets the signal from the serial port,

decodes the signal, and eventually sends the processed feedback to the user interface program.

30

When the user interface program receives the feedback, it will update the GUI to print out human

readable status of the robot on the console.

Navigation System

Our system provides the user a graphic user interface to control the robot; however, our

primary goal is to let the robot autonomously complete the sample return task. Since our robot is

completely camera driven, it is crucial for us to figure out a suitable navigation algorithm to

guide the robot to find the path to the targeted sample. In this part of the report, we will explain

the navigation system of our robot.

Since our robot does not have any sensors and encoders -- it is totally driven by the

camera -- it is hard to use conventional methods to navigate the robot. Also, traditional camera

driven robots always have more than two cameras to assist them in finding the angles and

distance to the object. However, there is only one camera installed on our robot. Therefore, the

robot navigation once became a hard problem for the team.

The first idea we considered was to separate the camera and the robot. By putting the

camera in a position where both the robot and the targeted object are in the vision, our camera

could probably direct a way for the robot to find the target. However, this approach turned out to

be difficult to implement. First of all, the camera must have the capability to recognize the robot

and the targeted object at the same time. After that, the camera must send correct commands to

the robot to let it approach the object. Even though it is achievable to have the camera detect the

robot and object simultaneously, it is technically hard to tell which direction the robot is heading.

Also, as the robot changes its position on the screen, the corresponding command for the camera

to send would be different, which is hard to be learned by the machine. Finally, because the

31

camera is fixed and cannot rotate, when either the robot and the object happens to fall out of

view of the camera vision, there is no good way for the system to address this situation.

Therefore, we had to give up this method of navigation.

After several trials and failures, the final navigation algorithm for our team is the vision

line driven method. In this algorithm, the camera is installed on the robot and faces the same

direction as the robot head. Since the gripper of the robot is in front of the robot and also faces

front, the camera and the gripper are on the same line and facing the same direction. This is an

important feature that makes it possible for us to implement the method. As the camera is facing

the same direction as the robot and the gripper, the camera view in this case is the robot vision --

what is seen in the camera is just in front of the robot. The overall navigation guide picture is

Figure 4.5.

To help the robot find the path to the targeted object, we draw some assistant lines on the

camera frame to guide the robot. In figure 4.5 you could see there are two vertical lines in the

middle of the window and three horizontal lines in between the two vertical lines at the bottom

of the window. The two vertical lines in the middle are the robot direction guide lines. When the

target appears in the camera vision, there are only three possible situations regarding the two

lines — the object must be on left of the left vertical line, or on right of the right vertical line or

just in between the left vertical line and the right vertical line. The robot will use the position of

the object in the screen to adjust the moving direction. When the target is on the left of the left

vertical line, such as the situation presented in figure 4.6, the vision program will ask the robot to

turn left. Similarly, when the aiming object is on the right of the right vertical line, the robot will

be told to turn right. The robot will keep turning right or turning left until the targeted object falls

between the right vertical line and the right vertical line.

32

Figure 4 - 7: Overall Robot Navigation

Figure 4 - 8: Robot Navigation 1

33

When the target in between the two middle lines, as shown in the figure 4.7, the robot

will take action according to the Y coordinate of the center of the target. In figure 4.7, even

though the object is in the range of the two middle vertical lines, the center of the object (marked

as the yellow point by the program) is above all of the three horizontal lines (the black, purple

and green horizontal lines drawn between the two vertical lines). In this case, the program will

know that the robot, although facing towards the target, is still far away from the object, so it will

just let the robot keep moving forward. Whenever the target is out of the range of middle lines,

the robot will automatically change the moving direction again.

Figure 4 - 9: Robot Navigation 2

As the robot moving forwards, it will become closer and closer to the target. The object

position in the window therefore will gradually move downwards as the robot approaches it.

When the center of the object is below the black horizontal line, the program will print a message

34

on the console to express that the robot is approaching the target and should be prepared to take

actions later. In fact, in this case, the program will not send commands to the robot do something

special; however, we set a check point here to help us the debug the software system. As the

center of the object is below the purple line (figure 4.8), the program will tell the robot that it is

very close to the object and ask the robot to open its gripper. As we mentioned early, the camera,

robot and gripper face the same direction on the same line; therefore when the gripper is open, it

is still facing towards the target. Now, the robot is ready to grab the target.

Figure 4 - 10: Robot Navigation 3

Eventually, when the robot has finally reached the appropriate distance to the targeted

object, i.e. the center of the object in the screen is just below the green line, the program will

35

command the robot to close the gripper and lift up the object. The final status of the navigation is

presented in figure 4.9.

One thing to be noticed is that when the targeted object is not in the vision of the camera,

or the camera happens to not detect the object in front of it for some reasons, the program will

ask the robot to turn around to attempt to find the target. When the target appears in the window

and has been successfully captured by the camera, the ordinary navigation process that we

described above will begin to operate.

Figure 4 - 11: Robot Navigation 4

Robot Vision

In this section of the report, we will articulate the vision analysis process of the robot.

Our robot is fully driven by the camera, so the computer vision processing is the critical part of

36

the project to guarantee the functionality of the robot. In the early part of the report, we already

explained the choice of the camera that is used for this project. The network condition turns out

to be an issue that has a great impact on the performance of the video frame. In computer vision

analysis, a stable frame capture rate is important—obviously the robot must get a sense of what

is happening now, but not what happened in the past. If the frame transfer rate is too low from

the camera, it will probably cause delay in the robot action. For instance, if the camera could

only capture a frame every two seconds, the vision controller may end up analyzing an image

captured two seconds ago and cannot make correct judgments based on what it sees. Therefore,

the Logitech webcam is the best camera to accomplish the vision task.

Our team attempted several different vision algorithms and compared the performance of

these algorithms to choose the best one. There are many powerful computer vision algorithms

that used by people to detect specified objects and all of them have their own advantages and

disadvantages. What the team needed to do was choose the best one that is most suitable to solve

the problem in this particular situation. Now, we will briefly introduce each of the algorithms we

used in the project and explain why or why not we chose to use it.

SURF Algorithm

SURF, Speeded Up Robust Features, is one of the most powerful and popular vision

algorithms to detect targets. SURF is a robust local feature detector and an improved version of

Scale Invariant Feature Transform (SIFT) algorithm. The underlying theory of SURF is based on

the summary of 2D Haar wavelet response and making an effective implementation of integral

images. And SUFR depends on the determinant of the Hessian matrix for location and scales.

SURF could quickly calculate integral images with three integer operations by using an integer

approximation to the determinant of Hessian blob detector. [16]

37

OpenCV offers built in SURF functionalities to help the user implement a SURF

algorithm in the project. Our team took advantage of this feature of OpenCV and tried SURF as

our detection algorithm in the beginning. In the procedure, we first provide a clear image of the

target object to program. The program will then instantiate a SURF object and set up the

initialization according to the parameters provided by user, such as Hessian threshold. After that,

the program will use the built in functions SURF.detect() and SURF.compute() to find all the

descriptors and keypoints in the image frame, and according to the computed value figure out the

location and the matching rate of the object. Figure 4.11 shows how we tried to use a SURF

algorithm to detect a mobile phone through the webcam on the laptop. The left side on the

picture is the real photo for the phone as the targeted object, while the right side is the video feed

from the webcam. As shown in the figure, the SURF algorithm succeeded in recognizing the

phone held in a human hand.

Figure 4 - 12: Using SURF to detect phone

38

Although SURF is a very powerful object detection algorithm with many successful

applications, we found that this method is not suitable for our project. The reason is that due to

the environment noise and distraction, SURF could not always correctly detect the target. In the

experiment, our team found that the detecting rate by using this algorithm in the real world

circumstances was relatively low. Since to accomplish the sample return mission the program

must be able to keep track the target position, SURF algorithm would not be a good choice for

the consideration. Therefore, we decided to give up the exploration of SURF.

Haar Cascade Classification

Another vision algorithm that our team attempted to use is the Haar cascade classification

algorithm. It is also one of the traditional object detection algorithms used by many other

academic researchers and commercial organizations. Similar to SURF algorithm, the Haar

classification method uses the Haar-like features to do the object recognitions. The so-called

Haar-like features are based on the Haar wavelet. It considers the adjacent polygons regions of

the particular areas on the detecting window, adding up the pixel intensities of the regions and

computing the difference between the intensity summaries. After that, the Haar classification

algorithm uses the difference between the intensity sums to classify the subsections of the

analyzing image. The Haar classification algorithm is usually used to recognize human faces —

the eye area of the face is usually darker than the cheek area, which could form a Haar feature for

face detection. Figure 4.12 shows the usage of the Haar classification algorithm to detect human

faces.

39

Figure 4 - 13: Usage of the Haar cascade classification algorithm

In OpenCV, there is a trainer as well as a detector built into OpenCV to help the user

utilize the Haar cascade algorithm. To use this algorithm, the user must provide the target object

classifier to deal with the detection. The classifiers themselves are XML files containing the

Haar feature of the target object and some useful parameters to do the object tracking. OpenCV

offers many pre-trained classifiers for faces, eyes, smiles, etc. However, if we want the program

to detect a specified object for the project, we must train our own classifier for the object through

the cascade classifier training. The cascade classifier training is in general a very complex

process and they did not provide us several important pieces of information such as what images

and parameters they used for training. Also, the Haar feature detection is not angle independent,

which means, when the same object appears in the camera with a different angle, the program

may not detect the object any more. Therefore, the Haar classifier detection is also not our choice.

40

Color Filtering Algorithm

The final choice for the vision algorithm is the color filtering/tracking method. This

algorithm utilizes the fact the target object has a different color from the other objects in the

environment to quickly locate the position of the targeted object. In real world experiments, our

team finds that unless the object is put into an environment with many same color distractions,

the algorithm works pretty well in detecting the object. Also, the accuracy and the success rate of

the method is much better than the two other algorithms we mentioned earlier. Therefore, our

team eventually decided to use this vision algorithm to be our primary object detection algorithm.

The only drawback of the method is that the detection distance is relatively close due to the

capability of the camera we installed on the robot. Now, the robot could only detect the targeted

object within 5 meters. However, our team could always easily improve the detection distance by

using more advanced devices later. Now we will explain the color detecting algorithm in details.

The color based object tracking method first assumes that there is a significant difference

between the color of the target and the color of the environment. If the color contrast is not large

enough, the performance of this method will be largely limited. As to the algorithm itself, the

program first will capture an image from the camera to be the source image. All vision analyzing

and image processing be will based on this image. When the image has been captured from the

camera, the program will blur the image to reduce the color noise. As the image is being blurred,

some small areas of the distracting colors will be removed from the image; therefore the

accuracy of the detecting will be increased.

OpenCV by default captures an image from the camera in a format of 8-bit, unsigned and

RGB format. In other words, OpenCV captures an image consisted of 3 matrices—the red matrix,

the green matrix and the blue matrix, each matrix element with integer values ranging from 0 to

41

255. As to the image, it consists of many small boxes, i.e. pixels that are too small to be

distinguished by human eyes. However, since our algorithm needs to do the color segmentation

and isolation, the program needs to achieve a color space that is easy to do the separation. In fact,

HSV color space is actually the most suitable color space for the color based isolation and

segmentation. For this reason, the program will therefore convert the source image from RGB

image to HSV image to convert the color space from the RGB color space to the HSV color

space. As to the HSV image, it still consists of three matrices: the hue matrix, saturation matrix

and value matrix. The ranges of the elements of the three matrices are 0 to 180, 0 to 255, and 0 to

255 respectively. As to the meaning of each component, hue indicates the specific color,

saturation represents the extent to which the specified color is mixed with white color, and value

indicates the extent to which the specified color is mixed with black color. To detect a specified

color, the program must know the range of the hue, saturation and value of the target color to

separate the color from the image. For instance, to detect a yellow object, the hue range for

yellow is usually set to 20 – 40. Even though we could easily figure out the hue range for a

specific color, the saturation and value of the color usually rely on the object materials and

environment lighting; therefore, the specified saturation and value of the color must be

determined according to the environment. Therefore, in our program, we provide a color panel

for the user to specify the hue, saturation and value of the target color, so that the user could

adjust the parameters according to the specific environment.

After converting the image to an HSV image, the program will limit all the colors that do

not match the color criteria according to the parameter ranges given by the user. Then the

program will check if the areas detected are large enough be our target object. Our team set a

threshold value for the area of the target object so it will again reduce the color noise from the

42

environment. As presented in figure 4.13, all the other color is eliminated by the color based

method and only the detected area is represented as the white area in the window. The shape of

the detected area is just the shape of the targeted object.

Figure 4 - 14: Color tracking method to find the area of the target color

After the area is detected, the program will calculate the X and Y coordinate of the center

of the object by using moments. The program must compute the first order spatial moments

around X axis and Y axis and also compute the zeroth order central moments of the binary image.

In this case, the zeroth order central moments of the binary image is equivalent to the white

pixels area in the binary image shown in figure 4.13. The X coordinate of the center of the

detected area is therefore equal to first order spatial moment around X axis divided by zeroth

order central moment. And similarly, the Y coordinate of the center of the recognized area is

equal to first order spatial moment around Y axis divided by zeroth order central moment. As we

set a threshold value for the area, if the detected area is less than the threshold value, the program

will choose to ignore the area. This is because there may be many noisy color pixels to be

detected and we do not want to let the noise colors reduce the accuracy of the color algorithm. In

43

our case, we set the threshold value to be 200 pixels so that the program will easily detect the

target object without being distracted by the noise while it could still detect the object in a

relatively far distance.

Finally, the program will copy the original image to another image with the same size and

combine the threshold image with the copied image. Also, the program will mark the center of

the detected area as a yellow point. When the object moves, the detected center coordinate will

change; the program will draw a line between the original position of the detected center and the

current center position so that the user could easily see the moving track of the targeted object in

the window. In figure 4.14, the program is detecting the red color object. As shown in the picture,

as the object moves from one position to another position, the program will draw the moving

track as yellow lines. The user could easily see what happened after the algorithm is applied via

the yellow mark in the window. Also, if the yellow marks become too noisy for user to see the

image, user could press ‘r’ key to clear the screen.

Figure 4 - 15: Color tracking red object and marking the moving trace

44

The color tracking algorithm is very powerful as we implemented it on the robot to

complete the sample return mission. As long as the target object is within the view of the camera,

the program could quickly detect the object. Therefore, our team eventually decided to use this

method to be our primary vision analysis algorithm. The disadvantage of the method is that if

multiple sample objects appear in the vision simultaneously, the program could not figure out the

correct X and Y coordinates of the center of the objects. However, since our goal is to detect one

specified sample and return it to another position, the algorithm is suitable for the situation and

therefore a good choice for our project.

45

Chapter 5: Results

 The criteria for judging our project is to see if our robot could complete the sample return

mission autonomously, since it is the primary goal for this project.

Our team chose to do a field experiment to test the performance of the robot. In the test,

our team decided to use two different objects with different colors to be the sample and the

destination mark respectively. The objects chosen have the same shape and materials—plastic

sticks with white hubs on the ends for supporting them. The color of the sample is red while the

destination object is yellow. The robot needed to detect and navigate its path to the sample, grab

it using its gripper, and return it to the position of the destination mark. At the beginning, the

sample was about 5 meters away from the robot and not in the view of the robot camera. The

destination mark was about 5 meters away from the sample and also not in the vision of the

camera when the robot should pick up the sample. To complete the task, the robot must first

detect the sample and find its way to pick it up; after that, it should find and detect the

destination object and navigate a path to reach it and put the sample at that point.

We chose the testing location as the hallway outside the AK 116 room. The reason to

choose this place as the experiment location is that the colors of wall and ground here are

contrasting to the target colors. In this case, our team could largely ignore the color noise from

the environment and focus on testing the performance of the vision algorithm itself. Also, the

space here is large enough for placing the sample object and the destination object 5 meters away

from each other. Last but not least, the floor here is smooth therefore it would not stop the robot

due to the high friction as the robot turns around.

46

 The experiment began with the robot facing toward a direction without the sample object

in the camera range. In figure 5.1, the window named “Video Feed” shows the raw video from

the robot camera (part of the window is clipped by the video from the hand-held camera). As you

can see, the red sample object is not in view. The window named “Object Tracking” shows the

processed image after the vision algorithm is applied to the source image. The lower left is the

video frame from the hand-held camera so that the user could see from a 3rd person point of view.

Figure 5 - 1: Testing Sample Return Robot 1

 As the robot did not see the object in the vision, the robot started to turn around to try to

find the object, just as we expected.

47

Figure 5 - 2: Testing Sample Return Robot 2

 As soon as the object appeared in the range of the camera, the robot accurately detected

the object and drew a yellow point at the center of the target to mark the position of it on the

screen. In figure 5.2, the yellow lines in the “Object Tracking” window are the moving track of

the detected object. In fact, the sample object itself was not moving, but as the robot was moving,

it seemed that that the object was moving on the screen. As the object first appeared to the right

side of the middle navigation line, the robot knew that the object was on the right side of it, so it

kept turning right until the center of the object on the screen was between the two middle

navigation lines (refer to the robot navigation part to learn more about the robot navigation). In

this case, the robot knew that it was now facing towards the object. Because the object center

was on the upper part of the screen, it was still far away from the robot. As the robot moved

48

forwards, the center of the target gradually moved downwards. When the robot was close enough

to the target (the center of the target was just below the purple line), the robot opened its gripper

and moved forwards to the object slowly. When the object center was finally below the green

line, the robot closed its gripper and lifted the sample up. At this point in the experiment, the

sample detection and collection part has been successfully completed (figure 5.3).

Figure 5 - 3: Testing Sample Return Robot 3

 After the robot finished getting the sample, it started the sample return part of the mission.

As the destination point was not in the camera range, the robot again turned around to try to find

the sample. The consequent process was almost the same as before. Once the robot detected the

destination (yellow object), it navigated a path to approach it and when the robot was close

enough to the yellow object, it lowered the arm and released the object. As shown in figure 5.4,

49

the robot succeeded in returning the sample to the correct position. At this point, our experiment

is complete, with the robot successfully accomplishing the sample return task.

Figure 5 - 4: Testing Sample Return Robot 4

50

Chapter 6: Conclusion

 Based on the result of the experiment, it shows that accuracy of the robot vision detection

is competent to complete the task. The distance of detection is about 5 meters — if the target

object is further away from the robot than 5 meters, the accuracy of the detection will be largely

reduced. Also, there should not be much color noise in the testing environment; otherwise the

performance of the robot will be affected greatly.

To improve the detection range of the robot, one possible solution is to use a more

powerful camera that could zoom in and out to see further. To reduce the environmental

influence on the robot performance, combining two different vision algorithms together to

complete the job may be a good choice. For instance, the vision controller could switch between

the color tracking method and the SURF algorithm to detect the target object. When it uses the

color tracking method to look for the target and finds more than one target in the range, it means

that the color noise is too large to be ignored by the color tracking algorithm. In this case, the

program would automatically switch to the SURF algorithm to detect the target. However, since

now the success detection rate of the SURF and Haar cascade classification algorithms are very

low, our team must first improve the performance of those two algorithms to make the

combination detection possible.

Overall, the robot succeeded in accomplishing the sample return task autonomously only

the camera, which means possible applications could be implemented by using the vision driven

technology used in this project. However, there are still many restrictions and drawbacks in the

implementation and we expect to improve the performance of the robot in future work.

51

Chapter 7: Future Work

After completing the intelligent vision driven robot for sample detection and return

project, we have some recommendations. Despite having met all of our set goals and

successfully implementing the user interface program, there is still much room for future

improvements. Completion of these recommendations would help to increase the detection range

and add more functionality to the robot. We have divided our recommendation into two

categories: mechanical recommendations and software recommendations.

Mechanical Recommendations

 Our mechanical recommendations are:

1. Change the gripper design to allow the robot to be able to grab objects such as rocks.

2. Change the camera to a wireless camera and add a Bluetooth module in order to

increase the detection range of the robot and achieve wireless control.

The first mechanical recommendation is to change the gripper design of the robot. The

current gripper design can only allow the robot to grab objects of a certain shape, such as

cylinders. It would be impossible for the robot to grab rock or dust since the gripper cannot hold

such objects. For this reason, we suggest designing a new gripper that would allow the robot to

grab objects that have different shapes. One possible design is a scoop design that has a large

upper scoop and a flat bottom that is controlled by a motor. The flat bottom opens and closes in

order to hold a rock. Another possible design is to have a scoop design that could open and close

52

horizontally. The robot arm is then maneuvered near the rock, and then the scoop closes and

picks up the object.

Second, we recommend using a Bluetooth module for the robot to achieve wireless

control. Currently, the laptop communicates with the T’ReX thorugh a USB cable. A Bluetooth

module could be easily added to the T’ReX motor controller to solve the problem. The team

found out the DAGU Serial Bluetooth Module can directly connect to the current controller

through the TTL level Serial Port. Having the Bluetooth module implemented will increase the

current detection range of the robot. Similarly, the current camera we use needs a wired

connection; switching to WiFi would eliminate this.

Software Recommendations

 Our software recommendations are:

1. To use Pixy (also known as CMUCam 5) to improve user experience and provide

more accurate detection

2. Add A* algorithm to find the best path.

The current system requires the user to provide the hue saturation value of the object to

be detected. By using Pixy, the user can teach it to find an object by pressing the white button

located on the top, and holding the camera in front of the desired object for a few seconds to let

the sensor see the object. While doing this, the LED under the camera provides feedback by

changing to the color of the object it is looking at. When the color changes, the user would

release the button and Pixy would store the detected color in flash memory. It will use this

53

information to find objects with similar color in its frame. Using Pixy will improve the user

experience and provide a more accurate detection of color.

The second recommendation is to add the A* algorithm to the system. This would also

require adding sensors and encoders to the robot. The current system would go straight towards

the detected position and would not avoid obstacles. By adding a laser sensor and encoders, and

implementing the A* algorithm in the system, the robot would be able to achieve autonomous

searching in an unlimited area.

54

Appendix

Size 280 × 300 × 130 mm (11" × 12" × 5")

Weight 1.9kg (4.1 lb)

Ground clearance 60 mm (2.5") when lightly loaded

Recommended motor voltage 2 – 7.5 V

Stall current at 7.2 V 6.6 A per motor

No-load current at 7.2 V 420 mA per motor

No-load output shaft speed at 7.2 V 160 RPM

Stall torque at 7.2 V 11 kg-cm (160 oz-in) per motor

Appendix - 1: Specifications for Wild Thumper All-Terrain Chassis

MCU ATmega328P

Clock speed 16MHz

Logic voltage 5V

FLASH 32K

SRAM 2K

EEPROM 1K

Bootloader Arduino Nano w/ ATmega 328

Appendix - 2: Specifications of T’ReX Robot/Motor Controller Processor

55

Supply voltage 6V – 30V

Power switching FET maximum current 20A continuous – 110A peak

Switch mode regulator 6V, 3A maximum, 52kHz

+5V output current 2A continuous – 3A peak

Appendix - 3: Specifications of TReX Robot/Motor Controller Power Supply

56

References

[1] "Mars Sample Return Mission." Wikipedia. Wikimedia Foundation, 22 Mar. 2014. Web.

24 Mar. 2014.

[2] "Solar System Exploration: Missions: By Name: C: Curiosity." Solar System Exploration:

Missions: By Name: C: Curiosity. N.p., n.d. Web. 24 Mar. 2014.

[3] NASA. NASA, n.d. Web. 24 Mar. 2014.

[4] "Mars 2020 Rover Mission." Wikipedia. Wikimedia Foundation, 24 Mar. 2014. Web. 24

Mar. 2014.

[5] "Space Images: Artist's Concept of Mars 2020 Rover - NASA Jet Propulsion

Laboratory."Space Images: Artist's Concept of Mars 2020 Rover - NASA Jet Propulsion

Laboratory. N.p., n.d. Web. 24 Mar. 2014.

[6] "Sample Return Robot Challenge." | NASA Centennial Challenge. N.p., n.d. Web. 24

Mar. 2014.

[7] "Centennial Challenges." Wikipedia. Wikimedia Foundation, 24 Mar. 2014. Web. 24 Mar.

2014.

[8] T.S. Huang 'Computer Vision: Evolution and Promise', University of Illinois at Urbana-

Champaign, Abstract

 [9] http://cs.brown.edu/courses/csci1430/lectures/01.pdf

 [10] "Computer Vision." Wikipedia. Wikimedia Foundation, 30 Mar. 2014. Web. 30 Mar.

2014.

57

 [11] "How Google's Self-Driving Car Works." - IEEE Spectrum. N.p., n.d. Web. 27 Mar.

2014.

 [12] "Robotics: A Brief History." Robotics: A Brief History. N.p., n.d. Web. 28 Mar. 2014.

 [13]"IFR Press Release - Executive_Summary_WR_2013.pdf." IFR RSS. N.p., n.d. Web. 30

Mar. 2014.

[14] OpenCV Wikipedia (http://en.wikipedia.org/wiki/OpenCV)

[15] RXTX: The Prescription for Transmission (http://users.frii.com/jarvi/rxtx/index.html)

[16] SURF: Speeded Up Robust Features, Herbert Bay, Tinne Tuytelaars, and Luc Van Goo,

Web. 2006

http://www.ifr.org/index.php?id=59&df=Executive_Summary_WR_2013.pdf
http://en.wikipedia.org/wiki/OpenCV
http://users.frii.com/jarvi/rxtx/index.html

	Worcester Polytechnic Institute
	Digital WPI
	April 2014

	Intelligent Vision-Driven Robot For Sample Detection And Return
	Peng Ren
	Tianci Zhao
	Repository Citation

	tmp.1535548689.pdf.AXASP

