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Abstract

In this MQP project, our focus is on inverse methods for non-linear manifold learn-
ing. Basically, methods for taking high-dimensional data and non-linearly projecting
it to low-dimensions are well known. However, methods for going the other direction
(from low-dimensional data to high-dimensional data) are less well studied.

Such inverse methods are important as they are closely connected with modern ideas
in Deep Learning. Deep Learning is currently used in many applications (such as voice
and image recognition) and the results of this MQP support new work in non-linear
deep auto-encoders.

Here, we examine the use of linear and nonlinear methods of dimension reduction
and study the particulars of the inverse mapping (i.e. type of radial basis function ker-
nel, and other parameters dealing with the kernel matrix distances). Furthermore, we
study which combinations of parameters are more effective in the case where there are
restrictions on the dimension of our projections. We explore a variety of different pro-
jection algorithms including Principal Component Analysis, Isomap, and Local Tangent
Space Alignment. Finally, the effectiveness of our approaches will be demonstrated on
the image recognition problem of classifying handwritten digits.
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1 Introduction
In this report, we will attempt to accomplish several tasks. First, we will go into detail
about particular methods, the algorithm used, some numerical examples and results, and
some applications and connections. With the understanding that not everyone is well versed
in the topics at hand, there will be multiple levels of explanations. There will be a particular
analogy running throughout, geared for those who are not as knowledgeable. It will show
up in the more in depth explanations as well.

Is there a method to this madness? Yes. Projecting images from high dimensional space
to low dimensional space is used with data compression, ease of visualization, and providing
better features for machine learning.

In Figure 1, we see two plots – one with hands and other with faces. Within these images
are a multitude of points. These points are low dimensional representations of either hands
or faces. The circled points correspond with the adjacent image. Much is known about
projecting high dimensional data, such as images, to lower dimensional representations. The
methods featured and to be explained later are Principal Component Analysis1, Random
Sparse Matrix1, Isomap1, Local Tangent Space Alignment1, and Spectral Embedding1.

Figure 1: On the left we have images of hands and to the right, images of faces.[2] The images
are located in high dimensional space. The points are low dimensional representations of the
images.

Figure 2: This is for our analogy. The first
and last images differ slightly in color contrast.
This represents the error in recovery.

In Figure 2, the first Einstein2 is taken
and projected to a lower dimension repre-
sented by the middle image – we go from
great detail to less detail. This middle pic-
ture, an essence of Einstein, is used to re-
cover the last image. The essence of Einstein
is in a smaller dimension than our original
and recovered images. Essences of images
will be used to signify points in the projec-
tion space.

1 See Sections 2.1.1, 2.1.2, 2.2.1, 2.2.2, and 2.2.3, respectively, for how they work.
2Image from [7]
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Our New Contribution: We implemented various projections to lower dimensions and
we looked at the interactions between these and the kernel function3 of use for going from
low dimensions back to high dimensions. We have an in-depth study of how varying the
projection and the kernel affects the recoverability of images. More-so, we studied how these
interactions affect the predictability of unknown or not yet existing images based purely off
of points in the projection space. For example, taking what we think is an essence of Einstein
and predicting a never-before-seen Einstein image. Our novel contribution has been to study
this interaction, for our reference4 deals with only image recovery. We predict an essence’s
higher-dimensional image. This does not mean we are not reconstructing images – we focus
on known image reconstruction for cross validation.5

Figure 3: On the left we see a manifold in high dimensions and on the right is the same
manifold flattened out.

Figure 4: This is a plot of a two dimensional
Isomap projection from sklearn. This uses the
digits dataset of handwritten digits. We will
see this dataset used in 4. Each of the numbers
are number and color coded.[3]

More specifically, we are looking at data
on manifolds. These points are projected
into a lower dimension, say 2 dimensions,
and then we raise them up back to their
starting dimension. Figure 3 shows two
plots. The left has points in high dimen-
sional space who live on a manifold. The
second image shows the same manifold ex-
cept it has been unrolled. Figure 4 shows
a selection of handwritten digits projected
into 2-dimensional space. We will be fea-
turing the same dataset in with our re-
sults. But now mind you, no method is
perfect due to irreducible error but we ex-
plore the method detailed in the paper4 by
Nathan Monnig, Bengt Fornberg, and Fran-
cois Meyer.

3Deals with distances but will be defined in Section 3.1.4.
4See Section 3 or [6]
5Reconstructing an image would be like putting a puzzle back together while having the picture in front

of you. Predicting images would be similar to putting the puzzle back together but the pieces might not be
accurate or there are multiple puzzles’ pieces mixed together, and you do not know what it could be.
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2 Manifold Learning

2.1 Linear Methods

2.1.1 Principal Component Analysis

Our first linear method is Principal Component Analysis, or PCA. We use principal com-
ponents, or linear combinations of our variables. A lot about the variance can be explained
with these. We write this linear combination as6

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp (1)

We rewrite this as
zi1 = φ11xi1 + φ21xi2 + ...+ φp1xip (2)

with the following constraints

max
φ11,...,φp1

1

n

n∑
i=1

(
p∑
j=1

φj1xij

)2

(3)

subject to
p∑
j=1

φ2
j1 = 1 (4)

We also need this, (5), for (3) to work.

1

n

n∑
i=1

xij = 0 (5)

2.1.2 Random Sparse Matrix

We use the Random Sparse Matrix (RSM) from sklearn’s random projection module.[1] This
module can use a Gaussian random matrix and a sparse random matrix.

The matrix is created as follows:
−
√

s
ncomponents

1
2s

0 with probability 1-1/s
+
√

s
ncomponents

1
2s

(6)

where s = 1/density and ncomponents is the projected subspace size.

2.2 Nonlinear Methods

2.2.1 Isomap

Isometric Feature Mapping, or Isomap, is a low-dimensional embedding method. It works
by using each data point’s neighbors to estimate the geometry of the data manifold they lie

6See [4, p. 375-376]
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on.

The following is the Isomap algorithm as described in [5, p. 107]).

1. Build a graph with either the K -rule or the ε-rule.

2. Weight the graph by labeling each edge with its Euclidean length.

3. Compute all pairwise graph distances with Dijkstra’s algorithm, square them, and store
them in matrix D.

4. Convert the matrix of distances D into a Gram matrix S by double centering.

5. Once the Gram matrix is known, compute its spectral decomposition S = UΛUT .

6. A P -dimensional representation of Y is obtained by computing the product X̂ =
IP×NΛ1/2UT .

2.2.2 Local Tangent Space Alignment

Local Tangent Space Alignment (LTSA) is best described as follows:

Based on a set of unorganized data points sampled with noise from a parame-
terized manifold, the local geometry of the manifold is learned by constructing
an approximation for the tangent space at each data point, and those tangent
spaces are then aligned to give the global coordinates of the data points with
respect to the underlying manifold.[9]

The algorithm can be implemented as described by [8]:

1. [Extracting local information.] For each i = 1, . . . , N ,

(a) Determine k nearest neighbors xij of xi, j = 1, . . . , k.

(b) Compute the d largest eigenvectors g1, . . . , gd of the correlation matrix (Xi −
~xie

T )T (Xi − ~xieT )T , and set Gi = [e/
√
k, g1, . . . , gd].

2. [Constructing the alignment matrix.] Form the the alignment matrix φ by locally sum-
mation if a direct eigen-solver will be used. Otherwise implement a routine that com-
putes matrix-vector multiplication Bu for an arbitrary vector u.

3. [Computing global coordinates.] Compute the d+1 smallest eigenvectors of φ and pick
up the eigenvector matrix [u2, . . . , ud+1] corresponding to the 2nd to d + 1st smallest
eigenvalues, and set T = [u2, . . . , ud+1]

T .
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Figure 5: An illustration of local tangent space approximation from [8].

2.2.3 Spectral Embedding

Spectral Embedding is also known as Laplacian Eigenmaps.
We use the following equations[5, p. 160]:

wi,j = exp

(
−‖y(i)− y(j)‖22

2T 2

)
(7)

L = W−D (8)

where diagonal matrix D has entries di,i =
∑N

j=1wi,j.
The following procedure is from [5, p. 162]

1. If data consist of pairwise distances, then skip step 2 and go directly to step 3.

2. If data consist of vectors, then compute all pairwise distances.

3. Determine either K-ary neighborhoods or ε-ball neighborhoods.

4. Build the corresponding graph and its adjacency matrix A.

5. Apply the heat kernel (or another one) to adjacent data points, and build matrix W
as in Equation (7).

6. Sum all columns of W in order to build the diagonal matrix D, which consists of the
rowwise sums of W.

7. Compute L, the Laplacian of matrix W: L = W−D.
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8. Normalize the Laplacian matrix: L′ = D−1/2LD−1/2.

9. Compute the EVD of the normalized Laplacian: L′ = UΓUT .

10. A low-dimensional embedding is finally obtained by multiplying eigenvectors by D1/2,
transposing them, and keeping those associated with the P smallest eigenvalues, except
the last one, which is zero.

6



3 Inverting Nonlinear Dimensionality Reduction with Scale-
Free Radial Basis Function Interpolation

Note: The x(i)’s will be often referred to as images, i.e. known Einstein images. The y(i)’s
then correspond to essences.

What is the purpose of the paper?7

The authors of the paper [6] suggest an algorithm for recovering known images using a radial
basis function kernel. It uses a set of n x(i)’s of dimension D and their corresponding y(i)’s
of dimension d (D > d) and uses them to set up the system for reconstructing images from
points (vectors, our essences) in d-dimensional space.

Another way of thinking of this is with a puzzle. Say you have a 1000-piece puzzle of
Albert Einstein. Take some of the pieces and put them in a blender, the nonlinear transform,
and you have shreds of Einstein pieces. This would be our y(i)’s. We see an essence of Einstein
but it’s not all there. We use these shreds to recover the original image. This is where the
algorithm does its magic.

3.1 How It Works

3.1.1 What They are Doing

The method depicted uses the radial basis function (RBF) kernel to create a matrix of
distances,8 K. The distances are between the projected y(i)’s. Using K and our {x(i)}ni=1,
we find the A matrix9 which solves the system. We can use this A matrix to solve for new
images given any y, regardless of random or chosen entries10. We find the distances between
these y’s and our original y(i)’s using the same method. This becomes our new K matrix.
By multiplying K and A, we get our new images. One thing to note is that the first column
of the X matrix is x(i)1 , these are the first components of the n images. The second column
is the second, and so on and so forth until you have D columns. This corresponds to the
dimension of x.

The new set of y’s can have any number of y’s as long as the dimension (of y) makes
sense.

3.1.2 Restrictions and Requirements

To initially set this up, the x(i)’s need to be of a higher dimension than the y(i)’s. Not only
this, but for our initial x and y sets, we do not want to have any y(i)’s the same. This will
cause the matrix K to be singular and we will be unable to solve for A. (y(i) 6= y(j), ∀i 6= j)

7The paper is the title of this section, Inverting Nonlinear Dimensionality Reduction with Scale-Free
Radial Basis Function Interpolation, see [6]

8This is being used loosely. See Section 3.1.4 for an explanation
9The A in the A matrix is read as “Alpha” for alpha is used in our equations. See Section 3.1.3 or

Equation (12), among others.
10Random entries relate more to essences of Einsteins who would be predicted to never-before-seen images.

The chosen entries would be more for cross validation or for essences for which we know the recovered image.
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When we are bringing the essences to images, we require the essences to be in the same
dimensional space as we were projecting into to start with.11

We do not have the same restriction on the y(i)’s as in the initial set up when we are
recovering images. Having some y(i)’s and y(j)’s equal will not cause any issues. Multiple
essences will just be recovered as the same image12.

3.1.3 Pertinent Equations

Note: Equations from [6].
With {x(1), ...,x(n)} ⊂ RD on a smooth manifoldM⊂ RD, we have a mapping

Φ :M⊂ RD −→ Rd (9)

x(i) 7−→ y(i) = Φ(x(i)), i = 1, ..., n (10)

The {x(1), ...,x(n)} are the original high dimensional images.
Φ† is the inverse, where

Φ† : Φ(M) −→ RD, with Φ†(y(i)) = x(i) (11)

The following is what we use in practice:

for all y ∈ Φ(M), φ†(y) =
n∑
j=1

α
(j)
i k(y,y(j)) (12)

where k is the radial basis function kernel with k(z,w) = g(‖z −w‖),13 and where the α’s
are the weights.

In matrix form, we first havek(y
(1),y(1)) . . . k(y(1),y(n))
... . . . ...

k(y(n),y(1)) . . . k(y(n),y(n))


α

(1)
1
...

α
(n)
1

 =

x
(1)
1
...

x
(n)
1

 (13)

This is for the first component in each image. For all of the components we usek(y
(1),y(1)) . . . k(y(1),y(n))
... . . . ...

k(y(n),y(1)) . . . k(y(n),y(n))


α

(1)
1 α

(1)
D

... . . .
...

α
(n)
1 α

(n)
D

 =

x
(1)
1 x

(1)
D

... . . .
...

x
(n)
1 x

(n)
D

 (14)

The first matrix, denoted K, contains the kernel distances between low dimensional images
and it holds the main input of the algorithm. The second matrix,A contains our parameters
the we use to fit the high dimensional images in X.14

We write the following for predicting images from essences.

Φ(y)T = k(y, ·)TA = k(y, ·)TK−1X = x̂ (15)

where k(y, ·) =
[
k(y,y(1)) . . . k(y,y(n))

]T
(16)

11We can only recover to a certain dimension – the one we started with, where the x(i)’s reside.
12Because we are in a lower dimension, there is the possibility of having some of the images sharing

essences. This is an interesting situation to note and be aware of.
13See Section 3.1.4.
14See Section 3.1.5 for more on these matrices.
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3.1.4 Radial Basis Function

There are six types of radial basis function kernels that we will be focusing on. They
are Gaussian, multiquadratic, inverse quadratic, inverse multiquadratic, and polyharmonic
splines, and thin plate spline. Despite suggesting the use of the polyharmonic splines in the
paper, they show images of Gaussian, cubic, and Sheppard15. The code implemented has
options to use any of the six RBFs mentioned. The chosen RBF does have an effect on the
images recovered.

The six radial basis function kernels are as follows:

k(z,w) = g(‖z−w‖)
Gaussian: g(r) = e(−(εr)

2) (17)

Multiquadratic: g(r) =
√

1 + (εr)2 (18)

Inverse quadratic: g(r) =
1

1 + (εr)2
(19)

Inverse multiquadratic: g(r) =
1√

1 + (εr)2
(20)

Polyharmonic splines: g(r) = rk, k = 1, 3, 5, ... (21)
g(r) = rk ln(r), k = 2, 4, 6, ... (22)

Thin plate spline: g(r) = r2 ln(r) (23)

where ε is a restraint. We have code for thin plate splines but we have to make sure that
the value for when r = 0 is zero. We have to add this condition because we cannot take the
natural logarithm of 0.

The radial basis function kernel is a function which uses the distances between points.
For simplicity, we shall refer to the outputs of the RBF kernels as distances.

3.1.5 Matrices

To set up the method, we use the RBF kernel to make a matrix of distances. This matrix
and our known images are used to make the A matrix required to recover unknown images
from the projected space. The A matrix acts as weights for each of the components.

Figure 6: Dimensions of the three matrices and components of K and X.
15This is an RBF type but we do not use it in our paper. Please see [6] for information on it.
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In terms of our Einstein picture, K contains essences of Einstein and X is our Einsteins.
K is an n by n matrix whose entries are filled with distances obtained from the kernel
function. The X matrix is n by D and each row is an image. The A matrix, which is n
by D, is what we use to recover new images from the projected space. It does not depend
linearly on any of the low dimensional projections whereas K does depend nonlinearly. But
the y’s never directly appear.

3.1.6 Recovery

Through the use of our A matrix, we can recover known images from their low dimensional
representation and we can predict images from the same low dimensional space.

Figure 7: Possible recovery/prediction set ups.

The i, j entries in the new K matrix
(Knew) are the respective distances between
points using the kernel function, same thing
as before but with a slight difference. Here,
the y(j)’s are from our known set, so essences
of Einsteins that we know to be Einsteins.
The y(i)’s are what we believe to be essences
of Einsteins but we do not actually know if
they truly are Einsteins. These are what we
are predicting/raising up. (See Figure 7.)

Each A matrix that is created is used on
similar image data. We would not hope to predict a Newton image if we were only looking
at Einstein images. We would need to train on what we hope to predict or recover.

After calculating the new kernel matrix, all one needs to do is multiply it with the solved
A matrix to reconstruct the images from the low dimensional projection. There are no
(major) restrictions on the number of images we can recover16. Our new K matrix does not
need to be square. It can have 10, 20, or even just one row. The amount of rows in Knew

matches with the number of essences we will be predicting to images. We should note that
predicting full pictures of humans is quite difficult so here we focus on images of handwritten
digits.

Figure 8: We use the A matrix from an Isomap projection to predict the images associated
with a Random Sparse Matrix projection.

16Yes, you can predict as many as you want from the A matrix, but having a larger initial set would yield
better results.
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There are many linear and nonlinear methods that can be used to project the images
down into essence. Using an A from one method to predict images from another does not
guarantee the same results. In Figure 8, we show that using essences from a RSM projection
with the A matrix from Isomap training does not recover the original numbers. By why is
this? The points are defined differently.

11



4 Numerical Examples
In this section, we will be looking at the performance of the algorithm when used with
different projection types. We will be using the types from Section 2. In Section 4.1.2, we will
introduce how varying the RBF kernel function affects the recoverability and predictability.17

As we will find, and in agreement with the paper, the Gaussian RBF kernel works fine but
it is not the best one.

4.0.7 Equations

Defining error as

Error =
‖x− x̂‖2
‖x‖2

(24)

where x is the true value and x̂ is the predicted value.
The error is between the true image and the recovered image, so the error pixel by pixel.

The error in (24) is deceiving, high error does not necessarily mean our recovery was poor.
We might still recover the same type of image but it is not exactly as it was before. We shall
see later that a digit image can be recovered to the show the same digit but the image may
not look the same. Basically, we recognize or identify the original and recovered images as
displaying the same number.

4.1 About the Dataset Being Used

We explore the use of the digits dataset from sklearn. This is a set of handwritten digits
spanning 0 through 9. Each digit image is in R8×8 but we use the digits as a column vector,
so they are in R64. Each of the digits has a number corresponding to what it is. As a side
note, when the images of the digits are shown, they have a one pixel border, which is why
recovered image groups have intervals of 10.

Here is the code to obtain the digits dataset:

n_neighbors = 30
n_samples, n_features = X.shape
y = digits.target
X = digits.data
digits = datasets.load_digits(n_class=6)

from sklearn import datasets

With the code we have currently implemented, we can choose any of the RBF kernels
discussed as well as a few other details. The main function call is as follows:

x_new=[],ipc=1,ipr=1,nipr=1,nipc=1,rho=3,eps=1,nt=2,maptype = ‘’,plots = 1)
algFull(x,y_old,y_new,L,

17This will be seen more in each methods’ section.
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x Our training set
y_old The corresponding projections to our training set
y_new The projections (essences) to be predicted
L The type of RBF kernel that will be used
x_new The images that will be recovered, if known; used for showing recovery error
ipc, ipr The number of images per row or column for the predicted set
nipr, nipc The number of images per row or column for the training set
rho Used for polyharmonic splines; default set to cubic
eps ε from the RBF kernel equations
nt The type of norm taken to measure distances in the kernel; by default L2

maptype Choice of plot coloring; default spectral, options for cool and binary
plots Choice of displaying the plots created; by default they will show

Our main focus for what the code returns is the predicted or recovered images.

→
Figure 9: An 8 by 8 image of a one to a 5 by 5
essence of a one.

Now that we have been introduced to
the dataset, we will show what an image
will look like at different stages. A one in
the original space and in R5×5 is seen in
Figure 9. A Random Sparse Matrix was
used to project the image into a lower space.
The essence of a one is truly that, it does
not resemble a one.

4.1.1 Training and Testing Images

(a) Ones and sevens (b) Zero through nine

Figure 10: Training sets and testing sets

4.1.2 Using Different RBFs

An interesting finding is that the radial basis function kernel being used does make a differ-
ence in our accuracy. We shall see the affects on these in our cross validation test to figure
out which is the best to use on prediction new images. After cross validation on the type of
kernel, tests were done to see which dimension would be best to do predictions on. These
are seen in Section 4.4.1.
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4.2 Linear Methods

4.2.1 PCA

Cross Validation

Here, the A matrix is specialized for ones and sevens. This is comparable to working with
essences and pictures of Einsteins and Newtons.

In Figure 11, we see what different kernels do to the recoverability of the handwritten
digits. The accompanied errors are in Table 1. The lowest errors are from when multi-
quadratic and inverse multiquadratic are used. This is the case for the average, minimum,
and maximum errors. Excluding the Gaussian kernel, the average, minimum, and maximum
errors are of a similar magnitude.

Figure 11: We show how varying the radial basis function affects the recovered images when
they are originally projected from R64 into 10 dimensions using PCA. We do this to see
which one is optimal and to be used in prediction. The errors are shown in Table 1.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.4541 0.1428 0.8109
multi 0.2414 0.1184 0.4427
invquad 0.2924 0.1388 0.4820
invmulti 0.2414 0.1184 0.4427
poly 0.2645 0.1212 0.5502
thin 0.2777 0.1422 0.5834

Table 1: Here are the errors between the original images and the recovered images
when we used PCA to project down to 10 dimensions on the digits one and seven.

The next set we do cross validation on includes handwritten digits from zero through nine.
As will be a reoccurring theme, the thin plate spline has the lowest error on the testing set.

Figure 12: Above are the recovered images for when a PCA projection down to 10 dimensions
was used on images of ones and sevens and the kernel type was varied.
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Kernel Type Average Error Minimum Error Maximum Error
gauss 0.3988 0.1336 0.8667
multi 0.2624 0.1330 0.4153
invquad 0.2794 0.1249 0.4859
invmulti 0.2624 0.1330 0.4153
poly 0.2834 0.1477 0.6138
thin 0.2530 0.1223 0.3950

Table 2: Here are the errors between the original images and the recovered images
when we used PCA to project down to 10 dimensions on the digits zero through
nine.

Predicting

In Figure 13, we are using PCA to project the given ones and sevens down to a smaller
dimension. After finding the corresponding A matrix, we are taking a randomly selected
array of numbers that are within a certain constraint (between the maximum and minimum
values of each row) to try and recover.

(a) PCA on images of ones and sevens.

(b) PCA projection using the numbers zero
through nine into eight-dimensional space. The
recovered images are featured.

Figure 13: Predicting after cross validation on the kernel.

4.2.2 Random Sparse Matrix

Cross Validation

15



For our kernel cross validation for the random sparse matrix, the minimum error was differ-
ent from the lowest maximum and average errors. On the ones and sevens, multiquadratic
and inverse multiquadratic did the best for the latter while inverse quadratic did the best
on the former. Looking at the recovered images, all three recover the images correctly, as
in we can identify what they are just by looking. The error is meaningful if exact pixel by
pixel recovery is wanted. We don’t always need that; we just need to know enough to make
decisions or to confirm or deny a particular person painted that painting.

Figure 14: Above are the recovered images for when a RSM projection down to 10 dimensions
was used on images of ones and sevens and the kernel type was varied.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.5613 0.1499 0.9851
multi 0.3483 0.1537 0.5378
invquad 0.3890 0.1488 0.6608
invmulti 0.3483 0.1537 0.5378
poly 0.4492 0.1646 1.0220
thin 0.3924 0.1558 0.7924

Table 3: Here are the errors between the original images and the recovered images
when we used RSM to project down to 10 dimensions on the digits one and seven.

On zero through nine, we see that the minimal errors range between 15 and 17 percent.
The lowest here is greater than the highest minimum error of PCA. Another surprising find
is that even though a greater variety of numbers are being used to create the K and A ma-
trices, the errors for using ten digits is almost exclusively better. But this is understandable,
ones and sevens can look alike but a six and a two do not. There are less similarities between
each digit giving rise to more adaptability.

Figure 15: RSM in 10 dimensions
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Kernel Type Average Error Minimum Error Maximum Error
gauss 0.5242 0.1541 0.9574
multi 0.3534 0.1621 0.6213
invquad 0.3623 0.1511 0.5894
invmulti 0.3534 0.1621 0.6213
poly 0.3874 0.1746 0.9019
thin 0.3529 0.1650 0.5731

Table 4: Here are the errors between the original images and the recovered images
when we used RSM to project down to 10 dimensions on the digits zero through
nine.

Predicting

For predicting our new low dimensional representations of hopeful digits, we see various
degrees of recognizable digits. The first image looks like a three, an “s”, or even a goose. The
second image on the ones and seven looks like an eight. We are not using any eights in this
set. The point X.2 is located away from the cluster of ones and sevens. It’s not the only one
– X.9 and X.10 are closer but still far away. X.10 looks like a seven but X.9 looks like a six.

X.2 of the first zero through nine does in fact look like what it is nearest in the two
dimensional plot, a nine. X.7 looks like a six, to which it is close. X.8 is in the same boat
with it looking like a nine. In the second of the zero through nine, X.4 is a very pleasing 8.
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(a) RSM on images of ones and sevens.

(b) RSM projection using the numbers zero
through nine into nine-dimensional space. The
recovered images are featured.

Figure 16: Predicting after cross validation on the kernel.

Now that we are done with the linear methods, we can move onto the nonlinear methods.
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4.3 Nonlinear Methods

4.3.1 Isomap

Cross Validation

Like with the linear methods, we see that the Gaussian kernel has poor error. Switch-
ing to any of the other kernels cuts the average error in half. This error is still pixel by pixel.
We can agree that from simply looking at the Gaussian kernel’s image recoveries that it does
not recover images very well. Visually, one might opt for the inverse quadratic kernel but
for our predicting purposes, we shall choose to use multiquadractic.

Figure 17: Above are the recovered images for when an Isomap projection down to 10
dimensions was used on images of ones and sevens and the kernel type was varied.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.7056 0.2597 0.9991
multi 0.3288 0.1726 0.6432
invquad 0.3884 0.1789 0.6903
invmulti 0.3288 0.1726 0.6432
poly 0.3759 0.1907 0.7919
thin 0.3310 0.1825 0.6744

Table 5: Here are the errors between the original images and the recovered images
when we used Isomap to project down to 10 dimensions on the digits one and seven.

Looking at zero through nine and their errors, the thin plate spline and multiquadratic/inverse
multiquadratic have the lowest error. Despite not having the lowest average error, think plate
was chosen for its maximum and minimum errors were the least.

Figure 18: Above are the recovered images for when an Isomap projection down to 10
dimensions was used on images of zeros through nines and the kernel type was varied.
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Kernel Type Average Error Minimum Error Maximum Error
gauss 0.7944 0.2262 0.9971
multi 0.2848 0.1416 0.4982
invquad 0.3466 0.1441 0.5921
invmulti 0.2848 0.1416 0.4982
poly 0.3245 0.1457 0.5720
thin 0.2946 0.1379 0.4978

Table 6: Here are the errors between the original images and the recovered images
when we used Isomap to project down to 10 dimensions on the digits zero through
nine.

Predicting

In Figure 19a, we are using Isomap to project the given ones and sevens down to a smaller
dimension. Here, we see point X.1 is predicted as a 1, point X.2 and X.3 as 7’s, point X.5 as
a faint 7, and point X.6 as a thick 1. Point X.4 most prominently resembles a 1 but we do
see some characteristics of a seven with a bar. What is most interesting to note about this
point is that it is between the ones and sevens in the plot on the left. This scatter plot plots
the first two components of the training y(i)’s in 2-dimensional space with respective number
labels. We implemented a Gaussian kernel and a four dimensional Isomap projection with
training on ones and sevens.

(a) Isomap on images of ones and sevens. (b) Isomap projection using the numbers zero
through nine into four-dimensional space. The
recovered images are featured.

Figure 19: Predicting before cross validation on the kernel.

Before running any cross validation tests, we ran the algorithm on a four dimensional
Isomap projection and found some nice results. The images in 19b, especially the easily
recognizable as numbers, are in their number clusters. Even down to four dimensions, digits
can be predicted to look like digits. It is like taking one-sixteenth of a blended puzzle and
telling us what it is from just that.18

18It’s not exactly the same but it gets the point across of the amazing feat.
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(a) Isomap on images of ones and sevens.

(b) Isomap projection using the numbers zero
through nine into four-dimensional space. The
recovered images are featured.

Figure 20: Predicting after cross validation on the kernel.

Now we can look at what happens when we know what methods will work well. We use
an Isomap down to five dimensions on the ones and sevens. Wonderfully, we recognize at
least two-thirds of the images as either ones or sevens. Not included in this fraction are those
that are blurry but still could be considered a particular number.

Isomap is really nice to look and plot, the numbers are clustered together. This observa-
tion is powerful. It means that, at this dimension, half of what we project down to can tell
us what digit the point most likely would be. More impressively, a combination between a
tree and the recovery algorithm could give one both the image and the number. This is just
the case here.

4.3.2 Local Tangent Space Alignment

Cross Validation

LTSA does not perform very well visually. The only method whose maximum error is under
1 is inverse quadratic. Even its maximum error less than the polyharmonic kernel’s average
error.
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Figure 21: Above are the recovered images for when a LTSA projection down to 10 dimen-
sions was used on images of ones and sevens and the kernel type was varied.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.4948 0.1755 1.2447
multi 0.4598 0.1732 1.0701
invquad 0.3566 0.1637 0.8362
invmulti 0.4598 0.1732 1.0701
poly 0.9374 0.1152 4.4440
thin 0.4774 0.1314 1.5874

Table 7: Here are the errors between the original images and the recovered images
when we used LTSA to project down to 10 dimensions on the digits one and seven.

Surprisingly, the errors when the kernels were varied on the digits zero through nine per-
formed exceedingly better than just on the ones and sevens. Both the images and the errors
are more accurate. The thin plate spline overall performs the best out of all six. We do
have to be aware that the kernel selected through this process is preferable for 10 dimen-
sions. Later, we use this one kernel for testing each of the dimensions to find the one with
the smallest pixel by pixel error. This was done before the major of the predictions so the
resulting dimension choice is purposeful.

Figure 22: Above are the recovered images for when an LTSA projection down to 10 dimen-
sions was used on images of zeros through nines and the kernel type was varied.
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Kernel Type Average Error Minimum Error Maximum Error
gauss 0.3612 0.1809 0.5990
multi 0.3588 0.1704 0.6287
invquad 0.3350 0.1667 0.5928
invmulti 0.3588 0.1704 0.6287
poly 0.2894 0.1563 0.4689
thin 0.2704 0.1324 0.3854

Table 8: Here are the errors between the original images and the recovered images
when we used LTSA to project down to 10 dimensions on the digits zero through
nine.

Predicting

Local Tangent Space Alignment poorly predicts any recognizable digits when dealing with
just ones and sevens. As our previous finding, we see better digit images when dealing with
zero through nine. The dimensions are different too. LTSA performed better at a lower
dimension and with more digit types than did it ones and sevens counterpart.

(a) LTSA on images of ones and sevens.

(b) LTSA projection using the numbers zero
through nine into four-dimensional space. The
recovered images are featured.

Figure 23: Predicting after cross validation on the kernel.
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A couple of points of interest in the bottom of Figure 23b are X.7, X.8, and X.9. These
three images are located near digits of the same type. X.7 is in the cluster of zeros; X.8 is
in the cluster of fours; and X.9 is near the cluster of threes.

4.3.3 Spectral Embedding

Cross Validation

Figure 24 shows our cross validation results on the digits one and seven. Preliminary ob-
servations suggest that the inverse quadratic kernel will be the best to use for recognizable
digit recovery. The errors in Table 9 confirm the belief. The inverse quadratic kernel had
the lowest of all three errors, strikingly so for the average error.

Figure 24: Above are the recovered images for when a Spectral Embedding projection down
to 10 dimensions was used on images of ones and sevens and the kernel type was varied.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.9184 0.7072 0.9998
multi 0.8089 0.4494 1.1071
invquad 0.6697 0.4006 0.8584
invmulti 0.8089 0.4494 1.1071
poly 1.2359 0.5363 2.5190
thin 1.0501 0.4370 1.7108

Table 9: Here are the errors between the original images and the recovered images
when we used Spectral Embedding to project down to 10 dimensions on the digits
one and seven.

Similarly when using the digits zero through nine, the inverse quadratic kernel has the best
average and maximum errors. The minimum error is best with multiquadratic and inverse
multiquadratic but the corresponding maximum errors are relatively high. This means, for
both ones and sevens and zero through nine, the same kernel, inverse quadratic, is the kernel
of choice.
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Figure 25: Above are the recovered images for when a Spectral Embedding projection down
to 10 dimensions was used on images of zeros through nines and the kernel type was varied.

Kernel Type Average Error Minimum Error Maximum Error
gauss 0.9190 0.7016 0.9988
multi 0.7913 0.4358 1.2477
invquad 0.6446 0.4777 0.8299
invmulti 0.7913 0.4358 1.2477
poly 1.1981 0.5549 2.6546
thin 1.0658 0.4683 2.0662

Table 10: Here are the errors between the original images and the recovered images
when we used Spectral Embedding to project down to 10 dimensions on the digits
zero through nine.

Predicting

In Figure 26a, X.1, X.2, and X.8 are either in or near the cluster of sevens with respect
to their first two components in the projection space. X.9 and X.10 are vaguely recognizable
as ones and do happen to be near the ones.

Figure 26b has more recognizable digit images than did the images for ones and sevens.
For the top, the images of note are X.2, located near the threes and looking like a three; X.3,
resembling somewhat of a zero and near the zeros; and X.10 and X.12 who are near clusters
of nines and threes and have characters of both, but more so of threes.

The bottom has notable images X.1 and X.12, looking like fours and near one cluster of
fours; X.2 and X.3, located near the threes and recognized as threes; and X.8 which looks
like an eight and happens to be located near one.

25



(a) Spectral Embedding on images of ones and
sevens.

(b) Spectral Embedding projection using the
numbers zero through nine into ten-dimensional
space. The recovered images are featured.

Figure 26: Predicting after cross validation on the kernel.

4.4 Exploring the Results

Here we see how modifying parts of the code yields different results. Additionally, the
limitations and observations found from doing this.

4.4.1 Various Dimensions for Projecting and Their Effects

Isomap

Figure 27: Isomap projections onto 4 different dimensions.
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Displayed in Figure 27 are Isomap projections of four different dimensions, 2, 3, 4, and 10.
The ones and sevens are color-coded. When we project down to 2 dimensions from the
original 64, we see that there is not enough information retained to predict. As we go up in
dimensions, even just one, our predicted images more distinctly resemble digits. You may
notice we do not see a number in the third image of 10 dimensions. It happens to be that X.3
is relatively far from the clusters of ones and sevens. Mind you, the X.1 through X.6 points
have no associated images to start off with. They are like the potential Einstein essences
being used to predict never-before-seen Einsteins.

General

Between Figures 28a and 28b and Figures 29a and 29b, we see how the dimension affects
the recovery of the image. In Figure 28, we see a general trend of better recovery as the
dimension increases. The radial basis functions used here are the ones determined the best at
the 10 dimensional space level. This actually does not mean that that kernel is best for the
other dimensions, but it is fair to use the same. Again, the plots are misleading, in a sense.
Typically, the kernel performed best on average and either the minimum or maximum error.
One of the other kernels might have given lower error but that is not the purpose of these
graphs. We want to see where the knee of the graph is so to determine which dimension we
want to project into.

Personally, I would not recommend using Spectral Embedding or Local Tangent Space
Alignment with the algorithm. For one, Spectral Embedding’s error is quite high. LTSA
might have started working better than Isomap as the dimension increased but more times
than not, we want to make the dimension as small as possible while still being able to recover
as much as possible. Isomap is consistent once you hit four or five dimensions. Using a higher
projection space dimension will not make much of a difference.

As expected, PCA performed better than the other methods with this algorithm as its
projection dimension increased.

(a) On Ones and Sevens (b) On Zero through Nine

Figure 28: Errors from the methods using the determined kernel from 2 dimensions up to
21.
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(a) On Ones and Sevens

(b) On Zero through Nine

Figure 29: Images from the methods using the determined kernel from 2 dimensions up to
21.
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5 Conclusions
Over the different linear and nonlinear methods, PCA and Isomap are the preferred methods
to use with the recovery algorithm. If low level dimensions are needed, using an Isomap pro-
jection on the data works the best and is most consistent of the methods once the dimension
is increased to four or five.

Even down at two dimensions, the algorithm was able to successfully recover the image,
pixel by pixel, with around 50 percent error. This is an amazing feat since we started with
64 dimensions. What helps is that Isomap has more clearly defined clusters of digits on the
two-dimensional plots than most of the others. We tended to find sixes and threes to be the
easiest to recover and predict. Odds were that if the point corresponding to the first two
components was located near or in a cluster of sixes, it would be recovered as a six.

We can say that the algorithm proposed in [6] works well and with increased image
variety, thin plate splines tend to be the better choice of radial basis function kernels. A
Gaussian kernel does not fare all that well in comparison.
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Appendices
A Python Code

A.1 The Methods

PCA

y_pca = np.transpose(pca.transform(np.transpose(x)))
pca.fit(np.transpose(x))
pca = PCA(n_components = 2)

from sklearn.decomposition import PCA
import numpy as np

Where x is a matrix of column vectors. n_components can be changed to equal a different
value, it does not have to be two. y_pca is a matrix with the same number of columns as x
but with a different number of rows, two in the given case.

Random Sparse Matrix

y_rsm = np.transpose(rsm.transform(np.transpose(x)))
rsm.fit(np.transpose(x))
rsm = random_projection.SparseRandomProjection(n_components = 2)

from sklearn import random_projection
import numpy as np

Where x is a matrix of column vectors. n_components can be changed to equal a different
value, it does not have to be two. y_rsm is a matrix with the same number of columns as x
but with a different number of rows, two in the given case.

Isomap

y_iso = np.transpose(iso.transform(np.transpose(x)))
iso.fit(np.transpose(x))
iso = manifold.Isomap(n_neighbors,n_components = 2)

from sklearn import manifold
import numpy as np

Where x is a matrix of column vectors. n_components can be changed to equal a different
value, it does not have to be two. n_neighbors is set to 30. y_iso is a matrix with the
same number of columns as x but with a different number of rows, two in the given case.
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Local Tangent Space Alignment

y_ltsa = np.transpose(ltsa.transform(np.transpose(x)))
ltsa.fit(np.transpose(x))
ltsa = manifold.LocallyLinearEmbedding(n_neighbors,n_components = 2,method = ‘ltsa’)

from sklearn import manifold
import numpy as np

Where x is a matrix of column vectors. n_components can be changed to equal a different
value, it does not have to be two. n_neighbors is set to 30. y_ltsa is a matrix with the
same number of columns as x but with a different number of rows, two in the given case.

Spectral Embedding

y_se = np.transpose(se.fit_transform(np.transpose(x)))
se.fit(np.fit_transpose(x))
se = manifold.SpectralEmbedding(n_components = 2,n_neighbors=30)

from sklearn import manifold
import numpy as np

Where x is a matrix of column vectors. n_components can be changed to equal a different
value, it does not have to be two. n_neighbors is set to 30. y_se is a matrix with the same
number of columns as x but with a different number of rows, two in the given case.

B Extensions, Notes, and Ideas
In this work, we put the images into column vectors before projecting down. Another way
to explore is to take each individual image and project them down into lower dimension then
to reshape it into a column vector. After that, running the algorithm to do the recovery or
prediction.

Another thing to look at is to compare the different kernels and each of the projection
dimensions. Here, we looked at the best kernel on 10 dimensions and used that to see which
dimension has the best accuracy with wanting that value to be small.
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