Worcester Polytechnic Institute

Digital WPI

Major Qualifying Projects (All Years)

March 2014

Ember's Inklinko

Andrew Benjamin Lukas
Worcester Polytechnic Institute

Bryce R. Jassmond
Worcester Polytechnic Institute

Christian German Walker
Worcester Polytechnic Institute

Corinne Rae Kennedy
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation

Lukas, A. B, Jassmond, B. R., Walker, C. G., & Kennedy, C. R. (2014). Ember’s Inklinko. Retrieved from

https://digitalcommons.wpi.edu/mgqp-all/674

Major Qualifying Projects

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPL. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPL. For more information, please contact digitalwpi@wpi.edu.


https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/674?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

EMBER'S INKLINKO

Interactive Media and Game Development

Major Qualifying Project Report
Submitted to the faculty of
Worcester Polytechnic Institute, Worcester, MA
In partial fulfillment of the requirements for the
Bachelor of Science degree

In Cooperation with Eduardo Baraf, Studio Director
Disney Interactive, Palo Alto, CA

Submitted To:
Professor David Finkel (Advisor)

Submitted by:
Bryce Jassmond

Corinne Kennedy

Andrew Lukas

Christian Walker

Date of Submission: 30 March 2014

Advisor Signature



Abstract

Ember’s Inklinko is a casual iOS game designed in Unity at Disney Interactive in
Silicon Valley. In eight distinct levels of increasing difficulty, players earn points by
launching up to six balls through a field of gems and coins to reach the golden bucket.
Ember’s Inklinko was developed as a WPI Major Qualifying Project by Interactive
Media and Game Development (IMGD) and Computer Science (CS) majors. This report
describes the design, development and analysis of that effort.



Acknowledgements

We are deeply grateful to our advisor, Professor David Finkel, whose tireless efforts
among companies in Silicon Valley made possible this first Disney Interactive
experience for WPI's MQP students. In addition we appreciate the advice and counsel
that he provided during both our PQP planning process and our on-site work in
California.

We also sincerely thank Ed Baraf, Studio Director at Disney Interactive who was our
project manager and whose industry knowledge and generosity of personal time and
assets ensured us a successful project and product. We are also grateful to other
Disney professional staff, such as Bennie Booysen and Nick Gallant, who helped bring
our game to a professional status.



Authorship

Bryce Jassmond:
e Introduction
e Mechanics
e Playtesting

Corinne Kennedy:
o Art
e Literature Review/Background

Andrew Lukas:
e Pre-Qualifying Project
e Early Work
o Gameplay
e Analysis of Development

Christian Walker:
e Audio Design

Brooke White:
o Appendix D: Official Playtest Report

Anything not mentioned above specifically was written by the joint effort of Bryce
Jassmond, Corinne Kennedy, Andrew Lukas, and Christian Walker.



iv

Table of Contents

2 0] = Lot SRR 1
W2Ved d g Tod7 T =To Lo [=) g aT = o L & PR i1
WL d gY@ £ o 1] o R 1ii
AT od (=R o) @0 o1 =) o X £ iv
F Ly oy G o Vo b = v
WLy o I T o =SSR Vi
W higYu goTo k¥ Lot 1o ) o B SRR 1
Literature Review/BacCKGIOUNd..........cccccoceeveeeieeeiieeeeeseese e 2
CaSUAl GAIMES ...ttt e e e e e e e e e e e e e e e e neennnnnnnes 2
I 2d o) [=Tot gl 2d Lo Tl =To L b 1 = SR 5
Pre-Qualifying PIOJECT ......... . e e e 5
EMDEI'S INKUIKO ...ttt e e e e e e e e mmse e s s e e e e e e e e nmmnnnnas 6
Early Work
Gameplay.
Art
Mechanics 18
Level Design 24
AUAIO DESIGN c.orirerereesesesesessssisisesessssssssssssssssssesesesessssssssssssssssssssssssssssssssssssssssssssesesssesssssssssesessssssssesensresssssnss 32
ReSUItS QNd DISCUSSIOIN ......oeeeiiie ettt a e sne e 34
) 2 = 7 (=] 0 .4 Lo LU 34
Analysis Of DeVelOPIMNENL ...ttt ettt et taee e e e e anseeaaeanseaaennnnas 35
(@03 ¢ Tex 1 5 K3 Lo ) o PPt 36
E =) = = g Loy =R 37
2N 0] 01=3 ¢ Lo i Lot =X S URPPRP I
Appendix A: SOFtWaATre LISt ...ttt ettt e e et teea e e e nnaeaaennnsanaes I
Appendix B: Progress REPOITS ...ttt e e e e e e e eennnas II
Wi o) o2=) o Lo b b QG % B 1 L=X:] Lo ¢ =X S XLI

Appendix D: Official Playtest REPOTIt .............oo oo LIT



List of Figures

Figure 1: Csikszentmihalyi's FLOW TheOY Y .......cccoiiiiiiiii it 2
Figure 2: Coins used fOr GUIAANCE ........cooiiiiiii i e e enaee s 7
Figure 3: Coins used for just POINTS .......c.oiiiiii s 7
Figure 4: Ember from Hidden WOITAS ..........cccuiiiiiiiiiieieeee et 9
Figure 5: Ball texture With SWIrl ... e 10
Figure 6: RefleCt MaP .....iiii ittt s s e e e e e s e e e e e s an e e e e e anbaeeeeasneeeeennnes 10
FIQUTE 7: COIN ClOSE=UP ...uiiiiiiiiieitie ittt ettt et e e s e e e n e e be e e e e eneesneeenneanneenneens 11
Figure 8: Original gem cracking sprite sheet...........cccoooiiiiiiiiic e 12
Figure 9: Final gem cracking sprite sheet ... 12
Figure 10: Regular paint bucCKet SPIite ... 13
Figure 11: Regular paint splatter sprite sheet...........ccooriiii e 13
Figure 12: Bottom buckets with goal bucket's lid closed ...........cccoceeiiiiiiniiiiicnieeceeee 13
Figure 13: Bottom buckets with goal bucket's lid Open........ccccceeviiiiei e, 13
Figure 14: Paint splatter sprite sheet for goal bucket..........ccocovvivinicc e, 14
Figure 15: Background — Chrona’'s HOUSE..........cccoooiiiiiiiiiiieeeee e 15
Figure 16: Level 1 with Chrona’s House background ...........ccccocoeriieiiinienienieesee e 15
Figure 17: Original menU AeSIgTN......ccuii et e st e et e e e raree e e e e e e s ennee e e e nnnees 15
Figure 18: Jiung’'s CONCEPT IMEIIU........coiiiiiiie e e et e e e e s e e e e nnne e e e s enneeas 15
Figure 19: FINAl INEINU SCTEEIN .......ueiiiiiiiiiie ettt n et e e en e e sbe e nneeneesnnens 16
Figure 20: Confused EMber — 1 STaT........cooiiiiiiiieee e 16
Figure 21: Neutral EmDber — 2 STATS. ..ot e e e 16
Figure 22: Happy EMber — 3 Stars ..ottt e e 17
Figure 23: Sad EmMber — NO STarS......c.oooiiiiiiieeee e 17
Figure 24: Level Handler main methods breakKdOWN .........ccocveiiiiiiiiiiinieeeeee e 20
Figure 25: Preliminary test - Tightly packed gems........ccccceeiviiiie e 25
Figure 26: Preliminary test - Thinly packed gems .........ccocveiviiieeieiiee e 25
Figure 27: Final gem SPacCing AeSIOMN.......coiuiiiiiiieiieeieesie et nesneennee s 25
Figure 28: Preliminary - Large GEIMS ........ccciiiiiiiiiieeii ettt 26
Figure 29: Final - Gems slightly larger than ball.............ccooer e 26
Figure 30: Rectangular, octagonal, triangular, and hexagonal gems..........ccccccceccveeernnen. 26
Figure 31: POWETITUL SNOT .........o i 27
Figure 32: WEak SNOT ... ..ottt ettt e et e e e snneennee s 27
Figure 33: Level 1 - Instructional finger and ensured Win...........cccocceeiienienieniecseeseeeeene 29
Figure 34: Level 2 - Extra buckets and new gem pattern...........cccceoeiiiiiiicicncecieesiens 30
Figure 35: Level 3 - Red gem that opens the goal bucket's lid when hit..............ccccccocee. 31



List of Tables

Table 1: SCOTING....cccciiie i

Table 2: Scoring in possible Level 3 play through

vi



Introduction

This project and paper was completed by a team of four Worcester Polytechnic
Institute seniors. The team consisted of two programmers and two artists. The
programmers were Bryce Jassmond, majoring in Interactive Media and Game
Development (IMGD) and Computer Science (CS), and Christian Walker, majoring in
IMGD. The artists were Corinne Kennedy, majoring in IMGD, and Andrew Lukas,
majoring in IMGD. This project was completed as the team’'s major qualifying project.

The project was sponsored by Disney Interactive, specifically the mobile/social
division. They are located in Palo Alto, California, and have more than 400 employees.
They hired the team to work on a free-to-play casual mobile game prototype with the
goal of having a potential $10 million in revenue if made into a complete game. There
were to be about two months of pre-project planning done off-location and nine
weeks of focused, on-location development.

The team arrived on-location with two game ideas after the pre-project period. At an
initial meeting, elements from both ideas were taken and combined into one game
design that is similar to games like Pachinko!, Peggle?, and Papa Pear Saga®. Disney's
intellectual property, from their recent game, Hidden Worlds®, was to be used in the
game. The result was the game prototype that came to be Ember’s Inklinko, a game in
which players tap or drag with their finger to aim and shoot balls at gems, bouncing
the ball off them and racking up score, and trying to land at least one ball in a goal
paint bucket at the bottom of the screen. Players are awarded stars based on whether
or not they got a ball in the goal paint bucket and, if they did, their score. Following
the meeting, the nine weeks of continuous development commenced, in which bi-
weekly meetings kept the project on-track. At the end, a formal playtesting session
was conducted in order to evaluate the project’s progress.

This paper discusses the process of how Ember’s Inklinko was developed. It first
reviews the research conducted during the pre-project phase. It then discusses the
early work and changes to initial game concepts. Next, it delves into details about the
final game’s gameplay, the design of the art, the development of the background
mechanics, the level design, and the audio creation. Finally, the results of the formal
playtesting session are discussed and the overall development cycle is analyzed.

! Pachinko. (2014, March 31).

2 Peggle. (2007) PopCap Games.

3 Papa Pear Saga. (2013) King.com.

4 Disney Hidden Worlds. (2014, March 20). Disney.



Literature Review/Background

Casual Games

Before actually designing a casual game for Disney Interactive, we felt it appropriate
to research the literature specific to that industry in order to better understand the
market from the developer’'s point of view. We also wanted to identify the factors that
were critical to effective game design. The following highlights our research and
findings.

Casual games are video game experiences that are entertaining, easy to learn and
require little commitment of time. They often involve short, flashy sections of play
that can be interrupted and resumed at will. For that reason, the casual game needs to
be designed in a way that attracts the attention and interest of the player in the first
few minutes of the game and should be structured as a series of levels that can reward
the player immediately.>

o

zz
w
3¢
o«

Vo
x5

INCREASING TIME/SKILL

Figure 1: Csikszentmihalyi's Flow Theory

It is also important that the game design keeps the player engaged in an area between
anxiety and boredom as he or she progresses through increasingly difficult levels of
the game. This is consistent with Flow Theory developed by psychologist, Mihaly
Csikszentmihalyi.® Figure 1 illustrates the optimal game flow between a player's ability
and the game’s level of difficulty. From a starting point of the game at position Al, if
the difficulty increases beyond the player's skill level, he or she will quit from

5 Neomobile. (2014, January 15). Casual games design: 8 useful tips and tricks that you shouldn’t miss (Part 1).
Neomobile Commerce Company.
6 Neomobile. (2014, January 23). Casual games design: 8 useful tips and tricks that you shouldn't miss {Part 2).
Neomobile Commerce Company.


http://www.neomobile-blog.com/wp-content/uploads/2014/01/game_flow.png

frustration. If the player's skill level exceeds the level of difficulty, he or she will quit
from boredom.

Casual games have shorter development cycles than other games. This is because
casual games employ a few simple mechanics or concepts and generally have 2D, as
opposed to 3D, graphics. For example, King.com's famous game Candy Crush Saga’ is
a match-three puzzle game. This means all the player has to do is align three or more
candies of the same shape and color. There are not many graphics in the game aside
from the user interface which shows the score and remaining moves, the candies the
player has to match, simple background images, and the occasional animated
sequence. A triple-A title, such as Bethesda's The Elder Scrolls V: Skyrim®, has rich
storylines, and detailed 3D graphics. Triple-A titles can take years to be completed, but
a casual game can be conceptualized, developed and released within a few months to
one year.

The casual game genre also has a different target audience from larger games.
Traditionally the video games market has been primarily male-dominated, attracting
young to middle-aged adults. In recent years, that market has been changing and now
45% of all gamers are women with the average gamer being 30 years old.’ Casual
games specifically attract about 75% female players and 72% are over 35 years old.!° In
addition to the fact that casual games are inexpensive, quick to play, and easy to
pause, other reasons why casual games appeal to a female audience are they usually
don't feature the violence of the traditional video games targeted toward young men
nor do they require the physical prowess of fast hand control to play.

Casual games often use visuals, pop-ups, and established conventions, such as stars or
coins, to guide the player to the intended goals with minimal use of text. In the early
levels of Where's My Water?'?, collectible rubber ducks are used to help indicate to the
player where to send the water to reach the bathtub. According to our mentor at
Disney, Ed Baraf, the best games are the ones that “show” rather than “tell" the player
how to play.

These games also reward the player for success and usually do not present
instantaneous loss conditions at the very beginning. In Farmville, players are given
coins for taking care of crops and animals which can be used to purchase more crops

7 Candy Crush Saga. {2012, April 12).

8 The Elder Scrolls V: Skyrim. (2011, November 1). Bethesda.

° Entertainment Software Association. (2013). Essential Facts About the Computer and Video Game Industry.

0 Caulfield, B. (2008, March 14). Games Girls Play. Forbes.com LLC.

1 Pocilujko, S. (2006). 10 Reasons Women Like Casual Games: Why Casual Games and Female Gamers Go Together.
Casual Connect Magazine. Fall 2006.

2 Where's My Water?. (2011, September 22).



or livestock. There is no way to lose in the game. If the crops die the player can simply
replant, but there is no consequence for letting them wither.

Casual games need to have a low starting price as players tend to be cost-conscious.!
In order to address this, some companies will mask the real cost of virtual goods by
first requiring the purchase of a premium currency such as gems or gold and then
listing the cost of everything in that currency. Another monetization technique is
dividing the game into two sections. The first part of the game consists of easier levels,
but the player always has the option to pay for more challenging levels as well as more
content.”® A common business model for casual games is free-to-play. Instead of
being released in their entirety, they tend to have ongoing development, and go to
market sometimes with only 50% of their final content.’* One of the challenges in
designing free to play games is capturing the interest of the player in order to later
open up his or her wallet. Then new features have to be introduced in order to keep
the consumer engaged for extended periods of time. Newer features are often priced
at a premium. These techniques allow casual games to be released at a low cost yet still
make money.

With the advent of mobile devices, the casual games market has grown tremendously.
Gaming on smartphones and tablets is dramatically increasing the time consumers
have available to play games. It is projected that smartphone and tablet gaming will
capture 27.8% of the global games market in 2016, an increase from 17.4% in 2013.1°
This growth opportunity provides strong evidence that there is great potential for
further game development in the mobile segment of the industry.

13 Brown, S. (2012, August 22). Monetization Strategies And Results For Both Mobile And Browser Gaming.
4 Luban, P. (2011, November 22). The Design of Free-To-Play Games: Part 1.
15 Casual Games Association. (2013). Smartphone & Tablet Gaming 2013: GAMES MARKET SECTOR REPORT.



Project Procedure

Pre-Qualifying Project

In early November 2013 our project team began weekly planning meetings at WPI
with our advisor, Professor Finkel who is responsible for the Silicon Valley MQPs. This
was a team of four students representing both the art and technical aspects of
Interactive Media and Game Development who were interested in experiencing an
off-campus game development project at Disney Interactive.

The purpose of the planning meetings was to provide structure for designing a
Disney-themed casual game prototype which if further developed by Disney would
have a $10M revenue potential. While our initial research and design efforts focused
on classic Disney movies with a target audience of young children, through both our
research of casual games and information from our sponsor, we realized that the
actual target audience for casual games is adult women.

Our PQP goal was to conceptualize several game ideas by mid-December 2013. We
developed two different design concepts. The first was a marble puzzle game where
the player would direct a marble to a goal by placing obstacles in its path to guide it.
The second was a Break Out-style!® game where with a paddle at the bottom of the
screen the player breaks a series of bricks.

In December we began having Skype meetings with our Disney project manager, Ed
Baraf, who is a Studio Director at Disney Interactive in California. With his advice and
counsel we refined our game concepts and gained a better understanding of what
worked and didn't work from a gameplay perspective. Neither of our first two
concepts was actually developed. In the end, we combined elements of each and
added other ideas.

Additionally, this pre-qualifying project helped with software planning. The game
engine, Unity, was chosen because it is free and the whole team has had at least
minimal experience with it. Autodesk Maya and Photoshop were primary art programs
for three-dimensional modeling and two-dimensional images respectively. A full list
of software used during this project is available in Appendix A: Software List.

16 Breakout (1976 Atari). (2013, May 27).



Ember’'s Inklinko

Early Work

Once we arrived in California, our initial assignment was to build a “toy”, a game that
didn't have specific goals, but instead demonstrated the physics of the engine and the
problem solving skills of the programmers. The purpose of this activity was to
demonstrate what our team was capable of designing. With a new IP, instead of classic
Disney, and clarity of our target audience, we were given art assets from Disney's very
successful Facebook and mobile game Hidden Worlds. From those assets we quickly
identified and adopted the key character for the game that we would create. The
advice from our mentor was to get core mechanics to operate as solidly as possible
and build from that. Biweekly meetings with our mentor allowed us to quickly move
from concept to design. Milestones from the early meetings are in Appendix C:
Milestones, and daily progress reports are in Appendix B: Progress Reports.

Gameplay

Ember’'s Inklinko is a Pachinko style game similar to Peggle and is designed to be
played on mobile iOS devices. The game uses an elfin character named Ember from
Disney's Hidden Worlds to launch six balls into play from the top of the screen. The
objective is to bounce a ball into the goal, a gold paint bucket, at the bottom of the
screen which when accomplished, advances the player to a subsequent level. In
addition, the player wants to earn as many points as possible in each level.

Points are earned in several ways. The player is awarded 500 points for each ball that
goes into the goal bucket. In addition there are several other buckets at the bottom of
the screen which award lesser point values when balls fall into them. As each ball falls,
it bounces off red, blue or grey gems on the way to the buckets at the bottom of the
screen. When multiple blue gems are struck, a multiplier of 0.1 is applied to the score;
this is a combo bonus.

In all levels after the second level, the goal paint bucket is lidded, preventing the player
from immediately reaching the goal. In order to open the bucket, the player must clear
all of the red gems in the level by striking them with a ball. Exploded red gems give 100
points and add another 25 to the combo bonus. All red gems must be cleared, in
addition to hitting the goal bucket, in order to advance to the next level.

Striking each blue gem with the ball awards 50 points, but unlike red gems, clearing
them is not a requirement to beat a level. Grey gems cannot be broken and do not give



the player points. They behave as obstacles for the ball to bounce off of. In some cases
not all six balls are used in a level because the goal bucket has been hit before they
were launched. Five hundred points are also awarded for each ball is saved in this
manner. This is called the ball bonus and is a reward for accuracy and efficiency.

Red Gems Are Key
Score:0

o

€ & .
& & & & & & % & &
® & & £ £ £ £ &

® s & 8 . 8

Figure 2: Coins used for guidance Figure 3: Coins used for just points

Gold coins appear in every level and are worth 250 points each to the player when
collected. In early levels, they are aligned in a way that guides the player to aim the ball
launch (Figure 2). In subsequent levels, the coins appear among the arrangement of
gems, no longer guiding the player's shots, but still awarding points (Figure 3).

The points awarded by all buckets, including the goal bucket are added up into the
“end bonus.” At the end of each level, stars are awarded to the player based on whether
the goal bucket has been reached and on the total score for the level with a maximum
of three gold stars being awarded. The score is calculated from the base number of
points for each gem cleared (50 for blue and 100 for red) plus the combo bonus plus
the ball bonus. Table 1 summarizes the scoring rules, and Table 2 provides an example
of how a score is calculated for a specific level 3 play through.

Table 1: Scoring

Basic elements Points Combo points

Goal (gold paint) bucket 500 per ball landed

Pink paint bucket 400 per ball landed

Green paint bucket 100 per ball landed

Blue paint bucket 200 per ball landed

Blue gem 50 for each strike Adds 0.1 to multiplier
Red gem 100 for each strike Adds 0.5 to multiplier
Coins 250 each collected

Extra Ball Bonus 500 each




Table 2: Scoring in possible Level 3 play through

Item Action (or per item value) | Score

Ball1 Collects 3 coins @250 750
Strikes 1 red gem — opens 100 + adds .5to
goal bucket multiplier
Strikes 7 blue gems @50 350

Activates multiplier
gem 150x1.5 =75-50 =25
gem 2 50x1.6=80-50= 30
gem 3 50x1.7=85-50= 35
gem 4 50x1.8=90-50= 40
gem 5 50x1.9=95-50= 45
gem 6 50x2.0=100-50=50
gem 7 50x2.1=105-50=55

Sum of multiplier

280
Lands in red bucket 300
Ball 2 Collects 3 coins @250 750
Lands in Goal bucket 500
Balls 3,4,5,6 (Ball bonus) | Balls not used 4@500 each | 2000
Total for Level 3 5030

The player aims by dragging with his or her finger across the touch screen. When the
player lifts his or her finger a ball is launched into the game field from Ember's
slingshot. Once a ball is released, the player cannot change its trajectory directly. The
game allows multiple balls to be in play simultaneously. This allows the player to
increase combo bonus, bounce balls off of one another to adjust their direction, or
clear multiple red gems at once. This also allows for a measure of strategy as the player
can clear a red gem while another ball moves toward the gold paint bucket or can clear
a path to the gold bucket with one ball and reach it with another.

The gameplay is currently at a complete prototype stage. There are not chunks of the
game missing, and the game itself is mostly self-guided. Players can interact with the
game and receive a complete experience from it, playing through levels and trying to
achieve a high score with very few errors that break the game.



Art

Art Direction

The art of Ember’s Inklinko is done in a painterly style, one where the forms are made
of color rather than outlines to create the forms. The overall design is based on Hidden
Worlds, a recent game by Disney Mobile released on Android, iOS, and Facebook. In
Hidden Worlds, the character Ember uses a slingshot to craft in-game items (Figure 4).

Figure 4: Ember from Hidden Worlds

Our game required a launcher, a method of dropping the ball into the level, and
Ember's slingshot was exactly what we needed. One of the lead artists for Hidden
Worlds, Bennie Booysen, gave us access to many assets from their game, Ember
included, to use in our own, and Ember became the main character in our game. The
style is reminiscent of classic Disney movies.

Dynamic Art Assets

Most of the art assets used in the game are 2D sprites. A sprite is a simple 2D image
displayed on a plane, usually with a transparent background. Sprites are often laid out
in a grid on a single image file and can be used for animations; this is referred to as a
sprite sheet. With sprite sheets, the game engine can go through the arranged list of
sprites and either display a desired sprite or play them in succession to animate the
image. The only 3D assets used in the game are the ball and the collectible coins.

The 3D ball consists of three separate art assets: the spherical model, called a mesh, a
texture file, and a reflection map, or reflect map. The sphere was made in the 3D
modeling program Autodesk Maya and then exported from there as an object file,



10

which is a standard file extension for 3D objects. The object file was loaded into Unity,
along with the 2D texture file, the color of the ball (shown in Figure 5), and the reflect
map, shown in Figure 6. The texture and the reflect map were applied as a material,
which itself was wrapped around the sphere mesh. The swirl made the movement and
roll of the ball more obvious; the swirling motion draws the player's eye to the ball
after it has been launched so the player can track its progress.

Figure 5: Ball texture with swirl Figure 6: Reflect Map

The ball uses Unity's pre-existing physics engine, which allows for more realistic
bouncing and makes the game easier to code. Having the ball as a 3D object also
allows it to take advantage of Unity's lighting engine. This way, when the ball bounces,
rolls, and rotates, the highlights and shadows function naturally in relation to the light
rather than being part of the texture and rolling when the ball rolls in an unnatural
manor or needing to be a separate sprite. The ball's reflect map allows it to appear
shiny.

The reflect map is a default texture from the 3D modeling program, Pixologic ZBrush,
and is a photo of a desert that has been set to grayscale and warped to appear
spherical. The sun in the image becomes a strong highlight and the desert floor
becomes areas of shadow. In addition to making the ball appear shiny, the reflect map
also gives the ball a greater illusion of depth.

The coins in Figure 7, like the ball, also have a mesh and texture but did not require a
reflect map. The coins are 3D to make the rotation animation easier; having actual
depth to begin with means they just had to be programmed to spin when
implemented rather than being drawn out frame by frame as the perspective changes.
This also allows the coin to rotate smoothly and attract the player's eye.



11

Figure 7: Coin close-up

There were several advantages to using sprites instead of 3D objects for the majority of
the objects in our game. First, using sprites allowed us to create objects that have
different states and display state changes visually (e.g. a gem cracking when hit).
Second, 2D sprite animations, such as Ember firing the ball, were also easier to create
than equivalent 3D animations. 2D assets are significantly less memory-intensive
than 3D assets and they can be colored by the Unity engine, which will be discussed
later. The gems, for example, are 2D sprites, but they have 3D colliders, an invisible 3D
mesh that can tell the engine if another 3D mesh has entered its space, to allow them
to interact with the ball. Starting out as 3D objects, the gems took up too much
memory when a significant number of them were in a scene. By making them into 2D
objects we drastically reduced the memory usage of the game.

We wanted to have the option to show the difference between gems with varying
health, for example a gem that will shatter in one hit as opposed to a gem that will
shatter in three hits. This was done by making a sprite sheet with the gem cracked to
varying degrees, shown in Figure 8. The gem on the left is undamaged and will take
more hits to break than the gem on the right, which will break the next time it is hit by
the ball. It is more efficient to show these state changes with sprites because only one
object, the gem cracking sprite sheet, is required. This one sprite sheet is less memory
intensive than a 3D model and four separate texture files. It proved to be more difficult
to dynamically switch textures on a gem model to show state change because
changing the texture of one gem in a level often changed all of them.

QOO



12

Figure 8: Original gem cracking sprite sheet

We wanted the gems to have different colors. Since the sprites could be assigned a
color in the engine, only one sprite of each of the two shapes, octagonal and
rectangular, needed to be made rather than several sprites of different colors or
textures for the models. This came with a challenge of its own: Unity assigns color
additively, which means it takes the color you want the sprite to become and layers it
over the colors that already exist in the sprite. If we had a blue gem and wanted to
change it to red, it would turn purple. We solved this problem by making the gem
sprites predominantly white and using grays to add shading. We had some help from
another Disney artist who worked under Bennie to make the gems match the artistic
style of our game (Figure 9).

Figure 9: Final gem cracking sprite sheet

The User Interface

For Ember’s Inklinko, we needed to do something with the bottom of the screen. It
used to be purely ball death; if all the balls launched reached the bottom without
hitting the goal zone, the player would lose. Ed recommended we make it such that
reaching the bottom of the screen is less penalizing. We decided to implement bonus
points in four zones at the bottom and make a fifth zone the goal. To represent these
zones, we used buckets from the crafting menu in Hidden Worlds. Memory space was
saved by having one bucket of paint (Figure 10), duplicating it, and assigning it a color,
rather than making many paint buckets.

The paint in the paint buckets at the bottom of the screen and the splatters (Figure 11)
that appear when a bucket has been hit are white sprites, like the gems, and are
likewise colored by the engine.



13

Figure 10: Regular paint bucket sprite Figure 11: Regular paint splatter sprite sheet

The goal bucket needed to be unique and draw the player's eye. It needed to be
immediately apparent to the player that the bucket is the goal and whether it was
accessible or inaccessible because of red gems in the level (as indicated on its side). It
sits on top of a stool to give it some height variance from the other bonus point
buckets (Figure 12), making it even more obvious that the goal bucket is important,
even when the bucket is lidded and inaccessible

00 o TH00

Figure 12: Bottom buckets with goal bucket’s lid closed

The goal bucket has a shine that is absent from the other buckets. This informs the
player that the goal bucket is now open and reachable, shown in Figure 13. The shine
on the bucket has a very simple animation to make it seem as if the shining light is
spinning, which also helps to draw the player's eye to the goal bucket.

Figure 13: Bottom buckets with goal bucket’'s lid open



14

This lets the player know how many red gems need to be broken before the bucket is
opened. The goal bucket's gold paint splatters, shown in Figure 14, are unique in that
they have a subtle glitter texture to them, which makes it clear that the goal has been
reached.

Figure 14: Paint splatter sprite sheet for goal bucket

Backgrounds

The backgrounds (such as in Figure 15) were pieced together from different assets in
Hidden Worlds by Bennie. They all have a large area of sky with a little bit of Inkspire,
the island the Inklings live on in Hidden Worlds. These backgrounds allow the gems to
pop on the sky section while grounding the whole scene with the island at the bottom.
The large open area of sky keeps the background from being too cluttered so the
player is more aware of the gems than the background while tying together the look of
the whole game (Figure 16).



15

Gotta Start Somewhere!
Score:0

. & ¢ & & & & & & !».
F & - . * L2
¢ & & & & & £ & & &

. §® . 3 ® ’
F s 5.5 5 & & & &

N1/

» T Q

Figure 15: Background — Chrona’s House Figure 16: Level 1 with Chrona’s House background

The main menu and end screens were based on some concept pieces by Jiung,
another artist working under Bennie. She took our original menu screen (Figure 17)
and gave us a concept piece that better represented the game and matched the art
style (Figure 18). We took that concept and made a few adjustments (Figure 19). The
ball was changed to match the one used in the game, and different button textures and
animation were added. For the end screen, we chose to emulate one of Jiung's
designs: just Ember, the score, and the stars are displayed on a black overlay, semi-
transparent layer of color, over the level screen.

EMBER'S.

TINKLINKG)

(J
AN .;&;. INKTINK

a8 B
. .

nop =

Figure 17: Original menu design Figure 18: Jiung's Concept menu



16

¢ EMBER'S), :
INKLINK®)

Figure 19: Final menu screen

Getting the animations for the end screen proved difficult; we were given four
animations of Ember making faces, seen in Figure 20, Figure 21, Figure 22, and Figure
23, as Adobe Flash documents. These animations add character to the game and make
the player feel either really happy about winning or sad about losing in a way that
encourages replaying the level. However, Unity does not accept Flash animations as
valid assets. We had to convert the animations to sprite sheets using a program called
SWFSheet. Since each animation had over 100 frames, the game used too much
memory and crashed when it was loaded. To solve this problem, the size and quality of
these animations was drastically reduced.

Congratulations!

-«

Congratulations!

@y

D7

T

Final Score
44

(OB

oy

Final Score
12530

Figure 20: Confused Ember — 1 Star Figure 21: Neutral Ember — 2 Stars




17

Congratulations!

Maybe Next Time!

oV
L &%
e
(0 O B>

Figure 22: Happy Ember — 3 Stars Figure 23: Sad Ember — No Stars

Final Score

(IO N>

We wanted to use stars to show how well a player did on any given level. Thisis a
convention shared by many casual games including Hidden Worlds. Simply
completing the level grants the player the first star, like in Figure 20, and the other two
will fill based on how well the player scored (compared to a calculated threshold). In
Figure 21, the player beat the level and got enough points to reach the first threshold
but did not get the high score. Therefore, the player only has two full stars. In Figure
22, the player has achieved, or exceeded, the high score threshold for the level and was
awarded three stars. The player did not reach the goal bucket in Figure 23 and earned
zero stars.

We were unable to get the already animated stars from Hidden Worlds, although we
did get a still image. Instead, we animated the filling in of a star in Flash by layering a
rectangle over the color of the star and animating the rectangle to uncover the star.
We then converted the flash animation to a sprite sheet and deleted the rectangle. This
gave us a sprite sheet with the color appearing gradually. Next, we put that over a
wooden star-shaped frame, thereby making the frame appear to fill with color.
However, the sprite sheet stars caused a problem in the game; Unity can only display
one sprite from the sheet at a time. Since the stars fill based on score, falling just short
of the threshold for achieving a full star will occasionally cause it to display as full. To
avoid confusion, a shine behind filled stars was added.

Summary

The assets came together at the end to form the cohesive look of Ember’s Inklinko.
Everything in the game, from the Ul to the gems, feels like they are from the same
world and the same game. Our technical adjustments helped make the game look its
best and work well with the engine and the code.



18

Mechanics

Ember’s Inklinko has many background mechanics that are not apparent through
gameplay, used both for development as well as in-game. As new needs arose, they
were iterated and changed until they worked as desired. These mechanics include the
physics implementation, level handler, custom buttons, audio handler, scoring objects
structure, and modular gems.

Physics

This game primarily used built-in, realistic physics functionality. By using Unity, the
physics engine PhysX by Nvidia was included by default. This included basic rigid
body physics with both three dimensional and two dimensional collisions, as well as
indicating triggers, colliders that do not automatically affect movement. While the
game mostly consists of two dimensional sprites, early implementations used three
dimensional meshes and colliders, which proved difficult to change in the project's
time frame when the sprites were introduced; thus, the mesh colliders were kept for
the sprites, which were essentially of the same shape. For several elements that were
rectangular, such as the invisible walls around the levels, built-in box colliders were
used to reduce calculations needed for comparatively complex meshes. The final
colliders used were planar meshes, used sparingly for kinetic interactions but mostly
for user input, such as buttons. All of these are tools built-in that provide a realistic
physics simulation.

To create a more fun experience, creative changes and additions were made to the
built-in physics functionality. The ball physics in particular needed many iterations to
generate a desired feel from its bounces. Gravity strength and the physics material
bounciness given to the ball were continuously edited in an effort to find that desired
feeling, but ultimately, an artificial clamp on the maximum speed of the ball was what
achieved it. The ball launcher, Ember's slingshot, that shot the ball also included a
custom trajectory calculation that showed exactly where the ball would be in small
time steps, taking the artificial maximum speed into account. This enabled a player to
aim the ball prior to shooting it. These built-in realistic physics combined with our
creative additions gave the game a fun and understandable experience.

Level Handler

Each level is controlled in the background by a level handler so it may run smoothly.
When a new level is loaded, the level handler initializes right after the audio handler.
While doing so, it grabs and saves each key element in the scene, such as the audio
handler, camera, and launcher, and creates other parts, such as a temporary title
banner and score tracker. For objects where it is appropriate, the handler calls their
initialize functions in a specified order, having each one start when they need to. If



19

there was a problem or missing item earlier in the sequence, such as a missing audio
handler, the level would throw a custom error and break out of the level, letting the
developers know what needs to be fixed. Once the level is fully initialized, the handler
continues to manage all the objects by a smart update, which occurs a number of
times per second, based on frame rate, to keep the game running; not only do the
objects update in an appropriate order to prevent race conditions, but certain object
updates may be completely skipped if the game is paused or the level has ended,
saving on computation time. A detailed order of operations within the level handler is
available in the flowchart of Figure 24. This control over the operations of the level
and its objects allows the game to run smoothly.

The level handler also reduced the development and running cost of scripts. In Unity,
scripts are attached to an object in order to run, unless they are static and utilized by
other scripts. Initially, all objects were independent, and whenever one's script needed
to access information from another object, such as the buckets needing to know the
active ball count and shots remaining from the launcher in order to trigger the level's
end, the object would have to search the scene for the one holding the desired
information. To combat this, a static storage script was created, which allowed objects
to access all desired information without searching. The downside to this static
storage script was the size and inflexibility of it; any addition to the game that required
shared information was added to it, making finding a particular part that needed
editing difficult. The level handler provided a cleaner solution, letting each script
know only as much as it needed to know, which limited the use of public variables and
costly searches as well as made scripts concise and compact. In cases where an
object’s script needed to know information from another source, such as the audio
handler to play a sound or the level's score tracker to add to, the script could access the
information straight from the level handler, which keeps track of all important assets
in the level. The organization and optimizations of the scripts were made possible
only by the level handler.



Level Handler

initialize()

I Find AudioHandler, camera, Launcher, GUIHandler, and Gem Handler

I Throw error if camera is null

P
Throw error if Audio Handler is null;
else play music and initial sounds

Throw error if Launcher is null;
else get its BallBurstZone child and initialize any buttons in children

If GuiHandler is null, throw an error;
else initialize it and then, if its StatWindow is null, throw an error;
else, initialize the St_atWindow

Find all ScorableObjects and for each:
If a Gem, assign color;
Initialize;
Move to Level Handler's z-position

Start the TitleBanner's fade sequence

Update()

If not paused
Stay unpaused
Update all ScorableObjects
Update all PointSpawns
Update all active BallExplosions
Else
Stay paused

If not ended
If the launcher has reached its shot limit, set to ended
Else
If done running active balls
If the level is not clear
Clear it
If there are extra balls in the launcher
Explode them
If there are no more ball explosions
Activate StatWindow
Load the score statistics into the StatWindow

Figure 24: Level Handler main methods breakdown



21

Custom Buttons

Customized buttons were the most efficient option for Ember’s Inklinko. While there
are built-in buttons and alternative solutions that may be purchased, making ones to
fit the game’s needs was found to be both more efficient than the built-in ones, which
ran draw functions several times within single frame, and more cost effective than the
purchasable add-ons, favoring time over monetary cost as the game’s budget was
nothing. The custom button was structured such that actions may be plugged in for
various user inputs, such as press, drag, and release, as long as they adhere to a base
set of rules: the action script needed to inherit from a base action script and, in order
to do something unique, needed to redefine the base script's initialization and Action
functions. This made them modular to accommodate all necessary functionality. This
modularity and cost effectiveness made custom buttons the most efficient choice for
the game's user interface.

The button acts like one might expect a button to in a game. If given a graphical
object, the button will demonstrate interaction by shrinking the graphic when pressed
and held down, and return it to the original scale when released. Additionally, a sound
is played whenever the button is pressed and released. For most basic buttons, all
behavior is applied by assigning an action script to only the released action slot, but
there are slots for actions on press and drag. How the actions are implemented will be
discussed in the following paragraphs, but the scaling, sounds, and actions on user
input are all features commonly found in game buttons.

One of the simplest buttons in the game is the activation button. When given an
object, it will toggle the object’s active state, causing the object to disappear and
become unable to be interacted with. This is used for the level select window and
credits button on the main menu. The pause action is similar to the activation button,
but uses a level's pause menu instead of a given object as well as toggling the level
handler’'s pause. This is used on the options button in a level.

A common action, level changes, are handled in several different ways. The general
level select action loads a level by a number given to it, but if given a text object with
an integer string value, it will load the level interpreted by the string. To assist the level
select action that is given a text object, an iterator action button increments or
decrements a count that, when given a text object, is parsed to the object’s string
value. These are used in the level select window on the main menu. Variations of the
level select strip down the functionality to only the necessary parts; the retry action
reloads the current level, the main menu action loads the main menu, and the next
level loads the next level, defaulting to the main menu if there are no more levels.
These are used on the respective buttons on the options menu and stats screen in
levels.



22

An interesting button action is the skip stats action. This is only used on the stat
screen, and will cause the stat sequence to skip to the end by displaying the total score
and triggering each star to fill up its required amount. This action is applied to the
press slots of the stat screen buttons, but also to the pressed action of an invisible
button that overlays the entire stat screen, allowing the player to skip the stats by
tapping anywhere. For just this invisible button, the action additionally turns off the
press and release sounds.

The most interesting button of all is the ball launcher. This button is invisible, like the
stat screen button, and covers the whole screen except for the user interface at the top.
The button has two actions, one for aiming and one for firing. The aim action runs
both when pressed down and when dragging, telling the launcher to run its aim
function, which turns Ember’s slingshot to face the player's finger and shows the
trajectory of a fired ball. The firing action runs when released, firing a ball in the
direction the slingshot is facing. Both actions replace the button sounds with
slingshot press and release sounds in their respective slots to fully make the player feel
they are using a slingshot.

Custom buttons were the best choice for this game. They were the most efficient
choice, in time and money, out of the available options, and were modular enough to
accommodate all user interactions, taking the basic presses and releases and acting
appropriately on each one. Without them, development would have been slower.

Audio Handler

After several iterations of an audio system, it eventually consolidated into one,
centralized audio handler. Initially, each object had sounds attached by default, which
proved inefficient both for development and during play. If a new sound were to be
tested, it would need to be replaced for each object by hand, and since the sources
always existed during play, resources were taken up by them. Changing the sound
clips to variables, to be played from one audio player, improved the resource usage
during play, but did not fix the development and testing cost; even with a script to
assign the sound effects at runtime, it was time consuming to change the sounds, as
well as messy to assign in practice. Finally, a central library was formed with a
dictionary of sounds keyed with strings. This allowed scripts to use a hard-coded
string reference to a sound and sound effects to not only be differently named, but
also switched in only one location, vastly improving development time. An additional
improvement to this system was the ability to instantiate an audio source only as long
as a clip was playing, which freed up memory and allowed each sound to have
adjusted volume and pitches. At the slight cost of reallocating memory frequently at
runtime, this gave flexibility to how audio was used, and would not be possible
without the centralized audio handler.



23

Structure to Scoring Objects

Ember’s Inklinko has numerous objects that affect score; gems increment score when
hit and increase in value from an increasing combo, coins award a constant score
when touched, buckets give scores based on their labelled value, and extra balls award
a constant value at the end of a level. They are all different, but share similar features,
so a basic inheritance protocol was needed to give them structure. They inherit
methods and parameters that any object involved in scoring needed to know about, so
scripts can assume general properties. For example, by inheriting from a base class,
the level handler can easily track all of them after a single search while initializing, as
shown in Figure 24. Additionally, as art was constantly changing alongside code
development, general terminology, such as “launcher” and “ballEndZone”, let assets be
swapped out with minimal effort. Giving much needed structure, the inheritance
protocol for scoring objects was important for the game'’s development.

Modular Gems

Extending the structure of scoring objects, gems in particular were very modular. The
developers could change a gems strength, breakability, key status, and combo
increase amount without delving into the gem's script. As a core element to the game
since the beginning, this gem modularity allowed the gems to be easily changed and
tested, which led to quicker level design. A fine example of how art and audio work
together, the gems begin as white and colorless, waiting for a script to assign them
color based on the previously discussed properties when they are initialized. In
previous versions of the game, they were additionally assigned sound effects based on
the same properties, but this was taken out with the implementation of the audio
handler. In this final version, without having to worry about running down a list of
preset gems or changing all of said presets when an asset was changed in earlier
versions, designers could move a single base gem into a level and change a few simple
properties to vastly change its behavior without much effort. For these development
needs, the gems needed to be as modular as they were.

Summary

All of these background mechanics were necessary for the game, even though they are
not readily apparent to a player. They kept the game's assets organized neatly and
running efficiently, keeping the game fun to play. Lack of any of those parts would
have made development slower and hindered the design process.



24

Level Design

Level design is the part of the game development cycle where the physical setting and
the elements with which the player interacts are designed. The level designer’s role is
to create a fun and engaging experience for the player by skillfully manipulating the
various elements of level design. In the case of Ember's Inklinko, those elements
include gems, balls, coins and paint buckets that are integral components of the game.

Several considerations were evaluated in creating the action of the game. They
included the density, size and shape of the gems; the breakable vs. unbreakable
elements; the speed and control of the ball; and the goal placement. Then it became
the challenge in the design of specific levels to ensure that the arrangement and
interaction of the elements appropriately evolved in complexity in each game level
while the player's skill level advanced to ensure interest, engagement, challenge and
fun. Discussion of each of these aspects of level design follows.

Gems

Density

How densely or loosely packed the gems were arranged affected the play of the game.
Using level designs from preliminary builds with gems densely spaced, we realized
that when gems were placed close together, the movement of the ball was impeded
(Figure 25). This made the ball action rather boring to watch. When placed too far
apart, there was not enough “bouncing” or interaction between the ball and the gems
and we risked losing the interest of the player (Figure 26). The optimal spacing
between gems in the final design was found to be roughly a gem's width as shown in
Figure 27.



25

Balls Left:®®® oo Combo: x0 Balls Left:®®ooe Combo: x0

Key Gems Score: 0 Key Gems Score: 0

Figure 25: Preliminary test - Tightly packed gems Figure 26: Preliminary test - Thinly packed gems

Gotta Start Somewhere!

Score:0 fapres @

A
& ~e ®
. % & % & & % &
s ® - ®

£ & & & & & & & &
® ‘® ® ® ‘® Y.
@ﬁﬁ@n@a«ﬁﬁ@b’g

f,»# ‘® ® & & ®
= & . c & & & ®

/s
» ’_""'

& A s

Figure 27: Final gem spacing design

Size

The size of the gems also affected play. If the gems were too large, they effectively
cluttered the screen and actually interfered with play (Figure 28). If they were too
small, they were difficult to see and interact with. We found that the best gameplay
was achieved when the gems were slightly larger than the ball (Figure 29) and the
action then of striking the gem was a more satisfying experience for the player.



26

One Bumpy Ride!

Balls Left:*®®e® Combo: x0
Key Gems m Score: 0

Figure 28: Preliminary - Large Gems Figure 29: Final - Gems slightly larger than ball
Shape

The shape of the gems was also an important level design consideration. The game
requires that the ball is launched in a way that allows it to bounce off the gem:s.
Rectangular and octagonal shapes (Figure 30) provided the best surfaces for a
predictable “bounce” of the ball, allowing those gems to “explode” on impact. Other
gem shapes, such as triangles and hexagons (Figure 30), were considered but rejected
because after a few bounces off them, predicting the ball's motion and direction
became too chaotic. This was likely a function of the difference in the degrees of angle
among the shapes.

Lt O A O

Figure 30: Rectangular, octagonal, triangular, and hexagonal gems

Breakable vs. Unbreakable

Consideration had to be given to the interaction of the ball with the gems to ensure
that there was adequate visual action to optimize gameplay and create an enjoyable
experience. Effective level design required that there be ample numbers of breakable
gems in order to produce an element of action and sense of accomplishment on the



27

part of the player. Red and blue gems in the game were the breakable elements which
created exploding action and added excitement to the game. The gray gems were
unbreakable but interacted with the ball to alter and sometimes guide its direction.

Ball

The speed of the ball was affected by gravity and the game engine'’s built in
"bounciness.” With a higher speed, the player could not follow the ball's progress
through the gems. At a slower speed we risked having the player become bored and
leave the game. Even at slower initial speeds, the more the ball bounced, the faster it
accelerated. This required assigning a speed cap in order to keep the ball at a
reasonable velocity. If action was too bouncy, the ball's movement was chaotic and
difficult to follow or predict; not bouncy enough and the ball felt lethargic so the game
wasn't exciting or engaging.

The player affects the movement of the ball by controlling when it is fired, the angle at
which it is fired, and the power of the shot. In Figure 31 the player is aiming down to
the left with a powerful shot as indicated by the placement of the trajectory “dots.” In
Figure 32 the player is aiming down and to the right with a weak shot where the
trajectory “dots” indicate that the ball is likely to fall with minimal power behind it.

Figure 31: Powerful shot Figure 32: Weak shot

There is some predictability of a ball's action when the player understands the
relationship between the ball and the shapes of the gems. An experienced player can
fire one ball and have it bounce off gems or walls to direct it to its desired target.

Coins

Gold coins are other elements in the game. They serve two purposes. Sometimes they
direct the player to important targets, such as red gems. In every case, coins serve to
award points to the player when a ball passes over them while in play. Points earned
from the collection of coins offers the player additional ways to maximize their score
and experience a sense of success.



28

Buckets

During preliminary game design we realized that we needed to have some type of
receptacle for a launched ball. Having a ball just “die” at the bottom of the screen was
not a particularly rewarding outcome. A bucket became the ideal target toward which
to fire a ball. It was shortly after this design decision that we were offered the
opportunity to use art assets from Disney's Hidden Worlds and several buckets became
part of Ember’s Inklinko.

The first bucket that is introduced in the game is a gold paint bucket. It becomes the
primary target of the game, the goal bucket. For each level of play the only way to
advance is to hit the goal bucket. In the first level of Ember’s Inklinko, there is a single
bucket, the gold goal paint bucket, placed at the bottom center of the screen. Its
solitary and central placement signifies its importance to the player.

Four additional buckets, green, pink, red and blue, are added to all the subsequent
game levels, where reaching the goal bucket becomes more challenging. Each of the
four has a lesser point value, but hitting them prevents the player from feeling that a
ball was wasted even if they missed what they were aiming for. This serves as another
way of keeping the player engaged.

For all but one level, the goal bucket is positioned in the bottom center of the screen.
At Level 3 it is moved to the far right where the vertical arrangement of unbreakable
gray gems and the positioning of coins advise the player that there is a required
sequence of play in order to overcome an additional challenge, opening a lidded goal
bucket. An important consideration in level design was to create incremental levels of
difficulty to maintain the interest of the player. Introducing a lidded bucket for levels 3
through 8 as well as a specific sequence in order to open the lidded bucket introduced
the necessary complexity and play strategy to ensure engagement and a fun
experience.

Trial and Error

The optimal layout of the elements with which a player interacts requires a certain
amount of trial and error. In an article describing the design of Peggle 2, author Russ
Pitts reinforces the fact that there are no hard and fast rules in level design; it is up to
the level designer to arrange the elements in ways that allow for exciting and
engaging game play."”

7 Pitts, R. (2013, December 11). Making the secret symphony of Peggle 2. Polygon. Vox Media Inc.



29

Designing the Levels

Level 1

In level design it is essential to engage the player's interest with the very first game
experience so that he or she will continue. This means visually providing clear
directions to get the player started as quickly as possible. Level design considerations
on the first game screen involved showing the player where to start. An animated
hand with a pointing finger directs the player to the slingshot and the six game balls
(Figure 33).

In addition the alignment of three gold coins, which are traditional elements in casual
game design, guides the player to an effective aim trajectory. In Level 1 there is only
one paint bucket at the bottom of the screen, the goal bucket. Its singular placement at
the center makes it obvious to the player that this is his or her desired target. The balls,
once launched, strike the blue octagonal gems and are directed toward the goal bucket
by the funnel-like arrangement of unbreakable gray gems and land in the bucket. The
player is immediately rewarded with points for striking the gems and hitting the goal
and advances to the next level.

Gotta Start Somewhere! = 4
Score:0 5’* BRETE. e
o4 7

oL {7
\

T € & T € T & & €
s ® ® ® ® s ®

T & & & £ & & & & @
e ‘. ® ® ‘. 3

*T s ¢ e s 85 -5 & 80
sy vc. ® ® ®

£ & -8 & ¢ & ¢ & €

J
N’

Figure 33: Level 1 - Instructional finger and ensured win

Level 2

Effective level design requires a balance of challenges that are difficult enough to
continue to engage the player's attention, but are not so difficult that the player will
give up.



30

Level 2 introduces additional paint buckets of different colors and point values at the
bottom of the game screen. The title of Level 2, “More Buckets?” appears at the top of
the screen to indicate to the player that there are additional reward opportunities
(Figure 34). Rectangular gems placed in a wavy pattern offer the player a new
challenge.

More Buckets?
Score: 0

Figure 34: Level 2 - Extra buckets and new gem pattern

Level 3

Game complexity increases as red gems are introduced in Level 3, which is titled “Red
Gems are Key.” This title provides an important clue to the player that striking the red
gem is a critical aspect of the game. In addition there are gray gems that are now
aligned in a vertical pattern and the goal paint bucket has been moved to the far right.
Two arrangements of gold coins indicate that there are now two areas toward which
the player should aim (Figure 35).



31

Red Gems Are Key

Figure 35: Level 3 - Red gem that opens the goal bucket's lid when hit

Subsequent Levels

The first 3 levels introduce all of the elements that the player will encounter while
advancing through the eight levels of play. With each successive level of play we have
built increasingly challenging gameplay while still using all of the now familiar
elements. The more complex arrangement of those elements and the player's
increasingly skilled interaction with them in subsequent levels creates excitement,
challenge and fun.

Summary

Level design involves attending to a number of details in the development of a game.
The gameplay elements require thoughtful planning and integration in order to
ensure a gamer's engagement. With Ember’s Inklinko we believe that we have done
well in attending to all of those factors.



32

Audio Design

Audio design is the process of selecting, acquiring, manipulating and generating
audio elements. It is the creation of a complete soundscape; the music, sound effects,
and ambient noises that make up the game's aural experience. It is used to set the
mood of a game, evoke emotion and otherwise immerse a player in the game world.

A large part of the sound design process of Ember’s Inklinko was obtaining or
synthesizing sounds to match the soundscape and the universe of Hidden Worlds.
Our audio assets were acquired from either Freesound.org or Nick Gallant, an audio
professional at Disney. Some were synthesized in an audio editing and production
tool known as Audacity with the help of external filters.

The soundscape of Hidden Worlds uses percussion and woodwind instruments to
create a primal and mystical sound. The sounds selected tended to have a slower
tempo, and were high on acoustic effects such as reverberation, or echo. Hidden
Worldslacked synthesized sounds or metallic instruments, creating a soundscape
evoking nature and tribal civilizations. The soundscape of Hidden Worlds avoids
aggressive bass and drum-heavy pieces that would not fit with the whimsical, playful
and mischievous nature of the Inklings.

There were also technical considerations that factored into audio decisions. Nick told
us that the iPad’s speakers render high-pitched sounds as perceptibly much louder
than intended. These technical limitations of the iPad combined with human
perceptual differences of tonal highness or lowness, known as pitch, required drastic
reductions in objective amplitude, or loudness, for certain sounds such as the coin, to
achieve comparable subjective volume to other sound assets.

Considerable effort was also expended in cleaning up and making the sounds
consistent, a process called mastering. Audio elements needed different techniques to
make them sound like they came from the same environment. For example, a few
sounds had very loud and very soft portions that needed to be made less extreme. The
technique to make the loud and soft portions less extreme is called compression.

Dynamic range compression, the technique used to process these sounds, involves
increasing the volume of sounds below a certain loudness threshold and reducing the
volume of sounds above another threshold. The thresholds are set independently for
each sound, as the human ear perceives a sound'’s volume dependent on its frequency,



33

and around the ~3000 Hz frequency range a sound is perceived to be much louder
than a sound that is higher or lower pitched.!®

Many mobile devices have a frequency cutoff that truncates the lowest part of the
spectrum where bass would sound louder. Some sounds with considerable bass either
had the very low and high ends of their frequency spectrum cut off or, due to the
nature of lower-pitched sounds and aforementioned iPad frequency playback
limitations, simply did not feel loud enough even when compressed and then tuned to
a reasonable maximum amplitude. The sounds that did not level well needed to be
pitch-shifted upward. This is generally set to -1 decibels for most audio, as it is well
above the point where humans can start to perceive a sound, or hearing threshold, but
well below the threshold of pain where a sound starts to become painful to listen to at
any frequency.’

Although we were already aware of these techniques, Nick was able to guide us as to
when each form of volume leveling was superior. For example, he commented since
the sounds for breakable bricks sounded too soft but had very drastic differences in
volume from one part of the sound to another, compression would likely be needed to
make the whole sound more audible. He also assisted with providing high-quality
vocalizations and music from Hidden Worlds, and some assets from another game he
has worked on based on the movie Frozen.

One of the most effective parts of our soundscape involved the addition of
vocalizations to Ember’s animation on the win/loss screen. The voices were minimally
processed with volume leveling and compression, but a few needed a bit of further
manipulation. The loss vocalizations were slightly time-stretched, or made slower, to
increase the emotional impact. The vocalizations were compelling enough in the
preliminary play-testing that most of the players commented positively on the win-
loss screen. We determined that voiceovers were necessary to match player
expectations that would surface when they watch Ember’'s animated expressions in
the win/loss screen. Changing the music for the loss screen to a slower, lower-pitched,
somber tone was also required so that it was distinguishable from the cheerful ‘win’
music. The playtesters enjoyed the voiceovers and the music changes, and thought it
added emotional depth to the end of the game. This test showcases the cumulative
effect of our efforts. Overall, this experience and effect on the player are the most
important factors; the sounds of Ember’s Inklinko help immerse the player in the
Inklings' world, add unique feedback to each action the player does, and help
reinforce positive and effective gameplay.

8 Wolfe, J. (2014, March 14). Hearing test on-line: sensitivity, equal loudness contours and audiometry.
¥ Sound Intensity. (2014, March 13).



34

Results and Discussion

Playtesting

Playtesting Ember’s Inklinko had two main forms, informal and formal. Throughout
the development cycle, Ed Baraf and our academic advisor, David Finkel, played the
current game build during meetings that occurred multiple times each week. The
feedback from them continuously guided the next development steps and brought the
game to where it is now. At the very end of the project, the game had the chance to be
playtested formally, providing valuable feedback from the target audience. If there
were more time allotted to the project, this feedback would also be used to further the
game.

The formal playtest was conducted in a special pair of rooms: the playtest room and
the observation room. The playtest administrator, who was the only person to directly
interact with the playtester, conducted the session while the team observed from
inside the sound-proof observation room, separated from the playtest room by a two-
way mirror. Microphones and cameras connected to two monitors allowed close
observation of playtester actions. In between play sessions, the administrator would
return to the team and discuss the results, making adjustments for the next play
session if necessary. The official report, filled out by the administrator, Brooke White,
is shown in Appendix D: Official Playtest Report

The results showed promise for the game. Most of the playtesters found the game to
be enjoyable, or at least show potential to be enjoyable when it was complete. They
understood how to learn to shoot at least a single ball without outside assistance.
Lastly, they enjoyed seeing Ember’'s emotions in the statistics screen, finding them
cute and causing them to want to know more about Ember.

The results also revealed many aspects that need to be worked on. One of the main
problems the testers had was they did not have a solid mental map for the game. For
example, just by hearing the name of the game Cooking Mama?’, the player can guess
the game involves something about preparing food. Conversely, “Ember’s Inklinko”
does not readily invoke any preconceptions about the game. Players didn't know
exactly know what they needed to do first, and couldn't connect the meaning of the
gems and paint buckets. Having not played Hidden Worlds, they did not know who
Ember was or what the purpose of the stars could be. A second problem was the

20 Cooking Mama. (2006, September 12). Nintendo.



35

scoring system. All of the testers could see and identify what caused score, but none
could come up with the optimal scoring strategy. Finally, the instructions were not
always clear. Some players were hesitant to press the ‘play’ button without seeing
tutorials or hints about how the game was played. Also, for those that didn't discover
the ability to shoot multiple balls by accident, the hints to use the ability were not seen
or understood. Along the same lines, some couldn't figure out the exact purpose of the
red gems. They saw that they stood out and were important, but, due in part to the lack
of a mental map, some did not learn that they unlocked the goal bucket. All of these
issues indicated aspects of the game the team would work on if there were more time
on the project.

The experience of playtesting and the feedback gained from it was invaluable. It not
only helped guide development and future plans, but it also indicated important
design considerations the casual game genre in general that were not apparent during
the pre-project research. It taught the team that having the target audience play a
game was essential for the game’s development to succeed.

Analysis of Development

Ember’s Inklinko is a successful casual game prototype. We were able to hit most of
the critical success factors of casual game development. It is fun and entertaining,
relatively easy to learn, is able to be played in small increments of time, and grabs a
player's attention very quickly. Our sponsor was impressed that our team was able to
accomplish as much as we had in so short a time. Being onsite at Disney Interactive in
Silicon Valley gave us access to professional artists who were able to help us bring the
quality of Ember’s Inklinko to a level that is reflective of Disney’s reputation.

However, there are a number of things we would do differently. Although we have a
successful game prototype, with more time we could have implemented additional
features and levels. We could have gone to the artists at Disney, whom we were
reluctant to bother because everyone was busy with project deadlines, for assistance
earlier on, possibly allowing some minor art issues currently present to be cleaned up
and allowing for more intricate art assets. More complex mechanics that were
envisioned early on could have been implemented properly instead of being partially
implemented then scrapped, such as randomization. Given more time, we would have
addressed the issues revealed during playtesting, especially the score balancing,
instructions, and mental mapping.



Conclusion

We learned that casual game development could be completed in as little as two
months. We were able to devote all of our focus to one project with minimal
distraction, enabling us to get more done in a day than we would have been able to
accomplish in a week while taking other classes. By working in a professional work
environment, we were able to feel not like students, but like other employees of a
major company. We realize that completing our MQP at a company like Disney was
an experience that will serve us well as we begin our respective careers.

36



37

References

Breakout (1976 Atari). (2013, May 27). Retrieved from https://www.youtube.com/
watch?v=hW?7Sg5pXAok

Brown, S. (2012, August 22). Monetization Strategies And Results For Both Mobile And
Browser Gaming. Retrieved from http://casualconnect.org/lectures/2012-igda-
lectures/monetization-strategies-and-results-for-both-mobile-and-browser-gaming-
scott-brown/

Candy Crush Saga. (2012, April 12). King.com. Retrieved from
http://www.candycrushsaga.com/

Casual Games Association. (2013). Smartphone & Tablet Gaming 2013: GAMES
MARKET SECTOR REPORT. Retrieved from http://www.proelios.com/wp-
content/uploads/2013/11/CGA-Smartphones-and-Tablets-2013-Games-Market-
Sector-Report_V1.pdf

Caulfield, B. (2008, March 14). Games Girls Play. Forbes.com LLC. Retrieved from
http://www.forbes.com/2008/03/13/casual-gaming-women-tech-personal-
cx_bc_0314casual.html

Cooking Mama. (2006, September 12). Nintendo. Retrieved from
https://www.nintendo.com/games/detail/yrEHZOja_kpWYpYYdBWPZv3h_iRPeKVm

Disney Hidden Worlds. (2014, March 20). Disney. Retrieved from
http://games.disney.com/hidden-worlds

Entertainment Software Association. (2013). Essential Facts About the Computer and
Video Game Industry. Summary retrieved from http://www.theesa.com/facts/
gameplayer.asp

Luban, P. (2011, November 22). The Design of Free-To-Play Games: Part 1. Retrieved
from http://www.gamasutra.com/view/feature/6552/the_design_of_freetoplay
_games_.php

Neomobile. (2014, January 15). Casual games design: 8 useful tips and tricks that you
shouldn't miss (Part 1). Neomobile Commerce Company. Retrieved from
http://www.neomobile-blog.com/casual-games-design-8-useful-tips-tricks-partl/



38

Neomobile. (2014, January 23). Casual games design: 8 useful tips and tricks that you
shouldn't miss (Part 2). Neomobile Commerce Company. Retrieved from
http://www.neomobile-blog.com/casual-games-design-8-useful-tips-tricks-part-2-
infographics

Pachinko. (2014, March 31). Retrieved from http://en.wikipedia.org/wiki/Pachinko
Papa Pear Saga. (2013) King.com. Retrieved from http://www.papapearsaga.com/
Peggle. (2007) PopCap Games. Retrieved from http://www.popcap.com/peggle-1
Pitts, R. (2013, December 11). Making the secret symphony of Peggle 2. Polygon. Vox
Media Inc. Retrieved from http://www.polygon.com/features/2013/12/11/5174562/
making-peggle-2

Pocilujko, S. (2006). 10 Reasons Women Like Casual Games: Why Casual Games and
Female Gamers Go Together. Casual Connect Magazine. Fall 2006. Retrieved from

http://www.casualconnect.org/content/gamedesign/pocilujko-ten.html

Sound Intensity. (2014, March 13). Retrieved from http://hyperphysics.phy-
astr.gsu.edu/hbase/sound/intens.html

The Elder Scrolls V: Skyrim. (2011, November 1). Bethesda. Retrieved from
http://www.elderscrolls.com/skyrim

Where's My Water?. (2011, September 22). Disney. Retrieved from
http://games.disney.com/wheres-my-water-app

Wolfe, J. (2014, March 14). Hearing test on-line: sensitivity, equal loudness contours
and audiometry. Retrieved from http://www.phys.unsw.edu.au/jw/hearing.html



Appendices

Appendix A: Software List

Unity — https://unity3d.com/
Free game engine that supports 3D and 2D games written in languages like C#, Java,
or Boo

Autodesk Maya — http://www.autodesk.com/products/autodesk-maya/overview
3D modeling and animation tool

Adobe Photoshop - http://www.adobe.com/products/photoshop.html
2D image creation and manipulation tool that can handle animations.

SWEFSheet - http://www.bit-101.com/blog/?p=2939
Turns SWF movie files into sprite sheets

Zbrush - http://pixologic.com/
3D sculpting tool

Audacity — http://audacity.sourceforge.net/
Free audio editor and recorder



II

Appendix B: Progress Reports

The following pages include daily progress reports this team sent to Ed Baraf to keep
track of the game’s development.

Previous to the first progress report (Recap):
Christian:

Implemented phasing blocks that turn invisible and visible on a timer
Implemented blackhole blocks that pull your ball in

Implemented a combo multiplier that increases when bricks are destroyed and
decreases when the ball touches ground

Implemented a system for painting and keeping track of ink splattered across the
screen

Bryce:

Implemented a cannon launcher for the ball

Implemented a “bomb” that blows up bricks around it when struck, and added the
texture

Constructed the level frame and background

Ball return

Christian & Bryce:

Collaborated on many of the tasks

Andy & Corinne:

A bunch of assorted level mockups

mockups of specific items/features
placeholder models



1/10/2014:
Christian:

Implemented scoring system using the score multiplier combo value
Implemented portals that teleport a ball and release it using its current momentum

Bryce:

Built a level that includes all currently implemented features
Tweaked portals to look more appealing and helped w/ debuggin

Andy & Corinne:

Rough Ul layout for level
Rough level select

Title Screen mockup
Vortex texture

I1I



1/13/2014:
All:

Had Milestone 1 Meeting
Had group discussion/meeting after the Milestone 1 Meeting

Bryce Jassmond:

Prepared PowerPoint and Prototype Build for Meeting
Researched porting from Unity to iOS devices

Submitted request for a ticket to IT for gear to build to iOS devices
Debugged with Christian

Corinne Kennedy:

Completed 3 level mockup sketches

Textured 4 placeholder models created by Andy

Had a meeting with Andy to discuss art, style, and thematics
Started 1 detailed model of a pen and texture

Andy Lukas:

created manipulatable mockup sketch

created 6 placeholder models

had a meeting with Corinne to discuss art, style, and thematics
started 1 detailed model of a book

tested several iterations of level 1

Christian Walker:

Designed a very simple level 1 with just breakable and unbreakable bricks

Implemented win condition: Break all blocks in time limit
Implemented win condition: Get ball in target zone
Implemented cross-level persistence of score
Implemented loss screen (win screen TBA)

v



1/14/2014:

Al

Project Meeting with Prof. Finkel
Bryce Jassmond.:

Prepared iOS script for when we obtained a Mac

Prepared Agenda for Meeting

Worked with Christian on debugging and testing certain dynamics
-- Made a brick-circle level

Changed level-changing mechanic to work with Christian's scenes
Picked up the Mac for porting to the iPad in the morning.

Corinne Kennedy:

Finished Dip Pen launcher model

Created detailed brick sample model and texture
Created a model for the ball and texture
Playtested variations of level one.

Made more placeholder items for testing.

Andy Lukas:

Made several detailed brick samples
Made more placeholder blocks for level testing
Playtested variations of level one

Christian Walker:

Integrated triangle brick

Created score threshold win condition

Created win screen and updated transitions between them

Tested a 1-ball mechanic where the floor destroys the ball

Tweaked a scene to use the triangle blocks and debugged their meshes

Debugged scenes to work with asset destruction on transition (Bomb will not work
with current code -- need to fix).



VI

1/15/2014:

All:
Milestone Meeting
Team Design Meeting after Milestone Meeting

Bryce Jassmond.:

Finished setting up iPad for build testing (confirmed to work)
Added shortcut to main menu from win/loss screens
Tested level mechanics passed to me

Corinne Kennedy:

Finished breakable brick

Debugged texture/object imports

Playtesting

Created a backdrop for the game

Created a model and texture for the black hole brick
Reduced size of breakable brick from 300+ poly to 6.
Created a model and texture for an extra life “angel” brick

Andy Lukas:

finished unbreakable brick

made hexagonal gem brick

started explosive brick

started pyramid brick

debugged object/texture import issues
more playtesting, debugging

Christian Walker:

Integrated unbreakable/breakable brick and pen art assets and assorted colliders and
replaced stock shapes with them

Implemented “# balls” win condition dynamic

Optimized TryAgain.cs menu, removing severe resource drain



VII

1/16/2014:
Bryce Jassmond.:

Converted layout to portrait

Changed iOS input to be drag to aim, release to fire
Worked with Andy to add octagonal bricks/pegs to test
Fixed scene issues

Taught Andy Unity

Corinne Kennedy:

Researched art styles employed by other games

Picked style choices from games

Castle Crashers: Thick outlines and no perfect straight lines

Candy Crush: 3D rendered textures for shine and depth

World of Goo: Simplified backgrounds and color washes

Bejeweled: Gems instead of bricks

Created a very simple level layout in Photoshop combining style choices
Playtested a few block layouts

Came up with a way to theme the game'’s art and “story”

Created more concept art to fit theme

Andy Lukas:

Learned Unity from Bryce

Researched art styles

Created ‘gem’ style blocks

Created several styles along ‘gem’ design
Experimented with different block layouts in Unity
Started designing levels

Christian Walker:

Implemented key blocks and tied them to the main goal of the games

Developed system to reposition and re-aim for future “glove” re-aim star mechanic or
power-up

Tried a few brick layouts for the first level and tweaked physics

Rectangles seem to have less interesting angles than triangular or hexagonal shapes
Changed timer to show number of balls remaining instead

Helped Andy debug Unity tag interface issues



VIII

1/17/2014:
All:

Milestone 3 meeting
Post milestone meeting

Bryce Jassmond:

Project organization and synchronization (assets, prefabs, scenes/levels)
Brick strength (for multiple hits)
Made balls hop if they remain stationary for too long

Corinne Kennedy:

Iterated on layouts in Photoshop

Created a texture for a black hole

Textured a spring

Began modelling a chest

Looked into games that use the style we were looking for. Found Bloons Tower
Defense 5.

Began rethemmg the layouts in Photoshop to mesh better w1th Inklmgs




Andy Lukas:

Designed more levels

Tweaked various level mechanics (ball size, bounciness, number of key bricks vs
number of balls)

Made spring model

Began modelling a chest

Christian Walker:

Randomization script that can randomly replace N breakable bricks in a scene with
key bricks. Replacement with identical type bricks to come later.

Level Select that looks through all scenes and generates buttons that load the correct
scene.

Fixed score and combo counter that was broken when new assets were imported
Modified Andy's nested octagons level to have a black hole at its center and a nicer
win zone

IX



1/21/2014:

All:
Progress Meeting with Prof. Finkel

Bryce Jassmond.:

Wrote meeting agenda
Improved GUI to be more informative
Re-factored the ball counting and limits

Corinne Kennedy:

Rethemed level concept to mesh with Inklings
Refined style

Modeled a key

Made a placeholder texture for the key.
Modeled an ink bottle.

Modeled the Inkling's Airship

Andy Lukas:

Tweaked ball size

Tweaked gravity

Tweaked bounciness
Designed several more levels
Assisted with debugging

Christian Walker:

Changed randomization of key blocks to select only from the same type of blocks
Designed level w/ force arrows

Key block tagging and coloring system; Will be replaced with method of texturing
later.

Helped Andy figure out a few Unity features incl. physics manipulation



1/22/2014:

All:
Milestone 4 meeting
Post milestone team meeting

Bryce Jassmond.:

Added score spawning on bricks breaking
Worked on implementing assets

Worked on synchronization

Assisted team with miscellaneous tasks
Started a color changer for the ball/balloon

Corinne Kennedy:

Made placeholder textures for ink bottle and airship
Submitted Beauty and the Beast background for levels
Made a Mulan and Aladdin background

Researched how to add outlines to 3D models in Unity
Modeled a balloon

Started a Little Mermaid background.

Was introduced to Benny.

Andy Lukas:

Designed more levels

Helped with bottle and airship

Continued trying different gravities, ball bounciness, ball size
Discovered/debugged more versatile way to import objects
Rigged airship’s articulating arm

Helped with coloring of scores

Met Benny

Christian Walker:

Altered score display to dynamically modify color and size based on the value of the
score

Altered loss screen to correctly show when a game is lost instead of “Time Up”
Tweaked randomization script to include pre-existing keys

Adjusted black-hole and force arrow levels to have consistent coloring and health
Differentiated dangerous and non-dangerous black-holes through scripted color

XI



XII

1/23/2014:

Al
Bryce Jassmond.:

Added counter for block health (if applicable)
Helped with adding visual items in the level GUI
Imported art assets

Researched 2D libraries

Tested simple version of a button

Researched animations and animator controllers
Tested strange physics in a level - funny results

Corinne Kennedy:

Modeled and textured a rubber band ball

Remodeled and textured 3 gem types (breakable, key, and unbreakable)
Helped rig book

Helped animate book

Modeled and textured a rope ladder

Play tested level one

Rigged rope ladder

Play tested physics adjustments

Andy Lukas:

Designed level 1

Ironed out physics issues
Continued tweaking physics
Made placeholder key
Helped rig book

Helped animate book

Christian Walker:

Implemented ball stock and key gems left as images instead of text and integrated it
with the existing gameover system

Helped Andy figure out how to tweak ball physics and eliminate the wall hug bug
Researched available 2D sprite engines

Helped implement and optimize new art assets

Playtested several builds with different gravity and collision elasticity



1/24/2014:

Al

Milestone Meeting 5
Playtesting with Alisa
Team Meeting

Bryce Jassmond:

Made structure for primitive buttons

Main Menu

Stat pop up w/buttons

Gem synchronization

Bug fixing w/Christian

Level editing w/Andy

Finished integrating Corinne and Andy’'s book animation

Corinne Kennedy:

Made quick level layout concept sketches

Retextured bricks and gems to match style more closely
Modeled Belle Blue

Modeled Gaston Red

Andy Lukas:

Put together more levels from concept sketches
Learned how to model bottles

Helped model Gaston Red

More physics tweaking

Christian Walker:

Key randomizer can now be restricted by area

Randomizer can take arbitrary limits on which objects can be keys

Randomizer can now have maximum and minimum limits on how far keys can be
apart

Tweaking physics w/ Andy

Temporarily disabled sound

Bugfixing w/ Bryce (incl. win/loss race condition)

XIII



XIV

1/27/2014:

All:

Bryce Jassmond.:

Cleaned out assets
Organized asset hierarchy
Tweaked win/loss popup
Tweaked physics

Corinne Kennedy:

Retextured ball.

Made a placeholder icon for the game

Remodeled the airship (base only)

Made ball more round

Made a background for the menu screen

Looked over Hidden Worlds art assets provided by Benny with Andy
Began working on a saga map layout

Andy Lukas:

Tweaked physics

Assisted in retexturing ball

Modelled and textured a crate

Started re-making levels using new assets

Looked over Hidden Worlds art assets provided by Benny with Corinne
Helped tweak physics more

Christian Walker:

Added system for keeping track of new types of score

Added a score bonus for balls left and separated “bonus” combo score from base score
Fixed persistent bug where a loss would appear after a win if all balls were destroyed
Slightly restructured cannon handling to remove duplicate execution of code

Helped debug win/loss screen persistence



1/27/2014:
All:

Meeting with Prof. Finkel
Milestone 6 Meeting
Post Milestone Meeting

Bryce Jassmond:

New assets and prefabs
New Ul implementation

Corinne Kennedy:

Worked on saga map layouts
Began modeling Ember
Began working on getting assets for backgrounds

Andy Lukas:

Grabbed buttons and menu backgrounds from Hidden Worlds
Rebuilt more levels from new assets

Assisted with randomizer upgrade

Debugged randomizer upgrade

Christian Walker:

Fixed point spawning to only count breakable bricks for the purpose of score
Added texture swapping to key randomization engine

Assisted with asset integration

Ul backend tweaking

XV



1/30/2014:
All:

Breakfast meeting
Milestone meeting
Post-Milestone discussion

Bryce Jassmond:

Yet more art and asset integration and organization
Builds and synchronization

Began bottle display in stat screen

Texture fixes

Corinne Kennedy:

Made a new menu background

Made cracked brick/gem textures

Finished hand that pokes screen if player is idle
Made backgrounds for levels

Helped come up with titles for levels

Andy Lukas:

Redesigned early levels
Tweaked scoring

Fixed bottle animation
Made better bucket
Bugtesting

Made level titles

Christian Walker:

Made octagons crack upon impact if they have more than 1 health
Made it simple to edit multiplier/score code in the editor

Added pegs to prevent the ball from falling in-between the buckets
Capped the velocity of the ball at a configurable value

XVI



XVII

1/31/2014:
All:
Bryce Jassmond:

Stayed home sick, but still completed:

Fixes to combo

Added a given font into the game

Made selecting the strength of gems easier (for strength 1-3)
Reduced the time a ball was still before jumping

Worked a bit on the paddle

Added button animations

Helped integrate coin (still is buggy)

Managed and synchronized team work

Fixed pause button functionality

Corinne Kennedy:
Out sick
Andy Lukas:

Designed pause button

Designed more levels

More physics tweaking (with ball max speed)
Assisted with paddle tweaking/bugfixing
Made coin model

Helped fix key gem cracking

Christian Walker:

Implemented pausing functionality as a per-object event.

Added pause behavior to the ball, the cannon and the point spawn items.

Bug-fixed pause button to not fire balls when paused or when the pause button is
clicked (later converted to iPad).

Added paddle that moves back and forth and hits ball back automatically.

Debugged kinematic paddle interaction with other kinematic objects

Added coin points script

Improved randomized and non-randomized gem and brick cracking, replacing each
with the new cracked textures



XVIII

2/3/2014:
All:

Team meeting over breakfast
Presentation meeting over lunch

Bryce Jassmond:

More asset integration and synchronization (primarily buttons)
Helped with bucket editing

Helped with brick score and coin editing

Options menu

Edited pause feature

Corinne Kennedy:

Updated menu screen background

Manipulated a PSD of Ember to make a sprite sheet
Concepted a chute for displaying/loading balls
Worked on improving the icon

Andy Lukas:

Made more buttons

Attempted to debug bucket scale randomization
Level design

Learned how to import and animate sprites
Helped with icon

Christian Walker:

Edited bucket code to work with the new bucket images and without pegs

Added configurable scene transition (fade to color)

Update combo to round to the nearest tenth

Fixed combo off-by-one where combo was incremented on hit but score was only
added on destruction

Tweaked point spawn size and color thresholds to suit the new values

Worked on fixing point color spawning system on first hit and on coin hit



2/4/2014:
All:

Team meeting over breakfast
Worked on outline for paper

Bryce Jassmond:

Bug fixed coin points and pause w/Christian
Integration, synchronization, and builds for meetings

Corinne Kennedy:

Finished a new iteration on the Icon
Added tweens to Ember shooting animation
Made a paint bucket

Andy Lukas:

Worked on implementing Ember sprites
Helped implement paint bucket art
Made a ball chute (for balls left)

Found some potential sounds

Christian Walker:

XIX

Finished fixing color of text spawned by coin (was updating color before calculating

new score)

Fixed coin color changing one brick’'s color incorrectly w/ Bryce
Fixed pause functionality not restarting on level change w/Bryce

End-of-level bonus fixed
Combo multiplier going below 1 fixed
Helped debug a sound effect not importing into Unity



2/5/2014:
All:

Team meeting over breakfast
Milestone meeting

Bryce Jassmond:

Asset integration and synchronization

Ball chute implementation (balls roll down and get deleted as they are shot)

Minor fixes to various mechanics such as ball jumps
Corinne Kennedy:

Adjusted Ember animation

Made a Ul frame object

Changed Home button to more closely resemble a house
Made a new potential goal object

Playtested to see if score thresholds for stars were achievable
Made paint splatter particles

Took screenshots of game

Andy Lukas:

Worked on finding, editing, and implementing audio
Helped teach Unity integration to Corinne
Integrated and synchronized assets

Helped integrate ball chute

Playtested score threshold numbers

Various debugging

Christian Walker:

Added sound selection randomization

Added pitch randomization

Added score-based volume randomization

Added preliminary procedural calculation of score thresholds
Score thresholds testing and tweaking

XX



2/6/2014:
All:

Team meeting over breakfast
Edited presentation

Bryce Jassmond:

Work on debugging icon (unsuccessful thus far)
Fixed ball chute use in iPad

Implemented coin sound effect

Identified issues with physics

Implemented misc. assets

Redesigned early levels w/Andy

Corinne Kennedy:

Retextured Airship Base

Made button icons for sound on/off music on/off and help.
Made particles for gem breaking

Made a sprite sheet for a vortex for the book opening
Added Ember’'s name to the main menu screen

Andy Lukas:

Found coin placeholder audio
Redesigned early levels w/Bryce
Score tweaking

Found physics bugs

Added spinning coins to main menu

Christian Walker:

Out sick, but completed:

Ball maxspeed clamp on first bounce

Work on debugging icon

Made game wait for all balls in play to die to show “You Win" screen
Made player get extra score for balls after the first that go in book
Made book destroy ball on collision if it's open

XXI



XXII

2/7/2014:

All:

Team meeting over breakfast
Bryce Jassmond.:

Fixed the icon appearance on the iPad

Asset integration and synchronization

Tested fixes and levels

Rolling scores on stat screen

Rudimentary filling bottles that begin when a threshold is met

Corinne Kennedy:
Out sick
Andy Lukas:

Cleaned up and implemented gem shattering
Learned how to set up particles for bottom (paint) buckets
Implemented paint splash particles

Christian Walker:

Implemented idle detection w/ finger icon and animation to show “tap here”
Implemented point spawning on buckets

Fixed book open delay caused by bricks waiting for a sound to play before destroying
themselves

Fixed Coin chain display bug when several coins are collected in a row

Researched information on pausing animation using the controller



2/10/2014:

All:

Team meeting over breakfast
Bryce Jassmond.:

Editing paper

Worked on refactoring code base:
- GUI handler
- Button actions

Corinne Kennedy:

Worked on the paper.

Added more paint splatters to spritesheet
Created more backgrounds

Adjusted vortex animation

Textured the coin

Made white textures for gems

Andy Lukas:
Worked on the paper

Arranged paint splatters on spritesheet
Added vortex when the book is open

Added vortex particle burst when the book opens
Implemented paint bucket art, new vortex art

Helped with slide/ramp mechanic
Made level 3 easier

Christian Walker:

XXIII

Implemented sliding mechanic. Works pretty well for the most part, with configurable

angle of incidence.

Adjusted parameters of slides and force factors.

Scripted an animation for a gem growing and then shrinking toward the book when

you collect it.
Worked on the paper.



2/11/2014:
All:

Team meeting over breakfast
Meeting with advisor

Bryce Jassmond:

Edits to presentation

Agenda

Implementing assets for demo build

Assisted Christian with trajectory calculations

Implementing and testing trajectory components in current project
Worked on refactoring stat screen

Corinne Kennedy:

Created cracking sprite for gems and bricks
Created shattering sprite for gems and bricks
Created paint particles for golden bucket
Created golden bucket sprite sheet

Helped come up with/test level designs
Found physics/slide mechanic bugs

Andy Lukas:

Helped with gem/brick sprites

Helped with bucket/paint sprites
Attempted to redesign early levels again
Made ball trail, guide line look good
Built level designs

Found physics/slide mechanic bugs

Christian Walker:

Implemented trajectory calculations and display/scaling of resultant line

XXIV

Added gravitational calculations and a skeleton of collision prediction to the trajectory

of the arc

Changed the sliding algorithm to only slide on rectangular bricks
Attempted debugging various parts of the sliding

Assisted with tuning the boost velocity vectors in sliding



XXV

2/12/2014:
All:

Team meeting over breakfast
Milestone meeting
Post milestone team meeting

Bryce Jassmond:

Finished refactoring stat menu

Refactored pause and level transitions

Refactored ball

Refactored buckets

Finished refactoring all basic functionality (minor bugs yet to fix)

Corinne Kennedy:

Adjusted title position on menu
Made a new finger sprite animation to replace model
Made concept sketches for potential level designs

Andy Lukas:

Implemented new version of gem sprites
Testing and bugtesting of Christian's scripts
Level design/redesign

Christian Walker:

Added “death delay” to sliding bricks so that gravity can't take over

Rendered delayed bricks unscorable but collidable

Worked with sliding mechanics to hug convex shapes more instead of rocketing over
Researched methods of getting the ball to grip a surface without repeatedly colliding
Working w/ Andy to tune script parameters and fix odd bounces



2/13/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Finished refactoring to the point the project has switched over to that version
- Few new features missing implementation

Bug fixes

Documented nearly all the code

Worked on audio testing and filling in hooks

Edited UI

Corinne Kennedy:

Remade paint bucket sprites using Hidden Worlds assets
Updated main menu to better match the master version.

Retextured ball

Listened to and gave feedback on audio assets

Began updating icon to better match the master version.

Andy Lukas:

Reimplemented gems

Implemented new paint buckets

Started rebuilding levels

Listened to, gave feedback on audio assets

Christian Walker:

Obtained and edited or synthesized various sounds, including:
Various Music

Win/Loss screens

Magic book opening

Interface sounds; select/move/pause

Analyzed soundscape of Hidden Worlds to see what fit
Iterated over the sounds with Andy and Corinne

XXVI



XXVII

2/14/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Made a handler for gems to be automatically colored and assigned sounds depending
on their settings

Fixed how gems destroy and score

Added functionality to the goal and it's scoring

Added a main menu handler

Filled most of the audio hooks with trial sounds

Implemented misc. assets and bug fixes

Corinne Kennedy:

Created Ul items

Iterated on Menu Screen

Iterated on Icon

Worked on ball explosion

Helped with level design/playtesting
Listened to and gave feedback on audio

Andy Lukas:

Rebuilt/redesigned/playtested levels
Listened/gave feedback on audio
Helped with ball explosion

Christian Walker:

Many more iterations of audio stuff, filtered through Andy and Corinne

Worked on tuning existing and new acquired sounds with HPF/LPF/noise removal/etc
to mask recording quality issues

Pullback/firing sounds

About 20 different types of brick breaking sounds, a few of which were selected



2/18/2014:
All:

Team meeting over breakfast
Prepped for and had advisor meeting

Bryce Jassmond.:

Ul integration and fixes
Misc. asset integration
Misc. script changes

Corinne Kennedy:

Fixed Ul issues

Worked on final presentation
Fixed icon

Level Design

Worked on making gems shinier

Andy Lukas:

Worked on final presentation

Level design

re-made gem shatter animations
Started re-making Ember animation

Christian Walker:

Continued iterating on audio

Submitted 13 different button sounds for review
Worked w/ Andy to shorten the slingshot sound

XXVIII



2/19/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Refactored/corrected trajectory display

Audio task list

Finger implementation

Work on re-implementing aiming to work with possibly new animations
Extra balls fire and burst (with score) when the level ends

Corinne Kennedy:

Made more adjustments to gem sprites.
Listened to and gave feedback on audio
Played Peggle to get ideas for level designs
Worked on list of assets to ask artists for

Andy Lukas:

Worked on re-animating Ember

Put together requested asset list

Level design

Re-implemented gem sprites

Listened to and gave feedback on audio
Made and imported ball explosion animation

Christian Walker:

Around 35 new iterations of different sounds
New crack/pop/explosion sounds

New wall bounce and bucket sounds
Improved above with feedback from Andy

XXIX



XXX

2/20/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Re-implemented key gems heading to the goal in a level
Talked to Benny about assets
Checked out issues with pitch implementation

Corinne Kennedy:

Researched articles on Peggle and other pachinko style games that dealt with level
design.

Level design

Playtesting

Helped with Alum Gathering speech

Talked to Benny and Dave about assets

Transferred gem sprites to Benny and Dave.

Andy Lukas:

Level design

Helped debug gems going to book
Practiced Alum Gathering speech
Talked to Benny and Dave about assets

Christian Walker:

Re-implemented sliding pitch w/ number of hits functionality
Made a level 2-3 prototype that looks like a cloud

Made a ‘slide machine’ level

Discussed and helped start debugging audio handler

Talked to Nick about audio



XXXI

2/21/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Added more fine-tuned audio managing to the Audio Handler

Made changes to scorable objects for better score handling

Made gems change pitch based on combo (temporarily disabled)

Corrected errors related to ball trails trying to be destroyed after program exiting

Added audio library w/methods to Audio Handler
- Allows us to play audio clips by reference instead of making sure objects
have them

Fixed issues with score scrolling being called too many times.

Inserted several new temporary sound handles to test Nick's audio

Corinne Kennedy:

Worked on paper
Listened to and gave feedback on audio

Andy Lukas:
Out sick
Christian Walker:

Edited Nick's sounds (splicing, volume normalization and noise removal)

~20 new sounds for clicks, breaks and other impact sounds

Mastered the remaining sounds to have consistent volume levels and ends/starts
Down-mixed and tweaked a few tracks

Continued researching sliding methods that don't interfere or depend on the physics
engine

Worked on polishing the levels I made yesterday



2/24/2014:

Al

Team meeting over breakfast

Bryce Jassmond:

Worked on audio changes and re-imports
Integrated stars

Re-made end screen

Corinne Kennedy:

Iterated on main menu background
Added reflect map to ball material

Worked on final presentation powerpoint
Worked on paper

Andy Lukas:

Made filling star animation

Worked on final presentation powerpoint
Cleaned up and normalized all audio assets
Implemented Dave's gem treatment
Implemented new finger/hand animation
Worked on paper

Christian Walker:

Out sick

XXXII



XXXIII

2/25/2014:

All:

Advisor meeting
Bryce Jassmond:

Finished implementing and cleaning audio cues in scripts
Added the desired goal bucket implementation

Added lids to buckets

Minor work on final presentation

Implemented finger animation/movement

Delved into memory issues with our game for iPad 1

More work on stat screen

Corinne Kennedy:

Worked on final presentation

Attempted to work with Ember animations

Changed color of breakable gems to be more distinct from ball
Made level design concept

Playtested level

Andy Lukas:

Worked on final presentation

Attempted to work with Ember animations
Reimplemented old levels

Assisted with audio

Attempted to find solutions to memory issues

Christian Walker:
Added ~20 sounds for ball hits in the rack, unbreakable brick sounds, finger tap/swipe

Researched methods for reducing Unity memory usage (Overflow in the iPad 1)
Tweaked coin levels to have a more natural volume falloff and lower max. volume



2/26/2014:
All:

Team meeting over breakfast
Edited list of pre-playtest tasks

Bryce Jassmond.:

Adjusted gems shattering when a level ends
Background implementation
Made the launcher aim at the instructional finger while it is active
Edited point spawn location for explosions
Edited pause and stat windows
Cleaned animation handling on Ember
Added level title banner
Fixed little things from meeting
Name, gem shatter speed, finger size, trajectory dots

Corinne Kennedy:

Level designs
Adjusted Next button
Helped with new ball explosion anim

Andy Lukas:

Implemented new rectangle shatter animation
Separated Ember firing animations

Brought back old levels

Tested fixes, new levels

Re-made ball explosion animation

Started on Ember emotes

Christian Walker:

XXXIV

Added animation controller that handles when Ember pulls back her slingshot, is idle,

or fires the ball instead of just looping the animation endlessly

Implemented new animation handling so that stars fill proportionally to how much of

that threshold was achieved instead of as discrete units
Gave feedback on new Ul design and levels



XXXV

2/27/2014:
All:

Team meeting over breakfast
Edited list of pre-playtest tasks

Bryce Jassmond.:

Fixed stars’ filling so that they wait for the previous star to complete before filling
Adjusted time delay on stat screen
Experimented with different bucket layout + fixed layering
Made buckets not play a sound if opening/closing on initialization
Added hook for bucket lid closing
Made the stats/explosions wait for gems to be fully shattered
Worked on asset integration and synchronization
- Stat screen with Ember’'s emotes

Corinne Kennedy:

Out sick
Updated ball texture

Andy Lukas:

Edited Ember animations to be framed

Made framed ember emotes into spritesheets and implemented
Updated goal bucket

Updated ball texture and explosion

Updated gem textures and animations

Added key gem slots to goal bucket

Updated powerpoint presentation

Christian Walker:

Algorithmically generated drop shadows that can be selectively applied to text meshes
Added shadow update code so that the shadow stays in sync if text changes

Changed shot indicator dotted line to only display while the screen is being pressed
Added platform detection code to change aspect ratio appropriately

Added code to skip animations and score scrolling if the screen is tapped



2/28/2014:

All:

Team meeting over breakfast
Bryce Jassmond:

Overnight:

Cleaned assets

Fixed Buckets
- Balls won't go through lid
- Gem slots fill up

Stat Screen
- Tweaked speed

- Fixed broken animation controller on star
- Added shine when a star is fully filled
Rewrote a script to automatically maintain aspect ratio for any iOS device
- Based heavily on a resource documented in the script
- Edited Button so this is testable in the editor as well as the iOS device
Corrected stats skipping to end (with stars) when tapping in the stat screen
- All buttons skip when pressed down as well
Added shine to the goal bucket when it opens
Started on rebuilding levels - Base + Level 1

XXXVI

Bottom killzone in case there are no buckets (i.e. level 1 and something goes wrong)

At work:
Gem fix for shadows
Level design

Played some Papa Pear for inspiration

Corinne Kennedy:

Final presentation revisions
Level designs

Attempted to find better gem colors

Playtesting

Andy Lukas:

Attempted to find better gem colors
Re-built/redesigned early levels

Attempted to balance scoring



Tried to find what's using large amounts of memory
Christian Walker:

Quantized some PNGs to 256-bit color to avert memory issues

Recompressed PNGs using zopfli and TruePNG to improve memory usage
Added occlusion culling to existing assets

Fixed an issue of the build not properly compiling for Windows

Prepared Windows build for Nick to do an audio pass on

Helped Andy do score balancing

Research into unity memory usage; as despite these optimizations and drastic
reduction in asset size, the memory usage is near constant.

XXXVII



XXXVIII

3/3/2014:

All:

Team meeting over breakfast
Bryce Jassmond.:

Hide trajectory if aiming when the goal is met
Asset integration

Discussed audio with Nick

Main menu animations

Credits slide on main menu

Worked a bit on aspect ratio checks

Fixed sound error and shine effect at the stat screen

Corinne Kennedy:

Separated menu screen image into components for animation.
Playtesting.

Animation for the shine.

Researched texture masking in Unity.

Andy Lukas:

Adjusted score thresholds
Re-ordered levels
Tried to come up with methods of adding shadow to main menu Ember

Christian Walker:

Cleaned up and reworked volume, pitch and dynamic range for Nick's new assets
Reworked coin and brick sounds further to make them subjectively softer and louder
respectively

Smoother animation techniques implementation for the main menu w/ Bryce
Discussed audio with Nick

Texture masking shader code and research w/ Andy

Helped figure out what was going wrong with scaling on the iPhone

Scripted fix for shine display (stops showing at end of level)



XXXIX

3/4/2014:

Al

Team meeting over breakfast

Level testing

Playtesting

Post-playtest meeting

Bryce Jassmond.:

Audio work + script work based on audio-related or -revealing hiccups
Level editing, pruning, naming, and re-arrangement

- Coins in each level~

Corinne Kennedy:

Andy Lukas:

Christian Walker:
Implemented post-playtest adjustment of firing power dependent on drag distance



3/5/2014:

All:

Team meeting over breakfast

Bryce Jassmond.:

Fixed an issue with the variable speed of the launcher
Fixed camera aspect ratio calculations for alternate devices

Cleaned up extra assets
Edited Hypothetical Future Plan to include our points and plans from before the

playtest

Worked on final game archive (Unity project, build, and IPA file)
Worked on paper formatting and section layout

Corinne Kennedy:

Worked on final paper

Andy Lukas:

Worked on final paper
Found last-minute bugs

Christian Walker:

Worked on final paper

XL



Appendix C: Milestones

Milestone 1

01/13M14
Design & Mechanics Prototype

Core Concept

F2F mabile casual gama
& SagaMap
o Limited L s by Enargy

o Framed with Inkings = All Disney IP
& Target Audienco
o Women, 30+

General Concept

« Brick Breaking
o Varous Brick Types with Diflerent Effects
o Brick Healh

* Limiled Shots
o  Efher Actiee or Todal
o Mot Twiich Dependeri
+ Scoring
o Combos

Mechanics Prototype

&  Physics Demonstration

g
fn
|

Concept Art : Love ot

Undecided Concepts

& Liwel imeraction
o Fro.placemant

XLI



Undecided Concepts (cont.)

*  Active Shot Limit
o Oniy 1 Ball Active ws. Any Amount
* Screen Paining
o Totlvs. Speafic Areas
& Mew brick
o (Goo brck, brcken creates ADE Siow goop thal messes up Irajeciony
o mowing bricks
& relevel etect drops
o Gkowe (Shoal inio i, lebs you nesaim yoor shat)
o Sphke Ball {Shoot i and i your hall propels i fanward o smash blocks)
o Feather Bal {lighter, less aftected by gravity)
o Lead Ball (heavier, more affecied by graity)
*  Mew indevel efecs
o Amplfication Zone {Mutiballly
o Acceleration Gale (Speed up ball)
o Miasma (Show down ball)

Naxt Milestone

+ Discuss
o Tasks
o Time Frame
o Hey Declsions
o Documentation

XLII



Milestone 2

01/15/14
iPad, “Level 17, and Art

Current Build

i0s

Multiple “Level 17s

Capability for Testing Variables
Suggested: Re-factoring for Monday

o Code is currentty hard to extend
o Better organization will help streamlineg development

XLIII



XLIV

Current Build
= Wity mend toeanty pachinko shis . .
- Cepimarl liyeurs e iPas- shapes el
Milestone 3
01/17/2014
Picking a direction
Art Style: @
e VOOV OO
e ottt waches & I S S
(% S R R S IS
oI T & R e R N
(v IS S TR
G OER9 v
FL ]
Theme Gameplay Progress
By T T o o

o Wp«n
o Polensal o anm [
& Pk and untraakatis and wirfilies

- Pt - £ "t S NG Sl Bl — i AlErws: 5 16 Pl this bl i Mgt
mrtn‘hml‘nmcmw g

fasture; Some ara on the Pad
Mpﬂmuuﬁuw




3/20/2014

Milestone 4

& fun paTa wEh el and Infanmache U

= Ll g
Lratom

- M Caaana

- et e g
Liraws

Art Aszets

" mogen maimg @ e maels tae s lovala 1k 20 madidh =t e mabe

i Boda m wdln e fow Backgroum akes fom dnae Barcy mows

Ul

* Smpls counio for mow
o s L
= wyliacia
o CaTa
= FaE
" Legaemy lomzoemy momEom
i g Blegk g B,
irficaleg 100

Level Design

" Ecfiecd com meckario-
ety Ball 3, Boveoroa

= cleasy Byt dfeae guiie fed
i

" fzi roipe SosTemlve
Iz~ B off of Backgrourd

Prototype

= #layame
* e rumborof waslablc lovda
T EtMemnt Yooy ek 2f ez

" Do B e
" kiing wals relaoed T3ErUCTUe

XLV



XLVI

3/20/2014




XLVII

Pty L amnn

Level Design e .lr

= Mo struclured levels
= Allempbed 1o design kensls 1-5

*  Very easy o win, but sill
. + R random generaion n eary
Milestone 5 et
Dialing in
Art Prototype

» Conlinued warking on assets

o Wl evesitually have & kkling with

a singshal hanging fram Lhe airship
2 ihe airship won'l be rebaling 1
thoot.

Al worked on some guick level
Layout skilches.

Primitive Menu w/ Buttons
Organized levels
Primitive Stat Screen
o Pops up at level end with options {bug: beginning})
o Text objects in scene curmently overlay (bug)
Book Opens
o On getting all keys
o Will bounce when closed
u Will pass through when open
u Triggers End
u {doesn't pause yat)
Ball and Key Gem indicators

Procedural Generation ~
Randomization Tuning

Can now declare area where key-blocks will
spawn

Can now restrict key-blocks to block
categories

Can now designate minimum and maximum
spread between key-blocks

Future: Extend randomization engine to
include block generation

Future: Dynamic parameter tuning ("Seesaw
difficulty’) and difficulty scaling




3/20/2014

Milestone &

Prototype Update

» Maore messing with physics
» Better Ul

— Sill memed e burtbom in bevels
— 5till need font

+ Levels

— Updated
— Extra {1-5 +misc )

» Some At Azzet Integration

— Wirchip, Ball

o Semaler i and il

R - R B

Level Design

o o o, s I ol

RN

" Ragen xduring the unchar st

il Sl o il I

S8 Fom cnnon insoased o | niding on

e

XLVIII



XLIX

3/20/2014

Milestone 7

Ul Changes

= charget e W
* liconwkh matioler

Dot ks o oy T e

Ball Buckets ~Easing failure

= Narfomly o Budech walk wogkicd widiRa Bunof om aiac
L P A
= Speoll Buckety vock m muliplien “couet” @ o mulipls of e
woags proint value for purpras of leog®
[ T U N P S S—— |
* Maore o e soceTaT

&coring

* sl Bl aooes amd
FERUER

" RS0l pomenals alalatoy
o B lowd e popup

* medm Al o e it
woal Ereabcld
* Curanty ol st /4 un

= om0 o e
—ain

= o P G mdinind, B ol vl
.

Planned

" Fwaas

= iedeed Wi

* Buckel Mcfimemeni

" Raslmmaled Beesbol Fadtle
* Trarudcra

" Camc sudic

= ‘Working oo Erakcld

" e azeet ee B Bl




Questions

e TR
CHREN T v Tl I ENONT

o PRI N ST T
i It and it Infla you do

Clar) il e s

N paing

i 3wy ofice tma b used for BT

3/20/2014



3/20/2014

Preliminary Score Threshold

= Cumently based on maximum possible
theoretical zcore [hit 2ll bricks with ane ball)

Milestone 8 - Does ot factor in “buckets” or the end of ba
bonus— these are bonuses for the player
= Factors in number of bricks
= Future: Factor in average distance of bricks to
other bricks [Clusters/flocal density would be
prefemed, but that is quite difficult)
Art Level Design
. :"‘f’::-':""“‘-“""-"“ = Mow much easier to build levels with multiple

— T aend e gy e
— Couds bursd gt rid of eriping
wnd phcdbation
° Figalcon
T T T — T T
7 P iR 0 ST e buciuee

T b e ]

Zem strengths

—1-3 hits

— Hawen't re-made all kevels with this inmind yet
= Coin added

— Used to show player ‘recommendead” nowte

— 5l nesads to be added to most bevels
= Started experimenting with ways to have the

player launch multiple balls 3t ance

Fixes and Clean-up

= U
= Button animatiors
— Optiors mer in bevels [Restart, Homs, Play] w) Pause
* Physics Teeaks
— Agded & max spead oomponent
= Sooring fxes
= Fiesd maryy wisual and mathematical bors
= Ball Tril, Tapered
= Ball Jump Timer, reducsd

Misc.

= Ball Ramp

— Sheowes heow many balls beft

— [Emnibeer will take 2 ball from the mmp to fire
= Maoving Faddle

— Made, not pres=nt
= Audio

— 5till witing

LI



LII

Appendix D: Official Playtest Report

The following pages contain the official playtest report written by Brooke White, who
conducted the playtest sessions the team observed.



Inklinko

Inklinko - Usability tests

Date

March 4, 2014

Analyst(s)

Brooke White

Executive Summary

LIII

* While there are some challenges with the UX and learnability of key features — for the most part, players were able to actually “play” this
game, learning controls and getting better over time.

* Players unanimously confused by scoring ruleset

* Lack of clear mental map about why Ember was shooting balls into paint buckets led to player confusion on "goal" of the

* game. Teaching ability to shoot multiple balls was inconsistent and confusing
* Some players struggled for a long time on "opening" the buckets via hitting the red gems

* Aiming and "shooting" controls for the most part felt smooth to players. However all players instinctively tried to stretch aim to

shoot faster, or push back up toward slingshot to "shoot more gently".

Goals

* Evaluate new game playability
* Assess UX and Ul
* Evaluate if players are able to cognitively scoring

Protocol

1:1 Standard Usability, Think-Aloud Protocol

Target

* 21-40 women mobile players
* play hidden object games and/or puzzles

InkLinko - 2/4/14 Name
10:30-11:00 Alexandra
11:15-11:45 Nina June
Morning Floater Michelle

Gender

Female

Female

Female

Age

21

27

25

Games Played

Bejeweled, Candy Crush
Saga, Flappy Bird, Dice
with Buddies

Paplinko, Angry Grandma
Toss, Fruit Ninja,
Adventure Town, Design
This Home, Animal
Voyage, Hunger Games
Catching Fire

Diablo 1lI, Bejeweled,
Bubble Mania, Tetris,
Snake, Candy Crush
Saga, Angry Birds, Plants
vs Zombies



12:15-12:45 Teresa
1:00-1:30 Kisha
Afternoon Floater Kimberly

Results

Usability Findings

Players unanimously confused
by scoring ruleset

* Players unclear how to
optimize score (use fewest
balls? knock out most
pegs?)

* Players unclear about
relationship of stars to score

* Some usability issue w/ Star
image looking "filled" when
not completely filled

* Players expressed delight
with Ember's facial
expressions and
vocalizations. They didn't
want to "disappoint" Ember.

Lack of clear mental map about
why Ember was shooting balls
into paint buckets led to player
confusion on "goal" of the game.

* "Golden" bucket was clearly
important to players

* Money / coins were a strong
pull for players to try and get

* Red gems mostly stood out
as different and special - but
players unclear what
purpose of gems was.

Female

Female

Female

Recommendations / Team
Plans

Recommend providing a
clear mental map for players
on why Ember is shooting
balls into bucket - and why
one bucket is more
important to hit than others.
Scoring should then
reinforce this mental map.
Recommend using different
iconography on red gem
(like key or switch) to clarify
the purpose of this gem.

31

21

30

Priority (click to sort)

1-HIGH

1-HIGH

Notes

LIV

Naughty Kitties, Pudding
Monsters, Plants vs
Zombies 2, Hay Day,
Bubble Seasons

Bejeweled, solitaire,
Temple Run, Diner Dash

Skyrim, Rockband, The
Sims 3, Words with
Friends, Angry Birds



Teaching ability to shoot multiple
balls was inconsistent and
confusing

® Some players repeatedly
tap (like they were
individually popping) the
gems. This early on frenetic
tapping confused these
players about actual
gameplay

* Some players only ever use
one ball at a time - even
with repeated clues from
moderator

Some players struggled for a
long time on "opening" the
buckets via hitting the red gems

* Some players never put
together the red gem with
the buckets. It took actually
losing the round for these
players to understand that
the bucket wasn't "open".

* Lack of mental map
between bucket, bucket lid
and red gem contributed to
this issue

® Once players did finally
figure out the usage of the
red gems, they were able
pretty easily to put together
that they needed to hit
multiple red gems to open
the bucket

Several of the players hesitated
for a long time on the opening
screen - hesitant to press "play"
without any background
knowledge of what type of game
it was or whether they would
understand how to play it.

* Players didn't come into the
game with any knowledge of
what type of game it was or
familiarity with the main
character or setting.

* "Play" meant to these
players that they would be
dumped immediately into a
game and that made them
scared.

* Consider staggering level 2 - MEDIUM

balance to help teach
multiple ball usage /
requirement (ie. you could
only GIVE the player one
ball each level for the 1st
two levels, and then make a
big deal about giving them 2
balls - and balance so
usage of two balls at once is
the only way to solve the
puzzle)

Will need to clearly
tutorialize usage of multiple
balls - but recommend not
allowing multiple balls for
the first few levels

Recommend clarifying 1-HIGH
mental map between
bucket, bucket top and red
gem

Recommend clearly
showing that the bucket
wasn't open (the glowing
was mostly noticed by
players, but the lid wasn't
noticed - and the lid is
actually the thing they need
to learn)

Progression in the last 2
sessions where the level
order was switched worked
better for training players on
using multiple balls

Recommend changing 2 - MEDIUM
button on very first load of
game to "start" or something
like that, or a "play" arrow
(many Disney mobile games
use the play arrow)
Recommend splash screen
on initial load (or even all
loading) that shows image
of gameplay - or better - a
little animation of gameplay
Recommend setting up
"goal" of the game via
splash screen and strong
mental map

LV



Aiming and "shooting" controls
for the most part felt smooth to
players. However all players
instinctively tried to stretch aim to
shoot faster, or push back up
toward slingshot to "shoot more
gently".

* Some challenges with
aiming on left side - unclear
if issue is programmatic or
the trail of coins isn't placed
correctly in these levels.

A couple of major Ul / navigation
elements are yet to be
developed

* Players had no sense of
"where they were" or "what
level they were on" or "what
their goal was"

* Little goals of each of the
levels weren't clear to
players without
experimentation, title of
level somewhat helped

® | evel scoring was unclear,
and relationship between
number score and stars was
unclear

Unclear if the intuitive desire 2 - MEDIUM
to control velocity of the

shot was because of strong

mental map of slingshot or

the aiming vector dots

contributed (players didn't

use word slingshot when

describing)

In discussion, players talked = 3 - LOW
about understanding
implicitly the saga style
maps as both "overall goal"
and "where | am in meeting
this goal"

Team is planning on a saga
style map

Team is planning on "in
between screens" where
goal of each level is clear
Recommend using these in
between screens as a good
way of merchandising
possible boosts / powerups
(ala Candy Crush)

LVI



	Worcester Polytechnic Institute
	Digital WPI
	March 2014

	Ember's Inklinko
	Andrew Benjamin Lukas
	Bryce R. Jassmond
	Christian German Walker
	Corinne Rae Kennedy
	Repository Citation


	tmp.1535548689.pdf.emi5y

