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Executive Summary 
 

The 2008 WARRIORS III MQP focused on two broad areas: 1) hybrid rocket propulsion research 

which explored new injector methods and 2) a study of aerodynamics including fin flutter and flow over 

fins. Through complete development of a paraffin fuel hybrid motor, studies of nitrous oxide injector 

methods were preformed. Support equipment, controls, and a sensor network were assembled to allow for 

ground testing. Flutter characteristics were observed and measured during wind tunnel testing of 

proportionally sized fins of multiple geometries and materials. Two initial flight vehicles were used as test 

platforms for existing electronics and allowed the students to gain valuable experience in the fabrication 

and design techniques of high power rockets. This experience was later applied in the design and 

construction of a final flight vehicle that supported the testing of fin flutter with a flight capable data 

acquisition system and allowed for a flight weight hybrid propulsion system.  

 
Hybrid rocket propulsion systems have been researched since the 1930’s.  The term “hybrid” 

denotes a propulsion system that utilizes a liquid oxidizer and a solid fuel.  This system is useful because 

it requires less plumbing than that of a bi-propellant liquid system and unlike solids, allows for throttling 

and shut-down. Hybrids can also be safer than solid propulsion systems.  Hybrid systems can withstand 

small imperfections in the fuel grains, whereas in solids, small imperfections can cause catastrophic 

failures.  After the Challenger accident, a hybrid strap-on booster was designed as a possible replacement 

for the solid boosters which caused the loss of the Shuttle and its crew.  Another notable use of hybrid 

technology was the X-Prize winning SpaceShipOne. 

WARRIORS III set out to design and construct a lab-scale hybrid rocket motor.  This motor was 

designed to use nitrous oxide as the oxidizer and paraffin wax as the fuel.  One of the goals of the project 

was to determine how different injector designs changed performance characteristics in small hybrid 

motors.  Prior to testing motors, support equipment was designed and constructed.  First a test stand 

capable of handling all loads present during testing was manufactured.  Data acquisition was performed 

by two pressure transducers and a load cell.  These sensors were connected to a National Instruments 

DAQ system which used a LabVIEW program to collect and store the data.  By the end of the project, 

LabVIEW was also programmed to control the operation of the motor based on user inputs. 

To test the support equipment, a small 5 lb PVC/ N2O motor was designed and tested.  Using this 

motor, all sensors and operation equipment were deemed ready for larger motors.  After the initial testing 

of the support equipment was completed, testing of a 10 lb paraffin/ N2O motor was conducted.  During 

these tests, problems with ignition and flame holding were encountered.   During this series of testing it 

was determined that the cause of these problems was excessive vaporization time for the nitrous oxide.   



v 
 

This meant that the nitrous oxide was not completely vaporized in the combustion chamber.  To 

solve this problem, a four port injector was designed with the goal of facilitating complete vaporization in 

the combustion chamber.  While this did not solve the problem, it resulted in the most successful test. 

This test was 1.7 second burn that produced close to 10 lbs of thrust. 

It was determined that the vaporization delay was still the cause of the problem.  A 25 lb motor 

was designed that utilized a longer fuel grain length.  While this motor was not manufactured due to time 

constraints, it was believed that with an increase in fuel grain length, the problems with ignition and flame 

holding would no longer be present.   

 
The term “flutter” refers to the vibration of a structure, in this case the fins or rocket body, when 

subject to an aerodynamic load. There are three simple modes of fin flutter that may be observed on a 

rocket: stall flutter, pitch-bending flutter, and fin bending-torsion flutter.  For this project the bending-

torsion flutter was investigated as it was determined that this type was most likely to occur on rocket fins.   

The goals of the aerodynamic study were as follows: 

1: To produce and record data from fin flutter on scaled fins using a wind tunnel and data 

acquisition system. 

2: To compare data received from wind tunnel testing with projected figures from mathematical 

models. 

3: To design and manufacture a flight capable data acquisition system that could collect and 

record strain gage data on model rocket fins. 

 

These goals were satisfied in two ways: performing wind-tunnel testing, and designing and 

manufacturing a flight capable data acquisition system.  This data acquisition system was designed to fly 

in the final flight vehicle. 

Using a wind tunnel, different geometries of 0.25 inch plywood fins and 0.063 inch G-10 

fiberglass fins were tested in order to produce visible fin flutter.  The wind tunnel was operated until the 

fin appeared to be vibrating.  At this point the data was recorded.  For the plywood fins this meant 

running the wind tunnel near its maximum speed, for the G-10 fins the wind tunnel speed was operating 

at approximately half the maximum speed of the wind tunnel.  In each case data was recorded, during 

testing of the plywood fins the amplifier in the Wheatstone bridge did not function properly. This problem 

was not identified until the team began testing the G-10 fiberglass fins.  A new amplifier was obtained 

and the data for the G-10 fiberglass fins was recorded.  This data proved that the wind tunnel tests and the 

FinSim model produced comparable result for the flutter frequency. Data from the G-10 fins was 

imported into MATLAB and graphs showing the Fourier transform of the signal were produced for each 
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set of test data.  These graphs had peaks correlating to the natural frequency of the fins close to those 

predicted by the FinSim model.  Additionally, screen shots of the LabVIEW program after it was run 

were taken. This program also performed a Fourier transform on the data with results that were consistent 

with the FinSim model.  This empirical testing validated the reliability of FinSim for use in model 

rockets.  

Finally the FCDAQ which was designed to be placed on the final rocket combines both analog 

and digital circuitry while using strain gages to measure the horizontal fin flutter of amateur rockets.  

Results were not obtained on this final rocket because of time constraints.  Overall the success in the 

aerodynamics study was experimental validation of results produced by FinSim. 
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1 Introduction 
 

The Warriors III major qualifying project (MQP) was an ambitious model rocketry project 

undertaken by eight Worcester Polytechnic Institute (WPI) students.  This project group designed, built, 

and tested hybrid rocket motors, multiple data acquisitions systems and several high power rockets.  The 

project was completed in three terms at WPI with a budget of $1200. The goals were as follows:  

Aerodynamic Fin Flutter goals:  

 Develop a “simple” model to characterize fin flutter 

 Use computer models to generate estimates of flutter characteristics (frequency and 

amplitude) over a range of flight conditions and fin designs (materials and geometries). 

 Use model results to design fins for a final flight vehicle (material, geometry, and 

placement) to provide stable flight and a maximized measurable signal. 

 Design and build FCDAQ compatible with payload capability for the flight vehicle. 

Hybrid Propulsion System Goals: 

 Design and build prototype N2O/Paraffin hybrid rocket motor which meets following 

requirements; 

o Maximum impulse of 640 N•sec  

o Size and mounting compatible with flight vehicle 

o Incorporate redundant safety features where possible 

 Test prototype HRM in laboratory to collect data on chamber pressure and temperature to 

compare with analytical model 

Final Flight Vehicle: 

 Design and build a flight vehicle which meets following requirements; 

o Capable of flying an operational powered FCDAQ 

o Motor installation compatible with either standard solid motor or HRM 

developed for project 

o Allows for interchangeable test fin(s) 

o Capable of attaining minimum altitude of 1500 feet. 

 Maximum installed impulse will not exceed 640 N•sec 

 Because of the various goals, the team split into two groups. One group concentrated on the 

hybrid rocket motor aspect of the project, the second group concentrated on fin flutter. The group 

designed and built all model rockets together.   
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2 Background 
 

The WARRIORS III MQP was broken down into several subsections: Aerodynamics, a Flight 

Compatible Data Acquisition System (FCDAQ), Hybrid Propulsion System, and a Flight Vehicle.  In the 

following sections, background information for each of these topics, with the exception of the Flight 

Vehicle, will be provided.  The focus of the aerodynamics section is on using MATLAB to model 

equations used to generate estimates of fin flutter; therefore, the background will detail information on the 

equations used and past research that relates to this fin flutter study.  The FCDAQ will be part of the 

payload on the final flight vehicle; the information in the background section includes basic background 

information on Data Acquisition Systems (DAQs), previous work done with DAQs and fin flutter studies.  

The Hybrid Propulsion section focuses on designing and building a prototype hybrid rocket motor, and 

this section will provide background information about hybrid propulsion:  past research, firing hybrid 

motors, and current research. 

2.1 Aerodynamics  

 
This section presents background information about fin flutter, modeling equations, dynamic 

flight stability, and data acquisition systems. The term “flutter” refers to the vibration of a structure, in 

this case the fins or rocket body, when subject to an aerodynamic load. 

2.1.1 Fin Flutter 

 
There are three simple modes of fin flutter that may be observed on a rocket: stall flutter, pitch-

bending flutter, and fin bending-torsion flutter. The first, stall flutter, transpires at a high angle of attack. 

This is unlikely to be observed in the testing of fins for Warriors III because there will be no angle of 

attack. Thus, this type of flutter was not investigated, instead the focus was on the other two more 

common types: pitch-bending and fin bending-torsion. Pitch-bending flutter is an oscillation of the rocket 

body interacting with bending fins. If this oscillation proves to be un-damped this may result in the loss of 

the rocket‟s fins. Pitch-bending flutter is most likely to occur in high moment of inertia rockets with 

rectangular fins where the ratio of the distance of the center of gravity (measured from the fins leading 

edge) over the chord length is high. The most likely type of flutter would be fin bending-torsion flutter. 

This happens when two natural modes of a fin‟s oscillations interact through another shared resonance, 

for instance, fin bending or twisting [1].  

All mechanical structures, including rockets, have a natural frequency of oscillation. However, it 

is unlikely for these structures to oscillate or vibrate at their exact natural frequency. There are two 
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degrees of freedom characterized by a natural frequency, bending and torsion (twisting).  If a fin does not 

have the ability to bend and twist simultaneously, then any oscillations in either degree of freedom will be 

dampened. However, if the fin bends, it is possible for the energy repelled by the impact to cause the fin 

to twist. The energy from this effect is deflected back into the bending of the fin. This fluctuation may 

continue and amplify if the fin is un-damped, which may cause the fin to fail.  

Turbulence in airflow is the cause of flutter; therefore, fins on a model rocket that are designed 

with a material that is too thin, might flex. Fins that are improperly sized for the rocket or for the material 

of fin, meaning too thick or too thin, too big or too small, also contribute to fin flutter.  This is usually the 

case when the semi span of the fin is too large. 

Fin flutter on a rocket can generate lift, thereby causing the rocket to become unstable. This 

instability has the potential to be dangerous and must be taken into serious consideration. In the most 

extreme of cases, fin structural failure can lead to loss of the vehicle.  In a less severe situation, the rocket 

will have minimal flutter but will lose significant altitude and velocity. This also is likely to throw the 

rocket off of its expected path and should still be considered dangerous.  

In order to effectively investigate and analyze fin flutter, the phenomenon needed to be evaluated 

quantitatively so that any findings could be easily traced back to design variables. 

2.1.2 Mathematical Modeling Equations 

 
Several modeling methods were used to test the maximum velocity in which the rocket can travel 

before fin flutter occurs. It is possible to use these methods to calculate the frequency at which the fin 

flutters.  In order to generate an original model of fin flutter, a study of a National Advisory Committee 

for Aeronautics (N.A.C.A.) report 685 related to the study of fin flutter was investigated.  

Theordorsen and Garrick derived the following expression for the velocity at which an aileron 

will flutter. In order to use these equations for a rocket fin consider the chord length as the average of the 

tip chord and root chord.  

2.1.2.1 Case 1 (Flexure –Torsion Flutter) 

𝑣 =
𝑟𝛼𝜛𝛼𝑏

 𝜅

1

𝑘

1

𝑋
     (1) 

 

Where the radius of gyration of a wing aileron, rα =  (Iα/(mb2 )) , m is the mass of the wing 

per unit span length  Iα  is the moment of inertia of the wing aileron about the elastic axis (the mid-chord 

to the center of gravity), κ = (πρb2)/m. ωα =  (Cα/Iα)  is the natural frequency of torsional vibration 

in a vacuum, and Cα  represents the torsional stiffness of a wing per unit span length. The reduced wave 
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length is defined by k−1, and X is a fixed value of this length that is plotted until a continuous curve 

represents the two variables. The variable represents the half chord of the airfoil [2]. 

2.1.2.2 Case 2 (Flexure-Aileron Flutter) 

𝑣 =
𝜔𝑘𝑏

 𝜅

1

𝑘

1

 𝑋
     (2) 

 

In this expression for flutter velocity, or critical speed to which the fin-can travel before flutter 

occurs, ωk  represents the natural frequency of the wing in deflection. It can be calculated by the equation, 

ωk =  (Ck/m)) where Ck  is the stiffness of the wing in deflection per unit span length.  The other 

parameters are defined above in Case 1 (Flexure –Torsion Flutter)[2].    

 

2.1.2.3 Case 3 (Torsion-Aileron Flutter) 

𝑣 = −
𝑟𝛼𝜔𝛼𝑏

 𝜅

1

𝑘

1

 𝑋
     (3) 

 

All of the variables represented in this equation are defined in Case 1 (Flexure –Torsion Flutter) 

[2].  

Theodorsen and Garrick also note that it is assumed that the pressure on the airfoil was about two 

and a half pounds per square foot per chord length. The stiffness-axis location is located 30% of the chord 

length from the leading edge and the center of gravity location is 40% of the chord from the leading edge. 

The aileron length is considered to be one fifth of the total chord. Torsional frequency is four times that of 

the bending frequency, and the aileron frequency is 1.22 times that of the bending frequency. These 

assumptions are necessary when doing additional work on this subject and understanding their 

conclusions. 

2.1.3 Data Acquisition System 

 
A data acquisition system (DAQ) is a system of measuring and recording data.  This set up 

consists of both hardware and software. The hardware is the physical electronics that create the sensors, 

amplifiers, interface, logic controllers and onboard memory. The software is the logic based instruction 

set that will convert the raw data into a digital signal which will then store the data into the physical 

memory for later analysis.   
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The overall design of a data acquisition system consists of some basic components. The first 

major component is a microprocessor, otherwise known as an embedded controller. This acts as the 

central nervous system of the data acquisition system, to control where the information goes and at what 

time. The next major component is the crystal oscillator that is required to maintain a steady timing signal 

so that everything can happen at the correct time. The memory chip will store all the collected 

information for the sensors, and later read this back to a CPU for analysis.  The signal conditioning 

hardware, consisting of operational amplifiers and the resistors that control their gain will allow a usable 

signal to be gathered from the strain gauge sensors.  

The final processor will be similar to an 18F series PIC microprocessor. An example of a timing 

agent is seen in Figure 1. The crystal will act as the primary timer for the board. Its base frequency will be 

able to be divided into standard units of time.  

 

Figure 1: Crystal oscillator [3] 

© 2008 Kyocera Corporation 

 

This will become the base frequency for the processor; which is a vital component to guarantee 

all operations happen at the right time. The remaining items are a power source such as a 9-volt battery, 

and the supporting electronics that make the processor function, such as resisters and capacitors. The 

connectors that allow the system to communicate with the CPU to download the final data must also be 

included.  Figure 2 is a DAQ that was designed by Steve Hagemen will be used as a preliminary example 

to base the flight capable DAQ. The information regarding the design and use of this system can be found 

on Steve Hagemen‟s website. 
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Figure 2: Preliminary Schematic of Data acquisition system [4] 

©2000 Steve Hagman 

 

2.1.4 Dynamic Flight Stability 

 
The goal in designing a stable rocket is to create an object that when launched will not stray from 

its intended flight path. If this rocket does veer off course due to any outside forces, such as the wind, it 

will return to its desired path and compensate for this disturbance.  This principal can be broken down 

into two parts, static stability and dynamic stability.  Static stability is the initial response of the rocket to 

outside forces.  Dynamic stability is how the rocket acts over a period of time to these disturbances. In 

order to compute the static stability, divide the tube diameter by the distance between the rocket‟s center 

of pressure (CP), and its center of gravity (CG).  If this distance is between one and two the rocket is 

stable, if it is greater than two the rocket is over-stable, meaning that the rocket has a great tendency to 

weathercock. Over time the flight path will eventually turn into the wind instead of maintaining a straight 

flight path.    In dynamic stability, there are five critically important parameters. These are of concern 

because safety is the most important factor, and a non-dynamically stable flight corresponds to very 

irregular and erratic flight which is anything but safe.  The five major parameters that control dynamic 

stability are:  

IL = Longitudinal Moment of Inertia  
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C1 = Corrective Moment Coefficient 

C2 = Damping Moment Coefficient 

IR = Radial Moment of Inertia 

n = Natural Frequency [5] 

2.1.4.1 Longitudinal Moment of Inertia 

 
There are three axes of rotation in a rocket: pitch, yaw and roll. The pitching moment can be 

neglected based on the direction of measurement.  Any force that makes the rocket yaw and pitch about 

this axis is important to the rocket‟s overall stability.   

The longitudinal moment of inertia is proportional to the mass of the rocket and that mass is 

distributed. A rocket that is heavier at the front has a higher longitudinal moment of inertia than a rocket 

where the weight is concentrated in the middle [5]. The higher this proportion, the more difficult it is to 

have the rocket rotate around its center of gravity.  The rocket will constantly have a different center of 

gravity due to fuel burning, this value constantly changes throughout the flight, until engine burnout. 

2.1.4.2 Aerodynamic Corrective Moment Coefficient 

 
The aerodynamic corrective moment coefficient is based on aerodynamic performance 

characteristics and used to determine how responsive a rocket is to sudden disturbances that occur in 

flight. This is important in determining to what extent a rocket will lead into the wind on a windy day and 

its ability to fly straight. The larger this coefficient, the more responsive the rocket will be to sudden 

disturbances.  As this coefficient is affected by aerodynamic forces interacting with the rocket, it is 

important to note that the fins have the most significant impact on this parameter. 

𝐶1 =
𝜌

2
∙ 𝑉2 ∙ 𝐴𝑟 ∙ 𝐶𝑛𝑎  𝑍 − 𝑊      (4) 

 
 

Figure 3: Axis of Longitudinal Moment of Inertia About the Center of Gravity [6]  

©1987 McGraw-Hill Book Company 
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This can be seen in the above equation by defining some of the variables. 𝐶1 is the aerodynamic 

corrective moment coefficient; this is result of how sensitive the rocket will be to disturbances. The 

variable 𝜌 is the density of air and the given altitude 𝑉 is the velocity of the rocket at that moment in time. 

The constant 𝐴𝑟  is known as the reference area and is usually just the maximum frontal area of the rockets 

body tube.  The coefficient 𝐶𝑛𝑎  is the normal force, and finally the difference between the center of 

gravity (Z) and the center of pressure (W) is given as (Z-W) [3].  

2.1.4.3 Damping Moment Coefficient 

 
𝐶𝑧𝑟 = 𝑚  𝐿𝑛𝑒 − 𝑤 2     (5) 

 

 The variable definitions, are as follows, 𝐶𝑧𝑟  is known as the propulsive damping moment 

coefficient. The variable 𝑚  is the rate of mass expulsion from the nozzle given in grams per second, 

𝐿𝑛𝑒  is the distance the nozzle is from the tip of the nose cone.  Finally, W is the distance from the CG to 

the tip of the nose cone [7]. 

This equation shows how fast the rocket will dampen any oscillations. The higher this coefficient 

the faster the rocket will return to an equilibrium point.  Note that the distance term is squared; this 

illustrates the dependence the damping moment coefficient has on the length of the rocket. The further the 

nozzle is placed from the center of gravity the higher the value, and the quicker it will be able to disperse 

oscillations.  

 As with the other variables, anything that is a function of the center of gravity cannot be a static 

number. As the rocket burns its fuel, this value will change. It is also important to note that the engine 

does play the most important factor in determining this coefficient, but the other components, such as 

payload, nose cones, and fins along with their location relative to the rocket‟s center of gravity, will also 

play a role.   

 

𝐶2𝐴 =
𝜌 ∙ 𝑣 ∙ 𝐴𝑟

2
  𝑐𝑛𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

 𝑍𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 − 𝑊 
2
      (6) 

 

 C2A corresponds to the aerodynamic damping moment coefficient. The variable  is the density 

of air at the rockets altitude, V is the velocity of the rocket. The constant Ar is the reference area; this is 

usually just the area of a circle at the maximum diameter of the rocket. The coefficient 𝑐𝑛𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
is the 

normal force of the individual components such as the nose cone, body tube, and fins. The constant 
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𝑍𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  is the distance from the nose tip to the CP of the specific component and W is the distance 

from the nose tip to the CG of the rocket. 

This equation represents the rocket‟s ability to correct itself due to the contribution of a normal 

force, and the forces induced by aerodynamic drag on the overall structure of the rocket.  

 

2.1.4.4 Radial Moment of Inertia 

 

The radial moment of inertia is almost exactly the same as the longitudinal moment of inertia, the 

only differences is that it is for the pitching moment about the horizontal axis of the rocket. This axis is 

known as the pitching axis and was conveniently neglected in determining the longitudinal moment. This 

moment is the measure of a model rocket‟s ability to correct any spinning that may occur in flight. The 

greater this number the greater chance the rocket does not spin in flight.  

  

2.1.4.5 Natural Frequency 

𝜔𝑛 =  
𝐶𝑙

𝐼𝑙
     (7) 

The variable 𝜔𝑛  is the natural frequency of oscillation. The coefficient 𝐶𝑙  is the corrective 

moment which is described in section 2.1.4.3. The variable Il is the longitudinal moment of inertia [4] 

which was described in 2.1.4.1. 

Typically engines with larger thrusts produce higher flight oscillations. George K. Mandell [5] 

recommends that the most desirable natural frequencies for a model rocket lie between 0.2V and 1.0V, 

where "V" is the velocity of the rocket in meters per second. According to his book, when the natural 

frequency is closer to 0.2V, it means the longitudinal moment of inertia is too great for the corrective 

moment coefficient to overcome. Therefore, the model cannot respond to the moments applied by its fins 

with sufficient rapidity for safe and stable flight. The book goes on to say that "a higher value of Natural 

Frequency means the Longitudinal Moment of Inertia is too low, so the model is easily disturbed, or the 

corrective moment is too large, usually indicating too-large fins that cause excessive drag." [5] 

2.2 Hybrid Rocket Propulsion 

 
There are three main propulsion systems used in modern launch vehicle propulsion systems; the 

liquid rocket, the solid rocket, and the hybrid rocket.  In liquid propulsion systems, an oxidizer and fuel 
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are mixed via injectors that form a combustible liquid mixture.  In solid rocket systems, the fuel and 

oxidizer are mixed into a solid that is ignited when the surface of the solid reaches its ignition 

temperature.  A hybrid system encompasses aspects found in both solid and liquid systems; in most cases 

the oxidizer is in a liquid state and the fuel is in a solid state.  The liquid oxidizer is injected into the solid 

fuel grain and combustion is usually started by injecting a hypergolic1 fluid into the combustion chamber 

[8, 9] (see Figure 4). 

 

2.2.1 History 

 
Hybrid rocket development can be traced back to the 1930‟s; around the same time as many basic 

developments in solid and liquid rockets were taking place.  Solid rocket motors were the first to be 

studied due to the early development of gunpowder.  These solid motors used powder charges to achieve 

combustion.  Robert Goddard, commonly referred to as the father of model rocketry, started out by trying 

to inject gunpowder into a combustion chamber instead of igniting it all at once.  The dangers of igniting 

large amounts of gunpowder were brought to light when, in 1933, Reinhold Tiling and three assistants 

died when a 40lb powder charge exploded.  Due to the complexity of injecting small amounts of 

gunpowder into the combustion chamber, Goddard soon shifted his research to liquid rockets [9]. 

The first recorded effort of a hybrid motor was designed by Sergei Korolev and Mikhail K. 

Tikhonravov.  They were working on the Russian GIRD program; GIRD-09 was successfully flown on 

                                                       
1 Hypergolic propellants are a fuel and an oxidizer that ignite when they come in contact with each other.  Ignition 
occurs without an external aid. 

 

Figure 4: Hybrid Motor Schematic [9] 

©2007 American Institute of Aeronautics and Astronautics, Inc.  



11 
 

August 17, 1933, to an altitude of 1500m.  The motor utilized a solid fuel comprised of gelled gasoline 

with Liquid Oxygen (LOX) as an oxidizer [9].  Although this was not a true hybrid by today‟s standards 

(because the fuel was gelled, not solid) it marked the beginning of research of hybrid propulsion. 

In 1937, serious research in the hybrid field began. The first major tests were performed at I.G. 

Farben (a group of German chemical companies) by Leonid Andrussow, O. Lutz, and W. Noeggerath [9].  

Their first tests involved a 10 kN motor utilizing a coal fuel and Nitrous Oxide (NOS) as an oxidizer.  

These tests ultimately failed due to carbon‟s high heat of sublimation, which resulted in a negligible 

burning rate.  The low burning rate produced very poor performance characteristics. 

The first research for a flight worthy hybrid motor was not conducted until the mid 1940‟s.  This 

research was carried out by the Pacific Rocket Society (PRS), which is a private sector consortium, who 

used LOX and a wide variety of fuels.  Some of these fuels included; wood, wax injected with carbon 

black, and many types of rubber based fuels.  The PRS started by making nozzles out of Douglas fir 

soaked in zinc and ammonium chlorides; this design was quickly dropped because the nozzle would 

disintegrate after only 15 seconds of burning.  On their next attempt they once again used Douglas fir 

nozzle, this time coated in calcium sulfate.  This proved more successful than the first tests; however, no 

relevant data could be collected, as the motor flew off its static test stand (rated for 40-60 lbs of thrust).  

After many tests, they finally designed a motor that used LOX, a rubber based fuel, and an aluminum 

alloy nozzle.  This motor was successfully launched in June 1951 to an altitude of 30,000 ft [9].  

Since these early tests, organizations such as the National Aeronautics and Space Administration 

(NASA) Jet Propulsion Laboratory, General Electric, and Thiokol have done research on hybrid 

 

Figure 5: Hybrid Strap-On Booster Design for the Space Shuttle [8] 

©2001 John Wiley and Sons. 
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technology.  In the 1970‟s, hybrid technology was once again a major research topic in the rocket 

industry.  During these years hybrid developments were focused on target oriented missiles and tactical 

missile applications.  High power upper stage motors were another area of significant research on hybrid 

motors.  After the Challenger disaster in 1986, a hybrid strap-on booster was designed (see Figure 5) as a 

potential replacement for the solid rocket boosters that caused that particular Space Shuttle to explode a 

mere 73 seconds into flight.  Several high thrust hybrid motors have since been developed; the two most 

recent being a 250,000 lbf motor tested by the American Rocket Company from 1993-1995 [8] and 

60,000 lbf motor tested by the Lockheed Martin Corporation [9].  These large hybrids use a LOX oxidizer 

and hydroxyl terminated polybutadiene (HTPB) as a fuel.  This combination is preferred because it 

provides a less toxic and virtually smoke-free exhaust.  During these tests, it was also found that this 

combination almost produced performance equivalent to a LOX-kerosene liquid motor [8]. 

 

2.2.2 Benefits of Hybrid Propulsion 

 

Hybrid propulsion is worth investigating for several reasons. As a blend of both solid and liquid 

propulsion systems, hybrids share in some of the advantages of each system. In addition, hybrid 

propulsion has many of its own unique benefits. 

Some unique benefits of a hybrid system are related to safety, due to the dual propellant nature of 

hybrid propulsion.  Many types of fuels used in hybrid motors are not significantly reactive or easily 

ignitable when separated, and thus are safer to handle before firing. This is a significant difference from 

solid propellants and some liquid propellants, which must always be considered combustible. In addition, 

because many fuel combinations may not ignite when separate, there is very little risk of explosion or 

damage during storage or manufacture; this can be a significant safety hazard in liquid and especially 

solid rockets. 

 There are several advantages to hybrid rockets over other conventional propulsion systems. 

Compared to bipropellent rockets, for example, a hybrid with a single liquid propellant would only need 

half the related feed system of a liquid-fuelled rocket with two liquid propellants. This also means a 

significant boost in reliability – with fewer rotating parts, there is a decreased chance for problems. The 

use of a solid fuel section compared to liquid rockets also increases the average fuel density, meaning that 

the same amount of thrust can be delivered in a smaller vehicle [9].  

Compared to solid boosters, hybrids have many benefits as well. In terms of simple performance 

characteristics, the lighter exhaust gases increases specific impulse. Additionally, by regulating oxidizer 

flow rates, the hybrid motor can be throttled or shut off entirely and restarted.  On the contrary, solid 
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motors will continue to burn until all the fuel is consumed leaving no method of throttling or shut-down. 

Hybrid fuel grains are typically safer than solid fuel grains; cracks in solid grains can be devastating due 

to over pressurization in a small area from burning, which can lead to motor explosion or motor failure. 

Most hybrids, however, cannot burn without an oxidizer, and as such most cracks are harmless unless 

they threaten the structural integrity of the motor tube [9]. 

Finally, these rockets can utilize many common items as fuels; the testing for this MQP utilizes 

polyvinylchloride (PVC) or paraffin wax as a solid fuel. These two fuels are both very common and 

inexpensive chemicals; in addition, many of the other fuels that can be used for larger scale testing are 

common inert chemicals. This means that per launch, hybrids can be significantly cheaper than solid 

rocket motors. All these benefits combined with their relative simplicity in operation and benefits over 

other chemical propulsion systems, makes hybrid propulsion a worthy topic of investigation. 

2.2.3 Current Hybrid Rocket Research 

 
Some of the most important avenues of research in rocketry today, in both model and large scale 

applications, are finding new forms of abundant fuel that are environmentally friendly.  Many researchers 

have turned to hybrid rocket propulsion in order to try and fill this void.  NASA is currently looking into 

development of a large scale hybrid motor to power some of its new launch vehicles.  A hybrid-paraffin 

motor is appealing to NASA because it is both environmentally friendly and largely dependent upon 

resources that are easily found in our environment.  

 

The by-products of combustion from typical hybrid propellants are carbon dioxide and 

water; unlike conventional rocket fuel that produces aluminum oxide and acidic gasses, 

such as hydrogen chloride. [10]   

 

This means that there would be far less danger to people on the ground from the exhaust produced by the 

main engines of a launch vehicle.   

Engineers at the NASA Ames research center in California have conducted feasibility studies and 

tests to see if large scale paraffin motors are both possible and easier to make and use then the traditional 

boosters rockets used on the Space Shuttle. These tests have thoroughly concluded that not only are large 

scale paraffin motors attainable but that they show performance characteristic trends similar to the smaller 

lab scale motors which that are based upon. [10] An actual full scale paraffin motor being tested by 

NASA can be seen in Figure 6 and Figure 7. 
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Figure 6: Schematic of NASA Hybrid [10] 

 

Figure 7: Test firing of NASA Hybrid Rocket at NASA AMES in California [10] 
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Besides government institutions like NASA, there are a large number of academic institutions 

that are pursuing their own research into hybrid propulsion methods.  Here are just a few examples of 

research that has been or is currently being conducted in the United States. 

Work done at the University of New Orleans includes mathematical modeling of regression rate 

ablating hybrid solid fuels and flame propagation in hybrid motors. [8] There have been papers published 

at the University of Tennessee on inviscid modeling of classical and vortex injection in hybrid rocket 

motors. [8] Testing at Arizona State has been done in areas such as the swirl injector design and its effects 

on increasing regression rate and combustion stability. [8] 

 The Aeronautics and Astronautics Department at Stanford University has conducted research on 

high regression rate fuels by way of liquid entrainment, or more simply the absorption of solid particles 

into a liquid flow.  This is significant because the principal fuel grain used in their study was paraffin 

based.  They conducted three individual flights at Black Rock in Nevada with a commercially available 

hybrid engine using both a cellulose fuel that came with the motor and a paraffin fuel.  They also used 

Nitrous-oxide as the oxidizer, which is what we will be attempting.   They actually demonstrated that the 

paraffin fueled motor could propel a rocket higher than the cellulose fueled motor. [8] 

International Universities have also been closely following the development of hybrid motor 

design.  In the Netherlands at the TNO Prins Maurits Laboratory they have developed system analysis 

models of complete hybrid systems with optimized grain designs with the associated liquid components. 

[8] At the Indian Institute of Technology a group has conducted a systematic experimental investigation 

on ways to enhance the regression rate in GOX/HTPB hybrid rocket motors.  They discovered that adding 

Ammonium Perchlorate (AP) or aluminum in the fuel along with the reduction of grain port diameter 

enhanced the regression rate. [8] 

The commercial market has not ignored the presence of this new hybrid technology, in fact it has 

already helped propel one company on a $10 million dollar endeavor.  The X Prize was created in 1996 as 

a joint venture between several different companies which challenged contestants to build and fly a 

vehicle capable of taking a crew of two up to an altitude of 100 km.  This task had to be completed twice 

within a window of two weeks.  Eventually the contest was won by Scaled Composites led by Burt Rutan.  

This event was significant in hybrid rocket propulsion because the craft was propelled by a hybrid rocket 

motor using nitrous oxide and HTPB fuel. [8]  The  motor that propelled SpaceShipOne was developed 

by the Environmental Aeroscience Corporation (eAc).   
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eAc was incorporated in 1994 and specializes in the development, fabrication, and testing 

of innovative Nitrous Oxide and Liquid Oxygen hybrid rocket motors for sounding 

rockets, tactical missiles, small orbital launch vehicles, and space tourism applications. 

[11] 

 

Another hybrid project that eAc is curently in development of is the MuLV launcher system.  

“MuLV is designed to be the world's smallest orbital launch vehicle, capable of placing 350-1200 lb 

payloads into low earth orbit.” [11]  The MuLV will incorporate a 30,000 lb thrust hybrid motor with a 

easily transportable launch platform and minimal ground crew to open a new low cost alternative to many 

prospective companies.   

Since the X prize was won, new contests have been developed which include the new X Prize 

Cup, an annual event which challenges rocket enthusiasts to enter different space oriented contests from 

creating a lunar-lander to a multistage launch vehicle.  A Successor to The X Prize, America‟s Space 

Prize offers $50 million to the team which can accomplish certain tasks such as; taking a crew of at least 

five people to a minimum of 400 kilometers and maintain a sufficient velocity to complete two full orbits. 

[12] 

One entry that will be competing for this prize will be the Da Vinci Space Project which is taking 

an all new approach to this problem.  This vehicle will be lifted to an altitude of 80,000 feet with reusable 

helium balloon and then detach and ignite the engines on the vehicle.  The vehicle itself is fairly simply 

designed as a cylinder with a spherical tip.  This project is interesting, because the engine system which 

was selected to propel this new vehicle is a Nitrous-oxide hybrid motor system, very similar to the one 

described in this report, just on a much larger scale. Instead of paraffin as the fuel grain, the Da Vinci 

engine uses HTPB, “The engine is in the 68,181 N thrust class (15,000 lbs st) with a total impulse of 

4,545,454 N·s (1,000,000 lb·sec).” [13] The basic idea is that once a sufficient height has been reached 

the engine block will separate from the rest of the vehicle and descend back to earth under its own 

automatic guidance system.  The reusability of the vehicle (including the engine) is paramount for the 

company‟s success, so a parachute as well as landing airbags will deploy in order to soften the landing of 

the engine block. Even though all of the previously stated vehicles are competing to win various prizes 

the final goal of each company is to break into the commercial market by offering low-cost transportation 

to zero-gravity space. 
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2.2.4 Previous Grain Studies 

When designing an injector one must also take into account the fuel grain configuration within 

the motor.  One classic example is the star configuration, which allows for more initial surface area 

during the burn when compared to a Bates grain allowing for a higher level of thrust.  A star grain 

configuration can be seen in Figure 9: 

 

 When using a swirl injector as described above to create a vortex flow inside the combustion 

chamber it is desirable to have a fuel grain which also helps to facilitate this flow pattern.  One such 

pattern is known as a fluted grain.  Here spirals are cut into a grain in order to create a rotation of the 

 
Figure 8: Design of Da Vinci Flight Vehicle [13] 

© 2003 Environmental Aeroscience Corporation 

 

Figure 9: Star Grain [14] 

©2003 ERG Aerospace Corp 
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oxidizer as it passes through the combustion chamber.  When combined with a swirl injector, a significant 

increase in thrust can be observed.  Some examples of these grains are shown in Figure 10: 

 

 

2.2.5 Inefficiencies and Problems with Hybrid Propulsion 

 
Hybrid motors present a high level of safety and low cost of operation, however low performance 

and thrust levels often keep hybrid motors from being the propulsion choice for flight vehicles. Until 

recently, the regression rates, the speed at which the fuel can burn from the surface and expose un-burnt 

fuel, of typical hybrids were nearly three times slower than that of ammonium perchlorate composite 

propellants. Due to this slow burning rate, hybrid motors needed complex fuel grain configurations to 

operate at similar thrust levels. [9]  

A previous study was completed by the American Rocket Corporation‟s (AMROC) predecessor 

in the 1980‟s to demonstrate the possibility for hybrids to replace solids in the space shuttle. In this study, 

a high thrust motor was developed, which forced designers to configure the grain geometry to have a 

large surface area. Of the high area grain designs, the only feasible configuration was found to be a multi-

port grain. 

 

Figure 10: Helically Fluted Grains [15] 

© 2006 Elsevier Masson SAS 



19 
 

 

This is extremely inefficient due to the amount of un-burnt fuel at the end of the burn, where these un-

burnt fuel slivers were ejected from the motor at the end of the burn. [8, p19]  

Unlike liquids and solids the control of the oxidizer-to-fuel ratio (OF), can only be controlled by 

the flow rate of the oxidizer as the fuel grain surface area is purely a function of time and burn rate. In 

order to operate at high specific impulse, the motor must be constantly throttled to maintain a constant OF 

ratio or a grain must be designed to have a constant surface area as it burns which often forces a lower 

than optimal grain geometry.  

The challenges with maintaining OF ratio are also coupled with combustion instabilities that are 

often associated with hybrid motors that operate with combustion pressures near the delivery pressures.[9, 

p599 -601] This is frequently seen in amateur motors where the small scale coupled with a delivery 

pressure that decreases dramatically during operation.  This produces a high amplitude sinusoidal 

oscillation in the combustion chamber pressure which is further magnified in the thrust. This combustion 

chamber pressure combined with injector pressure can be avoided by highly turbulent injectors as well as 

longer combustion chambers. [8, p362] 

2.2.6 Previous Studies 

The bulk of hybrid testing has been accomplished using HTPB. This is often chosen because so 

much is known about this synthetic rubber since it is the binder and fuel for most solid ammonium 

perchlorate composite propellants (APCP) motors. Fuel choices are usually hydrocarbon based, as such, 

HTPB, Coal, Wood and Plastics were the initial choices for fuels in hybrids [8]. 

Within the last decade high regression rate propellants have been studied, where different 

formulations of organic waxes provided high performance. Paraffin wax is the choice of many research 

institutes due to its high accessibility, low cost, and casting ability. [8] Though the wax fuels have high 

 

Figure 11: Model of a multi-port fuel grain after burning 
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regression rates, they also have low melting temperatures, which can lead to mechanical stability issues of 

the fuel grain itself.  

Additives used in the fuels or oxidizers in hybrid rocket motors are extremely common. Lithium 

and fluorine have been added to liquid oxidizers to increase burning performance and mass density. Fuel 

additives are more common, and include aluminum, carbon black, as well as thickening agents to raise 

melting temperatures [8, p113-115]. 

 Metal additives such as aluminum are often added in small percentages, usually not greater than 

20%. These additives often support higher combustion temperatures leading to an increase in Isp; 

however with paraffin wax, the additive can have the reverse effect in hybrid motors compared to APCP. 

[16] 

 Additives such as carbon black or oximide are used for inhibiting the burning rate of the motor. 

Carbon or other opacifiers are used to inhibit radiative heating of the grain past the flame front. Other 

chemicals can be used in parallel to inhibit the burning rate of the fuel itself. However, this is less 

common in hybrid motors, because a change in oxidizer flow rate can be made to achieve a similar effect 

with only a small decrease in specific impulse [8, p413]. 

Injector designs play an extremely important role in combustion of rocket engines. In liquid 

motors, the injector is responsible for the proper mixing of oxidizer and fuel; it is also responsible for the 

spread and combustion formation in the chamber. With hybrid motors, the injector is the only mechanism 

for spreading the oxidizer evenly over the fuel grain in order to achieve a nearly constant OF ratio. 

There are a few different types of injectors that are the concentration of this report: axial, 

impinging, and swirl injection. Axial injection is most often used in amateur rocket motors, as well as 

many research institutes as the oxidizer flow characteristics are easy to calculate. This however does not 

always present an optimized flow as the regression rate in the center of the grain is often higher than at 

the nozzle end or the injector end [17].  Swirl injectors as well as impinging injectors are designed to 

distribute the oxidizer evenly across the fuel grain face. This can be done by increasing turbulence in the 

boundary layer, which gives the oxidizer and fuel more time to mix properly and burn inside the 

combustion chamber [9, p603]. 

2.2.7 Current Injector Design Study 

 

 Using results from a single axial orifice injector as a control, various injectors were designed to 

determine if optimization of the regression rate of the fuel grain within the motor was possible. In order to 

optimize the regression rate of a fuel grain there are several factors that one can take into account.  

Specifically, this study was conducted with the goal to increase the regression rate while still maintaining 
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stable combustion within the motor.  Classical hybrid regression rates are determined using the following 

equation: 

𝑟 = 𝑎𝐺𝑜𝑥
𝑛      (8) 

Where  𝑟  is the regression rate of the surface of the grain, while a and n are predetermined 

constants specific to the propulsion system configuration, operating pressure, propellants, OF ratio and 

grain shape. G in this instance is the mass flux of the oxidizer.  Judging from this equation only, it may 

seem possible to maximize the regression rate simply by increasing the mass flux of the oxidizer.  Recent 

studies stipulate that there are more factors to take into account then simply the oxidizer mass flux.  Two 

important aspects that will be discussed are boundary layer disturbance and heat transfer. 

The cross section of a typical, simple axial injector is shown in Figure 12. 

 

As one can see from this image there are three distinct zones inside a motor with a simple, single-

orifice injector.  The first is called the recirculation zone, where the oxidizer, which is in contact with the 

walls, is recirculated back into the main flow zone.  This facilitates combustion because the oxidizer 

becomes saturated with fuel from the grain walls which is then introduced into the pure oxidizer stream so 

that it can react.  The second zone is called the impingement zone where the main stream of oxidizer first 

comes in contact with the fuel grain wall.   

The last and largest section is the zone downstream of the impingement point where a turbulent 

boundary layer begins to form [18].  This zone is of particular interest to this study because it is the 

 

Figure 12: Typical Injector [18] 

© 2006 Elsevier Masson SAS 
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interaction of this boundary layer with both the surface of the grain and the main oxidizer flow which can 

determine the regression rate of the surface.  As the boundary layer forms there is less contact between 

the solid fuel in the walls of the grain and the pure oxidizer flow.  This boundary layer consists of a high 

amount of fuel from the grain surface and it would be desirable to introduce this fuel into the main 

oxidizer flow in order to enhance combustion.  This phenomenon is illustrated in Figure 13: 

 

The boundary layer is also a non-ideal case for heat transfer from the middle of the tube to the 

walls, due to a thermal layer which is formed within it. This hinders the melting of the grain, and 

ultimately slows combustion.  Ideally small vortices would exist within the boundary layer. These would 

help to facilitate heat transfer and proper mixing.  It is this aspect of each injector that was studied and 

evaluated. 

The first task set was to decide what types of injector should be modeled.  After careful research, 

three main categories were decided upon: axial injectors, radial injectors, and swirl injectors.   

2.2.7.1 Axial Injectors 

 
As seen in Figure 12, axial injectors are the easiest to produce and also have some of the best 

performance with respect to regression rate.  The typical injector consists of a single hole in the center of 

the injector face.  The flow is then passed through this hole under high pressure in order to atomize the 

oxidizer.  Other configurations of this type of injector can include a radial distribution of smaller holes in 

addition to impinging streams of oxidizer flow which helps to disrupt the boundary layer formation 

downstream.  One ability of the axial injector type is to pass high volumes of oxidizer flow making it 

ideal for rocket motors which require a large initial impulse with a relatively short burn time.  One 

disadvantage of this injector is the uneven burn of the fuel grain, which resembles a cone after the burn. 

 

 

Figure 13: Boundary Layer Formation [21] 

© 2002Tsinghua University 
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2.2.7.2 Radial Injectors 

 
Radial injectors consist of a hole just like axial injectors, however aft of that there is usually a cap 

which is attached to the injector orifice that directs the flow radially outward to the fuel grain.  An 

illustration of this is seen in Figure 14: 

 

The radial injector does not support as high a flow rate through the motor as the axial injector 

does; however, it creates a steadier and more even regression of the fuel grain.  Normal configurations of 

radial injectors have somewhere around 16-20 equally spaced holes of a certain diameter.  This type of 

injector is ideal for long sustained burns which require a steady amount of thrust.  Radial injectors are  

more complicated to produce and wide spread use has not yet occurred.[8]  One possible application for 

radial injectors could be for a long duration satellite mission where initial thrust is not as important as a 

gradual and sustained burn. 

 

2.2.7.3 Swirl Injectors 

 
Swirl Injectors are one of the cutting edge technologies being implemented by hybrid motors to 

advance performance past solid rocket engines.  Swirl injectors are a combination of the radial and axial 

injectors.  A front and section view of two different types of swirl injectors can be seen in Figure 15: 

 

Figure 14: Radial Injector [19] 

© 2006 Elsevier Masson SAS 
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Each injector each has a single hole at the end just like an axial injector.  However in the case of 

the swirl injectors, each has 4 bores coming out of the main inlet to expel some of the oxidizer in a 90 

degree direction as in the first case, or a 60 degree direction as in the second case.  This flow pattern 

greatly helps to disrupt the formation of the boundary layer downstream by inducing a swirl effect inside 

the chamber.  Some tests have reported seeing increases of up to 700 percent in regression rate while 

using a swirl injector compared to an axial injector with similar flow properties. [15] A rocket using this 

injector can provide a tremendous amount of thrust with a more even burn of the fuel grain when 

compared to one using an axial injector.  The only disadvantage of using a swirl injector is that they are 

generally more difficult to produce for the model rocket enthusiast. 

Hybrid motors are seldom operated at the stoichiometric OF ratio. This is due to the high 

temperatures of combustion, as well as the configurations necessary to achieve complete burning inside 

the combustion chamber. Published data trends of and Isp values show how the change in OF from 

stochiometric mixture will only have a small effect on Isp, while also significantly lowering the 

combustion flame temperature [8]. Often hybrids in the amateur community are run at extremely high OF 

ratios which operate using N2O and PVC or HTPB. Small motors often run OF ratios of 10-20:1 with a 

set oxidizer flow rate. This drives the necessary surface area down dramatically allowing for much shorter 

fuel grain. However, these motors operate using much of the nitrous oxide as a monopropellant, where the 

excess nitrous oxide not part of the combustion process decomposes from the surrounding heat. This 

leads to a decrease in specific impulse, though the specific impulse of N2O as a monopropellant is roughly 

170 seconds-1, slightly less than matched combustion with plastic fuels. 

 

 

 

Figure 15: Two Types of Swirl Injectors [15] 

© 2006 Elsevier Masson SAS 
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3 Methodology 
 

The overall goal of the WARRIORS III MQP was to design a flight vehicle which can carry an 

operational Flight Compatible Data Acquisition System (FCDAQ), allows for interchangeable fins, and 

can attain a minimum altitude of 1500ft, with a maximum installed impulse not exceeding 640 N·sec.  In 

order to design this vehicle, research and testing was conducted on the three areas mentioned in the 

background (Aerodynamics, FCDAQ and Hybrid Propulsion). The following section explains the work 

done in each area and how they integrate into the final flight capable vehicle.  The aerodynamics section 

includes information about how modeling was conducted and then used in wind tunnel testing.  The 

FCDAQ section explains design, manufacturing, and testing in order to fulfill the payload requirements of 

the flight vehicle.  The hybrid propulsion system section details how the motor was built and how testing 

was conducted.  Finally, there is a description of the final flight vehicle, and how it was designed.   

3.1 Initial Test Vehicles 

 
The purpose of the initial flight vehicles was to provide members of the team with experience in 

how to design, build and launch a model rocket. The design was completed in RockSim (Apogee 

Components, Inc., Colorado Springs, CO), then the parts were ordered and over a term the rockets were 

built.  Two different designs, with different fin geometries were built.      

3.1.1 Vehicle Design and Construction 

 
With the purpose for the initial flight vehicles as described in the previous section, the next step 

was to design and construct the rockets.  Prior to the design process, the decision to build two separate 

rockets was made.  Another reason for building two rockets was to test the two flight computers.  Each 

rocket however had a similar design and construction process. 

3.1.2 Flight Computer 

 
 Two flight computers were obtained from the WARRIORS II MQP.  These flight computers are 

both model MC-2 and manufactured by G-Wiz partners.  By using these flight computers, the team can 

receive acceleration, velocity, and altitude data.  During the WARRIORS II MQP, the flight computers 

did not get the opportunity to be flight tested.  To ensure that both flight computers could collect data, 

they were flight tested using the initial test vehicles. 
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3.1.3 Vehicle Design Process 

 
The initial rocket designs were made using RockSim, a computer program that allows the user to 

design and run simulations on different rocket designs.  The program contains motor data (total impulse, 

average thrust, burn time, etc.) for a large number of model rocket motor manufacturers.  When running a 

simulation, the user can choose which motor they want to run the simulation with.  The simulation will 

return information on the simulated flight such as; max velocity, max altitude, and max acceleration.  

Using these simulations the user can determine which motor to use to achieve certain mission parameters.  

The goals for this project were to achieve an altitude greater than 1,500 ft with a motor impulse limit of 

less than 640 N-s.  With these parameters, the team set out to design a rocket using a pre-determined body 

tube size, motor mount tube size, and nose cone design. 

Both rockets utilized a split body tube design.  The two body tubes were connected by a tube 

coupler.  This tube coupler also served as the enclosure for the flight computers.  Once a rough length of 

the rocket body was determined, the fin sets had to be designed.  For both rockets, the team selected a 4 

fin configuration.  One of the benefits of using RockSim was that the program would show the user if the 

rocket would be stable during flight.  Using this feature, the individual fin sets and the rocket lengths were 

adjusted until RockSim showed that the rocket would be stable during flight.  A screenshot of RockSim 

displaying the design of one of the rockets can be seen in Figure 16. 

 

 

Figure 16: RockSim with Rocket Design 



27 
 

3.1.4 Construction of Vehicle Components 

 
To simplify construction, many of the rocket components were ordered from an online vendor.  

These parts included the body tubes, motor mount tubes, tube couplers, and the nose cones.  The first step 

of the construction process was to manufacture the centering rings, bulkheads, and fins from a sheet of 

0.25 in. thick plywood.  This was completed using a CNC milling machine.  Once these parts were 

finished, the fin-can was constructed.  

The fin-can is a structure that holds the fins and the motor, attaching them to the rest of the 

rocket.  To build the fin-can, three centering rings were attached to the motor mount tube using high 

strength epoxy.  Next, the fins were mounted to the motor mount tube and the centering rings.  The fin-

can was then slid into the lower body tube so that the fins fit into four slits that were cut into the body 

tube.   A model of the fin-can can be seen in Figure 17.  These slits were then sealed with epoxy.  Once 

the epoxy set, the excess epoxy was sanded off leaving a smooth finish between the body tube and the 

fins.   

 

 

 

 The next part of the rocket that was constructed was the flight computer enclosure.  This 

consisted of a plywood sled that would fit inside the coupler.  This sled served as a mounting point for the 

 

Figure 17: Initial Flight Vehicle Fin-can CAD Design (Body Diameter = 3 in) 
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flight computer.  The coupler was sealed on each end with a plywood bulkhead.  The bulkheads were held 

on by a threaded rod that went through the center of the coupler and had bolts on each end.  This allowed 

the enclosure to be opened for access to the flight computer.  On each bulkhead an eye hook was bolted 

in, which were used as mounting points for shock chords that would keep the rocket segments attached 

after parachute deployment.  The completed coupler/ flight computer enclosure can be seen in Figure 18.   

 

3.1.5 Vehicle Assembly 

 
Once all the rocket components were constructed, the vehicle was assembled.  First, the flight 

computer was properly secured inside its coupler enclosure.  The coupler was then slid into the upper 

body tube and firmly attached with three screws.  Next a 0.5 in. diameter nylon shock chord was attached 

to connect the bottom of the coupler to the fin-can.  This shock cord is put in place to ensure that when 

the rocket begins its descent, its components remain together.  Once the shock cord is in place, the bottom 

end of the coupler is slid into the lower body tube.   

 

Figure 18: Flight Computer Enclosure 
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Another shock cord was attached to connect the top of the coupler to the nose cone.  This shock 

cord is of great importance because it holds the main parachute.  The parachute is attached to the shock 

cord using a quick link.  Once the parachute is attached, it gets neatly folded and inserted into the upper 

body tube.  Finally, the nose cone is placed into the upper body tube.  The final assembled rockets can be 

seen in Figure 19. 

 

3.2 Aerodynamics 

 
The goal of the aerodynamics research was to develop a simple model to characterize fin flutter 

that can be used to generate estimates of flutter characteristics over a range of flight conditions and fin 

designs. The results of the testing were used to determine what designs of fins were used for the flight 

vehicle to provide for flight stability and maximize measurable signal. In addition to working with fin 

flutter, the aerodynamics group developed a FCDAQ. This system was designed and built so that it fits 

 

Figure 19: Assembled Test Rockets Rocket Height: Left -65.3 in., Right – 79.2 in. 
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the payload capability of the flight vehicle. The following sections describe the specific steps that were 

taken to develop the model, manufacture the test equipment, and develop testing procedures.  

Additionally it details the FCDAQ, how it was designed and manufactured.  

3.2.1 Test Stand 

 
A test stand had to be designed and manufactured to conduct wind tunnel testing.  The purpose of 

the test stand was to securely hold the test fins in the wind tunnel during testing.  The main design 

parameters of the test stand were to allow for different angles of attack and have the capability to hold a 

variety of different fin geometries. Another key design parameter was to ensure that the test stand would 

not come in contact with any of the wind tunnels surfaces.  This was to prevent damage to the wind tunnel 

in the event of severe fin oscillations during testing.  Aluminum was chosen as the construction material 

because it is a light material that is strong enough to handle the loads that will be present during testing.  

 The test stand was designed to be mounted to an I-beam tripod that is in the fluids lab, located in 

Higgins Laboratories, room HL016, at WPI. This I-beam tripod is heavy enough and stable enough so 

that it will not move during wind tunnel testing. The test stand‟s base is designed to have four mounting 

bolts that securely attach the test stand to the I-beam tripod. From this base, a rectangular protrusion 

enters the wind tunnel through an access panel on the bottom of the wind tunnel. On top of this protrusion 

sits a circular base. This circular base has four axial slots for which bolts can be inserted through to attach 

the top plate of the test stand to the bottom plate. The dual plate design will provide the user the ability to 

rotate the base up to an angle of attack of plus or minus thirty degrees. Mounted on top of the top plate is 

the fin holder. This holder is designed to securely hold the test fins in place during testing. The fin itself is 

secured in the fin holder by set screws.  
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3.2.2 Fin Designs 

 
Using FinSim to determine flutter frequency and velocity, different fin designs were chosen for 

testing in the wind tunnel.  These designs were chosen because according to FinSim they would flutter at 

an attainable velocity in the wind tunnel.  This allowed recording of flutter data in the LabVIEW program 

which could then be compared to the initial FinSim calculations.  The different fin designs can be seen in 

Figure 21 to Figure 24.   

 

Figure 20 Fin mounting device for wind tunnel testing 
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Figure 21: Clipped Delta Fin Design 

 

 
 
 

Figure 22: Square Fin Design 
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Figure 23: Tapered Swept Fin Design 

 

 
 

 

Figure 24: Trapezoid Fin Design 
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Using the maximum velocity of the wind tunnel and geometries of the fins a Reynolds number 

was calculated.  This number was then used with the maximum velocity of the final flight vehicle to scale 

the fins to a size that will produce flutter so that data can be recorded from the final flight vehicle as well. 

𝑅𝑒 =
𝜌𝑉𝐷

𝜇
     (9) 

V is the velocity that the fin will be subjected to, D represents the characteristic length of the fin, 

ρ is the density of fluid, and µ corresponds to the fluid viscosity.  

The Reynolds number was not calculated to find a specific value instead it was used as a scaling 

factor between the fins in the wind tunnel versus the fins on the final flight vehicle.  Both sets of fins were 

exposed to similar conditions except for the velocity and therefore, it was believed this was a useful 

scaling factor.  The excel spreadsheet used for calculating the scaling factor can be easily manipulated to 

change wind tunnel or flight vehicle velocity and then new chord lengths and spans will be found for fins 

that will produce flutter. 

3.2.3 Wind Tunnel Testing 

 
The purpose of the wind tunnel testing was to test FinSim and MATLAB results of fin flutter 

velocities.  The fin geometries were put into FinSim and MATLAB and the flutter velocity was 

determined to be within the range of the wind tunnel and final flight vehicle velocity.  While we were able 

 
Figure 25: Swept Fin Design 
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to use the models developed to determine theoretically what would be the best design and size, and the 

actual tests in the wind tunnel provided real data in order to validate the analysis tools (FinSim) used to 

choose the final fin design. 

For the testing, a wind tunnel (Engineering Laboratory Design Inc. Lake City MN, Model 407 

A/B 24” Re-circulating) was used.  Data was recorded from the attached strain gauges from both the 

0.25” plywood fins and the 0.063” G-10 Fiberglass fins.  The strain gauges were attached to an amplifier 

which was then connected to the computer and a LabVIEW program was used to record the flutter.  In 

addition to recording the data, some tests were filmed and pictures were taken to show fin flutter views 

from testing. 

FinSim allowed for the geometries to be determined accurately based the maximum speed of the 

wind tunnel.  At this speed the fins would flutter.  The MATLAB program allowed for a graph to be made 

from the testing data that proved what was seen in the LabVIEW program.  Showing the fin flutter in the 

wind tunnel allowed for the determination of what fin types should be used for the final rocket as it was 

important to have some fin flutter in order for the on board Data Acquisition System to record data. 

3.2.4 MATLAB Modeling of Flutter Equations 

 

The equations used in MATLAB and their purpose are as follows: to create a working 

mathematical model that calculates the velocity at which the fin will flutter and the natural frequency of 

each fin geometry. In order to account for the available facilities, a few overall assumption had to be 

made; no flutter velocity exists for center-of-gravity positions forward of the elastic axis of the fin. The 

following equations are extracted from N.A.C.A Report 685.  

The equation below calculates the maximum vehicle speed before the occurrence of flutter: 

𝑉𝑓 = 𝑉𝑎
 

𝐺𝑒

𝑝
𝑝0

  𝜆2 + 1 
39.3𝐴3

 
𝑡
𝑐𝑅

 
3

(𝐴 + 2)

     (10) 

 

Where 𝑉𝑓  is the maximum a speed rocket can reach before flutter occurs. 𝑉𝑎  is the of sound, 𝐺𝑒  

represents the shear modulus of the fin material, 𝑝/𝑝0  is the pressure ratio, which is usually assumed to 

be one in model rocketry, 𝐴 symbolizes the aspect ratio, 𝑡 is the thickness of the fin, 𝑐𝑅  is the root chord 

length. 

 

The fin aspect ratio is calculated using the following equation. 
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𝐴 =
𝑆2

𝑆 ∙ 𝑐𝑇 +
𝑐𝑅 − 𝑐𝑇

2
∙ 𝑆

     (11) 

 

Where 𝑆 represents the fin span, and 𝑐𝑇  is the tip chord length of the fin.  

Output frequency of flutter is then obtained by the following equation,  

𝜔𝛼 =
𝑉𝑓

𝑏 
2𝑚

𝜌∞𝐹𝑆𝐴
 
𝑟𝛼

2

𝛿𝐶𝐿
𝛿𝛼

(𝑥𝛼 +
𝑒
𝑏

)

     (12) 

 

Half of the root chord length is symbolized by 𝑏, 𝑚 is the mass of the fin, 𝐹𝑆𝐴  signifies the surface area of 

the fin,  (𝛿𝐶𝐿)/𝛿𝛼 is the fin lift slope, which is assumed to be 2π in two-dimensional flutter. Again this 

equation 𝑟𝛼  symbolizes the fin radius of gyration, 𝑥𝛼  is the quantity two times the center of gravity 

location measured from the fin leading edge divided by chord length minus one minus the quantity of two 

times the elastic axis of location measured from the fin leading edge divided by chord length minus one, 

and finally 𝑒 is the elastic axis of location measured from the fin leading edge divided by chord length 

minus the aerodynamic center measured from the fin leading edge divided by chord length. 

 The prevention of fin flutter is important for safety. Using this information from the equations 

above, it is possible to design a rocket so that it does not exceed the critical velocity at which flutter will 

occur.  

3.2.5 Fin Simulations by FLUENT 

 

FLUENT is a program can take a 2D or 3D object and model fluid flow over or through the 

object.  The software code is based on the finite volume method spread over a finite grid.  The finite 

volume method is for representing and evaluating partial differential equations as algebraic expressions.  

FLUENT has the ability to offer a wide range of physical models with only moderate computations.  

FLUENT was chosen for this project because it has the capability of modeling static flows over an object 

as well as being able to provide a dynamic flow field over an object.  In order to use computational fluid 

dynamics (CFD) analysis provided by FLUENT, the object was first modeled in order to see fluid flow 

over it.  In addition to FLUENT software the sister program GAMBIT was also used.  GAMBIT is the 

geometric modeling and grid generation tool used to provide the boundary conditions for FLUENT to 

allow for CFD analysis.  GAMBIT also has the capability of taking geometries from a CAD program and 
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importing those geometries directly into a mesh.  The mesh can then be directly imported into FLUENT 

for analysis.   

 2-D flow over the fins was first simulated in FLUENT. The first step in modeling the fins was to 

determine the geometry to be meshed.  To complete this step in GAMBIT, a finite flow field had to be 

drawn. Next the 2D fin was placed in the center of the flow field.  In order to correctly place this 

geometry in GAMBIT, an overlay grid to place the nodes for the geometry was constructed. These nodes 

represent geometric intersections.  The boundary conditions are set by defining the mesh as a finite flow 

field and making the geometry of the 2D fin a solid face. After those conditions are set, then the 

conditions were meshed for the flow field.  The higher mesh density will result in an elevated resolution 

of the FLUENT model.  After the meshing was complete, basic boundary conditions in GAMBIT, such as 

inflow and outflow were defined. The mesh was then imported into FLUENT. Here the more detailed 

fluid properties were stated and the model was generated.  After completing 2D flow analysis, 3D flows 

were generated.  

For 3D flow, a representation of the fin was drawn in Pro/E and then imported and automatically 

meshed into GAMBIT.  This 3D flow field was then imported into FLUENT and CFD analysis was 

completed based upon the parameters set by the user. This showed the flow fields over the fin to help 

understand why the fin flutters at a given velocity. This flutter is shown in the FLUENT analysis through 

disruptions and unbalanced flows in contour plots, velocity flow fields, path-lines and other 

computational tools provided in the software. 

 

3.2.6 Data Acquisition System  

 
The goal of the DAQ is to collect and display the strain gauge data at an adjustable sampling rate 

between 1 and 10,000 Hz. LabVIEW will be used to display and analyze the collected data.  

 

3.2.6.1 Overall goal  

 
The Data acquisition system for the WARRIORS III aerodynamics‟ group consisted of the 

essential hardware required for all real world test of fin flutter.  

There are common components to all data acquisition systems, on both the hardware and the 

software levels. The first and arguably most vital pieces of the system that have to be selected are the 

sensors. These determine what is being sampled, how it is being sampled, and what range and frequency 

can be achieved. For the WARRIORS III project, these were strain gauges (see Wheatstone Bridge 
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Section 3.2.6.3).  An example of a “SGD-1.5/120-LY11 1-axis general purpose” strain gage is shown in 

Figure 26.  A similar gauge was used for this project.  The strain gauge function is similar to a 

potentiometer. Instead of turning a dial to change the resistance the strain gauge is attached to a surface, 

as the surface deflects, the strain gauge wires change distance increasing or decreasing the resistance.     

 

The testing of this system had two primary phases that which occurred in parallel. The first was 

the creation of a LabVIEW program that worked in conjunction with a National instruments BNC- 2120 

Controller board, and PCI DAQ card. The second phase involved the design and construction of a 

miniaturized version of this hardware that will record fin flutter data on the final flight vehicle.   

There are four phases in the gathering and recording of information with an automated system. It 

is critical that each of these phases be examined as to achieve the ideal DAQ system for the task.  The 

first phase is determining what has to be measured. This will establish what type of sensors needs to be 

found, along with what types of signals are to be generated. In this case the fin stresses were measured 

using strain gages.  Since the voltage is extremely low for almost any strain gage, an amplifier was 

constructed in order to achieve a usable signal.   

The next phase was signal conditioning, to do this it is important to have an idea of whether a 

digital or an analog signal is needed.  If this is not determined, proper signal conditioning will not be 

achieved.  This would result in excess noise, fragments of a larger signal, or mistaking a signal for noise. 

In the case of the strain gauges used, an oscillating signal similar to a sine wave was seen, with peak and 

trough at ±2.5 volts after amplification  

The third phase was to gather and record the incoming data into an onboard memory chip. This 

was the most difficult part of creating the data acquisition system, as it is primarily programming. It 

involved the setup of a communication line between the hardware and a Central Processing Unit (CPU) 

interface. The most common are Universal Serial Bus (USB) and RS232. If the first three steps were 

properly completed, the communication selection is a matter of determining the format of the output data.  

 

Figure 26: Sample 1-axis Strain Gauge [5] 

©2002-2008 EmAnt Pte Ltd 
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The last and final stage of the any data acquisition system is the analysis of useful recorded data. 

This was done using LabVIEW to generate the signal curves and interpret the Fast Fourier transform. 

These steps when properly followed yielded excellent results. 

3.2.6.2 Shannon Sampling Theorem 

 

The Shannon Sampling Theorem is a theory which states that in order to accurately measure a 

signal, the sampling frequency of that signal must be at least 2 times the expectant signal frequency. This 

is because any signal will change with time. Digital logic can only measure the signal during a discrete 

period of time; therefore, the sampling process is performed by taking multiple measurements that result 

in a set of discreet numbers corresponding to the real world signal at the exact moment in time it was 

measured. A mathematic interpolation is then performed that connects these points. If the sampling time 

is too low it is possible that a false signal will be generated. The higher the sampling frequency the higher 

the resolution of the signal will be.   

The data for the FCDAQ system was initially estimated at a speed of 5-7 KHz or between 5,000 

and 7,000 times per second. This meant that in order to fulfill the Shannon sampling theorem the FCDAQ 

would have to collect the data at over 10,000 times a second on each of the 6 ports. Not having an exact 

number for this led to a FCDAQ that could have an adjustable sampling range from 1 to 10000 samples 

per second on each of the 6 channels. This was convenient when it was discovered that the actual flutter 

took place at only 15 Hz.  

3.2.6.3 Wheatstone Bridges   

 
Strain gauges are used to measure strain on a system. An ideal strain gauge measurement is 

usually achieved by connecting several strain gauges to each other in different orientations; this setup is 

known as a Wheatstone Bridge (See Figure 27). There are three different variations to this setup; the first 

is known as a quarter bridge, which consists of one strain gauge and three resistors. The second setup is 

known as a half bridge, which consists of two strain gauges and two resistors. Finally, there is a full 

bridge configuration which consists of four strain gauges hooked together. This is an ideal setup because 

the designer can set the bridge in the proper configuration to the direction that the stress is applied to and 

cancel out the other loads. 
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 At the start of an experiment a properly setup up strain gauge should read zero volts. This is 

because there are equal resistances on both sides of the Wheatstone bridge. When stress is then applied to 

the gauge, it undergoes strain. This changes its resistance, which is measured in terms of a voltage gain or 

drop. The equation for measuring this is, 

 

𝑉0 =  
𝑅3

𝑅3 − 𝑅4
−

𝑅2

𝑅1 − 𝑅2
 𝑉𝐸𝑋      (13) 

 

  R1, R2, R3 and R4 represent the static resistances of the bridge; R4 can be set to equal the strain 

gauge resistance in its equilibrium state.  VEX is defined as power supply voltage that is supplied to the 

Wheatstone Bridge. V0 is the output voltage that is measured using LabVIEW.  Hence the equation for R4 

as the resistance of the strain gauge changes to, 

 

𝑅4 =
𝑉𝐸𝑋(𝑅1 + 𝑅2) ∙ 𝑅3

𝑉0 𝑅1 + 𝑅2 + 𝑉𝐸𝑋 ∙ 𝑅2
− 𝑅3     (14) 

 

It is critical that the proper bridge, amplifier, and shielded wire are selected for any Wheatstone bridge 

configuration. This is the balancing equation for a Wheatstone bridge, 

 

𝑅1

𝑅2
=

𝑅4

𝑅3
     (15) 

 

Any change in length of each arm will result in a non-zero output voltage. Each R represents a 

different resistor value, and 𝑉0 is the initial voltage. When properly balanced, 𝑉0 = 0. 

 

Figure 27: Wheatstone Bridge [25] 

© 2008 National Instruments Corporation 
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 The sensitivity of the quarter bridge can be doubled by adding another active gauge. This 

configuration is called a half bridge (See Figure 29). 

 

 

 To even further increase the sensitivity the half bridge can be doubled into a full bridge 

configuration (see Figure 30). 

 

 

3.2.6.4 LabVIEW Program  

 
The program LabVIEW was used in the first experiments and for data collection for the wind 

tunnel measurements.  This program allows for the creation of “virtual instruments” or VI‟s to collect, 

store and analyze data on several different sensors and setups. The final LabVIEW program is described 

later in the paper.  

 
Figure 28: Quarter-Bridge Circuit [25] 

© 2008 National Instruments Corporation 

 

 

 

Figure 29: Half Bridge Circuit [25] 

© 2008 National Instruments Corporation 

 
Figure 30: Full Bridge Circuit [25] 

© 2008 National Instruments Corporation 
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The purpose of the LabVIEW program was to provide an easy interface between the National 

Instruments hardware and multiple test setups. The system easily recorded data between adjustable 

frequency ranges of 1 Hz and 10 kHz, as well as exported this data to an Excel spreadsheet.  

 The LabVIEW program was written in several stages, the first stage began with a basic 

oscilloscope VI program that was taken from example VI‟s contained in LabVIEW. This program 

represents an ideal starting point as the frequency of sampling can be chosen, and the interface was 

already set up to view signals. However, at this point the system still lacked any analysis or recording 

capabilities.  

The second stage of the program development consisted of modifying the original program with 

the ability to save a specific amount of data to an Excel file. The amount data that was saved could be 

specified by the user at any time before a record button was pressed. This feature was helpful for figuring 

out the amount of data that is needed to make reasonable conclusions, as well as aid in the ability to 

choose the correct memory size for the flight hardware.   

 The final stage of this program included the integration of a fast Fourier transform that can give 

the resulting frequency of the fluttering object.  The user will have the ability to average the results taken 

over multiple attempts to get more reliable data. It is important to note that the LabVIEW program was 

verified for accuracy with a National Instruments BNC-2120 board, which included signal generator.   

 The first step in setting up a virtual instrument was starting and loading the LabVIEW VI. The virtual 

instruments for this experiment mimicked the function of an oscilloscope. The next step was to set up the 

fin. This was done by carefully computing the geometric center of the desired shape, lightly sanding the 

surface and super-gluing a strain gauge to the desired location in the proper orientation to achieve the 

correct bridge.  When this was accomplished the calibration procedure was followed; data was collected 

and stored for future analysis.   

The VI in Figure 31 was from a previous class project taken at WPI. It has features to adjust the time 

base and the voltage per division, changing these dials resulted in the change of the resolution of the 

different signal inputs.   This also allowed for each square to have an exact value for time, and voltage. 

When the input signal from a strain gauge was measured the change of voltage was seen as a function of 

time. This was the data collected for each fin at different intervals.  
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Figure 32 is a second oscilloscope VI, which left the display length as the time constant, allowing for 

a choice of sampling rates. With this selected the same measurements were performed using the strain 

gauge. This data was then plotted in a similar fashion as the first example VI.  

                                                       
2 These two VI’s are Oscilloscope.VI. They were created by national instruments and distributed freely as example 
code Nation instruments maintains a copyright as of 2008.  

 

Figure 31: Sample VI Visualizer2  

© 2008 National Instruments Corporation 

 

Figure 32: Oscilloscope, with recording function VI 

© 2008 National Instruments Corporation 
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Figure 33: Final Program Interface 

 

Figure 34: LabVIEW code for FFT, and Oscilloscope 
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3.2.6.5 Amplifier Board  

 
There were two amplifiers used for fin flutter testing, which increased the voltage from the strain 

gauges. The first amplifier was a 2310 Vishay Measurements Group signal conditioning amplifier; this 

instrument allowed for both single and dual Wheatstone bridge support. It features an adjustable gain 

setting as well as an adjustable excitation voltage to properly amplify and separates the strain gauge signal 

 

 

Figure 35: LabVIEW Code for Writing to a File 
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from the background noise.  These amplifiers are large in size, and cannot be flown aboard the final 

rocket. Therefore and onboard data acquisition system was developed to accommodate this issue. 

3.3 Hybrid Rocket Propulsion  

 
The primary goals of creating a hybrid rocket engine were to research alternatives to conventional 

solid systems, as well as integrate new types of fuel into mainstream use.  This project sought to build a 

hybrid engine out of a paraffin fuel grain and use nitrous oxide as the oxidizer.  The goal was to produce 

stable combustion using this configuration.  

3.3.1 Motor Design Criteria 

 
This study was conducted in search for increased performance over standard commercially 

available hybrid rocket motors at thrust levels bellow 1kN. Two methods of enhancing performance 

characteristics were identified from research into standard motors; selection of fuel formulations and 

design of N2O injectors. Since these new motor designs would be tested in WPI facilities, high factors of 

safety were necessary. 

 The motor tested in this study was limited to a total installed impulse of 640 Ns with N2O as the 

oxidizer.  

𝐼𝑡 = 𝐹 ∙ 𝑡 =  𝐹 ∙ 𝑑𝑡𝑏      (16)  
𝑡𝑏

0
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Since total It = 640 N s, the average thrust can be calculated for different burn times:  

bt (s) F (N) F (lbs) 

1.00 640.00 145.45 

2.00 320.00 72.73 

3.00 213.33 48.48 

4.00 160.00 36.36 

5.00 128.00 29.09 

6.00 106.67 24.24 

7.00 91.43 20.78 

8.00 80.00 18.18 

9.00 71.11 16.16 

10.00 64.00 14.55 

Table 1:  Average impulse of a motor with a total impulse 

 of 640 Ns with respect to burn time 

 

 The motor was to be designed to be able to lift a small vehicle to an altitude greater than 1500 

feet, as well as provide a test bed for injector analysis. As such, the burn time needed to be long enough 

for some transient ignition conditions to dampen. The thrust and pressure magnitude had to be high 

enough to provide significant differences in the thrust and other sensors for accurate data collection.  

 In order to determine performance characteristics of the motor the following values had to be 

determined: Combustion chamber pressure (PC ), pressure of N2O (Pinj), exhaust pressure (Pe) and thrust 

(F). The pressure values Pc, Pinj were obtained during the testing of the motor with pressure transducers. 

(PA4338-1500-24318 by Aerojet General Corp.) The thrust was measured using a 50lbf load cell 

(Measurement Specialties Inc. FC2231). 

The design parameters of the motor were established by two methods of simulation. The first of 

which was a series of equations derived from a collection of relevant previous research. This was 

compiled in an Excel document detailed below. The second method, mainly for validation, was a 

spreadsheet produced by SkyRipperSystems, an amateur rocket motor company3. The inputs for both 

Excel design spreadsheets are common parameters which allow for redundancy in the motor design 

calculations. Optimization of the design is completed by finding a thrust level and combustion chamber 

                                                       
3 SkyRipperSystems is a motor manufacturer serving the amateur rocketry community. This company focuses on 
delivering hybrid propulsion at low cost to consumers in the 100 - 5,000N thrust levels. Website and information 
can be found at http://www.skyrippersystems.com 
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pressure that allows for all the components to be manufactured using common tooling. The part designs 

were limited to those with no more complexity than four axis milling, or four axis turning. 

Only an opacifier was used during the testing of the paraffin motors, due to the high regression 

rates that were seen as well as time constrains on testing. The opacifier was lamp black, a fine charcoal 

powder. This charcoal was added to the molten wax during casting in both 0.5% and 1% of the total mass 

of the fuel grain. Tests were also completed using graphite powder; however, these were found to be a 

poor additive choice due to the insolubility of graphite in paraffin wax. 

3.3.2 CFD Injector Modeling 

Due to time constraints and lack of proficiency in FLUENT, only two dimensional models were 

created of two different injectors.  The two injector models created were a single port axial injector, and a 

four port axial injector.  A cross section of each was modeled using SolidWorks, then imported into 

GAMBIT, and finally used for CFD.  The process for modeling each injector is explained in the following 

subsections. 

3.3.2.1 Gambit 

For FLUENT to be able to model fluid flow, a mesh of the flow area had to be created.  In order 

to create this mesh, a cross section of each injector had to be taken from the respective models.  For this 

cross section to be imported into GAMBIT it had to be saved as an Initial Graphics Exchange 

Specification (IGS) file (which have an .igs file designation). It is a file which saves points in space 

relative to an origin and then describes the specifications of the way those points are connected (such as a 

face or volume).  In order to save the cross section as an .igs file, a face needed to be created.  This was 

completed by using the “create planar face” option in SolidWorks.  After this was done to each cross 

section the files were imported into Gambit for meshing.   

Once the file is imported, the walls and face of the object are automatically created using the pre-

existing origin and axis.  This can cause some initial problems if the axes were not originally set up for 

the coordinate system of FLUENT.  Once oriented correctly the actual mesh was created.  It is possible to 

create a finer mesh in certain areas, such as the injector flow area, in order to achieve a more detailed flow 

analysis.  The four port injector used the same mesh spacing at all areas to save time and computing 

power.  These differences in meshed areas account for only a difference of 0.1 square millimeters 

compared to 0.5 square millimeters at the largest difference, so the impact on the flow analysis was 

expected to be minimal. 

After the face was meshed the boundary conditions for the flow needed to be set.  These included 

the flow inlets, outlets, and walls.  By default when exporting a mesh, Gambit will automatically classify 
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any undefined boundary lines as walls, and any undefined mesh as the fluid.  After defining the inlets and 

outlets in Gambit, it was ready to be exported into FLUENT as a two dimensional flow.  The meshes for 

the single port and four port injectors can be seen in Figure 36 and Figure 37 respectively. 

 

 

Figure 36: Single Port Injector Mesh 

 

Figure 37: Four Port Injector Mesh 
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3.3.2.2 Modeling in FLUENT 

 
To increase proficiency in FLUENT, an introductory class was given by WPI Staff member 

Adriana Hera.  The next step was to complete a series of tutorials which are listed below: 

1. Introduction to Using FLUENT  

2. Modeling Species Transport and Gaseous Combustion  

3. Modeling Evaporating Liquid Spray[22] 

After importing the meshes into FLUENT, a grid check had to be performed.  A grid check tests each cell 

in the mesh to see if it contains a finite volume.  Sometimes meshes can become skewed and inversed.  

When this happens the grid check will fail, and report that non-positive volumes exist.  After the check 

succeeded, the flow properties were determined.  In both models the same conditions, solvers, and 

equations were enabled so that the only differences between the two were the injector configurations. 

3.3.2.3 Defining the Solver and Conditions 

 
The next step in solving any computational fluid dynamics problem in FLUENT, is to define 

what solvers the program will use.  There are a variety of factors which can be taken into account such as 

a pressure, density, dimensionality based solutions, and if the problem should be solved with a steady-

state or unsteady solution.  Initially solving this problem will require the following solvers to be used: 

 Pressure based 

 2D Space 

 Absolute Velocity Formulation 

 Green-Gauss Cell Based 

 Implicit Formulation 

 Steady State 

 Superficial Velocity Porous Formulation 

For a complete description of each solver and what other options are available one can look at Reference 

22. 

After the solvers have been selected the next step is to enable certain equations to solve for the 

boundary layers.  Normally in a model of a rocket engine one would expect to enable the energy equation 

for things such as heat transfer coefficients and combustion properties.  This model assumes a “cold flow” 

or no heat exchange or combustion.  In using this assumption the energy equation does not need to be 
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enabled, and was not used for this model.  One equation that must be enabled is the viscous parameter 

equations.  Use of this equation does not require assuming laminar flow in the boundary layers, but will 

calculate factors such as turbulence and viscosity. [22]  This model uses a standard 𝜅 − 𝜖  (Kappa - 

Epsilon) model.  The constants in this model have been chosen to provide the most accurate data over the 

widest range of possible problems.  After the equations and models were defined, operating and boundary 

conditions followed. 

Defining the operating conditions consists of deciding the operating pressure and the 

implementation of gravity.  The operating pressure was set to atmospheric pressure (101 kPa).   FLUENT 

operates entirely in gauge pressures so a gauge pressure of almost 2068 kPa in the combustion chamber 

would be expected.  Gravity was enabled as well, although with this model being a jet under very high 

pressure, 47 atm, it is unlikely that it would have much of an impact on the final outcome. 

The boundary conditions were the next factors which needed to be set.  It was important to define 

the models inlet and outlet flows correctly.  The inlet was chosen to be a pressure inlet because this was 

easily measured by the pressure transducer.  A value of 4826 kPa was chosen as the inlet pressure.  The 

outlet was simply chosen as a pressure outlet with an outflow weighting of one.  This means that all flow 

in should flow out at each iteration. 

 

3.3.2.4 Material Definition and Solver Controls 

 
 In order for FLUENT to accurately solve any problem involving a particular liquid or gas, certain 

variables about that fluid must be defined.  FLUENT has a built in database with a variety of liquid 

properties for use in simulations.  It does not, however, contain nitrous oxide vapor which was used in 

testing.  In this case water vapor, which FLUENT did have in its database, was used as a substitute in this 

model.  The default values for water vapor were again kept constant.  

 In order for FLUENT to produce more accurate results, the solver controls all had to be set to 

insure high accuracy and to accurately depict the hybrid motor testing. Low accuracy would be used for 

faster computations; however a higher accuracy is more desirable for detailed analysis.  Pressure, 

momentum, turbulent kinetic energy, and turbulent viscosity were all set to use second order upwind 

equations.  The Pressure-Velocity coupling was also changed from “Simple” to “Coupled”.  This is due to 

the fact that pressure directly influences velocity in this problem.  The Courant Number was kept at the 

default value; however the Explicit Relaxation factors were changed.  In this problem the pressure 

drastically influences the solution, which is why the momentum factor should be set so that it is lower 
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than the pressure factor.  Experimentation with these values, using the simple injector as a control, 

yielded values of 0.85 and 0.5 for pressure and momentum relaxation factors respectively. 

3.3.2.5 Initial Results and Unsteady Modeling 

 
 After all parameters and equations have been defined the problem needed to be initialized and 

then iteration could begin.  Using the inlet as the initialization point, both models were then iterated 127 

times.  This number was chosen because in both models it represented a low point in the mass 

imbalances.  If left to keep iterating the problem eventually turns into an expanding oscillation and yields 

no usable data.  By definition, a high pressure jet of liquid is not a steady state problem and thus cannot 

be solved using a steady state solution.  After the initial steady state solution, it was necessary to change 

the solver to an unsteady state solution.  The final mass imbalances can be seen in Figure 38 and Figure 

39 for the single port and four port injectors respectively. 

 

 

 

3.3.2.6 Checking Model Consistency 

 
In order to begin analysis on the models it first had to be determined that simulations were 

accurate by visual inspection of the velocity contours.  Velocity contours of each model can be seen in 

Figure 40 and Figure 41.  

 

 

Figure 38: Mass Balance (Single Port) 

 

Figure 39: Mass Imbalance (Four Port) 
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3.3.3 Motor Hardware Design 

 
For initial testing, a small PVC motor was designed to demonstrate the fundamentals of a hybrid 

rocket motor, as well as create a starting point for future development. This motor also allowed for testing 

of all sub-systems that would be used on larger motors. 

 

Figure 40: Velocity Contours of Single Port Injector 

 

Figure 41: Velocity Contours of Four Port Injector 
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A motor was designed using simple one dimensional analysis. Since PVC and N2O were chosen 

for the propellants, the Isp was found using ProPep4, and compared with published data as a check of 

proper calculation.  The combustion flame temperature, ratio of specific heats, and average molecular 

weight of the exhaust gasses were also derived using ProPep for a given oxidizer to fuel ratio.  

 

Name Symbol Value units 

Fuel Density  1.32 g/cm
2
 

Oxidizer Density  813.7 kg/m
2
 

Specific Impulse Isp 178 Sec 

Temp of 

combustion 

Tc 2800 K 

Regression rate 

function 

n 0.65  

Regression rate 

function 

a 0.02 mm/s 

Ratio of specific 

heats 

γ 1.25  

Oxidizer to fuel 

rato 

OF 4.5  

Molecular weight 

of exhaust gasses 

μexhaust 24 kg / mol 

Pressure at exit pexit 1 atm 

Combustion 

chamber pressure 

pchamber 86 psia 

Table 2: Propellant Properties 

 

With these assumed values, a series of calculations were used to derive the necessary physical 

parameters in order to produce the 22N of thrust. First the exit velocity was calculated. 

                                                       
4 ProPep is an amateur rocketry program for solving combustion equilibrium equations, the program can be found at 

http://www.arocketry.net/propep.html  
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𝑀𝑒 =   
2

𝛾 − 1
 ∗    

𝑃𝑐
𝑃𝑒

 

𝛾−1
𝛾

 − 1 = 1.829     (17)    

The physical design parameters were then calculated though intermediate steps. The following 

equations lead to the single port injector sizing, nozzle throat diameter, and nozzle exit diameter.  

 

The total impulse is defined by:  

𝐼 =  𝐹 𝑑𝑡 = 22𝑁 ∗ 10𝑠 = 220𝑁𝑠     (18) 

With a known Isp from ProPep, the total propellant mass could be calculated. 

𝑚𝑝 =
𝐼

𝐼𝑠𝑝
= 1.24𝑁     (19) 

Flow properties are based on the desired impulse and Isp. These values are all calculated with a 

N2O temperature of 75°F. The total mass flow rate is found by the given burn time and the calculated Isp.  

𝑚 𝑒𝑥𝑖𝑡 =
𝑚𝑝

𝑡𝑏 ∗ 𝑔
= 0.013

𝑘𝑔

𝑠
      (20) 

With 𝑚 𝑒𝑥𝑖𝑡 = 𝑚 𝑡𝑜𝑡𝑎𝑙  , the mass flow rates of the oxidizer and fuel can be independently 

calculated based on the OF ratio. This calculation however assumes the OF to be constant through the 

operation of the motor. This is further discussed below.  

𝑚 𝑜𝑥 = 𝑚 𝑒𝑥𝑖𝑡  
𝑂𝐹

𝑂𝐹 + 1
 = 0.01

𝑘𝑔

𝑠
      (21) 

𝑚 𝑓𝑢𝑒𝑙 = 𝑚 𝑒𝑥𝑖𝑡  
1

𝑂𝐹 + 1
 = 0.00229

𝑘𝑔

𝑠
     (22) 

 

This low mass flow rate allowed for multiple test firing sessions without the need to refill any 

tanks. With only a tenth of a kilogram of N2O used per test, the cost of each firing was roughly $1.47 

depending on the supplier. 

Throat temperature can be calculated based the calculated gamma.  

 

𝑇𝑡𝑟𝑜𝑎𝑡 = 𝑇𝑐  
1

1 +
𝛾 − 1

2

 = 2490 𝐾     (23) 
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Nozzle parameters are based on nozzle theory of a 2 dimensional compressible flow. The 

diameter of the throat is the key parameter; where machining of the nozzle must be accurately match this 

value in order to have an accurate simulation of the experimental motor.  

𝐴𝑡 =
𝑚 𝑒𝑥𝑖𝑡 ∗  𝑅 ∗

𝑇𝑡

𝜇

𝑝𝑐 ∗ Γ
= 2.999 ∗ 10−5 𝑚2     (24)  

𝐷𝑡 = 2 
𝐴𝑡

𝜋
= 0.00618 𝑚  0.24𝑖𝑛      (25) 

The exit areas of the motors developed in this project were all optimized for ambient pressure at 

sea level. 

𝐴𝑒 = 𝐴𝑡 ∗ [
Γ

 2𝛾
𝛾 − 1

∗ [ 
𝑝𝑒

𝑝𝑐
 

2
−  

𝑝𝑒

𝑝𝑐
 

𝛾+1
𝛾

]

= 4.648 ∗ 10−5𝑚2     (26)  

𝐷𝑒 = 7.693 10−5𝑚 = 0.303 𝑖𝑛     (27) 

Injector port sizing is done by assuming that chamber pressure is constant. Discharge coefficients 

were found using the table on page 367 of Sutton‟s Elements of Rocket Propulsion.   

𝐴𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟 =
𝑚𝑜𝑥 

𝐶𝑑 2𝜌𝑜𝑥 Δ𝑝
=2.531∙ 10−7𝑚2     (28) 

𝐷𝑖𝑛𝑗𝑒𝑐 𝑡𝑜𝑟 = 0.022 𝑖𝑛 

Following these calculations, the grain properties were then determined using the OF ratio to find 

the surface area. With the following equations it is noted how the OF ratio can have an effect on the 

regression rate. This is due to the inverse relationship between the diameter of the port in the fuel grain 

and the regression rate. 

𝑂𝐹 =
𝑚 𝑜𝑥
𝑚 𝑓𝑢𝑒𝑙

     (29) 

𝑚 𝑓𝑢𝑒𝑙 = 𝜌𝑓𝑢𝑒𝑙 𝑟 𝐴𝑏       (30) 

Where we can use substitution of 𝑟 = 𝑎𝐺𝑛  where 𝐺 =
𝑚𝑜𝑥

𝐴𝑐𝑠  
 , where 𝐴𝑐𝑠   is the cross sectional 

area of the grain to find 𝑚  

𝑚 𝑓𝑢𝑒𝑙 = 𝜌𝑓𝑢𝑒𝑙 𝑎  
𝑚 𝑜𝑥
𝐴𝑐𝑠  

 
𝑛

𝐴𝑏       (31) 

Through more substitution of 𝐴𝑐𝑠  and 𝐴𝑏  where D is the diameter of the port and L is the length 

of the port 
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𝐴𝑐𝑠  = 𝜋  
𝐷

4
 

2
     (32)     

    𝐴𝑏 = 2𝜋  
𝐷

2
 𝐿     (33) 

𝑚 𝑓𝑢𝑒𝑙 = 𝜌𝑓𝑢𝑒𝑙 𝑎 
𝑚 𝑜𝑥

𝜋  
𝐷
4
 

2 

𝑛

2𝜋  
𝐷

2
 𝐿     (34) 

Now with manipulation to find 
𝑚 𝑜𝑥

𝑚 𝑓𝑢𝑒𝑙
  

𝑚 𝑓𝑢𝑒𝑙

𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  
𝐷
2
 𝐿

=  
𝑚 𝑜𝑥

𝜋  
𝐷
4
 

2 

𝑛

       

ln  
𝑚 𝑓𝑢𝑒𝑙

𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  
𝐷
2
 𝐿

 = ln   
𝑚 𝑜𝑥

𝜋  
𝐷
4
 

2 

𝑛

       

ln  
𝑚 𝑓𝑢𝑒𝑙

𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  
𝐷
2
 𝐿

 =  n ln(𝑚 𝑜𝑥  − 𝑙𝑛(𝜋  
𝐷

4
 

2

)]       

 
𝑚 𝑓𝑢𝑒𝑙

𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  
𝐷
2
 𝐿

 = 𝑒(n ln (𝑚 𝑜𝑥  −𝑙𝑛 (𝜋 
𝐷
4 

2
)])      

 
𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  

𝐷
2
 𝐿

𝑚 𝑓𝑢𝑒𝑙
 =

1

𝑒(n ln (𝑚 𝑜𝑥  −𝑙𝑛 (𝜋 
𝐷
4 

2
)])

      

 
1

𝑚 𝑓𝑢𝑒 𝑙
 =

1

𝑒(n ln (𝑚 𝑜𝑥  −𝑙𝑛(𝜋 
𝐷
4 

2
)])𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  

𝐷
2
 𝐿

      

This leads to the final form of the OF ratio 

𝑂𝐹 =  
𝑚 𝑜𝑥
𝑚 𝑓𝑢𝑒𝑙

 =
𝑚 𝑜𝑥

𝑒(n ln (𝑚 𝑜𝑥  −𝑙𝑛 (𝜋 
𝐷
4 

2
)])𝜌𝑓𝑢𝑒𝑙 𝑎2𝜋  

𝐷
2
 𝐿

     (35) 

 

To match the optimal OF ratio to the middle of the burn, the chosen grain geometry called for a 

grain that was 1.9 inches long with a core of 0.375 inches. The additions of 0.5 inches pre and post 
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combustion mixing chambers were manufactured in the grain itself since this would allow for a simple 

fuel grain to act as the entire combustion chamber.  

The equations were entered into an Excel spreadsheet where optimization could occur for 

manufacturability since the small injector port was limited to a drill bit size that was available. The 

calculated pressures and temperatures guided the material selection for the combustion chamber and 

nozzle. 

The nozzle material was chosen to be a dual construction of a graphite insert and an aluminum 

nozzle holder and expansion cone. The injector and nozzle holder were milled from a billet of 6061 

aluminum. The nozzle insert was turned on a manual lathe and pressed into the nozzle holder. The fuel 

grains were turned from 2 inches extruded grey PVC bar to form a complete motor see Figure 42 

A boiler plate motor design, large safety factor with non-flight capable hardware, was chosen to 

allow for quick disassembly and high turnaround time from test to test. The design allows for any length 

of fuel grain and casing to be attached, with the only needed change to be the length of the threaded rods. 

Shown below is the tested motor design for the 5lb and 25 lb N2O/PVC motors.  

 All components of the motor are made of aluminum, excluding the nozzle insert and the steel 

threaded rods not seen in Figure 42. The nozzle insert was manufactured from extruded graphite in order 

to prevent throat erosion over the course of multiple firings. Aluminum was chosen due to availability and 

ease of manufacturing. It should be noted that the aluminum components have a short life of operation. 

This is due to the surfaces being exposed to hot exhaust gases, which quickly causes oxidation.  

 

Figure 42: Cut away view of the 5 lb boilerplate motors with PVC fuel grain 
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Aluminum is also the only metal allowed at amateur experimental launches to be under pressure in a 

flight vehicle. 

 

 

 In order to begin testing paraffin hybrid motors, an intermediate motor was thought to be a good 

starting point. An intermediate motor between a 22N and 110N motor was selected at 50 N of thrust. 

Using the same set of equations with different input values for the updated fuel density, OF ratio, Isp, Tc, 

and a higher pc . This motor was the first paraffin wax fuel ever tested at WPI; as such a high safety factor 

was needed in the design. The higher combustion chamber pressure coupled with the low tensile strength 

of the fuel grain itself required a metal casing around the fuel grain, unlike the 22N motor design. A 2 

inches ID and 3 inches OD case was turned from 6061 Aluminum. 

 The graphite nozzle insert was set into an aluminum nozzle holder to form the nozzle assembly. 

This assembly also contained a post combustion mixing chamber 0.5 inches in length. The assembly uses 

 

Figure 43: Nozzle Holder and Injector after machining. Three inch OD Retention rings shown with each for scale. 

 

Figure 44: Nozzle holder with combustion chamber attached and nozzle insert 
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four o-rings to seal the combustion gasses inside the chamber. Two O-rings fit on the nozzle insert, and 

two larger O-rings seal the nozzle holder to the case. Eight holes for 10-32 bolts to secure the nozzle 

holder onto the case forced the part to be manufactured, at least in one step, on a mill. Two independent 

attempts to make this part using a mill failed due to the high tolerance of the hole alignments. 

The Injector plate was manufactured in a similar way to the nozzle holder; however, multiple 

fixtures were necessary to make sure the part was completed as accurately as possible. A pre-combustion 

mixing chamber again half an inch long was integrated in the injector. This design saved machining time 

and allowed for a simpler design with fewer parts. The Injector, once milled, was fit on a lathe to turn the 

O-ring grooves since this could not be easily done on a mill. As a final step in the manufacturing, the 

injector was taped to fit the oxidizer delivery system as well as a pressure tap for combustion pressure 

measurements.  

  

 

Figure 45: Injector assembly 

 

Figure 46: 50 N motor assembly 
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The entire assembly fit together perfectly when greased, however disassembly proved to be much 

more difficult than originally anticipated. This was due to the high tolerance that was assumed to be 

necessary.  

Later it was determined that multiple injector orifices were needed. A new injector was 

manufactured using the same methods described above.  Instead of one single orifice, a 4 port injector 

was machined using a 0.015625 inches drill bit as seen in Figure 47. 

 

3.3.4 Oxidizer Delivery System 

 

Since the motor was designed as a pressure fed system, the oxidizer must be easy to pressurize 

and nontoxic incase of any leaks in WPI facilities. Oxidizer selection for the hybrid motor was conducted 

by exploring the safety and costs that were associated with each oxidizer flow system. Oxygen, both 

Liquid Oxygen (LOX) and Gaseous Oxygen (GOX) were explored.  However both would require the 

flight vehicle and testing vehicle to have all oxygen safe components. Also the necessary safety 

precautions for storage could not be met in this projects facility; LOX would require a pressurization 

system, such as a regulated helium supply to maintain delivery pressure. However N2O, a liquefied gas, 

maintains a significant pressure for delivery to the system.  

The delivery system of N2O consisted of a 10lb Department of Transportation (DOT) rated tank, 

safety valve, ball valve, steel braided hose, pressure transducer, 12 volt solenoid, metal to metal seat 

check valve, and the injector orifice. These components allowed for safe and controllable delivery of 

nitrous oxide. Later proposed modifications to this included the addition of a second solenoid to allow for 

 

Figure 47: Initial flow testing of the four port injector and CAD model showing four port arrangements 
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venting of the delivery lines to the atmosphere without going through the injector. For detailed flow chart 

see Appendix G : Nitrious Oxide Flow Diagram  

The fuel for initial testing was PVC, which was machined to the grain geometry seen in Figure 

48.  PVC was used since paraffin motors often have complex grain geometries, and testing with simple 

PVC grains, initially, would allow validation of sensors and testing procedures. Paraffin was later used 

due to its high regression rates, and potential for competing with solids for a highly efficient propulsion 

system in a small-scale vehicle.  

 Paraffin Wax is macro-crystalline in nature and is composed mostly of straight chain Alkanes 

(C18 - C36) [23]. The remainder is composed of C18 - C36 Isoalkanes, Cycloalkanes and trace amounts of 

oil [23].  Paraffin is generally considered non-toxic and is widely used in candle-making, casting, 

waterproofing, and sealing [23]. Paraffin fuel grains must be cast in a mold from molten paraffin and 

allowed to cool prior to use. Melting temperatures for Paraffin wax range from 140º to 170 º F depending 

on the grade. This low-temperature manufacturing technique allows for easy casting of fuel grains. 

 

Figure 48: Cut Section of PVC Fuel Grain 3.5 inches in length 

3.3.5 Test Stand 

 
The hybrid motor test stand supports both the motor and the electronic components used in data 

acquisition.  

There were different design criteria for the construction of the test stand.  In addition to mounting 

the components above, the design had size, material, and safety constraints. The design had to: 

 Fit inside the containment shield with some room to spare, which limited it to 

approximately two feet high by two feet wide.   
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 Be strong enough to withstand the force of the motor firing with a significant safety 

margin.  

 Keep the rocket motor as close to the floor as possible to prevent flipping. 

 Preferably utilize materials that the WPI machine shops already possessed rather than 

ordering new material.  

These constraints eventually led to the full CAD assembly (with the motor attached) that can be 

seen in Figure 49. The design is approximately 4 feet long, and utilizes a single linear rail attached to a 

single I-beam, with aluminum „feet‟ for stability. The rail itself is three feet long, six inches wide, and is 

attached using several screws located underneath the rail. A plate was attached to the top of the linear 

rails to form a flat surface to attach motor hardware to, as the rail which was utilized did not possess an 

even surface. This also allowed work on the motor while in its test configuration. The center rail could be 

extended fully backwards outside of the containment shields to allow work on the motor without being 

cramped. 

The motor attached to the plate via a machined stand that was screwed to the rail with small 

threaded holes. The N2O and sensor equipment were all attached directly to the motor via simple brass 

piping; a three foot braided steel line attached the nitrous equipment directly to the nitrous tank. 

 

 

Figure 49: Final Test stand 
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The test stand went through several iterations before finalization. The very first design utilized 

small 1010 rails, shown in Figure 50.   Two of these fit easily onto the rails of a pre-constructed grooved 

base beam and could be screwed into the upper piece with 0.125 inches holes. After a design review, it 

was decided to swap from the bars to a more complex machined design based on safety factors. Placing a 

slide inside the grooves, rather than hooking around the top of the rails would provide a larger factor of 

safety and better stability.  Additional minor adjustments were made along the way which related to size 

issues. The base plates were initially a single large flat plate, but were redesigned into two small strips to 

save on material and remove unnecessary weight and bulk.  

The net result of these design changes is seen in the interim test stand shown in Figure 51, which 

was constructed and used for the majority of the early non-paraffin grain testing.  

 

Figure 50: Internal rails used: Internal rails used 

A- 1010 rail in initial CAD drawings. 

B- Design for interior slide on interim stand 

 

 

Figure 51: Interim Motor Test Stand 
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While the safety and stability of this design was satisfactory, it eventually became apparent that 

there were significant issues with the operation of the test stand. The main problem with this version of 

the test stand was torque and friction from the mounting of the motor and additional hardware, which 

caused problems with data collection. While the motor block moved smoothly with no motor attached, the 

design did not take into consideration that the nitrous lines and pressure transducers directly attached to it. 

These lines extended over the load cell plate and were heavy enough to put significant torque on the 

motor plate, causing the front end of the motor block to dig into the central beam. This caused strange 

force data (the block leaned against the load cell) or, even worse, no data at all when the block became 

stuck and was not in contact with the load cell. 

This issue necessitated a reconstruction of the test stand.  The grooved rail was replaced with a 

solid I-beam attached to a single linear rail, which moved very smoothly using ball bearings.  Even with a 

significant load on top, three Newtons of force is sufficient to move the rail. The rail was also long 

enough to accommodate all the nitrous control equipment comfortably, which caused very little torque. 

 

3.3.6 Safety Measures 

 

Rocket motors have some inherent dangers.  If proper safety measures are implemented, the risk 

of failure and damage significantly decreases.  As a result of the danger of building and testing rocket 

engines, the group devised a series of safety measures aimed at protecting both itself and the test facility 

in the event of motor failure.  These safety measures include designs for both a containment shield/sound 

suppression system and a blast deflector.  A CAD drawing of the containment shield (A), blast deflector 

(B), and designed test stand (C) can be seen in Figure 52. 
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3.3.6.1 Fire lab safety compliance 

 

In order to use WPI‟s Fire Safety Laboratory, the group had to comply with all the lab safety 

rules.  This required the team to fill out necessary paper work before testing could take place.  These 

forms can be found in 7.4 Appendix F.  The purpose of the forms was to outline the type of test and any 

possible hazards that the test possessed. Along with filling out the forms, certain operational rules had to 

be followed.  These included:  

 all persons knowing how to stop the test process in case of emergency, 

  wearing proper clothing, 

  wearing eye and ear protection at all times, 

  Keeping the test room neat and organized.   

Many of these rules were implemented into the operational checklist to ensure optimal safety for all the 

people present during the test and safety for the facility itself. 

3.3.6.2 Containment Shield/Sound Suppression 

 

The team first looked into developing a system that would protect against combustion chamber 

burn through and rupture due to pressure increase, as well as reducing the sound that the motor will 

generate.  It was decided that a three wall enclosure would work best for these goals.  The first step was 

making a preliminary CAD drawing of the system.  The size and cost of the containment/sound 

suppression system was then taken into consideration. 

 

Figure 52: CAD model of Test Stand and Support Equipment 
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3.3.6.2.1 Size considerations 

 

To accurately determine the size of the system, the test facility was surveyed to see the area and 

utilities available to work with.  It was decided that motor would be placed in an orientation in which the 

exhaust flame would be directed into the burn room and underneath the vent hood to allow for proper 

evacuation of the exhaust gases.  After the examination of the test area, it was agreed that a side wall of 

dimension 4‟ by 2‟ would offer proper protection.  This would allow for the entire test stand unit and 

support instruments to be properly contained in the event of a motor failure. 

 

3.3.6.2.2 Cost analysis 

 

With the system‟s dimensions determined, the next step was to choose the materials that the 

system would be constructed from.  The task of assessing materials cost to keep the team within budget 

was also of importance.  The team narrowed the material search down to three materials: plywood, lexan, 

and aluminum.  Aluminum was quickly decided against, because although it would protect the team in 

case of failure, it would not properly contain any shrapnel that may be ejected from the engine.  The next 

choice, lexan, was also disregarded due to its high cost.  It was then decided to use plywood because of its 

low cost and ease of construction.   

While plywood was the least expensive, it was also the weakest of the materials.  To compensate 

for this, a system that utilizes two wall pieces separated by upright supports in between them was 

designed.  To increase the safety factor of the system, it was thought that it would be beneficial to fill the 

gap between the wall segments with sand.  This sand adds more protection for the operators and the test 

facility in case of failure, and it also suppressed the sound that the motor produced. 

The addition of the sand also increased cost.  The original design used 2‟x 4‟ wood studs as the 

internal support structure.  To reduce the cost of the sand, the team tried to reduce the area in between the 

two wall segments.  To achieve this reduction, the design was changed from 2‟x 4‟ supports to 2‟x 2‟ 

supports.  This redesign lowered the cost without severely reducing the safety factor of the entire system. 
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3.3.6.3  Blast Deflector 

 

For further safety precautions, the team decided to design and build a blast deflector.  The main 

purpose of the deflector is to redirect the exhaust upwards into the vent hood.  As a secondary safety 

function, in the event of a nozzle blow-out, the deflector will also deflect the nozzle upwards into the burn 

room. 

 

3.3.6.3.1 Design 

  

 The design process for the blast deflector was kept fairly simple for two main reasons; to reduce 

manufacturing time and material cost.  The deflector was designed so that there was a main bottom plate, 

to which a vertical up-right piece and an angled piece were attached (see Figure 53).  The final design has 

dimensions of 18 inches wide, 24 inches tall and 10.75 inches deep. 

 

 

 

 

 

 

3.3.6.3.2 Manufacture 

 

 To save on manufacturing costs, existing material that WPI‟s machine shop contained was used.  

The material that was used was a 0.25 inches thick sheet of stainless steel.  This material was more than 

 

Figure 53: CAD Design of the Blast Deflector 
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adequate to handle the exhaust temperatures and debris that may be ejected from the motor during firing.  

Three pieces of material were measured and cut using a plasma torch to ensure square cuts.  After the 

three pieces were cut, they were welded together.  

3.3.7 Testing Procedures 

 
 In a process as complicated as rocket motor testing, the possibility of operator error is ever 

present.  In an attempt to reduce any sources of operator error, a checklist was developed to ensure that 

the set-up and test process are identical for all tests.   

3.3.7.1 Complete Checklist of Operations 

 
 Before the first test was performed, an operational checklist was developed; see Appendix C: Test 

Procedure Checklist for the completed check list.  The check list was split into three major sections: Pre–

Test, Testing, and Post-Test.   

 The pre test section was dedicated to the set-up and testing of the DAQ and relay systems.  The 

goal of the pre-test checklist was to ensure that all the test and safety equipment was functioning properly 

prior to the test.   

 The testing portion of the checklist was used to verify that the test was performed in the same 

manner every time.  This section was also used so that the team did not miss any steps that could cause 

possible motor failure.   

 The post test checklist included items to ensure all the testing equipment was in a non-operational 

state.  This meant completing such tasks as purging the nitrous oxide lines and ensuring that the valves 

and relays we all closed to prevent possible failures. 

3.3.7.2 Complete Test Run 

 
 Prior to the first hot-fire test, a complete test run using the operational checklist was performed.  

This test run was to ensure that the checklist included all items necessary to ensure that the tests were 

performed in a safe and logical order.  During these tests, team members were assigned certain portions of 

the checklist as another means to limit mistakes.  With each team member performing the same tasks on 

every test, it ensured that those tasks were being completed the same way for every test.  The test run also 

served as an opportunity to make alternations to the checklist.  As the dry run proceeded, it was noticed 

that certain tasks were incorrectly sequenced or that more tasks needed to be added. A new test run was 
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performed for each iteration of the checklist, once both the team members and the fire lab manager were 

content with the checklist, testing commenced. 

 

3.3.8 Data Collection 

 
The data collection system was a critical part of the hybrid testing section. It enabled verification 

of motor performance, ability to test various injector designs, and analysis of failed tests to correct errors.  

3.3.8.1 Sensors 

 
The sensors are the most basic part of the data collection system. For this study, two sensor types 

were chosen – pressure transducers, which measured line and chamber pressures, and a load cell, which 

measured force output. The pressure transducers utilized were rated from 0-1000 psi, with an input 

voltage of 28V and an output voltage from 0V to 5V. The load cell was rated up to 50lbf, with an input 

voltage of 5V and an output voltage from 0.5-5V. 

The pressure transducers utilized four connections in order to operate; two for the 28 volts in, and 

two for voltage data out. The load cell uses only three, with a single shared wire that works as a reference 

for both. 

For power supplies, a 28V bench supply was utilized, which provided precisely 28.00V at about 

.09A. The load cell was powered by a single 9V battery regulated to 5V; with a switch to disconnect the 

battery to prevent drain when not in use. The battery was checked periodically to ensure it still operated 

near 9V to maintain a constant voltage. 

3.3.8.2 Calibration 

 
Calibration provides the ability to convert the voltage data sampled by the controller directly into 

pressure and force data via linear relationships (for properly operating hardware): 

𝑦 = 𝑚𝑥 + 𝑏     (42) 

Where x is the input voltage, y is the output data, and m and b are constants dependent upon the 

equipment used. To find these constants, the sensors were subjected to a known value, and the output 

voltage recorded; by doing this at two points, the coefficients can be determined. By using additional 

measurements, the accuracy of the linear regression can be further refined. 

 The pressure transducers were initially calibrated using a 100 psi (max) air tank, with a calibrated 

gauge over this range. However, this proved inaccurate for pressures over 100psi, which lead to utilizing 
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a pressure regulator attached to a very high pressure tank of either helium or nitrogen. This easily allowed 

maximum pressure values of approximately 400 psi on the transducers.  

 Load cell calibration was completed using a low friction pulley and low stretch line; known 

weights were hung from the line which attached to the motor rail, pushing on the load cell. It was 

important to use the test stand in a testing configuration to account for the losses in oxidizer feed lines, 

sensor lines and inherent frictional losses. 

The calibration process was repeated several times throughout the project in order to further 

refine and correct the data. To ensure accurate calibrations, many points were collected for each sensor; 

the load cell was measured to 25lbs utilizing around 20 data points; the pressure transducers were 

measured from 0-450 psi at 50 psi increments. 

3.3.8.3 Interface Cable Connections 

 
A single electronics box for DAQ hardware was built in order to keep everything organized and 

reduce set up and cleanup time. The box, shown in Figure 54, contains the battery and regulator for the 

load cell, interface connections for the pressure transducers, and the output connection for main data 

acquisition shielded cable.  Dsub-9 pin connectors were soldered to the pressure transducer wires, and 

connectors inside the box, to make it easy to connect and disconnect the pressure transducers from the 

DAQ to minimize setup time. The load cell was attached by a 2.5mm phono jack. The power attachment 

was through a female banana plug/screw terminal connected to the bench supply. 

The cable connection to the DAQ was made from a spare 20ft section of thick shielded wire with 

eight conductors inside. While the combined sensors only required six, two per sensor.  
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3.3.8.4 Data Acquisition (DAQ) Equipment 

 
The DAQ chosen was a National Instruments USB-6008, with a 10KHz sampling frequency 

across up to 4 differential analog inputs. These inputs are multiplexed, meaning that the data is actually 

sampled one channel at a time, cycling through, rather than all channels sampled at the maximum rate. 

With three inputs utilized, there is a sample rate of 3.3 KHz per channel. The USB-6008 also possesses 12 

digital I/O ports, which later enabled LabVIEW control of the motor operation. The DAQ was mounted 

on a polycarbonate board with attachments for the analog input and digital output lines. The full final 

setup for the DAQ can be seen in Figure 55. 

 

 

Figure 54: DAQ I/O Box 
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3.3.8.5 LabVIEW code 

 
The LabVIEW code is what controls the computer side of the DAQ, reading the data and 

recording it to file. LabVIEW code was specifically created for this project to provide controls that were 

required for the operation. 

The read functions to retrieve the data from the DAQ are basic DAQmx read functions, operating 

on all three analog inputs. This data is supplied as an array of data structures known as waveforms; these 

waveforms contain both time and data information combined together for ease of usage. Each waveform 

contains the data samples from one analog input channel for a short duration of time. By continuously 

reading the data, the code creates many of these small waveforms. Then, these waveforms are attached 

together to form a complete waveform array containing approximately thirty seconds of data. 

While the data is being attached, the code is performing several other operations. Based on user 

inputs, the code can convert the data from voltage directly to pressure and force data. The waveform data 

is also graphed in real time on the VI‟s front panel, along with displays of chamber and line pressure. 

Later versions of the VI also included digital outputs of Boolean data (True/False) through the 

digital I/O ports on the DAQ.  The +5V from the „true‟ output of the DAQ was used to control the nitrous 

solenoid and igniters from within LabVIEW using a series of timers.  A waveform is constructed of the 

Boolean data and attached to the actual pressure and force data so that the ignition and flow triggers could 

be displayed. 

 

Figure 55: DAQ on connection plate, with connector box cable and digital controller 
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After the full thirty seconds of data has been recorded, this data is outputted to a comma-

delimited spreadsheet that can be opened in programs such as Excel or MATLAB. The VI automatically 

generates a time-stamped output file containing the test data. Included with the data is a header that gives 

the test information (burn time, test number, date, etc) which helps link data to test video footage. 

The LabVIEW DAQ/controller went through several iterations based upon feedback generated in 

testing. In early versions, the sample rate was significantly below the DAQ‟s maximum capacity. At the 

time, the code read one sample per channel, wrote them to an Excel file, and then started over again. 

While this seems like a fairly basic starting point, the slow times associated with file input and output 

meant that this could only record at a few hundred samples per second, nowhere near the DAQ‟s capacity 

of 10 KHz. This first code would also crash if left running on the computer for more than a few minutes, 

as any of the resources being used by the data collection were not being released from the computer‟s 

memory. 

The second major iteration of the code was able to sample at 10 KHz, but without any sort of 

real-time display; thirty seconds of data was recorded, then plotted and outputted to file. The concern with 

this was that without a reasonable update rate, the potential pressure spikes while the motor was in 

operation would not be seen. 

 
Figure 56: Hybrid DAQ 9.0 Front Panel  
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The final code iterations included the DAQ controller output as well as several controls to make 

operation more user friendly.  One example is enabling the review of the last recorded data after a test had 

been conducted and direct output of the graph to an image file. Other improvements included front panel 

organization and file output overrides. The final front panel is shown in Figure 56. 

3.4 Final Test Vehicle  

 
A final flight vehicle was designed to satisfy a set of requirements as described in the following 

section.   

3.4.1 Mission Criteria  

 
The overall objectives for the final flight vehicle consisted of the following: 

 

1. Capable of flying an operational Flight Data Acquisition System to record fin flutter 

2. Use an onboard flight computer to record flight data and deploy recovery system 

3. Maximum installed impulse will not exceed 640 N·sec 

4. Capable of attaining minimum altitude of 1500 ft. 

5. Allows for interchangeable test fins 

 
The first objective pertains to the system developed as described earlier in order to record strain 

gauge readings from oscillating fins attached to the rocket.  This system was developed so that it was both 

small and lightweight relative to the rest of the rocket.  This objective also includes recovery of both the 

device itself and the readings which the device acquired during flight from the strain gauges. 

The second objective goes hand and hand with the first objective, namely recording data about 

the rocket‟s flight including velocity, acceleration, height and time are needed in order to interpret the 

readings collected from the strain gauges.  With this rocket data, it should be possible to draw some 

conclusions about fin flutter onset velocity during model rocket tests.  The computer will also be used for 

deployment of the recovery system for the rocket. 

The third and fourth objectives were more for safety than for scientific purpose.  Through mutual 

agreement, the team‟s advisor, Prof. Blandino and WPI‟s administration have agreed to limit the total 

impulse to a value no greater than 640 Ns.  An altitude of 1500 ft was chosen so that the rocket could be 

safely recovered after launch and not drift too far away from the initial position. 

The final objective reflects the fact that this rocket was mainly designed in order to test fin flutter 

during flight.  Allowing for interchangeable fins on the rocket allowed testing of different shapes and 

sizes of fins so that there was adequate data to analyze and draw conclusions from.  The sets to be tested 
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will also include a set of control fins that should not flutter under the rockets intended speed to make sure 

that there are not other factors coming into play with these tests. 

3.4.2 Design 

 
A main goal of this project was to design and build a rocket that could accommodate an on-board 

DAQ capable of measuring strains on the fins.  Along with being able to house a FCDAQ, the rocket also 

needed to have the ability to inter-change the fins with relative ease.  By doing so, it would make it easy 

to obtain data for several different fin geometries.  This section will discuss the design process used to 

achieve these goals. 

3.4.2.1 Fin-Can  

 
For the team to have the ability to quickly change fin sets, a fin-can was designed to accomplish 

this task.  Several design ideas were brought before the team for consideration.  The two main designs 

that were considered were a design in which the fins would slide into a dove-tailed groove and then held 

in place using a bottom retention plate.  The other design that was considered was to build multiple fin-

cans that could be easily attached and removed from the rocket body.  Each fin-can would have their own 

distinct fin sets permanently attached. 

 The design that was chosen for the final rocket was the multiple fin-can design.  The team chose 

this design because it replicates how fins are usually attached in model rocketry.  The main design of the 

fin-can is nearly identical to the fin-cans built for the initial test vehicles.  The main difference was that 

instead of building the fin-can into the lower body tube, they would be their own separate component.  

The fin-can would attach to the DAQ housing using a coupler tube that would join the two sections. The 

use of a coupler tube is what allows for quick changes of the fin-can segments.   

 It was also determined that by using this design, the wiring for the strain gages would be easier 

and more efficient.  By using fin-cans with the fins permanently attached, the wiring for the strain gages 

could also be permanently attached.  This design would allow the team to pre-wire the strain gages and 

properly secure all the wiring internally.  The method also aids in the ability to quickly interchange fin-

cans.  With wiring already in place, to change a fin-can would be a two step process; remove the existing 

fin-can and disconnect the current strain gage wires from the DAQ , then attach the new wires to the DAQ 

and secure the fin-can to the DAQ housing.  A cross section of the fin-can design can be seen in Figure 

57. 
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3.4.2.2 Electronics Bay 

 
The upper electronics bay was designed to hold the MC-2 flight computer, an on-board camera, 

and two 9-V batteries.  One main goal of this design was to keep the total weight to a minimum.  The 

main component of the electronics bay was the sled that the components attached to.  The goal was to 

design a sled that was both very light and still maintains structural integrity to hold its components.  First, 

the components were laid out to decide how they should be arranged inside the rocket.  The most optimal 

placement was to attach the flight computer to one side of the sled, the two batteries to the opposite side 

of the sled, and to attach the camera using a slide through mount with a set screw to hold the camera in 

place.  The design can be seen in Figure 58. 

 
Figure 57: CAD Design of Fin-can for Final Flight Vehicle 
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 Once the basic arrangement was laid out, modeling of the sled was performed using SolidWorks.   

The design called for two holes for the flight computer to mount to.  On the opposite side of the sled, two 

battery holders were created.  The holders were placed in between the two mounting holes for the flight 

computer.  By doing this, the same holes could be used to mount the computer and to place a retaining 

strap over the batteries to secure them in place.  After the mounting points had been designed, 

unnecessary weight was removed from the sled.  The next task was to determine how the sled would be 

held into the coupler tube.  This was accomplished by putting a 0.125  inches channel into each side of the 

sled.  A threaded rod would slide into the channels properly securing the sled to the coupler.  Once the 

design was completed, the sled was manufactured from a piece of 0.5 inch thick Delrin sheet. The 

manufactured part can be seen in Figure 59. 

 

 

Figure 58: Electronics Bay Sled Design 
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3.4.2.3 Main Body 

 
In order to produce measurable fin flutter, the rocket was designed for maximum velocity.  To 

help achieve the highest maximum velocity, the rocket was designed to be as thin as possible.  The widest 

component in the rocket was the DAQ.  Using the width of the DAQ as a starting point, the thinnest body 

tube that could accommodate it was a 2.15 inches diameter tube.  With the body tube diameter now 

determined, the next factor that was taken into consideration was the geometry of the fins.  Using 

RockSim, a base model of the rocket was designed that did not include the fins.  Three fin geometries 

were chosen: one that should produce significant flutter, one that might produce flutter, and one that 

should produce no flutter at all. 

 

Figure 59: Assembled Electronics Bay Sled 
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3.4.2.4 Fin Geometries 

 
Five common fin geometries were chosen as to test in the wind tunnel, but only three were chosen 

to be used on the final flight vehicle.  It was determined that three designs had a significant flutter 

velocity, because it was recorded in LabVIEW and the vibrations could be seen and recorded on film. 

These three geometries were clipped delta, square and tapered swept.  These three designs were tested in 

the wind tunnel with plywood and G-10 fiberglass.  In order to have wind tunnel tests simulate the flight 

vehicle, scaled down versions of those tested in the wind tunnel were purchased to put on the final rocket.  

The material chosen for the three types of fins was 0.063 inches G-10 fiberglass. 

 

 

 

Figure 60: CAD Model of the Final Flight Vehicle (Dimensions in Inches) 
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3.4.3 Data Acquisition System 

 
The goal of the FCDAQ is to collect and store the strain gauge data at an adjustable sampling rate 

between 1 and 10,000 Hz.  This data must then be uploaded in the form of a text file. However the format 

of this txt file must be the same as a comma separated variable file. The entire package must be able to 

withstand the G-forces of launch and be self-powered by a 9 volt battery. It must also be self-triggered at 

take off, and record at least 7 seconds of data.  

 

3.4.3.1 DAQ Hardware 

 
 The goal of the onboard data acquisition system was to collect seven or more seconds of data 

from each of the strain gauges mounted on the fins. This information was collected with at least 2.5 times 

the Nyquist frequency (see section 3.2.6.2 on Shannon sampling theorem for more detail) of the 

predetermined oscillations. This data was stored in an onboard memory unit and able to communicate 

with a ground based computer via an RS 232 link. The power source for the entire system was a 9 V 

battery.  

 This system was a designed in a gradual process. As data from the previously described set ups 

was acquired in the wind tunnel, the onboard system was designed to perform the same functions as the 

system tested in the wind tunnel setup.  The initial estimates were for a flutter speed of 5 kHz.   

The next decision was power consumption; most of the microprocessors on today‟s market 

require 5 V for proper performance, as do most of the timing, and amplifying electronics. For this reason 

a voltage regulator needed to be acquired.  The LM7805 was readily available and is compact enough to 

accomplish this task. It requires minimal circuitry to filter the power and is reliable. With this regulator, a 

5 V source was now on-board. 

Armed with this information and a now stable 5 V power source, the brain of the system was 

chosen. The PIC 18F452 series microprocessor was selected for size, weight, power, amount of I/O ports, 

and assembly language instruction set. This chip controlled all of the functions for the onboard data 

acquisition system.  Figure 61 is a pin-out diagram for the selected chip. Seven analog inputs are required 

for the strain gauges. Port B will be configured for programming the chip, along with the external clock 

input. All of Port C will be configured as data lines, and Port D will be configured for the address counter. 

Finally Port E will be used to make the correct timings for the read and write cycles of the memory chip.  
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 The next step in the design was to choose a suitable memory chip. The requirement for this chip 

was a writing speed on the order of micro and if possible nano-seconds per cycle. This was necessary in 

order to not be limited in the amount of data the system could collect in such a short period of time.   

Another consideration was the need to be as lightweight and compact as possible. In case of a 

rocket failure, the information on the chip should be held when there was no power and be able to be 

recovered if everything but the chip was destroyed. There was also the limitation of matching the amount 

of input lines to the amount of pins dedicated to data collection on the microprocessor.  For this reason the 

TI BQ4015ma-70 was chosen.  The read and write cycles can be performed in as little as 70ns.  This chip 

also possessed a self contained battery back-up for unexpected loss of power. The stored data on the chip 

could be saved for up to five weeks without power. The complete specifications can be found from the 

datasheet. [5]  

 Now that the memory and the brain of the system were both selected, the code had to be written 

for proper memory allocation. With the ports chosen for memory use, and the external clock speed set 

with a 20MHz timer, a process was derived to recover the information from the memory chip. RS 232 

serial communication was chosen, both for the minimal parts required, and its ease of programming.  

 One issue with serial communication is that it requires 12 volts; however it is a common method 

for data delivery. The Maxim 232 chip along with accompanying capacitors solved this problem. The 

 

Figure 61: PIC 18f452 Pin Layout [28] 

 © 2008 Microchip Corporation 
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Maxim 232 chip was designed to take the 5 volt output of any microprocessor and output the same result 

at 12volts to a serial communication line. With the given clock speed, the data was written to the 

Windows based computer at 9600 baud. The circuitry for the communication was then added to the 

schematic.  

 The only thing that was left was to design and build the amplifier board and the proper 

Wheatstone bridge setup.  For this the TI 2272 dual operation amplifier chip was used. This compact chip, 

combined with a few potentiometers, allowed for an adjustable gain to properly amplify the signal and not 

overpower the microprocessor. The voltage divider was added to create an adjustable reference voltage 

that was set to 2.5 volts. 

 Since all the pieces were selected, the components for the entire setup were placed on a 

breadboard for testing.  Once testing proved the entire system was operational, the system layout was 

compacted to 2.5 in wide, by 8.0 in long and soldered to a perforation board.   

The final testing procedure consisted of an identical test with the onboard system replacing the 

previous system in the wind tunnel. The test mimicked the same speeds, with the same gain. Once the 

data was recorded, it was analyzed and compared with the data gathered from the previous set up. If the 

information matched, the system had successfully been double checked and deemed flight worthy.       

The objective of the code is to allow the PIC 18F452 to act as the brain of the entire operation. To 

successfully accomplish this, a series of subroutines coupled with one main loop were written. This code 

must combine a non-volatile memory chip with built in data retention battery that is coupled to a 20MHz 

microcontroller, which allows it to acquire strain data from two places on each of the 3 fins. 

 Because the frequency will change with each fin set, it was measured in previous wind tunnel 

testing to have natural frequencies of approximately 7-40 Hz.  Because of this wide range of expected 

frequencies, the code was designed with an easily adjustable acquisition rate between 1Hz-10 kHz.  

The data is acquired on all six strain gauges in each acquisition pass. This data is then stored to 

six pages of memory with 65535 data points each. The entire acquisition is started when an acceleration 

sensor is triggered at takeoff. When recovered the data will be translated by means of an RS232 serial 

connection transferring the data at 9600 baud to a Windows computer where the signal can be analyzed.  

3.4.3.2 FC-DAQ Code 

 
The entire code is written in assembly language and can be found in Appendix F: FCDAQ 

Software Coding. The code begins with a routine that sets all the ports as a proper input or output. It 
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then defines all the variables used in the subroutines. This leads to an initialization routine, which sets the 

active bits on each pin, defines the clock setting, and sets all the variables to zero.   

Once this is accomplished, the program will enter its main loop. It will remain in an infinite 

counting loop until the sensor that detects takeoff is activated. Two things will happen at take off, a main 

count loop will be activated and will read the analog output voltage of each strain gauge and then store 

them in their own individually assigned variables.  

The processor will then take the variables and store them into the memory location that matches 

there assigned number based off the main count loop. This process is then repeated until the main count 

loop times out, at 524288 or 219.  When this happens, a flag registrar will be triggers that indicate that the 

memory is full. 

Once this flag is set, the FC-DAQ must be restarted by disconnecting and reconnecting the 9 

Vbatteries.  A button then triggers the program to enter the aptly named “waitforserial” routine.  This will 

start the transfer of information over the serial port and into windows “hyper terminal.” The data can then 

be exported into Excel, and saved as a comma separated file. This can then be analyzed using LabVIEW 

or MATLAB.  

4 Results and Analysis 
 

The following sections detail the results and analysis obtained by the team in three groups.  The first 

was the initial test vehicles which were each launched two times.  This is followed by aerodynamic and 

hybrid propulsion system results and analysis. 

4.1 Initial Test Vehicles 
 

The overall goals for the initial flight vehicles were sufficiently met.  Two rockets nicknamed 

“wicked awesome” and “wicked sweet” were designed and built.  There were two separate launches, the 

first on November 3, 2007 and the second on December 15, 2007.  After completing these test launches 

the group felt comfortable designing, building, and launching a model rocket. 

After the launches were completed the results were analyzed.  In both launches the rockets were 

successful; both rockets reached the objective altitude before the recovery system was successfully 

deployed and the rockets were recovered. Both rockets utilized the MC2 flight computers for in-flight 

triggering of ejection charges and data recording (see WARRIORS I, Appendix G for MC2 information).   

 For the initial flight vehicle nicknamed “wicked awesome”, the flight computer was successful in 

both flights.  However, the parachute was not fully deployed in either flight.  Even though the parachute 

 



85 
 

was not deployed, the vehicle remained intact.  The flight computer successfully recorded data on both 

flights.  On the second flight, an on-board wireless camera was used to record in-flight video.   

The first launch on November 3, 2007 was in Amesbury, MA with the Central Massachusetts 

Space Modeling Society (CMASS).  The results from the flight computer include: flight information, 

flight summary, flight configuration, overlay graph, altitude graph, acceleration graph, integrated airspeed 

graph, and an integrated altitude graph.  The basic flight set-up which is provided by the user is displayed 

in the flight information table when the flight computer is connected to a computer.  Table 3 displays the 

information that was obtained from the first flight. 

 The same information was also obtained for the second flight, displayed in Table 4 

Table 4: Flight Summary Information for Second Flight of “Wicked Awesome” 

 

 

 

Table 3: Flight Summary Information for First Flight of “Wicked Awesome” 
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The second rocket was launched in Sterling, CT on December 15, 2007 at the CATO launch site.   

The flight information was not displayed in the flight information tab when the data from the MC2 

computer was hooked up to a computer and read.  The motor for this launch was an I211; the length, 

maximum diameter and takeoff weight were the same.  This motor is much more powerful than the G75 

which is why the rocket had a faster launch speed and obtained a higher altitude.   

The graphs displayed in Figure 62 and Figure 63 show the altitude vs. time graphs for each of the 

two flights. The x-axis represents the time and the y-axis is the altitude.  

 

Figure 62: Altitude for Initial Flight Vehicle "wicked awesome" flight 1 

 

Figure 63: Altitude for Initial Flight Vehicle "wicked awesome" flight 2 
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 From the flight summary, it was determined that the time to the 500 ft apogee was 5.52 seconds. 

Unfortunately, the flight computer stopped recording after this point, and all descent data was lost. This 

was due to the battery being disconnected by heavy forces during launch and parachute deployment. 

 For the second flight the entire flight was recorded.  The flight lasted a total of 58 seconds and 

reached a maximum altitude of 2799.6 ft.  This flight was successful in achieving the goal of designing 

and building a rocket that could obtain an altitude of 1500ft.   

Both Figure 64 and Figure 65 display the graphs of the acceleration during the rocket‟s flight.  

Again the x-axis displays the total flight time and the y-axis is the acceleration in ft/s2.  The first flight 

had a consistent acceleration, but the second flight was erratic.  Overall, these graphs are useful to 

determine the overall acceleration throughout the flight of the rocket. 

 

 

Figure 64: Acceleration Graph of "wicked awesome" flight 1. 
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For the first flight of “wicked sweet”, the parachute was deployed using ballistic ejection because 

the flight computer did not work.  To understand the problem, the computer was tested in the lab after the 

flight.  The testing was completed by running the flight computer through a diagnostic using the 

prescribed procedure in the manual.  It was then set up for the next launch.  

 In the second launch the computer again did not work properly.  Therefore, the decision was 

made to not use that computer for the final flight vehicle. With more testing in the lab, it might have been 

possible to debug the problems.   Only one flight computer is needed for the final flight vehicle, the one 

that was successful both times was selected for use.  The initial testing successfully allowed the team to 

determine which flight computer would be more suitable for the final flight vehicle. 

Flying the initial rockets also provided an opportunity for the team to learn how to interpret the 

data gained from the MC2 flight computer that will be used on the final flight vehicle.  The initial flight 

vehicles proved that an altitude of 1500ft can be obtained while remaining under the total impulse limit.  

The team successfully learned how to design, build, and launch a high power model rocket.   

4.2 Aerodynamics 

 
This details the results found from the CFD analysis, MATLAB modeling of equations, wind 

tunnel testing and the flight capable data acquisition system. 

4.2.1 2D CFD Analysis 

 Utilizing FLUENT, 2D analysis was performed on the leading edge and trailing edge of the 

rocket fins to determine whether one design fin would be better than another. A parabolic leading edge 

 

Figure 65: Acceleration Graph of "wicked awesome" flight 2. 
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with a square trailing edge fin and a fin with parabolic leading and trailing edges was chosen. After 

meshing the 2D objects in Gambit with around 860,000 flow nodes, the objects were imported into the 2D 

FLUENT software. The velocity of flow over the fin was determined to be about 224 m/s or 500mph 

from the estimated rocket velocity on the final test vehicle. When choosing conditions of the flow air was 

chosen as the fluid with the properties of sea level and standard temperature. After running FLUENT for 

150 iterations, for both the parabolic leading edge (LE) fin and the parabolic leading edge trailing edge 

(LETE) fin, there was a clear distinction between the two fin designs. 

 Observing the contour plot of static pressures for the two designs shows a clear difference. A 

static pressure plot shows the pressure at a given point in the flow, which is useful when determining 

pressure build up on an object. The static pressure on the LETE fin is slightly higher in value than that of 

the LE fin. Figure 67 shows that the pressure build up is off the fin itself. Figure 66 shows that the on the 

LE fin there is significant build up on the upper front parabolic leading edge. The pressure build up is also 

fully detached on the LETE fin where as on the LE fin the pressure is built up on the surface of the fin 

producing pressure moments on the fin. 

 

Figure 66: Static Pressure LE 
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In Figures Figure 68 and Figure 69 the dynamic pressure is shown for the two designs. It can be 

seen that there is significant surface pressure build up on the LE fin verses a much more unaffected LETE 

fin. Dynamic pressure was investigated because it is closely related to the kinetic energy of fluid particles. 

The dynamic pressure contours of the LETE, show higher pressure contours before and after the fin. This 

can contribute to a more turbulent flow over the fin. This result was not expected in initial analysis. Still 

the LE fin is more directly affected by pressure than the LETE fin. 

 

Figure 67: Static Pressure LETE 
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Figure 68: Dynamic Pressure LE 

 

Figure 69: Dynamic Pressure LETE 
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 In the case of stream function contours, laminar flow over the LE fin and turbulent flow before 

and after the LETE fin was seen. This contributed to an unstable fin when parabolic shaping for the 

leading edge and trailing edge was used. The LETE fin-can lead to turbulent flow due to the fluid trying 

to reach equilibrium. The fluid must flow over two parabolic shapes that return to the same point in the 

flow behind the fin this causes flow instability.  

 

 

 

Figure 70: Stream Function LE 
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The contours of velocity magnitude show an unexpected result. It appears that the velocity over 

the LETE fin is nearly twice as fast as the LE fin. Figure 72 shows a more symmetric velocity magnitude 

over the fin where as the LETE fin shows a slight unbalanced velocity magnitude. The contours in Figure 

73 show leading and trailing velocity swirls for the LETE fin. 

 

Figure 71: Stream Function LETE 
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Figure 72: Velocity Magnitude LE 

 

Figure 73: Velocity Magnitude LETE 



95 
 

 From the vorticity magnitude contours found in figures Figure 74 and Figure 75, it was 

determined that the trailing edge of the vorticities on the LETE fin was significantly less than that of the 

LE fin. Vortices on the leading edge of the LETE fin were significantly less that the leading edge on the 

LE fin. Vorticites on the LE may be due to fluid shear stress. These contours were not surprising due to 

the more stream line nature of the LETE fin. 

  

 

 

Figure 74: Vorticity Magnitude LE 
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The implementation of 3D CFD analysis of fin geometries led to no useful conclusions. The fin 

thickness is small in comparison to the velocity flow field that it produces laminar 3D flow. There are no 

substantial changes in the analysis utilizing 3D flow rather than the already shown 2D flow contours.  

With these laminar flows produced by FLUENT and with all the fins having very similar surface 

geometries, the conclusion that we can draw from 3D flow analysis is very insubstantial and very 

inconclusive for the fins. 

4.2.2 Mathematical Modeling of Fin Flutter 

 
 The equations used in MATLAB, yielded a flutter velocity higher than FinSim. The error of the 

results of these programs is unknown because flutter velocity was not empirically tested. 

 Obtaining the natural frequency of particular fin geometries proved to be too difficult to model in 

MATLAB. Because of the credibility of the FinSim program, it was deduced that the values computed 

were acceptable. 

 
 
 

 

Figure 75: Vorticity Magnitude LETE 
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4.2.3 Wind Tunnel Testing 

 
Wind tunnel testing was completed on two different fin materials.  The first material used was 

0.25 inches plywood; this was used because it was readily available and inexpensive.  Also the plywood 

could easily be cut to the correct geometry using a band saw.  The second material was 0.063 inches G-10 

composite fiberglass sheet.  This material was laser cut to the correct geometry by an outside source.  It 

was used because it is a common fin material and because the size would easily flutter within the 

maximum wind tunnel velocity.  The conversion of hertz to airspeed was found by assuming a linear 

distribution with a maximum wind tunnel speed of 120 miles per hour divided into 60 hertz with a 

resolution of 1 hertz.  The following sections detail the results of different fin materials that were tested. 

4.2.3.1 Testing of Wood Fins  

 
 The initial results from FinSim suggested the wood fins would flutter within the range of the wind 

tunnel velocity.  Of the five fin geometries, the first to be tested was the square fin; strain gauges were 

attached in the optimal place determined by stress analysis preformed using ProE Mechanica.  Figure 76 

shows where the major stresses occurred on the rocket fin. The strain gauges were initially attached 

horizontally, so that strain gauge was in line with the fin tab and parallel to the flow long the z-axis.   
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Table 5 through Table 14 display the testing set up information for each of the five plywood fins.  

The tables provide the wind tunnel speed and temperature in addition to the excitation and gain of the 

amplifier.  Also the geometry and where the strain gauge was located are listed as a heading above the 

table. 

 

 
Figure 76: Stress analysis results displaying stresses on clipped delta rocket fin 
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Square Fin 

 

Test 1 (using strain gauge on trailing edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 77 F 1.4 V 400 

60 Hz 83 F 1.4 V 400 
Table 5: Square Fin, Test 1 

 
Test 2 (using strain gauge on leading edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 62 F 1.7 V 400 

60 Hz 71 F 1.4 V 300 
Table 6: Square Fin, Test 2 

 
Swept  Fin 

 

Test 1 (using strain gauge on trailing edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 1.4 V 300 

60 Hz 70 F 1 V 300 
Table 7: Swept Fin, Test 1 

 
Test 2 (using strain gauge on leading edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 64 F 1 V 300 

60 Hz 71 F 1 V 250 
Table 8: Swept Fin, Test 2 

 
Clipped Delta 

 

Test 1 (using strain gauge on trailing edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 1.4 V 170 

57.4 Hz 69 F  1.4 V 250 
Table 9: Clipped Delta Fin, Test 1 

 
Test 2 (using strain gauge on leading edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 1 V 250 

57.4 Hz 71 F 1 V 200 
Table 10: Clipped Delta Fin, Test2 
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Following data collection, the data was put into MATLAB using a discrete fast Fourier transform 

(FFT) was performed to see how accurately the theoretical predictions matched the experimental results.  

 

Tapered Swept Fin 

 

Test 1 (using strain gauge on trailing edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 1.4 V 300 

60 Hz 71 F 2 V 400 
Table 11: Tapered Swept Fin, Test 1 

 
Test 2 (using strain gauge on leading edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 64 F 2 V  400 

60 Hz 70 F  2 V 400 
Table 12: Tapered Swept Fin, Test 2 

 
Trapezoid 

 

Test 1 (using strain gauge on trailing edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 1 V 300 

60 Hz 71 F 1 V 400 
Table 13: Trapezoid Fin, Test 1 

 
Test 2 (using strain gauge leading edge) 
Wind Tunnel Speed Temperature Excitation Gain 

32 Hz 63 F 2.7 V 400 

60 Hz 72 F 1.4 V 300 
Table 14: Trapezoid Fin, Test 2 

 

Figure 77:  FFT of the Clipped Delta fin with Horizontal Strain Gauges 
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From this graph no information can truly be determined because there is too much noise to be 

filtered out.  The first change made to the test procedure was to attach the strain gauges vertically in the 

hopes that the flutter might be better recorded.   

 

4.2.3.2 Bar Test 

 
 Because of the inaccuracy of the test results on the plywood fins, it was deduced that there could 

be a problem with the data acquisition system. A test using a speaker driven by a signal generator was 

designated to test this hypothesis.  

 A speaker with a frequency range of zero to two thousand hertz was placed under a thin 

aluminum cantilevered bar. Connected to this bar was a strain gauge with two different orientations, one 

placed vertically and the other horizontally. This was to test if there was any difference in the results due 

to the orientation of the strain gauge. A signal generator was then connected to the speaker and adjusted 

to drive the speaker at approximately ten hertz.  The speaker was arranged such that the bar was in contact 

with the speaker and driven physically. This was then wired the same as the typical setup with the fins 

through the Wheatstone bridge, and then to the LabVIEW system that was recording the data. It was 

easily determined that noise was still a severe problem. However, because of the strength of the driven 

signal, confirmation of the operation of the system was still obtainable.  

 

 

 

 

 

 

 

Figure 78: Clipped Delta Fin with Vertical Strain Gauges 
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Figure 79 shows the results of the test with horizontal strain gauge placement. When a Fourier 

transform was performed on the data, there was a spike on the graph of the transform at 12Hz.  

 Although the speaker was driven at what was thought to be 10Hz, it was concluded that this was 

reasonable considering the possibility of the signal generator not being precise. 

 

 

Figure 80 shows results of the experiment done with a vertically orientated strain gauge. It was 

noticed that less noise was seen with the vertically oriented strain gauge than the horizontally oriented 

strain gauge.  

This experiment verified the functionality of the data acquisition system, and confirmed that the 

LabVIEW setup was operational. It also showed that placing the strain gauges vertically on the fin-can 

return a clearer signal, and henceforth may reduce some of the noise in the signal.  

 

 

Figure 79: Aluminum bar test Fourier transform results with horizontal strain gauge placement. 

Figure 80: Aluminum bar test Fourier transform results with vertical strain gauge placement. 
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4.2.3.3  G-10 Fins 

 

 It was determined that the next material to be tested was G-10 fiberglass. Due to the cost of 

purchasing pre-cut fins, only three of the five fin geometries were ordered. The geometries acquired were 

the square, clipped delta, and tapered swept fin designs.  The trapezoid and swept fins were not purchased 

because they were the largest of the five fins making them the most expensive.  The strain gauges were 

attached vertically for optimal data collection.  

Figure 81 shows a graph of the Fourier transform obtained from the data on first run.  In this 

graph one can see that there is no peak at 7 Hz, or anywhere nearby, and therefore, there was an 

additional problem with the setup. It was found that there was a problem with the signal amplifier being 

used.  A new amplifier was implemented and another test was performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 81: Fourier transform of G-10 fiberglass fin, tapered swept geometry at 25Hz  
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Figure 82 shows the results of the test run with the new amplifier. The test was performed with 

vertical placement of the strain gauges. The wind tunnel was adjusted to 25Hz and the data was collected 

from both the leading and the trailing edge of the fin. The Fourier transform shows a peak at 7.425Hz on 

both the leading edge and the trailing edge, which is only a 0.525Hz difference with the results that were 

received from FinSim. From this test we can see about a 7.6% error. Following this additional tests were 

ran on the remaining fins to obtain their natural frequency. 

Figure 83 yields the Fourier transforms on the G-10 square fin. Like all of the fins, the strain 

gauges were placed vertically, and tests were performed on the leading and trailing edges.  

 
Figure 82: G-10 fiberglass fins Fourier transform results for the tapered swept fin with the wind tunnel at 25Hz 
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For this test the wind tunnel was run at 31Hz in order to obtain flutter. The natural frequency was 

found to be 7.993 for the leading edge and 8.035 for the trailing edge. FinSim calculated the frequency of 

this geometry to be 6.9Hz also, or a difference of 16 %. 

 

 

 
Figure 83: G-10 fiberglass square fin with vertical strain gauge orientation ran at 31Hz 
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Figure 84 shows the final fin which was tested, the clipped delta fin. The trailing edge strain 

gauge was non-functional, so no data was collected from this edge.  In analyzing the Fourier transform 

performed on the fin, with wind tunnel speeds of 31Hz, no natural frequency was collected for this 

particular geometry.  It is possible that the critical velocity required to generate this frequency was not 

attained. FinSim calculations indicated the natural frequency of this geometry to be 7.5Hz.  Table 15 

shows each fin geometry which was tested and their corresponding frequencies from both FinSim and the 

wind tunnel. 

 

 

 

 

 

 

 

 
 

Table 15: Fin Geometry and corresponding frequency results from FinSim and wind tunnel testing. 

  

4.2.4 Data Acquisition System 

 
The FCDAQ was tested in the laboratory to guarantee its functionality as well as to compare the 

acquired data with the fast Fourier transform obtained in LabVIEW.  Due to time constraints only a 

calibration could be run on the FCDAQ hardware, and the LabVIEW program verified its data output. 

In order to test the hardware, an easy system was devised by recycling premade components. The 

oversized clipped delta fin was converted to a cantilevered beam. One of the two half Wheatstone bridge 

 

Fin Geometry Frequency 

(FinSim) Hz 

Frequency 

(Empirical) 

Hz 

Tapered Swept 6.9 7.425 

Square 6.9 8.035 

Clipped Delta 7.5 --unobtainable 

Figure 84: G-10 Fiberglass; Clipped Delta fin geometry Fourier transform results. Wind tunnel speed of 

31 Hz. 
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configurations was soldiered to the mating connector of the FCDAQ‟s inputs. This allowed an easy test 

configuration so that each port of the FCDAQ could be tested individually.  

The fin was then connected to the FCDAQ and the input that was selected.  Following this the 

Wheatstone bridge had to be balanced. This was accomplished by turning the corresponding 

potentiometer input to “zero out” the now connected bridge.  Refer to  for the component layout.  The 

gain was then set by turning the corresponding “Gain Adjustment Pot”  

With this done the FCDAQ was then triggered on by pushing the “Get Data” button. The fin was 

then plucked and allowed to oscillate for approximately 35 seconds. The fin was plucked a second time in 

the opposite direction and allowed to oscillate once more.  
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This data was then stored in the FCDAQ onboard memory. When the memory becomes full the 

FCDAQ LED indicator will blink red. The unit was powered off, the Wheatstone bridge disassembled 

and the RS232 connector attached.  A computer using HyperTerminal was next connected and the correct 

“COM” port configured for 19200 baud, no parity, 1 stop bit, and no hardware control.  The “capture 

text” command was then activated on HyperTerminal.  Once this was double checked the “Upload Data” 

button was pushed and the data began its download onto the computer hard drive. 

 

  
Figure 85: Component Layout 
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Figure 86 is a picture of the data being uploaded from all 6 inputs. The only channel with stored 

information will be channel 1 located in the first column of data.  This data is then output in the form of a 

text file (.txt) but is formatted for a comma separated values (.csv) file. The file extension is then changed 

and the data imported into LabVIEW.  Because this data is a critically dampened oscillation, no fast 

Fourier transform is valid.  The results are plotted and compared with the calibration test of the data 

acquisition system used in the wind tunnel.  

The recorded signal is very well defined; however, there are some issues in the collection process. 

The strait lines that are out of place could be caused by several factors, the first being noisy operational 

amplifiers. Since there are no filter capacitors currently attached, a .1 microfarad capacitor could be added 

to each amplifier.  Another possible solution is to change the test setup to accurately depict the fin flutter. 

Since the fin is very thin and is a set up as a cantilevered beam, gravity constantly pulls it down. If the fin 

is placed vertically it will factor out any noise or offsets due to the orientation. It is also important to note 

that the noise is only found on the upward side of the fins oscillation. Finally a RS232 port analyzer or a 

precision oscilloscope could be set up to measure the exact time between output pulses of the FCDAQ 

communication with HyperTerminal. This data can then be verified using MPLAB and by checking the 

stored binary number. This would eliminate any chances of data mismatch between the collection and 

receiving process.  The first issue with the FCDAQ that must be resolved before it is ready for operation 

  
Figure 86: Hyperterminal Download 
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pertains to getting a clean signal. Once this is solved the FCDAQ must be properly configured to analyze 

the data by adjusting the bridge and gain potentiometers. A lithium polymer or nickel cadmium battery 

pack could also be configured to extend the battery life. More test points could also be added to make 

calibrating easier.  The program could be updated and more sensors could be added to allow the unit to 

also control the firing of the ejection charge and recording altimeter data. 

 

4.3 Hybrid Rocket Propulsion 

4.3.1 Testing Results 

A summary of the hybrid rocket motor testing performed is shown in Table 16. The testing 

information shows that at least thirty ignition attempts were performed; however, the complete number is 

probably much higher, as earlier test failures were not recorded. Each full test number represents a clearly 

successful ignition and burn. For later testing, an additional letter was added to signify which ignition 

attempt in each test number it was; for example, 13A was the first paraffin test, followed by 13B, and so 

on. After 13K, a successful test, the numbers increase to 14, giving the next test as 14A. 

 

Our first successful motor tests were named tests 7 and 8, and were done in mid-November. At the 

time of these tests, most of the DAQ, sensor network, and computer control systems were in not in their 

final state, thus a very limited amount of data was recorded.  Because of this, the data which was recorded 

was limited to force and line pressure. The line pressure produced little useful data to show, and thus was 

excluded from Figure 87.  The data acquisition system and LabVIEW code were also incomplete versions 

during these tests, and only recorded approximately 600 samples/sec. 

Test Number Fuel Specified Burn Time Notes 

7 PVC 5 seconds First burn 

8 PVC 5 seconds  

9 PVC 5 seconds Data not recorded 

10 PVC 10 seconds Data not recorded 

11 PVC 1 second  

12 PVC 8 seconds Force data not recorded due to mechanical issues 

13A-J Paraffin 3 seconds Ignition not sustained. 

13K Paraffin 3 seconds First successful paraffin test. Short duration. 

14A Paraffin 3 seconds Ignition not sustained. 

14B Paraffin 3 seconds Second successful test. Short duration. 

15A-15F Paraffin 3 seconds Ignition not sustained. 

15G Paraffin 3 seconds Successful burn, full duration 

16A-I Paraffin 3 seconds Ignition not sustained. 

Table 16: Hybrid Motor Testing overview 
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 For tests 7 and 8 the solenoid opened at approximately 0.6 seconds after ignition, as determined 

by a short-duration line pressure drop. A short duration thrust spike is visible from the ignition of 

augmentation, a small piece of ammonium perchlorate propellant (APCP). The thrust drops off 

temporarily while the motor ignites and the combustion chamber achieves operating pressure, then returns 

to near design levels for six to seven seconds. The test was intended as a five second burn, however, and 

the slightly increased duration of the entirety of the test lead to concerns that the computer controller was 

inaccurate. However, after some additional testing of the timing, this inconsistency was attributed to 

mechanical delays and some lingering nitrous in the line between the solenoid and the motor. 

  

Information about the timing of when the solenoid opened and closed was found based upon 

changes in the line pressure; while the solenoid's operation was computer-controlled, there was initially 

no other way to see the solenoid's opening and closing. However, this allowed us to examine some of the 

timing, and it was obtained so that fine tuning for the ignition and flow could be achieved. 

 For both tests, the overall magnitude of the thrust curves matched the specifications for the 

expected motor thrust. The thrust in Test 8 experienced a momentary drop for 0.75 seconds to around half 

the rated thrust.  On the film footage, this corresponded to a short duration of reduced activity from the 

motor. This was the first view of combustion instabilities that would become significant issues during 

later paraffin motor testing. 

 

Test 8 - PVC Grain, 5s Burn
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Figure 87: Test 8, 12N PVC Grain, 5s burn 
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 Due to recording errors, the information from Tests 9 and 10 were not recorded to file. This 

included the first usage of a pressure tap into the chamber to record pressure, as well as longer duration 

burns up to 10 seconds. 

Test 11 was a short duration one second burn, which tested the motor‟s short-term operational 

characteristics.  This was also the first test of the new LabVIEW code sampling program at 10 kHz across 

three channels. The motor never came up to the proper thrust levels due to the duration of the burn, but 

was still an excellent operational test of the motor and the new data recording system. 

For Test 12 an 8 second burn time was selected to obtain additional data on the motor operation. 

The data for this test is shown in Figure 89. Unfortunately, while the test was a success, no force data was 

recorded as the test stand did not press against the load cell. After this test, the team decided to 

reconstruct the test stand in order to solve this issue and prevent any further loss of data. Another issue 

revealed in this test is the occurrence of a combustion pressure anomaly at approximately two seconds in, 

where chamber pressure dropped significantly (nearly 100 kPa) briefly before rising back to normal. 

 

 

 

Test 11 - PVC Grain, 1s Burn
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Figure 88:  Test 11, 12N PVC Grain, 1s burn 
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Test 12 also signified the end of 12 N PVC grain testing, with Test 13 as the beginning of the 

50N paraffin motor testing. In this series of testing, combustion irregularities became an issue, with only a 

10-15% success rate over all ignition attempts.  Any successful burns lasted a short duration compared to 

their planned burn times. 

Test 13K was the first success of the paraffin hybrid, following flame holding or kicked igniter 

issues on tests 13A-13J. The motor only sustained stable combustion for 0.5 seconds. After this phase, the 

motor produced repeated momentary combustion. Shortly thereafter, the burning completely subsided. 

The data shown in Figure 90 clearly shows the burn becoming unstable as chamber pressure 

drops, past about 1.2 seconds into the test. What is unclear is whether the pressure drop was caused by the 

oscillations, or the oscillations caused the pressure drop. Considering the motor was operating smoothly 

at much lower pressure values earlier in the burn, it would seem the burning instabilities lead to the drop 

in pressure.  

 

 

 

 

Figure 89: Test 12, 12N PVC grain, 8s burn 
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Test 13 K - Paraffin fuel, 3s Burn
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Figure 90: Test 13K, 50N Paraffin motor, 3s burn 

Test 14 B - Paraffin Fuel, 3s Burn
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Figure 91: Test 14B, 50N Paraffin, 3s burn 
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While the motor operated inconsistently for much of the burn, the period of time during which the 

motor operated smoothly provided some interesting information about performance characteristics. The 

motor operated at only 30N, compared to its rated thrust of 50N; the chamber pressure was also 

significantly under planned values. 

 

 

 Test 14B, the next successful paraffin test, repeated many of the same general characteristics as 

the earlier 13K test. The motor had a short stable burn period before becoming unsteady and shutting off 

early. This time the stable burn period lasted only two tenths of a second before subsiding completely. 

The significant force spikes lasted for a significantly shorter time as well, and the motor‟s entire period of 

operation ended in under a second. Key motor characteristics were significantly under design 

specifications, but still consistent with test 13K.  

 A picture of Test 14B is shown in Figure 92. This photo of the motor was taken near the middle 

of the test. The large bulge near the end of the plume is thought to be evidence of fuel rich combustion. 

This further suggested that the nitrous oxide was not completely decomposed. Also noteworthy are  the 

well formed Mach diamonds in the supersonic exhaust flow.   

 Figure 93 shows the exhaust plume of a test where the motor performed for only a short period 

of time, under 0.125 second. This test was regarded as a failure due to the extremely short duration. 

Test 15G, shown in Figure 94, was the last successful motor firing performed, and the most 

successful paraffin motor test. The motor was able to maintain stable combustion for nearly two seconds, 

producing an average thrust of 35N and an average chamber pressure of 900 KPa. The grain did not burn 

out completely, but did regress significantly during the test. Similar to the other paraffin tests, the motor 

went through a brief period of unsteady combustion near the end of its operation. The burn in this test was 

significantly smoother compared to the other successful tests.  

 

 
Figure 92: Exhaust Plume From 50N Paraffin Motor with 4 Port Injector, Test 14b 
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 Data analysis for the motors was done mainly in Excel, due to its ease of usage. The data is 

output from LabVIEW as a .csv (comma separated values) file that Excel can open. The data went 

through several overall structures throughout the project, and most of these had to be analyzed 

individually. 

 

Figure 93: Just after ignition of test 15 c, which failed to continue to burn 

 
 

 

 

 

Test 15 G - Paraffin Motor, 3s burn
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Figure 94: Test 15G, 50N Paraffin motor, 3s burn 
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 The original data structure contained a time column and the three data lines: Pressure 1 

(chamber), Pressure 2 (line), and Force, along with a header label. No additional information was placed 

into the sheet, and the data was not converted using any calibration information. The second version was 

able to convert the data from volts to whatever units were specified and wrote a basic header containing 

labels, time between samples, and start time. The final LabVIEW version wrote the entirety of the motor 

settings to a header, converted all data from voltage information, and included Boolean data on when the 

ignition and flow had been triggered. Each was different, and thus had to be analyzed differently, 

depending on when the data was taken. 

 

4.3.2 CFD Results and Analysis 

 
The main purpose of creating the CFD models of the four-port and single port injector was to see 

how effectively each injector could disturb the boundary layers which form at the surface of the fuel grain 

inside the combustion chamber.   

 In order to analyze the disruption of boundary layers in each model, two factors were chosen to 

base the analysis upon.  These were vorticity and turbulence at the fuel grain surface.  As defined by 

Robert Fox, “The vorticity is a measure of the rotation of a fluid element as it moves in the flow field.” 

[22] These rotations help to interrupt the formation of the boundary layer by mixing oxidizer from the 

main flow as well as facilitating the transfer of any heat formed from combustion.  The second factor 

which will be studied is turbulence.  A turbulent flow can be defined as a flow “…in which the fluid 

particles rapidly mix as they move along due to random three-dimensional velocity fluctuations.” [22] In 

FLUENT, turbulence intensity is defined as “… the ratio of the root-mean-square of the velocity 

fluctuations to the mean flow velocity.”[26] This causes turbulence to be displayed as a percentage.  

Creating a turbulent flow in a boundary layer is desirable because it also improves the mixing of pure 

oxidizer with the fuel grain surface as well as to facilitate heat transfer. 

 After the factors to investigate were decided upon, the next task was using FLUENT to display 

the appropriate contours.  Contours of vorticity for each injector can be seen in Figure 95 and Figure 96.  

Any dark spaces appearing in the contours represent values out of the range investigated.  By limiting the 

range one can get a better representation of the vorticity near the boundary layers. 
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From these two figures, it can be seen that larger vorticities exists in the four-port injector than in 

the single port.  Small vortices form at the grain surface of the single port injector at a magnitude of 

approximately 6sec-1.  Almost no vortices form in the main velocity stream, which would hinder fuel 

 
Figure 95: Contours of Vorticity for Single Port Injector 

 
Figure 96: Contours of Vorticity for Four-Port Injector 
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mixing and heat transfer.  When looking at the four-port injector it can be seen that vorticity magnitude at 

the fuel grain surface is around 15-20 sec-1, or almost three times as large when compared to the single 

port.  Vortices also exist in the main oxidizer flow stream which will help to increase the fuel mixing and 

heat transfer in this case. 

 The next factor used in the analysis of these two injectors was turbulence.  As explained earlier, 

turbulence is a measure of how chaotic a flow is.  The higher the turbulence, the greater the heat transfer 

rate and fuel mixing rate at the fuel grain surface.  Contours of turbulence for both injectors can be seen in 

Figure 97 and Figure 98. In these figures, the injector is in the same location (right boundary with flow 

from right to left) as in the previous figures. 

 

 
Figure 97: Turbulent Intensity in Single Port Injector 
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Based on the turbulent intensity contours, these two figures show that the four-port injector out-

performs the single port with respect to enhanced mixing.  At the surface of the grain the single port 

injector model shows a turbulent intensity of around 700 %.  The four port injector model registers up to 

around 2500% percent turbulent intensity at some points near the surface of the grain.  Comparing these 

results, one sees that the four-port injector can achieve turbulent intensities approximately four times that 

of a single port injector. 

5 Conclusions 
 

This project satisfied the goals initially set.  The following section details the conclusions from 

satisfying those goals. 

5.1 Initial Test Vehicle 

 
There were two main purposes in building the initial test vehicles.  The first was to have a platform 

to test the flight computers and make sure that they were still operational and functioning correctly.  The 

second purpose was to give everyone in the MQP group the experiences of building and flying at least 1 

high powered rocket.  This would expand their knowledge of model rockets in general and help determine 

 
Figure 98: Turbulent Intensity in four-port Injector 
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desired characteristics for the final flight vehicle. The first goal was met because it was determined that 

one of the flight computers was deemed non-functional.  The second computer did work though, and 

recorded all the necessary data that would be required in the final launch vehicle.  The second goal was 

met in the fact that every member of the MQP group participated in building one of the two initial launch 

vehicles.  Every member of the group should now have at least a basic idea of how to construct and 

launch a high powered rocket. 

 

5.2 Aerodynamics 
 

 No valuable information on fin flutter was gained from testing the wood fins because the wind 

tunnel did not achieve the speeds required for the fins to flutter.  No flutter frequency was recorded in 

LabVIEW or MATLAB.  Once this was determined, testing of the data acquisition system was performed 

to verify that the setup was working as designed. Using the bar test as described in Section 4.2.3.2, the 

DAQ was tested to ensure proper operation. 

From testing the G-10 fins, data was obtained. The frequency signal was not strong enough to 

show through in the Fourier transform calculated in MATLAB. Following this a malfunctioning amplifier 

was discovered and replaced.  

With a functional amplifier, testing continued on the G-10 fiberglass fins. Accurate data of the 

natural frequency of the fin geometries were gained. Data was collected from both the leading and trailing 

edges of the fin and Fourier transforms were performed on each of these trials. In using this experimental 

data to cross with the FinSim results, a discrepancy of 11.5% was found. The first geometry tested, the 

tapered swept fin, showed a small error of only 7%.  The square fin had a higher error of 16%. No data of 

the third fin geometry, the clipped delta, was attained because flutter was not achieved in the wind tunnel. 

 

5.3 Hybrid Rocket Propulsion 

5.3.1 Ignition Delay and Chamber Design 

Due to problems in producing consistent results with the 10lb paraffin motor, additional research 

needs to be performed to obtain a better understanding of how injector design affects performance 

characteristics.  During testing it was found that when using the four port injector design, the vaporization 

delay of the nitrous oxide was reduced.  To help solve the problem of stable combustion, two methods 

could be investigated. These suggested methods are shortening the vaporization delay or increasing grain 

length.  Attempting to reduce the vaporization delay would require the addition of more injector ports 
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with smaller holes.  Doing this would prove to be very time consuming due to the machining time 

associated with drilling the small injector ports.  The option of increasing the grain lengths would be the 

next step.  With this increase in grain length, the thrust the motor produces will also increase.  The 

increased grain length could also cause regression rate to be non-uniform.  This would be caused by the 

fuel regression rate being slower at the injector end of the grain. 

Due to the time constraints associated with the project, the team was unable to manufacture the 

25 lb motor that was designed. This motor had a grain length 3.5 inches longer than the grain on the 10 lb 

motor.  With this increase of grain length, the nitrous would have a longer distance to vaporize.  If test 

firing of this motor eventually proves to be successful, different injector designs could be implemented in 

an attempt to see how they affect performance characteristics.  If this design still produced the same 

combustion problems associated with the 10 lb motor, the same process of shortening the vaporization 

delay with the addition of smaller injector ports could be used.  If problems still persisted, changing the 

grain length would once again be the next option.  

5.3.2 Injector Flow Modeling  

 
Using the factors that were discussed in Section 4.3.2, it is clear that the four port injector 

outperforms the single port injector with respect to improved propellant mixing.  More specifically, the 

four port injector should produce a higher regression rate of the fuel grain and more stable combustion.  

This conclusion is drawn from comparative analysis between the two injectors.  The data found cannot be 

used as definitive due to the fact that this flow was modeled as a “Cold Flow” in that no combustion was 

modeled, however it can reveal typical flow patterns for both injector types. 

5.3.3 Motor Operation 

 
From an operational standpoint the test system worked as designed.  The main reasons for failure in 

most of the tests were due to either some sort of human error, or the use of improper timing in the flow 

and igniter steps.  Some of the human error included not properly configuring the control system, crossing 

wires in the operation box, and improper igniter creation.  The timing configuration of the tests were one 

of the main factors that were constantly changed.  The use of a pre-burn time, where the igniter was fired 

before the oxidizer valves were open, was used in some instances and a pre-flow time delay was used in 

others.  Besides these slight changes, the test system was successful over the number of tests that were 

required. 
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5.4 Final Test Vehicle 

 
After the design process of the final flight vehicle was completed, the components needed to 

manufacture the rocket were ordered.  Construction of the rocket was in progress until it was halted due to 

time constraints.  Plans to continue construction of the rocket in the future are in place with hopes of 

testing the FCDAQ and to see results of fin flutter.  
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7 Appendices 

7.1 Appendix A: LabVIEW Setup for Fin Flutter 

 
Testing took place in three steps, the first was to setup up the virtual instrumentation, the next 

was to prepare the testing surface, or the fins, and the last step was to calibrate the instrument, run the 

program and store the data.  The virtual instruments for this lab mimicked the function of an 

oscilloscope. 

The next step was to set up the fin. This was done by carefully computing the geometric center of 

the desired shape, lightly sanding the surface and super-gluing a strain gauge to the desired location in 

the proper orientation to achieve the proper bridge.  When this was accomplished the virtual 

instrument was powered on, the calibration procedure followed and data collected and stored for 

future analysis.   

The VI in Figure 99: Sample VI Visualizer has controls to adjust the time base and the voltage 

per division, changing these dials resulted in the change of the resolution of the different signal 

inputs.   This also allowed for each square to have an exact value for time and voltage. When the 

input signal from a strain gauge was measured the change of voltage was seen as a function of time. 

This was the data collected for each fin at different intervals.  

  

 

 

 

Figure 99: Sample VI Visualizer  

© 2008 National Instruments Corporation 
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Figure 100 is a second oscilloscope VI, which left the display length as the time constant this set 

the display to a corresponding constant period of time, which also allowed for a choice of sampling 

rates. With the value of TBD selected, the same measurements were performed using the strain 

gauge. This data was then plotted in a similar fashion as done with the first example VI shown in 

Figure TBD.  

 

 

 

Figure 100 : Oscilloscope, with recording function VI 

© 2008 National Instruments Corporation 
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7.2 Appendix B: Pin out of 18F87J50 PIC microprocessor 
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7.3 Appendix C: Test Procedure Checklist 
 

Hybrid Rocket Motor Test Procedure:       Full Testing Checklist 

 

 PreTest: (to start once on site of testing facility) 

  Weight of Tank before Testing: _______ g; Mass motor:_______g 

 Secure Test stand 

  Place instrumentation cart at safety distance (10 ft) 

  Boot computer and DAQ 

  Connect solenoid controller to relay station 

  Power up relay station 

  Connect Sensors to Sensor power box 

  Connect Power Supply to Sensor power box at 28.00V, 1A 

  Power on Sensor power box 

  Connect Oxidizer flow system lines to motor on test stand 

 Ensure computer and DAQ are working properly by pressing on the load cell and verifying 

load.  

  Inspect the motor for assembly 

   Check all fittings for grease or Teflon 

 Check to verify that o-rings are not visible and the casing is properly installed (If used) 

 Check the torque of the boilerplate connecting bolts (In a radial pattern)to be tight 

using standard wrench. 

  Set up cameras and other visual devices. 

 Set for record and display a sheet of paper with the test number and date at the start. 

  Take pictures of the setup for records.  

Hot fire Testing:  

  Ensure the go ahead for hot fire test from lab manager. 

  Clear the area from any spectators or members not part of the startup procedure.  

  The test area should now be clear of any flammable items or persons. 

  Connect an igniter to the control box leads,  

 Place igniter in rocket motor 

   Make sure head is recessed from head of the injector.  

Date:__________________ 

Test Number:___________ 

 Grain Number:__________ 

Injector Number:_________  

Controller Manager: 

Computer Manager: 

Attendance:  
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   Tape the igniter away from the nozzle.  

  Open the N2O cylinder valve 

 Open the N2O Safety Valve 

  Inspect for leaks. (If leaking sound is heard close tank, empty line and inspect fittings.) 

 Move all away from testing area. (no personnel should be near the motor at this point) 

  Arm the Controller 

 Make a loud announcement that the test of a hybrid rocket motor will be commencing 

monetarily 

  Ensure that the control program as the correct values. 

 Burn time:______ PreFlow time:______   

   Turn the safety key to ON from the control box. 

   Press the start button on the computer controlled ignition.  

  Time of Run test:  ______ 

NOTE: IF YOU NOTICE A PROBLEM OR AN ANOMOLY ON THE DATA, PRESS 

ABORT. DATA WAS COLLECTED AND ANALYSIS CAN STILL TAKE PLACE. 

Post Firing: 

 Close Ball Valve at N2O tank. 

 Run Vent of N2O Delivery Lines. 

 Close valve at N2O tank. 

 Turn off the N2O tank. 

 Wait for hardware to cool.  CAUTION: THE MOTOR IS VERY HOT, KEEP AWAY. 

 Disassemble Test hardware and return to MQP lab. 

 Weight of Tank after Testing: _______ g     Mass motor:________g 
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7.4 Appendix D: Fire Lab Safety Forms  

 
Fire Science Laboratory 
Sign-up and Summary Sheet 

 

 

The goal of this Sign-up and Summary Sheet is to insure all students working in the Fire Science 

Laboratory have reviewed the Standard Operating Procedures, attended a Familiarization Tour and 

reviewed the Safety Guidelines. Also, to insure the student has reviewed either the appropriate Operating 

Procedures or developed an Experimental Plan for non-typical testing and understands all hazards and 

precautions to be taken. 

 

 

Student Name:  _Theo McDonald________________ 

 

 Project Partners Names 

   

 

 

 

Advisor name:  __Prof. Blandino_________________ 

 

Experiment Name and Number: ____________________________________________________ 

 

Hazards Identified:  

  Cold liquefied gas, hot exhaust gas, Possible over pressurization                            .     

 

Precautions to be understood by all involved (Attach experimental plan if non-standard testing):  

_Precautions are included in the testing plan attached. Precautions will be explained by the students and 

lab manager. _________________________________________________________  

 

______________________________________ __________________________ 

Advisor Signature Date 

 

______________________________________ __________________________ 

Cross Check Signature Date 

(must be Professor Nicholas A. Dembsey if advisor is not an FPE Professor.) 

 

 

I have read and will observe the Fire Science Laboratory Safety Guidelines. For non-typical testing, I will 

follow the procedures given in my approved Experimental Plan. I have attended a Fire Science 

Laboratory Familiarization Tour and feel comfortable with my responsibilities in the Fire Science 

Laboratory. I will ask my advisor, the lab staff or the Faculty Coordinator if I am unsure about anything 

in the Fire Science Laboratory. 

 

______________________________________ __________________________ 

Student Signature Date 

Fire Science Laboratory 

Short Form for Short Tests 

 

Buhler, Jared;  Renaud, Patrick 

Yocom, Megan Fleming, Siobhan 

Cummings,Nicholas Coverstone, Troy 

Huleatt, Thomas   
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The purpose of this form is to provide a simple way for students to develop an Experimental Plan for 

short, uncomplicated tests rather than using the Experimental Plan Template. The numbers listed below 

match the steps in How to Develop an Experimental Plan. You should read that first to learn how to 

develop a plan and then use the following format to present it. Short Form in Word Format. 

 

 

 

Background  

 

Reason for doing experiment:  

         This experiment will be a test of Paraffin wax/N2O Hybrid rocket motor combustion. As cost and 

performance seem to be dueling aspects of rocketry, we are studying propulsion system where the fuel 

and oxidizer are inert and are unable to sustain burning unless initiated. Our study will primarily focus on 

the study of new mixing methods between the fuel and oxidizer once the combustion process has started.   

 

Objective  

 

Data/information you trying to obtain:  

Performance of each rocket motor injector type that we design. All the data we are planning to collect will 

come from sensors on our test stand; as such we will not need to use any measuring devices from the Fire 

Science Lab.   

 

Process flow and instrumentation diagram (PID) 

 

Draw your PID:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PID components 

 

List components of PID: __Exhaust hood in back room, MQP provided parts: Blast shield, N2O cylinder, 

Thruster on Test Stand, Blast walls (sandwich of plywood, sand and plywood). 

___________________________________________________________________________ 

 

Safety issues 

 

Attached on following page 
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List materials and chemicals to be used, required use and hazards:  

 

N2O- Liquefied gas, used as oxidizer in test, however at standard air temp this chemical     is not an 

oxidizer. It must be decomposed before it will initiate burning.  

 

Paraffin Wax fuel (with additives) – Non toxic fuel used. Inert in nature, this will not    sustain burning 

when the oxidizer flow is cut.   

  

 MSDS of both will be available at both testing location and storage location 

 

List Protective Personal Equipment to be worn to protect against those hazards:  

  

 Whenever working with the N2O tank, the liquid is extremely cold during evaporation, thus 

gloves must be worn when handling fittings on the N2O cylinder, and eye protection when delivery lines 

are pressurized. 

 

 Full face masks and hearing protection will be used while in the testing room if the motor is 

running, if personnel are not in the room while hot fire testing, hearing protection and eye protection will 

still be worn.   

 

Failure possibilities 

 

List failure possibilities of EACH of the PID components and how you will minimize these: ___Thruster 

Failure: High Safety Factor in design as well as inspection of parts before testing occurs. 

____________________________________________________________________ 

___N2O Delivery System Failure (burst in flow lines): Inspection before use, proper_______ tightening of 

fittings._________________________________________________________ 

 __Safety Devices: (Blast Shield and containment shield) Inspection before use and proper__ placement 

and secure attachment and weight.______________________________________ 

___________________________________________________________________________ 

 

Checklist 

 

Write a checklist which encompasses all your procedures:  Include pre-test, test and post-test activities 

Use additional/separate sheet if needed: 

 _______See attached sheet.____________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

Checklist specifics 

 

Plan to inform others of activities: ___Lab Manager Randy Harris will take this___________      

responsibility_____________________________________________________ __________ 

___________________________________________________________________________ 

 

Number of people needed to run:  ___One for controller and one for data collection________ 

___________________________________________________________________________ 

___________________________________________________________________________ 
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Emergency shutdown  

 

List events that necessitate an immediate shutdown: 

 ____Over pressurization of the combustion chamber, radical or highly progressive thrust___ monitored 

on the testing laptop, breech of combustion chamber         ___________________ 

___________________________________________________________________________ 

& 11.   Apparatus checkout 

 

How will you know if all the components work properly:  

____All components will be inspected and quickly testing for functionality before testing, if this is not 

done so, we could have poor data or a motor failure. ________________________ 

 

Team review 

 

Explain how all team members will know what is going on: __All team members will be___ following 

the checklist as well, to ensure that all sections are followed.__________________  

___________________________________________________________________________ 

 

& 14.  Pre-test and test 

 

Explain how you will know the information obtained is valid (i.e., reasonable or makes sense): 

 ___The data will be collected on our own DAQ and computer, this will be providing live___ results that 

will be easy to tell whether the motor preformed as we expected.______________  

___________________________________________________________________________ 

 

Post-test 

 

List what/how you will clean post-test: 

 __We will return our equipment to our own lab and clean any possible exhaust residue that could be on 

the floor directly under the motor._____________________________________ 
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7.5 Appendix E: FCDAQ Wiring Schematics.  
Analog Schematic: 

 
 



136 
 

Digital Schematic: 
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7.6 Appendix F: FCDAQ Software Coding 
Code written for use of FCDAQ with wind tunnel to simulate flight:  

 
;********************************************************** 

;MQP PROJECT  

;MEASURING THE VIBRATION FREQUENCY AND AMPLITUDE OF FIN WARP ON ROCKET 

;********************************************************** 

; A NON VOLATILE MEMORY CHIP WITH BUILT IN DATA RETENTION BATTERY IS COUPLED 

WITH A 20MHZ  

;MICROCONTROLLER TO ACQUIRE STRAIN DATA FROM TWO PLACES ON EACH OF THE 3 FINS 

;WIND TUNNEL TEST HAVE DETERMINED THE RESONANT FREQUENCY OF THE FINS TO BE 

APROXIMATELY 100HZ 

; THE DATA IS ACQUIRED ON ALL SIX STRAIN QUAGES IN EACH ACQUISITION PASS. 

; THE DATA IS THEN STORED IN SIX PAGES OF MEMORY WITH 65535 DATA POINTS EACH 

;THE SCAN FREQUENCY IS ADJUSTABLE,WITH CONSTANT"ACQDELAY" AND THE ACQUISITION 

IS STARTED WHEN AN ACCELERATION SENSOR IS TRIGGERED BY THE BLASTOFF 

;AN RS232 SERIAL CONNECTION PROVIDES A MEANS TO GET THE DATA INTO A PC, WHERE 

LABVIEW WILL ALLOW HIGH LEVEL ANALISYS OF THE DATA. 

; 

;********************************************************** 

 

 list p=18f452 

 

 ; Include file, change directory if needed 

 include "P18F452.inc" 

;Port A assignments: <---- in   ------> out 

 

;RA0/AN0 <------Analog  strain guage 1 

;RA1/AN1 <------Analog  Strain guage 2  

;RA2/AN2 <------Analog  Strain guage 3  

;RA3/AN3 <------Analog   Strain guage 4  

;RA4/TOCK1 <-------DIN   SERIAL IN   

;RA5/AN4 <------ANALOG  Strain guage 5  

;RA6  ------->DOUT   Memory CE      

;     

;      

      

      

;Port B assignments: <---- in   ------> out 

 

;RBO     -------->DOut  NC 

;RB1      -------->DOut  NC     

;RB2  -------->DOut  NC  

;RB3  -------->DOut  NC   

;RB4  -------->DOut  COUNTER RESET  

;RB5  -------->DOut     COUNTER CLOCK    

;RB6  -------->DOut     PGC PROGRAMMER 

;RB7  -------->DOut  PGD PROGRAMMER 

; 

;Port C assignments: <---- in   ------> out 

;RC0  <------->DOut  Data port 0       

;RC1  <------->DOut  Data port 1       

         

;RC2  <------->DOut  Data port 2      
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;RC3     <------->DOut  Data port 3      

   

;RC4  <------->DOut  Data port 4  

;RC5  <------->DOut  Data port 5  

;RC6  <------->DOut  Data port 6   

;RC7  <------->DOut  Data port 7   

;   

;Port D assignments: 

;RD0 -------->DOut   Address A12 

;RD1 -------->DOut   Address A13 

;RD2 -------->DOut   Address A14 

;RD3 -------->DOut   Address A15  

;RD4 -------->DOut   Address A16 

;RD5 -------->DOut   Address A16 

;RD6 -------->DOut   Address A18 

;RD7 -------->DOut   SERIAL OUT 

;      

;Port E assignments: 

;RE0/AN5 <-------ANALOG  Strain guage 6  

;RE1/AN6 ------->DOut  MEMORY WE 

;RE2/AN7 ------->DOut  MEMORY OE 

 

 

;Variables 

 cblock 0x000 

 FLAG1 

;FLAG1 BIT0 = END OF MEMORY LO= OK HI = END 

;FLAG1 BIT1 =  

;FLAG1 BIT2 =  

;FLAG1 BIT3 =  

;FLAG1 BIT4 =  

;FLAG1 BIT5 =  

;FLAG1 BIT6 =  

;FLAG1 BIT7 = 

ADDINTLO  ;HOLDS LOCAL LOW 8 BITS OF ADDRESS  

ADDINTMID  ;HOLDS LOCAL MID BITS. THE HIGH NIBBLE HOLDS 

A12,A13,A14,A15 FOR EXTERNAL RAM 

ADDPAGE   ;HOLDS CURRENT PAGE BITS OF ADDRESS A16,A17,A18  

DELAYLO   ;LOW REGISTER FOR COUNTER 

DELAYMID  ;MID REGISTER FOR COUNTER 

DELAYHI   ;HIGH REGISTER FOR COUNTER 

STRAIN1RES  ;8 BIT RESULTS STRAINGUAGE1 

STRAIN2RES  ;8 BIT RESULTS STRAINGUAGE2 

STRAIN3RES  ;8 BIT RESULTS STRAINGUAGE3 

STRAIN4RES  ;8 BIT RESULTS STRAINGUAGE4 

STRAIN5RES  ;8 BIT RESULTS STRAINGUAGE5 

STRAIN6RES  ;8 BIT RESULTS STRAINGUAGE6 

TXTCNTR    ;COUNTS BYTE OUTPUT 

Xmit_Byte         ;holds byte to xmit 

Rcv_Byte         ;holds received byte  

Bit_Cntr         ;bit counter for RS232 

Delay_Count         ;delay loop counter 

TEMP1    ;TEMPORARY REGISTER 

FAKEAD    ;COUNTER FOR GENERATING FAKE ANALOG INPUT 

BINDALO 

BINDAHI 

BCD1 
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BCD2 

COUNT 

TMP1 

DIGIT100 

DIGIT10 

DIGITUNITS 

Digit 

READTSTCOUNT 

 endc 

 

 

;*******Text replacements  

 

#DEFINE  WRITEENABLE  PORTE,1   ;WRITE STROBE FOR 

MEMORY 

#DEFINE  CHIPENABLE  PORTA,6   ;CHIP ENABLE FOR 

MEMORY 

#DEFINE  OUTPUTENABLE PORTE,2   ;OUTPUT ENABLE 

FOR MEMORY 

#DEFINE  MCOUNTRESET  PORTB,4   ;RESET FOR CD4040 

COUNTER RESET WHEN HI 

#DEFINE  MCOUNTCLOCK  PORTB,5   ;INCREMENTS 

MEMORY COUNTER ON LOW TRANSITION 

#DEFINE  ADGO   ADCON0,2  ;AD START BIT 

#DEFINE  EOMFLAG   FLAG1,0   ;SIGNALS 

FULL MEMORY 

#DEFINE  INERTIASW  PORTB,0   ;STARTS THE DATA 

ACQUISITION 

#DEFINE  DATADUMPSW  PORTB,1   ;STARTS THE DATA 

SERIAL UPLOAD 

#DEFINE  LED1   PORTB,2   ; 

#DEFINE  LED2   PORTB,3   ; 

#DEFINE  SERIN   PORTA,4 

#DEFINE  SEROUT   PORTD,7 

;************************* CONSTANTS*********************************** 

ADTIMEDELAY  EQU  D'240'  ;DELAYAD 

TIMEDELAY  EQU  D'255'   

MEMDELAY  EQU  D'255' 

CLOCKDELAY  EQU  D'255'  ; counter is up count so 255= 

2.8uS 

         ; 0= 206.8 uS each 

count = .8uS 

ACQDELAY  EQU  D'1'  ;EACH COUNT LESS THAN 255 HERE = 

155 uS 249 = 1.086 MS 1=.0397 SEC 

ANALOGCH0  EQU  B'10000001' 

ANALOGCH1  EQU  B'10001001' 

ANALOGCH2  EQU  B'10010001' 

ANALOGCH3  EQU  B'10011001' 

ANALOGCH4  EQU  B'10100001' 

ANALOGCH5  EQU  B'10101001' 

 

 

 

 

 

 ; Start at the reset vector 

    org  0x000 
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   goto  Main 

 

 

 org  0x020 

INIT 

 call SER_INIT       ;initialise serial port 

 

 clrf porta 

 clrf PORTB  ;Clear ports 

 clrf portc 

 clrf portd 

 movlw b'00011111' 

 MOVWF TRISA 

 MOVLW B'00000011' 

 MOVWF TRISB  ;PORTB all outputs, DATA PORT FOR MEMORY START AS 

OUTPUT 

 MOVLW B'11111111' 

 MOVWF TRISC  ;PORT C ALL INPUTS(MEMORY DATA BUSS) 

 CLRF TRISD  ;CLEAR ADDRESS PORT 

 MOVLW B'00000001' ;PORT E BIT 0 IS ANALOG IN 

 MOVWF TRISE 

 CLRF FLAG1 

 CLRF ADDINTLO 

 CLRF ADDINTLO 

 ;SET UP MEMORY CONTROL LINES TO INIT CONDITION 

 BSF  CHIPENABLE 

 BSF  WRITEENABLE 

 BSF  OUTPUTENABLE 

 CLRF DELAYLO  

 CLRF DELAYMID 

 CLRF DELAYHI 

 CLRF INTCON2  

 BSF  MCOUNTRESET  ;RESETS THE CD4040 COUNTER 

 BSF  MCOUNTCLOCK  ; GETS CLOCH READY TO COUNT 

 BCF  MCOUNTRESET  ;FINISH RESET READY TO COUNT 

 movlw B'10000001' ;Fosc/32, A/D enabled 

 movwf ADCON0 

 movlw B'00001001' ;left justify,6 analog channels 

 movwf ADCON1  ;this places the 8 bit answer into ADRESHI 

 

 movlw B'11000111' ;TMR0 prescaler, 1:256 

 movwf T0CON 

 CLRF ADDINTLO ;CLEAR INTERNAL MEMORY COUNTERS  

 CLRF ADDINTMID 

 MOVLW B'00000110' 

 MOVWF PORTE 

 CLRF FAKEAD 

 

 RETURN 

;********************************************************************* 

;MAIN LOOP OF ACQUISITION 

;****************************************************************************

** 

Main 

  

 call init 
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WAITSTART ;BTFSS INERTIASW  ;CHECK THE INERTIA SWITCH HI=NOT 

MOVING, LOW = ROCKET HAS BLASTED OFF 

   ;GOTO MAINLOOP  ;IF INERTIAL SW IS 

   BTFSS DATADUMPSW 

   GOTO MAINLOOP 

   GOTO WAITSTART  

MAINLOOP BTFSS DATADUMPSW 

   GOTO mainloop 

   CALL  ANALOGIN    ;READ THE 6 STRAIN 

GUAGES AND STORE RESULTS  

   call LIVE_RS232 

   GOTO WAITABIT 

   

   CALL ANALOGOUT    ;SEND THE DATA TO THE 

MEMORY CHIP 

   CALL ADDRESSGENERATOR  ;INCREMENT BASE MEMORY 

ADDRESS TO NEXT 

   BTFSC EOMFLAG     ;CHECK IF MEMORY 

FLAG SHOWS THAT WE HAVE REACHED THE END OF MEMORY   

   GOTO FINISHED    ;FINISHED WITH 

ACQUISITIONJUMP TO BIT SCAN ROUTINE AND JUST WAIT 

           ;WE NEED TO 

SEND THE 4 MS BITS OF THE ADDRESS OUT TO RD0,RD1,RD2,RD3, SO WE MUST  

           ;SWAP THE 

UPPER AND LOWER NIBBLES OF  

           ;THE 

ADDINTMID COUNT, AND CLEAR THE PAGE BITS 

 

  CALL OUTADDHIGH   ;FINISHES THE ADDRESS UPDATE OUTPUT 

 

WAITABIT CALL READWAIT    ;DELAY BETWEEN EACH SCAN OF 

SENSORS. WE WANT TO DELAY ENOUGH SO THAT THE  

           ;WE DONT 

GET MULTIPLE SCANS ON EACH PRESS THIS IS ABOUT 400 mS 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   CALL READWAIT 

   goto MAINLOOP  ;Do it again 

 

 

 

 

 

FINISHED BTG  LED1 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   GOTO FINISHED 

 



142 
 

 

;****************************************************************************

******* 

; DELAYAD ROUTINE #1 

; counter is up count so 255= 2.8uS 

; 0= 206.8 uS each count = .8uS 

;****************************************************************************

******* 

DELAYAD  MOVLW ADTIMEDELAY 

   MOVWF DELAYLO 

LOWCOUNT  

 INCFSZ DELAYLO 

 GOTO LOWCOUNT 

 RETURN 

 

DELAY  MOVLW TIMEDELAY 

   MOVWF DELAYLO 

   GOTO LOWCOUNT 

 

DELAYMEM MOVLW MEMDELAY 

   MOVWF DELAYLO 

   GOTO LOWCOUNT 

 

DELAYADDRESSCLOCK MOVLW CLOCKDELAY 

     MOVWF DELAYLO 

     GOTO LOWCOUNT 

 

;****************************************************************************

******* 

READWAIT  MOVLW ACQDELAY 

    MOVWF DELAYMID 

READLOOP  CALL LOWCOUNT 

    INCFSZ DELAYMID 

    GOTO READLOOP 

    RETURN 

;**************************************************************** 

; 

; EACH PRESS OF THE READ BUTTON WILL ACQUIRE THE SIX STRAIN SIGNALS, AND SEND 

THE RESULTS TO THE TERMINAL 

; 

;****************************************************************** 

LIVE_RS232  MOVF STRAIN1RES,W 

    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

 

    MOVF STRAIN2RES,W 

    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

 

    MOVF STRAIN3RES,W 
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    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

 

    MOVF STRAIN4RES,W 

    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

 

    MOVF STRAIN5RES,W 

    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

 

    MOVF STRAIN6RES,W 

    MOVWF  BINDALO   ;PUT DATA IN 

BINDALO 

    CALL BCDCNV   ;CONVERT TO PACKED BCD 

        

    CALL SENDDATA 

    RETURN 

;****************************************************************************

******* 

; THIS SUBROUTINE GENERATES THE 19 BIT ADDRESS. The first 12 bits of address 

(A0-A11)is generated by the cd4040 ripple counter.  

;A12,A13,A14,A15 ARE GENERATED IN SOFTWARE COUNTER ADDINTMID 

;ADDINTLO+ ADDINTMID HOLDS A COPY OF WHERE THE CD4040 COUNTER SHOULD BE 

;ADDINTMID HOLDS THE REST OF THE 12 BIT CD4040 COUNT, AS WELL AS THE LAST 4 

BITS OF ACTUAL ADDRESS WHICH WILL BE SENT TO 

;PORT C BIT 0,1,2,3.  

;****************************************************************************

******* 

ADDRESSGENERATOR  

  BCF  MCOUNTCLOCK  ;increments the external counter 

  CALL DELAYADDRESSCLOCK 

  BSF  MCOUNTCLOCK  ;FINISH PULSE GET READY FOR NEXT 

COUNT 

 

  INCFSZ ADDINTLO ; Increment internal address TO MATCH 

EXTERNAL 

  RETURN    ;COUNTER DID NOT ROLL OVER 

     INCFSZ ADDINTMID ;INCREMENT MID COUNTER 

  RETURN 

  BSF  EOMFLAG  ;SET END OF MEMORY FLAG 

 

 RETURN 

  

;****************************************************************************

******* 

;READDATA DUMP WILL GENERATE THE REQUIRED ADDRESS TO READ THE DATA BACK. 

;IT WILL READ EACH FULL PAGE THEN MOVE TO THE NEXT 
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;ONCE THE ADDRESS IS VALID, THE DATA WILL BE ON PORT D  NO OTHER CONTROLL 

SIGNALS NEED TO BE CHANGED 

;SINCE THE OUTPUT WILL REMAIN ACTIVE 

;****************************************************************************

******* 

READDATADUMP 

 MOVLW B'11111111' 

 MOVWF TRISC   ;SET UP PORT C AS INPUT 

 BCF  CHIPENABLE  ;CHIP IS SELECTED 

 BSF  WRITEENABLE  ;KEPT HIGH FOR READ 

 BCF  OUTPUTENABLE ;ENABLES OUTPUT 

 CALL RESETADDRESS 

;THE ADDRESS COUNTER SHOULD NOW BE AT ZERO, AND THE INTERNAL COUNTERS ALSO AT 

ZERO, AND THE PAGE 0 DATA WILL BE ON PORTD 

READPAGE0 CALL  PAGE0  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE1  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE2  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA  

 

  CALL  PAGE3  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE4  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE5  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  MOVLW D'13'   ;SEND CARRIGE RETURN 

  CALL XMIT_RS232 

  CALL LOWCOUNT 

  MOVLW D'10'   ;SEND LINE FEED 

  CALL XMIT_RS232 

  CALL LOWCOUNT 
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        ; THE 6 DATAPOINTS ARE NOW 

UPLOADED, SO WE INCREMENT TO THE NEXT MEMORY LOCATION 

  CALL ADDRESSGENERATOR 

  CALL OUTADDHIGH 

  INCF READTSTCOUNT 

  BTFSS EOMFLAG 

  GOTO READPAGE0 

  CALL RESETADDRESS 

 

 

WAITHERE BTG  LED2 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   GOTO WAITHERE 

   

  

 

 

 

;****************************************************************************

*********************** 

RESETADDRESS BSF  MCOUNTRESET  ;RESETS THE CD4040 COUNTER 

 BSF  MCOUNTCLOCK  ; GETS CLOCK READY TO COUNT 

 BCF  MCOUNTRESET  ;FINISH RESET READY TO COUNT 

 CLRF ADDINTLO  ;CLEAR LOCAL LOW 8 BITS OF ADDRESS  

 CLRF ADDINTMID  ;CLEAR LOCAL MID BITS. THE HIGH NIBBLE HOLDS 

A12,A13,A14,A15 FOR EXTERNAL RAM 

 CALL OUTADDHIGH  ;FINISHES THE OUTPUT TO THE ADDRESS PORT CLEARS 

PAGE BITS 

 CLRF FLAG1 

 RETURN 

 

;****************************************************************************

******* 

;TAKES ADDINTMID AND MOVES IT TO PORD D IN THE CORRECT CONFIGURATION, THIS 

ALSO CLEARS THE PAGE BITS 

;****************************************************************************

******* 

OUTADDHIGH 

 MOVFF ADDINTMID,TEMP1   ;PUT CURRENT ADDRESS HIGH COUNT 

INTO TEMP1 

 SWAPF TEMP1     ;SWAP HIGH NIBBLE WITH LOW  

 BSF  TEMP1,7 

 MOVLW B'10001111'    ;SET UP THE "AND" MASK 

 ANDWF TEMP1,W     ;W NOW HOLDS THE CORRECT 4 

ADDRESS BITS IN THE LOW NIBBLE, AND THE HIGH NIBBLE IS CLEARED 

 MOVWF PORTD     ;SEND TO THE PORT WHICH SETS UP 

RD0,1,2,3 TO THE ADDRESS, AND CLEARS THE PAGE BITS 

 RETURN 

;****************************************************************************

******* 

; THIS SUBROUTINE GETS THE 4 ANALOG CHANELS INTO THEIR RESPECTIVE RAM 

REGISTERS  
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;****************************************************************************

******* 

 

ANALOGIN  

 ; INCF FAKEAD 

 ; MOVFF FAKEAD,STRAIN1RES         

 ; MOVFF FAKEAD,STRAIN2RES 

 ; MOVFF FAKEAD,STRAIN3RES 

 ; MOVFF FAKEAD,STRAIN4RES 

 ; MOVFF FAKEAD,STRAIN5RES 

 ; MOVFF FAKEAD,STRAIN6RES 

 ; return   

 ;88888888888888888888888888888888888888888888888888888888888888888888 

  

    

  MOVLW ANALOGCH0  ;SETS UP ADCON0 FOR FIRST CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT 

  MOVFF ADRESH,STRAIN1RES ;8 BIT ANSWER INTO STRAIN1RES 

   

  MOVLW ANALOGCH1  ;SETS UP ADCON0 FOR SECOND CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT1 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT1 

  MOVFF ADRESH,STRAIN2RES ;8 BIT ANSWER INTO STRAIN2RES 

 

  MOVLW ANALOGCH2  ;SETS UP ADCON0 FOR SECOND CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT2 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT2 

  MOVFF ADRESH,STRAIN3RES ;8 BIT ANSWER INTO STRAIN3RES 

 

  MOVLW ANALOGCH3  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT3 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT3 

  MOVFF ADRESH,STRAIN4RES ;8 BIT ANSWER INTO STRAIN4RES   

 

  MOVLW ANALOGCH4  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT4 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT4 

  MOVFF ADRESH,STRAIN5RES ;8 BIT ANSWER INTO STRAIN4RES 

 

  MOVLW ANALOGCH5  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 
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  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT5 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT5 

  MOVFF ADRESH,STRAIN6RES ;8 BIT ANSWER INTO STRAIN4RES 

  BTG  LED1 

  RETURN 

 

 

;****************************************************************************

******* 

; THIS SUBROUTINE WRITES THE 6 ANALOG CHANNELS INTO THEIR RESPECTIVE DATA 

MEMORY ADDRESSES  

;****************************************************************************

******* 

   

ANALOGOUT  

  CLRF TRISC ;SET UP DATA PORT TO OUTPUT SO WE CAN SEND DAYA TO 

THE MEMORY CHIP 

  CALL PAGE0   

  MOVFF STRAIN1RES,PORTC 

  CALL WRITE1   ;FIRST WRITE WILL BE TO PAGE 0 

WHICH IS ALREADY SET 

  MOVFF STRAIN2RES,PORTC 

  CALL PAGE1 

  CALL WRITE1 

  MOVFF STRAIN3RES,PORTC 

  CALL PAGE2 

  CALL WRITE1 

  MOVFF STRAIN4RES,PORTC 

  CALL PAGE3 

  CALL WRITE1 

  MOVFF STRAIN5RES,PORTC 

  CALL PAGE4 

  CALL WRITE1 

  MOVFF STRAIN6RES,PORTC 

  CALL PAGE5 

  CALL WRITE1 

 

  RETURN 

 

 

 

;****************************************************************************

******************************* 

;PAGE SWAPING ROUTINES 

;****************************************************************************

****************************** 

PAGE0 BCF  PORTD,4 

  BCF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE1 BSF  PORTD,4 

  BCF  PORTD,5 

  BCF  PORTD,6 

  RETURN 
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PAGE2 BCF  PORTD,4 

  BSF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE3 BSF  PORTD,4 

  BSF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE4 BCF  PORTD,4 

  BCF  PORTD,5 

  BSF  PORTD,6 

  RETURN 

 

PAGE5 BSF  PORTD,4 

  BCF  PORTD,5 

  BSF  PORTD,6 

  RETURN 

 

;****************************************************************************

******* 

; WRITES DATA TO MEMORY CHIP ADDRESS IS ALREADY SETUP 

; LOOK AT PAGE 9 AND 10 OF THE DATA SHEET FOR THE WRITE CYCLE TIMING 

DIAGRAMS. THE TIMING DIAGRAMS TELL IT ALL 

; READ IT OVER A FEW TIMES, AND BE SURE YOU UNDERSTAND ALL THE TERMS USED 

; IT LOOKS LIKE THE WRITES CAN BE DONE TWO WAYS, THE  CE, AND THE WE. BE 

PARTICULARLY CAREFUP OF THE WARNING ABOUT THE DATA LINES BEING UNDEFINED. 

;****************************************************************************

*******   

   

WRITE1 BCF  WRITEENABLE 

  BCF  CHIPENABLE 

  NOP 

  BSF  WRITEENABLE 

  BSF  CHIPENABLE 

  RETURN 

;****************************************************************************

********************* 

;THE SERIAL ROUTINES WILL BE USED TO SEND COMMANDS TO THE SERIAL DATA DUMP 

PART OF THE PROGRAM. 

;WE NEED SOME WAY TO TELL THE CHIP TO START SENDING DATA, AND WE DONT WANT IT 

TO START UNTILL WE HAVE CONFIRMED COMMUNICATION WITH THE PC, SO WE MAY AS 

WELL USE THE SMART LINK TO  

;GIVE US SOME UPLOAD OPTIONS. JUST LIKE WE MADE A SERIAL COMMAND FROM THE PC 

TRIGGER THE SENDING OF THE MIKE & TROY MESSAGE. 

;BECAUSE WE WANT TO GET ALL OF THE SENSOR DATA FOR EACH SENSOR OUT OF MEMORY 

IN ONE PIECE, A NEW ADDRESS GENERATOR PROGRAM WILL NEED TO BE WRITTEN 

;LOOK AT HOW I DID THE WRITE ADDRESS GENERATOR, TO GET SOME IDEAS AS TO HOW 

TO DO THAT. 

;****************************************************************************

******************** 

 

;Serial routines 

 

SER_INIT 
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            BCF     TRISC,D'6'     ;set B6 as an output 

            BSF     TRISC, D'7'      ;set B7 as an input 

            BSF     PORTC, D'6'     ;set SER_OUT high 

            RETURN 

 

 

 

 

 

XMIT_RS232  MOVWF   Xmit_Byte             ;move W to Xmit_Byte 

            MOVLW   0x08                  ;set 8 bits out 

            MOVWF   Bit_Cntr 

            BCF     SEROUT 

            CALL    Bit_Delay 

Ser_Loop    RRCF     Xmit_Byte , f         ;send one bit 

 

            BTFSS   STATUS    , C 

            BCF     SEROUT 

            BTFSC   STATUS    , C 

            BSF     SEROUT 

            CALL    Bit_Delay 

            DECFSZ  Bit_Cntr  , f         ;test if all done 

            GOTO    Ser_Loop 

            BSF     SEROUT 

            CALL    Bit_Delay 

            RETURN 

 

Rcv_RS232   BTFSC   SERIN     ;wait for start bit 

            GOTO    Rcv_RS232 

            CALL    Start_Delay           ;do half bit time delay 

            BTFSC   SERIN     ;check still in start bit 

            GOTO    Rcv_RS232 

            MOVLW   0x08                  ;set up to read 8 bits 

            MOVWF   Bit_Cntr 

            CLRF    Rcv_Byte 

Next_RcvBit CALL    Bit_Delay 

            BTFSS   SERIN 

            BCF     STATUS    , C 

            BTFSC   SERIN 

            BSF     STATUS    , C 

            RRCF     Rcv_Byte  , f 

            DECFSZ  Bit_Cntr  , f         ;test if all done 

            GOTO    Next_RcvBit 

            CALL    Bit_Delay 

            MOVF    Rcv_Byte, W 

            RETURN 

 

Start_Delay MOVLW   D'32'    ;0x0C 

            MOVWF   Delay_Count 

Start_Wait  NOP 

            DECFSZ  Delay_Count , f 

            GOTO    Start_Wait 

            RETURN 

 

Bit_Delay   MOVLW   D'64'            ;0x18 

            MOVWF   Delay_Count 

Bit_Wait    NOP 
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            DECFSZ  Delay_Count , f 

            GOTO    Bit_Wait 

            RETURN 

 

;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>> 

;CONVERTS BINARY NUMBER IN BINDALO INTO PACKED BCD IN BDC1 AND BCD2 

;PUTS THE THREE BCD RESULTS INTO DIGIT100, DIGIT10,DIGITUNITS. THE DIGITS ARE 

FINALLY CONVERTER TO ASCII 

;FOR TRANSMISSION TO PC 

;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>> 

 

BCDCNV  BCF STATUS,C ;CONVERTS BINARY DATA IN BINDALO 

   MOVLW D'16'  ;AND BINDAHI TO 4 BCD DIGITS 

   MOVWF COUNT  ;IN BCD1 (UNITS & TENS'S)AND 

   CLRF BCD1  ; BCD2 (100'S AND 1000'S) 

   CLRF BCD2 

LOOP16  RLCF BINDALO,1 

   RLCF BINDAHI,1 

   RLCF BCD1,1 

   RLCF BCD2,1 

   DECFSZ COUNT,1 

   GOTO ADJDEC 

   GOTO UNPACKBCD 

  

ADJDEC  CALL ADJBCD1 

   CALL ADJBCD2 

   GOTO LOOP16 

 

ADJBCD1  MOVLW 3 

   ADDWF BCD1,W 

   MOVWF TMP1 

   BTFSC TMP1,3 

   MOVWF BCD1 

   MOVLW 30 

   ADDWF BCD1,W 

   MOVWF TMP1 

   BTFSC TMP1,7 

   MOVWF BCD1 

   RETURN  

ADJBCD2  MOVLW 3 

   ADDWF BCD2,W 

   MOVWF TMP1 

   BTFSC TMP1,3 

   MOVWF BCD2 

   MOVLW 30 

   ADDWF BCD2,W 

   MOVWF TMP1 

   BTFSC TMP1,7 

   MOVWF BCD2 

   RETURN 

;************************************************************* 

;the three BCD digits are packed into BCD1 and BCD2 we want to unpack them 

into  

;DIGIT100,  DIGIT10,  DIGITUNITS 

;************************************************************ 



151 
 

  

UNPACKBCD  MOVLW B'00001111'  ;SET MASK 

    ANDWF BCD2,W   ;AND WITH MSD IN BCD2 

LSNIBBLE 

    MOVWF DIGIT100  ;SAVE UNPACKED BCD 100'S 

DIGIT 

    MOVFF BCD1,TMP1  ;GET PACKED BCD UNITS AND 

TENS IN TEMP1 FOR STRIPPING 

    MOVLW B'00001111'  ;SET MASK 

    ANDWF TMP1,W 

    MOVWF DIGITUNITS 

    SWAPF TMP1   ;SWAP UPPER NIBBLE WITH LOWER 

NIBBLE 

    MOVLW B'00001111'  ;SET MASK 

    ANDWF TMP1,W 

    MOVWF DIGIT10   ;SAVE TEN'S DIGIT 

;****************************************************************************

** 

;LEADING ZERO SUPRESSION, ASCII CONVERSION 

;************************************************************************ 

ZEROSUPRESSION   MOVLW D'1'   ;WILL ALWAYS OUTPUT AT 

LEAST ONE DIGIT 

   MOVWF COUNT 

   MOVF DIGIT100,W 

   BTFSS STATUS,Z  ;TEST IF DIGIT 100 IS A ZERO 

   GOTO D100NZ        

   MOVF DIGIT10,W 

   BTFSS STATUS,N  ;TEST IF DIGIT 10 IS A ZERO 

   GOTO D10NZ 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

    

 

D100NZ  MOVLW D'3'   ;MSD NOT ZERO SO ALL 3 DIGITS WILL 

BE SENT 

   MOVWF COUNT 

 

   MOVF DIGIT100,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT100 

    

   MOVF DIGIT10,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT10 

 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

 

D10NZ  MOVLW D'2'   ;MSD NOT ZERO SO ALL 3 DIGITS WILL BE 

SENT 

   MOVWF COUNT 

    

   MOVF DIGIT10,W 
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   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT10 

 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

;****************************************************************************

******************** 

;SEND 3,2, OR 1 DIGIT TO SERIAL PORT 

;****************************************************************************

******************* 

 

SENDDATA MOVLW D'3' 

   CPFSEQ COUNT  ;IS THE COUNT 3? 

   GOTO CHECK42 

   MOVF DIGIT100,W 

   CALL XMIT_RS232 ;SEND 100'S 

   MOVF DIGIT10,W 

   CALL XMIT_RS232 ;SEND 10'S 

   MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

    

 

CHECK42  MOVLW D'2' 

   CPFSEQ COUNT  ;IS THE COUNT 3? 

   GOTO OUT1 

   MOVF DIGIT10,W 

   CALL XMIT_RS232 ;SEND 10'S 

   MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

 

OUT1  MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

  

 end 
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Code written for use of FCDAQ with Flight Test Vehicle 
;********************************************************** 

;MQP PROJECT  

;MEASURING THE VIBRATION FREQUENCY AND AMPLITUDE OF FIN WARP ON ROCKET 

;********************************************************** 

; A NON VOLITILE MEMORY CHIP WITH BUILT IN DATA RETENTION BATTERY IS COUPLED 

WITH A 20MHZ  

;MICROCONTROLLER TO ACQUIRE STRAIN DATA FROM TWO PLACES ON EACH OF THE 3 FINS 

;WIND TUNNEL TEST HAVE DETERMINED THE RESONANT FREQUENCY OF THE FINS TO BE 

APROXIMATELY 100HZ 

; THE DATA IS ACQUIRED ON ALL SIX STRAIN QUAGES IN EACH ACQUISITION PASS. 

; THE DATA IS THEN STORED IN SIX PAGES OF MEMORY WITH 65535 DATA POINTS EACH 

;THE SCAN FREQUENCY IS ADJUSTABLE,WITH CONSTANT"ACQDELAY" AND THE ACQUISITION 

IS STARTED WHEN AN ACCELERATION SENSOR IS TRIGGERED BY THE BLASTOFF 

;AN RS232 SERIAL CONNECTION PROVIDES A MEANS TO GET THE DATA INTO A PC, WHERE 

LABVIEW WILL ALLOW HIGH LEVEL ANALISYS OF THE DATA. 

; 

;********************************************************** 

 

 list p=18f452 

 

 ; Include file, change directory if needed 

 include "P18F452.inc" 

;Port A assignments: <---- in   ------> out 

 

;RA0/AN0 <------Analog  Strain guage 1 

;RA1/AN1 <------Analog  Strain guage 2  

;RA2/AN2 <------Analog  Strain guage 3  

;RA3/AN3 <------Analog   Strain guage 4  

;RA4/TOCK1 <-------DIN   SERIAL IN   

;RA5/AN4 <------ANALOG  Strain guage 5  

;RA6  ------->DOUT   Memory CE      

;     

;      

      

      

;Port B assignments: <---- in   ------> out 

 

;RBO     -------->DOut  NC 

;RB1      -------->DOut  NC     

;RB2  -------->DOut  NC  

;RB3  -------->DOut  NC   

;RB4  -------->DOut  COUNTER RESET  

;RB5  -------->DOut     COUNTER CLOCK    

;RB6  -------->DOut     PGC PROGRAMMER 

;RB7  -------->DOut  PGD PROGRAMMER 

; 

;Port C assignments: <---- in   ------> out 

;RC0  <------->DOut  Data port 0       

;RC1  <------->DOut  Data port 1       

         

;RC2  <------->DOut  Data port 2      

       

;RC3     <------->DOut  Data port 3      

   

;RC4  <------->DOut  Data port 4  

;RC5  <------->DOut  Data port 5  
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;RC6  <------->DOut  Data port 6   

;RC7  <------->DOut  Data port 7   

;   

;Port D assignments: 

;RD0 -------->DOut   Address A12 

;RD1 -------->DOut   Address A13 

;RD2 -------->DOut   Address A14 

;RD3 -------->DOut   Address A15  

;RD4 -------->DOut   Address A16 

;RD5 -------->DOut   Address A16 

;RD6 -------->DOut   Address A18 

;RD7 -------->DOut   SERIAL OUT 

;      

;Port E assignments: 

;RE0/AN5 <-------ANALOG  Strain guage 6  

;RE1/AN6 ------->DOut  MEMORY WE 

;RE2/AN7 ------->DOut  MEMORY OE 

 

 

;Variables 

 cblock 0x000 

 FLAG1 

;FLAG1 BIT0 = END OF MEMORY LO= OK HI = END 

;FLAG1 BIT1 =  

;FLAG1 BIT2 =  

;FLAG1 BIT3 =  

;FLAG1 BIT4 =  

;FLAG1 BIT5 =  

;FLAG1 BIT6 =  

;FLAG1 BIT7 = 

ADDINTLO  ;HOLDS LOCAL LOW 8 BITS OF ADDRESS  

ADDINTMID  ;HOLDS LOCAL MID BITS. THE HIGH NIBBLE HOLDS 

A12,A13,A14,A15 FOR EXTERNAL RAM 

ADDPAGE   ;HOLDS CURRENT PAGE BITS OF ADDRESS A16,A17,A18  

DELAYLO   ;LOW REGISTER FOR COUNTER 

DELAYMID  ;MID REGISTER FOR COUNTER 

DELAYHI   ;HIGH REGISTER FOR COUNTER 

STRAIN1RES  ;8 BIT RESULTS STRAINGUAGE1 

STRAIN2RES  ;8 BIT RESULTS STRAINGUAGE2 

STRAIN3RES  ;8 BIT RESULTS STRAINGUAGE3 

STRAIN4RES  ;8 BIT RESULTS STRAINGUAGE4 

STRAIN5RES  ;8 BIT RESULTS STRAINGUAGE5 

STRAIN6RES  ;8 BIT RESULTS STRAINGUAGE6 

TXTCNTR    ;COUNTS BYTE OUTPUT 

Xmit_Byte         ;holds byte to xmit 

Rcv_Byte         ;holds received byte  

Bit_Cntr         ;bit counter for RS232 

Delay_Count         ;delay loop counter 

TEMP1    ;TEMPORARY REGISTER 

FAKEAD    ;COUNTER FOR GENERATING FAKE ANALOG INPUT 

BINDALO 

BINDAHI 

BCD1 

BCD2 

COUNT 

TMP1 

DIGIT100 
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DIGIT10 

DIGITUNITS 

Digit 

READTSTCOUNT 

 endc 

 

 

;*******Text replacements  

 

#DEFINE  WRITEENABLE  PORTE,1   ;WRITE STROBE FOR 

MEMORY 

#DEFINE  CHIPENABLE  PORTA,6   ;CHIP ENABLE FOR 

MEMORY 

#DEFINE  OUTPUTENABLE PORTE,2   ;OUTPUT ENABLE 

FOR MEMORY 

#DEFINE  MCOUNTRESET  PORTB,4   ;RESET FOR CD4040 

COUNTER RESET WHEN HI 

#DEFINE  MCOUNTCLOCK  PORTB,5   ;INCREMENTS 

MEMORY COUNTER ON LOW TRANSITION 

#DEFINE  ADGO   ADCON0,2  ;AD START BIT 

#DEFINE  EOMFLAG   FLAG1,0   ;SIGNALS 

FULL MEMORY 

#DEFINE  INERTIASW  PORTB,0   ;STARTS THE DATA 

ACQUISITION 

#DEFINE  DATADUMPSW  PORTB,1   ;STARTS THE DATA 

SERIAL UPLOAD 

#DEFINE  LED1   PORTB,2   ; 

#DEFINE  LED2   PORTB,3   ; 

#DEFINE  SERIN   PORTA,4 

#DEFINE  SEROUT   PORTD,7 

;************************* CONSTANTS*********************************** 

ADTIMEDELAY  EQU  D'240'  ;DELAYAD 

TIMEDELAY  EQU  D'255'   

MEMDELAY  EQU  D'255' 

CLOCKDELAY  EQU  D'255'  ; counter is up count so 255= 

2.8uS 

         ; 0= 206.8 uS each 

count = .8uS 

ACQDELAY  EQU  D'250'  ;EACH COUNT LESS THAN 255 

HERE = 155 uS 249 = 1.086 MS 

ANALOGCH0  EQU  B'10000001' 

ANALOGCH1  EQU  B'10001001' 

ANALOGCH2  EQU  B'10010001' 

ANALOGCH3  EQU  B'10011001' 

ANALOGCH4  EQU  B'10100001' 

ANALOGCH5  EQU  B'10101001' 

 

 

 

 

 

 ; Start at the reset vector 

    org  0x000 

   goto  Main 

 

 

 org  0x020 
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INIT 

 call SER_INIT       ;initialise serial port 

 

 clrf porta 

 clrf PORTB  ;Clear ports 

 clrf portc 

 clrf portd 

 movlw b'00011111' 

 MOVWF TRISA 

 MOVLW B'00000011' 

 MOVWF TRISB  ;PORTB all outputs, DATA PORT FOR MEMORY START AS 

OUTPUT 

 MOVLW B'11111111' 

 MOVWF TRISC  ;PORT C ALL INPUTS(MEMORY DATA BUSS) 

 CLRF TRISD  ;CLEAR ADDRESS PORT 

 MOVLW B'00000001' ;PORT E BIT 0 IS ANALOG IN 

 MOVWF TRISE 

 CLRF FLAG1 

 CLRF ADDINTLO 

 CLRF ADDINTLO 

 ;SET UP MEMORY CONTROL LINES TO INIT CONDITION 

 BSF  CHIPENABLE 

 BSF  WRITEENABLE 

 BSF  OUTPUTENABLE 

 CLRF DELAYLO  

 CLRF DELAYMID 

 CLRF DELAYHI 

 CLRF INTCON2  

 BSF  MCOUNTRESET  ;RESETS THE CD4040 COUNTER 

 BSF  MCOUNTCLOCK  ; GETS CLOCH READY TO COUNT 

 BCF  MCOUNTRESET  ;FINISH RESET READY TO COUNT 

 movlw B'10000001' ;Fosc/32, A/D enabled 

 movwf ADCON0 

 movlw B'00001001' ;left justify,6 analog channels 

 movwf ADCON1  ;this places the 8 bit answer into ADRESHI 

 

 movlw B'11000111' ;TMR0 prescaler, 1:256 

 movwf T0CON 

 CLRF ADDINTLO ;CLEAR INTERNAL MEMORY COUNTERS  

 CLRF ADDINTMID 

 MOVLW B'00000110' 

 MOVWF PORTE 

 CLRF FAKEAD 

 

 RETURN 

;********************************************************************* 

;MAIN LOOP OF ACQUISITION 

;****************************************************************************

** 

Main 

  

 call init 

 

WAITSTART BTFSS INERTIASW  ;CHECK THE INERTIA SWITCH HI=NOT MOVING, 

LOW = ROCKET HAS BLASTED OFF 

   GOTO MAINLOOP  ;IF INERTIAL SW IS 

   BTFSS DATADUMPSW 
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   GOTO READDATADUMP 

   GOTO WAITSTART  

MAINLOOP  

   CALL  ANALOGIN    ;READ THE 6 STRAIN 

GUAGES AND STORE RESULTS    

   CALL ANALOGOUT    ;SEND THE DATA TO THE 

MEMORY CHIP 

   CALL ADDRESSGENERATOR  ;INCREMENT BASE MEMORY 

ADDRESS TO NEXT 

   BTFSC EOMFLAG     ;CHECK IF MEMORY 

FLAG SHOWS THAT WE HAVE REACHED THE END OF MEMORY   

   GOTO FINISHED    ;FINISHED WITH 

ACQUISITIONJUMP TO BIT SCAN ROUTINE AND JUST WAIT 

           ;WE NEED TO 

SEND THE 4 MS BITS OF THE ADDRESS OUT TO RD0,RD1,RD2,RD3, SO WE MUST  

           ;SWAP THE 

UPPER AND LOWER NIBBLES OF  

           ;THE 

ADDINTMID COUNT, AND CLEAR THE PAGE BITS 

 

 CALL OUTADDHIGH   ;FINISHES THE ADDRESS UPDATE OUTPUT 

 CALL READWAIT    ;DELAY BETWEEN EACH SCAN OF SENSORS 

  

 goto MAINLOOP  ;Do it again 

FINISHED BTG  LED1 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   GOTO FINISHED 

 

 

;****************************************************************************

******* 

; DELAYAD ROUTINE #1 

; counter is up count so 255= 2.8uS 

; 0= 206.8 uS each count = .8uS 

;****************************************************************************

******* 

DELAYAD  MOVLW ADTIMEDELAY 

   MOVWF DELAYLO 

LOWCOUNT  

 INCFSZ DELAYLO 

 GOTO LOWCOUNT 

 RETURN 

 

DELAY  MOVLW TIMEDELAY 

   MOVWF DELAYLO 

   GOTO LOWCOUNT 

 

DELAYMEM MOVLW MEMDELAY 

   MOVWF DELAYLO 

   GOTO LOWCOUNT 

 

DELAYADDRESSCLOCK MOVLW CLOCKDELAY 

     MOVWF DELAYLO 
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     GOTO LOWCOUNT 

 

;****************************************************************************

******* 

READWAIT  MOVLW ACQDELAY 

    MOVWF DELAYMID 

READLOOP  CALL LOWCOUNT 

    INCFSZ DELAYMID 

    GOTO READLOOP 

    RETURN 

;**************************************************************** 

 

 

;****************************************************************************

******* 

; THIS SUBROUTINE GENERATES THE 19 BIT ADDRESS. The first 12 bits of address 

(A0-A11)is generated by the cd4040 ripple counter.  

;A12,A13,A14,A15 ARE GENERATED IN SOFTWARE COUNTER ADDINTMID 

;ADDINTLO+ ADDINTMID HOLDS A COPY OF WHERE THE CD4040 COUNTER SHOULD BE 

;ADDINTMID HOLDS THE REST OF THE 12 BIT CD4040 COUNT, AS WELL AS THE LAST 4 

BITS OF ACTUAL ADDRESS WHICH WILL BE SENT TO 

;PORT C BIT 0,1,2,3.  

;****************************************************************************

******* 

ADDRESSGENERATOR  

  BCF  MCOUNTCLOCK  ;increments the external counter 

  CALL DELAYADDRESSCLOCK 

  BSF  MCOUNTCLOCK  ;FINISH PULSE GET READY FOR NEXT 

COUNT 

 

  INCFSZ ADDINTLO ; Increment internal address TO MATCH 

EXTERNAL 

  RETURN    ;COUNTER DID NOT ROLL OVER 

     INCFSZ ADDINTMID ;INCREMENT MID COUNTER 

  RETURN 

  BSF  EOMFLAG  ;SET END OF MEMORY FLAG 

 

 RETURN 

  

;****************************************************************************

******* 

;READDATA DUMP WILL GENERATE THE REQUIRED ADDRESS TO READ THE DATA BACK. 

;IT WILL READ EACH FULL PAGE THEN MOVE TO THE NEXT 

;ONCE THE ADDRESS IS VALID, THE DATA WILL BE ON PORT D  NO OTHER CONTROLL 

SIGNALS NEED TO BE CHANGED 

;SINCE THE OUTPUT WILL REMAIN ACTIVE 

;****************************************************************************

******* 

READDATADUMP 

 MOVLW B'11111111' 

 MOVWF TRISC   ;SET UP PORT C AS INPUT 

 BCF  CHIPENABLE  ;CHIP IS SELECTED 

 BSF  WRITEENABLE  ;KEPT HIGH FOR READ 

 BCF  OUTPUTENABLE ;ENABLES OUTPUT 

 CALL RESETADDRESS 

;THE ADDRESS COUNTER SHOULD NOW BE AT ZERO, AND THE INTERNAL COUNTERS ALSO AT 

ZERO, AND THE PAGE 0 DATA WILL BE ON PORTD 
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READPAGE0 CALL  PAGE0  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE1  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE2  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA  

 

  CALL  PAGE3  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE4  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  CALL  PAGE5  

  MOVF PORTC,W   ;GET DATA INTO W 

  MOVWF  BINDALO   ;PUT DATA IN BINDALO 

  CALL BCDCNV   ;CONVERT TO PACKED BCD 

  CALL SENDDATA 

 

  MOVLW D'13'   ;SEND CARRIGE RETURN 

  CALL XMIT_RS232 

  CALL LOWCOUNT 

  MOVLW D'10'   ;SEND LINE FEED 

  CALL XMIT_RS232 

  CALL LOWCOUNT 

        ; THE 6 DATAPOINTS ARE NOW 

UPLOADED, SO WE INCREMENT TO THE NEXT MEMORY LOCATION 

  CALL ADDRESSGENERATOR 

  CALL OUTADDHIGH 

  INCF READTSTCOUNT 

  BTFSS EOMFLAG 

  GOTO READPAGE0 

  CALL RESETADDRESS 

 

 

WAITHERE BTG  LED2 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 

   CALL READLOOP 
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   CALL READLOOP 

   GOTO WAITHERE 

   

  

 

 

 

;****************************************************************************

*********************** 

RESETADDRESS BSF  MCOUNTRESET  ;RESETS THE CD4040 COUNTER 

 BSF  MCOUNTCLOCK  ; GETS CLOCK READY TO COUNT 

 BCF  MCOUNTRESET  ;FINISH RESET READY TO COUNT 

 CLRF ADDINTLO  ;CLEAR LOCAL LOW 8 BITS OF ADDRESS  

 CLRF ADDINTMID  ;CLEAR LOCAL MID BITS. THE HIGH NIBBLE HOLDS 

A12,A13,A14,A15 FOR EXTERNAL RAM 

 CALL OUTADDHIGH  ;FINISHES THE OUTPUT TO THE ADDRESS PORT CLEARS 

PAGE BITS 

 CLRF FLAG1 

 RETURN 

 

;****************************************************************************

******* 

;TAKES ADDINTMID AND MOVES IT TO PORD D IN THE CORRECT CONFIGURATION, THIS 

ALSO CLEARS THE PAGE BITS 

;****************************************************************************

******* 

OUTADDHIGH 

 MOVFF ADDINTMID,TEMP1   ;PUT CURRENT ADDRESS HIGH COUNT 

INTO TEMP1 

 SWAPF TEMP1     ;SWAP HIGH NIBBLE WITH LOW  

 BSF  TEMP1,7 

 MOVLW B'10001111'    ;SET UP THE "AND" MASK 

 ANDWF TEMP1,W     ;W NOW HOLDS THE CORRECT 4 

ADDRESS BITS IN THE LOW NIBBLE, AND THE HIGH NIBBLE IS CLEARED 

 MOVWF PORTD     ;SEND TO THE PORT WHICH SETS UP 

RD0,1,2,3 TO THE ADDRESS, AND CLEARS THE PAGE BITS 

 RETURN 

;****************************************************************************

******* 

; THIS SUBROUTINE GETS THE 4 ANALOG CHANELS INTO THEIR RESPECTIVE RAM 

REGISTERS  

;****************************************************************************

******* 

 

ANALOGIN  

 ; INCF FAKEAD 

 ; MOVFF FAKEAD,STRAIN1RES         

 ; MOVFF FAKEAD,STRAIN2RES 

 ; MOVFF FAKEAD,STRAIN3RES 

 ; MOVFF FAKEAD,STRAIN4RES 

 ; MOVFF FAKEAD,STRAIN5RES 

 ; MOVFF FAKEAD,STRAIN6RES 

 ; return   

 ;88888888888888888888888888888888888888888888888888888888888888888888 

  

    

  MOVLW ANALOGCH0  ;SETS UP ADCON0 FOR FIRST CHANNEL 
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  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT 

  MOVFF ADRESH,STRAIN1RES ;8 BIT ANSWER INTO STRAIN1RES 

   

  MOVLW ANALOGCH1  ;SETS UP ADCON0 FOR SECOND CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT1 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT1 

  MOVFF ADRESH,STRAIN2RES ;8 BIT ANSWER INTO STRAIN2RES 

 

  MOVLW ANALOGCH2  ;SETS UP ADCON0 FOR SECOND CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT2 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT2 

  MOVFF ADRESH,STRAIN3RES ;8 BIT ANSWER INTO STRAIN3RES 

 

  MOVLW ANALOGCH3  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT3 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT3 

  MOVFF ADRESH,STRAIN4RES ;8 BIT ANSWER INTO STRAIN4RES   

 

  MOVLW ANALOGCH4  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT4 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT4 

  MOVFF ADRESH,STRAIN5RES ;8 BIT ANSWER INTO STRAIN4RES 

 

  MOVLW ANALOGCH5  ;SETS UP ADCON0 FOR THIRD CHANNEL 

  MOVWF ADCON0   ;PUT INTO CONTROL REGISTER 

  CALL DELAYAD 

  BSF  ADGO   ;SET GO BIT TO START CONVERSIONS 

ADWAIT5 BTFSC ADGO   ;CHECK GO BIT TO SEE IF FINISHED 

  GOTO ADWAIT5 

  MOVFF ADRESH,STRAIN6RES ;8 BIT ANSWER INTO STRAIN4RES 

  BTG  LED1 

  RETURN 

 

 

;****************************************************************************

******* 

; THIS SUBROUTINE WRITES THE 6 ANALOG CHANELS INTO THEIR RESPECTIVE DATA 

MEMORY ADDRESSES  

;****************************************************************************

******* 
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ANALOGOUT  

  CLRF TRISC ;SET UP DATA PORT TO OUTPUT SO WE CAN SEND DAYA TO 

THE MEMORY CHIP 

  CALL PAGE0   

  MOVFF STRAIN1RES,PORTC 

  CALL WRITE1   ;FIRST WRITE WILL BE TO PAGE 0 

WHICH IS ALREADY SET 

  MOVFF STRAIN2RES,PORTC 

  CALL PAGE1 

  CALL WRITE1 

  MOVFF STRAIN3RES,PORTC 

  CALL PAGE2 

  CALL WRITE1 

  MOVFF STRAIN4RES,PORTC 

  CALL PAGE3 

  CALL WRITE1 

  MOVFF STRAIN5RES,PORTC 

  CALL PAGE4 

  CALL WRITE1 

  MOVFF STRAIN6RES,PORTC 

  CALL PAGE5 

  CALL WRITE1 

 

  RETURN 

 

 

 

;****************************************************************************

******************************* 

;PAGE SWAPING ROUTINES 

;****************************************************************************

****************************** 

PAGE0 BCF  PORTD,4 

  BCF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE1 BSF  PORTD,4 

  BCF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE2 BCF  PORTD,4 

  BSF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE3 BSF  PORTD,4 

  BSF  PORTD,5 

  BCF  PORTD,6 

  RETURN 

 

PAGE4 BCF  PORTD,4 

  BCF  PORTD,5 

  BSF  PORTD,6 

  RETURN 
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PAGE5 BSF  PORTD,4 

  BCF  PORTD,5 

  BSF  PORTD,6 

  RETURN 

 

;****************************************************************************

******* 

; WRITES DATA TO MEMORY CHIP ADDRESS IS ALREADY SETUP 

; LOOK AT PAGE 9 AND 10 OF THE DATA SHEET FOR THE WRITE CYCLE TIMING 

DIAGRAMS. THE TIMING DIAGRAMS TELL IT ALL 

; READ IT OVER A FEW TIMES, AND BE SURE YOU UNDERSTAND ALL THE TERMS USED 

; IT LOOKS LIKE THE WRITES CAN BE DONE TWO WAYS, THE  CE, AND THE WE. BE 

PARTICULARLY CAREFUP OF THE WARNING ABOUT THE DATA LINES BEING UNDEFINED. 

;****************************************************************************

*******   

   

WRITE1 BCF  WRITEENABLE 

  BCF  CHIPENABLE 

  NOP 

  BSF  WRITEENABLE 

  BSF  CHIPENABLE 

  RETURN 

;****************************************************************************

********************* 

;THE SERIAL ROUTINES WILL BE USED TO SEND COMMANDS TO THE SERIAL DATA DUMP 

PART OF THE PROGRAM. 

;WE NEED SOME WAY TO TELL THE CHIP TO START SENDING DATA, AND WE DONT WANT IT 

TO START UNTILL WE HAVE CONFIRMED COMMUNICATION WITH THE PC, SO WE MAY AS 

WELL USE THE SMART LINK TO  

;GIVE US SOME UPLOAD OPTIONS. JUST LIKE WE MADE A SERIAL COMMAND FROM THE PC 

TRIGGER THE SENDING OF THE MIKE & TROY MESSAGE. 

;BECAUSE WE WANT TO GET ALL OF THE SENSOR DATA FOR EACH SENSOR OUT OF MEMORY 

IN ONE PIECE, A NEW ADDRESS GENERATOR PROGRAM WILL NEED TO BE WRITTEN 

;LOOK AT HOW I DID THE WRITE ADDRESS GENERATOR, TO GET SOME IDEAS AS TO HOW 

TO DO THAT. 

;****************************************************************************

******************** 

 

;Serial routines 

 

SER_INIT 

            BCF     TRISC,D'6'     ;set B6 as an output 

            BSF     TRISC, D'7'      ;set B7 as an input 

            BSF     PORTC, D'6'     ;set SER_OUT high 

            RETURN 

 

 

 

 

 

XMIT_RS232  MOVWF   Xmit_Byte             ;move W to Xmit_Byte 

            MOVLW   0x08                  ;set 8 bits out 

            MOVWF   Bit_Cntr 

            BCF     SEROUT 

            CALL    Bit_Delay 

Ser_Loop    RRCF     Xmit_Byte , f         ;send one bit 
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            BTFSS   STATUS    , C 

            BCF     SEROUT 

            BTFSC   STATUS    , C 

            BSF     SEROUT 

            CALL    Bit_Delay 

            DECFSZ  Bit_Cntr  , f         ;test if all done 

            GOTO    Ser_Loop 

            BSF     SEROUT 

            CALL    Bit_Delay 

            RETURN 

 

Rcv_RS232   BTFSC   SERIN     ;wait for start bit 

            GOTO    Rcv_RS232 

            CALL    Start_Delay           ;do half bit time delay 

            BTFSC   SERIN     ;check still in start bit 

            GOTO    Rcv_RS232 

            MOVLW   0x08                  ;set up to read 8 bits 

            MOVWF   Bit_Cntr 

            CLRF    Rcv_Byte 

Next_RcvBit CALL    Bit_Delay 

            BTFSS   SERIN 

            BCF     STATUS    , C 

            BTFSC   SERIN 

            BSF     STATUS    , C 

            RRCF     Rcv_Byte  , f 

            DECFSZ  Bit_Cntr  , f         ;test if all done 

            GOTO    Next_RcvBit 

            CALL    Bit_Delay 

            MOVF    Rcv_Byte, W 

            RETURN 

 

Start_Delay MOVLW   D'32'    ;0x0C 

            MOVWF   Delay_Count 

Start_Wait  NOP 

            DECFSZ  Delay_Count , f 

            GOTO    Start_Wait 

            RETURN 

 

Bit_Delay   MOVLW   D'64'            ;0x18 

            MOVWF   Delay_Count 

Bit_Wait    NOP 

            DECFSZ  Delay_Count , f 

            GOTO    Bit_Wait 

            RETURN 

 

;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>> 

;CONVERTS BINARY NUMBER IN BINDALO INTO PACKED BCD IN BDC1 AND BCD2 

;PUTS THE THREE BCD RESULTS INTO DIGIT100, DIGIT10,DIGITUNITS. THE DIGITS ARE 

FINALLY CONVERTER TO ASCII 

;FOR TRANSMISSION TO PC 

;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>> 

 

BCDCNV  BCF STATUS,C ;CONVERTS BINARY DATA IN BINDALO 

   MOVLW D'16'  ;AND BINDAHI TO 4 BCD DIGITS 

   MOVWF COUNT  ;IN BCD1 (UNITS & TENS'S)AND 
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   CLRF BCD1  ; BCD2 (100'S AND 1000'S) 

   CLRF BCD2 

LOOP16  RLCF BINDALO,1 

   RLCF BINDAHI,1 

   RLCF BCD1,1 

   RLCF BCD2,1 

   DECFSZ COUNT,1 

   GOTO ADJDEC 

   GOTO UNPACKBCD 

  

ADJDEC  CALL ADJBCD1 

   CALL ADJBCD2 

   GOTO LOOP16 

 

ADJBCD1  MOVLW 3 

   ADDWF BCD1,W 

   MOVWF TMP1 

   BTFSC TMP1,3 

   MOVWF BCD1 

   MOVLW 30 

   ADDWF BCD1,W 

   MOVWF TMP1 

   BTFSC TMP1,7 

   MOVWF BCD1 

   RETURN  

ADJBCD2  MOVLW 3 

   ADDWF BCD2,W 

   MOVWF TMP1 

   BTFSC TMP1,3 

   MOVWF BCD2 

   MOVLW 30 

   ADDWF BCD2,W 

   MOVWF TMP1 

   BTFSC TMP1,7 

   MOVWF BCD2 

   RETURN 

;************************************************************* 

;the three BCD digits are packed into BCD1 and BCD2 we want to unpack them 

into  

;DIGIT100,  DIGIT10,  DIGITUNITS 

;************************************************************ 

  

UNPACKBCD  MOVLW B'00001111'  ;SET MASK 

    ANDWF BCD2,W   ;AND WITH MSD IN BCD2 

LSNIBBLE 

    MOVWF DIGIT100  ;SAVE UNPACKED BCD 100'S 

DIGIT 

    MOVFF BCD1,TMP1  ;GET PACKED BCD UNITS AND 

TENS IN TEMP1 FOR STRIPPING 

    MOVLW B'00001111'  ;SET MASK 

    ANDWF TMP1,W 

    MOVWF DIGITUNITS 

    SWAPF TMP1   ;SWAP UPPER NIBBLE WITH LOWER 

NIBBLE 

    MOVLW B'00001111'  ;SET MASK 

    ANDWF TMP1,W 

    MOVWF DIGIT10   ;SAVE TEN'S DIGIT 



166 
 

;****************************************************************************

** 

;LEADING ZERO SUPRESSION, ASCII CONVERSION 

;************************************************************************ 

ZEROSUPRESSION   MOVLW D'1'   ;WILL ALWAYS OUTPUT AT 

LEAST ONE DIGIT 

   MOVWF COUNT 

   MOVF DIGIT100,W 

   BTFSS STATUS,Z  ;TEST IF DIGIT 100 IS A ZERO 

   GOTO D100NZ        

   MOVF DIGIT10,W 

   BTFSS STATUS,N  ;TEST IF DIGIT 10 IS A ZERO 

   GOTO D10NZ 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

    

 

D100NZ  MOVLW D'3'   ;MSD NOT ZERO SO ALL 3 DIGITS WILL 

BE SENT 

   MOVWF COUNT 

 

   MOVF DIGIT100,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT100 

    

   MOVF DIGIT10,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT10 

 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

 

D10NZ  MOVLW D'2'   ;MSD NOT ZERO SO ALL 3 DIGITS WILL BE 

SENT 

   MOVWF COUNT 

    

   MOVF DIGIT10,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGIT10 

 

   MOVF DIGITUNITS,W 

   ADDLW H'30'  ;HEX 30 IS ADDED TO CONVERT 

   MOVWF DIGITUNITS 

   RETURN 

;****************************************************************************

******************** 

;SEND 3,2, OR 1 DIGIT TO SERIAL PORT 

;****************************************************************************

******************* 

 

SENDDATA MOVLW D'3' 

   CPFSEQ COUNT  ;IS THE COUNT 3? 

   GOTO CHECK42 
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   MOVF DIGIT100,W 

   CALL XMIT_RS232 ;SEND 100'S 

   MOVF DIGIT10,W 

   CALL XMIT_RS232 ;SEND 10'S 

   MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

    

 

CHECK42  MOVLW D'2' 

   CPFSEQ COUNT  ;IS THE COUNT 3? 

   GOTO OUT1 

   MOVF DIGIT10,W 

   CALL XMIT_RS232 ;SEND 10'S 

   MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

 

OUT1  MOVF DIGITUNITS,W 

   CALL XMIT_RS232 ;SEND UNITS 

   MOVLW D'44'  ; COMMA 

   CALL XMIT_RS232 ;SEND COMMA    

   RETURN 

  

 end 

   

 

  



168 
 

7.7 Appendix G : Nitrious Oxide Flow Diagram 
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7.8 Appendix H : Manual Controler 

 

 
Figure 102: Hybrid Motor Controller wiring diagram 

 
Figure 101: Hybrid Motor Manual Controller 
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