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Abstract 
 
An autonomic system is defined as self-configuring, self-optimizing, self-healing, and 
self-protecting.  We implemented the Autonomic Cluster Management System (ACMS), 
a low overhead Java application designed to manage and load balance a cluster, while 
working at NASA GSFC.  The ACMS is a mobile multi-agent system in which each 
agent is designed to fulfill a specific role.  The agents collaborate and coordinate their 
activities in order to achieve system management goals.  The ACMS is scalable and 
extensible to facilitate future development. 
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Executive Summary 
The NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland 

supports the gathering and dissemination of knowledge about the Earth, solar system, and 
Universe.  GSFC’s primary responsibility is the development and operation of unmanned 
scientific spacecraft.  The successful completion of GSFC’s objectives often entails the 
solution of large computational problems, such as the modeling and simulation of 
complex systems.  Many of these problems are so computationally demanding that some 
form of High Performance Computing (HPC) is required to solve them. 
 Traditionally, Massively Parallel Processing (MPP) computer systems have been 
used to meet HPC requirements.  These systems may contain hundreds or thousands of 
processors within a single computer system.  MPP computers are usually very expensive 
and difficult to upgrade, but they perform extremely well and are relatively simple to 
manage. 

A recent trend in HPC has been to overcome the cost and scalability issues 
associated with MPP systems by using a different type of HPC system called a cluster.  A 
cluster is a collection of inexpensive individual computers, referred to as nodes, that are 
connected via a network and configured to appear as a single computer to its users.  
Increasing the computational capability of a cluster is as simple as adding nodes to the 
system, resulting in a highly scalable HPC solution.  The largest disadvantage of using a 
cluster is the complexity of its management and configuration.  Instead of administering a 
single computer, as with an MPP system, management and configuration tasks on a 
cluster must be performed on every node.  In a cluster comprised of hundreds or 
thousands of nodes management becomes a daunting task.  Manually configuring 
thousands of nodes is inefficient, if not impossible.  While an operating system may be 
able to optimize its own processes, it is not aware of the cluster as a whole and cannot 
coordinate its activities with the other nodes.  A severed network connection or an 
otherwise unresponsive node could cripple the cluster if it is not able to recover from 
failures.  Finally, unauthorized access to the cluster is a constant concern for system 
administrators. 

Autonomic computing is a relatively new approach to managing complex systems 
that can potentially solve many of the problems inherent in cluster management.  The 
definition of an autonomic system is one that is self-configuring, self-optimizing, self-
healing, and self-protecting.  Using these autonomic properties as a guide, we designed 
and implemented an Autonomic Cluster Management System (ACMS). 
 The ACMS is a mobile agent system composed of a number of agent processes 
communicating across a network of nodes.  Each agent is written to perform a particular 
task, and together the community of agents collaborates to achieve a common goal.  The 
common goal in the ACMS is to manage a cluster. 
 The ACMS is middleware that was written in Java and executes within the Java 
Virtual Machine (JVM).  The JVM is platform independent and runs on top of an existing 
operating system.  The ACMS can therefore be used on heterogeneous clusters, 
regardless of the operating system or underlying system architecture of each node.  The 
ACMS maintains a record of all nodes in the cluster, as well as comprehensive system 
information about each node.  The ability to maintain this record and handle the addition 
and deletion of nodes is what satisfies the self-configuring autonomic. 
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 Distributed applications running on the cluster are optimized by the ACMS.  It 
accomplishes this by examining each node’s record.  When the ACMS finds a node it 
deems available, the ACMS assigns new distributed applications to that node first.  The 
ACMS uses the load balancing algorithm to satisfy the self-optimizing property of 
autonomic systems. 
 The myriad of agents that compose the ACMS require a method for 
communication.  The communication system used by ACMS is TCP/IP encrypted by 
Secure Sockets Layer (SSL).  Encrypted communication prevents rogue agents from 
joining the system and satisfies the self-protecting property of autonomic systems. 
 The ACMS was built to be robust and handle the occasional fault or failure.  Each 
agent runs in its own JVM, so the failure of one agent will not affect other agents on the 
same node.  The ACMS contains redundant agents; these agents assume the role of their 
partner if it should fail.  The ability to handle failure and create new agents satisfies the 
self-healing property of an autonomic system. 
 Object Oriented (OO) architecture with encapsulation and inheritance was used in 
the design of the ACMS.  For example, code for the four agents is stored in the agent 
package.  The four agents are the ConfigurationAgent, OptimizationAgent, GeneralAgent, 
and UserAgent.  The ConfigurationAgent is responsible for maintaining the location of all 
agents and acts as a central contact point for the other agents in the ACMS.  The 
OptimizationAgent’s role is to decide how best to utilize the resources of the cluster.  The 
GeneralAgent is present on every node in the system and acts as an interface between the 
agents and the nodes.  The UserAgent is the user interface for the ACMS.  While the 
ACMS is running there are two GeneralAgents on each node, two ConfigurationAgents 
per cluster, one OptimizationAgent per cluster, and any number of UserAgents. 
 To evaluate the performance of the ACMS we devised a series of four tests.  The 
results of these tests reveal the overhead associated with using the ACMS to manage the 
execution of a distributed application.  The distributed application we used during the 
performance evaluation was a simple prime number calculator designed to find all prime 
numbers less than one million.  The first two tests were run with a single node, while the 
last two tests were run with five nodes.  The first trial in each set was with the distributed 
application alone.  During the second trial in each set we used the ACMS to manage the 
distributed application.  The results show that using the ACMS incurs only a small 
amount of overhead.  In the worst case scenario, which was when the ACMS and the 
distributed application were both running on one node, the ACMS caused less than 5% 
overhead.  When additional nodes are introduced into the cluster, the ACMS distributes 
itself among the nodes so that the performance impact on each node is reduced.  When 
the size of the cluster was increased from one to five nodes, the overhead associated with 
the ACMS decreased to less than 0.75%.  The results also show that when the size of the 
cluster increased from one to five nodes the performance of the distributed application 
increased by 458%, which is significant because of its proximity to the maximum 
theoretical increase of 500%. 
 During our time at Goddard we accomplished all of our project goals.  We 
designed and implemented an Autonomic Cluster Management System that incurs less 
than 5% overhead.  We were able to use the ACMS to demonstrate each of the four 
autonomic system properties.  GSFC can use the ACMS to educate NASA scientists and 
engineers about autonomic systems and their many potential applications, or use our code 
as a foundation for other advanced management systems.
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1. Introduction 
The National Aeronautics and Space Administration (NASA) has many sites 

throughout the United States.  Each site has different objectives with respect to research, 

space, and flight.  The Goddard Space Flight Center (GSFC) in Greenbelt, Maryland 

supports scientists and engineers learning and sharing their knowledge of the Earth, solar 

system, and Universe.  The primary objectives at GSFC are developing and operating 

unmanned scientific spacecraft.  Managed here are many of NASA’s Earth Observation, 

Astronomy, and Space Physics missions [1]. 

Scientists and engineers at GSFC often require significant computational power in 

the research and development of advanced technologies.  In the past, this capability was 

typically provided to researchers through the use of a single, powerful computer called a 

supercomputer.  Supercomputers are usually highly customized, have hundreds or 

thousands of processors, and are extremely expensive. 

A more recent trend in high performance computing has been to utilize a variation 

of a supercomputer called a cluster.  Clusters consist of tens, hundreds, or even thousands 

of individual computers that are interconnected to provide the functionality and 

computational capabilities equivalent to a traditional supercomputer.  Clusters are often 

less expensive than supercomputers because they can be constructed with widely 

available components and require comparatively little customization.  System scalability 

is another advantage clusters have over supercomputers.  While it is possible to upgrade a 

supercomputer, it is often a complex process involving the replacement of many internal 

components.  In a cluster, however, simply adding computers to the system can increase 

computational power. 
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With the considerable power and scalability of a cluster comes an increase in the 

complexity of deploying and maintaining the system.  Instead of configuring and 

performing administration tasks on a single computer, this process must be repeated on 

hundreds or thousands of computers.  Special tools and software packages are required on 

large clusters to effectively maintain their operation.  However, existing cluster 

management solutions are often not dynamic enough to react to changes in large clusters.  

For example, if a single computer in the cluster is responsible for delegating tasks to the 

rest of the cluster, and that computer becomes unresponsive, the entire cluster would be 

rendered ineffective.  Considerations such as this must be made when designing cluster 

management systems. 

A possible solution to the management problem has been proposed by 

International Business Machines (IBM).  IBM has begun an initiative to develop self-

managing systems so that the need for human intervention in complex systems will be 

reduced.  Autonomic computing is defined by IBM as “An approach to self-managed 

computing systems with a minimum of human interference.  The term derives from the 

body’s autonomic nervous system which controls key functions without conscious 

awareness or involvement" [2].  Specifically, autonomic systems must be self-

configuring, self-optimizing, self-healing, and self-protecting.  These properties of 

autonomic systems allow them to adapt to changing operating environments and system 

demands, and to be fault-tolerant.  All are essential abilities for an effective management 

system. 

GSFC has recently begun joint collaborative work with IBM, researching and 

designing systems with autonomic capabilities, and has determined that an autonomic 

approach to cluster management would be a practical application of autonomic 
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computing.  To demonstrate the advantages of autonomic computing we designed and 

implemented an Autonomic Cluster Management System (ACMS).  Conforming to the 

principles of autonomic computing, the system configures itself, optimizes its resource 

usage, repairs components of the system that have stopped responding, and protects itself 

from unauthorized access.  The cluster management system we developed is able to 

demonstrate the capabilities of an autonomic system using realistic operational scenarios.  

As the system became more functional, we were able to speak with several employees of 

IBM that were interested in the research being done on Autonomic Systems.  We 

submitted a whitepaper to Patricia Rago and Dragana Kostic of IBM, which can be 

viewed in Appendix I. 

We conducted performance evaluations on the ACMS after its completion to 

determine its functionality, effectiveness, overhead.  The maximum overhead caused by 

the use of the ACMS remained under 5% throughout all tests, and we found that it 

seemed to scale well and was quite robust.  We created a user guide for the ACMS (See 

Appendix E), as well as documentation for implementing distributed applications that can 

be managed by the ACMS (See Appendix D).  Throughout the development of the 

ACMS we documented all of our code to facilitate future development (See Appendix J).  

The ACMS could be used in the future by GSFC as the foundation for a more advanced 

system to manage its large clusters or to further explore the role of autonomic systems in 

distributed computing environments. 
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2. Background 
This chapter presents fundamental information about our project.  We begin the 

chapter with an overview of the properties and topologies of distributed systems.  Next, 

we provide an introduction to cluster and grid systems.  Following the discussion of 

distributed computing, we provide information on the various network protocols that are 

commonly used in distributed systems.  We then discuss agent-based systems and their 

role in distributed systems.  The chapter concludes with a definition of autonomic 

computing and the properties that all autonomic systems must possess. 

 

2.1. Distributed Systems 
 A distributed system is defined as any system whose components can be executed 

concurrently on discrete computer systems [22].  The discrete computer systems that 

comprise the distributed system are referred to as nodes.  There are several requirements 

to consider when designing an application for a distributed system.  Basic design 

decisions include the division and distribution of data and code, the communication 

protocols, multithreading requirements, and system security. 

 An objective in designing a distributed system is to decide how to partition the 

system's components into modules that can be executed independently on different nodes.  

The division of components into modules is usually done in one of two ways.  The first 

partitioning method is to maximize the use of data that is local to each node, thereby 

minimizing transfers over the network.  This method is most often used when there is a 

restriction imposed on the network traffic or when the time required transferring all 

necessary data is a significant percentage of the total time required to complete the task.  

The alternate approach is to encapsulate any necessary data and code into a module, 
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which is then transferred over the network to the node.  The second approach is 

traditionally used in compute-intensive tasks, in which the node spends the majority of its 

time executing code. 

 The design of the communication protocols depends largely on the method used 

to partition the system's components.  If all of the data is available locally to each node, 

we can limit communication to only messages between the nodes, and not data.  

However, if data and code is to be transferred between nodes it is necessary to have 

robust protocols that are capable of exchanging abstract data types or even objects 

themselves.  These protocols must be able to guarantee the integrity of all transferred 

data.  Regardless of how these protocols are designed, it is important for them to be 

extensible and flexible to accommodate new functionality or modifications in the future. 

 Multithreading is often implemented in order for the system to achieve its 

maximum efficiency, reliability, and availability.  Using multiple threads of control 

simultaneously allows the system to optimize its resource usage and leverage the full 

potential of each node.  Multithreading also allows the system to have asynchronous 

properties.  Asynchronous communication in particular is important because delays in 

response time caused by a heavy load on one node will not deteriorate the system as a 

whole.  Data can be transferred and responses handled at the maximum rate for each 

node, even if these rates are different among nodes. 

 Security is an important consideration when a distributed system is accessible 

from an untrusted network or has a wide user base.  Any sensitive data that needs to be 

transmitted over the network should be protected.  Encryption is a common method for 

securing sensitive data as it is sent between nodes.  An additional security measure is to 

authenticate each transaction so that the system knows a particular node or application is 
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trusted prior to transmitting sensitive data or accepting commands [13]. 

 

2.2. Decentralized Systems 
 The distributed computing environment consists of different topology designs.  

The Internet in the past has consisted of many centralized systems; however, the 

decentralization of the Internet has begun through peer-to-peer programs.  There are four 

common architectures used in the design of a distributed system; the four topologies are: 

centralized, decentralized, hierarchical and ring.  Each of these topologies can be 

displayed on its own or combined with others to form hybrid patterns.  Distributed 

systems can be described with seven properties says Nelson Minar; these are listed as 

“manageability, information coherence, extensibility, fault tolerance, security, resistance 

to lawsuits and politics, and scalability” [4].  With each property he can then rate the 

system showing how a specific design will perform.  Observing each of the patterns, the 

centralized and decentralized topologies both have attributes closely related to the 

functionality displayed in our autonomic system design.  The major contrast between 

these two topologies is the orientation that nodes are connected to one another. 

 

2.2.1. Centralized Topology 

 The centralized topology has been the most common form used in applications.  

The design is typically seen as a client/server pattern used by applications such as 

databases, web servers and other simple distributed systems.  A centralized system 

functions by having one server node with many clients each connecting directly to the 

server.  Each client connects to the server to send and receive information.  The server 
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would be the location which would dispatch application requests and store any types of 

databases containing information. 

 Using the evaluation scheme designed by Nelson Minar [4], it can be seen that the 

primary advantage of a centralized system is with its simplicity.  All data is located in a 

central node; this allows for the system to be easily managed and the consistency of data 

correct and coherent.  Centralized systems can be easily secured; only one host needs to 

be protected.  The major feature allowing for simple manageability also causes a 

downfall in the design, which is that all the data is in one location.  The system is not 

fault tolerant; if the main node fails the whole system is no longer functional.   

 The system cannot be easily extended; information can only be added to the 

central system.  The limitations of the system are placed on the capability of the central 

server, proving that centralized systems are almost impossible to scale. 

 

2.2.2. Decentralized Topology 

 A decentralized system topology functions with almost completely opposite 

characteristics of a centralized topology.  In this design all peers communicate 

symmetrically and have equal roles in the system.  This type of system is most commonly 

seen in peer file sharing programs [4].   

 Unlike with a centralized system, decentralized systems are normally very 

difficult to maintain and data within the system is never fully authoritative.  Since every 

node may contain data regarding the system and information being processed, a 

decentralized system becomes very hard to keep secure.  However, decentralized systems 

are very easy to extend.  New nodes can easily join the network and start communication.  

The fault tolerance of a decentralized system is much greater, there is no central point of 
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failure; the failure or shutdown of one node in the system does not affect any other nodes 

in the system.  

 Scalability of a decentralized system in theory becomes more capable as more 

hosts join the network.  Although in practice, algorithms that keep decentralized systems 

coherent often carry a lot of overhead.   

 

2.2.3. Centralized + Decentralized Topology 

 Combining these two topologies forms a hybrid centralized and decentralized 

design.  This topology architecture is built of centralized systems embedded in 

decentralized systems.  This type of system can be seen in how mail clients have a 

centralized relationship with a specific mail server, but the mail servers share email in a 

decentralized manner [4]. 

 The hybrid system is able to enjoy the advantages of both the centralized and 

decentralized designs.  Decentralized systems contribute to the extensibility, fault-

tolerance and possible large scaling of the system.  The partial centralization makes the 

system more coherent than a purely decentralized system.  There are fewer hosts that are 

holding authoritative information.  Faults of this system are that manageability is still as 

difficult as with a decentralized system and the system is no more secure than previously.  

A large advantage with this system is how easily it scales.  The design can easily handle 

hundreds of millions of users, as seen with Internet email.   

 

2.3. Beowulf Clusters 
 A Beowulf cluster is a network of computers configured to behave as a single 
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supercomputer [5].  The computers that compose a cluster are referred to as nodes.  The 

power of a cluster is influenced by two factors, the number of nodes and the speed of 

those nodes.  A Beowulf cluster is a specific network topology; a cluster’s nodes are 

isolated from the outside world and work collaboratively to solve large tasks by sharing 

resources.  The operating system used on a cluster is typically Linux and is configured to 

maximize throughput rather than responsiveness.  The first Beowulf cluster was built at 

GSFC in 1994 [5].  The clusters at GSFC have been upgraded as new technology became 

available and are still in use today solving computationally complex problems for 

scientific research. 

 

2.4. Grid Computing 
 A “grid” is a type of parallel and distributed system that enables the sharing, 

selection, and aggregation of geographically distributed "autonomous" resources 

dynamically at runtime depending on their availability, capability, performance, cost, and 

users' quality-of-service requirements” [11]. Grid Computing focuses toward Resources 

on-Demand (RoD), which is the practice of allocating resources across a distributed 

network transparently, with as little delay as possible [10].   Grid Computing solves 

issues related to latency, security, and packet failure that are not typically addressed in 

local area network cluster designs.  Henri Casanova states that research is still required in 

Grid Computing, more specifically the “dissemination of and access to data and 

information” [2].  Research in Grid Computing has brought about the consensus among 

scientists that a set of standards must be created in the form of an Application 

Programming Interface (API) and a Software Development Kit (SDK).  Using these tools 

scientists should be able to create Virtual Organizations (VO) that are analogous to the 
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Beowulf clusters discussed previously, except that its members are located on a WAN 

instead of a LAN [2]. 

 

2.5. Network Protocols 

There are several ways to implement peer-to-peer communication across a 

network.  The Transmission Control Protocol (TCP) and the User Datagram Protocol 

(UDP) are the most common network protocols used by applications [6].  The specific 

use of these protocols depends on the type of communication that an application needs.  

TCP is a reliable and robust protocol that is often used in peer-to-peer network 

connections.  When it is necessary to send a message to multiple hosts simultaneously, 

UDP is frequently used because of its broadcasting and multicasting capabilities. 

 

2.5.1. TCP 

TCP is a connection-oriented, reliable protocol for data transmission.  TCP 

guarantees that all packets will arrive at their destination in sequence and error free.  A 

TCP connection is comprised of three phases: connection establishment, data transfer, 

and connection termination. 

In the connection establishment phase, a client will send a request for a 

connection to a server listening on a known address and port.  The server will then reply 

that the connection request has been acknowledged.  The final step in this phase involves 

the client sending an acknowledgment back to the server that the connection has been 

established.  The three steps in the connection establishment phase are traditionally 

referred to as the three-way handshake. 
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TCP uses three primary mechanisms for ensuring reliability during the data 

transfer phase.  A sequence number attached to each packet is used to order the packets 

correctly and to detect any duplicate data transmission.  A checksum is used to detect any 

errors in the packet that may have occurred during transmission. The checksum is a 

number that is generated based on the data in the packet; if any bit in the packet changes, 

the checksum will be different.  The checksum is generated just before the packet is sent, 

then appended to the packet.  When the packet is received, the checksum is generated 

again and compared to the checksum that was sent with the packet.  If they do not match, 

an error has occurred and the packet will be resent.  In addition to errors at the bit level, 

occasionally an entire packet may be lost.  Acknowledgments and timers are used to 

detect data loss during the transfer.  An acknowledgment is sent for each packet that is 

successfully received.  If this acknowledgment is not received within a defined time 

period, the sender assumes it was lost during transmission and retransmits that packet. 

The connection termination phase is similar to the connection establishment 

phase.  The client will send a connection termination request to the server.  The server 

acknowledges the request, and then sends its own termination request to the client.  The 

client acknowledges the request, and the connection has been terminated.  The result of 

TCP's many safeguards and checks is a reliable, error-free data exchange.  However, this 

reliability comes at the price of considerable overhead compared to less reliable protocols 

such as UDP [6]. 

 

2.5.2. SSL 

Secure Sockets Layer (SSL) is a protocol for encrypting communications over a 

TCP connection.  It utilizes the concept of public key cryptography.  This type of 
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authentication uses both a public and a private key, known collectively as a key pair.  The 

public key is made available to anyone who wants to communicate securely.  The private 

key, however, is never distributed.  Data that is encrypted with the private key can only 

be decrypted with the public key.  Conversely, data that is encrypted with the public key 

can only be decrypted with the private key.  When a secure transmission needs to occur 

the sender, which we will call A, will first make its public key available to the receiver, B.  

A then encrypts the data using its private key and sends the encrypted data to B.  B can 

then decrypt the data by using A's public key.  If B needs to send data back to A, it can 

encrypt the data with A's public key, then send it to A.  A will be able to decrypt the data 

with its own private key [8, 9]. 

 

2.5.3. UDP 

UDP is a connection-less, best-effort protocol for data transmission. It does not 

guarantee error-free transmission or that packets will arrive in the correct order, as TCP 

does.  Additionally, there is currently no high level encryption layer for transmissions 

sent over UDP.  Although UDP is not as robust and reliable as TCP, UDP has much less 

overhead. 

 Another advantage of using UDP is its ability to send broadcasts and multicasts.  

A broadcast is a transmission that is sent to all nodes on a network with a single 

transmission.  A multicast is a subset of a broadcast.  While a broadcast will be sent to all 

nodes on the network, a multicast is only transmitted to a smaller group of nodes within 

the network, called a multicast group [7]. 
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2.6. Multiple Agent Systems 
 Research into Multi-Agent Systems has been conducted alongside research in the 

areas of cluster and grid computing.  Multi-Agent Systems are distributed applications 

where a group of entities called agents interact to reach a common goal.  An agent is an 

application running on a computer, programmed to accomplish a single goal.  In an ideal 

Multi-Agent System the agents have different roles that define the agent providing a goal 

and objectives; therefore the dissemination of information is decentralized so that every 

agent only requires a sub-section of the total information regarding the system.  This 

forces the agents to work in a collaborative manner and trust the other agents in the 

system to accomplish a given task. Multi-Agent Systems are flexible and robust because 

they do not rely on any single structural crutch.  If a failure does occur in the system, the 

unaffected agents can continue to communicate and conduct work uninterrupted, 

although at a diminished capacity [13]. 

 

2.7. Mobile-Agent Systems 
 Multi-Agent Systems provided the groundwork for the development of Mobile 

Agent Systems.  Mobile Agent Systems are a type of Multi-Agent System where the 

agents are not fixed to a particular location.  The agents have the ability to move from 

one to location to another, both physically and logically.  Mobile Agent Systems such as 

grasshopper [23] allow an agent to move from one node to another by traveling across 

TCP/IP in a serialized state.  The agent can then be instantiated on the remote machine 

and its threads resumed.  A logical movement in location is where agents are able to 

move from one logical grouping of agents to another.  If agents can move from one 

multi-agent system to another then communication and collaboration can be gained from 
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multiple systems each containing its own community of agents.  A constraint of moving 

agents around in the system is that all agents must have a common language; the 

language of consensus in the mobile agent community is that of Java [13]. 

 

2.8. Autonomic Computing 
 The word autonomic is defined as “acting or occurring involuntary; automatic: an 

autonomic reflex” [14].  Autonomic computing is derived from an aspect of the human 

body; the nervous system.  The human body regulates itself and reacts without conscious 

effort often; this process often being referred to as a reflex.  The concept behind 

autonomic computing is to build a nervous system for a computer that can recognize 

everyday Information Technology (IT) events and react with the appropriate reflex 

response [2].   

The four core autonomic properties an autonomic system exhibits are self-

configuring, self-healing, self-optimizing, and self-protecting.  IBM is currently 

coordinating a large effort to further research on Autonomic Systems around the world 

[14].  Goddard is one of many scientific institutions to join with IBM in this endeavor.  

IBM has defined autonomic systems by outlining eight elements that make up an 

autonomic system: 

1. An autonomic system must be aware of where it is located and what resources are 

available to it.   

2. An autonomic system must be able to adapt to changes in its environment; 

reconfiguring itself and its resources, as necessary.   

3. An autonomic system is never satisfied with its performance; it is constantly 

searching for optimizations in order to improve its performance.   
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4. An autonomic system must be able to recover from failure or extraordinary 

events.   

5. An autonomic system must be able to defend from outside attacks.   

6. Autonomic systems must be able to adapt to their environment, but also have the 

ability to change the environment in order to adapt to the system.   

7. The implementation of an autonomic system must be open and support a 

heterogeneous set of platforms.   

8. Autonomic systems need to accomplish their tasks while making the details of 

their operations transparent to the user.   

This list of elements acts as a blueprint for the design and implementation of autonomic 

systems [14]. 

An autonomic system built along IBM's blueprint must also contain a MAPE 

loop.  Another development concept from IBM, MAPE stands for Monitor, Analyze, Plan 

and Execute.  This is how an autonomic system must behave.  First monitor the situation 

and gather data, second analyze the data for trends, third generate a plan of action, and 

fourth execute the plan.  Central to the four steps is knowledge.  Knowledge is collected 

while the system executes and is used to influence decisions in later MAPE loops.  In this 

manner the system gains knowledge during each loop and is able to learn from its past 

experience.  This allows the autonomic system to adapt and evolve over time [15]. 

    IBM developed several systems incorporating autonomic properties commercially 

available today.  One application is Tivoli.  Tivoli is a suite of applications targeted at 

bringing autonomy to IT management in enterprise business.  Each individual application 

in the suite incorporates one or more autonomic properties.  This is where the most 

current developments in autonomic systems are present today.  None of the applications 
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fulfill IBM's definition for an ideal autonomic system; however each application is a step 

closer to building that ideal system [16]. 

 IBM has broken down the development of autonomic systems into five distinct 

levels.  The levels are in increasing complexity and flexibility: basic, managed, 

predictive, adaptive and autonomic.  The basic level is where the aspects of a system are 

monitored and managed by an IT team full-time.  The team is responsible for finding 

problems, researching solutions, and fixing the errors.  The managed level refers to a 

system that can summarize its own environment.  The system is able to provide the IT 

team with comprehensive performance information and the location of errors.  At the 

third predicative level the system can recognize patterns informing IT managers a 

problem could occur, so they can act before the problem can manifest.  The system also 

has the ability to provide the IT managers with a list of possible solutions to correct the 

problem.  At the fourth adaptive level, the system not only suggests a solution but 

executes it as well.  A system at the fifth and final level is autonomic.  An autonomic 

system is capable of performing all the functions of the first four layers as well as being 

dynamic; the system must be dynamic and be able to evolve with a business and its goals 

[17]. 

A survey conducted by IBM in 2003 found that 40% of the market was at the 

basic level with only 1% reaching the autonomic level in 2002.  IBM extrapolated upon 

this data and predicts that by 2006 only 19% of the market will be in the basic level with 

5% using autonomic systems.  IBM presents these levels as a five step plan for evolution 

of future software, with the distribution of true autonomic systems as the goal [18]. 
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2.9. Summary 
In order to fully understand our project and the need it addresses it is necessary to 

be familiar with several topics in computer science: high performance computing, 

distributed systems and applications, multi-agent systems, and autonomic computing.  

We first researched autonomic computing to understand how the self-configuring, self-

optimizing, self-healing, and self-protecting properties were applied to existing systems.  

To learn about the application of autonomic principles we researched some of IBM's 

actual products that exhibit autonomic properties.  We then began researching clusters 

and distributed computing as a potential application of autonomic computing principles.  

It is clear from our research that distributed systems, such as clusters, can present unique 

challenges in regard to management and maintenance.  It was our opinion that autonomic 

principles could be an effective response to these challenges.  Once we had decided on 

designing an autonomic management system for clusters we were able to define our 

project statement and goals.
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3. Problem Statement 
The goal of our project is to design a system displaying the autonomic properties 

in a multi-agent environment using distributed computing across the agents.  Within the 

context of our overall goal, we developed several objectives.   

 

3.1. Determine a programming language 
 Java was originally chosen as the language to use for this project to allow easy 

integration with two toolkits we considered using, Madkit and the Log and Trace 

Analyzer plug-in.  Both of these applications have since been determined unnecessary for 

the project.  Re-evaluating the language choice we looked into numerous languages 

narrowing down the spectrum to C++ and Java, which are two languages that well suit 

our needs.  The system has certain requirements; handling and easily building an object 

oriented environment, the use of a well organized and useful development workspace, 

and easy integration to the department’s CVS which maintains revisions of the code and 

allow simple integration.  The possibility to run the application on multiple platforms 

with ease is another feature that would provide additional scalability and ease of use for 

future users; rather than having to recompile for each operating system since both 

Windows and Linux systems are being used during development.   

 

3.2. Evaluate toolkits and applications 
 We evaluated a variety of toolkits and applications that dealt with different 

aspects of autonomic computing.  Among the applications were a Log and trace analyzer 

plug-in, a multi-agent development environment called Madkit, and the Eclipse 

development workspace.  We also looked into finding an application or plug-in for UML 
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design that would analyze the class diagrams and produce code.  Research was conducted 

to find the best method of developing an autonomic system of agents; and which 

applications would provide the most assistance during the development stages.   

 

3.3. Define each of the four attributes 
 We researched into others companies that have begun research and development 

in the field of autonomic systems and how they defined the four attributes.  The best 

examples we found came from IBM; they have begun integrating autonomic components 

into their servers.  Using IBM as a model, we came up with our own set of definitions of 

how each attribute would act within the system, its functionality and how it would 

exemplify the specific characteristics of autonomic computing.   

 

3.4. Design of the System 
 Once each attribute was well defined, as to how it relates within the system, we 

determined how the agents would act within the system.  This included determining 

which attributes would be actual agents acting autonomously in the multi-agent 

environment and which attributes would act as properties on the entire system.  Along 

with the agents we determined that a messaging system was needed to communicate 

across the network between agents.   

 

3.5. Design of the Agents 

Unified Modeling Language (UML) class diagrams were created to map out the 

structure of the agent system.  Since each agent will have a particular functionality and 
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relationship with the other agents it is necessary to determine each agent’s functionality 

before beginning to program.  The diagram also planned out the actions each agent will 

perform, helping to organize the system structure and helps to prevent major structural 

changes later in development.  

 

3.6. Design of the Message system 

 UML class diagrams were also created to organize the messaging system and the 

different types of messages that could potentially be sent across the network to each of 

the agents.  The system needed a way to send and receive messages between agents.  

There are a variety of methods to send messages; the ones taken into consideration were 

the TCP/IP protocol, multicasting to groups of subscribing agents and broadcasting 

messages to an entire subnet on the network.   

 

3.7. Program each of the four attributes 
 We looked into different programming techniques and methods to help with the 

implementation of the four autonomic attributes.  The iterative design process was 

observed as a process we could follow for creating and implementing subsystems in the 

packages.  We also used the UML diagrams to determine the importance and order each 

subsystem would be completed and tested for functionality.  

 

3.8. Design the agents to interact with each other 

 There are multiple means for communication between agents.  TCP/IP provides a 

secure connection with error checking to ensure all information arrives at the destination 
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correctly, also allowing for secure connections to be instantiated.  However, with this 

additional functionality there is a great deal more overhead.  Using TCP/IP, the IP 

address of the destination agent server must be known; however in some cases this cannot 

be determined.  There are also two other protocols for sending to many agents if an IP 

address is unknown.  Both broadcasting and multicasting messages are options.  Both are 

flawed since no encryption can be used and both transmit over UDP.  Broadcasting a 

message would go out to everyone on a particular subnet, whereas multicasting would be 

sent to a specific known address in which agents would need to subscribe.  Agents that 

have subscribed to a particular multicast address would receive any messages sent to that 

address.  The UDP protocol is used in both broadcasting and multicasting information.  

The UDP protocol is connectionless and therefore does not provide any assurance that a 

packet will arrive at the destination.  UDP could also be used in place of the TCP/IP 

protocol when an address is known; this would be the case if faster communication is 

needed and packet loss is not a major concern.   

 

3.9. Design the agents to act as a distributed system 

 The agents are programmed so that they can survive and function on their own.  

However they still communicate and relay information between each other.  In this case 

the agents act similar to a distributed system, in that they perform actions on their own 

and communicate results to help improve the performance of the system as a whole.  

 

3.10. Design the agents to manage a distributed computing 
environment 

 The agents’ main goal is to manage the processes on a distributed system.  This 
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allows for computing of a program to become more efficient.  The agents are designed to 

utilize the maximum processing power from the cluster of computers.  The agents are 

able to load balance by moving processes running on computers from one system to 

another trying to improve overall performance.   

 

3.11. Test the system 

 In order to show that the system works correctly test scenarios were written up to 

display to a user each of the attributes.  The test scenarios are necessary to show 

communication between agents and allow others to see how the system works but also to 

find any bugs hidden in the system.   
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4. Methodology 
There were several steps we followed to achieve the goals outlined in our 

Problem Statement (See Chapter 3).  We first made basic design decisions about the 

system, such as the programming language and development environment that we would 

use.  We then evaluated existing tools to determine if they would be useful in our project.  

Before design began on the system, we specifically defined each autonomic property and 

how would be applied to the system.  We then began designing the system outlining a 

high level design of the system with UML diagrams.  Once the system was documented, 

implementation of the design began.  We strived to keep the system always at a 

functional state so that continuous testing could be done finding any unforeseen 

problems.  

 

4.1. Choosing a Programming Language  

 The system we developed required a high level language, one that supported 

multi-threading, networking, and portability.  Multi-threading is required in order for the 

agents to multi-task.  Networking support is fundamental to our language choice because 

the agents must be able to communicate to each other.  Portability is important because 

we want to support heterogeneous clusters.  We quickly narrowed the possibilities to the 

two most popular Object Oriented (OO) languages, Java and C++.  We carefully weighed 

the merits of each language against the goals of our project.  C++ provided easy access to 

system information and a fast runtime.  However, it was not platform independent and 

would require us to write system specific code for each possible architecture and 

operating system.  Java, on the other hand, provided platform independence at the price 

of speed.  Another benefit of Java over C++ was garbage collection and a well-
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documented Application Programming Interface (API).  Additionally, the Java Virtual 

Machine (JVM) handles fatal errors gracefully.  It allows us to restart the process without 

harm to the underlying system, which might not be possible if we used C++.  With this 

research taken into consideration the language used for our application was Java.  Java 

met more of the requirements set when determining a language for development. 

 

4.2. Evaluating toolkits and applications 
 With Java chosen as the development language for this project we began looking 

into different tools and applications that would help in the development of the system.  

There were a variety of tools and applications that were useful in different aspects of the 

system.  Among the applications were Madkit, a Log and Trace Analyzer, Eclipse, a CVS 

server, and Linux.  Madkit is a development tool for multi-agent environments; the Log 

and Trace Analyzer is used to discover problems in a distributed web server; Eclipse is an 

IDE for Java; the CVS server allowed for group collaboration on code development; 

Linux was used as the operating system for development and deployment of the system. 

 

4.2.1. Linux 

 Development began using the Windows platform; however problems arose while 

using Windows that forced a switch to Linux.  During development the use of GUI’s to 

display error messages and program information was used.  This became very useful but 

also meant that many more resources were being used which lagged Windows.  This 

problem did not arise when run on Linux and therefore development was moved off 

Windows and onto Linux platforms.  Another issue found was the collection of system 
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statistics.  Java can only determine the JVM’s available memory, along with other 

statistics regarding the JVM.  Using Linux allowed easy access to the system statistics 

because this information is stored in files in the /proc directory.  Information from the 

/proc files can be collected and parsed to gather the necessary information.   

 The other reason for converting to Linux was that Windows was unable to handle 

the necessary number of instances of Java we required.  During testing, we found that 

after three to four instances of Java were opened the system began lagging and 

calculations, such as the timers, were lasting much longer than intended.  This failure is 

inadequate for our system because upon startup the program will require five agents, and 

therefore five instances of the JVM, on one system.  Further testing on Linux showed that 

the program performed as expected when run on Linux.  Each instance was opened when 

expected and no lagging was noticed. 

 

4.2.2. Eclipse 

 We chose Eclipse [24] as our development environment because it is very robust, 

and is open source software.  Eclipse offers a wide variety of plug-ins that can be used if 

necessary.  The Log Trace Analyzer is an example of an Eclipse plug-in; other types of 

plug-ins allow for development in other languages, such as C++.  The application is also 

very easily navigable, organizing the packages and classes along with generating source 

code.  Eclipse includes functions that can generate repetitive source code such as 

constructors and private variable getters and setters.  Along with generating the source, it 

includes headers formatted for Javadoc and the ability to refactor the code if variables or 

names need to be changed; this increases productivity, allowing focus to be on the main 

system rather than creating and maintaining repetitive code.  Eclipse also easily integrates 
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with the CVS server used in our department.   

 

4.2.3. CVS Server 

 Once programming began we realized that it would be very difficult for each of us 

to maintain our own code, and then try to integrate all of the code into one set of files.  

We began looking into different options such, as network shares or version control, 

which a CVS server provides.  The use of the CVS server allows for each of us to code 

and then easily integrate the code back into the set of files maintained by the server.  The 

server also maintains old versions of code that allow all previous changes to be viewed in 

the case that errors are inadvertently introduced.  Eclipse allowed us to easily determine 

the code changes that resulted in errors [25].  

 

4.2.4. Madkit 

 Madkit was originally suggested by Walter Truszkowski as an application to 

investigate, as it could be useful for the project.  It is a “Java multi-agent platform that 

provides General Agent facilities (lifecycle management, message passing, and 

distribution) and allows high heterogeneity in agent architectures and communication 

languages” [26].  From the start it looked like we would use Madkit to develop the 

system.  However after a more in-depth investigation of the software we found that it has 

a lot of downfalls.  It seems that to run the source code, Madkit must be installed on the 

system.  This would not be beneficial to the system we are developing if every node 

required Madkit; Madkit would need to be installed on every computer wanting to join 

the system and Madkit may also require the use of a graphical interface.  Installing 

Madkit on every computer would require much more time and also make the 
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development process more complicated.  Using a graphical interface would mean that a 

larger portion of the memory would be used to run the system rather than devoted to the 

applications run by users of the system.  Also we are trying to conserve processing power 

for the application being maintained by the agents, therefore using large amounts of 

processing power and memory to maintain an instance of Madkit on each system would 

produce negative results.   

 One other advantage we thought Madkit would provide was the ability to handle 

multiple agents in an environment; controlling their actions and communication between 

one another.  However, it seems that the application does not allow for communication of 

agents over a network, only within one system.   

 Since Madkit is incapable of communicating over a network along with the extra 

baggage it needs to run the code on a system; we concluded that Madkit does not provide 

any necessary extra features that would save time during development.  Coding the 

agents and messaging system without any application needed to manage them also 

provides us with much more flexibility in designing the objects to fit the system rather 

than designing to fit the Madkit application needed to run them.   

 

4.2.5. Log and Trace Analyzer plug-in 

 The final application we investigated was a plug-in for Eclipse called the Log and 

Trace Analyzer [27].  This tool seemed to provide useful features toward developing an 

autonomic system, being that it maintained logs of anything that occurred on a system; 

then allowing for analysis of the logs to find flaws or problems that were occurring.  This 

would allow for the problems to be fixed before fatal errors occurred which would crash 

the system.   
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 The downfall with this tool is that it only worked for a web server.  Since we are 

not limiting the agents to maintaining a web server the application was not useful.  The 

features would have been useful, however it seemed the application could not be easily 

converted to work with any type of system that it was introduced, rather was very limited 

with what it maintained.  Once this was realized, we decided to perform all the analysis 

on our own rather than depending on this or a similar application.   

 

4.3. Applied Autonomic Attributes 

 The purpose of our Multi-Agent system was to demonstrate the four autonomic 

properties; we defined each attribute in the context of our project.  The four autonomic 

attributes are self-healing, self-configuring, self-optimizing and self-healing (See 

Appendix C).   

 

4.3.1. Self-Protecting 

 We defined the property of “self-protecting” as security; our system had to be 

self-protecting by using secure communication and preventing rogue agents from joining 

or monitoring the system.  We decided to realize this goal by using Secure Sockets Layer 

(SSL) with RSA encryption.   

 

4.3.2. Self-Healing 

 The property of “self-healing” was defined as resilience to failure.  Our system 

had to incorporate the ability to handle the failure of an agent or node by spawning new 

agents to replace those that fail.  This was designed as a fundamental principle in the 
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agent framework, as every agent has the ability to spawn other agents.  Although this is 

true, we recommend that only General Agents spawn new agents to eliminate any 

confusion regarding which node a new agent will be located. 

 

4.3.3. Self-Configuring 

 The property of “self-configuring” was embodied in an object called the 

Configuration Agent.  The Configuration Agent maintains the status of the system and 

knows where all nodes are located.  He is responsible for ensuring the system is 

configured correctly and in an operational state.  

 

4.3.4. Self-Optimizing 

 The property of “self-optimizing” was given an entire agent as well.  The 

Optimization Agent uses the information gathered by the Configuration Agent to 

determine load management of applications and agents.  One of its primary roles is to 

ensure that the two Configuration Agents are always on separate nodes, except in the case 

of a single node, so that if the node fails the system can recover. 

 

4.4. High Level Design Overview 

 We designed the ACMS to be a multi-agent system, and as such is composed of a 

multitude of agents.  While the ACMS system is built to support any number of agents, 

there are three types of agents that make-up its foundation.  These agents are the 

backbone of the ACMS and must be present in the system at all times in fixed numbers.  

The first type of agent is the Configuration Agent.  This is the agent responsible for 
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maintenance of the ACMS and there must be at least two Configuration Agents active at 

all times.  The second agent is the Optimization Agent whose role is to load balance the 

cluster; there is one and only one Optimization Agent active at any given time.  The third 

and last agent is the General Agent.  The General Agent is replicated throughout the 

system as more and more nodes are added. Its role is to keep track of a node's statistics 

and start and/or stop processes.  There are always two General Agents on every node in 

the cluster.  So the number of General Agents in the cluster is equal to the number of 

nodes multiplied by two. 

 The agents will communicate by passing messages back and forth.  These 

messages can be contain text and data objects.  It will travel over standard Ethernet from 

agent to agent.  The messages will be encrypted using RSA encryption.  The agents 

handle the messages by parsing the text contained in the message.  

 Another integral module of the system is the database.  The database is where 

information on every node is stored such as system performance and location.  The 

database was designed to hold approximately one hundred nodes, although it can hold 

any number with a drop in performance proportional to the number of additional nodes.   

 The ACMS is designed to run distributive processes on the cluster and allocate 

resources as necessary.  In order to run these processes, which we will refer to as 

applications, requires the applications to meet specific criteria.  These criteria define 

where the application and ACMS interact and at the implementation level is an interface.  

All applications run on the ACMS must implement this interface so that the agents can 

start, stop, pause, resume and move the applications while they are running. 

 For further development of agents in the ACMS a built-in debug tool is provided.  

There is a debug console which any agent can create and send output to be displayed.  It 
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comes complete with a text area and a button to terminate the agent, killing the virtual 

machine as well.  This feature allows you to add print statements to your code for 

debugging purposes when a console is normally not available. 

 

4.5. Agent Design 
 The system consists of three types of agents; each has functionality exemplifying 

autonomic system properties.  The three agent types we designed are called General 

Agents, Optimization Agents, and Configuration Agents.  The ACMS is comprised of 

two Configuration Agents and one Optimization Agent per system, and two General 

Agents per node.  The agents’ goal is to manage a distributed application while 

maximizing its performance by implementing load-balancing techniques on the system. 

 

4.5.1. Configuration Agent 

 The purpose of the Configuration Agent is to make the system self-configuring.  

The functionality of the Configuration Agent consists of maintaining a current list of all 

the agents in the system and making this information available to other agents.  When an 

agent first comes on-line it broadcasts to the Configuration Agent's multicast address 

stating that it has joined the system.  When this message is received, the Configuration 

Agent examines the table to ensure that the new agent is needed.  For example, if there 

are already two Configuration Agents in the system and a third comes on-line, the system 

might become unstable.  If the new agent does not belong in the system, a termination 

message is sent back to the agent.  The Configuration Agent cycles through the database 

of agents asking each if it is still functioning properly.  If the Configuration Agent is 



 
 
 
 

32 

incapable of establishing a connection with an agent, it can be assumed that the agent is 

no longer functioning correctly and will therefore be removed from the database.  

Otherwise, the agent responds with a list of information such as the address and port 

number of the agent’s server, the agent type, and its system statistics (processor speed, 

number of processors, total memory, free memory, etc.).  This list of information can be 

easily expanded to include requests for other information, if necessary in the future.  

When the Configuration Agent receives this information it is updated in the table. 

 The system contains both a primary and a secondary Configuration Agent to 

support redundancy and the self-healing autonomic property. The primary Configuration 

Agent will be referred to as the President Configuration Agent while the secondary 

Configuration Agent will be referred to as the vice President Configuration Agent.  

Ideally, both of the Configuration Agents would be on different nodes in the system so 

that if one node stops responding, there would be at least one Configuration Agent in the 

system.  The reason for redundancy is that the database is stored locally by the agent in 

memory.  Therefore, if the agent stopped functioning for any reason all the information 

within the database would be lost.  To prevent this occurrence, the Vice President 

Configuration Agent synchronizes with the database of the President Configuration 

Agent. Only the President performs the system configuration tasks.  However, if the 

President Agent were to stop functioning, the Vice President Agent would be able to 

continue the President's role.  The Optimization Agent would detect that there is only one 

Configuration Agent functioning and recreate a second Configuration Agent.  

 

4.5.2. Optimization Agent 

 The purpose of the Optimization Agent is to make the system self-optimizing.  
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The role of the Optimization Agent within the system is first to contact the Configuration 

Agent for a current copy of the database.  Once received, the Optimization Agent begins 

analysis of the database to ensure that there are the correct number and types of agents in 

the system.  It verifies that there are exactly two Configuration Agents in the system, one 

Optimization Agent in the system, and two General Agents on each node in the system.  

If it finds this information to be incorrect, it sends commands to create or kill one or more 

agents, stabilizing the system.  After performing a brief analysis of the system, it then 

begins observing the loads and statistics of each node, noting the lightly and heavily 

loaded systems.  When the application needs to start a new process the Optimization 

Agent searches for the first system that is not heavily loaded, it contacts a General Agent 

on the corresponding node and commands it to start the requested process.  The 

Optimization Agent has the capability to move agents and processes from one node to 

another; allowing processing power to be utilized over multiple systems for a task, rather 

than having one system perform all of the processing.   

No redundancy is built in to the Optimization Agent because it does not store any 

important information in memory.  If the agent were to stop responding the Configuration 

Agent could easily recreate it.  Once recreated, it would continue functioning properly 

with no loss of critical data.  The only loss that occurs is any analysis of the table that the 

previous Optimization Agent had completed. 

 

4.5.3. General Agent 

 The main functionality of each General Agent is to execute the commands of the 

other agent types.  These commands are either to start or stop processes running on its 

system, to spawn a new agent, or to terminate itself.  This method gives configuration and 
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Optimization Agents the ability to start any type of agent on any node in the system, 

since all nodes contain at least one General Agent at all times.  Redundancy, as with the 

Configuration Agents, is built into the General Agents.  The reason for redundancy in this 

case is not to preserve data, but rather to ensure that a node will remain part of the 

system.  If there were only one General Agent on a node, and that agent stopped 

responding, the entire node would be disconnected from the system.  However, if there 

are two General Agents per node, and one fails, the remaining agent can recreate the 

failed General Agent.  Once again this behavior satisfies the self-healing autonomic 

property.  The self-healing property of the General Agents reduces the chance that a node 

will be removed from the system due to agent failure, thus requiring less maintenance by 

human intervention. 

 

4.6. System Topology 
 Our system focuses on the hybrid centralized and decentralized design.  The 

system acts similar to a centralized system, with all information being contained in the 

President Configuration Agent.  The database which is maintained contains information 

regarding all living agents within the system.  Since all information is maintained in one 

location the system becomes easily maintainable and coherent.  However, fault tolerance 

is handled in a decentralized manner.  Data is redundant with both a primary and 

secondary Configuration Agent.  Also there is replication of agents if any fail or are 

shutdown.  Decentralized systems are insecure for the most part since nodes can join at 

any point and start sending data that may be incorrect.  However in our system, all 

message transfer is encrypted, therefore any node that joins the system would not be able 

to communicate with other agents unless the correct certificates are used.  Scalability 
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resembles the decentralized topology.  Any new nodes with the correct certificates can 

join the system and immediately begin communicating with other agents.   

 Our system has taken the advantages shown in a centralized and decentralized 

pattern while improving on the problems this topology encounters.  Manageability and 

security are both problems in this type of topology however our system handles both of 

these cases to improve the system.  Improving the centralized and decentralized topology 

there are no major downfalls to the system; although management is still more difficult 

than in a purely centralized system.   

 

 

4.7. Network Communications 
 The communications system is central to any distributed or clustered system, but 

its role in an autonomic system is even greater.  In addition to providing a mechanism for 

transferring data across a network, our system also had to satisfy the self-protecting 

autonomic property.  We originally chose to implement this property by encrypting all 

system communication, to reduce the possibility of an attacker gaining access to system 

commands by monitoring unencrypted network traffic.  However, in addition to the peer-

to-peer communication between nodes, we realized that in certain cases we would need to 

broadcast a message to a group of agents.  One of these cases is when a new General 

Agent is created and needs to announce its presence to the Configuration Agents.  We 

later discovered that there is currently no way of encrypting broadcast messages, because 

broadcasts use the User Datagram Protocol (UDP) instead of the connection-oriented 

Transmission Control Protocol (TCP).  We decided that the messages that needed to be 

broadcast to the entire system did not contain any sensitive information, so they could be 
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transmitted unencrypted. 

 After some research into encryption methods we found that Java had built-in 

support for Secure Sockets Layer (SSL), a popular and trusted method for transferring 

encrypted data across networks.  We decided that SSL met the needs for our secure peer-

to-peer communication because it is capable of using strong 2048-bit encryption, and 

implementing it would not be much more difficult than using standard network 

communications because of the excellent SSL support in Java.  We chose to use 2048-bit 

RSA encryption, and generated the keystore and truststore files.  The keystore holds our 

private key, and the truststore tells the system to trust this key.  These two files must be 

present on all nodes of the system for SSL communication to function. 

 Although we needed a method for sending a message to multiple agents 

simultaneously, broadcasting seemed inefficient.  It was not necessary for all agents on 

every node to receive a broadcast.  Each message that is sent is only destined for a finite 

group of agents, and a broadcast message will never need to be sent to all agents in the 

system.  Broadcasting to the entire system is not necessary, so we decided instead to use 

multicasting.  Java also has built-in support for multicast sockets, so adding this 

functionality was not difficult.  With the use of multicasting, we wanted to be able to 

send a message to all agents of the same type by assigning each type of agent a different 

multicast address.  For example, all Configuration Agents would be in one multicast 

group, and all General Agents would be in another multicast group with a different 

address.  When we implemented multicasting in the system, however, we experienced a 

problem that was caused by our unique system architecture.  In most multicast systems 

there is one process listening on a particular address and port.  In our system there were 

multiple processes (agents) on a single system that were listening on different addresses, 
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but on the same port.  Although it is not possible to bind multiple processes to the same 

port using TCP, it is possible to do so with UDP because it is a connectionless protocol.  

The unexpected result was that if one process began listening on the multicast address 

230.0.0.1 and another began listening on 230.0.0.2 on the same node and port, both 

processes would receive packets that were sent to either 230.0.0.1 or 230.0.0.2, which 

was not the desired behavior.  We were able to correct this problem by assigning each 

multicast group a specific port to use in addition to the group's distinct multicast address.  

For example, the General Agents listen on 230.0.0.1:1200, while the Configuration 

Agents use 230.0.0.2:1201.  Using this method we were able to successfully implement 

multicasting across the distributed system. 

 

4.8. Messaging System 

 Once we had made decisions about the methods for agent communication at the 

network level, we had to design a system to pass information over the network and take 

the appropriate action when it is received.  We had several options when designing the 

messaging system.  We could have used ASCII text or an array of bytes to represent the 

message, but using one of those methods would require parsing and additional 

interpretation by the receiver.  Instead, we decided to take advantage of a unique feature 

of Java to make the messaging system design both clean and scalable.  We created a 

MessageWrapper class that includes the destination address and port, the origin address 

and port, and a message object, which stores the message payload.  Using the serializable 

Java interface, we are able to send the actual MessageWrapper object over an encrypted 

network socket and receive it as an object, without the need for any parsing. 
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4.9. Summary 
We chose the programming language, researched and chose additional tools to use 

for the implementation of the project, defined the basic properties of the system, and 

completing a thorough and detailed design.  We decided to use Java as our programming 

language for its object-oriented and cross-platform properties.  We determined that we 

would not be able to use tools such as Madkit and the Log and Trace Analyzer plug-in for 

Eclipse in the development of our system.  We defined each of the autonomic properties 

in the context of our project.  From the properties we decided to implement a mobile 

multi-agent system that would be able to satisfy all of the properties. 
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5. System Design and Implementation 
ACMS was designed and implemented using the Java Standard Development Kit 

(SDK) version 1.4.2.  ACMS uses an Object Oriented (OO) architecture, which allowed 

us to take advantage of useful OO concepts such as inheritance and encapsulation.  

Inheritance allows an outside developer to reuse our code, while encapsulation provides a 

modular division of the code.  The modular division is created by dividing code into 

packages.  Each package contains thematically related code; for example, ACMS 

contains separate packages for the agents, the messaging system, the database and the 

applications. 

 

5.1. Object Oriented Architecture 
 The ACMS was designed using the Object Oriented principles of the Java 

programming language.  During the design we focused on two questions: “Will it scale?” 

and “Is it extensible?”  Our architecture reflects these questions with many points of 

extension for further functionality to be incorporated.  ACMS is a modular design and 

each subsystem was developed separately within its own package. 

 

5.1.1. Agent Architecture 

 The heart of the ACMS lies within the agents, of which there are four.  Each agent 

is a class of its own, but much of the code is the same among all the agents, such as 

message passing and initialization.  In order to organize the code and minimize the 

amount of redundant code, each agent extends an abstract Agent class (See Appendix B 

for UML diagrams).  This abstract class contains all the code for starting the messaging 

system, along with other initialization tasks.  The abstract class allows easy integration of 
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new agents into the system by providing a robust code base to build upon.  When 

developing new agents for ACMS, a developer may just extend the agent class and 

receive all the code necessary to interact with other agents; the developer can then focus 

on his or her agent's particular functionality. 

 

5.1.2. Timer Task Architecture 

 The agents often perform tasks at a regular interval, such as querying all agents 

for their system status.  A task is a section of code that an agent schedules and runs over a 

given period of time.  The task is run in a separate thread and used to complete goals of 

the agents.  Each agent has at least one task which performs any additional functionality 

missing from the message passing and implementation of messages.  Examples are the 

sending of messages to agents by the President Configuration Agent and optimizing of 

the system are both tasks in the respective agents.  Our architecture provides a common 

interface for creating these tasks.  We have an interface called Itask which every task 

implements.  Each task contains a basic run method that should be implemented by the 

developer to perform the required action.  Itask extends Thread, which ensures that when 

the task executes it does not block any message handling or other tasks that must be 

completed in parallel.  The developer instantiating a task does not need to be concerned 

with the specific timer task to create for a particular agent.  The instantiation is handled 

by another class called AgentTimerTask, which contains the logic for allocating the 

correct task for each agent.  We created the AgentTimerTask class implementing the 

Factory Design Pattern [20]. 
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5.1.3. Messaging Architecture 

 The messaging system is contained in two packages.  The first package contains 

the classes responsible for sending and receiving the messages; there is one server and 

client for TCP connections and a second server and client for UDP connections.  The 

second package holds the Message class and a wrapper.  The Message class contains a 

string that contains a command and an attachment of type Object.  The attachment 

provides flexibility to the messaging system because any Object, or a group of nested 

Objects, can be sent across the network.  The message attachment provides the agent 

architecture with a common transport protocol capable of sending any information that 

can be stored in an Object. 

 

5.1.4. Database Architecture 

 The database was designed with speed of access as the core requirement.  In order 

to meet this requirement we used a hash table to store information on each node, which 

provides the system with a Ο(1) search time for finding information on any node.  We 

provide different types of search criteria by maintaining several lists of keys.  These 

include a hash of keys for quickly finding any particular type of agent, such as fetching 

only Configuration Agents.  The second list of hash keys we store is one entry for each 

node.  This provides quick access for finding the list of agents on any particular node.  

We need to have a list of agents that are on each node in order to verify that there are 

exactly two General Agents on each node.  The database is also serializable so that it can 

be copied and sent across the network.  The database's ability to be sent to other agents is 

used for redundancy and to allow the information in the database to be available to the 

User Agent or future types of agents. 
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5.1.5. Job Architecture 

 We developed a common interface for communication between user applications 

and the ACMS.  This interface is defined in a class called Job, which all applications 

must extend.  The Job class allows us to start and stop applications, as well as to relocate 

them from one node to another.  An application must be serializable in order to be moved 

across the network.  In order to run an application on our system a developer must create 

a class that extends our Job class, in addition to the application that will be run on the 

system.  The Job class is an example of the proxy pattern, and provides translation of 

messages from the ACMS to the underlying application and vice versa [21].  This allows 

new code to be integrated into the ACMS that was previously unavailable during compile 

time. 

 

5.2. Agents 
 Once the design of the agent system was completed, we implemented the agent 

classes.  The four classes that were created were the General Agent, Optimization Agent, 

Configuration Agent, and User Agent. The first three are the basis for running the system, 

while the User Agent is not an integral part of the system, but rather a link between the 

agent processes and the users.  All agents inherit from an abstract class called Agent.  The 

basic functionality of each agent is provided in this class, along with a constructor that 

starts and initializes both the BroadcastServer and SSLServer threads.  All agents are 

multi-threaded, running processes in parallel to optimize their performance.  
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5.2.1. Configuration Agent 

The Configuration Agent uses the timers to start either a 

PresidentConfigurationTask and BroadcastEveryoneTask or a 

VicePresidentConfigurationTask.  The decision about which of those classes to start 

depends on whether the agent is a President or Vice President.  The President then 

contacts all agents to determine their state.  If a connection cannot be established with a 

particular agent, an Exception is thrown which informs the system that the agent is not 

correctly functioning; the malfunctioning agent is therefore removed from the system.  

Otherwise the agent will respond with information regarding itself, its system and if it is 

available.  A scoring function (See Appendix G) is run on a particular node and returns a 

value.  If the value returned is above a certain threshold the agent node is marked as 

available; otherwise, the node is marked unavailable.  The availability is used in 

conjunction with load balancing; when a new application is requested to be started, the 

Optimization Agent will take into account the availability among other information to 

determine a location (See Appendix F).  Both the Vice President and Optimization 

Agents request a copy of the table periodically.  Since the table needs to be sent across 

the network, all variables contained in the ClusterDatabase need to be serializable to 

allow the object as a whole to be serialized. 

 

5.2.2. Optimization Agent 

The Optimization Agent starts its thread, which first determines that the correct 

numbers of agents are alive in the system and on each node.  If an agent is missing or 

needs to be moved because of poor node performance, the Optimization Agent makes this 

decision.  In moving an agent the Optimization Agent uses the 
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getGoodGeneralAgentNoConfig algorithm.  This will analyze the table, applying a series 

of rules to determine if there is a better node in the system than the one on which the 

agent is currently executing.  An agent is moved if there is an available node in the 

system, while the agent's current node is not available.  If a better node is found, the 

Optimization Agent sends a kill message to the correct agent.  Once the agent is killed, 

the system would then realize there is an agent missing and, using the same algorithm, 

would choose the better system to spawn the new agent. 

Once all agents are stabilized and it is determined that there is the correct number 

of each agent in the system, the Optimization Agent begins analysis on the database.  

Each node on which an agent is executing is rated by a scoring function.  The scoring 

function is used to determine if a node in the system should be marked available or 

unavailable.  Another algorithm called the getGoodGeneralAgent algorithm is used to 

determine the correct location for application processes to be run.  While the 

getGoodGeneralAgentNoConfig algorithm will never return a node that has a 

Configuration Agent, the getGoodGeneralAgent algorithm can return any available node, 

but the number of applications running on a node is also considered.  If there are two 

available nodes in the system and one of the nodes is running an application, the 

algorithm will choose the system that does not have any active applications. 

 

5.2.3. General Agent 

The General Agent receives commands from the Optimization Agent to start new 

Job processes on its node.  The General Agent’s goal is to begin those processes.  When a 

General Agent receives a new Job to start it begins by instantiating a new JobDispatcher.  

The purpose of the JobDispatcher is to add the Job to the agent's active job queue, start 
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the Job thread, wait for the thread to complete, and finally to remove the Job from the 

active queue after it finishes.  The JobDispatcher itself is a thread, so the General Agent 

does not block while the Job is executing.  Therefore, several Job processes can be 

running simultaneously. 

 

5.3. Message System 

The ACMS uses two types of communications: SSL and multicast (See Section 

4.6).  Although these are two fundamentally different methods for transmitting 

information at the network transport level, we used an intuitive messaging system to 

abstract the complexity of the lower level network protocols.  The messaging system 

allowed us to send and receive messages in a simple and consistent manner, and to 

eliminate many repetitive code fragments. 

 

5.3.1. Messages 

 We created a Message class, which stores only the content of the message.  The 

message content consists of a string and an object.  All messages use the string to identify 

what type of message it is and to pass any other information that can be represented as a 

string.  However, there are cases when an abstract data type that cannot be represented by 

a string needs to be transmitted with the message.  Typical examples of these data types 

are vectors, hash maps, or any type of object.  In these cases abstract data types can be 

stored as objects inside the Message class and transmitted along with the rest of the 

message.  The design we chose for messages is similar to the concept of e-mail.  A 

message is comprised of a body (the string) and an optional attachment (the object).  The 
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only limitation to this design is that there is currently no inherent Java functionality for 

sending an object over a multicast socket.  Due to this limitation, only strings can be sent 

in a multicast message because they can be easily converted into small arrays, which can 

be sent as datagrams. 

 In order to send the message to an agent, it must be properly addressed.  The 

MessageWrapper class stores the Message and all information required to transmit the 

message over the SSL or multicast protocols.  The addressing information includes the IP 

address and port of the destination agent, as well as the IP address and port of the sending 

agent so that the receiver will be able to contact the sender should a response message be 

required.  Although messages are sent by the SSLClient or the BroadcastClient, we 

implemented methods in the Agent class to facilitate the process, which involves several 

lines of code.  The Agent's message sending methods take a Message and a destination 

address as parameters, generate the MessageWrapper, and use either the SSLClient or the 

BroadcastClient classes to transmit the message to its destination. 

 

5.3.2. Message Handling 

 When a network connection is accepted by an Agent, the data it receives is first 

processed by either the SSLServer or the BroadcastServer, depending on what port the 

data was sent to.  These servers first construct a Message from the data they receive, and 

then create a MessageWrapper to store the Message and its addressing information.  The 

entire MessageWrapper is then pushed to the back of the Agent's message queue, and the 

server notifies the Agent of the presence of a new message.  The Agent will pop the 

MessageWrapper off the front of the message queue, inspect the Message it contains, and 

then call the appropriate method to handle messages of that type. 
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5.4. Database 

 We created a class, ClusterDatabase, which holds a table containing information 

about all agents that exist within the system.  The main copy of this table is stored with 

the President Configuration Agent.  However, other agents can request for a copy of the 

table to perform analysis or for redundancy.  The ClusterDatabase contains different 

reference tables pointing to fields in the table which provide quick searching features.  

The main table in the database consists of a Hashtable.  The hashtable contains keys 

constructed from each agent’s IP:Port combination, so that information about any agent 

can be easily found in the database.  The reference tables do not store any duplicate 

information such as agent information.  This saves on space because these tables only 

link to specific fields in the database rather than storing the information on their own. 

A Tuple is an object created that contains data fields for all information we are 

collecting from each agent (i.e. IP address, port number, type of agent, and all system 

statistics).  Also in the database are other hashtables that contain different key and object 

pairs to find information from the database more quickly.   

 The first hashtable used to reference the database is the KeyList hashtable.  This 

table contains keys consisting of a string referring to the type of agent.  These keys link to 

a Vector object that contains all agent IP:Port strings that are of the agent type specified 

by the key.  This second set of keys allows us to easily verify that two Configuration 

Agents and one Optimization Agent are present.  Otherwise, the database would have to 

be searched in its entirety to make these determinations.  Navigating and obtaining 

information is quicker using a hashtable in place of an array or linked-list, especially 

since these types of checks happen very often within the system.  However, when 
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distributing the database the size is larger since there is an extra hashtable of references.   

The second reference table used in the ClusterDatabase is a NodeList.  This is 

also a hashtable which links IP address string keys to a Vector containing all IP:Port 

strings of agents existing on a particular IP address (or node in the system).  This allows 

for specific nodes to be easily searched determining what agents are running on a system.  

This is very useful in the GoodGeneralAgent algorithm used in determining the best 

nodes to start new agents and schedule applications.   

 Along with the database and reference tables which are located in the 

ClusterDatabase, there is a jobQueue Vector.  The jobQueue holds a list of all 

applications that are waiting to be scheduled on nodes in the system.  The Configuration 

Agent receives messages that new application processes need to be started and these 

messages are added to the jobQueue.  The Optimization Agent receives the 

ClusterDatabase periodically and determines if any nodes are available to run new 

applications in the system.  The distribution of applications will be discussed in more 

detail in Section 5.5. 

 

5.5. Jobs 
 A job is an application written specifically to run on ACMS; typically at GSFC 

these applications will be long computationally intensive processes.  ACMS provides a 

management system that can run these applications on distributed network architecture 

with minimal user interaction and intervention.  This comes at a small cost to the 

developer because most of the work has been done for them in the form of an Application 

Programming Interface (API). 
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5.5.1. Jobs are developed Independently of ACMS 

 The API details the interactions required for incorporating a user’s application 

with ACMS.  Most distributed applications will not be written specifically for ACMS, 

however using the Proxy design method, an outside application can be incorporated into 

ACMS post production.  The proxy object acts as an interpreter for the user applications 

and ACMS.  The proxy intercepts all messages destined for the ACMS or user 

application and using the API of the two programs as a guide converts messages from 

one program’s API to the other programs API.  As an example, this is the same as 

interpreter in a conversation between two world leaders who do not speak each other’s 

native language; the interpreter listens to each leader’s words and then repeats them to the 

other speaker in their native language.  The proxy model allows user applications to be 

developed independently from ACMS. 

 

5.5.2. Job Application Programming Interface 

 The API for a proxy begins with the definition of the class; the proxy must extend 

the Job class we have provided.  Extending Job allows the developers to reuse our code, 

such as networking, and is required in order to incorporate the proxy into ACMS.  The 

proxy must be a Job because the ACMS is always running and cannot be stopped, 

recompiled and restarted anytime a new application is ready.  The proxy allows newly 

compiled code to be introduced into the ACMS without any recompilation of ACMS 

itself.  The proxy must implement a run method that is inherited from Thread.  The run 

method contains code that is written by the application developer and is executed when 

the proxy is run.  The proxy must implement Thread in order to run alongside a General 
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Agent on a node. 

 

5.5.3. Distributing Jobs 

 Jobs are distributed and run through a series of messages being passed and 

execution of code as new threads (See Figure 1).  Figure 1 shows the life cycle of an 

application; the squares represent when a new agent receives the initial message related 

to a new application while the circles explain the process once agent receives the initial 

message. Jobs are distributed using serialization and a message.  The proxy is serialized 

and attached to a message, which is then sent off to the Configuration Agent.  The 

Configuration Agent then forwards the message to a General Agent.  The general agent 

receives the message, gets the proxy and executes the run method.  This starts the proxy 

on the same node as the General Agent.  It is then up to the proxy to start the Application 

and inform the General Agent when the application has finished.  In this version of the 

ACMS it is up to the application developer to ensure that all necessary class files and 

application files are available on all nodes in the system.  In the future, the ACMS could 

be extended to automatically distribute all necessary class files to each node. 
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Figure 1: Application Startup flowchart 
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5.5.4. Scheduling Jobs 

 The Configuration Agent and Optimization Agent are responsible for Job 

scheduling, but Job submission occurs in the User Agent.  When a user clicks the button 

in the User Agent to submit a Job, the User Agent first executes the main method of the 

class the user selected.  Executing the main method causes the Job to output a serialized 

copy of itself into the current directory.  The User Agent then reads in this serialized file 

and encapsulates the Job in a JobWrapper object, which it then sends to the 

Configuration Agent. 

The Configuration Agent receives the JobWrapper and adds it a queue.  This 

queue represents all the applications that were submitted for execution on the ACMS, but 

which have not yet been started.  This queue is stored in the ClusterDatabase, so the 

Configuration Agent periodically passes the queue to the Optimization Agent when it 

sends the database.  The Optimization Agent then uses an algorithm to choose an agent 

to assign the next application to.  This algorithm weighs an agent’s current system 

performance and the number of applications currently running under that agent’s 

supervision.  The JobWrapper is then sent to the chosen General Agent to be run.  The 

JobWrapper is not removed from the Configuration Agent’s queue until the General 

Agent sends back an acknowledgment that it received the JobWrapper.  If the 

acknowledgment is not received in a predetermined amount of time, the application is 

rescheduled and assigned elsewhere. 

When the General Agent receives the JobWrapper it immediately sends an 

acknowledgement to the Configuration Agent.  The General Agent then instantiates a 
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JobDispatcher and passes it the JobWrapper that was just received.  The JobDispatcher 

executes in its own thread, and its purpose is to control the initialization and cleanup of 

the Job and to monitor the execution of the Job.  When the JobDispatcher starts, it first 

adds the name of the Job, which is the string that is returned by the Job’s toString() 

method, to the agent’s local job queue.  The General Agent maintains its own job queue 

so that the Optimization Agent and the User Agent can determine the number and name 

of the user applications that are executing on each node in the cluster.  After the name of 

the application has been enqueued, the JobDispatcher extracts the Job from the 

JobWrapper and calls the startJob() method on the Job, which actually begins the 

execution of the user application.  Directly after starting the application, the 

JobDispatcher calls the join() method on the Job, which causes the JobDispatcher to 

block until the Job thread has terminated.  The JobDispatcher is in a separate thread 

from the General Agent, so when the JobDispatcher blocks the General Agent is not 

affected.  After the Job terminates, the join() method returns and the JobDispatcher 

removes the name of the Job from the General Agent’s queue, at which point the 

JobDispatcher terminates. 

 

5.6. Summary 

The modular architecture of ACMS gives the system robustness and extensibility 

that would not be there otherwise.  The focus during development was on scalability and 

extensibility.  With the modular architecture the system can be further developed, such as 

replacing the messaging package with one that uses a non proprietary format or replacing 

the database package with an interface to a database application such as MySQL.  The 
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system can be customized by replacing and rewriting modules depending on the project 

ACMS is applied to.  Every application has unique requirements and when we designed 

ACMS we built it to adapt and extend to meet all of those requirements. 
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6. Results 

 We designed several test procedures to verify that all aspects of the ACMS satisfy 

its design specifications.  The main goal in developing test procedures was to provide 

methods for validating each of the ACMS' autonomic properties and observe that each 

element of the system performed as expected.  Since we were also able to implement a 

framework for executing distributed applications on the system, we had the opportunity 

to evaluate the performance of the system from a cluster management perspective. 

 

6.1. Validation of the Autonomic Properties 

Scenarios have been organized and tested on our system to eliminate the 

possibility of problems occurring.  Table 1 shows the seventeen different scenarios that 

were tested on our system.  The table also contains any startup procedure that was needed 

to obtain the particular scenario and the results that should be expected if duplicated on 

our system.  All seventeen scenarios that appear in Table 1 performed as expected when 

we tested them on the ACMS. 

 

Table 1: Scenarios and Test cases 

Scenario Test Cases Startup Configuration Expected Results 

1 
Start up normal (one node 
in the system) 

Start a single General Agent. 
Five agents should be running on the system, including: 
two Configuration Agents, one Optimization Agent, and 
two General Agents.   

2 
Having one node in the 
system, have a second 
node join 

Follow Scenario 1.  On a 
second computer within the 
same subnet, run a General 
Agent. 

The second computer should receive a second General 
Agent along with at least the Vice President Configuration 
Agent.  Other agents depend on the availability of each 
computer, which computer would be a better host for the 
agents. 
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3 
Run over the weekend 
(long-term) 

Follow Scenario 2.  Add any 
number of computers.  Leave 
the system running over the 
weekend. 

After an extended period of time, verify that all agents are 
still alive.  This can be done by testing their functionality.  
Kill a General Agent and watch that it respawns (testing 
the Optimization Agent).  Kill the Optimization Agent 
(testing the President).  And finally, kill the President 
(testing the Vice President).   

4 Kill a General Agent 
Having a fully running system.  
In the User Agent choose to 
kill a General Agent. 

The General Agent will be respawned on the same node in 
which it was killed. 

5 Kill the President Agent 
Having a fully running system.  
In the User Agent choose to 
kill the President Agent. 

The President Configuration Agent will be respawned on a 
“good” node in the system (determined by the good node 
algorithm).  See Appendix F. 

6 
Kill the Vice President 
Agent 

Having a fully running system.  
In the User Agent choose to 
kill the Vice President Agent.   

The Vice President Configuration Agent will be 
respawned on a “good” node in the system (determined by 
the good node algorithm).  See Appendix F. 

7 
Kill the Optimization 
Agent 

Having a fully running system.  
In the User Agent choose to 
kill the Optimization Agent. 

The Optimization Agent will be respawned on a “good” 
node in the system (determined by the good node 
algorithm).  See Appendix F. 

8 
Add a third General 
Agent to a node 

Having a fully running system.  
In the User Agent choose to 
spawn a third General Agent 
on a node in the system. 

The system will immediately terminate the extra agent 
from the system.  

9 
Add a second 
Optimization Agent to a 
system 

Having a fully running system.  
In the User Agent choose to 
spawn a second Optimization 
Agent on a node in the system. 

The system will immediately terminate the extra agent 
from the system. 

10 
Add a third Configuration 
Agent to the system 

Having a fully running system.  
In the User Agent choose to 
spawn a third Configuration 
Agent on a node in the system. 

The system will immediately terminate the extra agent 
from the system. 

11 
Start up system with two 
President Agents 

Start two General Agents 
simultaneously.   

The two General Agents will each spawn Configuration 
Agents at the same time.  These will both not hear back 
from a President Agent and therefore promote themselves.  
When an Optimization Agent is spawned it will organize 
the number of agents and kill one of the Presidents. 

12 Combine two full systems 

Startup the system on two 
nodes.  Disconnect one node 
from the network.  This will 
cause the agents to complete 
each system.  With two fully 
functioning systems, reconnect 
the node to the network.   

The agents will detect each other and eliminate extra 
agents until only one complete system is left.  On two 
nodes this would be two Configuration Agents and one 
Optimization Agent and two General Agents on each 
node. 

13 

Configuration agents 
separate with one node 
available and the other not 
available 

Start up the system on two 
nodes.  Have one system be 
available and the other 
unavailable.  This can be done 
by running other applications 
to bring down the score value.   

The Vice President Configuration Agent should still be 
moved to the not available node.  The President and 
Optimization Agent should be located on the available 
node. 
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14 
Migrating President 
Agent from a unavailable 
node to an available node 

Start up the system on an 
unavailable node. Once all 
agents are running on this 
node, connect a second node to 
the system having this node be 
available.   

When the second node connects, ensure that the President 
Agent is moved to the new node.  This will be done by 
moving the Vice President first and then killing the 
President.  Also the Optimization Agent will be moved to 
the new available node. 

15 
Three nodes ensure that 
agents don't bounce 
between nodes 

Have the system fully running 
with three nodes in the system.  
Have one node be available 
and two not available.   

The Vice President should remain stable on one of the 
false nodes. Ensure that it does not bounce between nodes.   

16 Start a single application 
Submit the application using 
the User Agent. 

The application will follow the flow shown in Appendix 
A.  It will be started on a General Agent. 

17 
Start a application with 
the number of Instances 
greater than one 

Submit an application using the 
User Agent.  Make sure the 
variable numInstances is 
greater than one so multiple 
applications will be submitted. 

The application will follow the flow shown in Appendix 
A.  It will be started on a General Agent. 

 
 

6.2. Performance Evaluation 

 We created a simple distributed application to evaluate the performance of the 

system and its load-balancing abilities.  The distributed application's only task is to find 

prime numbers.  We chose this task for several reasons.  It approximates the 

characteristics of many actual distributed applications, it is compute-intensive, and we 

were able to implement it relatively quickly.  It is a task that can be easily partitioned into 

smaller tasks that can be executed in parallel, and the time required to exchange all 

necessary data is small compared to the execution time per data set. 

 

6.2.1. Distributed Application Design 

 The distributed application we created to find prime numbers is separated into two 

elements: a server and a client.  The PrimesServer generates discrete ranges of ten-
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thousand numbers for the clients to check for prime numbers.  There is a defined 

maximum for the total amount of numbers to check.  Once this number has been reached 

the server broadcasts a termination command to the clients, then exits.  The PrimesServer 

writes output to two files.  One file contains timestamps that mark the first client 

connection and the time the server exits.  The two timestamps represent the total run time 

of the application.  The second log file contains a list of all the prime numbers that have 

been found by the clients. 

 The PrimesClient executes the algorithm that tests each number in a given range 

to determine if it is a prime.  The prime checking algorithm is fairly simple; it divides 

each number by half of the numbers below it, with the exception of 1.  If the remainder of 

the modulus division is zero, the number is not a prime, so it immediately stops checking 

that number and continues to the next.  This brute-force algorithm is not the most 

efficient method to determine if a number is a prime.  However, it suits our test case well 

because it requires a considerable amount of computation, and partitioning data sets for 

use with the algorithm is simple.  One property of this algorithm that should be noted is 

that, as the number that is being tested increases, the length of time necessary to 

determine if it is prime also increases because more modulus division operations need to 

be performed.  For example, to determine if the number 1000 is prime using this 

algorithm it is necessary to perform 500 - 1 = 499 modulus division operations, but to test 

the number 10,000 requires 5,000 - 1 = 4,999 operations. 
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6.2.2. Performance Evaluation of the ACMS 

 Once we had implemented and tested the distributed application for finding prime 

numbers we were able to use it to evaluate the performance of the ACMS.  We designed 

four operational scenarios to measure any changes in the distributed application's 

performance by executing it on a cluster as opposed to using a single node.  Each 

scenario is explained in the list below. 

Execute the distributed application on: 

 1. A single node without the ACMS. 

 2. A single node with the ACMS' job infrastructure and load-balancing. 

 3. 5 nodes without the ACMS. 

 4. 5 nodes with the ACMS' job infrastructure and load-balancing. 

Comparing the execution time of scenarios 1 and 3 allowed us to measure the 

approximate performance gain that could be achieved by harnessing the parallel 

processing power of a cluster over that of a single computer.  Comparisons of scenarios 1 

and 2, and additionally scenarios 3 and 4, allowed us to measure the approximate 

overhead of the ACMS and how that overhead changed as the size of the cluster 

increased.  Finally, comparing scenarios 2 and 4 showed how well the ACMS scaled as 

the cluster size increased from one to five nodes.  We performed each test three times to 

obtain a reasonable average.  The average times for each test appear in the tables below.  

Individual results for each trial, as well as the configuration of the cluster and the 

network, can be found in Appendix H.  All times are in hh:mm:ss format. 
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Table 2: System Evaluation – Result Averages 

Average Run Time % of Test 1 Time % Gain % of Test 2 Time % Gain

Test 1 0:49:51 100.00% 0.00% 95.53% -

Test 2 0:52:11 104.68% - 100.00% 0.00%

Test 3 0:11:02 22.13% 451% 21.14% -

Test 4 0:11:24 22.87% - 21.85% 458%

 
 

 These results clearly demonstrate the power of distributed computing.  Increasing 

the size of the cluster from one to five nodes resulted in a performance increase of 

approximately 451% without the ACMS and 458% with the ACMS.  The maximum 

theoretical performance gain would have been 500%; we were very pleased that our 

results came so close to the ideal gain.  It is important to note that when measuring the 

performance gain it is only reasonable to compare Test 1 with Test 3 and Test 2 with Test 

4, which is the reason the other comparisons are not shown in the table.   

 Comparing the results from Test 1 and Test 2 gives an approximate value for the 

overhead associated with running the ACMS on one node.  It is important to note that this 

approximate measure of overhead, about 5%, is the worst-case value for the overhead.  

This value is the highest possible overhead because all five agents, in addition to the user 

applications, were running on the same node.  The ACMS guarantees that in any 

configuration with more than one node there will be no more than four agents on any 

single node, and most nodes will only have two agents.  Therefore, as the number of 

nodes in the system increased, we expected the overhead caused by the ACMS to 

decrease.  This prediction was confirmed when we performed the last two tests. 

 In comparing the results of Test 3 and Test 4 it is clear that the overhead due to 

the ACMS was significantly reduced.  As the number of nodes increased from one to five 
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the overhead decreased from almost 5% to less than 0.75%.  This result is significant 

because increasing the cluster size by a factor of five actually decreased the overhead by 

a factor greater than six.  We were encouraged by this result because, although we were 

not able to test the ACMS on a large cluster, the data imply that the system scales 

efficiently.  Figure 2 shows the overhead associated with the ACMS in the one node and 

five node tests. 
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Figure 2: Run time comparisons 

 

 

6.3. Summary 

We were very pleased with the results from the autonomic property tests and the 

performance evaluation of the system.  The autonomic property tests showed that the 

ACMS satisfied the requirements of an autonomic system.  The performance evaluation 

demonstrated that we had accomplished our goal of developing an autonomic system 

with less than 5% overhead.  The tests also imply that the system scales well as the 

number of nodes in the system increases.  Increasing the number of nodes both decreases 
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the overhead significantly and increases the performance gain for distributed applications 

at a rate that is close to ideal.
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7. Recommendations and Conclusion 

 We incorporated as much functionality into the ACMS as we were able to do in 

our time at GSFC, but we were limited by the ten-week duration of the project.  

Throughout the project we have thought of several ways in which the principles of the 

ACMS could be applied to other systems.  We believe that the ACMS could be extended 

to become a more robust and flexible management system, and that it could serve as the 

foundation for a diverse array of applications. 

 

7.1. Suggestions for Future Development 

 At the conclusion of our project we determined several aspects of the ACMS that 

could be developed further.  We first noted areas of the current system that, if we had 

more time, we would have continued developing.  We also thought of several ways in 

which the system could be easily extended to perform tasks that it was not originally 

designed to do. 

 

7.1.1. Outstanding Development Tasks and Evaluations 

 The tasks that we identify in this section concern the incorporation of additional 

functionality in the ACMS.  The goal of this future work is to make the system more 

robust, usable, and scalable. 

 

7.1.1.1. Node Statistics and Scoring 
 Gathering statistics about each node is important so that the ACMS can determine 

which nodes are best suited to receive new agents and user applications.  While the Linux 
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/proc filesystem enabled us to easily obtain all the information we required making 

decisions about node availability, we found no convenient way to do so in the Windows 

operating system.  At the very least, gathering information about a Windows computer 

would require writing an additional program in Visual Basic, C++, or C#.  As we did not 

have access to a Windows IDE, we were unable to write such a program, and the ACMS 

is currently not capable of obtaining any information about Windows nodes.  However, 

we included support for Windows node statistics in the ACMS, so that it would be simple 

to make this information available to the system if someone were to implement a program 

or other method to retrieve it. 

 Another challenge that was present throughout the project was how to best 

determine the availability of each node.  We designed a simple algorithm to compute a 

score for each node, but found that it was very difficult to compute a score that was 

representative of the state of each node (See Appendix G).  Additionally, it was equally 

difficult to define a standard score threshold, which is used to make the final 

determination of node availability.  We recognize that determining the availability of a 

particular node in a cluster is complex problem and is outside the scope of our project.  

However, it is an interesting research topic which future groups may wish to consider. 

 

7.1.1.2. Job Infrastructure and Load Balancing 
 We have identified two areas relating to the execution of distributed applications 

that would benefit from further development.  The first relates to the distribution of 

application code.  In our current system, if a user wishes to execute a distributed 

application, all of the application's class files must reside on each node in the system.  

Our original design goal for user applications was to be able to submit an application 
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from any node in the system and to have the code be automatically distributed to each 

node on which it will execute.  After additional research we realized that automatically 

distributing all necessary files would be a difficult task.  We decided that, due to our time 

constraints, we would instead implement only the basic functionality that would allow an 

application to be executed on the system.  It is our opinion that future development 

efforts in the job infrastructure should begin with a method for automatically distributing 

all required binary files.  We suggest research into Java archive (Jar) files that can be 

transmitted as discrete entities attached to the JobWrapper object, and then either 

uncompressed or accessed directly by the General Agent upon receipt. 

 The other outstanding issue with distributed applications is load-balancing.  

Although load-balancing is performed initially when a user application is first assigned, 

no further actions are taken after the application has begun executing.  The topic of post-

assignment load-balancing is also far from the scope of our project.  However, it may be 

a subject worth researching in the future.  It is certainly not a trivial task to move a user 

application once it has begun executing.  The application may use temporary working 

files, sockets, and several forms of inter-process communication.  Given these challenges, 

the cost incurred by relocating processes may far outweigh any potential gains associated 

with an optimal load balance.  However, we feel that relocating processes is a topic that 

needs to be investigated if a system like ours is intended to be used in a production 

environment. 

 

7.1.1.3. Integration of Open Standards for Interoperability 
 We designed and implemented every aspect the ACMS ourselves, using only the 

standard Java libraries.  In doing so, we developed a system designed with our specific 
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needs in mind.  This design allowed us to rapidly implement the system because we did 

not need to spend time learning external tools or technologies.  However, if the system 

were to be extended in such a way that interoperability among different technologies 

were required, some parts of the AMCS could be redesigned for greater compatibility.  

The messaging system should be the primary focus if interoperability is a requirement.  

The use of open standards and technologies such as XML, CORBA, or RMI could 

replace the exchange of Message objects for inter-agent communication.  A similar 

approach could be taken with the job infrastructure if a more standard, open technology is 

needed. 

 

7.1.1.4. Scalability Testing 
 During our testing we did not have access to an actual large-scale cluster.  The 

only resources we had at our disposal were an assortment of workstations and our 

personal laptops, from which we constructed an ad-hoc system more akin to a grid than a 

cluster.  Although we were able to conduct some limited testing of the system, we were 

not able to test the system's ability to scale to hundreds or thousands of nodes.  This lack 

of resources was unfortunate because we integrated functionality into the system 

designed to compensate for the increased time required to manage a large number of 

nodes, but we were unable to thoroughly test it.  Although we do not have any test data 

for large clusters, we predict that at some point there would simply be too many nodes for 

a single Configuration Agent and Optimization Agent to effectively manage.  If a group 

wishes to use our system in some real-world application, we suggest that the 

configuration and optimization tasks be further divided and disseminated among a greater 

number of nodes to ensure that these tasks will be completed in a timely and efficient 
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manner.  Of course the partitioning of the configuration and optimization tasks into 

smaller sub-tasks would require more advanced algorithms for coordination between each 

sub-task, but it would probably be necessary for a system with a large number of nodes. 

 

7.1.1.5. Improving the Usability and Aesthetics of the User Agent 
 The ACMS was not designed to be a finished product ready for use in a 

production environment; throughout the project we were focused more on functionality 

than usability and aesthetic qualities.  However, these properties are essential in a system 

that is intended for use on a large scale.  Any future work on the ACMS should be 

concerned with evaluating the usability of the User Agent, as this agent is the only way 

for a user to interact with the system.  The User Agent should comply with established 

standards of usability, such as those proposed by the World Wide Web Consortium 

(W3C), in addition to any government or NASA specific guidelines.  Special 

considerations should be taken for users with disabilities, and a command line version of 

the agent might be useful for system administrators. 

 

7.2. Possible Extensions to the ACMS 

 As we have previously mentioned, extensibility has always been a major 

consideration in the design of the ACMS.  We have put forth every effort to implement 

the system in a modular way that can be easily extended.  Given this flexible property of 

the ACMS, we believe that its system management abilities could be modified or 

extended to be used in numerous applications. 
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7.2.1. Management of Grid Systems 

 The management of entire grid systems is a natural extension of the ACMS.  In 

fact, the ACMS is already capable of managing simple grid systems, if the definition of a 

grid is taken to be a dynamic, heterogeneous network of computers.  There are, however, 

more complex forms of grids that the ACMS in its present form may not be able to 

manage.  For example, a grid may consist of a large network of workstations on different 

subnets, a large cluster on a private network segment, and several mid-range servers in a 

demilitarized zone (DMZ).  The complex issues that arise in this case are the potentially 

different broadcast addresses that may exist on the grid, as well as the fact that there may 

not be a route from each node to every other node.  Although some grid configurations 

present unique management challenges, we believe that the ACMS could be extended to 

handle these cases through relatively minor modifications to the Configuration Agent.  

One can imagine an ACMS configuration in which each network segment contains a 

complete ACMS and the Configuration Agents on the outward-facing nodes all 

communicate with each other.  These outward-facing Configuration Agents would each 

have a complete list of every agent in the grid.  In addition to an agent's IP address and 

port, each agent would also provide routing information.  In its simplest form, the routing 

information could be the address of the Configuration Agent that is responsible for the 

agent.  A more sophisticated form of this system would be able to determine the best way 

to route messages between two networks.  There are many ways to implement a grid 

management system based on ACMS concepts, and because of its modular and extensible 

design, it would be possible to create such a system with few modifications. 

 



 
 
 
 

69 

7.2.2. Management of Intelligent Clustered Spacecraft 

 A practical application of the technology we developed for the ACMS might be 

an autonomic management system for a cluster of unmanned, autonomous spacecraft.  

Although we are not experts in the management tasks associated with unmanned 

spacecraft, it is possible that these tasks could be represented as applications that can 

execute on a cluster.  Even if the cluster analogy does not perfectly translate to a 

community of spacecraft, autonomic principles could still be applied in a future 

management and control system for these craft.  An important benefit of using autonomic 

systems is their potential to reduce overall cost.  Fewer people would be required for 

routine administration because many of the spacecraft's functions would be self-managed.  

If these spacecraft were self-protecting, there would be a much smaller chance of losing 

them due to a system malfunction, an external impact, or another predictable event. 

 

7.3. Increasing Awareness of Autonomic Systems 
 One of the goals of our project was to increase awareness of autonomic systems 

among NASA scientists and engineers by providing a practical application of the 

autonomic properties.  In order for NASA employees to become educated about 

autonomic systems, they should be able to see examples of working systems.  NASA 

should take the initiative in developing autonomic systems to solve some of its real 

challenges, and then explain how the autonomic properties allowed for a unique and 

robust solution.  We hope our development of an autonomic system will encourage 

NASA engineers to use autonomic concepts in their own work. 
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Appendix A – Diagrams  
 

 
Figure 3: Agent System Design 
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Figure 4: Agent Relationship Design 
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Appendix B – UML  
 

 
Figure 5: Agent UML Diagram 

 
 

 
Figure 6: TimerTask UML Diagram 
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Figure 7: Database UML Diagram 

 

 
Figure 8: Job UML Diagram 
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Figure 9: Messaging System UML Diagram 

 
 

 
Figure 10: Messages UML Diagram 

 



 
 
 
 

75 

Appendix C – Properties  
 

Self Configuring 

• Nodes and Jobs can be added to the infrastructure without disruption to the 

system 

• Discovers agents automatically 

• Maintains a database (directory) regarding agent locations for communication and 

information specific to the agent's system 

• Applies rules to the system regarding specifications required to be stable (i.e. Two 

Configuration Agents, one Optimization Agent and two General Agents) 

 

Self Healing 

• Maintenance is performed to obtain current information from all nodes in the 

system and determine if any agents are not functioning 

• Detects if an agent in the system is no longer functioning correctly; if found it will 

remove the agent from the system and reintroduce the agent without any 

disruption 

• New agents are started on systems able to handle the load of an extra agent  

 

Self Protecting 

• The use of Redundant agents on different nodes in the system to prevent loss of 

information 

• All redundant agents are as secure as the original agents since they all contain the 
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same code as the primary agents which can be executed if necessary 

• Access to the system is managed by use of encryption in communication, sending 

information across SSL and digital certificates 

• Agents will not be started on systems unable to handle the load of another agent 

 

Self Optimizing 

• The ability to choose good locations to start new agents and applications (uses 

knowledge of the system to make choices) 

• Maximizes the performance from the system by distributing processes between 

nodes  

• Performs balancing techniques on agents and applications if nodes start becoming 

very heavily loaded 
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Appendix D – Job Implementation Guide 
 

How to Write a Job: 
 
Step 1: Create a new class that extends acms.job.Job 

Step 2: Define the constructor 

 An application must have three lines in order to be setup correctly to interact with 

ACMS.  These three lines are to provide a reference to the new application, determine the 

number of applications to distribute, and create the serialized version of the application.  

An example code snippet is shown below.  The first and last line should be copied 

verbatim, while the second lines number should be changed depending on the 

requirements of your application. 

Example 1: 
thisJob = this;                          // This line is necessary for all jobs 
thisJob.setNumInstances(5);   // Schedule as many of these jobs as the system can  
                                                // accommodate 
thisJob.generateJob();             // This line is necessary for all jobs 
 
Step 3: Define the main method 

 The main method in an application must create a new instance of your job class.  

This is the only line necessary in the main method, as shown below.  Alternatively for 

testing without integration with the ACMS, include a line that invokes the run method; an 

example of this line of code is shown below as well. 

Example 2: 
Job pc = new PrimesClient();    // Serializes this job when the main() is  
                                   // called 
//pc.start();      // Necessary for command line testing 
       // otherwise should remain commented 
 
Step 4: Define a toString method 
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Every application must implement the standard toString method in Java.  The 

string returned is the application’s name and must match the class name verbatim.  For 

example if your application were named PrimeCalculator and contained in the class file 

PrimeCalcultaor.class, then toString should return the String “PrimeCalculator”. 

Step 5: The run method 

 These methods are where the actual application programming takes place.  The 

run method is called when your application is ready to be run.  It is in this method that 

you should start any outside applications or processes necessary for your application.  

The run method should not return until your application has finished all of its processing.  

After the application is finished, simply have the run method return from the function call 

and ACMS will consider your application as completed. 

Additional Resources: 

 If you follow these steps your application is now ready to be launched using the 

User Agent GUI (See Appendix E).  If you require additional help in writing a 

application take a look at the sample PrimesClient and PrimesServer located in the 

acms.job.primes package.  These have detailed documentation line by line about what is 

necessary for all applications.  It is also a prime example of how to use the basic 

messaging included with ACMS.  Always remember to test your application 

independently of the ACMS system first to ensure your application is written correctly 

before submitting it to ACMS. 
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Appendix E – ACMS Users Guide 
 
Software Requirements: java 1.4.2 or later 
 

1. Starting the GUI 

a. Open a terminal or command shell  

b. Locate the directory where ACMS was installed on your system 

c. Execute the command “java acms.agent.UserAgent” 

 

 
Figure 11: Terminal Console window – Command for starting an Agent 

 

2. The Database Panel 

 The database panel is the default panel when the GUI is loaded.  This panel 

contains information on every agent in the system, including system information.  This 
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panel will be empty and gray unless there is a Configuration Agent online. 

 By Double Clicking on any of the table rows a pop-up menu will appear with 

several options. 

a. Spawn a Configuration Agent 

b. Spawn an Optimization Agent 

c. Spawn a General Agent 

d. Destroy an Agent 

The agent will take the action listed on the button.  These functions provide 

administration powers to the user.  This is helpful if the administrator would like to 

remove a computer from the cluster, they can just kill the agents on a particular node. 

 

 
Figure 12: User Agent – Database view 

 

3. The Job Panel 
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 The Job Panel is used for viewing active and queued applications on the cluster.  

This panel is also used for submitting new applications for processing.  At the top of this 

panel are two list boxes.  The left box contains a list of all the active processes on ACMS.  

Selecting one of the processes in the left box will populate the right list box.  The right 

box contains a list of addresses and a number in parentheses.  The addresses correspond 

to agents that have been assigned the selected application.  The number indicates how 

many instances of the application that particular agent has been assigned.  The stop job 

button will stop the application or applications selected in the right list box. 

 To submit an application click the select job button and locate the class file of the 

application you would like to submit.  When you have selected it the name of the file 

should appear in the text box just below the select job button.  Double check to make sure 

this is the correct file.  Next select the submit job button, the GUI now automatically 

sends your application for processing.  In a few moments the job will appear in the queue 

on the GUI.  Shortly thereafter the job is removed from the queue and will appear as 

active job in the left list box. 
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Figure 13: User Agent – Job Management view 

 

4. The Administration Panel 

 The Administration Panel contains a single button that can stop ACMS.  Pressing 

this button initiates a dialog which asks for conformation before shutting down ACMS.  

Once the action is confirmed there is no way to stop it.  All agents and applications will 

be stopped immediately.  In order to restart the system it will be necessary to start a 

General Agent on each node individually. 
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Figure 14: User Agent – Administration view 
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Appendix F – GetGoodGeneralAgent Algorithm 
 

 The purpose of getGoodGeneralAgentNoConfig and getGoodGeneralAgent 

algorithms is to determine a well suited node for an agent or application.  Each algorithm 

applies a list of rules to determine if there is a "good" node in the system.  These can be 

used to place new applications and agents when a node enters the system or to determine 

if moving an agent in necessary.  It allows for foreshadowing to see if there exists a more 

equipped node for an agent.  An example of this would be if there were two nodes, one 

available and one unavailable.  The unavailable node had the President Configuration 

Agent.  Since the President Agent does a large amount of processing and message 

passing it would be beneficial to have the President on the available node.  Therefore the 

getGoodGeneralAgent algorithm would return the available node as a result.  The term 

"good" is used to define a node that these methods would return as results.  

 

getGoodGeneralAgentNoConfig Algorithm - Agents 

 The purpose of this method is to return a node that does not contain Configuration 

Agents.  There are a number of rules that the method applies in order to determine a 

"good" node in the system.  The algorithm will first try to find a node in the system that is 

available and only contains General Agents.  If one isn't found it then looks for a node 

using the following rules: an available node that does not have Configuration Agents, an 

unavailable node with only General Agents, and an unavailable node without 

Configuration Agents.  If none of these conditions are met it will return null.  This 

method is mainly used for placement of the two Configuration Agents and the 
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Optimization Agent when they enter the system or need to be relocated.   

 

getGoodGeneralAgent Algorithm - applications  

 The purpose of this method is similar to the previous with slight modifications.  

For choosing a "good" node for application location there is no need to exclude 

Configuration Agents like in the previous algorithm.  Rather the exclusion here is with 

unavailable nodes.  If a node is unavailable it should not receive an application.  There is 

a similar rule set as the first algorithm had, it will start off by choosing a node with 

General Agents and/or Vice President Configuration Agent while running no 

applications.  If an agent is not found it will apply the following rules while trying to 

obtain a node: a node with any type of agents and no applications, a node with only 

General Agents and/or Vice President Agent and the fewest applications, and a node with 

any agents with fewest applications.  If none of the rules are applied then the method will 

return a null result.  The fewest applications factor was added into the algorithm so that 

applications are distributed evenly as each agent obtains more to run.   

 Along with the fewest applications factor for nodes, there is also a 

generalAgentCache, which is a Vector maintained in the Optimization Agent.  It acts as a 

cache so that no agent can receive consecutive application assignments too quickly.  This 

algorithm takes the cache into account when determining a location.  When an agent is 

assigned a new application its node IP address is entered into the cache and remains there 

for a set time.  When the time is finished it is removed from the cache and will then be 

available for another application assignment.  
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getGeneralAgent - All  

 This method is used in conjunction with the other two algorithms.  The other two 

algorithms will not always return non-null results, therefore if the result is null there 

needs to be a method to obtain a non-null result.  This function will always return a result 

unless there are no General Agents in the system.  The getGeneralAgent method will 

return an available node; if no available node exists then it will return an unavailable 

node in the table.  This method is used with the getGoodGeneralAgentNoConfig 

algorithm since unavailable nodes can still be accepted unlike with the application 

algorithm. 
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Appendix G – Scoring Algorithm 
 

 In order to determine which nodes in the system were able to execute new agents 

or applications, we needed a standardized method to evaluate the availability of each 

node.  We implemented this evaluation in the form of the scoring algorithm.  The scoring 

algorithm examines multiple aspects of the computer's resources, including the number 

and speed of the CPUs, the total and free memory (in kilobytes), and the system load 

averages.  Below is the equation we use in computing the score: 

( ) ( )[ ]
( )
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We decided not to use clock speed as a measurement of CPU performance because 

performance is much more dependent upon architecture than clock speed.  Linux 

provides bogomips as an approximate measure of CPU performance.  Although bogomips 

should not be used as an extremely accurate measurement of CPU performance (hence 

the name “bogus MIPS”), it is a reasonable method for performing approximate 

comparisons of processors, especially when the processors have the same architecture.  

We multiply the bogomips by the number of CPUs, because Symmetric Multiprocessing 

(SMP) systems are usually better equipped to execute multiple processes than single 

processor systems.  The system memory is reported in bytes; we multiply the free system 

memory by 0.002 because we found by experimentation that doing so allows the memory 

to affect the score while not being the dominant factor.  The load average factor of the 

score is somewhat more complex.  The load average in UNIX and Linux systems is an 

exponentially-damped moving average of the number of processes currently running in 
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addition to the number of processes in the run queue [19].  In other words, the load 

average is not a measure of processor utilization, but of the number of processes that are 

waiting for CPU time.  Therefore, a lower average means that the system is more 

available, because there are fewer processes waiting in the run queue.  Nodes with a low 

load average should receive a higher score than nodes with a high average.  For this 

reason, we placed the load average factor in the denominator of the equation.  Low load 

averages are typically less than or equal to one, so small loads will result in either no 

score change or a higher score because the numerator would be divided by a number less 

than one.  Linux provides three measures of system load: the load for the past one minute, 

five minutes, and fifteen minutes.  We found that the one minute load average fluctuates 

too rapidly to be useful in our scoring algorithm, so we were limited to using the five and 

fifteen minute load averages.  We wanted to reward systems with a decreasing load and 

penalize systems with an increasing load.  We accomplished this by dividing the five 

minute load by the fifteen minute load.  If the five minute load is smaller than the fifteen 

minute load, the result will be a smaller number, which will increase the score because it 

is in the denominator of the equation.  However, the fraction in the denominator of the 

score function presented a problem.  If both the five minute and fifteen minute load 

average were 4.0, the resulting denominator in the score function would be a one, and this 

case would not penalize the score, even though both load averages were quite high.  To 

solve this problem, we squared the five minute load average.  In this case, the 

denominator would be sixteen divided by four, resulting in a four in the denominator and 

a lower score.  Below are some examples to show how the load averages affect the score: 
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Average CPU Bogomips = 2000 
Number of CPUs = 2 
Free Memory = 300,000 kilobytes 
 

 
Stable, Low Load Average 

5 Minute Load Average = 1 
15 Minute Load Average = 1 
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Decreasing Load Average 
5 Minute Load Average = 0.5 
15 Minute Load Average = 1 
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Increasing Load Average 
5 Minute Load Average = 2 
15 Minute Load Average = 1 
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Stable High Load Average 
5 Minute Load Average = 4 
15 Minute Load Average = 4 
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One final consideration in computing the score is that, because the load average factor is 

in the denominator and load averages can reach very low or high levels, the load average 

becomes the dominant factor in the score.  During our testing we found that the node with 

a single 266 MHz Pentium II processor and 256 MB of system memory would often 

attain a higher score than the node with dual 1.6 GHz Pentium IV Xeon processors and 

512 MB of system memory.  The dual Xeon node is obviously a better choice when 

assigning agents or applications, but the Pentium II node could have a higher score 

because it was idle and had a lower load average.  The actual problem was that there was 

a lower bound of zero on the score, but no upper bound.  We realized that the most 

influential factor in the score should be the CPU performance.  To ensure that this was 

the case, we limited the denominator of the equation so that it could never be smaller than 

0.5. 
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Appendix H – Performance Evaluation Results 
 

 This appendix contains all of the results from our system performance 

evaluations.  Additionally, we provide information about the configuration of the cluster 

we constructed.  We did not have access to an actual cluster, so we had to assemble a 

small one ourselves using only our personal computers and networking equipment 

borrowed from GSFC.  The tables below contain information about each node in the 

cluster and the network configuration. 

 

Table 3: Node Configuration 

CPU Cache (KB) Clock (MHz) Bogomips RAM (MB) Operating System Kernel

Node 1 AMD Athlon 64 3000+ 1024 1600 3162.11 512 Slackware Linux 10.0 2.6.7

Node 2 AMD Athlon XP 1800+ 256 1500 3022.84 512 Slackware Linux 10.0 2.6.8.1

Node 3 Intel Pentium M 1024 1600 3170.30 512 Knoppix 3.4 2.6.6

Node 4 Intel Pentium III 256 866 1687.55 112 Knoppix 3.4 2.6.6

Node 5 Intel Pentium IV 512 2000 N/A 256 Windows XP Pro N/A

 
 

Table 4: Network Configuration 

Network Medium 100 Base-T Category 5 Ethernet

Network Address 192.168.0.0

Netmask 255.255.255.0

Broadcast Address 192.168.0.255

Network Device Linksys EtherFast 10/100 Hub

Model EFAH08W

Version 3.0  
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 During the system evaluation we conducted three trials for each of our four tests.  

The results from each trial appear in the tables below; the averages for each test can be 

found in the Results chapter.  Tests 1 and 2 required only a single node; we used Node 1 

for these tests.  All times are in hh:mm:ss format. 

 

Table 5: System Evaluation - Trial 1 Results 

Start Time Stop Time Run Time

Test 1 8:30:18 9:20:13 0:49:55

Test 2 19:05:06 19:57:13 0:52:07

Test 3 15:43:34 15:54:34 0:11:00

Test 4 18:14:16 18:25:34 0:11:18  

 

Table 6: System Evaluation - Trial 2 Results 

Start Time Stop Time Run Time

Test 1 12:55:12 13:45:01 0:49:49

Test 2 21:01:01 21:53:10 0:52:09

Test 3 15:59:47 16:10:48 0:11:01

Test 4 18:46:48 18:58:26 0:11:38  

 

Table 7: System Evaluation - Trial 3 Results 

 

Start Time Stop Time Run Time

Test 1 14:12:43 15:02:33 0:49:50

Test 2 22:13:42 23:05:58 0:52:16

Test 3 16:15:30 16:26:34 0:11:04

Test 4 19:57:22 20:08:39 0:11:17  
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Appendix I – IBM Paper 

Autonomic Cluster Management System (ACMS) 
An Introduction and Design Overview 

 
James Baldassari          Chris Kopec           Eric Leshay 
   jdb@wpi.edu        chris@wpi.edu       ericl@wpi.edu 

Worcester Polytechnic Institute 
 
       David Finkel       Walter F. Truszkowski 
             Project Advisor              NASA Mentor 
Worcester Polytechnic Institute            Goddard Space Flight Center 
   dfinkel@wpi.edu       Walter.F.Truszkowski@nasa.gov 

 
 

1.0 Introduction 

 Scientists and engineers at the National Aeronautics and Space Administration 

(NASA) often require significant computational power to accomplish their research 

objectives.  The computational capabilities needed for the simulation and modeling of 

complex systems can be provided in several ways.  A traditional High Performance 

Computing (HPC) approach to solving large computational problems has been the use of 

a single, powerful supercomputer.  However, recent trends in HPC have been towards 

highly scalable, cost-effective solutions such as clusters and grid computing. 

 The NASA Goddard Space Flight Center (GSFC) in Greenbelt, MD was the 

birthplace of the first Beowulf cluster in 1994.  Following the success of the first cluster 

system, GSFC has continued its research into the field of distributed computing.  GSFC's 

recent focus has been developing autonomous, self-managing systems that would reduce 

the need for frequent human intervention.  IBM's Autonomic Computing initiative 

correlates well with GSFC's research goals.  The self-configuring, self-optimizing, self-

healing, and self-protecting properties of an autonomic system could benefit many of 
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GSFC's current and future projects. 

 We are currently working at GSFC for ten weeks to complete our senior design 

project, an undergraduate degree requirement for Worcester Polytechnic Institute (WPI).  

Continuing GSFC's research into autonomic systems, we have designed and begun 

implementing an autonomic system for the management of distributed systems.  

Throughout this paper we will refer to our system as the Autonomic Cluster Management 

System (ACMS).  The ACMS is a prototype for future endeavors at GSFC.  The main 

goal of the ACMS is to display the four autonomic properties.  The ACMS must plainly 

present and distinguish among the autonomic properties.  The scientists at GSFC are 

interested in concrete examples of the autonomic properties; our system will allow them 

to judge if the application of these same properties is appropriate for their own work.  

The secondary goal is the development of a system that can manage a cluster.  The 

outcome of our system will help engineers at GSFC to decide about the incorporation of 

autonomic principles in their own work. 

 

2.0 System Design 

 We are developing the ACMS in Java on Linux using the Eclipse development 

environment.  We needed an object-oriented language that had support for multi-

threading and networking.  One aspect of Java that we found beneficial was the Java 

Virtual Machine (JVM).  The JVM allowed us to execute multiple instances of our agents 

without interfering with each other or affecting the underlying system.  Additionally, the 

JVM allowed the majority of our code to be platform independent, so that the ACMS 

could be used seamlessly in a heterogeneous environment.  After choosing the 

programming language, we began designing the system.   
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 In the context of the ACMS we defined a cluster as a system comprised of one or 

more nodes connected by a network, and we defined a node as a single computer.  We 

designed the ACMS to be a multi-agent system.  Using a multi-agent system model 

allows us to distribute the management functions of a cluster.  This design removes the 

constraint of having certain critical nodes on which the functionality of the entire system 

depends.  The ACMS has no single point of failure.  In fact, the entire system can operate 

with only a single node.  From this high-level design we began planning the substructure 

of the ACMS.  We designed the network communications and message-passing systems 

first; these are the foundation of our system because they enable all the agents in the 

cluster to communicate. 

 

2.1 Communication System 

 Message passing is a necessary function in all distributed systems.  The 

components of the system must be able to coordinate their actions for the system to be 

effective.  We developed a custom Message Passing Interface (MPI) for all 

communications between agents in the ACMS.  The interface supports two methods for 

sending and receiving messages.  In peer-to-peer communication between two agents, 

messages are sent using the Transmission Control Protocol (TCP) and are encrypted 

using Secure Sockets Layer (SSL).  All system commands and sensitive data are sent 

using this encrypted method, and in this way the system satisfies the self-protecting 

autonomic property.  The second method in our MPI is used when a single message needs 

to be broadcast to multiple recipients.  However, rather than broadcasting a message to 

every agent in the system, we use defined multicast groups so that messages are only 

received by the agents for which they are intended.  One disadvantage of using multicast 
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messages is that there is currently no way to encrypt them.  Given this inherent weakness, 

no sensitive data about the system or commands for agents are sent using this method.  

Once we had designed the communications system, we began designing the agents that 

would use it. 

 

2.2 Agent Design 

 The system consists of three types of agents; each has functionality exemplifying 

autonomic system properties.  The three agent types we designed are called General 

Agents, Optimization Agents, and Configuration Agents.  The ACMS is comprised of 

two Configuration Agents and one Optimization Agent per system, and two General 

Agents per node.  The agents’ goal is to manage a distributed application while 

maximizing its performance by implementing load-balancing techniques on the system. 

 

2.2.1 Configuration Agent 

 The purpose of the Configuration Agent is to make the system self-configuring.  

The functionality of the Configuration Agent consists of maintaining a current list of all 

the agents in the system and making this information available to other agents.  When an 

agent first comes on-line it broadcasts to the Configuration Agent's multicast address 

stating that it has joined the system.  When this message is received, the Configuration 

Agent examines the table to ensure that the new agent is needed.  For example, if there 

are already two Configuration Agents in the system and a third comes on-line, the system 

might become unstable.  If the new agent does not belong in the system, a termination 

message is sent back to the agent.  Periodically the Configuration Agent cycles through 

its list of agents and sends them messages to verify that each is still functioning properly.  
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If the Configuration Agent is unable to establish a connection with an agent, it can be 

assumed that the agent is no longer functioning correctly and will therefore be removed 

from the database.  Otherwise, the agent responds with a list of information such as the 

address and port number of the agent’s server, the agent type, and its system statistics 

(processor speed, number of processors, free memory, etc.).  This list of information can 

be easily expanded to include requests for other information if necessary in the future.  

When the Configuration Agent receives this information it is updated in the table. 

 The system contains both a primary and a secondary Configuration Agent to 

support redundancy and the self-healing autonomic property. Ideally, both of the 

Configuration Agents would be on different nodes in the system so that if one node stops 

responding, there would be at least one Configuration Agent in the system.  The reason 

for redundancy is that the database is stored locally by the agent in memory.  Therefore, 

if the agent stopped functioning for any reason all the information within the database 

would be lost.  To prevent this occurrence, the Vice President Configuration Agent 

synchronizes with the database of the primary agent. Only the primary agent performs the 

system configuration tasks.  However, if the primary agent were to stop functioning, the 

Vice President Agent would be able to continue the primary agent's role.  The 

Optimization Agent would detect that there is only one Configuration Agent functioning 

and recreate a second Configuration Agent.  

 

2.2.2 Optimization Agent 

 The purpose of the Optimization Agent is to make the system self-optimizing.  

The role of the Optimization Agent within the system is first to contact the Configuration 

Agent for a current copy of the database.  Once the database is received, the Optimization 
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Agent begins analysis of the database to ensure that there are the correct number and 

types of agents in the system.  It verifies that there are exactly two Configuration Agents 

in the system, one Optimization Agent in the system, and two General Agents on each 

node in the system.  If it finds this information to be incorrect, it sends commands to 

create or kill one or more agents, stabilizing the system.  After performing a brief 

analysis of the system, it then begins observing the loads and statistics of each node, 

noting the lightly and heavily loaded systems.  When the application needs to start a new 

process, the Optimization Agent finds a node that is not heavily loaded.  It contacts a 

General Agent on the corresponding node and commands it to start the requested process.  

The Optimization Agent has the capability to move agents and processes from one node 

to another; allowing processing power to be utilized over multiple systems for a task, 

rather than having one system perform all of the processing.   No redundancy is 

built in to the Optimization Agent because it does not store any important information in 

memory.  If the agent were to stop responding, it could be easily recreated by the 

Configuration Agent.  Once recreated, it would continue functioning properly with no 

loss of critical data.  The only loss that occurs is any analysis of the table that the 

previous Optimization Agent had completed. 

 

2.2.3 General Agent 

 The main functionality of each General Agent is to execute the commands sent by 

the other agent types.  These commands are either to start or stop processes running on its 

system, to spawn a new agent, or to terminate itself.  This method gives configuration and 

Optimization Agents the ability to start any type of agent on any node in the system, 

since all nodes contain at least one General Agent at all times.  Redundancy, as with the 
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Configuration Agents, is built into the General Agents.  The reason for redundancy in this 

case is not to preserve data, but rather to ensure that a node will remain part of the 

system.  If there were only one General Agent on a node, and that agent stopped 

responding, the entire node would be disconnected from the system.  However, if there 

are two General Agents per node, and one fails, the remaining agent can recreate the 

failed General Agent.  Once again this behavior satisfies the self-healing autonomic 

property.  The self-healing property of the General Agents reduces the chance that a node 

will be removed from the system due to agent failure, thus requiring less maintenance by 

human intervention. 

 

3.0 Concluding Remarks 

 The ACMS is a unique system that has many potential applications.  Using its 

autonomic multi-agent framework as a foundation, the system can be easily extended to 

perform a diverse set of management tasks in a heterogeneous environment.  Although 

the current focus of the system is ground-based HPC facilities, a future application of this 

technology might be an autonomic management system for a cluster of unmanned 

spacecraft.  It is our hope that the ACMS will advance GSFC's research efforts in 

autonomous and autonomic systems. 
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Appendix J – JavaDoc  
 

wasp.data  
Class SysStatsReader 
 
java.lang.Object 
  wasp.data.SysStatsReader 
Direct Known Subclasses:  
LinuxSysStatsReader, WindowsSysStatsReader 

 
public abstract class SysStatsReader 
extends java.lang.Object 
The SysStatsReader class is used in writing classes that retrieve operating system specific 
information, such as CPU, memory, and load information.  
Author: 
jbaldassari 
See Also: 
LinuxSysStatsReader, WindowsSysStatsReader 

 

Field Summary 

(package 
private) 
 Tuple 

t  
            

   

Constructor Summary 

SysStatsReader()  
            

 

   

Method Summary 

protected 
abstract 
 java.util.Vector 

getCPUStats()  
          Retrieves information about the node's CPU(s) 

protected 
abstract 
 java.util.Vector 

getLoadStats()  
          Retrieves information about the node's current load 

protected 
abstract 
 java.util.Vector 

getMemStats()  
          Retrieves information about the node's system memory 

 void populateStats(Tuple t)  
          Updates a Tuple object with the current system information 
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Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 

   

Field Detail 

t 
 
Tuple t 

Constructor Detail 

SysStatsReader 
 
public SysStatsReader() 

Method Detail 

populateStats 
 
public void populateStats(Tuple t) 
Updates a Tuple object with the current system information  
Parameters: 
t - A Tuple object 

 
getCPUStats 
 
protected abstract java.util.Vector getCPUStats() 
Retrieves information about the node's CPU(s)  
Returns: 
A Vector containing the number of CPUs, average CPU speed, and average CPU 
Bogomips. 

 
getMemStats 
 
protected abstract java.util.Vector getMemStats() 
Retrieves information about the node's system memory  
Returns: 
A Vector containing the current total and free memory. 

 
getLoadStats 
 
protected abstract java.util.Vector getLoadStats() 
Retrieves information about the node's current load  
Returns: 
A Vector containing the current load averages. 
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wasp.messaging  
Interface Server 
All Known Implementing Classes:  
BroadcastServer, SSLServer 

 
public interface Server 
This is a common interface for all servers.  
Author: 
jbaldassari 

 

Method Summary 

 Agent getAgent()  
          Gets the agent that is running the server 

 int getPort()  
          Gets the server port. 

 void start()  
          Starts the server. 

 void stop()  
          Stops the server. 

   

Method Detail 

start 
 
public void start() 
Starts the server.  

 
stop 
 
public void stop() 
Stops the server.  

 
getPort 
 
public int getPort() 
Gets the server port.  
Returns: 
The port number that the server is listening on. 

 
getAgent 
 
public Agent getAgent() 
Gets the agent that is running the server  
Returns: 
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The agent that instantiated the server object. 

 
 
 
 
 

 
wasp.agent  
Class GeneralAgent 
 
java.lang.Object 
  wasp.agent.Agent 
      wasp.agent.GeneralAgent 

 
public class GeneralAgent 
extends Agent 
GeneralAgent is a type of Agent that is responsible for running tasks and reporting 
system information to the Configuration Agent.  
Author: 
ckopec 

 

Field Summary 

private 
 java.util.Vector 

activeJobs  
            

private 
 java.lang.String 

lastKnownConfigAddr  
            

private  int lastKnownConfigPort  
            

static java.lang.String multicastGroup  
            

static int multicastPort  
            

private  Tuple tp  
            

   

Fields inherited from class wasp.agent.Agent 

broadcastServer, sslServer 

   

Constructor Summary 

private  GeneralAgent()  
          Constructor calls Agent constructor. 
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Method Summary 

 java.lang.String dequeueJob(Job j)  
          Dequeues the first instance of a Job 

 void enqueueJob(Job j)  
          Enqueues a Job in this agent's Tuple 

 java.lang.String getLastKnownConfigAddr()  
          Returns the last known address of the President Configuration 
Agent 

 int getLastKnownConfigPort()  
          last known port of the President Configuration Agent 

 java.lang.String getMulticastGroup()  
          Returns the General Agents multicast group address 

 int getMulticastPort()  
          Returns the General Agents multicast group port 

 Tuple getTuple()  
          Gets this agent's tuple 

protected  void jobHandler(MessageWrapper mw)  
          The method used when a job message is recieved. 

static void main(java.lang.String[] args)  
          If executed, creates a new GeneralAgent in a new Java VM 

protected  void systemHandler(MessageWrapper mw)  
          Recieved by the Configuration Agent when checking to see if 
agents are alive and collecting their system statistics. 

 java.lang.String toString()  
            

   

Methods inherited from class wasp.agent.Agent 

agentHandler, databaseHandler, dequeueMessage, destroy, getSslServer, handleMessages, println, 
queueMessage, receiveMessage, recievedSystemHandler, sendBroadcastMessage, sendMessage, 
sizeMsgQueue, spawnAgent, startDebugConsole 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait 

   

Field Detail 

multicastGroup 
 
public static final java.lang.String multicastGroup 
See Also: 



 
 
 
 

105

Constant Field Values 

 
multicastPort 
 
public static final int multicastPort 
See Also: 
Constant Field Values 

 
tp 
 
private Tuple tp 

 
lastKnownConfigAddr 
 
private java.lang.String lastKnownConfigAddr 

 
lastKnownConfigPort 
 
private int lastKnownConfigPort 

 
activeJobs 
 
private java.util.Vector activeJobs 

Constructor Detail 

GeneralAgent 
 
private GeneralAgent() 
Constructor calls Agent constructor. It broadcasts and waits 5 seconds then times out and 
creates a new Configuration Agent on the node.  

Method Detail 

main 
 
public static void main(java.lang.String[] args) 
If executed, creates a new GeneralAgent in a new Java VM  
Parameters: 
args -  

 
getMulticastGroup 
 
public java.lang.String getMulticastGroup() 
Returns the General Agents multicast group address  
Specified by: 
getMulticastGroup in class Agent 
Returns: 
multicast address 
See Also: 
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Agent.getMulticastGroup() 

 
getMulticastPort 
 
public int getMulticastPort() 
Returns the General Agents multicast group port  
Specified by: 
getMulticastPort in class Agent 
Returns: 
multicast port 
See Also: 
Agent.getMulticastPort() 

 
toString 
 
public java.lang.String toString() 
Returns: 
The name of the Agent 

 
systemHandler 
 
protected void systemHandler(MessageWrapper mw) 
Recieved by the Configuration Agent when checking to see if agents are alive and 
collecting their system statistics. The General Agent makes a new tuple which it fills and 
sends back to the Configuration Agent with the correct information.  
Overrides: 
systemHandler in class Agent 
Parameters: 
mw - MessageWrapper of the message that was just recieved by the current agent. 
See Also: 
wasp.agent.Agent#SystemHandler(wasp.messaging.messages.MessageWrapper) 

 
jobHandler 
 
protected void jobHandler(MessageWrapper mw) 
The method used when a job message is recieved. Will either start a new job on the 
agents node or stop a running job on the node.  
Overrides: 
jobHandler in class Agent 
Parameters: 
mw - MessageWrapper of the message that was just recieved by the current agent. 
See Also: 
wasp.agent.Agent#JobHandler(wasp.messaging.messages.MessageWrapper) 

 
getTuple 
 
public Tuple getTuple() 
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Gets this agent's tuple  
Returns: 
the agent's tuple 

 
getLastKnownConfigAddr 
 
public java.lang.String getLastKnownConfigAddr() 
Returns the last known address of the President Configuration Agent  
Returns: 
Returns the last known address of the President Configuration Agent 

 
enqueueJob 
 
public void enqueueJob(Job j) 
Enqueues a Job in this agent's Tuple  
Parameters: 
j - The Job to enqueue 

 
dequeueJob 
 
public java.lang.String dequeueJob(Job j) 
Dequeues the first instance of a Job  
Parameters: 
j - The name of the Job to dequeue  
Returns: 
The name of the job that was dequeued 

 
getLastKnownConfigPort 
 
public int getLastKnownConfigPort() 
last known port of the President Configuration Agent  
Returns: 
Returns the last known port of the President Configuration Agent 
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