
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

October 2004

Autonomic Systems
Christopher Lee Kopec
Worcester Polytechnic Institute

Eric S. Leshay
Worcester Polytechnic Institute

James Dominic Baldassari
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Kopec, C. L., Leshay, E. S., & Baldassari, J. D. (2004). Autonomic Systems. Retrieved from https://digitalcommons.wpi.edu/mqp-all/
178

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212990929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/178?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/178?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: DXF-GS04

Title Page

Autonomic Systems

A Major Qualifying Project Report:

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

James D. Baldassari

Christopher L. Kopec

Eric S. Leshay

October 15, 2004

Approval:

David Finkel, Advisor

This document represents the work of WPI students. The opinions expressed in this
report are not necessarily those of the Goddard Space Flight Center or the

National Aeronautics and Space Administration.

ii

This page intentionally left blank.

iii

Abstract

An autonomic system is defined as self-configuring, self-optimizing, self-healing, and
self-protecting. We implemented the Autonomic Cluster Management System (ACMS),
a low overhead Java application designed to manage and load balance a cluster, while
working at NASA GSFC. The ACMS is a mobile multi-agent system in which each
agent is designed to fulfill a specific role. The agents collaborate and coordinate their
activities in order to achieve system management goals. The ACMS is scalable and
extensible to facilitate future development.

iv

Acknowledgements

We wish to express our utmost appreciation to the following individuals and agencies:

Our NASA mentor, Walter F. Truszkowski, for his constant support, guidance, and
encouragement throughout the project.

Our advisor, Professor David Finkel, for his consistently valuable suggestions and sound
advice.

Professors Fred Looft, Steven Bitar, and John Blandino for their constructive feedback.

NASA for extending the opportunity to complete our MQP at GSFC.

The GSFC information technology staff for allowing us to convert our workstations to
Linux and for providing us with networking equipment for our system tests.

Patricia Rago and Dragana Kostic from IBM Autonomic Systems for their helpful
comments about our project.

v

1. Title Page.. i

2. Abstract .. iii

3. Acknowledgements.. iv

4. Table of Tables .. xi

5. Table of Figures.. xii

6. Table of Acronyms .. xiii

7. Executive Summary .. xiv

8. 1. Introduction .. 1

9. 2. Background... 4

9.1. 2.1. Distributed Systems ... 4

9.2. 2.2. Decentralized Systems ... 6

9.2.1. 2.2.1. Centralized Topology.. 6

9.2.2. 2.2.2. Decentralized Topology.. 7

9.2.3. 2.2.3. Centralized + Decentralized Topology .. 8

9.3. 2.3. Beowulf Clusters.. 8

9.4. 2.4. Grid Computing ... 9

9.5. 2.5. Network Protocols ... 10

9.5.1. 2.5.1. TCP ... 10

vi

9.5.2. 2.5.2. SSL .. 11

9.5.3. 2.5.3. UDP .. 12

9.6. 2.6. Multiple Agent Systems... 13

9.7. 2.7. Mobile-Agent Systems... 13

9.8. 2.8. Autonomic Computing... 14

9.9. 2.9. Summary .. 17

10. 3. Problem Statement ... 18

10.1. 3.1. Determine a programming language.. 18

10.2. 3.2. Evaluate toolkits and applications.. 18

10.3. 3.3. Define each of the four attributes... 19

10.4. 3.4. Design of the System ... 19

10.5. 3.5. Design of the Agents.. 19

10.6. 3.6. Design of the Message system... 20

10.7. 3.7. Program each of the four attributes.. 20

10.8. 3.8. Design the agents to interact with each other .. 20

10.9. 3.9. Design the agents to act as a distributed system .. 21

10.10. 3.10. Design the agents to manage a distributed computing environment 21

10.11. 3.11. Test the system... 22

11. 4. Methodology.. 23

11.1. 4.1. Choosing a Programming Language.. 23

vii

11.2. 4.2. Evaluating toolkits and applications .. 24

11.2.1. 4.2.1. Linux ... 24

11.2.2. 4.2.2. Eclipse... 25

11.2.3. 4.2.3. CVS Server.. 26

11.2.4. 4.2.4. Madkit ... 26

11.2.5. 4.2.5. Log and Trace Analyzer plug-in ... 27

11.3. 4.3. Applied Autonomic Attributes... 28

11.3.1. 4.3.1. Self-Protecting .. 28

11.3.2. 4.3.2. Self-Healing .. 28

11.3.3. 4.3.3. Self-Configuring.. 29

11.3.4. 4.3.4. Self-Optimizing ... 29

11.4. 4.4. High Level Design Overview .. 29

11.5. 4.5. Agent Design ... 31

11.5.1. 4.5.1. Configuration Agent ... 31

11.5.2. 4.5.2. Optimization Agent ... 32

11.5.3. 4.5.3. General Agent ... 33

11.6. 4.6. System Topology ... 34

11.7. 4.7. Network Communications ... 35

11.8. 4.8. Messaging System ... 37

11.9. 4.9. Summary .. 38

viii

12. 5. System Design and Implementation ... 39

12.1. 5.1. Object Oriented Architecture ... 39

12.1.1. 5.1.1. Agent Architecture .. 39

12.1.2. 5.1.2. Timer Task Architecture ... 40

12.1.3. 5.1.3. Messaging Architecture .. 41

12.1.4. 5.1.4. Database Architecture .. 41

12.1.5. 5.1.5. Job Architecture.. 42

12.2. 5.2. Agents .. 42

12.2.1. 5.2.1. Configuration Agent ... 43

12.2.2. 5.2.2. Optimization Agent ... 43

12.2.3. 5.2.3. General Agent ... 44

12.3. 5.3. Message System... 45

12.3.1. 5.3.1. Messages... 45

12.3.2. 5.3.2. Message Handling .. 46

12.4. 5.4. Database ... 47

12.5. 5.5. Jobs .. 48

12.5.1. 5.5.1. Jobs are developed Independently of ACMS 49

12.5.2. 5.5.2. Job Application Programming Interface .. 49

12.5.3. 5.5.3. Distributing Jobs... 50

12.5.4. 5.5.4. Scheduling Jobs .. 52

ix

12.6. 5.6. Summary .. 53

13. 6. Results.. 55

13.1. 6.1. Validation of the Autonomic Properties .. 55

13.2. 6.2. Performance Evaluation... 57

13.2.1. 6.2.1. Distributed Application Design .. 57

13.2.2. 6.2.2. Performance Evaluation of the ACMS.. 59

13.3. 6.3. Summary .. 61

14. 7. Recommendations and Conclusion... 63

14.1. 7.1. Suggestions for Future Development... 63

14.1.1. 7.1.1. Outstanding Development Tasks and Evaluations 63

14.1.1.1. 7.1.1.1. Node Statistics and Scoring ... 63

14.1.1.2. 7.1.1.2. Job Infrastructure and Load Balancing................................. 64

14.1.1.3. 7.1.1.3. Integration of Open Standards for Interoperability............... 65

14.1.1.4. 7.1.1.4. Scalability Testing.. 66

14.1.1.5. 7.1.1.5. Improving the Usability and Aesthetics of the User Agent 67

14.2. 7.2. Possible Extensions to the ACMS ... 67

14.2.1. 7.2.1. Management of Grid Systems ... 68

14.2.2. 7.2.2. Management of Intelligent Clustered Spacecraft 69

14.3. 7.3. Increasing Awareness of Autonomic Systems... 69

15. Appendix A – Diagrams... 70

x

16. Appendix B – UML .. 72

17. Appendix C – Properties.. 75

18. Appendix D – Job Implementation Guide ... 77

19. Appendix E – ACMS Users Guide.. 79

20. Appendix F – GetGoodGeneralAgent Algorithm 84

21. Appendix G – Scoring Algorithm ... 87

22. Appendix H – Performance Evaluation Results.. 91

23. Appendix I – IBM Paper.. 93

24. Appendix J – JavaDoc.. 100

25. References ... 108

xi

Table of Tables

Table 1: Scenarios and Test cases... 55
Table 2: System Evaluation – Result Averages .. 60
Table 3: Node Configuration .. 91
Table 4: Network Configuration... 91
Table 5: System Evaluation - Trial 1 Results ... 92
Table 6: System Evaluation - Trial 2 Results ... 92
Table 7: System Evaluation - Trial 3 Results ... 92

xii

Table of Figures

Figure 1: Application Startup flowchart ... 51
Figure 2: Run time comparisons ... 61
Figure 3: Agent System Design .. 70
Figure 4: Agent Relationship Design.. 71
Figure 5: Agent UML Diagram .. 72
Figure 6: TimerTask UML Diagram... 72
Figure 7: Database UML Diagram ... 73
Figure 8: Job UML Diagram... 73
Figure 9: Messaging System UML Diagram.. 74
Figure 10: Messages UML Diagram... 74
Figure 11: Terminal Console window – Command for starting an Agent 79
Figure 12: User Agent – Database view ... 80
Figure 13: User Agent – Job Management view .. 82
Figure 14: User Agent – Administration view.. 83

xiii

Table of Acronyms

ACMS Autonomic Cluster Management System

API Application Programming Interface

DMZ Demilitarized Zone

GSFC Goddard Space Flight Center

GUI Graphical User Interface

HPC High Performance Computing

IBM International Business Machines

IP Internet Protocol

IT Information Technology

Jar Java Archive

JVM Java Virtual Machine

MPI Message Passing Interface

MPP Massively Parallel Processing

NASA National Aeronautics and Space
Administration

OO Object Oriented

RoD Resources on Demand

SDK Software Development Kit

SMP Symmetric Multiprocessing

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

VO Virtual Organization

W3C World Wide Web Consortium

xiv

Executive Summary
The NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland

supports the gathering and dissemination of knowledge about the Earth, solar system, and
Universe. GSFC’s primary responsibility is the development and operation of unmanned
scientific spacecraft. The successful completion of GSFC’s objectives often entails the
solution of large computational problems, such as the modeling and simulation of
complex systems. Many of these problems are so computationally demanding that some
form of High Performance Computing (HPC) is required to solve them.
 Traditionally, Massively Parallel Processing (MPP) computer systems have been
used to meet HPC requirements. These systems may contain hundreds or thousands of
processors within a single computer system. MPP computers are usually very expensive
and difficult to upgrade, but they perform extremely well and are relatively simple to
manage.

A recent trend in HPC has been to overcome the cost and scalability issues
associated with MPP systems by using a different type of HPC system called a cluster. A
cluster is a collection of inexpensive individual computers, referred to as nodes, that are
connected via a network and configured to appear as a single computer to its users.
Increasing the computational capability of a cluster is as simple as adding nodes to the
system, resulting in a highly scalable HPC solution. The largest disadvantage of using a
cluster is the complexity of its management and configuration. Instead of administering a
single computer, as with an MPP system, management and configuration tasks on a
cluster must be performed on every node. In a cluster comprised of hundreds or
thousands of nodes management becomes a daunting task. Manually configuring
thousands of nodes is inefficient, if not impossible. While an operating system may be
able to optimize its own processes, it is not aware of the cluster as a whole and cannot
coordinate its activities with the other nodes. A severed network connection or an
otherwise unresponsive node could cripple the cluster if it is not able to recover from
failures. Finally, unauthorized access to the cluster is a constant concern for system
administrators.

Autonomic computing is a relatively new approach to managing complex systems
that can potentially solve many of the problems inherent in cluster management. The
definition of an autonomic system is one that is self-configuring, self-optimizing, self-
healing, and self-protecting. Using these autonomic properties as a guide, we designed
and implemented an Autonomic Cluster Management System (ACMS).
 The ACMS is a mobile agent system composed of a number of agent processes
communicating across a network of nodes. Each agent is written to perform a particular
task, and together the community of agents collaborates to achieve a common goal. The
common goal in the ACMS is to manage a cluster.
 The ACMS is middleware that was written in Java and executes within the Java
Virtual Machine (JVM). The JVM is platform independent and runs on top of an existing
operating system. The ACMS can therefore be used on heterogeneous clusters,
regardless of the operating system or underlying system architecture of each node. The
ACMS maintains a record of all nodes in the cluster, as well as comprehensive system
information about each node. The ability to maintain this record and handle the addition
and deletion of nodes is what satisfies the self-configuring autonomic.

xv

 Distributed applications running on the cluster are optimized by the ACMS. It
accomplishes this by examining each node’s record. When the ACMS finds a node it
deems available, the ACMS assigns new distributed applications to that node first. The
ACMS uses the load balancing algorithm to satisfy the self-optimizing property of
autonomic systems.
 The myriad of agents that compose the ACMS require a method for
communication. The communication system used by ACMS is TCP/IP encrypted by
Secure Sockets Layer (SSL). Encrypted communication prevents rogue agents from
joining the system and satisfies the self-protecting property of autonomic systems.
 The ACMS was built to be robust and handle the occasional fault or failure. Each
agent runs in its own JVM, so the failure of one agent will not affect other agents on the
same node. The ACMS contains redundant agents; these agents assume the role of their
partner if it should fail. The ability to handle failure and create new agents satisfies the
self-healing property of an autonomic system.
 Object Oriented (OO) architecture with encapsulation and inheritance was used in
the design of the ACMS. For example, code for the four agents is stored in the agent
package. The four agents are the ConfigurationAgent, OptimizationAgent, GeneralAgent,
and UserAgent. The ConfigurationAgent is responsible for maintaining the location of all
agents and acts as a central contact point for the other agents in the ACMS. The
OptimizationAgent’s role is to decide how best to utilize the resources of the cluster. The
GeneralAgent is present on every node in the system and acts as an interface between the
agents and the nodes. The UserAgent is the user interface for the ACMS. While the
ACMS is running there are two GeneralAgents on each node, two ConfigurationAgents
per cluster, one OptimizationAgent per cluster, and any number of UserAgents.
 To evaluate the performance of the ACMS we devised a series of four tests. The
results of these tests reveal the overhead associated with using the ACMS to manage the
execution of a distributed application. The distributed application we used during the
performance evaluation was a simple prime number calculator designed to find all prime
numbers less than one million. The first two tests were run with a single node, while the
last two tests were run with five nodes. The first trial in each set was with the distributed
application alone. During the second trial in each set we used the ACMS to manage the
distributed application. The results show that using the ACMS incurs only a small
amount of overhead. In the worst case scenario, which was when the ACMS and the
distributed application were both running on one node, the ACMS caused less than 5%
overhead. When additional nodes are introduced into the cluster, the ACMS distributes
itself among the nodes so that the performance impact on each node is reduced. When
the size of the cluster was increased from one to five nodes, the overhead associated with
the ACMS decreased to less than 0.75%. The results also show that when the size of the
cluster increased from one to five nodes the performance of the distributed application
increased by 458%, which is significant because of its proximity to the maximum
theoretical increase of 500%.
 During our time at Goddard we accomplished all of our project goals. We
designed and implemented an Autonomic Cluster Management System that incurs less
than 5% overhead. We were able to use the ACMS to demonstrate each of the four
autonomic system properties. GSFC can use the ACMS to educate NASA scientists and
engineers about autonomic systems and their many potential applications, or use our code
as a foundation for other advanced management systems.

1

1. Introduction
The National Aeronautics and Space Administration (NASA) has many sites

throughout the United States. Each site has different objectives with respect to research,

space, and flight. The Goddard Space Flight Center (GSFC) in Greenbelt, Maryland

supports scientists and engineers learning and sharing their knowledge of the Earth, solar

system, and Universe. The primary objectives at GSFC are developing and operating

unmanned scientific spacecraft. Managed here are many of NASA’s Earth Observation,

Astronomy, and Space Physics missions [1].

Scientists and engineers at GSFC often require significant computational power in

the research and development of advanced technologies. In the past, this capability was

typically provided to researchers through the use of a single, powerful computer called a

supercomputer. Supercomputers are usually highly customized, have hundreds or

thousands of processors, and are extremely expensive.

A more recent trend in high performance computing has been to utilize a variation

of a supercomputer called a cluster. Clusters consist of tens, hundreds, or even thousands

of individual computers that are interconnected to provide the functionality and

computational capabilities equivalent to a traditional supercomputer. Clusters are often

less expensive than supercomputers because they can be constructed with widely

available components and require comparatively little customization. System scalability

is another advantage clusters have over supercomputers. While it is possible to upgrade a

supercomputer, it is often a complex process involving the replacement of many internal

components. In a cluster, however, simply adding computers to the system can increase

computational power.

2

With the considerable power and scalability of a cluster comes an increase in the

complexity of deploying and maintaining the system. Instead of configuring and

performing administration tasks on a single computer, this process must be repeated on

hundreds or thousands of computers. Special tools and software packages are required on

large clusters to effectively maintain their operation. However, existing cluster

management solutions are often not dynamic enough to react to changes in large clusters.

For example, if a single computer in the cluster is responsible for delegating tasks to the

rest of the cluster, and that computer becomes unresponsive, the entire cluster would be

rendered ineffective. Considerations such as this must be made when designing cluster

management systems.

A possible solution to the management problem has been proposed by

International Business Machines (IBM). IBM has begun an initiative to develop self-

managing systems so that the need for human intervention in complex systems will be

reduced. Autonomic computing is defined by IBM as “An approach to self-managed

computing systems with a minimum of human interference. The term derives from the

body’s autonomic nervous system which controls key functions without conscious

awareness or involvement" [2]. Specifically, autonomic systems must be self-

configuring, self-optimizing, self-healing, and self-protecting. These properties of

autonomic systems allow them to adapt to changing operating environments and system

demands, and to be fault-tolerant. All are essential abilities for an effective management

system.

GSFC has recently begun joint collaborative work with IBM, researching and

designing systems with autonomic capabilities, and has determined that an autonomic

approach to cluster management would be a practical application of autonomic

3

computing. To demonstrate the advantages of autonomic computing we designed and

implemented an Autonomic Cluster Management System (ACMS). Conforming to the

principles of autonomic computing, the system configures itself, optimizes its resource

usage, repairs components of the system that have stopped responding, and protects itself

from unauthorized access. The cluster management system we developed is able to

demonstrate the capabilities of an autonomic system using realistic operational scenarios.

As the system became more functional, we were able to speak with several employees of

IBM that were interested in the research being done on Autonomic Systems. We

submitted a whitepaper to Patricia Rago and Dragana Kostic of IBM, which can be

viewed in Appendix I.

We conducted performance evaluations on the ACMS after its completion to

determine its functionality, effectiveness, overhead. The maximum overhead caused by

the use of the ACMS remained under 5% throughout all tests, and we found that it

seemed to scale well and was quite robust. We created a user guide for the ACMS (See

Appendix E), as well as documentation for implementing distributed applications that can

be managed by the ACMS (See Appendix D). Throughout the development of the

ACMS we documented all of our code to facilitate future development (See Appendix J).

The ACMS could be used in the future by GSFC as the foundation for a more advanced

system to manage its large clusters or to further explore the role of autonomic systems in

distributed computing environments.

4

2. Background
This chapter presents fundamental information about our project. We begin the

chapter with an overview of the properties and topologies of distributed systems. Next,

we provide an introduction to cluster and grid systems. Following the discussion of

distributed computing, we provide information on the various network protocols that are

commonly used in distributed systems. We then discuss agent-based systems and their

role in distributed systems. The chapter concludes with a definition of autonomic

computing and the properties that all autonomic systems must possess.

2.1. Distributed Systems
 A distributed system is defined as any system whose components can be executed

concurrently on discrete computer systems [22]. The discrete computer systems that

comprise the distributed system are referred to as nodes. There are several requirements

to consider when designing an application for a distributed system. Basic design

decisions include the division and distribution of data and code, the communication

protocols, multithreading requirements, and system security.

 An objective in designing a distributed system is to decide how to partition the

system's components into modules that can be executed independently on different nodes.

The division of components into modules is usually done in one of two ways. The first

partitioning method is to maximize the use of data that is local to each node, thereby

minimizing transfers over the network. This method is most often used when there is a

restriction imposed on the network traffic or when the time required transferring all

necessary data is a significant percentage of the total time required to complete the task.

The alternate approach is to encapsulate any necessary data and code into a module,

5

which is then transferred over the network to the node. The second approach is

traditionally used in compute-intensive tasks, in which the node spends the majority of its

time executing code.

 The design of the communication protocols depends largely on the method used

to partition the system's components. If all of the data is available locally to each node,

we can limit communication to only messages between the nodes, and not data.

However, if data and code is to be transferred between nodes it is necessary to have

robust protocols that are capable of exchanging abstract data types or even objects

themselves. These protocols must be able to guarantee the integrity of all transferred

data. Regardless of how these protocols are designed, it is important for them to be

extensible and flexible to accommodate new functionality or modifications in the future.

 Multithreading is often implemented in order for the system to achieve its

maximum efficiency, reliability, and availability. Using multiple threads of control

simultaneously allows the system to optimize its resource usage and leverage the full

potential of each node. Multithreading also allows the system to have asynchronous

properties. Asynchronous communication in particular is important because delays in

response time caused by a heavy load on one node will not deteriorate the system as a

whole. Data can be transferred and responses handled at the maximum rate for each

node, even if these rates are different among nodes.

 Security is an important consideration when a distributed system is accessible

from an untrusted network or has a wide user base. Any sensitive data that needs to be

transmitted over the network should be protected. Encryption is a common method for

securing sensitive data as it is sent between nodes. An additional security measure is to

authenticate each transaction so that the system knows a particular node or application is

6

trusted prior to transmitting sensitive data or accepting commands [13].

2.2. Decentralized Systems
 The distributed computing environment consists of different topology designs.

The Internet in the past has consisted of many centralized systems; however, the

decentralization of the Internet has begun through peer-to-peer programs. There are four

common architectures used in the design of a distributed system; the four topologies are:

centralized, decentralized, hierarchical and ring. Each of these topologies can be

displayed on its own or combined with others to form hybrid patterns. Distributed

systems can be described with seven properties says Nelson Minar; these are listed as

“manageability, information coherence, extensibility, fault tolerance, security, resistance

to lawsuits and politics, and scalability” [4]. With each property he can then rate the

system showing how a specific design will perform. Observing each of the patterns, the

centralized and decentralized topologies both have attributes closely related to the

functionality displayed in our autonomic system design. The major contrast between

these two topologies is the orientation that nodes are connected to one another.

2.2.1. Centralized Topology

 The centralized topology has been the most common form used in applications.

The design is typically seen as a client/server pattern used by applications such as

databases, web servers and other simple distributed systems. A centralized system

functions by having one server node with many clients each connecting directly to the

server. Each client connects to the server to send and receive information. The server

7

would be the location which would dispatch application requests and store any types of

databases containing information.

 Using the evaluation scheme designed by Nelson Minar [4], it can be seen that the

primary advantage of a centralized system is with its simplicity. All data is located in a

central node; this allows for the system to be easily managed and the consistency of data

correct and coherent. Centralized systems can be easily secured; only one host needs to

be protected. The major feature allowing for simple manageability also causes a

downfall in the design, which is that all the data is in one location. The system is not

fault tolerant; if the main node fails the whole system is no longer functional.

 The system cannot be easily extended; information can only be added to the

central system. The limitations of the system are placed on the capability of the central

server, proving that centralized systems are almost impossible to scale.

2.2.2. Decentralized Topology

 A decentralized system topology functions with almost completely opposite

characteristics of a centralized topology. In this design all peers communicate

symmetrically and have equal roles in the system. This type of system is most commonly

seen in peer file sharing programs [4].

 Unlike with a centralized system, decentralized systems are normally very

difficult to maintain and data within the system is never fully authoritative. Since every

node may contain data regarding the system and information being processed, a

decentralized system becomes very hard to keep secure. However, decentralized systems

are very easy to extend. New nodes can easily join the network and start communication.

The fault tolerance of a decentralized system is much greater, there is no central point of

8

failure; the failure or shutdown of one node in the system does not affect any other nodes

in the system.

 Scalability of a decentralized system in theory becomes more capable as more

hosts join the network. Although in practice, algorithms that keep decentralized systems

coherent often carry a lot of overhead.

2.2.3. Centralized + Decentralized Topology

 Combining these two topologies forms a hybrid centralized and decentralized

design. This topology architecture is built of centralized systems embedded in

decentralized systems. This type of system can be seen in how mail clients have a

centralized relationship with a specific mail server, but the mail servers share email in a

decentralized manner [4].

 The hybrid system is able to enjoy the advantages of both the centralized and

decentralized designs. Decentralized systems contribute to the extensibility, fault-

tolerance and possible large scaling of the system. The partial centralization makes the

system more coherent than a purely decentralized system. There are fewer hosts that are

holding authoritative information. Faults of this system are that manageability is still as

difficult as with a decentralized system and the system is no more secure than previously.

A large advantage with this system is how easily it scales. The design can easily handle

hundreds of millions of users, as seen with Internet email.

2.3. Beowulf Clusters
 A Beowulf cluster is a network of computers configured to behave as a single

9

supercomputer [5]. The computers that compose a cluster are referred to as nodes. The

power of a cluster is influenced by two factors, the number of nodes and the speed of

those nodes. A Beowulf cluster is a specific network topology; a cluster’s nodes are

isolated from the outside world and work collaboratively to solve large tasks by sharing

resources. The operating system used on a cluster is typically Linux and is configured to

maximize throughput rather than responsiveness. The first Beowulf cluster was built at

GSFC in 1994 [5]. The clusters at GSFC have been upgraded as new technology became

available and are still in use today solving computationally complex problems for

scientific research.

2.4. Grid Computing
 A “grid” is a type of parallel and distributed system that enables the sharing,

selection, and aggregation of geographically distributed "autonomous" resources

dynamically at runtime depending on their availability, capability, performance, cost, and

users' quality-of-service requirements” [11]. Grid Computing focuses toward Resources

on-Demand (RoD), which is the practice of allocating resources across a distributed

network transparently, with as little delay as possible [10]. Grid Computing solves

issues related to latency, security, and packet failure that are not typically addressed in

local area network cluster designs. Henri Casanova states that research is still required in

Grid Computing, more specifically the “dissemination of and access to data and

information” [2]. Research in Grid Computing has brought about the consensus among

scientists that a set of standards must be created in the form of an Application

Programming Interface (API) and a Software Development Kit (SDK). Using these tools

scientists should be able to create Virtual Organizations (VO) that are analogous to the

10

Beowulf clusters discussed previously, except that its members are located on a WAN

instead of a LAN [2].

2.5. Network Protocols

There are several ways to implement peer-to-peer communication across a

network. The Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP) are the most common network protocols used by applications [6]. The specific

use of these protocols depends on the type of communication that an application needs.

TCP is a reliable and robust protocol that is often used in peer-to-peer network

connections. When it is necessary to send a message to multiple hosts simultaneously,

UDP is frequently used because of its broadcasting and multicasting capabilities.

2.5.1. TCP

TCP is a connection-oriented, reliable protocol for data transmission. TCP

guarantees that all packets will arrive at their destination in sequence and error free. A

TCP connection is comprised of three phases: connection establishment, data transfer,

and connection termination.

In the connection establishment phase, a client will send a request for a

connection to a server listening on a known address and port. The server will then reply

that the connection request has been acknowledged. The final step in this phase involves

the client sending an acknowledgment back to the server that the connection has been

established. The three steps in the connection establishment phase are traditionally

referred to as the three-way handshake.

11

TCP uses three primary mechanisms for ensuring reliability during the data

transfer phase. A sequence number attached to each packet is used to order the packets

correctly and to detect any duplicate data transmission. A checksum is used to detect any

errors in the packet that may have occurred during transmission. The checksum is a

number that is generated based on the data in the packet; if any bit in the packet changes,

the checksum will be different. The checksum is generated just before the packet is sent,

then appended to the packet. When the packet is received, the checksum is generated

again and compared to the checksum that was sent with the packet. If they do not match,

an error has occurred and the packet will be resent. In addition to errors at the bit level,

occasionally an entire packet may be lost. Acknowledgments and timers are used to

detect data loss during the transfer. An acknowledgment is sent for each packet that is

successfully received. If this acknowledgment is not received within a defined time

period, the sender assumes it was lost during transmission and retransmits that packet.

The connection termination phase is similar to the connection establishment

phase. The client will send a connection termination request to the server. The server

acknowledges the request, and then sends its own termination request to the client. The

client acknowledges the request, and the connection has been terminated. The result of

TCP's many safeguards and checks is a reliable, error-free data exchange. However, this

reliability comes at the price of considerable overhead compared to less reliable protocols

such as UDP [6].

2.5.2. SSL

Secure Sockets Layer (SSL) is a protocol for encrypting communications over a

TCP connection. It utilizes the concept of public key cryptography. This type of

12

authentication uses both a public and a private key, known collectively as a key pair. The

public key is made available to anyone who wants to communicate securely. The private

key, however, is never distributed. Data that is encrypted with the private key can only

be decrypted with the public key. Conversely, data that is encrypted with the public key

can only be decrypted with the private key. When a secure transmission needs to occur

the sender, which we will call A, will first make its public key available to the receiver, B.

A then encrypts the data using its private key and sends the encrypted data to B. B can

then decrypt the data by using A's public key. If B needs to send data back to A, it can

encrypt the data with A's public key, then send it to A. A will be able to decrypt the data

with its own private key [8, 9].

2.5.3. UDP

UDP is a connection-less, best-effort protocol for data transmission. It does not

guarantee error-free transmission or that packets will arrive in the correct order, as TCP

does. Additionally, there is currently no high level encryption layer for transmissions

sent over UDP. Although UDP is not as robust and reliable as TCP, UDP has much less

overhead.

 Another advantage of using UDP is its ability to send broadcasts and multicasts.

A broadcast is a transmission that is sent to all nodes on a network with a single

transmission. A multicast is a subset of a broadcast. While a broadcast will be sent to all

nodes on the network, a multicast is only transmitted to a smaller group of nodes within

the network, called a multicast group [7].

13

2.6. Multiple Agent Systems
 Research into Multi-Agent Systems has been conducted alongside research in the

areas of cluster and grid computing. Multi-Agent Systems are distributed applications

where a group of entities called agents interact to reach a common goal. An agent is an

application running on a computer, programmed to accomplish a single goal. In an ideal

Multi-Agent System the agents have different roles that define the agent providing a goal

and objectives; therefore the dissemination of information is decentralized so that every

agent only requires a sub-section of the total information regarding the system. This

forces the agents to work in a collaborative manner and trust the other agents in the

system to accomplish a given task. Multi-Agent Systems are flexible and robust because

they do not rely on any single structural crutch. If a failure does occur in the system, the

unaffected agents can continue to communicate and conduct work uninterrupted,

although at a diminished capacity [13].

2.7. Mobile-Agent Systems
 Multi-Agent Systems provided the groundwork for the development of Mobile

Agent Systems. Mobile Agent Systems are a type of Multi-Agent System where the

agents are not fixed to a particular location. The agents have the ability to move from

one to location to another, both physically and logically. Mobile Agent Systems such as

grasshopper [23] allow an agent to move from one node to another by traveling across

TCP/IP in a serialized state. The agent can then be instantiated on the remote machine

and its threads resumed. A logical movement in location is where agents are able to

move from one logical grouping of agents to another. If agents can move from one

multi-agent system to another then communication and collaboration can be gained from

14

multiple systems each containing its own community of agents. A constraint of moving

agents around in the system is that all agents must have a common language; the

language of consensus in the mobile agent community is that of Java [13].

2.8. Autonomic Computing
 The word autonomic is defined as “acting or occurring involuntary; automatic: an

autonomic reflex” [14]. Autonomic computing is derived from an aspect of the human

body; the nervous system. The human body regulates itself and reacts without conscious

effort often; this process often being referred to as a reflex. The concept behind

autonomic computing is to build a nervous system for a computer that can recognize

everyday Information Technology (IT) events and react with the appropriate reflex

response [2].

The four core autonomic properties an autonomic system exhibits are self-

configuring, self-healing, self-optimizing, and self-protecting. IBM is currently

coordinating a large effort to further research on Autonomic Systems around the world

[14]. Goddard is one of many scientific institutions to join with IBM in this endeavor.

IBM has defined autonomic systems by outlining eight elements that make up an

autonomic system:

1. An autonomic system must be aware of where it is located and what resources are

available to it.

2. An autonomic system must be able to adapt to changes in its environment;

reconfiguring itself and its resources, as necessary.

3. An autonomic system is never satisfied with its performance; it is constantly

searching for optimizations in order to improve its performance.

15

4. An autonomic system must be able to recover from failure or extraordinary

events.

5. An autonomic system must be able to defend from outside attacks.

6. Autonomic systems must be able to adapt to their environment, but also have the

ability to change the environment in order to adapt to the system.

7. The implementation of an autonomic system must be open and support a

heterogeneous set of platforms.

8. Autonomic systems need to accomplish their tasks while making the details of

their operations transparent to the user.

This list of elements acts as a blueprint for the design and implementation of autonomic

systems [14].

An autonomic system built along IBM's blueprint must also contain a MAPE

loop. Another development concept from IBM, MAPE stands for Monitor, Analyze, Plan

and Execute. This is how an autonomic system must behave. First monitor the situation

and gather data, second analyze the data for trends, third generate a plan of action, and

fourth execute the plan. Central to the four steps is knowledge. Knowledge is collected

while the system executes and is used to influence decisions in later MAPE loops. In this

manner the system gains knowledge during each loop and is able to learn from its past

experience. This allows the autonomic system to adapt and evolve over time [15].

 IBM developed several systems incorporating autonomic properties commercially

available today. One application is Tivoli. Tivoli is a suite of applications targeted at

bringing autonomy to IT management in enterprise business. Each individual application

in the suite incorporates one or more autonomic properties. This is where the most

current developments in autonomic systems are present today. None of the applications

16

fulfill IBM's definition for an ideal autonomic system; however each application is a step

closer to building that ideal system [16].

 IBM has broken down the development of autonomic systems into five distinct

levels. The levels are in increasing complexity and flexibility: basic, managed,

predictive, adaptive and autonomic. The basic level is where the aspects of a system are

monitored and managed by an IT team full-time. The team is responsible for finding

problems, researching solutions, and fixing the errors. The managed level refers to a

system that can summarize its own environment. The system is able to provide the IT

team with comprehensive performance information and the location of errors. At the

third predicative level the system can recognize patterns informing IT managers a

problem could occur, so they can act before the problem can manifest. The system also

has the ability to provide the IT managers with a list of possible solutions to correct the

problem. At the fourth adaptive level, the system not only suggests a solution but

executes it as well. A system at the fifth and final level is autonomic. An autonomic

system is capable of performing all the functions of the first four layers as well as being

dynamic; the system must be dynamic and be able to evolve with a business and its goals

[17].

A survey conducted by IBM in 2003 found that 40% of the market was at the

basic level with only 1% reaching the autonomic level in 2002. IBM extrapolated upon

this data and predicts that by 2006 only 19% of the market will be in the basic level with

5% using autonomic systems. IBM presents these levels as a five step plan for evolution

of future software, with the distribution of true autonomic systems as the goal [18].

17

2.9. Summary
In order to fully understand our project and the need it addresses it is necessary to

be familiar with several topics in computer science: high performance computing,

distributed systems and applications, multi-agent systems, and autonomic computing.

We first researched autonomic computing to understand how the self-configuring, self-

optimizing, self-healing, and self-protecting properties were applied to existing systems.

To learn about the application of autonomic principles we researched some of IBM's

actual products that exhibit autonomic properties. We then began researching clusters

and distributed computing as a potential application of autonomic computing principles.

It is clear from our research that distributed systems, such as clusters, can present unique

challenges in regard to management and maintenance. It was our opinion that autonomic

principles could be an effective response to these challenges. Once we had decided on

designing an autonomic management system for clusters we were able to define our

project statement and goals.

18

3. Problem Statement
The goal of our project is to design a system displaying the autonomic properties

in a multi-agent environment using distributed computing across the agents. Within the

context of our overall goal, we developed several objectives.

3.1. Determine a programming language
 Java was originally chosen as the language to use for this project to allow easy

integration with two toolkits we considered using, Madkit and the Log and Trace

Analyzer plug-in. Both of these applications have since been determined unnecessary for

the project. Re-evaluating the language choice we looked into numerous languages

narrowing down the spectrum to C++ and Java, which are two languages that well suit

our needs. The system has certain requirements; handling and easily building an object

oriented environment, the use of a well organized and useful development workspace,

and easy integration to the department’s CVS which maintains revisions of the code and

allow simple integration. The possibility to run the application on multiple platforms

with ease is another feature that would provide additional scalability and ease of use for

future users; rather than having to recompile for each operating system since both

Windows and Linux systems are being used during development.

3.2. Evaluate toolkits and applications
 We evaluated a variety of toolkits and applications that dealt with different

aspects of autonomic computing. Among the applications were a Log and trace analyzer

plug-in, a multi-agent development environment called Madkit, and the Eclipse

development workspace. We also looked into finding an application or plug-in for UML

19

design that would analyze the class diagrams and produce code. Research was conducted

to find the best method of developing an autonomic system of agents; and which

applications would provide the most assistance during the development stages.

3.3. Define each of the four attributes
 We researched into others companies that have begun research and development

in the field of autonomic systems and how they defined the four attributes. The best

examples we found came from IBM; they have begun integrating autonomic components

into their servers. Using IBM as a model, we came up with our own set of definitions of

how each attribute would act within the system, its functionality and how it would

exemplify the specific characteristics of autonomic computing.

3.4. Design of the System
 Once each attribute was well defined, as to how it relates within the system, we

determined how the agents would act within the system. This included determining

which attributes would be actual agents acting autonomously in the multi-agent

environment and which attributes would act as properties on the entire system. Along

with the agents we determined that a messaging system was needed to communicate

across the network between agents.

3.5. Design of the Agents

Unified Modeling Language (UML) class diagrams were created to map out the

structure of the agent system. Since each agent will have a particular functionality and

20

relationship with the other agents it is necessary to determine each agent’s functionality

before beginning to program. The diagram also planned out the actions each agent will

perform, helping to organize the system structure and helps to prevent major structural

changes later in development.

3.6. Design of the Message system

 UML class diagrams were also created to organize the messaging system and the

different types of messages that could potentially be sent across the network to each of

the agents. The system needed a way to send and receive messages between agents.

There are a variety of methods to send messages; the ones taken into consideration were

the TCP/IP protocol, multicasting to groups of subscribing agents and broadcasting

messages to an entire subnet on the network.

3.7. Program each of the four attributes
 We looked into different programming techniques and methods to help with the

implementation of the four autonomic attributes. The iterative design process was

observed as a process we could follow for creating and implementing subsystems in the

packages. We also used the UML diagrams to determine the importance and order each

subsystem would be completed and tested for functionality.

3.8. Design the agents to interact with each other

 There are multiple means for communication between agents. TCP/IP provides a

secure connection with error checking to ensure all information arrives at the destination

21

correctly, also allowing for secure connections to be instantiated. However, with this

additional functionality there is a great deal more overhead. Using TCP/IP, the IP

address of the destination agent server must be known; however in some cases this cannot

be determined. There are also two other protocols for sending to many agents if an IP

address is unknown. Both broadcasting and multicasting messages are options. Both are

flawed since no encryption can be used and both transmit over UDP. Broadcasting a

message would go out to everyone on a particular subnet, whereas multicasting would be

sent to a specific known address in which agents would need to subscribe. Agents that

have subscribed to a particular multicast address would receive any messages sent to that

address. The UDP protocol is used in both broadcasting and multicasting information.

The UDP protocol is connectionless and therefore does not provide any assurance that a

packet will arrive at the destination. UDP could also be used in place of the TCP/IP

protocol when an address is known; this would be the case if faster communication is

needed and packet loss is not a major concern.

3.9. Design the agents to act as a distributed system

 The agents are programmed so that they can survive and function on their own.

However they still communicate and relay information between each other. In this case

the agents act similar to a distributed system, in that they perform actions on their own

and communicate results to help improve the performance of the system as a whole.

3.10. Design the agents to manage a distributed computing
environment

 The agents’ main goal is to manage the processes on a distributed system. This

22

allows for computing of a program to become more efficient. The agents are designed to

utilize the maximum processing power from the cluster of computers. The agents are

able to load balance by moving processes running on computers from one system to

another trying to improve overall performance.

3.11. Test the system

 In order to show that the system works correctly test scenarios were written up to

display to a user each of the attributes. The test scenarios are necessary to show

communication between agents and allow others to see how the system works but also to

find any bugs hidden in the system.

23

4. Methodology
There were several steps we followed to achieve the goals outlined in our

Problem Statement (See Chapter 3). We first made basic design decisions about the

system, such as the programming language and development environment that we would

use. We then evaluated existing tools to determine if they would be useful in our project.

Before design began on the system, we specifically defined each autonomic property and

how would be applied to the system. We then began designing the system outlining a

high level design of the system with UML diagrams. Once the system was documented,

implementation of the design began. We strived to keep the system always at a

functional state so that continuous testing could be done finding any unforeseen

problems.

4.1. Choosing a Programming Language

 The system we developed required a high level language, one that supported

multi-threading, networking, and portability. Multi-threading is required in order for the

agents to multi-task. Networking support is fundamental to our language choice because

the agents must be able to communicate to each other. Portability is important because

we want to support heterogeneous clusters. We quickly narrowed the possibilities to the

two most popular Object Oriented (OO) languages, Java and C++. We carefully weighed

the merits of each language against the goals of our project. C++ provided easy access to

system information and a fast runtime. However, it was not platform independent and

would require us to write system specific code for each possible architecture and

operating system. Java, on the other hand, provided platform independence at the price

of speed. Another benefit of Java over C++ was garbage collection and a well-

24

documented Application Programming Interface (API). Additionally, the Java Virtual

Machine (JVM) handles fatal errors gracefully. It allows us to restart the process without

harm to the underlying system, which might not be possible if we used C++. With this

research taken into consideration the language used for our application was Java. Java

met more of the requirements set when determining a language for development.

4.2. Evaluating toolkits and applications
 With Java chosen as the development language for this project we began looking

into different tools and applications that would help in the development of the system.

There were a variety of tools and applications that were useful in different aspects of the

system. Among the applications were Madkit, a Log and Trace Analyzer, Eclipse, a CVS

server, and Linux. Madkit is a development tool for multi-agent environments; the Log

and Trace Analyzer is used to discover problems in a distributed web server; Eclipse is an

IDE for Java; the CVS server allowed for group collaboration on code development;

Linux was used as the operating system for development and deployment of the system.

4.2.1. Linux

 Development began using the Windows platform; however problems arose while

using Windows that forced a switch to Linux. During development the use of GUI’s to

display error messages and program information was used. This became very useful but

also meant that many more resources were being used which lagged Windows. This

problem did not arise when run on Linux and therefore development was moved off

Windows and onto Linux platforms. Another issue found was the collection of system

25

statistics. Java can only determine the JVM’s available memory, along with other

statistics regarding the JVM. Using Linux allowed easy access to the system statistics

because this information is stored in files in the /proc directory. Information from the

/proc files can be collected and parsed to gather the necessary information.

 The other reason for converting to Linux was that Windows was unable to handle

the necessary number of instances of Java we required. During testing, we found that

after three to four instances of Java were opened the system began lagging and

calculations, such as the timers, were lasting much longer than intended. This failure is

inadequate for our system because upon startup the program will require five agents, and

therefore five instances of the JVM, on one system. Further testing on Linux showed that

the program performed as expected when run on Linux. Each instance was opened when

expected and no lagging was noticed.

4.2.2. Eclipse

 We chose Eclipse [24] as our development environment because it is very robust,

and is open source software. Eclipse offers a wide variety of plug-ins that can be used if

necessary. The Log Trace Analyzer is an example of an Eclipse plug-in; other types of

plug-ins allow for development in other languages, such as C++. The application is also

very easily navigable, organizing the packages and classes along with generating source

code. Eclipse includes functions that can generate repetitive source code such as

constructors and private variable getters and setters. Along with generating the source, it

includes headers formatted for Javadoc and the ability to refactor the code if variables or

names need to be changed; this increases productivity, allowing focus to be on the main

system rather than creating and maintaining repetitive code. Eclipse also easily integrates

26

with the CVS server used in our department.

4.2.3. CVS Server

 Once programming began we realized that it would be very difficult for each of us

to maintain our own code, and then try to integrate all of the code into one set of files.

We began looking into different options such, as network shares or version control,

which a CVS server provides. The use of the CVS server allows for each of us to code

and then easily integrate the code back into the set of files maintained by the server. The

server also maintains old versions of code that allow all previous changes to be viewed in

the case that errors are inadvertently introduced. Eclipse allowed us to easily determine

the code changes that resulted in errors [25].

4.2.4. Madkit

 Madkit was originally suggested by Walter Truszkowski as an application to

investigate, as it could be useful for the project. It is a “Java multi-agent platform that

provides General Agent facilities (lifecycle management, message passing, and

distribution) and allows high heterogeneity in agent architectures and communication

languages” [26]. From the start it looked like we would use Madkit to develop the

system. However after a more in-depth investigation of the software we found that it has

a lot of downfalls. It seems that to run the source code, Madkit must be installed on the

system. This would not be beneficial to the system we are developing if every node

required Madkit; Madkit would need to be installed on every computer wanting to join

the system and Madkit may also require the use of a graphical interface. Installing

Madkit on every computer would require much more time and also make the

27

development process more complicated. Using a graphical interface would mean that a

larger portion of the memory would be used to run the system rather than devoted to the

applications run by users of the system. Also we are trying to conserve processing power

for the application being maintained by the agents, therefore using large amounts of

processing power and memory to maintain an instance of Madkit on each system would

produce negative results.

 One other advantage we thought Madkit would provide was the ability to handle

multiple agents in an environment; controlling their actions and communication between

one another. However, it seems that the application does not allow for communication of

agents over a network, only within one system.

 Since Madkit is incapable of communicating over a network along with the extra

baggage it needs to run the code on a system; we concluded that Madkit does not provide

any necessary extra features that would save time during development. Coding the

agents and messaging system without any application needed to manage them also

provides us with much more flexibility in designing the objects to fit the system rather

than designing to fit the Madkit application needed to run them.

4.2.5. Log and Trace Analyzer plug-in

 The final application we investigated was a plug-in for Eclipse called the Log and

Trace Analyzer [27]. This tool seemed to provide useful features toward developing an

autonomic system, being that it maintained logs of anything that occurred on a system;

then allowing for analysis of the logs to find flaws or problems that were occurring. This

would allow for the problems to be fixed before fatal errors occurred which would crash

the system.

28

 The downfall with this tool is that it only worked for a web server. Since we are

not limiting the agents to maintaining a web server the application was not useful. The

features would have been useful, however it seemed the application could not be easily

converted to work with any type of system that it was introduced, rather was very limited

with what it maintained. Once this was realized, we decided to perform all the analysis

on our own rather than depending on this or a similar application.

4.3. Applied Autonomic Attributes

 The purpose of our Multi-Agent system was to demonstrate the four autonomic

properties; we defined each attribute in the context of our project. The four autonomic

attributes are self-healing, self-configuring, self-optimizing and self-healing (See

Appendix C).

4.3.1. Self-Protecting

 We defined the property of “self-protecting” as security; our system had to be

self-protecting by using secure communication and preventing rogue agents from joining

or monitoring the system. We decided to realize this goal by using Secure Sockets Layer

(SSL) with RSA encryption.

4.3.2. Self-Healing

 The property of “self-healing” was defined as resilience to failure. Our system

had to incorporate the ability to handle the failure of an agent or node by spawning new

agents to replace those that fail. This was designed as a fundamental principle in the

29

agent framework, as every agent has the ability to spawn other agents. Although this is

true, we recommend that only General Agents spawn new agents to eliminate any

confusion regarding which node a new agent will be located.

4.3.3. Self-Configuring

 The property of “self-configuring” was embodied in an object called the

Configuration Agent. The Configuration Agent maintains the status of the system and

knows where all nodes are located. He is responsible for ensuring the system is

configured correctly and in an operational state.

4.3.4. Self-Optimizing

 The property of “self-optimizing” was given an entire agent as well. The

Optimization Agent uses the information gathered by the Configuration Agent to

determine load management of applications and agents. One of its primary roles is to

ensure that the two Configuration Agents are always on separate nodes, except in the case

of a single node, so that if the node fails the system can recover.

4.4. High Level Design Overview

 We designed the ACMS to be a multi-agent system, and as such is composed of a

multitude of agents. While the ACMS system is built to support any number of agents,

there are three types of agents that make-up its foundation. These agents are the

backbone of the ACMS and must be present in the system at all times in fixed numbers.

The first type of agent is the Configuration Agent. This is the agent responsible for

30

maintenance of the ACMS and there must be at least two Configuration Agents active at

all times. The second agent is the Optimization Agent whose role is to load balance the

cluster; there is one and only one Optimization Agent active at any given time. The third

and last agent is the General Agent. The General Agent is replicated throughout the

system as more and more nodes are added. Its role is to keep track of a node's statistics

and start and/or stop processes. There are always two General Agents on every node in

the cluster. So the number of General Agents in the cluster is equal to the number of

nodes multiplied by two.

 The agents will communicate by passing messages back and forth. These

messages can be contain text and data objects. It will travel over standard Ethernet from

agent to agent. The messages will be encrypted using RSA encryption. The agents

handle the messages by parsing the text contained in the message.

 Another integral module of the system is the database. The database is where

information on every node is stored such as system performance and location. The

database was designed to hold approximately one hundred nodes, although it can hold

any number with a drop in performance proportional to the number of additional nodes.

 The ACMS is designed to run distributive processes on the cluster and allocate

resources as necessary. In order to run these processes, which we will refer to as

applications, requires the applications to meet specific criteria. These criteria define

where the application and ACMS interact and at the implementation level is an interface.

All applications run on the ACMS must implement this interface so that the agents can

start, stop, pause, resume and move the applications while they are running.

 For further development of agents in the ACMS a built-in debug tool is provided.

There is a debug console which any agent can create and send output to be displayed. It

31

comes complete with a text area and a button to terminate the agent, killing the virtual

machine as well. This feature allows you to add print statements to your code for

debugging purposes when a console is normally not available.

4.5. Agent Design
 The system consists of three types of agents; each has functionality exemplifying

autonomic system properties. The three agent types we designed are called General

Agents, Optimization Agents, and Configuration Agents. The ACMS is comprised of

two Configuration Agents and one Optimization Agent per system, and two General

Agents per node. The agents’ goal is to manage a distributed application while

maximizing its performance by implementing load-balancing techniques on the system.

4.5.1. Configuration Agent

 The purpose of the Configuration Agent is to make the system self-configuring.

The functionality of the Configuration Agent consists of maintaining a current list of all

the agents in the system and making this information available to other agents. When an

agent first comes on-line it broadcasts to the Configuration Agent's multicast address

stating that it has joined the system. When this message is received, the Configuration

Agent examines the table to ensure that the new agent is needed. For example, if there

are already two Configuration Agents in the system and a third comes on-line, the system

might become unstable. If the new agent does not belong in the system, a termination

message is sent back to the agent. The Configuration Agent cycles through the database

of agents asking each if it is still functioning properly. If the Configuration Agent is

32

incapable of establishing a connection with an agent, it can be assumed that the agent is

no longer functioning correctly and will therefore be removed from the database.

Otherwise, the agent responds with a list of information such as the address and port

number of the agent’s server, the agent type, and its system statistics (processor speed,

number of processors, total memory, free memory, etc.). This list of information can be

easily expanded to include requests for other information, if necessary in the future.

When the Configuration Agent receives this information it is updated in the table.

 The system contains both a primary and a secondary Configuration Agent to

support redundancy and the self-healing autonomic property. The primary Configuration

Agent will be referred to as the President Configuration Agent while the secondary

Configuration Agent will be referred to as the vice President Configuration Agent.

Ideally, both of the Configuration Agents would be on different nodes in the system so

that if one node stops responding, there would be at least one Configuration Agent in the

system. The reason for redundancy is that the database is stored locally by the agent in

memory. Therefore, if the agent stopped functioning for any reason all the information

within the database would be lost. To prevent this occurrence, the Vice President

Configuration Agent synchronizes with the database of the President Configuration

Agent. Only the President performs the system configuration tasks. However, if the

President Agent were to stop functioning, the Vice President Agent would be able to

continue the President's role. The Optimization Agent would detect that there is only one

Configuration Agent functioning and recreate a second Configuration Agent.

4.5.2. Optimization Agent

 The purpose of the Optimization Agent is to make the system self-optimizing.

33

The role of the Optimization Agent within the system is first to contact the Configuration

Agent for a current copy of the database. Once received, the Optimization Agent begins

analysis of the database to ensure that there are the correct number and types of agents in

the system. It verifies that there are exactly two Configuration Agents in the system, one

Optimization Agent in the system, and two General Agents on each node in the system.

If it finds this information to be incorrect, it sends commands to create or kill one or more

agents, stabilizing the system. After performing a brief analysis of the system, it then

begins observing the loads and statistics of each node, noting the lightly and heavily

loaded systems. When the application needs to start a new process the Optimization

Agent searches for the first system that is not heavily loaded, it contacts a General Agent

on the corresponding node and commands it to start the requested process. The

Optimization Agent has the capability to move agents and processes from one node to

another; allowing processing power to be utilized over multiple systems for a task, rather

than having one system perform all of the processing.

No redundancy is built in to the Optimization Agent because it does not store any

important information in memory. If the agent were to stop responding the Configuration

Agent could easily recreate it. Once recreated, it would continue functioning properly

with no loss of critical data. The only loss that occurs is any analysis of the table that the

previous Optimization Agent had completed.

4.5.3. General Agent

 The main functionality of each General Agent is to execute the commands of the

other agent types. These commands are either to start or stop processes running on its

system, to spawn a new agent, or to terminate itself. This method gives configuration and

34

Optimization Agents the ability to start any type of agent on any node in the system,

since all nodes contain at least one General Agent at all times. Redundancy, as with the

Configuration Agents, is built into the General Agents. The reason for redundancy in this

case is not to preserve data, but rather to ensure that a node will remain part of the

system. If there were only one General Agent on a node, and that agent stopped

responding, the entire node would be disconnected from the system. However, if there

are two General Agents per node, and one fails, the remaining agent can recreate the

failed General Agent. Once again this behavior satisfies the self-healing autonomic

property. The self-healing property of the General Agents reduces the chance that a node

will be removed from the system due to agent failure, thus requiring less maintenance by

human intervention.

4.6. System Topology
 Our system focuses on the hybrid centralized and decentralized design. The

system acts similar to a centralized system, with all information being contained in the

President Configuration Agent. The database which is maintained contains information

regarding all living agents within the system. Since all information is maintained in one

location the system becomes easily maintainable and coherent. However, fault tolerance

is handled in a decentralized manner. Data is redundant with both a primary and

secondary Configuration Agent. Also there is replication of agents if any fail or are

shutdown. Decentralized systems are insecure for the most part since nodes can join at

any point and start sending data that may be incorrect. However in our system, all

message transfer is encrypted, therefore any node that joins the system would not be able

to communicate with other agents unless the correct certificates are used. Scalability

35

resembles the decentralized topology. Any new nodes with the correct certificates can

join the system and immediately begin communicating with other agents.

 Our system has taken the advantages shown in a centralized and decentralized

pattern while improving on the problems this topology encounters. Manageability and

security are both problems in this type of topology however our system handles both of

these cases to improve the system. Improving the centralized and decentralized topology

there are no major downfalls to the system; although management is still more difficult

than in a purely centralized system.

4.7. Network Communications
 The communications system is central to any distributed or clustered system, but

its role in an autonomic system is even greater. In addition to providing a mechanism for

transferring data across a network, our system also had to satisfy the self-protecting

autonomic property. We originally chose to implement this property by encrypting all

system communication, to reduce the possibility of an attacker gaining access to system

commands by monitoring unencrypted network traffic. However, in addition to the peer-

to-peer communication between nodes, we realized that in certain cases we would need to

broadcast a message to a group of agents. One of these cases is when a new General

Agent is created and needs to announce its presence to the Configuration Agents. We

later discovered that there is currently no way of encrypting broadcast messages, because

broadcasts use the User Datagram Protocol (UDP) instead of the connection-oriented

Transmission Control Protocol (TCP). We decided that the messages that needed to be

broadcast to the entire system did not contain any sensitive information, so they could be

36

transmitted unencrypted.

 After some research into encryption methods we found that Java had built-in

support for Secure Sockets Layer (SSL), a popular and trusted method for transferring

encrypted data across networks. We decided that SSL met the needs for our secure peer-

to-peer communication because it is capable of using strong 2048-bit encryption, and

implementing it would not be much more difficult than using standard network

communications because of the excellent SSL support in Java. We chose to use 2048-bit

RSA encryption, and generated the keystore and truststore files. The keystore holds our

private key, and the truststore tells the system to trust this key. These two files must be

present on all nodes of the system for SSL communication to function.

 Although we needed a method for sending a message to multiple agents

simultaneously, broadcasting seemed inefficient. It was not necessary for all agents on

every node to receive a broadcast. Each message that is sent is only destined for a finite

group of agents, and a broadcast message will never need to be sent to all agents in the

system. Broadcasting to the entire system is not necessary, so we decided instead to use

multicasting. Java also has built-in support for multicast sockets, so adding this

functionality was not difficult. With the use of multicasting, we wanted to be able to

send a message to all agents of the same type by assigning each type of agent a different

multicast address. For example, all Configuration Agents would be in one multicast

group, and all General Agents would be in another multicast group with a different

address. When we implemented multicasting in the system, however, we experienced a

problem that was caused by our unique system architecture. In most multicast systems

there is one process listening on a particular address and port. In our system there were

multiple processes (agents) on a single system that were listening on different addresses,

37

but on the same port. Although it is not possible to bind multiple processes to the same

port using TCP, it is possible to do so with UDP because it is a connectionless protocol.

The unexpected result was that if one process began listening on the multicast address

230.0.0.1 and another began listening on 230.0.0.2 on the same node and port, both

processes would receive packets that were sent to either 230.0.0.1 or 230.0.0.2, which

was not the desired behavior. We were able to correct this problem by assigning each

multicast group a specific port to use in addition to the group's distinct multicast address.

For example, the General Agents listen on 230.0.0.1:1200, while the Configuration

Agents use 230.0.0.2:1201. Using this method we were able to successfully implement

multicasting across the distributed system.

4.8. Messaging System

 Once we had made decisions about the methods for agent communication at the

network level, we had to design a system to pass information over the network and take

the appropriate action when it is received. We had several options when designing the

messaging system. We could have used ASCII text or an array of bytes to represent the

message, but using one of those methods would require parsing and additional

interpretation by the receiver. Instead, we decided to take advantage of a unique feature

of Java to make the messaging system design both clean and scalable. We created a

MessageWrapper class that includes the destination address and port, the origin address

and port, and a message object, which stores the message payload. Using the serializable

Java interface, we are able to send the actual MessageWrapper object over an encrypted

network socket and receive it as an object, without the need for any parsing.

38

4.9. Summary
We chose the programming language, researched and chose additional tools to use

for the implementation of the project, defined the basic properties of the system, and

completing a thorough and detailed design. We decided to use Java as our programming

language for its object-oriented and cross-platform properties. We determined that we

would not be able to use tools such as Madkit and the Log and Trace Analyzer plug-in for

Eclipse in the development of our system. We defined each of the autonomic properties

in the context of our project. From the properties we decided to implement a mobile

multi-agent system that would be able to satisfy all of the properties.

39

5. System Design and Implementation
ACMS was designed and implemented using the Java Standard Development Kit

(SDK) version 1.4.2. ACMS uses an Object Oriented (OO) architecture, which allowed

us to take advantage of useful OO concepts such as inheritance and encapsulation.

Inheritance allows an outside developer to reuse our code, while encapsulation provides a

modular division of the code. The modular division is created by dividing code into

packages. Each package contains thematically related code; for example, ACMS

contains separate packages for the agents, the messaging system, the database and the

applications.

5.1. Object Oriented Architecture
 The ACMS was designed using the Object Oriented principles of the Java

programming language. During the design we focused on two questions: “Will it scale?”

and “Is it extensible?” Our architecture reflects these questions with many points of

extension for further functionality to be incorporated. ACMS is a modular design and

each subsystem was developed separately within its own package.

5.1.1. Agent Architecture

 The heart of the ACMS lies within the agents, of which there are four. Each agent

is a class of its own, but much of the code is the same among all the agents, such as

message passing and initialization. In order to organize the code and minimize the

amount of redundant code, each agent extends an abstract Agent class (See Appendix B

for UML diagrams). This abstract class contains all the code for starting the messaging

system, along with other initialization tasks. The abstract class allows easy integration of

40

new agents into the system by providing a robust code base to build upon. When

developing new agents for ACMS, a developer may just extend the agent class and

receive all the code necessary to interact with other agents; the developer can then focus

on his or her agent's particular functionality.

5.1.2. Timer Task Architecture

 The agents often perform tasks at a regular interval, such as querying all agents

for their system status. A task is a section of code that an agent schedules and runs over a

given period of time. The task is run in a separate thread and used to complete goals of

the agents. Each agent has at least one task which performs any additional functionality

missing from the message passing and implementation of messages. Examples are the

sending of messages to agents by the President Configuration Agent and optimizing of

the system are both tasks in the respective agents. Our architecture provides a common

interface for creating these tasks. We have an interface called Itask which every task

implements. Each task contains a basic run method that should be implemented by the

developer to perform the required action. Itask extends Thread, which ensures that when

the task executes it does not block any message handling or other tasks that must be

completed in parallel. The developer instantiating a task does not need to be concerned

with the specific timer task to create for a particular agent. The instantiation is handled

by another class called AgentTimerTask, which contains the logic for allocating the

correct task for each agent. We created the AgentTimerTask class implementing the

Factory Design Pattern [20].

41

5.1.3. Messaging Architecture

 The messaging system is contained in two packages. The first package contains

the classes responsible for sending and receiving the messages; there is one server and

client for TCP connections and a second server and client for UDP connections. The

second package holds the Message class and a wrapper. The Message class contains a

string that contains a command and an attachment of type Object. The attachment

provides flexibility to the messaging system because any Object, or a group of nested

Objects, can be sent across the network. The message attachment provides the agent

architecture with a common transport protocol capable of sending any information that

can be stored in an Object.

5.1.4. Database Architecture

 The database was designed with speed of access as the core requirement. In order

to meet this requirement we used a hash table to store information on each node, which

provides the system with a Ο(1) search time for finding information on any node. We

provide different types of search criteria by maintaining several lists of keys. These

include a hash of keys for quickly finding any particular type of agent, such as fetching

only Configuration Agents. The second list of hash keys we store is one entry for each

node. This provides quick access for finding the list of agents on any particular node.

We need to have a list of agents that are on each node in order to verify that there are

exactly two General Agents on each node. The database is also serializable so that it can

be copied and sent across the network. The database's ability to be sent to other agents is

used for redundancy and to allow the information in the database to be available to the

User Agent or future types of agents.

42

5.1.5. Job Architecture

 We developed a common interface for communication between user applications

and the ACMS. This interface is defined in a class called Job, which all applications

must extend. The Job class allows us to start and stop applications, as well as to relocate

them from one node to another. An application must be serializable in order to be moved

across the network. In order to run an application on our system a developer must create

a class that extends our Job class, in addition to the application that will be run on the

system. The Job class is an example of the proxy pattern, and provides translation of

messages from the ACMS to the underlying application and vice versa [21]. This allows

new code to be integrated into the ACMS that was previously unavailable during compile

time.

5.2. Agents
 Once the design of the agent system was completed, we implemented the agent

classes. The four classes that were created were the General Agent, Optimization Agent,

Configuration Agent, and User Agent. The first three are the basis for running the system,

while the User Agent is not an integral part of the system, but rather a link between the

agent processes and the users. All agents inherit from an abstract class called Agent. The

basic functionality of each agent is provided in this class, along with a constructor that

starts and initializes both the BroadcastServer and SSLServer threads. All agents are

multi-threaded, running processes in parallel to optimize their performance.

43

5.2.1. Configuration Agent

The Configuration Agent uses the timers to start either a

PresidentConfigurationTask and BroadcastEveryoneTask or a

VicePresidentConfigurationTask. The decision about which of those classes to start

depends on whether the agent is a President or Vice President. The President then

contacts all agents to determine their state. If a connection cannot be established with a

particular agent, an Exception is thrown which informs the system that the agent is not

correctly functioning; the malfunctioning agent is therefore removed from the system.

Otherwise the agent will respond with information regarding itself, its system and if it is

available. A scoring function (See Appendix G) is run on a particular node and returns a

value. If the value returned is above a certain threshold the agent node is marked as

available; otherwise, the node is marked unavailable. The availability is used in

conjunction with load balancing; when a new application is requested to be started, the

Optimization Agent will take into account the availability among other information to

determine a location (See Appendix F). Both the Vice President and Optimization

Agents request a copy of the table periodically. Since the table needs to be sent across

the network, all variables contained in the ClusterDatabase need to be serializable to

allow the object as a whole to be serialized.

5.2.2. Optimization Agent

The Optimization Agent starts its thread, which first determines that the correct

numbers of agents are alive in the system and on each node. If an agent is missing or

needs to be moved because of poor node performance, the Optimization Agent makes this

decision. In moving an agent the Optimization Agent uses the

44

getGoodGeneralAgentNoConfig algorithm. This will analyze the table, applying a series

of rules to determine if there is a better node in the system than the one on which the

agent is currently executing. An agent is moved if there is an available node in the

system, while the agent's current node is not available. If a better node is found, the

Optimization Agent sends a kill message to the correct agent. Once the agent is killed,

the system would then realize there is an agent missing and, using the same algorithm,

would choose the better system to spawn the new agent.

Once all agents are stabilized and it is determined that there is the correct number

of each agent in the system, the Optimization Agent begins analysis on the database.

Each node on which an agent is executing is rated by a scoring function. The scoring

function is used to determine if a node in the system should be marked available or

unavailable. Another algorithm called the getGoodGeneralAgent algorithm is used to

determine the correct location for application processes to be run. While the

getGoodGeneralAgentNoConfig algorithm will never return a node that has a

Configuration Agent, the getGoodGeneralAgent algorithm can return any available node,

but the number of applications running on a node is also considered. If there are two

available nodes in the system and one of the nodes is running an application, the

algorithm will choose the system that does not have any active applications.

5.2.3. General Agent

The General Agent receives commands from the Optimization Agent to start new

Job processes on its node. The General Agent’s goal is to begin those processes. When a

General Agent receives a new Job to start it begins by instantiating a new JobDispatcher.

The purpose of the JobDispatcher is to add the Job to the agent's active job queue, start

45

the Job thread, wait for the thread to complete, and finally to remove the Job from the

active queue after it finishes. The JobDispatcher itself is a thread, so the General Agent

does not block while the Job is executing. Therefore, several Job processes can be

running simultaneously.

5.3. Message System

The ACMS uses two types of communications: SSL and multicast (See Section

4.6). Although these are two fundamentally different methods for transmitting

information at the network transport level, we used an intuitive messaging system to

abstract the complexity of the lower level network protocols. The messaging system

allowed us to send and receive messages in a simple and consistent manner, and to

eliminate many repetitive code fragments.

5.3.1. Messages

 We created a Message class, which stores only the content of the message. The

message content consists of a string and an object. All messages use the string to identify

what type of message it is and to pass any other information that can be represented as a

string. However, there are cases when an abstract data type that cannot be represented by

a string needs to be transmitted with the message. Typical examples of these data types

are vectors, hash maps, or any type of object. In these cases abstract data types can be

stored as objects inside the Message class and transmitted along with the rest of the

message. The design we chose for messages is similar to the concept of e-mail. A

message is comprised of a body (the string) and an optional attachment (the object). The

46

only limitation to this design is that there is currently no inherent Java functionality for

sending an object over a multicast socket. Due to this limitation, only strings can be sent

in a multicast message because they can be easily converted into small arrays, which can

be sent as datagrams.

 In order to send the message to an agent, it must be properly addressed. The

MessageWrapper class stores the Message and all information required to transmit the

message over the SSL or multicast protocols. The addressing information includes the IP

address and port of the destination agent, as well as the IP address and port of the sending

agent so that the receiver will be able to contact the sender should a response message be

required. Although messages are sent by the SSLClient or the BroadcastClient, we

implemented methods in the Agent class to facilitate the process, which involves several

lines of code. The Agent's message sending methods take a Message and a destination

address as parameters, generate the MessageWrapper, and use either the SSLClient or the

BroadcastClient classes to transmit the message to its destination.

5.3.2. Message Handling

 When a network connection is accepted by an Agent, the data it receives is first

processed by either the SSLServer or the BroadcastServer, depending on what port the

data was sent to. These servers first construct a Message from the data they receive, and

then create a MessageWrapper to store the Message and its addressing information. The

entire MessageWrapper is then pushed to the back of the Agent's message queue, and the

server notifies the Agent of the presence of a new message. The Agent will pop the

MessageWrapper off the front of the message queue, inspect the Message it contains, and

then call the appropriate method to handle messages of that type.

47

5.4. Database

 We created a class, ClusterDatabase, which holds a table containing information

about all agents that exist within the system. The main copy of this table is stored with

the President Configuration Agent. However, other agents can request for a copy of the

table to perform analysis or for redundancy. The ClusterDatabase contains different

reference tables pointing to fields in the table which provide quick searching features.

The main table in the database consists of a Hashtable. The hashtable contains keys

constructed from each agent’s IP:Port combination, so that information about any agent

can be easily found in the database. The reference tables do not store any duplicate

information such as agent information. This saves on space because these tables only

link to specific fields in the database rather than storing the information on their own.

A Tuple is an object created that contains data fields for all information we are

collecting from each agent (i.e. IP address, port number, type of agent, and all system

statistics). Also in the database are other hashtables that contain different key and object

pairs to find information from the database more quickly.

 The first hashtable used to reference the database is the KeyList hashtable. This

table contains keys consisting of a string referring to the type of agent. These keys link to

a Vector object that contains all agent IP:Port strings that are of the agent type specified

by the key. This second set of keys allows us to easily verify that two Configuration

Agents and one Optimization Agent are present. Otherwise, the database would have to

be searched in its entirety to make these determinations. Navigating and obtaining

information is quicker using a hashtable in place of an array or linked-list, especially

since these types of checks happen very often within the system. However, when

48

distributing the database the size is larger since there is an extra hashtable of references.

The second reference table used in the ClusterDatabase is a NodeList. This is

also a hashtable which links IP address string keys to a Vector containing all IP:Port

strings of agents existing on a particular IP address (or node in the system). This allows

for specific nodes to be easily searched determining what agents are running on a system.

This is very useful in the GoodGeneralAgent algorithm used in determining the best

nodes to start new agents and schedule applications.

 Along with the database and reference tables which are located in the

ClusterDatabase, there is a jobQueue Vector. The jobQueue holds a list of all

applications that are waiting to be scheduled on nodes in the system. The Configuration

Agent receives messages that new application processes need to be started and these

messages are added to the jobQueue. The Optimization Agent receives the

ClusterDatabase periodically and determines if any nodes are available to run new

applications in the system. The distribution of applications will be discussed in more

detail in Section 5.5.

5.5. Jobs
 A job is an application written specifically to run on ACMS; typically at GSFC

these applications will be long computationally intensive processes. ACMS provides a

management system that can run these applications on distributed network architecture

with minimal user interaction and intervention. This comes at a small cost to the

developer because most of the work has been done for them in the form of an Application

Programming Interface (API).

49

5.5.1. Jobs are developed Independently of ACMS

 The API details the interactions required for incorporating a user’s application

with ACMS. Most distributed applications will not be written specifically for ACMS,

however using the Proxy design method, an outside application can be incorporated into

ACMS post production. The proxy object acts as an interpreter for the user applications

and ACMS. The proxy intercepts all messages destined for the ACMS or user

application and using the API of the two programs as a guide converts messages from

one program’s API to the other programs API. As an example, this is the same as

interpreter in a conversation between two world leaders who do not speak each other’s

native language; the interpreter listens to each leader’s words and then repeats them to the

other speaker in their native language. The proxy model allows user applications to be

developed independently from ACMS.

5.5.2. Job Application Programming Interface

 The API for a proxy begins with the definition of the class; the proxy must extend

the Job class we have provided. Extending Job allows the developers to reuse our code,

such as networking, and is required in order to incorporate the proxy into ACMS. The

proxy must be a Job because the ACMS is always running and cannot be stopped,

recompiled and restarted anytime a new application is ready. The proxy allows newly

compiled code to be introduced into the ACMS without any recompilation of ACMS

itself. The proxy must implement a run method that is inherited from Thread. The run

method contains code that is written by the application developer and is executed when

the proxy is run. The proxy must implement Thread in order to run alongside a General

50

Agent on a node.

5.5.3. Distributing Jobs

 Jobs are distributed and run through a series of messages being passed and

execution of code as new threads (See Figure 1). Figure 1 shows the life cycle of an

application; the squares represent when a new agent receives the initial message related

to a new application while the circles explain the process once agent receives the initial

message. Jobs are distributed using serialization and a message. The proxy is serialized

and attached to a message, which is then sent off to the Configuration Agent. The

Configuration Agent then forwards the message to a General Agent. The general agent

receives the message, gets the proxy and executes the run method. This starts the proxy

on the same node as the General Agent. It is then up to the proxy to start the Application

and inform the General Agent when the application has finished. In this version of the

ACMS it is up to the application developer to ensure that all necessary class files and

application files are available on all nodes in the system. In the future, the ACMS could

be extended to automatically distribute all necessary class files to each node.

51

Object of the class
file is instantiated

and serialized

Object sent to the
ConfigurationAgent

Class file is selected
from a menu in
the UserAgent

ConfigurationAgent
recieves the message
containing the Object

Reads how many
instances

of the app. to run Stores the apps. to be
started within a queue

in the database
OptimizationAgent
recieves a copy of
the database

Assigns apps to
capable GeneralAgents

by sending the object

Reads apps from the
job queue in
the database

GeneralAgent
recieves the message

to start a apps

Starts the job in a new
thread, managed by the

JobDispatcher

Maintains a queue of all
its running apps

Application is
submitted from
the UserAgent

Figure 1: Application Startup flowchart

52

5.5.4. Scheduling Jobs

 The Configuration Agent and Optimization Agent are responsible for Job

scheduling, but Job submission occurs in the User Agent. When a user clicks the button

in the User Agent to submit a Job, the User Agent first executes the main method of the

class the user selected. Executing the main method causes the Job to output a serialized

copy of itself into the current directory. The User Agent then reads in this serialized file

and encapsulates the Job in a JobWrapper object, which it then sends to the

Configuration Agent.

The Configuration Agent receives the JobWrapper and adds it a queue. This

queue represents all the applications that were submitted for execution on the ACMS, but

which have not yet been started. This queue is stored in the ClusterDatabase, so the

Configuration Agent periodically passes the queue to the Optimization Agent when it

sends the database. The Optimization Agent then uses an algorithm to choose an agent

to assign the next application to. This algorithm weighs an agent’s current system

performance and the number of applications currently running under that agent’s

supervision. The JobWrapper is then sent to the chosen General Agent to be run. The

JobWrapper is not removed from the Configuration Agent’s queue until the General

Agent sends back an acknowledgment that it received the JobWrapper. If the

acknowledgment is not received in a predetermined amount of time, the application is

rescheduled and assigned elsewhere.

When the General Agent receives the JobWrapper it immediately sends an

acknowledgement to the Configuration Agent. The General Agent then instantiates a

53

JobDispatcher and passes it the JobWrapper that was just received. The JobDispatcher

executes in its own thread, and its purpose is to control the initialization and cleanup of

the Job and to monitor the execution of the Job. When the JobDispatcher starts, it first

adds the name of the Job, which is the string that is returned by the Job’s toString()

method, to the agent’s local job queue. The General Agent maintains its own job queue

so that the Optimization Agent and the User Agent can determine the number and name

of the user applications that are executing on each node in the cluster. After the name of

the application has been enqueued, the JobDispatcher extracts the Job from the

JobWrapper and calls the startJob() method on the Job, which actually begins the

execution of the user application. Directly after starting the application, the

JobDispatcher calls the join() method on the Job, which causes the JobDispatcher to

block until the Job thread has terminated. The JobDispatcher is in a separate thread

from the General Agent, so when the JobDispatcher blocks the General Agent is not

affected. After the Job terminates, the join() method returns and the JobDispatcher

removes the name of the Job from the General Agent’s queue, at which point the

JobDispatcher terminates.

5.6. Summary

The modular architecture of ACMS gives the system robustness and extensibility

that would not be there otherwise. The focus during development was on scalability and

extensibility. With the modular architecture the system can be further developed, such as

replacing the messaging package with one that uses a non proprietary format or replacing

the database package with an interface to a database application such as MySQL. The

54

system can be customized by replacing and rewriting modules depending on the project

ACMS is applied to. Every application has unique requirements and when we designed

ACMS we built it to adapt and extend to meet all of those requirements.

55

6. Results

 We designed several test procedures to verify that all aspects of the ACMS satisfy

its design specifications. The main goal in developing test procedures was to provide

methods for validating each of the ACMS' autonomic properties and observe that each

element of the system performed as expected. Since we were also able to implement a

framework for executing distributed applications on the system, we had the opportunity

to evaluate the performance of the system from a cluster management perspective.

6.1. Validation of the Autonomic Properties

Scenarios have been organized and tested on our system to eliminate the

possibility of problems occurring. Table 1 shows the seventeen different scenarios that

were tested on our system. The table also contains any startup procedure that was needed

to obtain the particular scenario and the results that should be expected if duplicated on

our system. All seventeen scenarios that appear in Table 1 performed as expected when

we tested them on the ACMS.

Table 1: Scenarios and Test cases

Scenario Test Cases Startup Configuration Expected Results

1
Start up normal (one node
in the system)

Start a single General Agent.
Five agents should be running on the system, including:
two Configuration Agents, one Optimization Agent, and
two General Agents.

2
Having one node in the
system, have a second
node join

Follow Scenario 1. On a
second computer within the
same subnet, run a General
Agent.

The second computer should receive a second General
Agent along with at least the Vice President Configuration
Agent. Other agents depend on the availability of each
computer, which computer would be a better host for the
agents.

56

3
Run over the weekend
(long-term)

Follow Scenario 2. Add any
number of computers. Leave
the system running over the
weekend.

After an extended period of time, verify that all agents are
still alive. This can be done by testing their functionality.
Kill a General Agent and watch that it respawns (testing
the Optimization Agent). Kill the Optimization Agent
(testing the President). And finally, kill the President
(testing the Vice President).

4 Kill a General Agent
Having a fully running system.
In the User Agent choose to
kill a General Agent.

The General Agent will be respawned on the same node in
which it was killed.

5 Kill the President Agent
Having a fully running system.
In the User Agent choose to
kill the President Agent.

The President Configuration Agent will be respawned on a
“good” node in the system (determined by the good node
algorithm). See Appendix F.

6
Kill the Vice President
Agent

Having a fully running system.
In the User Agent choose to
kill the Vice President Agent.

The Vice President Configuration Agent will be
respawned on a “good” node in the system (determined by
the good node algorithm). See Appendix F.

7
Kill the Optimization
Agent

Having a fully running system.
In the User Agent choose to
kill the Optimization Agent.

The Optimization Agent will be respawned on a “good”
node in the system (determined by the good node
algorithm). See Appendix F.

8
Add a third General
Agent to a node

Having a fully running system.
In the User Agent choose to
spawn a third General Agent
on a node in the system.

The system will immediately terminate the extra agent
from the system.

9
Add a second
Optimization Agent to a
system

Having a fully running system.
In the User Agent choose to
spawn a second Optimization
Agent on a node in the system.

The system will immediately terminate the extra agent
from the system.

10
Add a third Configuration
Agent to the system

Having a fully running system.
In the User Agent choose to
spawn a third Configuration
Agent on a node in the system.

The system will immediately terminate the extra agent
from the system.

11
Start up system with two
President Agents

Start two General Agents
simultaneously.

The two General Agents will each spawn Configuration
Agents at the same time. These will both not hear back
from a President Agent and therefore promote themselves.
When an Optimization Agent is spawned it will organize
the number of agents and kill one of the Presidents.

12 Combine two full systems

Startup the system on two
nodes. Disconnect one node
from the network. This will
cause the agents to complete
each system. With two fully
functioning systems, reconnect
the node to the network.

The agents will detect each other and eliminate extra
agents until only one complete system is left. On two
nodes this would be two Configuration Agents and one
Optimization Agent and two General Agents on each
node.

13

Configuration agents
separate with one node
available and the other not
available

Start up the system on two
nodes. Have one system be
available and the other
unavailable. This can be done
by running other applications
to bring down the score value.

The Vice President Configuration Agent should still be
moved to the not available node. The President and
Optimization Agent should be located on the available
node.

57

14
Migrating President
Agent from a unavailable
node to an available node

Start up the system on an
unavailable node. Once all
agents are running on this
node, connect a second node to
the system having this node be
available.

When the second node connects, ensure that the President
Agent is moved to the new node. This will be done by
moving the Vice President first and then killing the
President. Also the Optimization Agent will be moved to
the new available node.

15
Three nodes ensure that
agents don't bounce
between nodes

Have the system fully running
with three nodes in the system.
Have one node be available
and two not available.

The Vice President should remain stable on one of the
false nodes. Ensure that it does not bounce between nodes.

16 Start a single application
Submit the application using
the User Agent.

The application will follow the flow shown in Appendix
A. It will be started on a General Agent.

17
Start a application with
the number of Instances
greater than one

Submit an application using the
User Agent. Make sure the
variable numInstances is
greater than one so multiple
applications will be submitted.

The application will follow the flow shown in Appendix
A. It will be started on a General Agent.

6.2. Performance Evaluation

 We created a simple distributed application to evaluate the performance of the

system and its load-balancing abilities. The distributed application's only task is to find

prime numbers. We chose this task for several reasons. It approximates the

characteristics of many actual distributed applications, it is compute-intensive, and we

were able to implement it relatively quickly. It is a task that can be easily partitioned into

smaller tasks that can be executed in parallel, and the time required to exchange all

necessary data is small compared to the execution time per data set.

6.2.1. Distributed Application Design

 The distributed application we created to find prime numbers is separated into two

elements: a server and a client. The PrimesServer generates discrete ranges of ten-

58

thousand numbers for the clients to check for prime numbers. There is a defined

maximum for the total amount of numbers to check. Once this number has been reached

the server broadcasts a termination command to the clients, then exits. The PrimesServer

writes output to two files. One file contains timestamps that mark the first client

connection and the time the server exits. The two timestamps represent the total run time

of the application. The second log file contains a list of all the prime numbers that have

been found by the clients.

 The PrimesClient executes the algorithm that tests each number in a given range

to determine if it is a prime. The prime checking algorithm is fairly simple; it divides

each number by half of the numbers below it, with the exception of 1. If the remainder of

the modulus division is zero, the number is not a prime, so it immediately stops checking

that number and continues to the next. This brute-force algorithm is not the most

efficient method to determine if a number is a prime. However, it suits our test case well

because it requires a considerable amount of computation, and partitioning data sets for

use with the algorithm is simple. One property of this algorithm that should be noted is

that, as the number that is being tested increases, the length of time necessary to

determine if it is prime also increases because more modulus division operations need to

be performed. For example, to determine if the number 1000 is prime using this

algorithm it is necessary to perform 500 - 1 = 499 modulus division operations, but to test

the number 10,000 requires 5,000 - 1 = 4,999 operations.

59

6.2.2. Performance Evaluation of the ACMS

 Once we had implemented and tested the distributed application for finding prime

numbers we were able to use it to evaluate the performance of the ACMS. We designed

four operational scenarios to measure any changes in the distributed application's

performance by executing it on a cluster as opposed to using a single node. Each

scenario is explained in the list below.

Execute the distributed application on:

 1. A single node without the ACMS.

 2. A single node with the ACMS' job infrastructure and load-balancing.

 3. 5 nodes without the ACMS.

 4. 5 nodes with the ACMS' job infrastructure and load-balancing.

Comparing the execution time of scenarios 1 and 3 allowed us to measure the

approximate performance gain that could be achieved by harnessing the parallel

processing power of a cluster over that of a single computer. Comparisons of scenarios 1

and 2, and additionally scenarios 3 and 4, allowed us to measure the approximate

overhead of the ACMS and how that overhead changed as the size of the cluster

increased. Finally, comparing scenarios 2 and 4 showed how well the ACMS scaled as

the cluster size increased from one to five nodes. We performed each test three times to

obtain a reasonable average. The average times for each test appear in the tables below.

Individual results for each trial, as well as the configuration of the cluster and the

network, can be found in Appendix H. All times are in hh:mm:ss format.

60

Table 2: System Evaluation – Result Averages

Average Run Time % of Test 1 Time % Gain % of Test 2 Time % Gain

Test 1 0:49:51 100.00% 0.00% 95.53% -

Test 2 0:52:11 104.68% - 100.00% 0.00%

Test 3 0:11:02 22.13% 451% 21.14% -

Test 4 0:11:24 22.87% - 21.85% 458%

 These results clearly demonstrate the power of distributed computing. Increasing

the size of the cluster from one to five nodes resulted in a performance increase of

approximately 451% without the ACMS and 458% with the ACMS. The maximum

theoretical performance gain would have been 500%; we were very pleased that our

results came so close to the ideal gain. It is important to note that when measuring the

performance gain it is only reasonable to compare Test 1 with Test 3 and Test 2 with Test

4, which is the reason the other comparisons are not shown in the table.

 Comparing the results from Test 1 and Test 2 gives an approximate value for the

overhead associated with running the ACMS on one node. It is important to note that this

approximate measure of overhead, about 5%, is the worst-case value for the overhead.

This value is the highest possible overhead because all five agents, in addition to the user

applications, were running on the same node. The ACMS guarantees that in any

configuration with more than one node there will be no more than four agents on any

single node, and most nodes will only have two agents. Therefore, as the number of

nodes in the system increased, we expected the overhead caused by the ACMS to

decrease. This prediction was confirmed when we performed the last two tests.

 In comparing the results of Test 3 and Test 4 it is clear that the overhead due to

the ACMS was significantly reduced. As the number of nodes increased from one to five

61

the overhead decreased from almost 5% to less than 0.75%. This result is significant

because increasing the cluster size by a factor of five actually decreased the overhead by

a factor greater than six. We were encouraged by this result because, although we were

not able to test the ACMS on a large cluster, the data imply that the system scales

efficiently. Figure 2 shows the overhead associated with the ACMS in the one node and

five node tests.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Percent of

Longest Run Time

1 Node 5 Nodes

Number of Nodes

With ACMS

Without ACMS

Figure 2: Run time comparisons

6.3. Summary

We were very pleased with the results from the autonomic property tests and the

performance evaluation of the system. The autonomic property tests showed that the

ACMS satisfied the requirements of an autonomic system. The performance evaluation

demonstrated that we had accomplished our goal of developing an autonomic system

with less than 5% overhead. The tests also imply that the system scales well as the

number of nodes in the system increases. Increasing the number of nodes both decreases

62

the overhead significantly and increases the performance gain for distributed applications

at a rate that is close to ideal.

63

7. Recommendations and Conclusion

 We incorporated as much functionality into the ACMS as we were able to do in

our time at GSFC, but we were limited by the ten-week duration of the project.

Throughout the project we have thought of several ways in which the principles of the

ACMS could be applied to other systems. We believe that the ACMS could be extended

to become a more robust and flexible management system, and that it could serve as the

foundation for a diverse array of applications.

7.1. Suggestions for Future Development

 At the conclusion of our project we determined several aspects of the ACMS that

could be developed further. We first noted areas of the current system that, if we had

more time, we would have continued developing. We also thought of several ways in

which the system could be easily extended to perform tasks that it was not originally

designed to do.

7.1.1. Outstanding Development Tasks and Evaluations

 The tasks that we identify in this section concern the incorporation of additional

functionality in the ACMS. The goal of this future work is to make the system more

robust, usable, and scalable.

7.1.1.1. Node Statistics and Scoring
 Gathering statistics about each node is important so that the ACMS can determine

which nodes are best suited to receive new agents and user applications. While the Linux

64

/proc filesystem enabled us to easily obtain all the information we required making

decisions about node availability, we found no convenient way to do so in the Windows

operating system. At the very least, gathering information about a Windows computer

would require writing an additional program in Visual Basic, C++, or C#. As we did not

have access to a Windows IDE, we were unable to write such a program, and the ACMS

is currently not capable of obtaining any information about Windows nodes. However,

we included support for Windows node statistics in the ACMS, so that it would be simple

to make this information available to the system if someone were to implement a program

or other method to retrieve it.

 Another challenge that was present throughout the project was how to best

determine the availability of each node. We designed a simple algorithm to compute a

score for each node, but found that it was very difficult to compute a score that was

representative of the state of each node (See Appendix G). Additionally, it was equally

difficult to define a standard score threshold, which is used to make the final

determination of node availability. We recognize that determining the availability of a

particular node in a cluster is complex problem and is outside the scope of our project.

However, it is an interesting research topic which future groups may wish to consider.

7.1.1.2. Job Infrastructure and Load Balancing
 We have identified two areas relating to the execution of distributed applications

that would benefit from further development. The first relates to the distribution of

application code. In our current system, if a user wishes to execute a distributed

application, all of the application's class files must reside on each node in the system.

Our original design goal for user applications was to be able to submit an application

65

from any node in the system and to have the code be automatically distributed to each

node on which it will execute. After additional research we realized that automatically

distributing all necessary files would be a difficult task. We decided that, due to our time

constraints, we would instead implement only the basic functionality that would allow an

application to be executed on the system. It is our opinion that future development

efforts in the job infrastructure should begin with a method for automatically distributing

all required binary files. We suggest research into Java archive (Jar) files that can be

transmitted as discrete entities attached to the JobWrapper object, and then either

uncompressed or accessed directly by the General Agent upon receipt.

 The other outstanding issue with distributed applications is load-balancing.

Although load-balancing is performed initially when a user application is first assigned,

no further actions are taken after the application has begun executing. The topic of post-

assignment load-balancing is also far from the scope of our project. However, it may be

a subject worth researching in the future. It is certainly not a trivial task to move a user

application once it has begun executing. The application may use temporary working

files, sockets, and several forms of inter-process communication. Given these challenges,

the cost incurred by relocating processes may far outweigh any potential gains associated

with an optimal load balance. However, we feel that relocating processes is a topic that

needs to be investigated if a system like ours is intended to be used in a production

environment.

7.1.1.3. Integration of Open Standards for Interoperability
 We designed and implemented every aspect the ACMS ourselves, using only the

standard Java libraries. In doing so, we developed a system designed with our specific

66

needs in mind. This design allowed us to rapidly implement the system because we did

not need to spend time learning external tools or technologies. However, if the system

were to be extended in such a way that interoperability among different technologies

were required, some parts of the AMCS could be redesigned for greater compatibility.

The messaging system should be the primary focus if interoperability is a requirement.

The use of open standards and technologies such as XML, CORBA, or RMI could

replace the exchange of Message objects for inter-agent communication. A similar

approach could be taken with the job infrastructure if a more standard, open technology is

needed.

7.1.1.4. Scalability Testing
 During our testing we did not have access to an actual large-scale cluster. The

only resources we had at our disposal were an assortment of workstations and our

personal laptops, from which we constructed an ad-hoc system more akin to a grid than a

cluster. Although we were able to conduct some limited testing of the system, we were

not able to test the system's ability to scale to hundreds or thousands of nodes. This lack

of resources was unfortunate because we integrated functionality into the system

designed to compensate for the increased time required to manage a large number of

nodes, but we were unable to thoroughly test it. Although we do not have any test data

for large clusters, we predict that at some point there would simply be too many nodes for

a single Configuration Agent and Optimization Agent to effectively manage. If a group

wishes to use our system in some real-world application, we suggest that the

configuration and optimization tasks be further divided and disseminated among a greater

number of nodes to ensure that these tasks will be completed in a timely and efficient

67

manner. Of course the partitioning of the configuration and optimization tasks into

smaller sub-tasks would require more advanced algorithms for coordination between each

sub-task, but it would probably be necessary for a system with a large number of nodes.

7.1.1.5. Improving the Usability and Aesthetics of the User Agent
 The ACMS was not designed to be a finished product ready for use in a

production environment; throughout the project we were focused more on functionality

than usability and aesthetic qualities. However, these properties are essential in a system

that is intended for use on a large scale. Any future work on the ACMS should be

concerned with evaluating the usability of the User Agent, as this agent is the only way

for a user to interact with the system. The User Agent should comply with established

standards of usability, such as those proposed by the World Wide Web Consortium

(W3C), in addition to any government or NASA specific guidelines. Special

considerations should be taken for users with disabilities, and a command line version of

the agent might be useful for system administrators.

7.2. Possible Extensions to the ACMS

 As we have previously mentioned, extensibility has always been a major

consideration in the design of the ACMS. We have put forth every effort to implement

the system in a modular way that can be easily extended. Given this flexible property of

the ACMS, we believe that its system management abilities could be modified or

extended to be used in numerous applications.

68

7.2.1. Management of Grid Systems

 The management of entire grid systems is a natural extension of the ACMS. In

fact, the ACMS is already capable of managing simple grid systems, if the definition of a

grid is taken to be a dynamic, heterogeneous network of computers. There are, however,

more complex forms of grids that the ACMS in its present form may not be able to

manage. For example, a grid may consist of a large network of workstations on different

subnets, a large cluster on a private network segment, and several mid-range servers in a

demilitarized zone (DMZ). The complex issues that arise in this case are the potentially

different broadcast addresses that may exist on the grid, as well as the fact that there may

not be a route from each node to every other node. Although some grid configurations

present unique management challenges, we believe that the ACMS could be extended to

handle these cases through relatively minor modifications to the Configuration Agent.

One can imagine an ACMS configuration in which each network segment contains a

complete ACMS and the Configuration Agents on the outward-facing nodes all

communicate with each other. These outward-facing Configuration Agents would each

have a complete list of every agent in the grid. In addition to an agent's IP address and

port, each agent would also provide routing information. In its simplest form, the routing

information could be the address of the Configuration Agent that is responsible for the

agent. A more sophisticated form of this system would be able to determine the best way

to route messages between two networks. There are many ways to implement a grid

management system based on ACMS concepts, and because of its modular and extensible

design, it would be possible to create such a system with few modifications.

69

7.2.2. Management of Intelligent Clustered Spacecraft

 A practical application of the technology we developed for the ACMS might be

an autonomic management system for a cluster of unmanned, autonomous spacecraft.

Although we are not experts in the management tasks associated with unmanned

spacecraft, it is possible that these tasks could be represented as applications that can

execute on a cluster. Even if the cluster analogy does not perfectly translate to a

community of spacecraft, autonomic principles could still be applied in a future

management and control system for these craft. An important benefit of using autonomic

systems is their potential to reduce overall cost. Fewer people would be required for

routine administration because many of the spacecraft's functions would be self-managed.

If these spacecraft were self-protecting, there would be a much smaller chance of losing

them due to a system malfunction, an external impact, or another predictable event.

7.3. Increasing Awareness of Autonomic Systems
 One of the goals of our project was to increase awareness of autonomic systems

among NASA scientists and engineers by providing a practical application of the

autonomic properties. In order for NASA employees to become educated about

autonomic systems, they should be able to see examples of working systems. NASA

should take the initiative in developing autonomic systems to solve some of its real

challenges, and then explain how the autonomic properties allowed for a unique and

robust solution. We hope our development of an autonomic system will encourage

NASA engineers to use autonomic concepts in their own work.

70

Appendix A – Diagrams

Figure 3: Agent System Design

The System

(Cluster of Computers)

Nodes

(Computers)

Configuration Agent
Vice President

Configuration Agent
President

Optimization Agent General Agent

71

Figure 4: Agent Relationship Design

Agent Relationship Design

Configuration Agent
Vice President

Configuration Agent
President

Optimization Agent General Agent

72

Appendix B – UML

Figure 5: Agent UML Diagram

Figure 6: TimerTask UML Diagram

73

Figure 7: Database UML Diagram

Figure 8: Job UML Diagram

74

Figure 9: Messaging System UML Diagram

Figure 10: Messages UML Diagram

75

Appendix C – Properties

Self Configuring

• Nodes and Jobs can be added to the infrastructure without disruption to the

system

• Discovers agents automatically

• Maintains a database (directory) regarding agent locations for communication and

information specific to the agent's system

• Applies rules to the system regarding specifications required to be stable (i.e. Two

Configuration Agents, one Optimization Agent and two General Agents)

Self Healing

• Maintenance is performed to obtain current information from all nodes in the

system and determine if any agents are not functioning

• Detects if an agent in the system is no longer functioning correctly; if found it will

remove the agent from the system and reintroduce the agent without any

disruption

• New agents are started on systems able to handle the load of an extra agent

Self Protecting

• The use of Redundant agents on different nodes in the system to prevent loss of

information

• All redundant agents are as secure as the original agents since they all contain the

76

same code as the primary agents which can be executed if necessary

• Access to the system is managed by use of encryption in communication, sending

information across SSL and digital certificates

• Agents will not be started on systems unable to handle the load of another agent

Self Optimizing

• The ability to choose good locations to start new agents and applications (uses

knowledge of the system to make choices)

• Maximizes the performance from the system by distributing processes between

nodes

• Performs balancing techniques on agents and applications if nodes start becoming

very heavily loaded

77

Appendix D – Job Implementation Guide

How to Write a Job:

Step 1: Create a new class that extends acms.job.Job

Step 2: Define the constructor

 An application must have three lines in order to be setup correctly to interact with

ACMS. These three lines are to provide a reference to the new application, determine the

number of applications to distribute, and create the serialized version of the application.

An example code snippet is shown below. The first and last line should be copied

verbatim, while the second lines number should be changed depending on the

requirements of your application.

Example 1:
thisJob = this; // This line is necessary for all jobs
thisJob.setNumInstances(5); // Schedule as many of these jobs as the system can
 // accommodate
thisJob.generateJob(); // This line is necessary for all jobs

Step 3: Define the main method

 The main method in an application must create a new instance of your job class.

This is the only line necessary in the main method, as shown below. Alternatively for

testing without integration with the ACMS, include a line that invokes the run method; an

example of this line of code is shown below as well.

Example 2:
Job pc = new PrimesClient(); // Serializes this job when the main() is
 // called
//pc.start(); // Necessary for command line testing
 // otherwise should remain commented

Step 4: Define a toString method

78

Every application must implement the standard toString method in Java. The

string returned is the application’s name and must match the class name verbatim. For

example if your application were named PrimeCalculator and contained in the class file

PrimeCalcultaor.class, then toString should return the String “PrimeCalculator”.

Step 5: The run method

 These methods are where the actual application programming takes place. The

run method is called when your application is ready to be run. It is in this method that

you should start any outside applications or processes necessary for your application.

The run method should not return until your application has finished all of its processing.

After the application is finished, simply have the run method return from the function call

and ACMS will consider your application as completed.

Additional Resources:

 If you follow these steps your application is now ready to be launched using the

User Agent GUI (See Appendix E). If you require additional help in writing a

application take a look at the sample PrimesClient and PrimesServer located in the

acms.job.primes package. These have detailed documentation line by line about what is

necessary for all applications. It is also a prime example of how to use the basic

messaging included with ACMS. Always remember to test your application

independently of the ACMS system first to ensure your application is written correctly

before submitting it to ACMS.

79

Appendix E – ACMS Users Guide

Software Requirements: java 1.4.2 or later

1. Starting the GUI

a. Open a terminal or command shell

b. Locate the directory where ACMS was installed on your system

c. Execute the command “java acms.agent.UserAgent”

Figure 11: Terminal Console window – Command for starting an Agent

2. The Database Panel

 The database panel is the default panel when the GUI is loaded. This panel

contains information on every agent in the system, including system information. This

80

panel will be empty and gray unless there is a Configuration Agent online.

 By Double Clicking on any of the table rows a pop-up menu will appear with

several options.

a. Spawn a Configuration Agent

b. Spawn an Optimization Agent

c. Spawn a General Agent

d. Destroy an Agent

The agent will take the action listed on the button. These functions provide

administration powers to the user. This is helpful if the administrator would like to

remove a computer from the cluster, they can just kill the agents on a particular node.

Figure 12: User Agent – Database view

3. The Job Panel

81

 The Job Panel is used for viewing active and queued applications on the cluster.

This panel is also used for submitting new applications for processing. At the top of this

panel are two list boxes. The left box contains a list of all the active processes on ACMS.

Selecting one of the processes in the left box will populate the right list box. The right

box contains a list of addresses and a number in parentheses. The addresses correspond

to agents that have been assigned the selected application. The number indicates how

many instances of the application that particular agent has been assigned. The stop job

button will stop the application or applications selected in the right list box.

 To submit an application click the select job button and locate the class file of the

application you would like to submit. When you have selected it the name of the file

should appear in the text box just below the select job button. Double check to make sure

this is the correct file. Next select the submit job button, the GUI now automatically

sends your application for processing. In a few moments the job will appear in the queue

on the GUI. Shortly thereafter the job is removed from the queue and will appear as

active job in the left list box.

82

Figure 13: User Agent – Job Management view

4. The Administration Panel

 The Administration Panel contains a single button that can stop ACMS. Pressing

this button initiates a dialog which asks for conformation before shutting down ACMS.

Once the action is confirmed there is no way to stop it. All agents and applications will

be stopped immediately. In order to restart the system it will be necessary to start a

General Agent on each node individually.

83

Figure 14: User Agent – Administration view

84

Appendix F – GetGoodGeneralAgent Algorithm

 The purpose of getGoodGeneralAgentNoConfig and getGoodGeneralAgent

algorithms is to determine a well suited node for an agent or application. Each algorithm

applies a list of rules to determine if there is a "good" node in the system. These can be

used to place new applications and agents when a node enters the system or to determine

if moving an agent in necessary. It allows for foreshadowing to see if there exists a more

equipped node for an agent. An example of this would be if there were two nodes, one

available and one unavailable. The unavailable node had the President Configuration

Agent. Since the President Agent does a large amount of processing and message

passing it would be beneficial to have the President on the available node. Therefore the

getGoodGeneralAgent algorithm would return the available node as a result. The term

"good" is used to define a node that these methods would return as results.

getGoodGeneralAgentNoConfig Algorithm - Agents

 The purpose of this method is to return a node that does not contain Configuration

Agents. There are a number of rules that the method applies in order to determine a

"good" node in the system. The algorithm will first try to find a node in the system that is

available and only contains General Agents. If one isn't found it then looks for a node

using the following rules: an available node that does not have Configuration Agents, an

unavailable node with only General Agents, and an unavailable node without

Configuration Agents. If none of these conditions are met it will return null. This

method is mainly used for placement of the two Configuration Agents and the

85

Optimization Agent when they enter the system or need to be relocated.

getGoodGeneralAgent Algorithm - applications

 The purpose of this method is similar to the previous with slight modifications.

For choosing a "good" node for application location there is no need to exclude

Configuration Agents like in the previous algorithm. Rather the exclusion here is with

unavailable nodes. If a node is unavailable it should not receive an application. There is

a similar rule set as the first algorithm had, it will start off by choosing a node with

General Agents and/or Vice President Configuration Agent while running no

applications. If an agent is not found it will apply the following rules while trying to

obtain a node: a node with any type of agents and no applications, a node with only

General Agents and/or Vice President Agent and the fewest applications, and a node with

any agents with fewest applications. If none of the rules are applied then the method will

return a null result. The fewest applications factor was added into the algorithm so that

applications are distributed evenly as each agent obtains more to run.

 Along with the fewest applications factor for nodes, there is also a

generalAgentCache, which is a Vector maintained in the Optimization Agent. It acts as a

cache so that no agent can receive consecutive application assignments too quickly. This

algorithm takes the cache into account when determining a location. When an agent is

assigned a new application its node IP address is entered into the cache and remains there

for a set time. When the time is finished it is removed from the cache and will then be

available for another application assignment.

86

getGeneralAgent - All

 This method is used in conjunction with the other two algorithms. The other two

algorithms will not always return non-null results, therefore if the result is null there

needs to be a method to obtain a non-null result. This function will always return a result

unless there are no General Agents in the system. The getGeneralAgent method will

return an available node; if no available node exists then it will return an unavailable

node in the table. This method is used with the getGoodGeneralAgentNoConfig

algorithm since unavailable nodes can still be accepted unlike with the application

algorithm.

87

Appendix G – Scoring Algorithm

 In order to determine which nodes in the system were able to execute new agents

or applications, we needed a standardized method to evaluate the availability of each

node. We implemented this evaluation in the form of the scoring algorithm. The scoring

algorithm examines multiple aspects of the computer's resources, including the number

and speed of the CPUs, the total and free memory (in kilobytes), and the system load

averages. Below is the equation we use in computing the score:

() ()[]
()










×+×
=

Average Load Minute 15

Average Load Minute 5

002.0Memory FreeCPUs OfNumber Bogomips CPU Average
Score

2

We decided not to use clock speed as a measurement of CPU performance because

performance is much more dependent upon architecture than clock speed. Linux

provides bogomips as an approximate measure of CPU performance. Although bogomips

should not be used as an extremely accurate measurement of CPU performance (hence

the name “bogus MIPS”), it is a reasonable method for performing approximate

comparisons of processors, especially when the processors have the same architecture.

We multiply the bogomips by the number of CPUs, because Symmetric Multiprocessing

(SMP) systems are usually better equipped to execute multiple processes than single

processor systems. The system memory is reported in bytes; we multiply the free system

memory by 0.002 because we found by experimentation that doing so allows the memory

to affect the score while not being the dominant factor. The load average factor of the

score is somewhat more complex. The load average in UNIX and Linux systems is an

exponentially-damped moving average of the number of processes currently running in

88

addition to the number of processes in the run queue [19]. In other words, the load

average is not a measure of processor utilization, but of the number of processes that are

waiting for CPU time. Therefore, a lower average means that the system is more

available, because there are fewer processes waiting in the run queue. Nodes with a low

load average should receive a higher score than nodes with a high average. For this

reason, we placed the load average factor in the denominator of the equation. Low load

averages are typically less than or equal to one, so small loads will result in either no

score change or a higher score because the numerator would be divided by a number less

than one. Linux provides three measures of system load: the load for the past one minute,

five minutes, and fifteen minutes. We found that the one minute load average fluctuates

too rapidly to be useful in our scoring algorithm, so we were limited to using the five and

fifteen minute load averages. We wanted to reward systems with a decreasing load and

penalize systems with an increasing load. We accomplished this by dividing the five

minute load by the fifteen minute load. If the five minute load is smaller than the fifteen

minute load, the result will be a smaller number, which will increase the score because it

is in the denominator of the equation. However, the fraction in the denominator of the

score function presented a problem. If both the five minute and fifteen minute load

average were 4.0, the resulting denominator in the score function would be a one, and this

case would not penalize the score, even though both load averages were quite high. To

solve this problem, we squared the five minute load average. In this case, the

denominator would be sixteen divided by four, resulting in a four in the denominator and

a lower score. Below are some examples to show how the load averages affect the score:

89

Average CPU Bogomips = 2000
Number of CPUs = 2
Free Memory = 300,000 kilobytes

Stable, Low Load Average

5 Minute Load Average = 1
15 Minute Load Average = 1

() ()[]
()

4600

1

1

002.000000320002
Score

2
=










×+×
=

Decreasing Load Average
5 Minute Load Average = 0.5
15 Minute Load Average = 1

() ()[]
()

10400

1

0.5

002.000000320002
Score

2
=










×+×
=

Increasing Load Average
5 Minute Load Average = 2
15 Minute Load Average = 1

() ()[]
()

1150

1

2

002.000000320002
Score

2
=










×+×
=

Stable High Load Average
5 Minute Load Average = 4
15 Minute Load Average = 4

() ()[]
()

1150

4

4

002.000000320002
Score

2
=










×+×
=

90

One final consideration in computing the score is that, because the load average factor is

in the denominator and load averages can reach very low or high levels, the load average

becomes the dominant factor in the score. During our testing we found that the node with

a single 266 MHz Pentium II processor and 256 MB of system memory would often

attain a higher score than the node with dual 1.6 GHz Pentium IV Xeon processors and

512 MB of system memory. The dual Xeon node is obviously a better choice when

assigning agents or applications, but the Pentium II node could have a higher score

because it was idle and had a lower load average. The actual problem was that there was

a lower bound of zero on the score, but no upper bound. We realized that the most

influential factor in the score should be the CPU performance. To ensure that this was

the case, we limited the denominator of the equation so that it could never be smaller than

0.5.

91

Appendix H – Performance Evaluation Results

 This appendix contains all of the results from our system performance

evaluations. Additionally, we provide information about the configuration of the cluster

we constructed. We did not have access to an actual cluster, so we had to assemble a

small one ourselves using only our personal computers and networking equipment

borrowed from GSFC. The tables below contain information about each node in the

cluster and the network configuration.

Table 3: Node Configuration

CPU Cache (KB) Clock (MHz) Bogomips RAM (MB) Operating System Kernel

Node 1 AMD Athlon 64 3000+ 1024 1600 3162.11 512 Slackware Linux 10.0 2.6.7

Node 2 AMD Athlon XP 1800+ 256 1500 3022.84 512 Slackware Linux 10.0 2.6.8.1

Node 3 Intel Pentium M 1024 1600 3170.30 512 Knoppix 3.4 2.6.6

Node 4 Intel Pentium III 256 866 1687.55 112 Knoppix 3.4 2.6.6

Node 5 Intel Pentium IV 512 2000 N/A 256 Windows XP Pro N/A

Table 4: Network Configuration

Network Medium 100 Base-T Category 5 Ethernet

Network Address 192.168.0.0

Netmask 255.255.255.0

Broadcast Address 192.168.0.255

Network Device Linksys EtherFast 10/100 Hub

Model EFAH08W

Version 3.0

92

 During the system evaluation we conducted three trials for each of our four tests.

The results from each trial appear in the tables below; the averages for each test can be

found in the Results chapter. Tests 1 and 2 required only a single node; we used Node 1

for these tests. All times are in hh:mm:ss format.

Table 5: System Evaluation - Trial 1 Results

Start Time Stop Time Run Time

Test 1 8:30:18 9:20:13 0:49:55

Test 2 19:05:06 19:57:13 0:52:07

Test 3 15:43:34 15:54:34 0:11:00

Test 4 18:14:16 18:25:34 0:11:18

Table 6: System Evaluation - Trial 2 Results

Start Time Stop Time Run Time

Test 1 12:55:12 13:45:01 0:49:49

Test 2 21:01:01 21:53:10 0:52:09

Test 3 15:59:47 16:10:48 0:11:01

Test 4 18:46:48 18:58:26 0:11:38

Table 7: System Evaluation - Trial 3 Results

Start Time Stop Time Run Time

Test 1 14:12:43 15:02:33 0:49:50

Test 2 22:13:42 23:05:58 0:52:16

Test 3 16:15:30 16:26:34 0:11:04

Test 4 19:57:22 20:08:39 0:11:17

93

Appendix I – IBM Paper

Autonomic Cluster Management System (ACMS)
An Introduction and Design Overview

James Baldassari Chris Kopec Eric Leshay
 jdb@wpi.edu chris@wpi.edu ericl@wpi.edu

Worcester Polytechnic Institute

 David Finkel Walter F. Truszkowski
 Project Advisor NASA Mentor
Worcester Polytechnic Institute Goddard Space Flight Center
 dfinkel@wpi.edu Walter.F.Truszkowski@nasa.gov

1.0 Introduction

 Scientists and engineers at the National Aeronautics and Space Administration

(NASA) often require significant computational power to accomplish their research

objectives. The computational capabilities needed for the simulation and modeling of

complex systems can be provided in several ways. A traditional High Performance

Computing (HPC) approach to solving large computational problems has been the use of

a single, powerful supercomputer. However, recent trends in HPC have been towards

highly scalable, cost-effective solutions such as clusters and grid computing.

 The NASA Goddard Space Flight Center (GSFC) in Greenbelt, MD was the

birthplace of the first Beowulf cluster in 1994. Following the success of the first cluster

system, GSFC has continued its research into the field of distributed computing. GSFC's

recent focus has been developing autonomous, self-managing systems that would reduce

the need for frequent human intervention. IBM's Autonomic Computing initiative

correlates well with GSFC's research goals. The self-configuring, self-optimizing, self-

healing, and self-protecting properties of an autonomic system could benefit many of

94

GSFC's current and future projects.

 We are currently working at GSFC for ten weeks to complete our senior design

project, an undergraduate degree requirement for Worcester Polytechnic Institute (WPI).

Continuing GSFC's research into autonomic systems, we have designed and begun

implementing an autonomic system for the management of distributed systems.

Throughout this paper we will refer to our system as the Autonomic Cluster Management

System (ACMS). The ACMS is a prototype for future endeavors at GSFC. The main

goal of the ACMS is to display the four autonomic properties. The ACMS must plainly

present and distinguish among the autonomic properties. The scientists at GSFC are

interested in concrete examples of the autonomic properties; our system will allow them

to judge if the application of these same properties is appropriate for their own work.

The secondary goal is the development of a system that can manage a cluster. The

outcome of our system will help engineers at GSFC to decide about the incorporation of

autonomic principles in their own work.

2.0 System Design

 We are developing the ACMS in Java on Linux using the Eclipse development

environment. We needed an object-oriented language that had support for multi-

threading and networking. One aspect of Java that we found beneficial was the Java

Virtual Machine (JVM). The JVM allowed us to execute multiple instances of our agents

without interfering with each other or affecting the underlying system. Additionally, the

JVM allowed the majority of our code to be platform independent, so that the ACMS

could be used seamlessly in a heterogeneous environment. After choosing the

programming language, we began designing the system.

95

 In the context of the ACMS we defined a cluster as a system comprised of one or

more nodes connected by a network, and we defined a node as a single computer. We

designed the ACMS to be a multi-agent system. Using a multi-agent system model

allows us to distribute the management functions of a cluster. This design removes the

constraint of having certain critical nodes on which the functionality of the entire system

depends. The ACMS has no single point of failure. In fact, the entire system can operate

with only a single node. From this high-level design we began planning the substructure

of the ACMS. We designed the network communications and message-passing systems

first; these are the foundation of our system because they enable all the agents in the

cluster to communicate.

2.1 Communication System

 Message passing is a necessary function in all distributed systems. The

components of the system must be able to coordinate their actions for the system to be

effective. We developed a custom Message Passing Interface (MPI) for all

communications between agents in the ACMS. The interface supports two methods for

sending and receiving messages. In peer-to-peer communication between two agents,

messages are sent using the Transmission Control Protocol (TCP) and are encrypted

using Secure Sockets Layer (SSL). All system commands and sensitive data are sent

using this encrypted method, and in this way the system satisfies the self-protecting

autonomic property. The second method in our MPI is used when a single message needs

to be broadcast to multiple recipients. However, rather than broadcasting a message to

every agent in the system, we use defined multicast groups so that messages are only

received by the agents for which they are intended. One disadvantage of using multicast

96

messages is that there is currently no way to encrypt them. Given this inherent weakness,

no sensitive data about the system or commands for agents are sent using this method.

Once we had designed the communications system, we began designing the agents that

would use it.

2.2 Agent Design

 The system consists of three types of agents; each has functionality exemplifying

autonomic system properties. The three agent types we designed are called General

Agents, Optimization Agents, and Configuration Agents. The ACMS is comprised of

two Configuration Agents and one Optimization Agent per system, and two General

Agents per node. The agents’ goal is to manage a distributed application while

maximizing its performance by implementing load-balancing techniques on the system.

2.2.1 Configuration Agent

 The purpose of the Configuration Agent is to make the system self-configuring.

The functionality of the Configuration Agent consists of maintaining a current list of all

the agents in the system and making this information available to other agents. When an

agent first comes on-line it broadcasts to the Configuration Agent's multicast address

stating that it has joined the system. When this message is received, the Configuration

Agent examines the table to ensure that the new agent is needed. For example, if there

are already two Configuration Agents in the system and a third comes on-line, the system

might become unstable. If the new agent does not belong in the system, a termination

message is sent back to the agent. Periodically the Configuration Agent cycles through

its list of agents and sends them messages to verify that each is still functioning properly.

97

If the Configuration Agent is unable to establish a connection with an agent, it can be

assumed that the agent is no longer functioning correctly and will therefore be removed

from the database. Otherwise, the agent responds with a list of information such as the

address and port number of the agent’s server, the agent type, and its system statistics

(processor speed, number of processors, free memory, etc.). This list of information can

be easily expanded to include requests for other information if necessary in the future.

When the Configuration Agent receives this information it is updated in the table.

 The system contains both a primary and a secondary Configuration Agent to

support redundancy and the self-healing autonomic property. Ideally, both of the

Configuration Agents would be on different nodes in the system so that if one node stops

responding, there would be at least one Configuration Agent in the system. The reason

for redundancy is that the database is stored locally by the agent in memory. Therefore,

if the agent stopped functioning for any reason all the information within the database

would be lost. To prevent this occurrence, the Vice President Configuration Agent

synchronizes with the database of the primary agent. Only the primary agent performs the

system configuration tasks. However, if the primary agent were to stop functioning, the

Vice President Agent would be able to continue the primary agent's role. The

Optimization Agent would detect that there is only one Configuration Agent functioning

and recreate a second Configuration Agent.

2.2.2 Optimization Agent

 The purpose of the Optimization Agent is to make the system self-optimizing.

The role of the Optimization Agent within the system is first to contact the Configuration

Agent for a current copy of the database. Once the database is received, the Optimization

98

Agent begins analysis of the database to ensure that there are the correct number and

types of agents in the system. It verifies that there are exactly two Configuration Agents

in the system, one Optimization Agent in the system, and two General Agents on each

node in the system. If it finds this information to be incorrect, it sends commands to

create or kill one or more agents, stabilizing the system. After performing a brief

analysis of the system, it then begins observing the loads and statistics of each node,

noting the lightly and heavily loaded systems. When the application needs to start a new

process, the Optimization Agent finds a node that is not heavily loaded. It contacts a

General Agent on the corresponding node and commands it to start the requested process.

The Optimization Agent has the capability to move agents and processes from one node

to another; allowing processing power to be utilized over multiple systems for a task,

rather than having one system perform all of the processing. No redundancy is

built in to the Optimization Agent because it does not store any important information in

memory. If the agent were to stop responding, it could be easily recreated by the

Configuration Agent. Once recreated, it would continue functioning properly with no

loss of critical data. The only loss that occurs is any analysis of the table that the

previous Optimization Agent had completed.

2.2.3 General Agent

 The main functionality of each General Agent is to execute the commands sent by

the other agent types. These commands are either to start or stop processes running on its

system, to spawn a new agent, or to terminate itself. This method gives configuration and

Optimization Agents the ability to start any type of agent on any node in the system,

since all nodes contain at least one General Agent at all times. Redundancy, as with the

99

Configuration Agents, is built into the General Agents. The reason for redundancy in this

case is not to preserve data, but rather to ensure that a node will remain part of the

system. If there were only one General Agent on a node, and that agent stopped

responding, the entire node would be disconnected from the system. However, if there

are two General Agents per node, and one fails, the remaining agent can recreate the

failed General Agent. Once again this behavior satisfies the self-healing autonomic

property. The self-healing property of the General Agents reduces the chance that a node

will be removed from the system due to agent failure, thus requiring less maintenance by

human intervention.

3.0 Concluding Remarks

 The ACMS is a unique system that has many potential applications. Using its

autonomic multi-agent framework as a foundation, the system can be easily extended to

perform a diverse set of management tasks in a heterogeneous environment. Although

the current focus of the system is ground-based HPC facilities, a future application of this

technology might be an autonomic management system for a cluster of unmanned

spacecraft. It is our hope that the ACMS will advance GSFC's research efforts in

autonomous and autonomic systems.

100

Appendix J – JavaDoc

wasp.data
Class SysStatsReader

java.lang.Object
 wasp.data.SysStatsReader
Direct Known Subclasses:
LinuxSysStatsReader, WindowsSysStatsReader

public abstract class SysStatsReader
extends java.lang.Object
The SysStatsReader class is used in writing classes that retrieve operating system specific
information, such as CPU, memory, and load information.
Author:
jbaldassari
See Also:
LinuxSysStatsReader, WindowsSysStatsReader

Field Summary

(package
private)
 Tuple

t

Constructor Summary

SysStatsReader()

Method Summary

protected
abstract
 java.util.Vector

getCPUStats()
 Retrieves information about the node's CPU(s)

protected
abstract
 java.util.Vector

getLoadStats()
 Retrieves information about the node's current load

protected
abstract
 java.util.Vector

getMemStats()
 Retrieves information about the node's system memory

 void populateStats(Tuple t)
 Updates a Tuple object with the current system information

101

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

t

Tuple t

Constructor Detail

SysStatsReader

public SysStatsReader()

Method Detail

populateStats

public void populateStats(Tuple t)
Updates a Tuple object with the current system information
Parameters:
t - A Tuple object

getCPUStats

protected abstract java.util.Vector getCPUStats()
Retrieves information about the node's CPU(s)
Returns:
A Vector containing the number of CPUs, average CPU speed, and average CPU
Bogomips.

getMemStats

protected abstract java.util.Vector getMemStats()
Retrieves information about the node's system memory
Returns:
A Vector containing the current total and free memory.

getLoadStats

protected abstract java.util.Vector getLoadStats()
Retrieves information about the node's current load
Returns:
A Vector containing the current load averages.

102

wasp.messaging
Interface Server
All Known Implementing Classes:
BroadcastServer, SSLServer

public interface Server
This is a common interface for all servers.
Author:
jbaldassari

Method Summary

 Agent getAgent()
 Gets the agent that is running the server

 int getPort()
 Gets the server port.

 void start()
 Starts the server.

 void stop()
 Stops the server.

Method Detail

start

public void start()
Starts the server.

stop

public void stop()
Stops the server.

getPort

public int getPort()
Gets the server port.
Returns:
The port number that the server is listening on.

getAgent

public Agent getAgent()
Gets the agent that is running the server
Returns:

103

The agent that instantiated the server object.

wasp.agent
Class GeneralAgent

java.lang.Object
 wasp.agent.Agent
 wasp.agent.GeneralAgent

public class GeneralAgent
extends Agent
GeneralAgent is a type of Agent that is responsible for running tasks and reporting
system information to the Configuration Agent.
Author:
ckopec

Field Summary

private
 java.util.Vector

activeJobs

private
 java.lang.String

lastKnownConfigAddr

private int lastKnownConfigPort

static java.lang.String multicastGroup

static int multicastPort

private Tuple tp

Fields inherited from class wasp.agent.Agent

broadcastServer, sslServer

Constructor Summary

private GeneralAgent()
 Constructor calls Agent constructor.

104

Method Summary

 java.lang.String dequeueJob(Job j)
 Dequeues the first instance of a Job

 void enqueueJob(Job j)
 Enqueues a Job in this agent's Tuple

 java.lang.String getLastKnownConfigAddr()
 Returns the last known address of the President Configuration
Agent

 int getLastKnownConfigPort()
 last known port of the President Configuration Agent

 java.lang.String getMulticastGroup()
 Returns the General Agents multicast group address

 int getMulticastPort()
 Returns the General Agents multicast group port

 Tuple getTuple()
 Gets this agent's tuple

protected void jobHandler(MessageWrapper mw)
 The method used when a job message is recieved.

static void main(java.lang.String[] args)
 If executed, creates a new GeneralAgent in a new Java VM

protected void systemHandler(MessageWrapper mw)
 Recieved by the Configuration Agent when checking to see if
agents are alive and collecting their system statistics.

 java.lang.String toString()

Methods inherited from class wasp.agent.Agent

agentHandler, databaseHandler, dequeueMessage, destroy, getSslServer, handleMessages, println,
queueMessage, receiveMessage, recievedSystemHandler, sendBroadcastMessage, sendMessage,
sizeMsgQueue, spawnAgent, startDebugConsole

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

multicastGroup

public static final java.lang.String multicastGroup
See Also:

105

Constant Field Values

multicastPort

public static final int multicastPort
See Also:
Constant Field Values

tp

private Tuple tp

lastKnownConfigAddr

private java.lang.String lastKnownConfigAddr

lastKnownConfigPort

private int lastKnownConfigPort

activeJobs

private java.util.Vector activeJobs

Constructor Detail

GeneralAgent

private GeneralAgent()
Constructor calls Agent constructor. It broadcasts and waits 5 seconds then times out and
creates a new Configuration Agent on the node.

Method Detail

main

public static void main(java.lang.String[] args)
If executed, creates a new GeneralAgent in a new Java VM
Parameters:
args -

getMulticastGroup

public java.lang.String getMulticastGroup()
Returns the General Agents multicast group address
Specified by:
getMulticastGroup in class Agent
Returns:
multicast address
See Also:

106

Agent.getMulticastGroup()

getMulticastPort

public int getMulticastPort()
Returns the General Agents multicast group port
Specified by:
getMulticastPort in class Agent
Returns:
multicast port
See Also:
Agent.getMulticastPort()

toString

public java.lang.String toString()
Returns:
The name of the Agent

systemHandler

protected void systemHandler(MessageWrapper mw)
Recieved by the Configuration Agent when checking to see if agents are alive and
collecting their system statistics. The General Agent makes a new tuple which it fills and
sends back to the Configuration Agent with the correct information.
Overrides:
systemHandler in class Agent
Parameters:
mw - MessageWrapper of the message that was just recieved by the current agent.
See Also:
wasp.agent.Agent#SystemHandler(wasp.messaging.messages.MessageWrapper)

jobHandler

protected void jobHandler(MessageWrapper mw)
The method used when a job message is recieved. Will either start a new job on the
agents node or stop a running job on the node.
Overrides:
jobHandler in class Agent
Parameters:
mw - MessageWrapper of the message that was just recieved by the current agent.
See Also:
wasp.agent.Agent#JobHandler(wasp.messaging.messages.MessageWrapper)

getTuple

public Tuple getTuple()

107

Gets this agent's tuple
Returns:
the agent's tuple

getLastKnownConfigAddr

public java.lang.String getLastKnownConfigAddr()
Returns the last known address of the President Configuration Agent
Returns:
Returns the last known address of the President Configuration Agent

enqueueJob

public void enqueueJob(Job j)
Enqueues a Job in this agent's Tuple
Parameters:
j - The Job to enqueue

dequeueJob

public java.lang.String dequeueJob(Job j)
Dequeues the first instance of a Job
Parameters:
j - The name of the Job to dequeue
Returns:
The name of the job that was dequeued

getLastKnownConfigPort

public int getLastKnownConfigPort()
last known port of the President Configuration Agent
Returns:
Returns the last known port of the President Configuration Agent

108

References

1. United States. National Air and Space Administration (NASA). About Goddard.

3 Apr. 2004 <http://www.gsfc.nasa.gov/about_mission.html>.

2. IBM Research Communications. “Glossary.” Autonomic Computing. 23 Feb. 2001.

IBM Research. 3 Apr. 2004
<http://www.research.ibm.com/autonomic/glossary.html>.

3. Casanova, Henri. “Distributed Computing Research Issues in Grid Computing.” ACM

SIGACT News 33.3 (2002): 50-70.

4. Minar, Nelson. “Distributed Systems Topologies: Part 1.” 14 Dec. 2001. O’Reilly

Network. 13 Sept. 2004.
<http://www.openp2p.com/pub/a/p2p/2001/12/14/topologies_one.html>.

5. Merkey, Phil. “Beowulf History.” Beowulf.org. 21 Apr. 2004.
 <http://www.beowulf.org/overview/history.html>.

6. Prasad, Dr. K. V. Principles of Digital Communication Systems and Computer

Networks. Hingham, MA: Charles River Media, 2003. Ch. 20.4

7. Prasad, Dr. K. V. Principles of Digital Communication Systems and Computer

Networks. Hingham, MA: Charles River Media, 2003. Ch. 20.5

8. Garms, Jess and Daniel Soerfield. Professional Java Security. Berkeley, CA: Apress,

2003. Ch. 9

9. How SSL Works. 1999. Netscape. 20 Aug. 2004.

<http://developer.netscape.com/tech/security/ssl/howitworks.html>.

10. Yang, Kung, et al. “Towards efficient resource on-demand in Grid Computing.”

ACM SIGOPS Operating Systems Review 37.2 (2003): 37-43.

11. Rajkumar Buyya. “Grid Computing Info Centre: Frequently Asked Questions

(FAQ).” GRID Infoware. 29 Apr. 2004.
<http://www.gridcomputing.com/gridfaq.html>.

12. Schoeman, Martha and Elsabe Cloete. “Architectural Components for the Efficient

Design of Mobile Agent Systems.” Proceedings of the 2003 ACM Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists on Enablement through Technology. (2003): 48-58.
University of South Africa. Pretoria, Gauteng, South Africa.

109

13. Farley, Jim. Java Distributed Computing. Sebastopol, CA: O’Reilly & Associates,
Inc., 1998. Ch. 1.2.

14. IBM Research Communications. “Autonomic Computing: Overview.” Autonomic

Computing. 23 Feb. 2001. IBM Research. 21 Apr. 2004.
<http://www.research.ibm.com/autonomic/overview/>.

15. Stojanovic, L., et al. “The Role of Ontologies in Autonomic Computing Systems.”

IBM Systems Journal. 21 Jul. 2004. IBM Research. 22 Sept. 2004.
<http://www.research.ibm.com/journal/sj/433/stojanovic.html>.

16. IBM Corporation. “Tivoli Software.” Autonomic Computing. 2001. IBM Autonomic

Computing Products and Services. 29 Sept. 2004.
<http://www-306.ibm.com/autonomic/tivoli.shtml>.

17. IBM Corporation. “About IBM Autonomic Computing: Autonomic Deployment

Model.” Autonomic Computing. 25 Jun. 2003. 25 Aug. 2004.
<http://www-306.ibm.com/autonomic/levels.shtml>.

18. IBM Corporation. “The Tivoli Software Implementation of Autonomic Computing

Principles.” 2002. IBM Corporation Software Group. 30 Aug. 2004.
<http://www-306.ibm.com/autonomic/pdfs/br-autonomic-guide.pdf>.

19. Gunther, Dr. Neil. “UNIX Load Average Part 1: How It Works.” 26 Feb. 2003.

TeamQuest Corporation. 5 Oct. 2004.
<http://www.teamquest.com/resources/gunther/ldavg1.shtml>.

20. Purdy, Doug. “Exploring the Factor Design Pattern.” Feb. 2002. Microsoft Developer

Network. 3 Oct. 2004.
<http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/factopattern.asp>.

21. Grand, Mark. Patterns in Java: A Catalogue of Reusable Design Patterns Illustrated

with UML. 2
nd
 ed. Vol 1. John Wiley & Sons, 2002.

22. Feibel, Werner. The Network Press Encyclopedia of Networking. Sybex, 2000.

23. Kindlein, Armin. “Grasshopper 2: The Agent Platform.” 2003. IKV++ Technologies

AG. 16 Aug. 2004. <http://www.grasshopper.de>.

24. Eclipse Project PMC. “Eclipse Project.” 2004. 14 Aug. 2004.

<http://www.eclipse.org>.

25. CollabNet, Inc. “Concurrent Versions System: The Open Standard for Version

Control.” 2003. 24 Aug. 2004. <http://www.cvshome.org>.

110

26. The Madkit Project. “Madkit.” Nov. 2002. 3 Apr. 2004. <http://www.madkit.org>.

27. IBM Corporation. “Log and Trace Analyzer for Autonomic Computing.” 8 Apr.

2003. 3 Apr. 2004. <http://www.alphaworks.ibm.com/tech/logandtrace>.

	Worcester Polytechnic Institute
	Digital WPI
	October 2004

	Autonomic Systems
	Christopher Lee Kopec
	Eric S. Leshay
	James Dominic Baldassari
	Repository Citation

	Microsoft Word - Autonomic Systems.doc

