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Abstract 
In this paper, we investigate the value of common wrong answers. We carry three 

questions. First, how do we define common wrong answers? Second, how common are the 

common wrong answers following our definition? Third, by introducing common wrong answers 

into model building, can we achieve better models in predicting next problem correctness? Next 

problem correctness stands for the probability that a student will get the next problem in the 

same assignment correct after finishing the current problem. To answer the first question, we 

proposed a definition for common wrong answers. To answer our second question, we examined 

the prevalence of common wrong answers within our data sets. To answer our third question, we 

built two tabling models. The first model is our control model. This model makes predictions on 

next problem correctness based on three types of student responses, a response where the student 

give a correct answer (correct response), a response where the student ask for a hint (hint 

response) and a response where the student give a wrong answer (wrong answer response). The 

second model is our experiment model, named Li, Selent & Heffernan’s Interesting Common 

Wrong Answers Model (ICWAs Model). The ICWAs model extends upon the control model by 

giving each common wrong answer its own prediction. We then compared the results from both 

models and verified that common wrong answers do not bring reliable improvements to 

predicting next problem correctness.  

Keywords: tabling; common misconceptions; predictive modeling; 
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Introduction 
Student incorrect responses were first studied in 1978 by John Seely Brown and Richard 

R. Burton[1].  They manually analyzed student incorrect responses for multi-digit subtraction 

problems. Incorrect processes or “bug”s performed by the student attributed to these incorrect 

responses.  From this analysis, they created a procedural network, where a skill is broken down 

into sub-skills.  Their main goal was to construct a database of all the possible buggy procedures 

with their series of “BUGGY” programs that helped to identify bugs [3].  Brown and VanLehn 

extended this work with their introduction of “Repair Theory” [2].  The idea of Repair Theory is 

that when a student realizes that he/she has performed a buggy operation he/she will attempt to 

repair the bug.  This work looked at how bugs are caused and what bugs can be predicted. 

Several researchers explored the area of finding common incorrect processes in 1990’s 

summarized in [7].  Various machine-learning algorithms in different systems attempted to 

predict student misconceptions and react appropriately.  More recent algorithms have been made 

to automatically discover these buggy rules.  One of the most recent examples is a machine-

learning algorithm developed in [6].   In their work, a machine-learning algorithm was developed 

to automatically discover all buggy rules for a given set of problems generated by the same 

template.  This algorithm works by first taking the input symbols of the problem (the numbers in 

the problem), a set of basic operations (addition, subtraction, multiplication, and division), and 

all the student incorrect responses for all problems generated by a single template.  Next, the 

algorithm derives all possible incorrect processes for all the incorrect responses and generalizes 

the incorrect response across all problems generated by a given template.  Finally, the incorrect 

processes are assigned to the most likely generalized incorrect processes.  The output of the 

algorithm is the machine learned process for the incorrect response (how the student arrived at 

their incorrect answer), as well as a percentage breakdown for all the incorrect 

processes.  Although the method has a few weaknesses in terms of computation time and 

computer memory, it is a sufficient solution to the problem of finding bugs. 

Despite such a large amount of past work done on predicting student incorrect responses, 

there is little work done to use these incorrect response to predict future performance or 

correctness on the next problem for fill-in problems.  The National Council on Measurement in 

Educational Measurement (NCME) community has come up with methods that weight incorrect 

responses differently.  For example, work done by DeMars shows that polytomous models 
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(weighting the incorrect responses differently) for multiple-choice questions predict better than 

dichotomous models (weighting all incorrect responses the same) [4].  Our contribution in this 

paper is to use the idea of weighting incorrect responses differently that is some wrong answers 

indicate very poor knowledge, while other wrong answers are associated with very high 

knowledge and apply it to fill-in problems.  DeMars notes that “The polytomous models, which 

weighted the distractors differentially, yielded small increases in reliability compared to their 

dichotomous counterparts.” We believe there is value to this and hope to find larger 

improvements with fill-in questions as opposed to the multiple-choice questions DeMars used. 

The goal of this paper is to see how well we can predict student performance on the next 

question by knowing the commonality of their previous incorrect responses. In this paper, we 

hope to answer three questions. (1) How do we define common wrong answers? (2) How 

common are the common wrong answers following our definitions? (3) Can we build better 

models in predicting next problem correctness using common wrong answers? 

To answer these questions, we use one dataset described in the data section, define 

common wrong answers and examine their commonality. We then build two tabling models, a 

control model and an experiment model. We compare the performance on both models and test if 

they perform reliably different from one another. After the initial experiments, we conduct more 

experiments to test if our model generalize across students.  
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Data 
For our experiments, we use one skill builder dataset of fill-in question responses on 

mathematical questions.  The data ranges from years 2008-2014 and grades 4-12 from the 

ASSISTments online tutoring system.  ASSISTments is a tutoring system mostly used for 

mathematics in grades 4-12.  Most of the users in the system are in the United States with a large 

number of students located in or near Massachusetts.  Students use ASSISTments on classwork 

and homework, which may be done with or without the use of a paper copy.  The system 

typically provide instant feedback to the student upon answering the problems, so they know 

immediately whether they have answered correctly.  Students cannot skip any problems and must 

answer correctly to continue.  

  A skill builder is a set of problems where a student must get a certain number of 

problems correct in a row (usually three) in order to complete. A skill builder typically consists 

of a bank of 50-100 possible questions that are randomly drawn from and given to the 

student.  One or more templates generate these questions.  For example, a template problem for 

the skill “Order of Operation”, looks like “a + b * c”.  This template generates the problem 

instances “1 + 2 * 3”, and “5 + 4 * 9” as well as several other similar problems by substituting 

different numbers in for the variables ‘a’, ‘b’, and ‘c’ [5]. The reason why we chose to focus on 

data from skill builders is that this data is more realistic and less subject to noise, which is a 

common problem in online tutoring systems.  Skill builders are used by several teachers and are 

not specific to a certain demographic.  Due to the randomized questions, skill builders are also 

less subject to cheating by students.  Students are given correctness feedback, on whether they 

got the problem right or wrong, after submitting an answer for a problem in. Our selected dataset 

contains 635,443 rows with 35,928 students, 14,393 problems and 9,960 assignments. This 

dataset, along with the code for our experiments and the models we have built, is available at 

https://sites.google.com/site/commonwronganswerscodeanddata/my-documents 

 

 

 

 

 

 

https://sites.google.com/site/commonwronganswerscodeanddata/my-documents
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Common Wrong Answer Definition 
 The word ‘common’ in ‘common wrong answers’ suggests that our common wrong 

answers should contain a minimum number of student responses and cover a certain percentage 

of the responses covered by all wrong answers in the same problem. Thus, we come up with the 

following definition for common wrong answers: 

1) Wrong answers that contain more than 19 responses. We will refer to this constraint later 

in the paper as minimum number of responses. 

2) Wrong answers that cover more than 10% of all student responses covered by wrong 

answers in the same problem.  

In our paper, we want to focus on the common wrong answers that actually contribute to making 

better predictions on next problem correctness – common wrong answers who distinguish 

themselves from all other wrong answers. We define these common wrong answers as 

Interesting Common Wrong Answers (ICWA). In addition to satisfying the general common 

wrong answer definition, ICWAs also need to satisfy the following requirement: 

3) Wrong answers whose next problem correctness differ from the averaged wrong answer 

next problem correctness of the same problem by at least 0.18. (e.g. If the averaged 

wrong answer next problem correctness of problem A is 0.50, a wrong answer may be 

considered a common wrong answer if its next problem correctness is either above 0.68 

or below 0.32. We introduce this constraint to ensure that we consider only common 

wrong answers that help make better predictions.) We will refer to this constraint later in 

the paper as minimum difference.  

 

In this case, our values for minimum number of responses and minimum difference are arbitrary. 

We will refer to the above definition of Interesting Common Wrong Answers as the default 

definition of ICWAs. We expect to find two kinds of ICWAs in our dataset. The firsts are 

positive ICWAs suggesting good student knowledge/skills; the seconds are negative ICWAs 

suggesting very poor student knowledge/skills. In our dataset, out of 14,393 problems, 63 

problems contain default ICWAs. Below are three examples of these 63 problems with 

Interesting Common Wrong Answers.  
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Problem ID 132104 

Problem Context Simplify the following: 
(8 - 4y) - (3y - 7) 
In order to type your answer in you must do just like you do with a 

graphing calculator: 
-no spaces between factors and operations; 
-don't use * for multiplication, 
For example: 4x-7y 

Correct Answer 15 - 7y 

All Wrong Answers Next Problem Correctness Number of Responses 

0.3819 233 

Common Wrong Answer 1 

(positive ICWA) 

Next Problem 

Correctness  

Answer Text Number of 

Responses 

0.5925 “1-7y” 27 

Common Wrong Answer 2 Next Problem 

Correctness 

Answer Text Number of  

Responses 

0.3461 “1-1y” 26 

All other Wrong Answers 

 

Next Problem Correctness Number of Responses 

0.3555 180 

Analysis Observing the two common wrong answers, the first common 

wrong answer has a much higher next problem correctness than 

the averaged wrong answer next problem correctness and the 

second common wrong answer. The reason is that students 

giving the first common wrong answer are partially correct, 

computing the “-7y” part of the expression whereas students 

who giving the second common wrong answer are completely 

wrong. Only the first common wrong answer is an interesting 

common wrong answer. 

Table 1 shows the details of problem 132104, which holds a positive ICWA 

 

Problem ID 34444 

Problem Context What is 12 - (-14)? 

Correct Answer 26 
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All Wrong Answers  Next Problem Correctness Number of Responses 

0.4878 205 

Common Wrong Answer 1 

(negative ICWA) 

Next Problem 

Correctness  

Answer Text Number of 

Responses 

0.2972 “-26” 37 

Common Wrong Answer 2 

 

Next Problem 

Correctness 

Answer Text Number of 

Responses 

0.5333 “2” 60 

Common Wrong Answer 3 

 

Next Problem 

Correctness 

Answer Text Number of 

Responses 

0.5000 “-2” 86 

All other Wrong Answers 

 

Next Problem Correctness Number of Responses 

0.5454 22 

Analysis Compared to other common wrong answers, our Interesting 

Common Wrong Answer “-26” has a much lower next problem 

correctness. Common wrong answer “-2” and “2” can be 

explained by students mistaking the expression for “12 -14” 

where “-26” is more difficult to explain. The negative ICWA in 

this problem suggests poor substraction skills. 

Table 2 shows the details of problem 34444, which holds a negative ICWA 

 

Problem ID 403245 

Problem Context Multiply 0.72 and 0.57, rounding the answer to the nearest 

thousandth. 

Correct Answer 0.410 

All Wrong Answers  Next Problem Correctness Number of Responses 

0.6279 43 

Common Wrong Answer 1 

(positive ICWA) 

Next Problem 

Correctness 

Answer Text Number of 

Responses 

0.8421 “0.41” 19 

Uncommon Wrong Next Problem Correctness Number of Responses 
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Answers 0.4583 24 

Analysis In this problem, the students giving the positive ICWA actually 

performed the correct calculation but they failed to round the 

answer to the nearest thousandth. Careless mistakes resulted this 

ICWA and it suggests good student knowledge.  

Table 3 shows the details of problem 34444, which holds a positive ICWA 

 

It is clear that in these sample problems, common wrong answers contribute to our 

insight to student knowledge and may help better predict students’ next problem correctness. The 

63 problems with ICWAs makes up only a very small portion of the 14,393 problems in our 

entire dataset. However, many of the 14,393 problems in our data set do not have enough student 

responses to have ICWAs. Of the 63 questions that contain default ICWAs (minimum difference 

= 0.18, minimum number of responses = 19), 48 of which contain more than 100 student 

responses with wrong answers. Of the 14,393 problems contained in our dataset, only 208 of 

which contain more than 100 student responses with wrong answers. Among all questions with 

more than 100 wrong responses, 23% of which contain default ICWAs. From this finding, we 

can see that the ICWAs model will likely cover more problems if more students have worked on 

the problems in our dataset. If all 14,393 problems have more than 100 wrong responses, we can 

reasonably expect over 3,000 problems with default ICWAs. Given these observation, we push 

forth to designing an experiment investigating whether ICWAs reliably help predict next 

problem correctness.   
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Models 
A tabling model provides a mapping from data to predictions based on the attributes of 

the data. This generates a probability table to use for predicting. Tabling has been applied in past 

research of Wang et al [8]. Their tabling method provided a complement to the Knowledge 

Tracing model by using past response sequences to predict future responses. To demonstrate the 

positive effect of common wrong answers, we introduce two tabling models in predicting next 

problem correctness.  

Control Model 

Our control model contains three next problem correctness predictions for each problem 

in the dataset based on the students’ first responses, which can be correct responses, wrong 

responses and requests for hints. The prediction values are calculated by averaging all matching 

responses’ next problem correctness in the training set.  

ICWAs Model 

Our ICWAs model expands on our control model by splitting the wrong response 

category in the control model into ICWA categories, each containing a prediction for students 

who make the exact ICWA, and an all other wrong answer category, containing a prediction for 

students who make all other wrong answers. The prediction values are calculated by averaging 

all matching responses’ next problem correctness in the training set. 

An example of each tabling method is shown in tables 1-2. The example tables display 

only one problem where the actual tables contain all problems that can be used in predicting next 

problem correctness in the training set.  

 

Problem ID Answer  Prediction Data Points 

… … … … 

248694 CORRECT 0.7260 73 

248694 HINT 0.2857 28 

248694 Wrong Answer 0.3819 233 

… … … … 

Table 4 shows an example of what part of control model looks like.  It is the simpler than the ICWAs model. 
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Problem ID Answer  Prediction Data Points 

… … … … 

248694 CORRECT 0.7260 73 

248694 HINT 0.2857 28 

248694 “1-7y” 0.5925 27 

248694 ALL OTHER 

WRONG ANSWERS 

0.3555 206 

… … … … 

Table 5 shows an example of what part of ICWAs model looks like.  It has broken the wrong answer category in the 

control model into common and uncommon wrong answers with each common wrong answer having its own prediction 

value 
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Experiments 
In conducting our experiment, we have separated our dataset into the training set and the 

test set. The training set consists of the responses from students whose last digit in their user ids 

are not 1 nor 6, making up about 80% of the whole dataset. The test set consists of responses 

from students whose last digit in their user ids are 1 or 6, making up about 20% of the whole 

dataset.  

We are training our models on student-assignment bases. For example, problem B will 

only be considered as the next problem of problem A only if the same student worked on 

problem B after problem A with both problems in the same assignment. Because of this 

limitation, our models cannot predict student’s first problem correctness in each assignment. 

After running our models on the test set, we are able to gather 83,267 predictions made by both 

models. We use RMSE (Root Mean Squared Error) and R square to evaluate the performance of 

both models. 

 

 Control Model on All Responses ICWAs Model on All Responses 

RMSE  0.4710 0.4703 

R square 0.1105 0.1132 

 Table 6 shows the comparison between the control model and the ICWAs model in terms of RMSE and R square on all 

responses 

 

As measured by RMSE, the ICWAs Model does not perform reliably better than the 

Control Model. This is understandable because common wrong answers cover only a narrow 

portion of the whole dataset. Of the 83,267 predictions made by the ICWAs Model, only 178 

predictions are made using the reliable common wrong answers matching our criteria, consisting 

of only 0.2% of all predictions. From here, we may observe that while our sample problems 

suggest that common wrong answers can potentially help making better predictions on next 

problem correctness, they cover too few student responses to have an obvious impact when 

measured using the whole test set. Given this issue, we narrow our comparisons to just the 178 

predictions made by the 63 problems with ICWAs using ICWAs. With the scope narrowed 

down, we start to observe reliable improvements. 
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 Control Model on the 178 responses ICWAs Model on the 178 responses 

RMSE 0.4946 0.4643 

R square 0.0202 0.1364 

Table 7 shows the comparison between the control model and the ICWAs model in terms of RMSE and R square on 

ICWA predictable responses 

 

 Although promising, we still need to verify if other student groups show the same 

improvement.  The previous results are from the test set with student ids ending with 1 or 6 and 

the training set with student ids that aren’t. We conducted experiments on other training/test sets 

and the results show less promise.  

Training Set Student 

id Last Digit 

Test Set Student id 

Last Digit 

Control 

Model RMSE 

ICWAs 

Model RMSE 

Number of 

Predictions Made 

Not 0 nor 5 0 or 5 0.493269989 0.529239096 181 

Not 1 nor 6 1 or 6 0.494623739 0.464383894 178 

Not 2 nor 7 2 or 7 0.497762406 0.49546321 201 

Not 3 nor 8 3 or 8 0.491225063 0.492849082 166 

Not 4 nor 9 4 or 9 0.499117646 0.494227533 212 

Table 8 shows the comparison between the control model and the ICWAs model in terms of RMSE ICWA predictable 

responses with different student groups considered 

 

The averaged RMSE from the Control Model is 0.495449 and the averaged RMSE from the 

ICWAs Model is 0.495341. For the ICWAs model, the RMSE results are calculated using only 

the predictions made by Interesting Common Wrong Answers. While the ICWAs model perform 

well on one group of students (id last digit 1 or 6), the improvement fail to generalize to all 

students.  
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Analysis 
Given that there are indeed problems in our dataset that contain meaningful common 

wrong answers, ICWAs failing to provide any improvements to predicting next problem 

correctness might have the following causes:  

1. Common wrong answers do not hold enough predictive power as correct and hint 

responses to distinguish themselves from all other wrong answers. The key question 

we investigated is if a student makes an Interesting Common Wrong Answer, is 

he/she more likely to get the next problem correct/incorrect than if he/she makes one 

of all other wrong answers? Our experiments suggest that the answer is no. In 

general, for fill-in problems, a wrong answer is just like any other wrong answers and 

it does not matter if it is interestingly common.  

2. Student responses are scattered among a huge amount of problems in our dataset and 

are not concentrated enough to produce ICWAs. Our ICWA definition require only a 

minimum of 19 responses. A dataset large enough to produce a good number of 

ICWAs with more than 100 student responses might yield better results.  
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Conclusion 
We set out to investigate the possibility of improving our ability to predict student 

performance depending on whether they provided a common wrong answer to a previously 

related question. We were inspired by work done by DeMars, who showed that polytomous 

models predict performance better than dichotomous models on multiple-choice questions.  

We started by defining common wrong answers and Interesting Common Wrong Answers. We 

then identified a few problems showing that ICWAs make a difference in predicting next 

problem correctness. We then conducted experiments showing ICWAs bring no improvements to 

predicting next problem correctness.  Our common wrong answers do not distinguish from all 

other wrong answers in their ability to predicting next problem correctness.  
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Contributions 
We are the first people to our knowledge that have shown that paying attention to 

common wrong answers can not provide value to accessing student learning. We have provided 

solid examples showing that our Interesting Common Wrong Answers do not help make better 

predictions in next problem correctness.  

The result may provide insight to future researchers studying common wrong answers. 

Common wrong answers can suggest student knowledge, but they do not help predicting next 

problem correctness. Future researches involving common wrong answers can tackle impacts 

other than next problem correctness.  
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Appendix 
Python code for this project: 

""" 
 File to generate the tabulation results given the problem log data  
 
 @author Bohao Li 
""" 
 
import csv 
import sys 
import math 
 
from sets import Set 
 
# 
# global variables, should be maintained as constants 
#  
 
# 
# set the indexes of columns in our data set 
# 
iorder_id = ord('A') - ord('A') 
iuser_id = ord('C') - ord('A') 
iskill_id = ord('Q') - ord('A') 
iassignment_id = ord('B') - ord('A') 
iproblem_id = ord('E') - ord('A') 
icorrect = ord('G') - ord('A') 
isequence_id = ord('L') - ord('A') 
ihint_count = ord('U') - ord('A') 
ianswer_text = ord('Z') - ord('A') 
 
# 
# student id % 5 == 1 will be in the test set, the rest will be in the training set 
# 
MOD_GROUP = 1 
MOD_NUM = 5 
 
# 
# default min difference and min response to our cwas 
# 
MIN_RESPONSES = 19 
MIN_DIFFERENCE = 0.18 
 
# 
# Problem class to hold all info to a certain problem 
# 
class Problem: 
 def __init__(self, problem_id, sequence_id): 
  self.id = problem_id 
  self.sequence_id = sequence_id 
  self.answers = {} 
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  self.total_uncommon = 0 
  self.total_common = 0 
  self.total_entries = 0 
  self.uncommon_next_correct = 0 
  self.uncommon_next_incorrect = 0 
  self.common_next_correct = 0 
  self.common_next_incorrect = 0 
  self.wrong_answer_correct_rate = 0 
    
# 
# Problem answer class that holds all info of an answer to a given problem 
# 
class ProblemAnswer: 
 def __init__(self, answer, is_correct, is_hint): 
  self.answer = answer 
  self.count = 0 
  self.is_correct = is_correct 
  self.is_hint = is_hint 
  self.is_common = False 
  self.next_question_correct = 0 
  self.next_question_incorrect = 0 
  self.prediction = 0 
         
# 
# class that holds the related info to a prediction 
# 
class PredictionEntries: 
 def __init__(self, order_id, assignment_id, user_id, problem_id, problem_used, answer_text, 
answer_type, correctness, wrong_answer_correct_rate): 
  self.order_id = order_id 
  self.assignment_id = assignment_id 
  self.user_id = user_id 
  self.problem_id = problem_id 
  self.problem_used = problem_used 
  self.correctness = correctness 
  self.answer_text = answer_text 
  self.answer_type = answer_type 
  self.wrong_answer_correct_rate = wrong_answer_correct_rate 
         
# 
# class that holds the value of a prediction 
#   
class Prediction: 
 def __init__(self, prediction, count): 
  self.prediction = prediction 
  self.count = count 
 
# 
# function that selects only problems with interesting common wrong answers 
# 
 
def getProblemSet(problem_dic, min_difference, min_num_response): 
 selected_problem_set = Set() 
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 for problem_id in  problem_dic: 
  current_problem = problem_dic[problem_id] 
  wrong_answer_correct_rate = current_problem.wrong_answer_correct_rate 
   
  for answer in current_problem.answers: 
   if answer != "CORRECT" and answer != "HINT" and answer != "UNCOMMON": 
    if current_problem.answers[answer].prediction > wrong_answer_correct_rate 
+ min_difference or current_problem.answers[answer].prediction < wrong_answer_correct_rate - min_difference: 
     if current_problem.answers[answer].count > min_num_response: 
      selected_problem_set.add(problem_id) 
 return selected_problem_set 
  
 
# 
# function that makes predictions on the selected problem set with interesting common wrong asnwers 
# 
 
def calculateResults(data_frame, p_selected_problem_set, min_difference, min_num_response): 
 truth_array = [] 
 prediction_array = [] 
 badly_grained_predictions = [] 
 count_array = [] 
 
 for index, row in enumerate(data_frame[1:]): 
  order_id = row[iorder_id] 
  problem_id = row[iproblem_id] 
  answer_text = row[ianswer_text].strip(" ") 
  hint_count = row[ihint_count] 
  correct = row[icorrect] 
  user_id = row[iuser_id] 
  assignment_id = row[iassignment_id] 
  skill_id = row[iskill_id] 
  answer_type = "UNCOMMON" 
  entry_count = 0 
   
  if answer_text == "" and hint_count > 0: 
   answer = "HINT" 
  elif correct == "1": 
   answer = "CORRECT" 
  else: 
   answer = answer_text 
 
  # 
  # perform the prediction on the test set 
  # 
  if int(user_id) % MOD_NUM == MOD_GROUP: 
   # 
   # locate th next problem first 
   # 
    
   prediction = -1 
   badly_grained = -1 
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   if problem_id in p_selected_problem_set: 
    current_problem = problem_dic[problem_id] 
    answers = current_problem.answers 
    if answer in answers: 
     if answer == "CORRECT": 
      # 
      # generate the prediction for the correct problem log entries 
      # 
      prediction = answers[answer].prediction 
      badly_grained = answers[answer].prediction 
      entry_count = answers[answer].count; 
      if entry_count < 6: 
       prediction = correct_correct_percentage 
      answer_type = "CORRECT" 
     elif answer == "HINT": 
      # 
      # generate prediction for the hint problem log entries 
      # 
      prediction = answers[answer].prediction 
      badly_grained = answers[answer].prediction 
      entry_count = answers[answer].count; 
      if entry_count < 6: 
       prediction = hint_correct_percentage 
      answer_type = "HINT" 
     elif answers[answer].is_common: 
      # 
      # if the answer is a common wrong answer 
      # 
      prediction = answers[answer].prediction 
       
      badly_grained = 
current_problem.wrong_answer_correct_rate 
      entry_count = answers[answer].count; 
      if prediction > badly_grained + min_difference or prediction < 
badly_grained - min_difference: 
       if entry_count > min_num_response: 
        answer_type = "COMMON" 
      else: 
       answer_type = "UNCOMMON" 
     elif "UNCOMMON" in answers: 
      # 
      # generate the prediction for the uncommon problem log 
entries 
      # 
      prediction = answers["UNCOMMON"].prediction 
      badly_grained = 
current_problem.wrong_answer_correct_rate 
      entry_count = answers["UNCOMMON"].count; 
      if entry_count < 6: 
       prediction = uncommon_correct_percentage 
      answer_type = "UNCOMMON" 
    
    if index + 2 < len(data_frame): 
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     next_row = data_frame[index + 2] 
     next_order_id = next_row[iorder_id] 
     next_skill_id = next_row[iskill_id] 
     next_user_id = next_row[iuser_id] 
     next_assignment_id = next_row[iassignment_id] 
     next_problem_id = next_row[iproblem_id] 
     next_answer_text = next_row[ianswer_text] 
     next_correctness = next_row[icorrect] 
     
     if next_user_id == user_id and next_assignment_id == assignment_id 
and answer_type == "COMMON": 
      truth_array.append(PredictionEntries(next_order_id, 
next_skill_id, next_user_id, next_problem_id, problem_id, next_answer_text, answer_type, next_correctness, 
current_problem.wrong_answer_correct_rate)) 
      prediction_array.append(prediction) 
      count_array.append(entry_count) 
      badly_grained_predictions.append(badly_grained) 
  
    # 
    # calculates the student level effectsize 
    # 
     
 # effect_size = calculateEffectSize(truth_array, prediction_array, badly_grained_predictions) 
 # return effect_size 
  
 measurePerformance(truth_array, prediction_array, badly_grained_predictions, count_array) 
  
 # 
 # calculate the averaged common wrong answer count  
 # 
 # getProblemResponseCount(p_selected_problem_set, problem_dic) 
 # return len(truth_array) 
 
# 
# function that measures the RMSE and the R^2 values given the predictions 
# 
# @param prediction_array array of ICWAs predictions 
# @param badly_grained_predictions array of Control Model predictions 
# 
def measurePerformance(truth_array, prediction_array, badly_grained_predictions, count_array): 
 sum_of_square = 0 
 sum_of_truth_average_square = 0 
 average_truth_value = 0 
 bad_sum_of_square = 0 
 entries = 0 
 correct_entries = 0 
  
 prediction_outfile = open("predictions.csv", "w") 
 badly_grained_outfile = open("badly_grained_predictions.csv", "w") 
  
 prediction_outfile.write("order_id,skill_id,user_id,problem_id,problem_used,type,wrong_answer_rate,co
rrectness,prediction,badly_grained_prediction,count\n") 
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 badly_grained_outfile.write("order_id,skill_id,user_id,problem_id,correctness,prediction,count\n") 
 
 # 
 # calculate the average of the truths in the truth array for R square calculation 
 # 
 for index in range(0, len(truth_array)): 
  truth = float(truth_array[index].correctness) 
  average_truth_value += truth 
 
 average_truth_value = average_truth_value / len(truth_array) 
 
 for index in range(0, len(truth_array)): 
  order_id = truth_array[index].order_id 
  truth = float(truth_array[index].correctness) 
  type = truth_array[index].answer_type 
  assignment_id = truth_array[index].assignment_id 
  user_id = truth_array[index].user_id 
  problem_id = truth_array[index].problem_id 
  problem_used = truth_array[index].problem_used 
  wrong_answer_correct_rate = truth_array[index].wrong_answer_correct_rate 
  answer_text = truth_array[index].answer_text 
   
  prediction = prediction_array[index] 
  badly_grained_prediction = badly_grained_predictions[index] 
  count = count_array[index] 
   
  if prediction != -1 and badly_grained_prediction != -1: 
   sum_of_square += (prediction - truth) * (prediction - truth) 
   sum_of_truth_average_square += (truth - average_truth_value) * (truth - 
average_truth_value) 
   bad_sum_of_square += (badly_grained_prediction - truth) * (badly_grained_prediction - 
truth) 
   entries += 1 
   if prediction == truth: 
    correct_entries += 1 
     
  if prediction != -1 and badly_grained_prediction != -1 : 
   prediction_outfile.write(order_id + "," + assignment_id + "," + user_id + "," + problem_id 
+ "," + problem_used + ","+ type + "," +  str(wrong_answer_correct_rate) + "," + str(truth) + "," + str(prediction) + 
"," + str(badly_grained_prediction) + "," + str(count) + "," + "\n") 
   badly_grained_outfile.write(order_id + "," + assignment_id + "," + user_id + "," + 
problem_id + "," + str(truth) + "," + str(badly_grained_prediction) + "," + str(count) + "," + "\n") 
 
 print(1 - sum_of_square / sum_of_truth_average_square) 
 print(1 - bad_sum_of_square / sum_of_truth_average_square) 
    
 if entries != 0: 
  sum_of_square /= entries 
  bad_sum_of_square /= entries 
 
 print(math.sqrt(sum_of_square)) 
 print(math.sqrt(bad_sum_of_square)) 
 print(entries) 
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 prediction_outfile.close() 
 badly_grained_outfile.close() 
  
# 
# function to get the count of responses for each problem 
# @param selected_problem_set the problems that contain interesting common wrong answers 
# @param problem_dic the problem dictionary that holds every single problem in the training set 
# 
def getProblemResponseCount(selected_problem_set, problem_dic): 
 common_wrong_answer_problem_file = open("cwasp.csv", "w") 
 common_wrong_answer_problem_file.write("problem_id,count\n") 
 
 for problem_id in selected_problem_set: 
  total_count = 0 
  problem = problem_dic[problem_id] 
  total_count = total_count + problem.common_next_incorrect 
  total_count = total_count + problem.uncommon_next_incorrect 
  common_wrong_answer_problem_file.write(problem_id + "," + str(total_count) + "\n") 
   
 
 for problem_id in problem_dic: 
  total_count = 0 
  problem = problem_dic[problem_id] 
  total_count = total_count + problem.common_next_incorrect 
  total_count = total_count + problem.uncommon_next_incorrect 
  if total_count > 100: 
   common_wrong_answer_problem_file.write(problem_id + "\n") 
    
 common_wrong_answer_problem_file.close() 
 
# 
# function to calculate the effect size of the prediction array compared to the badly grained predictions on a 
student level 
# @param truth_array the array that contains the actual correctness of the problems 
# @param prediction_array the array containing the CWAs predictions 
# @param badly_grained_predictions the array containing the predictions from the control model 
# 
def calculateEffectSize(c_truth_array, c_prediction_array, c_badly_grained_predictions): 
 user_prediction_average = {} 
 user_prediction_sum = {} 
 user_prediction_count = {} 
  
 user_badly_grained_average = {} 
 user_badly_grained_sum = {} 
 user_badly_grained_count = {} 
  
 for index in range(0, len(c_truth_array)): 
  truth = float(c_truth_array[index].correctness) 
  user_id = c_truth_array[index].user_id 
  prediction = c_prediction_array[index] 
  badly_grained_prediction = c_badly_grained_predictions[index] 
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  if user_id not in user_prediction_sum: 
   user_prediction_sum[user_id] = prediction 
   user_prediction_count[user_id] = 1 
  else: 
   user_prediction_sum[user_id] += prediction 
   user_prediction_count[user_id] += 1 
   
  if user_id not in user_badly_grained_sum: 
   user_badly_grained_sum[user_id] = badly_grained_prediction 
   user_badly_grained_count[user_id] = 1 
  else: 
   user_badly_grained_sum[user_id] += badly_grained_prediction 
   user_badly_grained_count[user_id] += 1 
   
 for user_id in user_prediction_sum: 
  user_prediction_average[user_id] = user_prediction_sum[user_id] / 
user_prediction_count[user_id] 
   
 for user_id in user_prediction_sum: 
  user_badly_grained_average[user_id] = user_badly_grained_sum[user_id] / 
user_badly_grained_count[user_id] 
  
 average_badly_grained = 0 
  
 for user_id in user_badly_grained_average: 
  average_badly_grained += user_badly_grained_average[user_id] 
   
 average_badly_grained /= len(user_badly_grained_average) 
  
 average_prediction = 0 
  
 for user_id in user_prediction_average: 
  average_prediction += user_prediction_average[user_id] 
   
 average_prediction /= len(user_prediction_average) 
  
 sum_of_square = 0 
  
 for user_id in user_badly_grained_average: 
  sum_of_square += (user_badly_grained_average[user_id] - average_badly_grained) * 
(user_badly_grained_average[user_id] - average_badly_grained) 
   
 sum_of_square /= len(user_badly_grained_average) 
  
 stdev = math.sqrt(sum_of_square) 
  
 effect_size = (average_prediction - average_badly_grained) / stdev 
  
 return effect_size 
 
# 
# ==================================================================================== 
# Main script 
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# ==================================================================================== 
# 
     
     
# 
# read the data file into memory 
#  
infile_path = sys.argv[1] 
csv.field_size_limit(13107200) 
data_file = open(infile_path, "r") 
data = csv.reader(data_file, delimiter = ",") 
data_frame = [] 
 
for row in data: 
 data_frame.append(row) 
  
# 
# acquire all wrong answers and organize them into a map from the dataset 
# 
 
problem_dic = {} 
 
for row in data_frame[1:]: 
 problem_id = row[iproblem_id] 
 sequence_id = row[isequence_id] 
 answer_text = row[ianswer_text].strip(" ") 
 hint_count = row[ihint_count] 
 correct = row[icorrect] 
 user_id = row[iuser_id] 
 is_correct = False 
 is_hint = False 
  
 # 
 # begin to gather common wrong answer info on the training set 
 # 
 if int(user_id) % MOD_NUM != MOD_GROUP: 
  if problem_id not in problem_dic: 
   problem_dic[problem_id] = Problem(problem_id, sequence_id) 
    
  current_problem = problem_dic[problem_id] 
   
  if answer_text == "" and hint_count > 0: 
   answer_text = "HINT" 
   is_hint = True 
  elif correct == "1": 
   answer_text = "CORRECT" 
   is_correct = True 
   
  if answer_text not in current_problem.answers: 
   current_problem.answers[answer_text] = ProblemAnswer(answer_text, is_correct, 
is_hint) 
    
  current_problem.answers[answer_text].count += 1 
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# 
# print the results to the output for inspection 
# 
 
outfile = open("model.csv", "w") 
cwa_outfile = open("cwas.csv", "w") 
matrix_outfile = open("matrix.csv", "w") 
 
 
for problem_id in problem_dic: 
 current_problem = problem_dic[problem_id] 
 for answer in current_problem.answers: 
  if answer != "CORRECT" and answer != "HINT": 
   current_problem.total_entries += current_problem.answers[answer].count 
 
 
for problem_id in problem_dic: 
 current_problem = problem_dic[problem_id] 
 for answer in current_problem.answers: 
  if answer != "HINT" and answer != "CORRECT" and current_problem.answers[answer].count > 
current_problem.total_entries * 0.1: 
   current_problem.answers[answer].is_common = True 
    
# 
# at this point I have the dictionary to all common wrong answers, now, for predictions 
# 
 
for index, row in enumerate(data_frame[1:]): 
 problem_id = row[iproblem_id] 
 answer_text = row[ianswer_text].strip(" ") 
 hint_count = row[ihint_count] 
 correct = row[icorrect] 
 user_id = row[iuser_id] 
 assignment_id = row[iassignment_id] 
 skill_id = row[iskill_id] 
  
 if answer_text == "" and hint_count > 0: 
  answer = "HINT" 
 elif correct == "1": 
  answer = "CORRECT" 
 else: 
  answer = answer_text 
 
 # 
 # build the prediction table using the training data 
   # 
 if int(user_id) % MOD_NUM != MOD_GROUP: 
  if index + 2 < len(data_frame): 
   # 
   # current row is on experiment_data_frame[index + 1] 
   #   
   next_row = data_frame[index + 2] 
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   # 
   # confirm that the next row is the student's next problem log in the same assignment 
   # 
   next_skill_id = next_row[iskill_id] 
   next_assignment_id = next_row[iassignment_id] 
   next_user_id = next_row[iuser_id] 
   next_answer_text = next_row[ianswer_text] 
   next_correct = str(next_row[icorrect]).strip(" ") 
    
   if next_assignment_id == assignment_id and next_user_id == user_id: 
    if next_correct == "1": 
     problem_dic[problem_id].answers[answer].next_question_correct += 
1 
    else: 
     problem_dic[problem_id].answers[answer].next_question_incorrect 
+= 1 
 
# 
# get the calculation for everything 
#      
total_correct_correct = 0 
total_correct_incorrect = 0 
total_hint_correct = 0 
total_hint_incorrect = 0 
total_common_correct = 0 
total_common_incorrect = 0 
total_uncommon_correct = 0 
total_uncommon_incorrect = 0 
 
outfile.write("problem_id,answer_text,correctness,count\n"); 
cwa_outfile.write("sequence_id,problem_id,answer_text,correctness,count\n"); 
 
for problem_id in problem_dic: 
 current_problem = problem_dic[problem_id] 
 uncommon_next_correct = 0 
 uncommon_next_incorrect = 0 
  
 for answer in current_problem.answers: 
  next_correct = current_problem.answers[answer].next_question_correct 
  next_incorrect = current_problem.answers[answer].next_question_incorrect 
  total_entries = next_correct + next_incorrect 
  if answer == "CORRECT": 
   if total_entries != 0: 
    total_correct_correct += next_correct 
    total_correct_incorrect += next_incorrect 
    current_problem.answers[answer].prediction = float(next_correct) / 
float(total_entries) 
    outfile.write(problem_id + ",CORRECT," + str(float(next_correct) / 
float(total_entries)) + "," + str(total_entries) + "\n") 
  elif answer == "HINT": 
   if total_entries != 0: 
    total_hint_correct += next_correct 
    total_hint_incorrect += next_incorrect 
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    current_problem.answers[answer].prediction = float(next_correct) / 
float(total_entries) 
    outfile.write(problem_id + ",HINT," + str(float(next_correct) / 
float(total_entries)) + "," + str(total_entries)  + "\n") 
  elif current_problem.answers[answer].is_common: 
   if total_entries != 0: 
    total_common_correct += next_correct 
    total_common_incorrect += next_incorrect 
    current_problem.common_next_correct += next_correct 
    current_problem.common_next_incorrect += next_incorrect 
    current_problem.answers[answer].prediction = float(next_correct) / 
float(total_entries) 
    outfile.write(problem_id + ",\"" + str(answer) + "\"," + str(float(next_correct) / 
float(total_entries)) + "," + str(total_entries)  + "\n") 
 
    # 
    # record the common wrong answers inside an outfile 
    # 
    cwa_outfile.write(current_problem.sequence_id + "," + problem_id + ",\"" + 
str(answer) + "\"," + str(float(next_correct) / float(total_entries)) + "," + str(total_entries)  + "\n") 
     
  else: 
   uncommon_next_correct += next_correct 
   uncommon_next_incorrect += next_incorrect 
   total_uncommon_correct += next_correct 
   total_uncommon_incorrect += next_incorrect 
    
 if uncommon_next_correct + uncommon_next_incorrect != 0: 
  if "UNCOMMON" not in current_problem.answers: 
   current_problem.answers["UNCOMMON"] = ProblemAnswer("UNCOMMON", False, 
False) 
   current_problem.answers["UNCOMMON"].count = uncommon_next_correct + 
uncommon_next_incorrect 
  current_problem.answers["UNCOMMON"].prediction = float(uncommon_next_correct) / 
float(uncommon_next_incorrect + uncommon_next_correct) 
  current_problem.uncommon_next_correct = uncommon_next_correct 
  current_problem.uncommon_next_incorrect = uncommon_next_incorrect 
  outfile.write(problem_id + ",UNCOMMON," + str(float(uncommon_next_correct) / 
float(uncommon_next_incorrect + uncommon_next_correct)) + "," + str(uncommon_next_correct + 
uncommon_next_incorrect) + "\n") 
  
 if uncommon_next_correct + uncommon_next_incorrect + current_problem.common_next_correct + 
current_problem.common_next_incorrect != 0 : 
  current_problem.wrong_answer_correct_rate = float(uncommon_next_correct + 
current_problem.common_next_correct) / float(uncommon_next_correct + uncommon_next_incorrect + 
current_problem.common_next_correct + current_problem.common_next_incorrect) 
 
# 
# print out overall correctness information 
# 
uncommon_correct_percentage = float(total_uncommon_correct) / float(total_uncommon_correct + 
total_uncommon_incorrect) 
common_correct_percentage = float(total_common_correct) / float(total_common_correct + 
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total_common_incorrect) 
hint_correct_percentage = float(total_hint_correct) / float(total_hint_correct + total_hint_incorrect) 
correct_correct_percentage = float(total_correct_correct) / float(total_correct_correct + total_correct_incorrect) 
print("total uncommon correct: " + str(total_uncommon_correct)) 
print("total uncommon: " + str(total_uncommon_correct + total_uncommon_incorrect)) 
print("total common correct: " + str(total_common_correct)) 
print("total common: " + str(total_common_correct + total_common_incorrect)) 
print("total correct correct:" + str(total_correct_correct)) 
print("total correct: " + str(total_correct_correct + total_correct_incorrect)) 
print("total hint correct:" + str(total_hint_correct)) 
print("total hint: " + str(total_hint_correct + total_hint_incorrect)) 
print("hint correct percentage: " + str(hint_correct_percentage)) 
print("uncommon correct percentage: " + str(uncommon_correct_percentage)) 
print("common correct percentage: " + str(common_correct_percentage)) 
print("correct correct percentage: " + str(correct_correct_percentage)) 
 
 
# 
# get the problem set that contains default ICWAs 
# 
new_selected_problem_set = getProblemSet(problem_dic, MIN_DIFFERENCE, MIN_RESPONSES) 
# 
# perform calculations on this problem set 
# 
calculateResults(data_frame, new_selected_problem_set, MIN_DIFFERENCE, MIN_RESPONSES) 
 
outfile.close() 
cwa_outfile.close() 
data_file.close() 
matrix_outfile.close() 
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SQL Code for extracting the data set from the Assistments database: 

 
drop table if exists temp_data cascade; 

 

create table temp_data as  
select pl.id as order_id, pl.assignment_id, pl.user_id as user_id, pl.assistment_id as assistment_id, pl.problem_id as 
problem_id, pl.original as original, pl.correct, pl.attempt_count, pl.first_response_time as ms_first_response, 
pl.tutor_mode, pt.name as answer_type, ca.sequence_id, ca.student_class_id, ca.position, s2.type, 
case when si.copied_from is null then ca.sequence_id else si.copied_from end as base_sequence_id, ptsa.skill_id, 
sk.name as skill_name, tc.teacher_id, ur.location_id as school_id, pl.hint_count, pl.start_time, pl.overlap_time, 
CASE WHEN a.parent_id is null THEN pl.assistment_id ELSE a.parent_id END as template_id, pl.answer_id, 
pl.answer_text, pl.first_action, pl.bottom_hint 
from problem_logs pl 
left outer join problems p on pl.problem_id = p.id 
left outer join problem_types pt on p.problem_type_id = pt.id 
left outer join class_assignments ca on pl.assignment_id =  ca.id 
left outer join sequences s on ca.sequence_id = s.id 
left outer join sections s2 on s.head_section_id = s2.id 
left outer join sequence_infos si on ca.sequence_id = si.sequence_id 
left outer join problem_to_skill_associations ptsa on p.id = ptsa.problem_id 
left outer join skills sk 
on ptsa.skill_id = sk.id 
left outer join teacher_classes tc on tc.student_class_id = ca.student_class_id 
left outer join student_classes sc on sc.id = ca.student_class_id 
left outer join user_roles ur on ur.user_id = pl.user_id 
left outer join assistment_infos a on pl.assistment_id = a.assistment_id 
where 
ca.student_class_id is not null and 
ur.type = 'Student' and ur.location_type = 'School' 
and pl.correct is not null 
and s2.type = 'MasterySection' 
and ca.assignment_type_id not in (6,7) 
and original = 1 
and pt.id = 4 
order by sk.id, pl.user_id, pl.id; 
 
 
select * from temp_data where first_action = 0 or first_action = 1 order by user_id, assignment_id, order_id; 
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