
Worcester Polytechnic Institute
Digital WPI

Interactive Qualifying Projects (All Years) Interactive Qualifying Projects

January 2015

The Hidden Value of Common Wrong Answers
Bohao Li
Worcester Polytechnic Institute

Douglas Selent
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/iqp-all

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Li, B., & Selent, D. (2015). The Hidden Value of Common Wrong Answers. Retrieved from https://digitalcommons.wpi.edu/iqp-all/658

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212990149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/658?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

The Hidden Value of Common Wrong Answers

An Interactive Qualifying Project Report:

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements of the

Degree of Bachelor of Science

By

Bohao Li

In collaboration with

Douglas Selent

Date: December 19, 2014

Advisor:

Professor Neil Heffernan

2

Contents

Abstract ... 3

Introduction ... 4

Data ... 6

Common Wrong Answer Definition .. 7

Models ...11

Experiments ..13

Analysis ...15

Conclusion ..16

Contributions...17

References ...18

Appendix ...19

3

Abstract
In this paper, we investigate the value of common wrong answers. We carry three

questions. First, how do we define common wrong answers? Second, how common are the

common wrong answers following our definition? Third, by introducing common wrong answers

into model building, can we achieve better models in predicting next problem correctness? Next

problem correctness stands for the probability that a student will get the next problem in the

same assignment correct after finishing the current problem. To answer the first question, we

proposed a definition for common wrong answers. To answer our second question, we examined

the prevalence of common wrong answers within our data sets. To answer our third question, we

built two tabling models. The first model is our control model. This model makes predictions on

next problem correctness based on three types of student responses, a response where the student

give a correct answer (correct response), a response where the student ask for a hint (hint

response) and a response where the student give a wrong answer (wrong answer response). The

second model is our experiment model, named Li, Selent & Heffernan’s Interesting Common

Wrong Answers Model (ICWAs Model). The ICWAs model extends upon the control model by

giving each common wrong answer its own prediction. We then compared the results from both

models and verified that common wrong answers do not bring reliable improvements to

predicting next problem correctness.

Keywords: tabling; common misconceptions; predictive modeling;

4

Introduction
Student incorrect responses were first studied in 1978 by John Seely Brown and Richard

R. Burton[1]. They manually analyzed student incorrect responses for multi-digit subtraction

problems. Incorrect processes or “bug”s performed by the student attributed to these incorrect

responses. From this analysis, they created a procedural network, where a skill is broken down

into sub-skills. Their main goal was to construct a database of all the possible buggy procedures

with their series of “BUGGY” programs that helped to identify bugs [3]. Brown and VanLehn

extended this work with their introduction of “Repair Theory” [2]. The idea of Repair Theory is

that when a student realizes that he/she has performed a buggy operation he/she will attempt to

repair the bug. This work looked at how bugs are caused and what bugs can be predicted.

Several researchers explored the area of finding common incorrect processes in 1990’s

summarized in [7]. Various machine-learning algorithms in different systems attempted to

predict student misconceptions and react appropriately. More recent algorithms have been made

to automatically discover these buggy rules. One of the most recent examples is a machine-

learning algorithm developed in [6]. In their work, a machine-learning algorithm was developed

to automatically discover all buggy rules for a given set of problems generated by the same

template. This algorithm works by first taking the input symbols of the problem (the numbers in

the problem), a set of basic operations (addition, subtraction, multiplication, and division), and

all the student incorrect responses for all problems generated by a single template. Next, the

algorithm derives all possible incorrect processes for all the incorrect responses and generalizes

the incorrect response across all problems generated by a given template. Finally, the incorrect

processes are assigned to the most likely generalized incorrect processes. The output of the

algorithm is the machine learned process for the incorrect response (how the student arrived at

their incorrect answer), as well as a percentage breakdown for all the incorrect

processes. Although the method has a few weaknesses in terms of computation time and

computer memory, it is a sufficient solution to the problem of finding bugs.

Despite such a large amount of past work done on predicting student incorrect responses,

there is little work done to use these incorrect response to predict future performance or

correctness on the next problem for fill-in problems. The National Council on Measurement in

Educational Measurement (NCME) community has come up with methods that weight incorrect

responses differently. For example, work done by DeMars shows that polytomous models

5

(weighting the incorrect responses differently) for multiple-choice questions predict better than

dichotomous models (weighting all incorrect responses the same) [4]. Our contribution in this

paper is to use the idea of weighting incorrect responses differently that is some wrong answers

indicate very poor knowledge, while other wrong answers are associated with very high

knowledge and apply it to fill-in problems. DeMars notes that “The polytomous models, which

weighted the distractors differentially, yielded small increases in reliability compared to their

dichotomous counterparts.” We believe there is value to this and hope to find larger

improvements with fill-in questions as opposed to the multiple-choice questions DeMars used.

The goal of this paper is to see how well we can predict student performance on the next

question by knowing the commonality of their previous incorrect responses. In this paper, we

hope to answer three questions. (1) How do we define common wrong answers? (2) How

common are the common wrong answers following our definitions? (3) Can we build better

models in predicting next problem correctness using common wrong answers?

To answer these questions, we use one dataset described in the data section, define

common wrong answers and examine their commonality. We then build two tabling models, a

control model and an experiment model. We compare the performance on both models and test if

they perform reliably different from one another. After the initial experiments, we conduct more

experiments to test if our model generalize across students.

6

Data
For our experiments, we use one skill builder dataset of fill-in question responses on

mathematical questions. The data ranges from years 2008-2014 and grades 4-12 from the

ASSISTments online tutoring system. ASSISTments is a tutoring system mostly used for

mathematics in grades 4-12. Most of the users in the system are in the United States with a large

number of students located in or near Massachusetts. Students use ASSISTments on classwork

and homework, which may be done with or without the use of a paper copy. The system

typically provide instant feedback to the student upon answering the problems, so they know

immediately whether they have answered correctly. Students cannot skip any problems and must

answer correctly to continue.

 A skill builder is a set of problems where a student must get a certain number of

problems correct in a row (usually three) in order to complete. A skill builder typically consists

of a bank of 50-100 possible questions that are randomly drawn from and given to the

student. One or more templates generate these questions. For example, a template problem for

the skill “Order of Operation”, looks like “a + b * c”. This template generates the problem

instances “1 + 2 * 3”, and “5 + 4 * 9” as well as several other similar problems by substituting

different numbers in for the variables ‘a’, ‘b’, and ‘c’ [5]. The reason why we chose to focus on

data from skill builders is that this data is more realistic and less subject to noise, which is a

common problem in online tutoring systems. Skill builders are used by several teachers and are

not specific to a certain demographic. Due to the randomized questions, skill builders are also

less subject to cheating by students. Students are given correctness feedback, on whether they

got the problem right or wrong, after submitting an answer for a problem in. Our selected dataset

contains 635,443 rows with 35,928 students, 14,393 problems and 9,960 assignments. This

dataset, along with the code for our experiments and the models we have built, is available at

https://sites.google.com/site/commonwronganswerscodeanddata/my-documents

https://sites.google.com/site/commonwronganswerscodeanddata/my-documents

7

Common Wrong Answer Definition
 The word ‘common’ in ‘common wrong answers’ suggests that our common wrong

answers should contain a minimum number of student responses and cover a certain percentage

of the responses covered by all wrong answers in the same problem. Thus, we come up with the

following definition for common wrong answers:

1) Wrong answers that contain more than 19 responses. We will refer to this constraint later

in the paper as minimum number of responses.

2) Wrong answers that cover more than 10% of all student responses covered by wrong

answers in the same problem.

In our paper, we want to focus on the common wrong answers that actually contribute to making

better predictions on next problem correctness – common wrong answers who distinguish

themselves from all other wrong answers. We define these common wrong answers as

Interesting Common Wrong Answers (ICWA). In addition to satisfying the general common

wrong answer definition, ICWAs also need to satisfy the following requirement:

3) Wrong answers whose next problem correctness differ from the averaged wrong answer

next problem correctness of the same problem by at least 0.18. (e.g. If the averaged

wrong answer next problem correctness of problem A is 0.50, a wrong answer may be

considered a common wrong answer if its next problem correctness is either above 0.68

or below 0.32. We introduce this constraint to ensure that we consider only common

wrong answers that help make better predictions.) We will refer to this constraint later in

the paper as minimum difference.

In this case, our values for minimum number of responses and minimum difference are arbitrary.

We will refer to the above definition of Interesting Common Wrong Answers as the default

definition of ICWAs. We expect to find two kinds of ICWAs in our dataset. The firsts are

positive ICWAs suggesting good student knowledge/skills; the seconds are negative ICWAs

suggesting very poor student knowledge/skills. In our dataset, out of 14,393 problems, 63

problems contain default ICWAs. Below are three examples of these 63 problems with

Interesting Common Wrong Answers.

8

Problem ID 132104

Problem Context Simplify the following:
(8 - 4y) - (3y - 7)
In order to type your answer in you must do just like you do with a

graphing calculator:
-no spaces between factors and operations;
-don't use * for multiplication,
For example: 4x-7y

Correct Answer 15 - 7y

All Wrong Answers Next Problem Correctness Number of Responses

0.3819 233

Common Wrong Answer 1

(positive ICWA)

Next Problem

Correctness

Answer Text Number of

Responses

0.5925 “1-7y” 27

Common Wrong Answer 2 Next Problem

Correctness

Answer Text Number of

Responses

0.3461 “1-1y” 26

All other Wrong Answers

Next Problem Correctness Number of Responses

0.3555 180

Analysis Observing the two common wrong answers, the first common

wrong answer has a much higher next problem correctness than

the averaged wrong answer next problem correctness and the

second common wrong answer. The reason is that students

giving the first common wrong answer are partially correct,

computing the “-7y” part of the expression whereas students

who giving the second common wrong answer are completely

wrong. Only the first common wrong answer is an interesting

common wrong answer.

Table 1 shows the details of problem 132104, which holds a positive ICWA

Problem ID 34444

Problem Context What is 12 - (-14)?

Correct Answer 26

9

All Wrong Answers Next Problem Correctness Number of Responses

0.4878 205

Common Wrong Answer 1

(negative ICWA)

Next Problem

Correctness

Answer Text Number of

Responses

0.2972 “-26” 37

Common Wrong Answer 2

Next Problem

Correctness

Answer Text Number of

Responses

0.5333 “2” 60

Common Wrong Answer 3

Next Problem

Correctness

Answer Text Number of

Responses

0.5000 “-2” 86

All other Wrong Answers

Next Problem Correctness Number of Responses

0.5454 22

Analysis Compared to other common wrong answers, our Interesting

Common Wrong Answer “-26” has a much lower next problem

correctness. Common wrong answer “-2” and “2” can be

explained by students mistaking the expression for “12 -14”

where “-26” is more difficult to explain. The negative ICWA in

this problem suggests poor substraction skills.

Table 2 shows the details of problem 34444, which holds a negative ICWA

Problem ID 403245

Problem Context Multiply 0.72 and 0.57, rounding the answer to the nearest

thousandth.

Correct Answer 0.410

All Wrong Answers Next Problem Correctness Number of Responses

0.6279 43

Common Wrong Answer 1

(positive ICWA)

Next Problem

Correctness

Answer Text Number of

Responses

0.8421 “0.41” 19

Uncommon Wrong Next Problem Correctness Number of Responses

10

Answers 0.4583 24

Analysis In this problem, the students giving the positive ICWA actually

performed the correct calculation but they failed to round the

answer to the nearest thousandth. Careless mistakes resulted this

ICWA and it suggests good student knowledge.

Table 3 shows the details of problem 34444, which holds a positive ICWA

It is clear that in these sample problems, common wrong answers contribute to our

insight to student knowledge and may help better predict students’ next problem correctness. The

63 problems with ICWAs makes up only a very small portion of the 14,393 problems in our

entire dataset. However, many of the 14,393 problems in our data set do not have enough student

responses to have ICWAs. Of the 63 questions that contain default ICWAs (minimum difference

= 0.18, minimum number of responses = 19), 48 of which contain more than 100 student

responses with wrong answers. Of the 14,393 problems contained in our dataset, only 208 of

which contain more than 100 student responses with wrong answers. Among all questions with

more than 100 wrong responses, 23% of which contain default ICWAs. From this finding, we

can see that the ICWAs model will likely cover more problems if more students have worked on

the problems in our dataset. If all 14,393 problems have more than 100 wrong responses, we can

reasonably expect over 3,000 problems with default ICWAs. Given these observation, we push

forth to designing an experiment investigating whether ICWAs reliably help predict next

problem correctness.

11

Models
A tabling model provides a mapping from data to predictions based on the attributes of

the data. This generates a probability table to use for predicting. Tabling has been applied in past

research of Wang et al [8]. Their tabling method provided a complement to the Knowledge

Tracing model by using past response sequences to predict future responses. To demonstrate the

positive effect of common wrong answers, we introduce two tabling models in predicting next

problem correctness.

Control Model

Our control model contains three next problem correctness predictions for each problem

in the dataset based on the students’ first responses, which can be correct responses, wrong

responses and requests for hints. The prediction values are calculated by averaging all matching

responses’ next problem correctness in the training set.

ICWAs Model

Our ICWAs model expands on our control model by splitting the wrong response

category in the control model into ICWA categories, each containing a prediction for students

who make the exact ICWA, and an all other wrong answer category, containing a prediction for

students who make all other wrong answers. The prediction values are calculated by averaging

all matching responses’ next problem correctness in the training set.

An example of each tabling method is shown in tables 1-2. The example tables display

only one problem where the actual tables contain all problems that can be used in predicting next

problem correctness in the training set.

Problem ID Answer Prediction Data Points

… … … …

248694 CORRECT 0.7260 73

248694 HINT 0.2857 28

248694 Wrong Answer 0.3819 233

… … … …

Table 4 shows an example of what part of control model looks like. It is the simpler than the ICWAs model.

12

Problem ID Answer Prediction Data Points

… … … …

248694 CORRECT 0.7260 73

248694 HINT 0.2857 28

248694 “1-7y” 0.5925 27

248694 ALL OTHER

WRONG ANSWERS

0.3555 206

… … … …

Table 5 shows an example of what part of ICWAs model looks like. It has broken the wrong answer category in the

control model into common and uncommon wrong answers with each common wrong answer having its own prediction

value

13

Experiments
In conducting our experiment, we have separated our dataset into the training set and the

test set. The training set consists of the responses from students whose last digit in their user ids

are not 1 nor 6, making up about 80% of the whole dataset. The test set consists of responses

from students whose last digit in their user ids are 1 or 6, making up about 20% of the whole

dataset.

We are training our models on student-assignment bases. For example, problem B will

only be considered as the next problem of problem A only if the same student worked on

problem B after problem A with both problems in the same assignment. Because of this

limitation, our models cannot predict student’s first problem correctness in each assignment.

After running our models on the test set, we are able to gather 83,267 predictions made by both

models. We use RMSE (Root Mean Squared Error) and R square to evaluate the performance of

both models.

 Control Model on All Responses ICWAs Model on All Responses

RMSE 0.4710 0.4703

R square 0.1105 0.1132

 Table 6 shows the comparison between the control model and the ICWAs model in terms of RMSE and R square on all

responses

As measured by RMSE, the ICWAs Model does not perform reliably better than the

Control Model. This is understandable because common wrong answers cover only a narrow

portion of the whole dataset. Of the 83,267 predictions made by the ICWAs Model, only 178

predictions are made using the reliable common wrong answers matching our criteria, consisting

of only 0.2% of all predictions. From here, we may observe that while our sample problems

suggest that common wrong answers can potentially help making better predictions on next

problem correctness, they cover too few student responses to have an obvious impact when

measured using the whole test set. Given this issue, we narrow our comparisons to just the 178

predictions made by the 63 problems with ICWAs using ICWAs. With the scope narrowed

down, we start to observe reliable improvements.

14

 Control Model on the 178 responses ICWAs Model on the 178 responses

RMSE 0.4946 0.4643

R square 0.0202 0.1364

Table 7 shows the comparison between the control model and the ICWAs model in terms of RMSE and R square on

ICWA predictable responses

 Although promising, we still need to verify if other student groups show the same

improvement. The previous results are from the test set with student ids ending with 1 or 6 and

the training set with student ids that aren’t. We conducted experiments on other training/test sets

and the results show less promise.

Training Set Student

id Last Digit

Test Set Student id

Last Digit

Control

Model RMSE

ICWAs

Model RMSE

Number of

Predictions Made

Not 0 nor 5 0 or 5 0.493269989 0.529239096 181

Not 1 nor 6 1 or 6 0.494623739 0.464383894 178

Not 2 nor 7 2 or 7 0.497762406 0.49546321 201

Not 3 nor 8 3 or 8 0.491225063 0.492849082 166

Not 4 nor 9 4 or 9 0.499117646 0.494227533 212

Table 8 shows the comparison between the control model and the ICWAs model in terms of RMSE ICWA predictable

responses with different student groups considered

The averaged RMSE from the Control Model is 0.495449 and the averaged RMSE from the

ICWAs Model is 0.495341. For the ICWAs model, the RMSE results are calculated using only

the predictions made by Interesting Common Wrong Answers. While the ICWAs model perform

well on one group of students (id last digit 1 or 6), the improvement fail to generalize to all

students.

15

Analysis
Given that there are indeed problems in our dataset that contain meaningful common

wrong answers, ICWAs failing to provide any improvements to predicting next problem

correctness might have the following causes:

1. Common wrong answers do not hold enough predictive power as correct and hint

responses to distinguish themselves from all other wrong answers. The key question

we investigated is if a student makes an Interesting Common Wrong Answer, is

he/she more likely to get the next problem correct/incorrect than if he/she makes one

of all other wrong answers? Our experiments suggest that the answer is no. In

general, for fill-in problems, a wrong answer is just like any other wrong answers and

it does not matter if it is interestingly common.

2. Student responses are scattered among a huge amount of problems in our dataset and

are not concentrated enough to produce ICWAs. Our ICWA definition require only a

minimum of 19 responses. A dataset large enough to produce a good number of

ICWAs with more than 100 student responses might yield better results.

16

Conclusion
We set out to investigate the possibility of improving our ability to predict student

performance depending on whether they provided a common wrong answer to a previously

related question. We were inspired by work done by DeMars, who showed that polytomous

models predict performance better than dichotomous models on multiple-choice questions.

We started by defining common wrong answers and Interesting Common Wrong Answers. We

then identified a few problems showing that ICWAs make a difference in predicting next

problem correctness. We then conducted experiments showing ICWAs bring no improvements to

predicting next problem correctness. Our common wrong answers do not distinguish from all

other wrong answers in their ability to predicting next problem correctness.

17

Contributions
We are the first people to our knowledge that have shown that paying attention to

common wrong answers can not provide value to accessing student learning. We have provided

solid examples showing that our Interesting Common Wrong Answers do not help make better

predictions in next problem correctness.

The result may provide insight to future researchers studying common wrong answers.

Common wrong answers can suggest student knowledge, but they do not help predicting next

problem correctness. Future researches involving common wrong answers can tackle impacts

other than next problem correctness.

18

References

Brown, John Seely, & Burton, Richard R.. (1978). Diagnostic models for procedural bugs in basic mathematical

skills. Cognitive science 2.2, 155-192.

Brown, John Seely, & VanLehn, Kurt. (1980). Repair theory: A generative theory of bugs in procedural skills.

Cognitive science 4.4, 379-426.

Burton, R. R. Diagnosing bugs in a simple procedural skill. In D. H. Sleeman, & J. S. Brown (Eds.), Intelligent

tutoring systems, 157-183. New York: Academic Press.

DeMars, C. E. (2008). Scoring multiple choice items: A comparison of IRT and classical

polytomous and dichotomous methods. Paper presented at the National Council on

Measurement in Education. New York, NY. Retrieved Oct 29, 2014 from

https://www.jmu.edu/assessment/CED%20NCME%20Paper%2008.pdf

Razzaq, L., Patvarczki, J., Almeida, S., Manasi,V., Feng, M., Heffernan, N. T., & Koedinger, K. R. (2009). The

Assistment Builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions on Learning

Technologies, Special Issue on Real-World Applications of Intelligent Tutoring Systems. 2(2), 157-166

Selent, D., & Heffernan, N. T. (2014). Reducing Student Hint Use by Creating Buggy Messages from Machine

Learned Incorrect Processes. (pp. 674-675). In Stefan Trausan-Matu, et al. (Eds) International Conference on

Intelligent Tutoring 2014. LNCS 8474. Retrieved Dec 22, 2014 from

https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxzZWxlbnRpdHMyM

DE0fGd4OjFjZDU5YzllYjk3ZDdmNg

Sison, R., & Masamichi S. (1998). Student modeling and machine learning. International Journal of Artificial

Intelligence in Education (IJAIED) 9, 128-158.

Wang, Q., Pardos, Z. A., & Herffernan, N. T. (2011). Response Tabling-A simple and practical complement to

Knowledge Tracing. In KDD workshop. Retrived Oct 29th 2014 from

https://pslcdatashop.web.cmu.edu/KDD2011/papers/D-kddined2011.pdf

https://www.jmu.edu/assessment/CED%20NCME%20Paper%2008.pdf
https://www.jmu.edu/assessment/CED%20NCME%20Paper%2008.pdf
https://www.jmu.edu/assessment/CED%20NCME%20Paper%2008.pdf
https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxzZWxlbnRpdHMyMDE0fGd4OjFjZDU5YzllYjk3ZDdmNg
https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxzZWxlbnRpdHMyMDE0fGd4OjFjZDU5YzllYjk3ZDdmNg
https://pslcdatashop.web.cmu.edu/KDD2011/papers/D-kddined2011.pdf

19

Appendix
Python code for this project:

"""
 File to generate the tabulation results given the problem log data

 @author Bohao Li
"""

import csv
import sys
import math

from sets import Set

global variables, should be maintained as constants

set the indexes of columns in our data set

iorder_id = ord('A') - ord('A')
iuser_id = ord('C') - ord('A')
iskill_id = ord('Q') - ord('A')
iassignment_id = ord('B') - ord('A')
iproblem_id = ord('E') - ord('A')
icorrect = ord('G') - ord('A')
isequence_id = ord('L') - ord('A')
ihint_count = ord('U') - ord('A')
ianswer_text = ord('Z') - ord('A')

student id % 5 == 1 will be in the test set, the rest will be in the training set

MOD_GROUP = 1
MOD_NUM = 5

default min difference and min response to our cwas

MIN_RESPONSES = 19
MIN_DIFFERENCE = 0.18

Problem class to hold all info to a certain problem

class Problem:
 def __init__(self, problem_id, sequence_id):
 self.id = problem_id
 self.sequence_id = sequence_id
 self.answers = {}

20

 self.total_uncommon = 0
 self.total_common = 0
 self.total_entries = 0
 self.uncommon_next_correct = 0
 self.uncommon_next_incorrect = 0
 self.common_next_correct = 0
 self.common_next_incorrect = 0
 self.wrong_answer_correct_rate = 0

Problem answer class that holds all info of an answer to a given problem

class ProblemAnswer:
 def __init__(self, answer, is_correct, is_hint):
 self.answer = answer
 self.count = 0
 self.is_correct = is_correct
 self.is_hint = is_hint
 self.is_common = False
 self.next_question_correct = 0
 self.next_question_incorrect = 0
 self.prediction = 0

class that holds the related info to a prediction

class PredictionEntries:
 def __init__(self, order_id, assignment_id, user_id, problem_id, problem_used, answer_text,
answer_type, correctness, wrong_answer_correct_rate):
 self.order_id = order_id
 self.assignment_id = assignment_id
 self.user_id = user_id
 self.problem_id = problem_id
 self.problem_used = problem_used
 self.correctness = correctness
 self.answer_text = answer_text
 self.answer_type = answer_type
 self.wrong_answer_correct_rate = wrong_answer_correct_rate

class that holds the value of a prediction

class Prediction:
 def __init__(self, prediction, count):
 self.prediction = prediction
 self.count = count

function that selects only problems with interesting common wrong answers

def getProblemSet(problem_dic, min_difference, min_num_response):
 selected_problem_set = Set()

21

 for problem_id in problem_dic:
 current_problem = problem_dic[problem_id]
 wrong_answer_correct_rate = current_problem.wrong_answer_correct_rate

 for answer in current_problem.answers:
 if answer != "CORRECT" and answer != "HINT" and answer != "UNCOMMON":
 if current_problem.answers[answer].prediction > wrong_answer_correct_rate
+ min_difference or current_problem.answers[answer].prediction < wrong_answer_correct_rate - min_difference:
 if current_problem.answers[answer].count > min_num_response:
 selected_problem_set.add(problem_id)
 return selected_problem_set

function that makes predictions on the selected problem set with interesting common wrong asnwers

def calculateResults(data_frame, p_selected_problem_set, min_difference, min_num_response):
 truth_array = []
 prediction_array = []
 badly_grained_predictions = []
 count_array = []

 for index, row in enumerate(data_frame[1:]):
 order_id = row[iorder_id]
 problem_id = row[iproblem_id]
 answer_text = row[ianswer_text].strip(" ")
 hint_count = row[ihint_count]
 correct = row[icorrect]
 user_id = row[iuser_id]
 assignment_id = row[iassignment_id]
 skill_id = row[iskill_id]
 answer_type = "UNCOMMON"
 entry_count = 0

 if answer_text == "" and hint_count > 0:
 answer = "HINT"
 elif correct == "1":
 answer = "CORRECT"
 else:
 answer = answer_text

 #
 # perform the prediction on the test set
 #
 if int(user_id) % MOD_NUM == MOD_GROUP:
 #
 # locate th next problem first
 #

 prediction = -1
 badly_grained = -1

22

 if problem_id in p_selected_problem_set:
 current_problem = problem_dic[problem_id]
 answers = current_problem.answers
 if answer in answers:
 if answer == "CORRECT":
 #
 # generate the prediction for the correct problem log entries
 #
 prediction = answers[answer].prediction
 badly_grained = answers[answer].prediction
 entry_count = answers[answer].count;
 if entry_count < 6:
 prediction = correct_correct_percentage
 answer_type = "CORRECT"
 elif answer == "HINT":
 #
 # generate prediction for the hint problem log entries
 #
 prediction = answers[answer].prediction
 badly_grained = answers[answer].prediction
 entry_count = answers[answer].count;
 if entry_count < 6:
 prediction = hint_correct_percentage
 answer_type = "HINT"
 elif answers[answer].is_common:
 #
 # if the answer is a common wrong answer
 #
 prediction = answers[answer].prediction

 badly_grained =
current_problem.wrong_answer_correct_rate
 entry_count = answers[answer].count;
 if prediction > badly_grained + min_difference or prediction <
badly_grained - min_difference:
 if entry_count > min_num_response:
 answer_type = "COMMON"
 else:
 answer_type = "UNCOMMON"
 elif "UNCOMMON" in answers:
 #
 # generate the prediction for the uncommon problem log
entries
 #
 prediction = answers["UNCOMMON"].prediction
 badly_grained =
current_problem.wrong_answer_correct_rate
 entry_count = answers["UNCOMMON"].count;
 if entry_count < 6:
 prediction = uncommon_correct_percentage
 answer_type = "UNCOMMON"

 if index + 2 < len(data_frame):

23

 next_row = data_frame[index + 2]
 next_order_id = next_row[iorder_id]
 next_skill_id = next_row[iskill_id]
 next_user_id = next_row[iuser_id]
 next_assignment_id = next_row[iassignment_id]
 next_problem_id = next_row[iproblem_id]
 next_answer_text = next_row[ianswer_text]
 next_correctness = next_row[icorrect]

 if next_user_id == user_id and next_assignment_id == assignment_id
and answer_type == "COMMON":
 truth_array.append(PredictionEntries(next_order_id,
next_skill_id, next_user_id, next_problem_id, problem_id, next_answer_text, answer_type, next_correctness,
current_problem.wrong_answer_correct_rate))
 prediction_array.append(prediction)
 count_array.append(entry_count)
 badly_grained_predictions.append(badly_grained)

 #
 # calculates the student level effectsize
 #

 # effect_size = calculateEffectSize(truth_array, prediction_array, badly_grained_predictions)
 # return effect_size

 measurePerformance(truth_array, prediction_array, badly_grained_predictions, count_array)

 #
 # calculate the averaged common wrong answer count
 #
 # getProblemResponseCount(p_selected_problem_set, problem_dic)
 # return len(truth_array)

function that measures the RMSE and the R^2 values given the predictions

@param prediction_array array of ICWAs predictions
@param badly_grained_predictions array of Control Model predictions

def measurePerformance(truth_array, prediction_array, badly_grained_predictions, count_array):
 sum_of_square = 0
 sum_of_truth_average_square = 0
 average_truth_value = 0
 bad_sum_of_square = 0
 entries = 0
 correct_entries = 0

 prediction_outfile = open("predictions.csv", "w")
 badly_grained_outfile = open("badly_grained_predictions.csv", "w")

 prediction_outfile.write("order_id,skill_id,user_id,problem_id,problem_used,type,wrong_answer_rate,co
rrectness,prediction,badly_grained_prediction,count\n")

24

 badly_grained_outfile.write("order_id,skill_id,user_id,problem_id,correctness,prediction,count\n")

 #
 # calculate the average of the truths in the truth array for R square calculation
 #
 for index in range(0, len(truth_array)):
 truth = float(truth_array[index].correctness)
 average_truth_value += truth

 average_truth_value = average_truth_value / len(truth_array)

 for index in range(0, len(truth_array)):
 order_id = truth_array[index].order_id
 truth = float(truth_array[index].correctness)
 type = truth_array[index].answer_type
 assignment_id = truth_array[index].assignment_id
 user_id = truth_array[index].user_id
 problem_id = truth_array[index].problem_id
 problem_used = truth_array[index].problem_used
 wrong_answer_correct_rate = truth_array[index].wrong_answer_correct_rate
 answer_text = truth_array[index].answer_text

 prediction = prediction_array[index]
 badly_grained_prediction = badly_grained_predictions[index]
 count = count_array[index]

 if prediction != -1 and badly_grained_prediction != -1:
 sum_of_square += (prediction - truth) * (prediction - truth)
 sum_of_truth_average_square += (truth - average_truth_value) * (truth -
average_truth_value)
 bad_sum_of_square += (badly_grained_prediction - truth) * (badly_grained_prediction -
truth)
 entries += 1
 if prediction == truth:
 correct_entries += 1

 if prediction != -1 and badly_grained_prediction != -1 :
 prediction_outfile.write(order_id + "," + assignment_id + "," + user_id + "," + problem_id
+ "," + problem_used + ","+ type + "," + str(wrong_answer_correct_rate) + "," + str(truth) + "," + str(prediction) +
"," + str(badly_grained_prediction) + "," + str(count) + "," + "\n")
 badly_grained_outfile.write(order_id + "," + assignment_id + "," + user_id + "," +
problem_id + "," + str(truth) + "," + str(badly_grained_prediction) + "," + str(count) + "," + "\n")

 print(1 - sum_of_square / sum_of_truth_average_square)
 print(1 - bad_sum_of_square / sum_of_truth_average_square)

 if entries != 0:
 sum_of_square /= entries
 bad_sum_of_square /= entries

 print(math.sqrt(sum_of_square))
 print(math.sqrt(bad_sum_of_square))
 print(entries)

25

 prediction_outfile.close()
 badly_grained_outfile.close()

function to get the count of responses for each problem
@param selected_problem_set the problems that contain interesting common wrong answers
@param problem_dic the problem dictionary that holds every single problem in the training set

def getProblemResponseCount(selected_problem_set, problem_dic):
 common_wrong_answer_problem_file = open("cwasp.csv", "w")
 common_wrong_answer_problem_file.write("problem_id,count\n")

 for problem_id in selected_problem_set:
 total_count = 0
 problem = problem_dic[problem_id]
 total_count = total_count + problem.common_next_incorrect
 total_count = total_count + problem.uncommon_next_incorrect
 common_wrong_answer_problem_file.write(problem_id + "," + str(total_count) + "\n")

 for problem_id in problem_dic:
 total_count = 0
 problem = problem_dic[problem_id]
 total_count = total_count + problem.common_next_incorrect
 total_count = total_count + problem.uncommon_next_incorrect
 if total_count > 100:
 common_wrong_answer_problem_file.write(problem_id + "\n")

 common_wrong_answer_problem_file.close()

function to calculate the effect size of the prediction array compared to the badly grained predictions on a
student level
@param truth_array the array that contains the actual correctness of the problems
@param prediction_array the array containing the CWAs predictions
@param badly_grained_predictions the array containing the predictions from the control model

def calculateEffectSize(c_truth_array, c_prediction_array, c_badly_grained_predictions):
 user_prediction_average = {}
 user_prediction_sum = {}
 user_prediction_count = {}

 user_badly_grained_average = {}
 user_badly_grained_sum = {}
 user_badly_grained_count = {}

 for index in range(0, len(c_truth_array)):
 truth = float(c_truth_array[index].correctness)
 user_id = c_truth_array[index].user_id
 prediction = c_prediction_array[index]
 badly_grained_prediction = c_badly_grained_predictions[index]

26

 if user_id not in user_prediction_sum:
 user_prediction_sum[user_id] = prediction
 user_prediction_count[user_id] = 1
 else:
 user_prediction_sum[user_id] += prediction
 user_prediction_count[user_id] += 1

 if user_id not in user_badly_grained_sum:
 user_badly_grained_sum[user_id] = badly_grained_prediction
 user_badly_grained_count[user_id] = 1
 else:
 user_badly_grained_sum[user_id] += badly_grained_prediction
 user_badly_grained_count[user_id] += 1

 for user_id in user_prediction_sum:
 user_prediction_average[user_id] = user_prediction_sum[user_id] /
user_prediction_count[user_id]

 for user_id in user_prediction_sum:
 user_badly_grained_average[user_id] = user_badly_grained_sum[user_id] /
user_badly_grained_count[user_id]

 average_badly_grained = 0

 for user_id in user_badly_grained_average:
 average_badly_grained += user_badly_grained_average[user_id]

 average_badly_grained /= len(user_badly_grained_average)

 average_prediction = 0

 for user_id in user_prediction_average:
 average_prediction += user_prediction_average[user_id]

 average_prediction /= len(user_prediction_average)

 sum_of_square = 0

 for user_id in user_badly_grained_average:
 sum_of_square += (user_badly_grained_average[user_id] - average_badly_grained) *
(user_badly_grained_average[user_id] - average_badly_grained)

 sum_of_square /= len(user_badly_grained_average)

 stdev = math.sqrt(sum_of_square)

 effect_size = (average_prediction - average_badly_grained) / stdev

 return effect_size

==
Main script

27

==

read the data file into memory

infile_path = sys.argv[1]
csv.field_size_limit(13107200)
data_file = open(infile_path, "r")
data = csv.reader(data_file, delimiter = ",")
data_frame = []

for row in data:
 data_frame.append(row)

acquire all wrong answers and organize them into a map from the dataset

problem_dic = {}

for row in data_frame[1:]:
 problem_id = row[iproblem_id]
 sequence_id = row[isequence_id]
 answer_text = row[ianswer_text].strip(" ")
 hint_count = row[ihint_count]
 correct = row[icorrect]
 user_id = row[iuser_id]
 is_correct = False
 is_hint = False

 #
 # begin to gather common wrong answer info on the training set
 #
 if int(user_id) % MOD_NUM != MOD_GROUP:
 if problem_id not in problem_dic:
 problem_dic[problem_id] = Problem(problem_id, sequence_id)

 current_problem = problem_dic[problem_id]

 if answer_text == "" and hint_count > 0:
 answer_text = "HINT"
 is_hint = True
 elif correct == "1":
 answer_text = "CORRECT"
 is_correct = True

 if answer_text not in current_problem.answers:
 current_problem.answers[answer_text] = ProblemAnswer(answer_text, is_correct,
is_hint)

 current_problem.answers[answer_text].count += 1

28

print the results to the output for inspection

outfile = open("model.csv", "w")
cwa_outfile = open("cwas.csv", "w")
matrix_outfile = open("matrix.csv", "w")

for problem_id in problem_dic:
 current_problem = problem_dic[problem_id]
 for answer in current_problem.answers:
 if answer != "CORRECT" and answer != "HINT":
 current_problem.total_entries += current_problem.answers[answer].count

for problem_id in problem_dic:
 current_problem = problem_dic[problem_id]
 for answer in current_problem.answers:
 if answer != "HINT" and answer != "CORRECT" and current_problem.answers[answer].count >
current_problem.total_entries * 0.1:
 current_problem.answers[answer].is_common = True

at this point I have the dictionary to all common wrong answers, now, for predictions

for index, row in enumerate(data_frame[1:]):
 problem_id = row[iproblem_id]
 answer_text = row[ianswer_text].strip(" ")
 hint_count = row[ihint_count]
 correct = row[icorrect]
 user_id = row[iuser_id]
 assignment_id = row[iassignment_id]
 skill_id = row[iskill_id]

 if answer_text == "" and hint_count > 0:
 answer = "HINT"
 elif correct == "1":
 answer = "CORRECT"
 else:
 answer = answer_text

 #
 # build the prediction table using the training data
 #
 if int(user_id) % MOD_NUM != MOD_GROUP:
 if index + 2 < len(data_frame):
 #
 # current row is on experiment_data_frame[index + 1]
 #
 next_row = data_frame[index + 2]

29

 #
 # confirm that the next row is the student's next problem log in the same assignment
 #
 next_skill_id = next_row[iskill_id]
 next_assignment_id = next_row[iassignment_id]
 next_user_id = next_row[iuser_id]
 next_answer_text = next_row[ianswer_text]
 next_correct = str(next_row[icorrect]).strip(" ")

 if next_assignment_id == assignment_id and next_user_id == user_id:
 if next_correct == "1":
 problem_dic[problem_id].answers[answer].next_question_correct +=
1
 else:
 problem_dic[problem_id].answers[answer].next_question_incorrect
+= 1

get the calculation for everything

total_correct_correct = 0
total_correct_incorrect = 0
total_hint_correct = 0
total_hint_incorrect = 0
total_common_correct = 0
total_common_incorrect = 0
total_uncommon_correct = 0
total_uncommon_incorrect = 0

outfile.write("problem_id,answer_text,correctness,count\n");
cwa_outfile.write("sequence_id,problem_id,answer_text,correctness,count\n");

for problem_id in problem_dic:
 current_problem = problem_dic[problem_id]
 uncommon_next_correct = 0
 uncommon_next_incorrect = 0

 for answer in current_problem.answers:
 next_correct = current_problem.answers[answer].next_question_correct
 next_incorrect = current_problem.answers[answer].next_question_incorrect
 total_entries = next_correct + next_incorrect
 if answer == "CORRECT":
 if total_entries != 0:
 total_correct_correct += next_correct
 total_correct_incorrect += next_incorrect
 current_problem.answers[answer].prediction = float(next_correct) /
float(total_entries)
 outfile.write(problem_id + ",CORRECT," + str(float(next_correct) /
float(total_entries)) + "," + str(total_entries) + "\n")
 elif answer == "HINT":
 if total_entries != 0:
 total_hint_correct += next_correct
 total_hint_incorrect += next_incorrect

30

 current_problem.answers[answer].prediction = float(next_correct) /
float(total_entries)
 outfile.write(problem_id + ",HINT," + str(float(next_correct) /
float(total_entries)) + "," + str(total_entries) + "\n")
 elif current_problem.answers[answer].is_common:
 if total_entries != 0:
 total_common_correct += next_correct
 total_common_incorrect += next_incorrect
 current_problem.common_next_correct += next_correct
 current_problem.common_next_incorrect += next_incorrect
 current_problem.answers[answer].prediction = float(next_correct) /
float(total_entries)
 outfile.write(problem_id + ",\"" + str(answer) + "\"," + str(float(next_correct) /
float(total_entries)) + "," + str(total_entries) + "\n")

 #
 # record the common wrong answers inside an outfile
 #
 cwa_outfile.write(current_problem.sequence_id + "," + problem_id + ",\"" +
str(answer) + "\"," + str(float(next_correct) / float(total_entries)) + "," + str(total_entries) + "\n")

 else:
 uncommon_next_correct += next_correct
 uncommon_next_incorrect += next_incorrect
 total_uncommon_correct += next_correct
 total_uncommon_incorrect += next_incorrect

 if uncommon_next_correct + uncommon_next_incorrect != 0:
 if "UNCOMMON" not in current_problem.answers:
 current_problem.answers["UNCOMMON"] = ProblemAnswer("UNCOMMON", False,
False)
 current_problem.answers["UNCOMMON"].count = uncommon_next_correct +
uncommon_next_incorrect
 current_problem.answers["UNCOMMON"].prediction = float(uncommon_next_correct) /
float(uncommon_next_incorrect + uncommon_next_correct)
 current_problem.uncommon_next_correct = uncommon_next_correct
 current_problem.uncommon_next_incorrect = uncommon_next_incorrect
 outfile.write(problem_id + ",UNCOMMON," + str(float(uncommon_next_correct) /
float(uncommon_next_incorrect + uncommon_next_correct)) + "," + str(uncommon_next_correct +
uncommon_next_incorrect) + "\n")

 if uncommon_next_correct + uncommon_next_incorrect + current_problem.common_next_correct +
current_problem.common_next_incorrect != 0 :
 current_problem.wrong_answer_correct_rate = float(uncommon_next_correct +
current_problem.common_next_correct) / float(uncommon_next_correct + uncommon_next_incorrect +
current_problem.common_next_correct + current_problem.common_next_incorrect)

print out overall correctness information

uncommon_correct_percentage = float(total_uncommon_correct) / float(total_uncommon_correct +
total_uncommon_incorrect)
common_correct_percentage = float(total_common_correct) / float(total_common_correct +

31

total_common_incorrect)
hint_correct_percentage = float(total_hint_correct) / float(total_hint_correct + total_hint_incorrect)
correct_correct_percentage = float(total_correct_correct) / float(total_correct_correct + total_correct_incorrect)
print("total uncommon correct: " + str(total_uncommon_correct))
print("total uncommon: " + str(total_uncommon_correct + total_uncommon_incorrect))
print("total common correct: " + str(total_common_correct))
print("total common: " + str(total_common_correct + total_common_incorrect))
print("total correct correct:" + str(total_correct_correct))
print("total correct: " + str(total_correct_correct + total_correct_incorrect))
print("total hint correct:" + str(total_hint_correct))
print("total hint: " + str(total_hint_correct + total_hint_incorrect))
print("hint correct percentage: " + str(hint_correct_percentage))
print("uncommon correct percentage: " + str(uncommon_correct_percentage))
print("common correct percentage: " + str(common_correct_percentage))
print("correct correct percentage: " + str(correct_correct_percentage))

get the problem set that contains default ICWAs

new_selected_problem_set = getProblemSet(problem_dic, MIN_DIFFERENCE, MIN_RESPONSES)

perform calculations on this problem set

calculateResults(data_frame, new_selected_problem_set, MIN_DIFFERENCE, MIN_RESPONSES)

outfile.close()
cwa_outfile.close()
data_file.close()
matrix_outfile.close()

32

SQL Code for extracting the data set from the Assistments database:

drop table if exists temp_data cascade;

create table temp_data as
select pl.id as order_id, pl.assignment_id, pl.user_id as user_id, pl.assistment_id as assistment_id, pl.problem_id as
problem_id, pl.original as original, pl.correct, pl.attempt_count, pl.first_response_time as ms_first_response,
pl.tutor_mode, pt.name as answer_type, ca.sequence_id, ca.student_class_id, ca.position, s2.type,
case when si.copied_from is null then ca.sequence_id else si.copied_from end as base_sequence_id, ptsa.skill_id,
sk.name as skill_name, tc.teacher_id, ur.location_id as school_id, pl.hint_count, pl.start_time, pl.overlap_time,
CASE WHEN a.parent_id is null THEN pl.assistment_id ELSE a.parent_id END as template_id, pl.answer_id,
pl.answer_text, pl.first_action, pl.bottom_hint
from problem_logs pl
left outer join problems p on pl.problem_id = p.id
left outer join problem_types pt on p.problem_type_id = pt.id
left outer join class_assignments ca on pl.assignment_id = ca.id
left outer join sequences s on ca.sequence_id = s.id
left outer join sections s2 on s.head_section_id = s2.id
left outer join sequence_infos si on ca.sequence_id = si.sequence_id
left outer join problem_to_skill_associations ptsa on p.id = ptsa.problem_id
left outer join skills sk
on ptsa.skill_id = sk.id
left outer join teacher_classes tc on tc.student_class_id = ca.student_class_id
left outer join student_classes sc on sc.id = ca.student_class_id
left outer join user_roles ur on ur.user_id = pl.user_id
left outer join assistment_infos a on pl.assistment_id = a.assistment_id
where
ca.student_class_id is not null and
ur.type = 'Student' and ur.location_type = 'School'
and pl.correct is not null
and s2.type = 'MasterySection'
and ca.assignment_type_id not in (6,7)
and original = 1
and pt.id = 4
order by sk.id, pl.user_id, pl.id;

select * from temp_data where first_action = 0 or first_action = 1 order by user_id, assignment_id, order_id;

	Worcester Polytechnic Institute
	Digital WPI
	January 2015

	The Hidden Value of Common Wrong Answers
	Bohao Li
	Douglas Selent
	Repository Citation

	Bohao_Li_12_8_Paper_Submission.docx

