
Worcester Polytechnic Institute
Digital WPI

Interactive Qualifying Projects (All Years) Interactive Qualifying Projects

April 2011

The Shadow Mirror
Anton Konstantinovich Zalutsky
Worcester Polytechnic Institute

Blake Zdralewicz Reeves
Worcester Polytechnic Institute

Warranyu Walton
Worcester Polytechnic Institute

Xiaoli Ma
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/iqp-all

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Zalutsky, A. K., Reeves, B. Z., Walton, W., & Ma, X. (2011). The Shadow Mirror. Retrieved from https://digitalcommons.wpi.edu/iqp-
all/2102

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/2102?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/2102?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

THE SHADOW MIRROR
Interactive Qualifying Project Report completed in partial fulfillment

Of the Bachelor of Science degree at

Worcester Polytechnic Institute, Worcester, MA

Submitted to

Professor Rosenstock

By

 April 22, 2011

 Joshua Rosenstock

Xiaoli Ma

Blake Reeves

Warranyu Walton

Anton Zalutsky

2

Abstract
The shadow mirror project is an interactive art installation which mimics user motions and

displays them in the form of a puppet’s shadow. In order to accomplish the shadow effect, a

motion capture solution is needed alongside a puppet with a controllable motion system and

lighting effects. This piece is open to a wide range of audiences of all ages and cultures, allowing us

to achieve our goal of bringing forth a universal bond and introducing a new way of interaction

through the blending of technology and art.

3

Authorship Page

 As a whole, we worked together as a team. However, some responsibilities were divided

according to each person’s technical specialty. Xioali’s specialty is in software development. She is

mostly responsible for writing the programs in C++ and C#. Blake’s specialty is in mechanical design. He

is mostly responsible for the 3D modeling and mechanical drawings. Warranyu’s specialty is in hardware

implementation. He is mostly responsible for wiring and writing code for the microcontroller. Anton’s

specialty is in fabrication. He is mostly responsible for getting parts made and assembling them.

4

Acknowledgements
We would like to thank the Boston Museum of Science and iRobot for allowing us to attend the

2011 Robot Block Party and share our project with all those who attended. The experience was
definitely worth-while. It allowed us to understand how people interact with our project and potential
situations that can limit its performance. The event was very exciting for all of us and we all appreciate
the opportunity to participate.

We would also like to thank our advisor, Prof. Rosenstock, for helping us stay on track and
focused, not to mention notifying us of the great opportunity to show our work at the Robot Block
Party.

5

Table of Contents
Abstract ... 2

Authorship Page .. 3

Acknowledgements ... 4

List of Figures .. 6

Executive Summary ... 8

i. Introduction .. 8

ii. Methodology ... 9

a. System Overview... 9

b. Sensor Input .. 10

c. Microcontroller ... 11

d. Puppet ... 12

iii. Results ... 12

iv. Conclusions and Recommendations ... 13

1. Introduction .. 14

2. Literature Review/Background ... 16

2.1 Cultural History ... 16

2.2 Robotic Puppets .. 19

2.3 Interactive Art ... 22

3. Methodology ... 27

3.1 Physical Element ... 27

3.1.1 Puppet Chassis .. 27

3.1.2 Lighting Setup.. 29

3.2 Computer Vision System ... 30

3.2.1 Overview ... 30

3.2.2 Motion Capture ... 32

3.2.3 Data Communication .. 33

3.2.4 Data processing ... 33

3.2.5 Implementation and approaches .. 34

3.2.6 Limits and pitfalls .. 34

3.2.7 Control program class diagram ... 35

3.3 Control Systems .. 36

6

3.3.1 Scaling and Limiting the Position Coordinates .. 36

3.3.2 Translating Coordinates into Servo Angles ... 38

3.3.3 PC – Microcontroller Communication .. 39

3.3.4 Communication Diagrams ... 40

3.3.5 Translating Angle Data to PWM .. 40

3.3.6 Output Circuitry .. 41

4. Results and Discussion / Analysis .. 42

5. Conclusions ... 42

6. Recommendations .. 43

Appendices .. 45

Appendix A: Part list and cost ... 45

Appendix B: Pictures of Parts .. 46

Appendix C: Control System Code in C# ... 48

List of files ... 48

form1.cs .. 48

Appendix D: STM32 Code .. 56

Main.c ... 56

Global.h ... 60

Global.c ... 61

stm32f10x_it.c .. 68

References .. 71

List of Figures

Figure 1 The Shadow Puppet .. 8

Figure 2 High Level Overview .. 9

Figure 3 Components of Shadow Puppet ... 10

Figure 4 OpenNI allows for tracking users and understanding limb positions ... 11

Figure 5 Minuet in pink, a concert selection of Lords ”International ” .. 16

Figure 6 Puppet Involving in Education [2] ... 17

Figure 7 Chinese Piyingxi ... 17

Figure 8 The Robot in "Skeletal Reflections" .. 18

file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793221
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793224
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793225
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793226
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793227

7

Figure 9 A scene from "The Fishboy's Dream".. 21

Figure 10 Egerstedt's Puppet .. 21

Figure 11 Keng's system .. 22

Figure 12 Ghost Pole Propagator displayed on wall at Belsay Hall Castle, Newcastle, England [9] 23

Figure 13 Shadows by Simon Briggs, interacting with a person [10] .. 24

Figure 14 Wooden Mirror by Daniel Rozin, mimicking person's face [11] .. 24

Figure 15 Solidworks® Model Front View ... 27

Figure 16 Intersection Detail ... 28

Figure 17 Side Detail, Hole/Wing Feature .. 28

Figure 18 Full Shadow Puppet Display .. 29

Figure 19 Program Layout ... 31

Figure 20 Program Flow Diagram ... 32

Figure 21 Control Program Class Diagram .. 35

Figure 22 Puppet's Pulleys' labeled .. 37

Figure 23 Servo Ranges ... 38

Figure 24 Communication Line ... 40

Figure 25 Servo Driver Circuit ... 41

Figure 26 A pulley integrated onto a servo for better movements of the string attaché 46

Figure 27 Back view of the top servos mounted on the puppet frame .. 46

Figure 28 A ball representing a hand of the puppet, attached to a spring and 2 servo motors 47

Figure 29 An old Bell & Howell Project ‘N’ View 500 projector .. 47

file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793228
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793229
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793230
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793232
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793233
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793234
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793235
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793236
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793241
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793242
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793243
file:///C:/Users/Shelly/Desktop/The_Shadow_Mirror_Final_finally.docx%23_Toc291793244

8

Executive Summary

Figure 1 The Shadow Puppet

i. Introduction

The Shadow Mirror was an IQP done by four students from Worcester Polytechnic Institute. The

intended goal of this project was to create a unique art piece by utilizing the individual talents of each

team member. The concept behind this project was to create the illusion of a shadow puppet that is

controlled by a given user through the mimicking of the motions and actions of the user. The Shadow

Mirror as built consists of an Xbox Kinect1, a computer, a microcontroller, and a set of servos.

The concept of puppetry and public art goes back hundreds of centuries. Blending the past with

the technology of the future, we were able to show our generation’s implementation of something that

hundreds of years ago would have been performed out on the streets. Art and technology have always

been seen on different ends of the spectrum, but this project has shown that art and technology can

indeed work together. The synthesis of an abstract and artistic concept with a dynamic and engineered

product allows the Shadow Mirror to transform the common image of soulless robotics into a new

form of technology that can unravel emotion from people of all ages and mindsets.

1
 Kinect has a set of 3 cameras which is able to track a person in e dimensions.

[Accessed 04/28/2011] <http://www.xbox.com/en-US/kinect>

9

Sensor
Input

Computation

Actuation

ii. Methodology

a. System Overview

The Shadow Mirror is a closed looped system that

allows continuous use from different users. At any given

point a user may come into the loop of the system and will

be calibrated. At this point the system will begin its

interaction with the user and attempt to mimic his/her actions. The hierarchical system is branched into

three sections:

1. Sensor input:

A stick figure representation of the user gives relative body positions to the computer after a

configuration of the user.

2. Computation:

The computer uses positions of the hands and feet and converts them into angle positions of

servos located on the frame. The values are then sent to an off board microprocessor via serial

communication.

3. Actuation:

As the microprocessor receives joint positions, it converts them into pulse width modulation

signals which are sent out to the servos and actuated.

Figure 2 High Level Overview

10

Figure 3 Components of Shadow Puppet

b. Sensor Input

 The Xbox Kinect is a webcam-styled game controller which is used on the Xbox 360; however its

capabilities are far more versatile. Using its stereovision, infrared sensors, and a software tool called

OpenNI2, a user’s body position and relative limb positions are extrapolated in a stick form.

 The sensor system described can track multiple users; however, our application allows only one

user to be tracked at a time. In order for a user to be tracked, he/she must first go into a certain pose

and wait for the OpenNI software to calibrate. Figure 3 shows an image of multiple users being

recognized, but only user 1(labeled 1-Tracking) is tracked by Kinect by certain pose.

2
 OpenNI is Wrapper written in C++ as the interface of Kinect.

[Accessed 04/28/2011] <http://www.openni.org/>

11

Figure 4 OpenNI allows for tracking users and understanding limb positions

 The main software is built around the OpenNI software, which is the interface for the

Kinect. It is a combination of two programs. The first is a C++ program which takes the data from OpenNI

through a socket and finds the limb positions relative to the torso. The second program, written in C#,

translates this data into hand and foot positions for the puppet and calculates the necessary servo

angles. This information is then passed to the microcontroller via a serial connection.

c. Microcontroller

 The microcontroller is used to translate the data from the laptop to PWM signals that control

each of the eight servos. The microcontroller used is the STM32VL-Discovery development board3. Data

from the computer giving the positions for each servo is passed to the microcontroller via a serial

communication line. This data is processed and converted into PWM signals which are sent to eight

separate servos located on the puppet’s frame.

3
 The product information can be found from the site below.

 [Accessed 04/28/2011] < http://www.st.com/internet/evalboard/product/250863.jsp>

12

d. Puppet

 The puppet consists of a puppet, frame, and eight servo motors. The frame and servos act as

the actual puppeteer. The eight servos control the motions of four balls which represent hands and feet

of the puppet while the head and body of the puppet remain stationary. The puppet frame and puppet

were designed out of acrylic because it was financially feasible and readily available. To make relocating

the project simple, the frame can be split the off into two sections for ease of transportation. For

stability, a large base was made to prevent unwanted forces and to keep it stable. This design was

manufactured using a laser cutter.

iii. Results

As a user steps out in front of the Shadow Mirror, he or she must move into the required pose

for calibration. After a few seconds, the shadow upon the screen comes alive. The lifting of the arm

causes the shadow of a circle representing the hand to rise up as well. There is some delay and the

speed is often slower than the user, but it follows the user’s hand nonetheless. The total range of

movement for each limb is limited to certain areas. For example, the Shadow Mirror cannot cross its

arm over to the other side of the body. But even with its limitations the Shadow Mirror is still an

enjoyable display to play around with.

From the experience at the Boston Museum of Science Robot Block Party, we find that people

were drawn towards the Shadow Puppet, especially kids. As a small crowd looked on while they were

waiting their turn to control the puppet, one could see the awe and sense of wonder at the moving

shadow. A once dying art form had been renewed and merged with modern day technology. Many

young kids who have never seen a real shadow puppet got to experience shadow puppetry in a

completely new light. The Shadow Mirror also created a new way of interacting with and controlling a

13

shadow puppet. Whereas historically puppets were controlled by hand movements, the Shadow Mirror

allows the user to control it with their entire body. This also allows for the user to express his or her

individual creativity through the controlling of the puppet. The shared experience between the audience

members promoted conversation between complete strangers and created sense of community.

iv. Conclusions and Recommendations

Overall, the Shadow Mirror accomplished its goals successfully. However, even though the

results were satisfactory, there are improvements that could be made to enhance the system. One

possible improvement would be to add a function where the puppet would perform its own actions to

give life and personality to itself. Other improvements include more precise tracking, a puppet frame

that allows for three dimensional movements with wider range, and a faster response time for the

puppet. We believe that with these improvements, the Shadow Mirror will draw in even more people

and perhaps even inspire others to explore the possibilities of the technology and make their own.

14

1. Introduction

Throughout history, public art has played a large role in the lives of people from all backgrounds.

From the ancient Roman sculptures that decorated palaces and temples to the floating lanterns flown

by thousands of Chinese as part of cultural festivals, the display of public art has been something that

has enriched the lives of people for millennia. One of the earliest forms of public art that had a

significant influence on the lives of people is puppetry. Puppetry has been around for hundreds of years

and has served the role of being a medium for the art of storytelling. One of the reasons why puppetry

was especially appealing to people compared to other forms of public art is its deep involvement with its

audience. Whereas most traditional forms of art such as paintings, sculptures, and music only involved

the passive observation of the artwork to convey its commemorative or decorative meaning, puppetry

was the beginning of a new interpretation of art. Along with theatre, puppetry reacts and adapts to the

mood and interests of the audience, allowing the audience to influence the performance of the artwork.

From that point on, a new form of art was born. This form of art is called interactive art, as it emphasizes

the involvement of the participants in conveying its artistic message.

Puppets interact with both puppeteer and audience by means of controlling and feedback. By

giving life to puppets through manipulating various motions, puppeteers express their inner feelings and

present their form of art in a unique way. Audiences could communicate with the puppeteers through

puppets, disregarding the estrangement between people, introducing a new medium of communication.

Although puppetry and theatre has existed for thousands of years, the beginnings of a new form

of interactive art began with the synthesis of traditional interactive art and robotic art. In the 1960’s

with the development of electronic control systems, the first generation of robotic art was born. As

robots came into use in industrial production systems, artists took notice of these new inventions and

explored the possibility of expanding the horizon of art by using these new machines as a medium for

their work. [1] Paik and Abe’s Kochel’s number 456, a “20-channel remote-controlled anthropomorphic

15

robot”, is a good example of this early form of robotic art. As technology became more and more

sophisticated, the possibilities of more intricate control of machinery became possible. Within the last

few decades, technology reached a certain point where it was possible for machines to mimic certain

human movements. This has inspired artists to begin to rethink and recreate older art forms like

puppetry, fusing together modern robotic art with a traditional interactive art. Drawing from that

inspiration, we have decided to take the robotic puppetry idea further and create a whole new

interpretation for this new art form, the Shadow Mirror.

The Shadow Mirror is a new kind of robot that draws from the ancient traditions of shadow

puppetry while combining modern interactive technology.. It consists of a translucent wall on which the

shadow is projected. The puppet itself is a small, electronically controlled two dimensional figure with a

high intensity Bell & Howell projector behind it. Like the careful observation of the puppeteer, an Xbox

Kinect is mounted to monitor the actions of the audience and mimic them in ways that give life to the

shadow puppet. In this way, the audience can interact with and become more connected to the art

piece. The puppet’s goals of inspiring and expressing emotion within the audience are enhanced with

the life size shadow the puppet casts. This allows the user to feel and believe that the puppet is more

human than it actually is, while still featuring a friendly cartoon-like shape. The mystique of the shadow

only deepens the connection as the audience questions how the shadow is actually cast. As the

audience peers around the screen to see plastic and electronic parts connected through a computer,

they realize that technology acts as a medium for which humans can see the robot as a non-threatening

and comforting human-like entity.

The shadow mirror project will change the perception of art and technology by showing that

technology doesn’t necessarily have to be for utilitarian purposes. Rather, it can be used as an artistic

medium through which people can express themselves. Being an easily movable display, the shadow

mirror will provide shared experience to a wide range of people by being on display in multiple places.

16

Since the shadow mirror can interact with more than just one person, it can bring individual audience

members together by interacting with all of them at the same time. All in all, the shadow mirror will

provide and uplifting, creative, and fun atmosphere for people from all demographic areas.

By creating the shadow mirror, we want to achieve the goal of embracing shared experience

between people, blurring the division of technology and art, promoting friendship through

collaboration, and introducing an innovative way of interacting. As an opportunity to practice our

expertise, the project itself provides us a platform of creating and learning as well. As a free-choice and

open-ended project, the Shadow Mirror drives us to always look for the possibility of discovering more.

From the aspect of working with peers from different fields, the project helps us better understand our

professional and ethical responsibilities, and promote better communication among colleagues.

2. Literature Review/Background

2.1 Cultural History

Puppetry has been an ancient form of art in many cultures for more than 2000 years. Although its

origins are unknown, puppetry has been widely used in different purposes. Many countries have

implementations of shadow

puppets, like Indonesia, India,

Malaysia, Thailand, France, Turkey,

etc. A broad classification of

puppets would include hand

puppet, marionette, rod puppet

and shadow puppets.

The survival of this art form is

due to man’s fascination with the inanimate object animated in a dramatic manner (Figure 6).[2] The

Figure 5 Minuet in pink, a concert selection of Lords ”International ”

17

hand puppet is simply the shadow

of a performer’s hands projected to

a screen, which figures are made by

utilizing different distances of the

light source. A marionette is the

wooden puppet, controlled by

puppeteers with strings. The puppeteer gives voice to the marionette through performing various

movements and express feelings to audience. A famous example of marionette is Pinocchio. The rod

puppet is similar to marionettes, but controlled with rods from either below or above. Shadow puppets

are usually flat cut-out figures manipulated by rods behind the screen.

Puppets have been employed in all purposes including entertainment, education, advertisement,

religion, etc. As an intuitive and vivid educational tool, puppets always interact with children in different

ways. (Figure 7) In a similar manner,

puppets also have been involved in

religious teaching, propaganda and

other approaches.

Being a business, one story of its

rise and fall could be told from the

point of view of puppeteers struggling

to make a living through shifting patterns of wage labor and cost of living and the growing

entertainment industry.[3] Puppet plays were performed on the street amongst poor people while the

dominating class disregards puppetry in the early ages. Once as a popular entertainment, puppet shows

Figure 6 Puppet Involving in Education
[2]

Figure 7 Chinese Piyingxi

18

were held at home amongst working-class to complement low wages. Family members usually assisted.

This form of home-based puppetry represented an early commercialized leisure time activity for the

working class.[4] The performing of puppets is usually accompanied with music, scene setting, story and

sound. Long since, shadow puppet shows are popular entertainment for families, spreading to all

classes, ages and cultures. Theaters are frequently visited for numerous shows by families, which has

great influence on public social entertainment. An example is Chinese Piyingxi, which is a popular

traditional shadow puppet show that plays in theater, home or street. The figures are cut-out from

leather with detailed motions and facial expressions. Puppets are controlled by puppeteer from behind

a translucent screen with strings. To carry out the precision of motions and expression, the controlling

strings could have as many as more than 20. Color can be introduced into the cut-out shapes to provide

a different dimension and different effects can be achieved by

moving the puppet or light source out of focus. Characters may

speak or sing through the performance, expressing variable

feelings and characteristics. A story could be as long as hundred

years, and each puppeteer could control one or more figures.

With the puppeteer’s superb skills, the puppet can precisely

mimic human motions. Puppetry may be accessed and enjoyed

by people regardless of classes, ages and cultures (Figure 8).

The performance of a shadow play could also be in various

forms, such as a silent movie, characters with performers

speaking or singing, or with music and sound. One form of

shadow puppetry, hand shadow puppet play, needs only a light

source and a display screen. The performer mimics animals,

people and all kinds of image with their hands. With the light

Figure 8 The Robot in "Skeletal Reflections"

19

source in front, the shadow projected on the screen could be controlled, and taking advantage of

different distances, various effects could be achieved.

Regardless of different genres of puppetry, it is widely enjoyed by people with various cultural

backgrounds over human history. Diversified usages and purposes are achieved by all approaches.

Puppetry emphasizes the sense of art by creating dramas with puppets, with the puppet itself

expressing the puppeteers’ artistry.

2.2 Robotic Puppets

Ask someone to describe what a puppet is and most likely they will tell you that it is some kind

of figure that is controlled by the hands of a puppeteer. For more than a millennium this has been the

definition of puppetry. As technology has progressed, more and more complex mechanical methods are

employed in controlling a puppet; but even with the most sophisticated mechanical constructs, puppets

remain, for the most part, limited to interacting whilst there is a puppeteer controlling it. However, with

the invention of the computer and powerful microcontrollers, the puppet is now capable of being

controlled by a different kind of puppeteer -- computer programs. Instead of muscles moving rods or

strings that control the limbs of a puppet, the puppet is now controlled via electromechanical actuators.

With the use of the computer, the puppeteer now has the option to have the puppet become

autonomous in its performance. It is important, however, to distinguish that robotic puppetry is not

merely a robot. Rather, it is the use of robots as the actors in a performance, just as marionettes or

shadow puppets are the actors in a performance.

Though the idea of using robotics as a means of controlling puppets is in its infantile stages

compared to the entire history of puppetry, it is catching on as a new way for artists who are interested

in technology to combine the ancient art of puppetry with the recent developments in technology.

Robotic puppetry is also catching the attention of more traditional technology developers and

academics that are looking to apply their understanding in a creative manner. Of the artist camp, the

20

works of both Chico MacMurtrie and Survival Research Labs stands out as ones that creatively employs

this concept of robotic puppetry. Of the technological developers’ camp, Magnus Egerstedt’s study of

the control of autonomous puppets and Tay Boon Keng, Raymond, and Stefan Künzler’s “Robotic

Marionette Systems” provide the technical detail of robotic puppetry systems.

Chico MacMurtrie is a well-known artist who specializes in robotics as a medium for his artistic

expression. Since he began creating his art in 1989, he has “exhibited in more than 20 countries

worldwide, receiving support from more than 15 national, local, and international granting agencies,

and 30 corporate sponsors”.[5] Skeletal Reflections, one of MacMurtrie’s earlier works, is a complete

robotic skeleton that responds to human interaction. Using a motion capture system, the art piece

analyzes the viewer’s body position, compares it to a database of twenty poses from classical art pieces,

and goes into the pose which is most similar to the viewer’s body position. To translate MacMurtire’s

work back into traditional puppetry, Skeletal Reflections is like a performance where a puppeteer who,

upon looking at the viewer, recognizes the body position of the viewer and manipulates his puppet into

a well-known classical pose. Though it may seem an easy task for a human puppeteer, it is an incredibly

complex task for an automated computer.

21

Of less automated, but equally robotic

performances are the performances of the artists

of Survival Research Labs. Though perhaps not as

recognizable as MacMurtrie’s work as being a form

of puppetry, the work is a performance of

individual robotic “puppets”. In a particular performance called “The Fishboy’s Dream” in January of

2006, remote controlled robots called the “Sneaky Soldiers” were employed in a war scene surrounded

by fire and explosions. During this performance, the clear raw violence of human nature is shown,

surprisingly, with no humans in the scene. Each of the eight robots was drawn into a chaotic battle and

as a result, suffered distinct “wounds”. The work also featured other

robotic pieces involved in the story. [6]

Of the scientific camp, Magnus Egerstedt’s papers “Optimization of

Multi-Agent Motion Programs with Applications to Robotic Marionettes”

and “Optimal Timing Control of Interconnected, Switched Systems with

Applications to Robotic Marionettes” provides insights into some of the

reasons why scientists and technologists pursue the goal of controlling

something as simple as a puppet. It turns out that, beyond the superficial

glance, controlling the movement of a puppet with a high level of abstraction is a very complex task.

Each high level description of the puppet’s action must be broken down into small steps with

information on the “characteristics, duration, and intensity”. [7] This requires heavy computation under

the study of control systems and multiple layers of software abstraction. Though the main purpose of

the studies is to analyze the methodology of implementing control systems, the use of robotic puppets

Figure 9 A scene from "The Fishboy's Dream"

Figure 10 Egerstedt's Puppet

22

in this area is still a solid example of how the idea of controlling puppets with robotic systems is gaining

popularity.

Yet another example of scientific research on robotic puppetry is Tay

Boon Keng, Raymond, and Stefan Künzler’s “Robotic Marionette

Systems”. The main objective of the study was to create a complete

robotic marionette control system. The intent of the study was not so

much the exploration of control systems for its own sake, but more for

the actual implementation of robotic puppetry systems. According to

their research objectives, the “advantages of the robotized system are accuracy, repeatability and new

variety of the marionette movements compared with manual operated marionettes” [sic]. [8] They also

included that these systems will become a new and relevant art form since people will derive different

meanings from a robotic puppet performance rather than a traditional one.

2.3 Interactive Art

Interactive media has been a revolutionary new interpretation of art in recent years. Its ability to

morph and change based on given inputs allows for unique artistic experiences unlike those of normal

stationary art pieces. This unique characteristic creates a new dimension to the piece which, in many

cases, involves its surroundings and creates a much stronger bond with its viewers by making them or

their environment a key part of the artwork. With this new interactive dimension introduced, a whole

new outlet has been opened up to create unique forms of group and individual artistic expressions

which can be manipulated by passers-by.

There are numerous ways to incorporate or interpret the theme of interactive art. The kind of

interaction the viewers and environment have with the art is completely up to the artists themselves.

Figure 11 Keng's system

23

This means pieces can range from kinematic movements on the part of the users to sounds emitted

from the environment to shadows cast by people walking past. The possibilities are endless. All over the

world artists are utilizing various technologies that are available to them to create these unique outlooks

and experiences for art-appreciators. Some examples include exhibits that capture and record user

actions and interpret them into an alternate visual form to be reproduced in a unique perspective such

as stick figures or wooden pieces. Other examples have created unique ways to utilize light, shadow, and

in one case a person’s own heartbeat to interact with an artificial intelligence.

In 2007 in Newcastle, England, an artist by the name of Golan Levin made an interactive piece inside

the Belsey Hall Castle called Ghost Pole Propagator. In this piece, a motion detector capable of tracking

the movements of each person in the room records the actions of the viewers and translates them into

stick figures. In Figure 12, one can see how these stick figures and their motions are then projected on

the dark dingy stone walls of the castle to represent a sort of modern-day cave painting that projects the

recordings of events that took place at the site. [9]

Figure 12 Ghost Pole Propagator displayed on wall at Belsay Hall Castle, Newcastle, England
 [9]

24

Another artist by the name of Simon Biggs simulated figures in his project “Shadows” which were

projected on a wall as well, but instead of recording people’s actions he had computer-generated man

and woman figures which reacted to their

surroundings. These figures were depicted

without clothes so one could easily tell the

difference between the males and females. As

viewers would pass by, their shadow would be

projected onto the screen which would

eventually collide with the placement of one of

the virtual people. A photo of the general area

is shown in Figure 13. [10]

Whenever touched by a real person’s shadow, the virtual figure would react to the collision and

walk away. In addition, when one’s shadow collides with the figure, it would change its identity and

more so, if the right side of the figure is where the collision occurs the figure will change its gender. This

unique artistic expression can be deciphered into several possible interpretations which in itself creates

a unique thinking experience for the users.
[11]

Another form of interactive art is a

distinctive skew on normal video capture.

Daniel Rozin created the “Wooden Mirror” in

1999. At first glance it just appears to be a

bunch of small wooden squares in a picture

frame hanging on a wall, but as one steps

nearer each wood tile tilts in angle to

effectively change color through the use of

Figure 13 Shadows by Simon Briggs, interacting with a person
[10]

Figure 14 Wooden Mirror by Daniel Rozin, mimicking person's face
[11]

25

shadows to mimic a TV screen, as shown in Figure 14.[11]

This inspiring piece looks at a seemingly normal media and transforms it into a canvas for anyone to

enjoy. The way Rozin creatively re-imagines the canvas is spectacular and captures the main goal of

interactive art fully. He draws viewers in and makes them the art but does it in a way that not many

people would think of, thus creating grounds for provoking new outlooks on certain media and the way

it can be used.

One other interesting form of interactive art is the manipulation of virtual reality through the use of

user inputs. A group of art students from Israel made a piece called “Heartbeats” in 2006 which

consisted of four pillars surrounding a projected circle on the floor. In this circle there were four virtual

people in the fetal position and when a user walked up to a pillar and placed his or her hands on it a

heartbeat-monitoring device would sense their presence and bring the corresponding virtual person to

life. Based on the user’s heartbeat the person would travel around the circle at different speeds. The

different users could team up and try to get their virtual people to intersect one another’s path which

would trigger an interesting dance sequence and restart the positions. This design is very interesting

because it involves team work and gathering strangers to accomplish a goal, thus involving the viewers

in the art thoroughly.

David Rockeby is a well-known artist who investigated the four main iterations of interactive art that

have been developed throughout its history. In his article Transforming Mirrors [12] he explains how

interactive art is like looking into a mirror, but the artwork that comes out of it is a different form of

refraction that the user can interpret. The four main methods he targeted were Navigation, Media,

Mirror, and Automata. Navigation is a piece that requires the user to walk through a place and interact

with its environment. The Media method allows the audience to express themselves through a new

medium, whether it be digital, mechanical or something else. Mirror allows the user to see themselves

or a silhouette within a digital media and interact in the virtual world. Finally, Automata are the

26

interaction between the users and an AI. Each of these styles all still create a new way to look at art and

incorporate the user as a key part to a unique new medium. In our project we try to encompass all of

these key methods laid out by Rockeby to create as many perspectives of interaction possible for the

users.

It is clear to see that there are infinitely many ways to go about creating and interpreting interactive

art and involving the user. It all depends on the audiences one wishes to target and how involved in the

art they want them to be. Interactive art doesn’t only have to be interaction with the art and users but

can span to the surrounding environment including sounds, light, and anything else naturally occurring.

The possibilities are endless.

27

3. Methodology

3.1 Physical Element

3.1.1 Puppet Chassis

 The main structure was designed to serve as a chassis for both the puppet as well as mounting

supports for the servo motors. Each limb of the puppet was intended to be controlled utilizing two servo

motors and a spring to allow for more fluid movement. As a result, a frame-like structure was designed

to surround the puppet. The entire design was made to be simple to assemble and strong, so each piece

was made into a two dimensional profile that was easy to cut using a laser cutter.

The frame features a top shelf which is used to support the four top servos. Side wings mount

the remaining servos, while the center guide is the fixture for the puppet body (Figure 15). The entire

frame structure is made out of clear acrylic plastic to ensure the frame would not interfere with the

casting of the shadow and still have the strength to support the internal tensile forces involved. It is held

together using a combination of bolted brackets, acrylic glue, and a unique puzzle-like assembly design

which can be seen at the intersecting pieces in Figure 16.

Figure 15 Solidworks® Model Front View

28

To increase the precision of the

shadow placement, a central guide was

designed for the puppet. This guide

prevents the movement of the puppet

in the X and Y directions and minimizes

its movement to less than an inch in the

Z direction. This reduces stress in

certain puppet positions. By making the puppet body out of acrylic and implementing a simple mounting

bracket on the back of the puppet, it was able to travel on the guide like tracks.

Side wings were made to offset the side

servos from the main chassis, which served several

purposes. On each servo mounted is a pulley used to

wind up or release a string controlling a limb. The

side wings ensure that these pulleys would not

interfere with the shadow. If the pulleys were

mounted on the main inner frame, they would have a

prominent impact on the overall display and the

mystique of the shadow would be minimized. Another important use for the wings was to allow the

position of the string location to be limited to a certain location. In Figure 17, one can see that two holes

are cut into the main inner frame on both sides; these holes are where the strings are fed through,

connecting the limbs of the puppet to their corresponding servo motors. This is essential for the

calculations of limb position because it limits the string position to one given point and eliminates the

need to compensate for inaccuracies caused by the exact position the string may be on the pulley.

Figure 16 Intersection Detail

Figure 17 Side Detail, Hole/Wing Feature

29

The top shelf was designed as a simple rectangular plate for a variety of reasons: first of which

was to allow for easy replacement if a different material than acrylic would be necessary. The ability to

remove the shelf and replace it later was a useful feature for assembly and transportation as well, as it

allows for the installation of the servos separately. Finally, because it was essentially an empty shelf, the

orientation and positioning of the servos was given much greater freedom, allowing modifications to be

made to optimize how the system could work.

3.1.2 Lighting Setup

 Several tests were done in order to find the optimum lighting source and orientation for the

shadow display. The final setup consisted of a vintage Bell & Howell “Project ‘n View 500” projector as a

light source mounted about four feet behind the puppet, and a screen4 with wax paper-like inserts

mounted about 6 feet in front of the puppet (Figure 18).

Figure 18 Full Shadow Puppet Display

4
 A Japanese Byōbu style folding screen with 3 panels.

30

 Many light sources were tested in order to accomplish the best shadow and it was determined

that a projector would be the best choice. Projectors have the characteristic of a clean and focused light,

which displays a very crisp shadow outline. Other lamps such as flood lights and work lights were initially

preferred, but the reflecting plates used in those styles tended to skew and distort the shadow too

much to view correctly. Those lamps also tend to exude a large amount of heat, which could lead to

several complications after long exposure. Using an old slide projector we were able to minimize cost,

heat emanated, and keep a crisper shadow image

 A Japanese Byobu style screen was chosen as the best option for a surface to project the

shadow on. There was one available to the project and it had the feature of being able to stand on its

own, not to mention being the correct size and visually attractive. The other option was to use a plain

white shower curtain, but a stand or display would have needed to be constructed in order to use it

properly. Due to time constraints, it was not feasible to create this stand. The best choice was to go with

the screen, which proved to work very well according to several people who tested the project when it

was on display at the Boston Museum of Science.

3.2 Computer Vision System

3.2.1 Overview

The Software system consists of two separate sets of software. The first is for the Kinect to

capture and collect user position data. The second is the visual puppet and servo control system

software. The visual puppet software is a window with six pictureBox5 objects representing hands, feet,

head and body. The hands and feet pictureBox objects mimic the user by moving to new positions. A

timer and a serial port are set up to receive data and to control communications. The visual puppet

window is shown in the figure below (Figure 19).

5
 A pictureBox is a standard picture container in C# form development.

31

Figure 19 Program Layout

 The Microsoft Kinect is the main component the vision system. The two software systems

stream data in a client-server mode. The Kinect vision system, building on top of OpenNI, enables us to

keep track of the positions of user’s hands and feet in real time and processes data to be sent to the

control system. The control system receives data in periodic intervals controlled by a timer.. Data is

received and processed with each tick of the timer. Processed data is then sent to the corresponding

control block which updates the positions of the pictureBoxes. These positions will is then used to

calculate the angles for the servos. Finally, the angle values are outputted via the serial port.

The program flows from the vision system software to the visual puppet software, which then

parses raw data and navigate to distinct control blocks. Each control block further processes data, and

flows through the common serial port to the microcontroller. A program flow diagram can be seen in

the figure below (Figure 20).

32

Control Program Kinect Vision

Client Host

Socket Socket

Bind to itself, open
for a connection

Connect to host

Data Collection
and Processing

Data

Parse NULL

Left foot Right footLeft hand
Right
hand

Left Hand Right hand Left foot Right foot

Else

Listen to socket

ServoE ServoF ServoA ServoB ServoG ServoH ServoC ServoD

SendToServo SendToServo SendToServo SendToServo

BlackBox Control
Panel

Serial Port

Figure 20 Program Flow Diagram

3.2.2 Motion Capture

 Utilizing the Kinect’s ability of recognizing and tracking people, a user could be recognized in a

certain pose in front of the camera. Twenty nodes representing different body parts can then be

tracked, with each node outputting its coordinate values. A depth map of a user and the background will

be drawn after the program is activated, and a skeleton in solid line is drawn after a user is tracked. As

for our project, only the positions of hands, feet, and torso are needed. The difference between a hand

or foot and the torso is calculated in three dimensions and tagged with a name representing the limb

associated with that node. It is then formatted for communication to the control software system. Every

position is updated each time the Kinect captures input.

33

 As the program starts up, a TCP socket6 is created. It then waits for a client to connect to it, in

this case the control software. The control software also initiates a socket to connect to the host on start

up. After a connection is set up, the Kinect will be ready to capture. A user is detected by the program

when they are in range and in the correct pose.

3.2.3 Data Communication

 A TCP socket is used for secure data transfer and connection. There is exactly one host function

at a time, and exactly one client connects to the host. A unicast is set up from the vision system, which

is written in C++, to the control system written in C#. This guarantees that the data stream is isolated

and will not be interrupted. The one way streaming of data from the vision program is sent in the form

“x_dist,y_dist,z_dist, node_name,” all in floating point. The same format of the receiving package is set

from the control system. A parse mechanism is used to organize the data into a structure form.

3.2.4 Data processing

 On receiving on the control system end, parsing would take the name, truncate data to integers,

and drop the z dimension for our 2-D system. The program then directs to the corresponding control

block for further functions. For each pictureBox representing either one of the hands or feet, a new

position will be calculated from the given distance to the pictureBox representing the torso. Each of the

control blocks in the program positions the corresponding pictureBox while sending the servo angle

values that moves the actual puppet to the same position. Each servo motor could turn from 0: to 180:

degrees, so a conversion from distance to angle is needed. The degrees to turn is calculated based on

the information of distance to move, motor position , as well as dimensions of the pulley system

assisting movements.

6
 A TCP socket enables a secure communication between 2 programs by binding to a port

34

3.2.5 Implementation and approaches

 C# is an object oriented and event triggered language. It also supports serial port

communication in a simple and accessible way. The C# network library supports the communication

with the Kinect program in a user friendly form. This type of development environment suits well to our

visual puppet system. Furthermore, its serial port communication allows the integration of both

software and hardware. Our first approach was actually to implement the program in Java with the

Swing library. However, the serial port library for a 32 bit machine running Windows 7 is no longer

supported. This blocked the integration of software and hardware systems. The second approach was

done in C#, with mouse triggered movements, which was later replaced with input from the Kinect. A

recording and replay system that allows users to record a sequence of movements and play it back

afterwards was also developed and tested. A simple implementation of writing and reading file

operations was approached and tested for the second build and also the final build.

3.2.6 Limits and pitfalls

 The Kinect’s capturing ability is limited by light intensity, noise, color pattern of the room, and

clothing. Users may not be recognized if they are standing still when the program starts, since the Kinect

tends to recognize human body movement better than stationary persons. After a user is recognized,

sometimes the software may not be able to track all the nodes. Loose fitting clothing is a good example

for this. In order to draw the skeleton by nodes any objects with bright colors were considered a

potential user and asked for pose.

 When a user is tracked, overlapping of body parts may cause the software to lose track of limbs,

and the corresponding data will not be collected. Fast moving limbs may cause lag in figure and skeleton

updates. Different poses such as turning to the side bending over, or twisting may cause distortion of

the skeleton drawing. The according data collected would be corrupted and dropped.

35

 The timer in the control system is set to run at 10 milliseconds, and it is updated 100 frames per

second, whereas the Kinect captures at 33 frames per second. Assuming that the network is always

secured and the TCP socket will never drop any data, the program is actually updating faster than the

Kinect. Null data retrieval is expected but the performance is guaranteed to be fluid enough for human

eyes. Although the PictureBoxes may move out of the working window, the range of puppet movement

is fairly limited. A software method to account for the physical limitations is implemented and will be

discussed later.

3.2.7 Control program class diagram

Fields Methods

Form

Shadow_Puppet

Inherits

TCPClient clientSocket

NetworkStream stm

Servo
ServoA
ServoB
ServoC
ServoD
ServoE
ServoF
ServoG
ServoH

Timer Timer1

SerialPort1SerialPort

Timer_tick(obj, envent) Ticks and retrieves data from
host

From_load
Set up TCP socket with
host

GetAngle_ServoA
GetAngle_ServoB
GetAngle_ServoC
GetAngle_ServoD
GetAngle_ServoE
GetAngle_ServoF
GetAngle_ServoG
GetAngle_ServoH

Calculates the angle to
turn of corresponding
servo motor based on
distance to move

Send(String cmd)

Sends the commands in
plain string in format
“A150” for
corresponding servo
and angle in 3 digits

Parse(Pkt package) Parse the raw data from
network and directs to
control blocks
accordingly

Figure 21 Control Program Class Diagram

36

3.3 Control Systems

3.3.1 Scaling and Limiting the Position Coordinates

 During the transfer of data from OpenNI to the visual puppet control program, the data is

passed through the vision system software that performs some preliminary calculations and regulates

the data stream. While in this process, the vision system scales the X and Y coordinates such that the

position coordinate of each limb responds better given the window dimensions of the visual puppet

program. From experimentation, a scale value of 3.125 provides the best mapping from the Kinect world

to the visual puppet world. Once this is done, the difference between the position of each limb and the

torso is calculated. For each of the four limbs denoted rh, rf, lh, and lf, the difference between the limb

and the torso is sent in this format: ∆X, ∆Y, ∆Z, name. For example, “233, 15, 400, lh” would correspond

to a positional difference from the left hand to the torso of 233 pixels in the X direction, 15 pixels in the

Y direction, and 400 pixels in the Z direction.

 The vision system then transfers this data string over a socket port. Data is taken in by the visual

puppet program via a timer function. Every 10ms, the program reads the incoming data and parses

them. The name of the limb and the X, Y, and Z values are stored in a structure variable (Z is not used).

Once parsed, the timer function performs all calculations and outputs the data over the serial port. At

this point, the program waits until the timer function is called again 10 ms after it was called previously.

 Regardless of the input data from the Kinect™, there are physical boundaries where the system

will not be able to match the physical piece of the puppet to the location of the limb that is received. In

order to understand the limitations, the mapping of the physical system to the pixel representation

must first be explained. The physical dimensions of the box, 16” x 17.5”, are translated into pixels by a

scale factor of 40. This gives a working window of 640 x 700 pixels. The physical locations of the center

37

of the servo axis (with the exception of the servos on the sides, where the locations of the holes where

the string comes through is used instead) are also located and stored as points on the working window.

Each of the servos is labeled as follows:

The distance from the position of the limb (a point whose coordinates depend upon the input

from the Kinect™) to the corresponding servos is calculated via the Pythagorean Theorem. The problem

comes in when the total distance to be traveled is greater than the servos can physically allow, which is

πR or 4.320” for a pulley radius of 1.375”. The result is that the position of the limb must be limited

within a certain range. Figure 23 shows the allowable range which the puppet limb can actually move.

Figure 22 Puppet's Pulleys' labeled

38

Each servo has an offset of

a certain distance to push the

allowable area further inwards

towards the center. However, this

also means that the distance from

the limb to the servo cannot be

less than the offset distance. Only

the overlapping area between

both servos’ ranges is a valid area

to put the corresponding puppet

limb in. Any commands to do otherwise will cause a high current draw in the servo that is trying to pull a

fully extended string. In order to avoid this, a simple if-then statement is used to determine the validity

of the location of the limb. Basically, if the position requires either of the two associated servos to go

beyond 180 degrees, the signal to the microcontroller is not sent.

Lastly there is the problem of gravity. Since the servos only work by winding and releasing the

string, the area above the direct line between the servo pair is off limits; it would require a spring pulling

the puppet limb from the opposite direction. This is easily corrected by another if-then statement where

if the Y location of the limb would be less than the Y value of the line for the given limb’s X value, the

program ignores this input and waits for another input.

3.3.2 Translating Coordinates into Servo Angles

As mentioned previously, in order to get the appropriate servo angles for the puppet to be in

the correct position, the distance of from the virtual limb to the associated servo pairs must first be

calculated. This calculation must also subtract the offset string length used to put the puppet limb in a

Figure 23 Servo Ranges

39

desired position. The result is the actual length of string that the servo’s pulley must release. The

calculation follows this formula:

 √

Once the length required for each of the two servos is calculated, the angle can be easily obtained using

the following equation:

 (

)

Because of the different physical orientation, servos B, E, F, and H must output the calculated angle’s

supplement (180 – angle).

3.3.3 PC – Microcontroller Communication

When the calculations for the two servo angles associated with the given limb are finished the results

are stored in two integer variables. The program now evaluates whether either of the angles are greater

than 180 degrees. If not, it prints an ASCII string like “D035”, where D is a character representing the

associated servo, and the next three digits represent the angle value the servo needs to position itself

to. The output uses a USB based virtual COM port communicating at 4800 baud. Essentially, the program

is sending a serial command every 10ms. The USB to RS232 device used is the ET-USB/RS232 Mini from

ETT.co.ltd7. This device is used because it was readily at hand. The signal is then sent through a

transistor inverter before going into the microcontroller input.

7
 The software can be downloaded from this site

[Accessed 04/28/2011] <http://et-usb-rs232-mini.software.informer.com/2.0/>

40

3.3.4 Communication Diagrams

3.3.5 Translating Angle Data to PWM

The microcontroller used is an STM32F100RB on a STM32VL-Discovery development board. This

controller was picked because of its low cost, speed, and the number of available timers. When data is

sent to the microcontroller input, an interrupt condition occurs and the interrupt service routine takes in

all the data and stores it for processing. When the interrupt is finished, the main program parses the

data and then calls a function to output the data.

In order to create PWM8 outputs, each of the timers need to be configured. Eight PWM outputs

can be obtained from Timer 1 and Timer 2, since both the timers have 4 Capture/Compare registers. To

set the Timer configurations, the STM32 Standard Peripheral Library is used. First, the timer is set to run

at 1MHz. With the period value set to 20000 counts, the output frequency is set to 1000000/20000 =

50Hz. This is the standard servo frequency. Note that the system is actually working at 100Hz since the

update rate from the computer is every 10ms. The original design was for 20ms, but from actual testing,

the servos can run at 100Hz. The timer is set to an up counting mode where the output is high until the

count reaches the value in the Capture/Compare register. At this point the output is low again until the

timer reaches its entire period of 20ms, or in this case, until the Capture/Compare register is updated

8
 PWM stands for pulse-width modulation

Figure 24 Communication Line

41

again after 10ms. Since the clock is running at 1MHz, each value in the Capture/Compare register

corresponds to 1 µs.

 When the function to output the data is called, it converts the angle to a number corresponding

to the number of microseconds that the output pulse width needs to be. From the servo data and test

trials, the pulse width for 0 degrees is 556 µs and the pulse width for 180 degrees is 2500 µs. From this

we can create the equation below for a linear conversion:

After the pulse width is obtained, the Capture/Compare register is updated with this new value and the

Timer automatically updates its PWM output, which is linked directly to an output pin via GPIO settings.

3.3.6 Output Circuitry

Figure 25 Servo Driver Circuit

42

4. Results and Discussion / Analysis

The Shadow Mirror is expected to recognize a user, track his or her actions, update visual puppet

movement, and control the physical puppet. At the Boston Museum of Science we set up the display

adjacent to a walking area. The space behind the user is a flat wall, which gave the motion capturing

better performance and precision. We posed as users to interact with the shadow puppet and drew the

attention of visitors to discover its capabilities. Numerous visitors stopped by and interacted with our

shadow puppet and gave us feedback to help us understand more about the interactive experience.

 Meanwhile, we also found potential problems and limits in the actual implementation of the

motion tracking. For example, smaller children seemed to be more difficult to track because the Kinect

was unable to determine the location of the knees and elbows in some cases. This resulted in a smaller

scope of movement than expected and slightly hindered the user’s experience. Some users also did

relatively fast movements, and these motions where not always captured because they are difficult to

track. The vision system could be enhanced to increase the performance of the motion capture for these

specific situations.

 Many users from different backgrounds, professional and non-professional, interacted with the

Shadow Mirror. This allows us to better understand the different possibilities for future development

and refinement of the project. The Robot Block Party held at Boston Museum of Science provided us this

platform which gave us an opportunity to present our ideas, technologies, thoughts, and receive

feedback from people who interacted with the shadow puppet.

5. Conclusions

The Shadow Mirror project embraced the goals we proposed. By participating in the Boston

Museum of Science’s Robot Block Party, our project was exposed to a wider range of audience. People

in different of gender, age, culture enjoyed interacting with our shadow puppet. Universal friendship is

43

promoted via open communication between both the audience members and the creators. Through

exchanging ideas with audience members who share the same interest with our project, we discovered

more about the project’s further possibilities, learned what other people are doing with the Kinect, and

gained many ideas and insights on robots and puppets in general.

 People found our shadow puppet to be visually appealing. A Japanese Byobu style screen veils

the puppet and displays the puppet’s shadow to audience. The mysterious shadow attracts people to

discover what lies behind the screen; the bouncy movements infuse life in the moving shadow. Through

the Shadow Mirror, we demonstrated that technology is not just for utilitarian purposes, but it can also

be used as a medium for art

 During the development of the Shadow Mirror, we encountered and overcame different

obstacles. Some parts did not work out as expected, so we experimented and found better solutions.

Everyone was challenged in applying their expertise. The project also required team cooperation,

communication, and the establishment of expectations. This project has taught us to anticipate failure

and better prepare ourselves for future endeavors. Overall, the creation of the Shadow Mirror was a

delightful experience for both the creators and the audience.

6. Recommendations

Through hard testing with a wide variety of people at the Boston Museum of Science Robot Block

Party, it was determined that there were a variety of different ways we could improve upon or enhance

the design of The Shadow Mirror. First of all, when smaller children tried to use the puppet, the Kinect

had difficulties tracking the child’s knees and elbows, so control of the puppet had a few glitches. If

there is a way to enhance the Kinect to adjust for this it would be recommended because children

seemed especially interested in it, but their overall experience with the puppet was hindered because of

this limitation. Another possible way to enhance the motion tracking is to resolve the issue of needing to

44

calibrate if too many people step in front of the camera at once. There were times when a large group of

people would obstruct the Kinect’s line of sight with the user for a period of a few seconds, resulting in a

loss of the person‘s calibration. Though it did not dramatically affect the overall experience too much, it

was still a slightly annoying situation when it occurred.

A larger range of motion for the puppet would greatly enhance the user experience as well. Allowing

full control of the puppet’s limbs would make for a much more involved participation of the user and

give him or her more of a sense of control. This could be done using better motors, and a more

developed tracking system to work with the Kinect. The addition of Z-direction movement and a larger

shadow size could prove more involving as well, which could be achieved with a more advanced frame

design and a dynamic track system for the servo motors.

45

Appendices

Appendix A: Part list and cost

Part Quantity Cost/Unit Overall

Cost

Computer 1 $0.00 $0.00

USB cables to connect to

microcontroller

2 $5.00 $10.00

STM32VL-Discovery Development

Board

1 $12.00 $12.00

Servo 9 $10.00 $90.00

Connectors for Servos to

microcontroller

2 $10.00 $20.00

Power circuit for servos 1 $0.00 $0.00

Sports balls 5 $2.00 $10.00

Springs 5 $0.00 $0.00

Fishing Line 1 $5.00 $5.00

Wood for enclosure 1 $10.00 $10.00

Wood for wall 1 $20.00 $20.00

Byobu style screen 1 $0.00 $0.00

projector 1 $0.00 $0.00

Miscellaneous Parts $20.00

Microsoft Kinect for xBox 1 $150.00 $150.00

 TOTAL $347.00

46

Appendix B: Pictures of Parts

Figure 26 A pulley integrated onto a servo for better movements of the string attaché

Figure 27 Back view of the top servos mounted on the puppet frame

47

Figure 28 A ball representing a hand of the puppet, attached to a spring and 2 servo motors

Figure 29 An old Bell & Howell Project ‘N’ View 500 projector

for the shadow projection of the puppet

48

Appendix C: Control System Code in C#

List of files

 Kinect Vision

UserTracker

 main.cpp

 SceneDrawer.cpp

 SceneDrawer.h

 OpenNI.h

 Control Program

Shadow_Puppet

 form1.cs

 program.cs

form1.cs

namespace IQP_ShadowPuppet_V1
{
 public partial class form_IQP_ShadowPuppet_V1 : Form
 {
 const int panel_width = 640;
 const int panel_height = 700;
 //Pulley radius
 double pulley_r = 56; //2 inches * 40(scalar) actual radius = 1.4 * 40(scalar)
 Servo ServoA = new Servo(); //right hand top
 Servo ServoB = new Servo(); //right hand side

Servo ServoE = new Servo(); //left hand
 Servo ServoF = new Servo();
 Servo ServoC = new Servo(); //right foot
 Servo ServoD = new Servo();
 Servo ServoG = new Servo(); // left foot
 Servo ServoH = new Servo();
 System.Net.Sockets.TcpClient clientSocket = new System.Net.Sockets.TcpClient();
 TcpClient tcpclnt;
 NetworkStream stm;
 Point RightArmCenterLocation = new Point(400, 150);
 Point LeftArmCenterLocation = new Point(100, 150);
 Point RightLegCenterLocation = new Point(400, 400);
 Point LeftLegCenterLocation = new Point(100, 400);

49

 Point BodyCenterLocation = new Point(250, 250);
 Point HeadCenterLocation = new Point(250, 50);
 //String command send to servos
 public void send(string cmd)
 {
 byte[] asciiString = Encoding.ASCII.GetBytes(cmd);
 serialPort1.Write(asciiString, 0, asciiString.Length);
 }
 //Form constructor
 public form_IQP_ShadowPuppet_V1()
 {
 InitializeComponent();
 ServoA.name = "s_rh_top";
 ServoA.x = 540;
 ServoA.y = 0;
 ServoA.offset = 220;
 ServoB.name = "s_rh_side";
 ServoB.x = panel_width;
 ServoB.y = 420;
 ServoB.offset = 80;
 ServoE.name = "s_lh_top";
 ServoE.x = 100;
 ServoE.y = 0 ;
 ServoE.offset = 220;
 ServoF.name = "s_lh_side";
 ServoF.x = 0;
 ServoF.y = 420;
 ServoF.offset = 80;
 ServoC.name = "s_rf_top";
 ServoC.x = 390;
 ServoC.y = 0;
 ServoC.offset = 600;
 ServoD.name = "s_rf_side";
 ServoD.x = panel_width;
 ServoD.y = panel_height;
 ServoD.offset = 100;
 ServoG.name = "s_lf_top";
 ServoG.x = 250;
 ServoG.y = 0;
 ServoG.offset = 600;
 ServoH.name = "s_lf_side";
 ServoH.x = 0;
 ServoH.y = panel_height;
 ServoH.offset = 100;
 }
 // UPDATE ACTUAL CHARACTER (SHOULD BE TIMER BASED)
 private void timer1_Tick(object sender, EventArgs e){
 try{
 byte[] bb = new byte[1024];
 int k = 0;
 if (stm.CanRead)
 {
 k = stm.Read(bb, 0, bb.Length);
 string data = System.Text.Encoding.ASCII.GetString(bb);
 label1.Text = data;

50

 string temp = label1.Text;
 Pkt newp = new Pkt();
 newp = parse(temp);
 XY moveTo = new XY();
 moveTo = norm(newp);
 if (newp.name == "rh")
 {
 Point newP = new Point(this.pictureBox_Body.Location.X + newp.xb, this.pictureBox_Body.Location.Y -
newp.yb);
 int m = (ServoA.y - ServoB.y) / (ServoA.x - ServoB.x);
 int b = ServoA.y - m * ServoA.x;
 if (newP.Y > (m * newP.X + b)){
 this.pictureBox_RightHand.Location = newP;
 XY locA = new XY();
 locA.nx = this.ServoA.x;
 locA.ny = this.ServoA.y;
 XY locB = new XY();
 locB.nx = this.ServoB.x;
 locB.ny = this.ServoB.y;
 XY point = new XY();
 point.nx = this.pictureBox_RightHand.Location.X;
 point.ny = this.pictureBox_RightHand.Location.Y;
 int angle;
 angle = this.find_servo_A_angle(locA, point);
 int angle2;
 angle2 = this.find_servo_B_angle(locB, point);
 if (angle <= 180 && angle2 <=180) {
 this.send("A" + angle.ToString());
 this.send("B" + angle2.ToString());
 angle = angle2 = 0;
 }
 }// end of inside boundary
 }
 else if (newp.name == "lh")
 {
 Point newP = new Point(this.pictureBox_Body.Location.X + newp.xb, this.pictureBox_Body.Location.Y -
newp.yb)
 int m = (ServoE.y - ServoF.y) / (ServoE.x - ServoF.x);
 int b = ServoE.y - m * ServoE.x;
 if (newP.Y > (m * newP.X + b))
 {
 this.pictureBox_LeftHand.Location = newP;
 XY locE = new XY();
 locE.nx = this.ServoE.x;
 locE.nx = this.ServoE.y;
 XY locF = new XY();
 locF.nx = this.ServoF.x;
 locF.ny = this.ServoF.y;
 XY point = new XY();
 point.nx = this.pictureBox_LeftHand.Location.X;
 point.ny = this.pictureBox_LeftHand.Location.Y;
 int angle;
 angle = 180 - this.find_servo_E_angle(locE, point);
 int angle2;
 angle2 = 180 - this.find_servo_F_angle(locF, point);

51

 if (angle <= 180 && angle2 <= 180)
 {
 this.send("E" + angle.ToString());
 this.send("F" + angle2.ToString());
 }
 }// end of inside boundary
 }
 else if (newp.name == "rf")
 {
 Point newP = new Point(this.pictureBox_Body.Location.X + newp.xb, this.pictureBox_Body.Location.Y -
newp.yb);
 int m = (ServoC.y - ServoD.y) / (ServoC.x -
ServoD.x);
 int b = ServoC.y - m * ServoC.x;
 if (newP.Y > (m * newP.X + b))
 {
 this.pictureBox_RightFoot.Location = newP;
 XY locC = new XY();
 locC.nx = this.ServoC.x;
 locC.ny = this.ServoC.y;
 XY locD = new XY();
 locD.nx = this.ServoD.x;
 locD.ny = this.ServoD.y;
 XY point = new XY();
 point.nx = this.pictureBox_RightFoot.Location.X;
 point.ny = this.pictureBox_RightFoot.Location.Y;
 int angle;
 angle = this.find_servo_C_angle(locC, point);
 int angle2;
 angle2 = this.find_servo_D_angle(locD,
point);
 if(angle <=180 && angle2 <=180){
 this.send("C" + angle.ToString());
 this.send("D" + angle2.ToString());
 }
 }// end of inside boundary
 }
 else if (newp.name == "lf")
 {
 Point newP = new Point(this.pictureBox_Body.Location.X + newp.xb, this.pictureBox_Body.Location.Y -
newp.yb);
 int m = (ServoG.y - ServoH.y) / (ServoG.x - ServoH.x);
 int b = ServoG.y - m * ServoG.x;
 if (newP.Y > (m * newP.X + b))
 {
 this.pictureBox_LeftFoot.Location = newP;
 XY locG = new XY();
 locG.nx = this.ServoG.x;
 locG.nx = this.ServoG.y;
 XY locH = new XY();
 locH.nx = this.ServoH.x;
 locH.ny = this.ServoH.y;
 XY point = new XY();
 point.nx = this.pictureBox_LeftFoot.Location.X;
 point.ny = this.pictureBox_LeftFoot.Location.Y;

52

 int angle;
 angle = this.find_servo_G_angle(locG, point);
 int angle2;
 angle2 = 180 - this.find_servo_H_angle(locH, point);
 if (angle <= 180 && angle2 <= 180)
 {
 this.send("G" + angle.ToString());
 this.send("H" + angle2.ToString());
 }
 }
 }
 }
 }
 catch (Exception e2)
 {
 label1.Text = "Error>> " + e2.ToString();
 Environment.Exit(1);
 }
 }
 public string parseToServo(string cmd) {
 char[] array = cmd.ToCharArray();
 if (array[0] == 'A') {
 return "A";
 }
 else if (array[0] == 'B') {
 return "B";
 }
 else if (array[0] == 'C') {
 return "C";
 }
 else if (array[0] == 'D')
 {
 return "D";
 }
 else if (array[0] == 'E') {
 return "E";
 }
 else if (array[0] == 'F') {
 return "F";
 }
 else if (array[0] == 'G') {
 return "G";
 }
 else if (array[0] == 'H')
 {
 return "H";
 }
 else {
 return "";
 }
 }
 private void form_IQP_ShadowPuppet_V1_Load(object sender, EventArgs e)
 {
 try
 {

53

 tcpclnt = new TcpClient();
 label1.Text = "Connecting.....";
 tcpclnt.Connect("127.0.0.1", 51006);
 label1.Text = "Client Socket Program - Server Connected ...";
 stm = tcpclnt.GetStream();
 byte[] bb = new byte[1024];
 for (int k = 0; k < 1; k++)
 {
 if (stm.CanRead)
 {
 stm.Read(bb, 0, 1024);
 string returndata = System.Text.Encoding.ASCII.GetString(bb);
 }
 else {
 msg("cannot read!\n");
 }
 }
 serialPort1.Open();
 }
 catch (Exception e1)
 {
 msg("Error..... " + e1.StackTrace);
 }
 }
 public void msg(string mesg)
 {
 label1.Text = Environment.NewLine + " >> " + mesg;
 }
 //Servo A angle, right hand top
 public int find_servo_A_angle(XY loc, XY a_point) {
 int angle_A;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoA.offset;
 angle_A = (int)((length / (pulley_r * Math.PI)) * 180) ;
 return angle_A;
 }
 //Servo B angle right hand side
 public int find_servo_B_angle(XY loc, XY b_point)
 {
 int angle_B;
 double length;
 length = Math.Sqrt(Math.Pow(b_point.nx - loc.nx, 2) + Math.Pow(b_point.ny - loc.ny, 2)) - this.ServoB.offset;
 angle_B = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_B;
 }
 //Servo E angle, left hand top
 public int find_servo_E_angle(XY loc, XY a_point)
 {
 int angle_E;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoE.offset;
 angle_E = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_E;
 }
 //Servo F angle, left hand side

54

 public int find_servo_F_angle(XY loc, XY a_point)
 {
 int angle_F;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoF.offset;
 angle_F = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_F;
 }
 //Servo C angle, right hand side
 public int find_servo_C_angle(XY loc, XY a_point)
 {
 int angle_C;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoC.offset;
 angle_C = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_C;
 }
 //Servo D angle, right hand side
 public int find_servo_D_angle(XY loc, XY a_point)
 {
 int angle_D;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoD.offset;
 angle_D = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_D;
 }
 //Servo G angle, left hand side
 public int find_servo_G_angle(XY loc, XY a_point)
 {
 int angle_G;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoG.offset
 angle_G = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_G;
 }
 //Servo H angle, left hand side
 public int find_servo_H_angle(XY loc, XY a_point)
 {
 int angle_H;
 double length;
 length = Math.Sqrt(Math.Pow(a_point.nx - loc.nx, 2) + Math.Pow(a_point.ny - loc.ny, 2)) - this.ServoH.offset;
 angle_H = (int)((length / (pulley_r * Math.PI)) * 180);
 return angle_H;
 }
 //helper parsing received coord values
 public Pkt parse(string msg)
 {
 Pkt pk = new Pkt();
 string[] words = msg.Split(',');
 for (int i = 0; i < 4;i++)
 {
 if(i ==0){
 pk.xb =Convert.ToInt32(((string)words[i]).Trim());
 }if(i ==1){
 pk.yb =Convert.ToInt32(((string)words[i]).Trim());

55

 }
 if (i == 3) { pk.name = (string)words[i];}
 }
 return pk;
 }
 //helper that mapping to the form window
 public XY norm(Pkt pk)
 {
 XY newxy = new XY();
 int ww = 720, wh = 480; //Kinect window dimension
 int vw = 900, vh = 788; //Puppet window dimension
 newxy.nx = pk.xb;
 newxy.ny = pk.yb;
 return newxy;
 }
 public int convertToPixel(double inch)
 {
 int pixel;
 pixel = (int)inch * 40 / 1;
 return pixel;
 }
 private void form_IQP_ShadowPuppet_V1_FormClosing(object sender, FormClosingEventArgs e)
 {
 serialPort1.Close();
 }
 }
}

56

Appendix D: STM32 Code

Main.c

/**
 **
 * @file main.c
 * @author Warranyu Walton
 * @date 4/2/2011
 * @brief Main program body
 **
**/

/* Includes --*/

#include "stm32f10x.h"
#include "global.h"
#include "stdlib.h"
//#include "stm32_eval.h"

/* Private typedef ---*/
/* Private define --*/
/* Private macro ---*/
/* Private variables ---*/

int Degree;
uint8_t DesignatedServo;
uint8_t InputBuffer[4];
uint8_t ReadyToParse;
unsigned int ServoOut;
USART_InitTypeDef USART_InitStructure;

/* Private function prototypes ---*/

void NVIC_Configuration(void);
void COMInit(USART_InitTypeDef* USART_InitStruct);
void parseInput(void);
uint16_t convertToTimerCCRValue(int Degree);

/* Private functions ---*/

/**
 * @brief Main program
**/

int main(void)
{
 /* NVIC configuration */
 NVIC_Configuration();

 /* USARTx configured as follow:
 - BaudRate = 9600 baud
 - Word Length = 8 Bits
 - One Stop Bit
 - No parity
 - Hardware flow control disabled (RTS and CTS signals)

57

 - Receive and transmit enabled
 */
 USART_InitStructure.USART_BaudRate = 4800;
 USART_InitStructure.USART_WordLength = USART_WordLength_8b;
 USART_InitStructure.USART_StopBits = USART_StopBits_1;
 USART_InitStructure.USART_Parity = USART_Parity_No;
 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

 COMInit(&USART_InitStructure);

 /* Enable the USART1 Transmit interrupt: this interrupt is generated when the
 USART1 transmit data register is empty */

 USART_ITConfig(USART1, USART_IT_TXE, ENABLE);

 /* Enable the USART1 Receive interrupt: this interrupt is generated when the
 USART1 receive data register is not empty */

 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

 /* RCC, GPIO, and TIMER configuration */

 TIMER_RCC_Configuration();
 TIMER_GPIO_Configuration();
 TIM2_Configuration();
 TIM3_Configuration();
 TIM_Cmd(TIM2, ENABLE);
 TIM_Cmd(TIM3, ENABLE);

 while (1)
 {
 /* Parse Input */
 if(ReadyToParse)
 {
 // Disable Receive Interrupt so that the parsing is not corrupted
 USART_ITConfig(USART1, USART_IT_RXNE, DISABLE);
 parseInput();
 ReadyToParse = 0;
 // Enable Receive Interrupt
 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
 }

 /* Servo Select */
 int i;
 switch(DesignatedServo)
 {
 case 'A':
 OutputToServo_A(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'B':
 OutputToServo_B(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;

58

 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'C':
 OutputToServo_C(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'D':
 OutputToServo_D(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'E':
 OutputToServo_E(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'F':
 OutputToServo_F(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'G':
 OutputToServo_G(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 case 'H':
 OutputToServo_H(convertToTimerCCRValue(Degree));
 DesignatedServo = 0;
 for(i=0;i<4;i++)
 {
 InputBuffer[i] = 0;
 }
 break;
 }

 }
}

59

/**
 * @brief Configures the nested vectored interrupt controller.
***/

void NVIC_Configuration(void)
{
 NVIC_InitTypeDef NVIC_InitStructure;

 /* Enable the USART1 Interrupt */
 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
 NVIC_Init(&NVIC_InitStructure);
}

/**
 * @brief Initializes the USART and associated IO's
***/

void COMInit(USART_InitTypeDef* USART_InitStruct)
{
 GPIO_InitTypeDef GPIO_InitStructure;

 /* Enable GPIO clock */
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);

 /* Enable UART clock */
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);

 /* Configure USART Tx as alternate function push-pull */
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOA , &GPIO_InitStructure);

 /* Configure USART Rx as input floating */
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 ;
 GPIO_Init(GPIOA , &GPIO_InitStructure);

 /* USART configuration */
 USART_Init(USART1, USART_InitStruct);

 /* Enable USART */
 USART_Cmd(USART1, ENABLE);
}

/**
 * @brief Parses the input and puts the resulting integer in "Degree"
***/

void parseInput(void)
{
 uint8_t DegreeArray[3];
 DesignatedServo = InputBuffer[0];
 int i = 0;

60

 for(i=0; i<3; i++)
 {
 DegreeArray[i] = InputBuffer[i+1];
 }
 Degree = atoi(DegreeArray);
 ServoOut = convertToTimerCCRValue(Degree);
}

/**
 * @brief Converts degrees into appropriate Capture/Compare Register values (microseconds)
***/

uint16_t convertToTimerCCRValue(int Degree)
{
 uint16_t result;
 if(Degree > 180)
 {
 Degree = 180;
 }
 else if(Degree < 0)
 {
 Degree = 0;
 }
 result = (uint16_t) (((float)Degree*(10.8)) + 556);
 return result;
}

/************************END OF FILE***/

Global.h

/**

 **

 * @file global.h

 * @author Warranyu Walton

 * @date 4/2/2011

 * @brief global functions and variables

 **

**/

/* Public variables ---*/

extern uint8_t InputBuffer[4];

extern uint8_t ReadyToParse;

/* Public function prototypes ---*/

void TIM2_Configuration(void);

void TIM3_Configuration(void);

void TIM4_Configuration(void);

void TIM5_Configuration(void);

void TIMER_RCC_Configuration(void);

61

void TIMER_GPIO_Configuration(void);

void OutputToServo_A(uint16_t servo_output);

void OutputToServo_B(uint16_t servo_output);

void OutputToServo_C(uint16_t servo_output);

void OutputToServo_D(uint16_t servo_output);

void OutputToServo_E(uint16_t servo_output);

void OutputToServo_F(uint16_t servo_output);

void OutputToServo_G(uint16_t servo_output);

void OutputToServo_H(uint16_t servo_output);

/************************END OF FILE***/

Global.c

/**
 **
 * @file global.c
 * @author Warranyu Walton
 * @date 4/2/2011
 * @brief global functions and variables
 **
**/

/* Includes --*/

#include "stm32f10x.h"

/* Private typedef ---*/

TIM_TimeBaseInitTypeDef TIM2_TimeBaseStructure;
TIM_TimeBaseInitTypeDef TIM3_TimeBaseStructure;
TIM_TimeBaseInitTypeDef TIM4_TimeBaseStructure;
TIM_TimeBaseInitTypeDef TIM5_TimeBaseStructure;
TIM_OCInitTypeDef TIM2_OCInitStructure;
TIM_OCInitTypeDef TIM3_OCInitStructure;
TIM_OCInitTypeDef TIM4_OCInitStructure;
TIM_OCInitTypeDef TIM5_OCInitStructure;

/* Private define --*/
/* Private macro ---*/
/* Private variables ---*/

uint16_t PrescalerValue = 0;

/* Public functions --*/

/**
 * @brief Enable timer clocks and related IO's
***/

void TIMER_RCC_Configuration(void)
{
 /* TIM2-5 clock enable */
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM4 |
RCC_APB1Periph_TIM5, ENABLE);

62

 /* GPIOA, GPIOB, and GPIOC clock enable */
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
 RCC_APB2Periph_GPIOC | RCC_APB2Periph_USART1 | RCC_APB2Periph_AFIO, ENABLE);
}

/**
 * @brief Timer GPIO speed and mode configuration.
***/

void TIMER_GPIO_Configuration(void)
{
 GPIO_InitTypeDef GPIO_InitStructure;

 /* GPIOA Configuration:TIM3 Channel1, 2, 3 and 4 as alternate function push-pull */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_6 | GPIO_Pin_7;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* Configure USART1 Rx as input floating */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* Configure USART1 Tx as alternate function push-pull */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_Init(GPIOA, &GPIO_InitStructure);

 /* GPIOB Config */
 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOB, &GPIO_InitStructure);
}

/**
 * @brief Configures TIMER2's prescaler value, mode, and period.
***/

void TIM2_Configuration(void)
{
 /* ---
 TIM2 Configuration: generate 4 PWM signals with 4 different duty cycles:
 The TIM2CLK frequency is set to SystemCoreClock (Hz), to get TIM2 counter
 clock at 1 MHz the Prescaler is computed as following:
 - Prescaler = (TIM2CLK / TIM2 counter clock) - 1
 SystemCoreClock is set to 24 MHz for Low-Density Value line and
 Medium-Density Value line devices

 The TIM2 is running at 50 Hz: TIM2 Frequency = TIM2 counter clock/(ARR + 1)
 = 1 MHz / 20000 = 50 Hz
 --- */
 /* Compute the prescaler value */
 PrescalerValue = (uint16_t) (SystemCoreClock / 1000000) - 1;

63

 /* Time base configuration */
 TIM2_TimeBaseStructure.TIM_Period = 19999;
 TIM2_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
 TIM2_TimeBaseStructure.TIM_ClockDivision = 0;
 TIM2_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM2, &TIM2_TimeBaseStructure);

 /* PWM1 Mode configuration: Channel1 */
 TIM2_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
 TIM2_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM2_OCInitStructure.TIM_Pulse = 0;
 TIM2_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

 TIM_OC1Init(TIM2, &TIM2_OCInitStructure);

 TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel2 */
 TIM2_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM2_OCInitStructure.TIM_Pulse = 0;

 TIM_OC2Init(TIM2, &TIM2_OCInitStructure);

 TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel3 */
 TIM2_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM2_OCInitStructure.TIM_Pulse = 0;

 TIM_OC3Init(TIM2, &TIM2_OCInitStructure);

 TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel4 */
 TIM2_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM2_OCInitStructure.TIM_Pulse = 0;

 TIM_OC4Init(TIM2, &TIM2_OCInitStructure);

 TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Enable);

 TIM_ARRPreloadConfig(TIM2, ENABLE);
}

/**
 * @brief Configures TIMER3's prescaler value, mode, and period.
***/

void TIM3_Configuration(void)
{
 /* ---
 TIM3 Configuration: generate 4 PWM signals with 4 different duty cycles:
 The TIM3CLK frequency is set to SystemCoreClock (Hz), to get TIM3 counter
 clock at 1 MHz the Prescaler is computed as following:
 - Prescaler = (TIM3CLK / TIM3 counter clock) - 1
 SystemCoreClock is set to 24 MHz for Low-Density Value line and
 Medium-Density Value line devices

64

 The TIM3 is running at 50 Hz: TIM3 Frequency = TIM3 counter clock/(ARR + 1)
 = 1 MHz / 20000 = 50 Hz
 TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR)* 100 = 50%
 TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR)* 100 = 37.5%
 TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR)* 100 = 25%
 TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR)* 100 = 12.5%
 --- */
 /* Compute the prescaler value */
 PrescalerValue = (uint16_t) (SystemCoreClock / 1000000) - 1;
 /* Time base configuration */
 TIM3_TimeBaseStructure.TIM_Period = 19999;
 TIM3_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
 TIM3_TimeBaseStructure.TIM_ClockDivision = 0;
 TIM3_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM3, &TIM3_TimeBaseStructure);

 /* PWM1 Mode configuration: Channel1 */
 TIM3_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
 TIM3_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM3_OCInitStructure.TIM_Pulse = 0;
 TIM3_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

 TIM_OC1Init(TIM3, &TIM3_OCInitStructure);

 TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel2 */
 TIM3_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM3_OCInitStructure.TIM_Pulse = 0;

 TIM_OC2Init(TIM3, &TIM3_OCInitStructure);

 TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel3 */
 TIM3_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM3_OCInitStructure.TIM_Pulse = 0;

 TIM_OC3Init(TIM3, &TIM3_OCInitStructure);

 TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel4 */
 TIM3_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM3_OCInitStructure.TIM_Pulse = 0;

 TIM_OC4Init(TIM3, &TIM3_OCInitStructure);

 TIM_OC4PreloadConfig(TIM3, TIM_OCPreload_Enable);

 TIM_ARRPreloadConfig(TIM3, ENABLE);
}

/**
 * @brief Configures TIMER4's prescaler value, mode, and period.
***/

65

void TIM4_Configuration()
{
 /* ---
 TIM4 Configuration: generate 4 PWM signals with 4 different duty cycles:
 The TIM4CLK frequency is set to SystemCoreClock (Hz), to get TIM4 counter
 clock at 1 MHz the Prescaler is computed as following:
 - Prescaler = (TIM4CLK / TIM4 counter clock) - 1
 SystemCoreClock is set to 24 MHz for Low-Density Value line and
 Medium-Density Value line devices

 The TIM4 is running at 50 Hz: TIM4 Frequency = TIM4 counter clock/(ARR + 1)
 = 1 MHz / 20000 = 50 Hz
 TIM3 Channel1 duty cycle = (TIM3_CCR1/ TIM3_ARR)* 100 = 50%
 TIM3 Channel2 duty cycle = (TIM3_CCR2/ TIM3_ARR)* 100 = 37.5%
 TIM3 Channel3 duty cycle = (TIM3_CCR3/ TIM3_ARR)* 100 = 25%
 TIM3 Channel4 duty cycle = (TIM3_CCR4/ TIM3_ARR)* 100 = 12.5%
 --- */
 /* Compute the prescaler value */
 PrescalerValue = (uint16_t) (SystemCoreClock / 1000000) - 1;
 /* Time base configuration */
 TIM4_TimeBaseStructure.TIM_Period = 19999;
 TIM4_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
 TIM4_TimeBaseStructure.TIM_ClockDivision = 0;
 TIM4_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM4, &TIM4_TimeBaseStructure);

 /* PWM1 Mode configuration: Channel1 */
 TIM4_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
 TIM4_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM4_OCInitStructure.TIM_Pulse = 0;
 TIM4_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

 TIM_OC1Init(TIM4, &TIM4_OCInitStructure);

 TIM_OC1PreloadConfig(TIM4, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel2 */
 TIM4_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM4_OCInitStructure.TIM_Pulse = 0;

 TIM_OC2Init(TIM4, &TIM4_OCInitStructure);

 TIM_OC2PreloadConfig(TIM4, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel3 */
 TIM4_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM4_OCInitStructure.TIM_Pulse = 0;

 TIM_OC3Init(TIM4, &TIM4_OCInitStructure);

 TIM_OC3PreloadConfig(TIM4, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel4 */
 TIM4_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM4_OCInitStructure.TIM_Pulse = 0;

66

 TIM_OC4Init(TIM4, &TIM4_OCInitStructure);

 TIM_OC4PreloadConfig(TIM4, TIM_OCPreload_Enable);

 TIM_ARRPreloadConfig(TIM4, ENABLE);
}

/**
 * @brief Configures TIMER5's prescaler value, mode, and period.
***/

void TIM5_Configuration(void)
{
 /* ---
 TIM5 Configuration: generate 4 PWM signals with 4 different duty cycles:
 The TIM5CLK frequency is set to SystemCoreClock (Hz), to get TIM5 counter
 clock at 1 MHz the Prescaler is computed as following:
 - Prescaler = (TIM5CLK / TIM5 counter clock) - 1
 SystemCoreClock is set to 24 MHz for Low-Density Value line and
 Medium-Density Value line devices

 The TIM5 is running at 50 Hz: TIM5 Frequency = TIM5 counter clock/(ARR + 1)
 = 1 MHz / 20000 = 50 Hz
 --- */
 /* Compute the prescaler value */
 PrescalerValue = (uint16_t) (SystemCoreClock / 1000000) - 1;
 /* Time base configuration */
 TIM5_TimeBaseStructure.TIM_Period = 19999;
 TIM5_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
 TIM5_TimeBaseStructure.TIM_ClockDivision = 0;
 TIM5_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

 TIM_TimeBaseInit(TIM5, &TIM5_TimeBaseStructure);

 /* PWM1 Mode configuration: Channel1 */
 TIM5_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
 TIM5_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM5_OCInitStructure.TIM_Pulse = 0;
 TIM5_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

 TIM_OC1Init(TIM5, &TIM5_OCInitStructure);

 TIM_OC1PreloadConfig(TIM5, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel2 */
 TIM5_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM5_OCInitStructure.TIM_Pulse = 0;

 TIM_OC2Init(TIM5, &TIM5_OCInitStructure);

 TIM_OC2PreloadConfig(TIM5, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel3 */
 TIM5_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM5_OCInitStructure.TIM_Pulse = 0;

 TIM_OC3Init(TIM5, &TIM5_OCInitStructure);

67

 TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Enable);

 /* PWM1 Mode configuration: Channel4 */
 TIM5_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
 TIM5_OCInitStructure.TIM_Pulse = 0;

 TIM_OC4Init(TIM5, &TIM5_OCInitStructure);

 TIM_OC4PreloadConfig(TIM5, TIM_OCPreload_Enable);

 TIM_ARRPreloadConfig(TIM5, ENABLE);
}

/**
 * @brief Updates TIMER2's CCR1
***/

void OutputToServo_A(uint16_t servo_output)
{
 TIM2_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC1Init(TIM2, &TIM2_OCInitStructure);
}

/**
 * @brief Updates TIMER2's CCR2
***/

void OutputToServo_B(uint16_t servo_output)
{
 TIM2_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC2Init(TIM2, &TIM2_OCInitStructure);
}

/**
 * @brief Updates TIMER2's CCR3
***/

void OutputToServo_C(uint16_t servo_output)
{
 TIM2_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC3Init(TIM2, &TIM2_OCInitStructure);
}

/**
 * @brief Updates TIMER2's CCR4
***/

void OutputToServo_D(uint16_t servo_output)
{
 TIM2_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC4Init(TIM2, &TIM2_OCInitStructure);
}

/**
 * @brief Updates TIMER3's CCR1
***/

void OutputToServo_E(uint16_t servo_output)

68

{
 TIM3_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC1Init(TIM3, &TIM3_OCInitStructure);
}

/**
 * @brief Updates TIMER3's CCR2
***/

void OutputToServo_F(uint16_t servo_output)
{
 TIM3_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC2Init(TIM3, &TIM3_OCInitStructure);
}

/**
 * @brief Updates TIMER3's CCR3
***/

void OutputToServo_G(uint16_t servo_output)
{
 TIM3_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC3Init(TIM3, &TIM3_OCInitStructure);
}

/**
 * @brief Updates TIMER3's CCR4
***/

void OutputToServo_H(uint16_t servo_output)
{
 TIM3_OCInitStructure.TIM_Pulse = servo_output;
 TIM_OC4Init(TIM3, &TIM3_OCInitStructure);
}

/************************END OF FILE***/

stm32f10x_it.c

/**
 **
 * @file stm32f10x_it.c
 * @author MCD Application Team
 * @version V3.4.0
 * @date 10/15/2010
 * @brief Main Interrupt Service Routines.
 * This file provides template for all exceptions handler and peripherals
 * interrupt service routine.
 **
 * @copy
 *
 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING

69

 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
 *
 * <h2><center>© COPYRIGHT 2010 STMicroelectronics</center></h2>
 */

/* Includes --*/
#include "stm32f10x_it.h"
#include "global.h"
// #include "stm32_eval.h"

/** @addtogroup STM32F10x_StdPeriph_Examples
 * @{
 */

/** @addtogroup USART_HyperTerminal_Interrupt
 * @{
 */

/* Private typedef ---*/
/* Private define --*/

#define TxBufferSize 0x04
#define RxBufferSize 0x04

/* Private macro ---*/
#define countof(a) (sizeof(a) / sizeof(*(a)))

/* Private variables ---*/
uint8_t TxBuffer[] = "0000";
uint8_t RxBuffer[RxBufferSize];
uint8_t NbrOfDataToTransfer = TxBufferSize;
uint8_t NbrOfDataToRead = RxBufferSize;
uint8_t TxCounter = 0;
uint16_t RxCounter = 0;

/* Private function prototypes ---*/
/* Private functions ---*/

/**/
/* STM32F10x Peripherals Interrupt Handlers */
/**/

/**
 * @brief This function handles USARTx global interrupt request.
 * @param None
 * @retval None
 */
void USART1_IRQHandler(void)
{
 if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)
 {
 /* Read one byte from the receive data register */
 RxBuffer[RxCounter++] = (USART_ReceiveData(USART1) & 0x7F);
 if((RxBuffer[0] == 'A') | (RxBuffer[0] == 'B') | (RxBuffer[0] == 'C') | (RxBuffer[0] == 'D') | (RxBuffer[0] == 'E') | (RxBuffer[0] ==
'F') | (RxBuffer[0] == 'G') | (RxBuffer[0] == 'H') | (RxBuffer[0] == 'I') | (RxBuffer[0] == 'J'))
 {
 if(RxCounter >= NbrOfDataToRead)

70

 {
 /* Disable the USART1 Receive interrupt */
 USART_ITConfig(USART1, USART_IT_RXNE, DISABLE);
 int i;
 for(i=0; i<RxCounter; i++)
 {
 InputBuffer[i] = RxBuffer[i];
 //TxBuffer[i] = RxBuffer[i];
 }
 RxCounter = 0;
 ReadyToParse = 1;
 /* Enable USART1 Transmit Interrupt */
 //USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
 }
 }
 else
 {
 RxBuffer[0] = 0;
 RxCounter = 0;
 ReadyToParse = 0;
 }
 }

 if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET)
 {
 /* Write one byte to the transmit data register */
 USART_SendData(USART1, TxBuffer[TxCounter++]);

 if(TxCounter >= NbrOfDataToTransfer)
 {
 TxCounter = 0;
 /* Disable the USART1 Transmit interrupt */
 USART_ITConfig(USART1, USART_IT_TXE, DISABLE);

 /* Enable USART1 Receive Interrupt */
 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
 }
 }
}

/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/

71

References
[1] Kac, Eduardo. Foundation and Development of Robotic Art. Art Journal. Vol. 56, No. 3, Digital

Reflections: The Dialogue of Art and Technology (Autumn, 1997), pp. 60-67

[2] D. Currell, Puppets and Puppet Theatre. Wiltshire, UK: Crowood Press, 1999.

[3] GROSS, Joan. Speaking in Other Voices: An ethnography of Walloon puppet theaters. Philadelphia,

PA, USA: John Benjamins Publishing Company, 2001

[4] Chinese Piyingxi, 2008. [Accessed 10/20/2010] <http://www.u148.net/article/1624.html>

[5] Macmurtrie, Chico. Amorphic Robot Works. [Accessed 10/15/2010]

<http://amorphicrobotworks.org/works/ftm/index.htm>

[6] Joyce, Susan. The Fish Boy's Dream. January 21, 2006. <http://srl.org/shows/la2006/>

[7] Martin, P; Egerstedt, M. Optimal Timing Control of Interconnected, Switched Systems with

Applications to Robotic Marionettes. [Accessed 10/15/2010]

<http://users.ece.gatech.edu/~magnus/Papers/PuppetWODES08.pdf>

[8] Robotic Marionette Systems. 2006. <http://155.69.254.10/users/risc/www/enter-intro.html>

[9] Levin, Golan. Ghost Pole Propagator. 2007. <http://www.flong.com/projects/gpp/>

[10] Biggs, Simon. Shadows: An Interactive Digital Video Projection Installation. 1993.

<http://www.medienkunstnetz.de/works/shadows/images/3/>

[11] Rozin, Daniel. Wooden Mirror. 1999. http://www.smoothware.com/danny/woodenmirror.html

[12] David Rockeby. Transforming Mirror. 1996.
 <http://homepage.mac.com/davidrokeby/mirrorsmirrors.html>

http://www.u148.net/article/1624.html
http://amorphicrobotworks.org/works/ftm/index.htm
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2fsrl.org%2fshows%2fla2006%2f
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2fusers.ece.gatech.edu%2f%7emagnus%2fPapers%2fPuppetWODES08.pdf
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2f155.69.254.10%2fusers%2frisc%2fwww%2fenter-intro.html
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2fwww.flong.com%2fprojects%2fgpp%2f%2520
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2fwww.medienkunstnetz.de%2fworks%2fshadows%2fimages%2f3%2f
https://exchange.wpi.edu/owa/redir.aspx?C=34334dc981b3414e9d12cdab46729bdc&URL=http%3a%2f%2fwww.smoothware.com%2fdanny%2fwoodenmirror.html
http://homepage.mac.com/davidrokeby/mirrorsmirrors.html

	Worcester Polytechnic Institute
	Digital WPI
	April 2011

	The Shadow Mirror
	Anton Konstantinovich Zalutsky
	Blake Zdralewicz Reeves
	Warranyu Walton
	Xiaoli Ma
	Repository Citation

	tmp.1535739129.pdf.QvPPv

