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Exploring Human-Robot Interaction in Collaborative
Tasks

Rafi Hayne
Worcester Polytechnic Institute

Worcester, Massachusetts 01609
rhhayne@wpi.edu

Abstract—My Major Qualifying Project takes the form
of focused independent research on the subject of Human-
Robot Collaboration. In performing this research I divided
the project into two separate subproblems: automatic
motion segmentation and motion planning in the presence
of a human. For the first subproblem, I frame motion
segmentation as a supervised learning problem. Demon-
strations of proper segmentation, labeled by hand, are
fed into three different classifiers. I find that two of the
three classifiers are able to properly segment motions
with varying tradeoffs, while the third seems unfit for the
problem. For the second subproblem, I propose a novel
cost function that aims to minimize robotic interference to
a human collaborator’s workspace.

I. INTRODUCTION

For my Major Qualifying Project I performed in-
dependent research in the field of Human-Robot Col-
laboration. While automation in a factory setting is a
growing field, many manufacturing tasks prove difficult
to fully automate because they must be performed in
close proximity to a human, or because they dictate a
level of dynamic decision making that is not currently in
the scope of automation technology. As a result of this
difficulty, allowing a robot and human to perform manip-
ulation tasks in a collaborative setting is a necessary step
towards fully autonomous robotic assembly. I approach
Human-Robot Collaboration through the lens of two
disciplines: Artificial Intelligence, and Motion Planning.
In the field of Artificial Intelligence I present a machine
learning approach towards automatic segmentation of
manipulation recordings. In the field of Motion Planning
I present a novel cost function that aims to minimize
robotic interference to a human’s used workspace in
a collaborative setting. The following sections of this
report will follow this outline.

II. MOTION SEGMENTATION

A. Introduction

Proper segmentation of human motion is becoming
more attractive as more algorithms and planners seek
to make inferences from human demonstration. In order
to properly analyze human demonstrations, individual
motions must be separated from longer recordings. For
example, [1] uses a hand collected library of human
demonstrations to create classes of grasping motions
that are used for online prediction of human workspace
occupancy. This library of motions was hand segmented,
limiting the learning phase to be entirely offline. With
automatic segmentation of motions, on-line classification
could be used to simultaneously predict workspace oc-
cupancy and to reinforce or expand the library of mo-
tion classes. The segmentation required for this specific
approach could potentially be done naively by taking
advantage of the fact that all motions belonging to the
library start at the same resting position and end at a
specified goal location.

However, as motions become more fluidly connected,
as seen in a collaborative setting for example, proper
segmentation becomes more involved. Firstly because
natural human motion does not have a defined start and
end zone. Additionally, the inclusion of another human
can cause conflicts in grasping motions. In this instance
it may be necessary to segment a grasping motion into
more fine grained parts: the initial intended trajectory up
to a conflict as well as the replanned portion.

Originally, my goal for this project was to be able to
properly segment human motions at replanning points.
Because of this focus, I believed simply segmenting
motion at a task’s start and goal to be an afterthought.
With no result nearing the deadline of the project, I refor-
mulated the project’s goals to be only segmenting human
motion at task goal regions. Without the requirement



of segmenting motion at replanning points, I changed
my approach to a naive supervised learning problem, in
which classifiers are trained to label goal regions from
a supervised dataset. I chose to compare the ability of
Support Vector Machines, Artificial Neural Networks,
and the K-Nearest Neighbor classifier to properly label
these regions because they were the main classification
methods presented to us in class.

After this restructuring of the project, I found that
all three classifiers could be used to properly segment at
goal regions with varying success. Further, I found that
Support Vector Machines can in some settings, segment
at replanning points in addition to task goal regions.

The remainder of this section is structured as follows:
In the next section I give a description of related work
and how I planned it could be applied to finding re-
planning points. In Section II-C I describe the approach
used to train each of the selected classifiers to segment
human motions. In Section II-D I present the results of
each classifier’s ability to properly segment test data.

B. Related Work

Prior to the reformatting of my project I investigated
traditional approaches for automatically segmenting hu-
man motions. In [2], Dana Kulic uses a stochastic
approach to segment continuous human motion. More
specifically, the Kohlmorgen and Lemm algorithm [3] is
used without any a priori knowledge of human motions
under the assumption that data belonging to the same
segment will have the same underlying probability dis-
tribution. The author notes that this method works well
to find the boundary of two different motions, but does
poorly at finding fine grained transitions such as the
replanning points described earlier. Kulic thus extends
[3] by including motion primitives in the segmentation
loop. As motions are segmented they are clustered in a
similar manner to [1] and used to more accurately guide
future segmentation. This approach appears to work well,
but does not encode any other outside information into
segmentation making it less desirable for collaborative
motions. Additionally, the results of this research still
showed many false positives and false negatives. This
is likely because the algorithm aimed to be a general
solution to segmentation of fully body motion, instead
of simply attempting to segment manipulation tasks.

The CHAMP algorithm [4], an extension of [5] uses a
similar stochastic approach, but allows for the inclusion
of a candidate likelihood model. I believed that this

(a) Experiment Setup (b) Experiment Being Performed

Fig. 1. Example of experiment setup and experiment being per-
formed.

candidate model would allow me to take advantage of
features in collaborative manipulation tasks to make iden-
tifying replanning points a simpler task. Unfortunately, I
was unable to properly formulate candidate models for
the algorithm in the time frame of the project.

I believe that both of the methods listed above are a
better, yet more complicated solution to the problem of
human motion segmentation. This is mainly because both
of these approaches make segmentation decisions based
on windows of sequential data. Because my approach
attempts to classify an individual data point, it is prone
to over segment data.

C. Approach

My approach to segmenting human motion consists of
four distinct phases. In the first phase, I create a library of
continuous reaching motions in which two human’s are
recorded performing a simple manipulation task. Next,
this library is then labeled and segmented by hand to
create a training and testing dataset. As stated earlier in
the paper, I consider motion segmentation as a supervised
learning problem. As a result, the following two phases
consist of a learning phase, followed by a classification
phase. In the learning phase, labeled motions from the
training set are used to train the SVM, KNN and ANN
classifiers. Finally, in the classification phase, motions
from the testing set are segmented and compared to their
original ground truth labels to compare the efficacy of
each classifier for this problem.

1) Data Collection: The experiment designed to
gather training and test data consisted of two participants
standing shoulder to shoulder parallel to a table; each
working on an individual task within a shared workspace.
In order to execute their task, the participants must place
a correnspondingly colored ball on each of their pegs in
a specified order, displayed as an ordered set of pegs.
The participants look at the color of the first empty



peg in their plan, pick up a ball from the corresponding
color zone, and place the ball on top of the peg until all
pegs in the plan are filled with balls. An example of the
experiment setup and two participants performing their
task can be seen in Figure 1.

As a means to record these interactions, I used a
Vicon motion capture system consisting of eight Bonita
cameras running at 100 Hz. Subjects wore a suite con-
sisting of three rigid plates and nine markers consisting
of a waist-belt and headband attached to rigid objects, a
marker on the back of the hand, two on each side of the
wrist, an elbow pad, two markers on either side of the
shoulder, and two markers straddling both the sternum
and the xyphoid process. In total, twenty participants
were recorded performing the experiment six times each
to create a dataset of ten blocks which contain six runs
of the experiment. Because markers can occationally
become occluded in collaborative manipulation tasks,
two runs were selected from the block with the most
accurate data to generate the initial training and test data.
These will be refered to as the training run and test run
in the future.

2) Data Labeling: The ultimate goal of this system
is to recover a single point to segment continuous data
into individual grasping motions. Within the constraints
of the experiment, a segmentation point can be intuitively
defined as picking or placing a ping pong ball. Unfor-
tunately the boundary between picking and placing is
not entirely black and white; it is difficult to definitively
choose a single segmentation point. For example, con-
sider the participant wearing a black shirt in Figure 1(b)
who is reaching to pick up a green ball. It is trivial to
define a lower and upper bound for when the subject
picks up the ball, but difficult to determine an exact point
of contact.

Following this intuition, each frame of the training
and test runs are labeled in a boolean fashion : True
for frames in which the participant can be considered
picking or placing a ball and false for all other frames.
As a result, the labeled data manifests itself as alternating
regions of True and False frames. This regionally labeled
data is convenient because it prevents the classifiers from
training to human error, and from overfitting an overly
sparse dataset.

3) Training: In order to prevent this segmentation
method from being overly task specific, I opted to use
features that should generalize to a multitude of manipu-
lation tasks. Following the picking and placing intuition

Fig. 2. Plot of labeled training run after principal component
analysis. True frames in red, False in blue.

described in Section II-C2 and this requirement, x,y,z
velocities of the palm marker, and wrist and elbow joints
were selected for a 9 dimensional feature space. Prior
to training each classifier, the data was normalized and
reduced to two dimensions using Principal Component
Analysis. Justification for these assumptions can be seen
in Figure 2. Positively labeled regions are very clearly
clustered around the origin.

4) Classification: To recover segmentation regions,
each frame of the test run has its label predicted indi-
vidually by each of the classifiers. In order to prevent
over segmentation of the data, a minimum region size
of 20 frames is imposed. This minimum is smaller than
every hand defined region in the ground truth data and
accounts for only 200 milliseconds. The final predicted
segments are compared to the ground truth segments both
qualitatively and quantitatively. First, the false negative
and false positive classification rates are calculated. Sec-
ond, a single segmentation point is naively chosen at the
mid point of each positively labeled region and visually
sanity checked.

D. Results

In this section I will present results illustrating each
classifiers ability to properly segment human motion. I
will first detail the configuration used for each classifier.
Next, I will present the classifier’s ability to properly
recover segments by comparing their error rate’s when
compared to true labels and by comparing visual exam-
ples of the recovered motions.

1) Classifier Setup and Parameters: The Support Vec-
tor Machine implementation used was the scikit-learn[6]



(a) 133 / 127 (b) 401 / 402 (c) 541 / 540 (d) 676 / 676 (e) 801 / 803 (f) 900 / 903

Fig. 3. The first six segmentation points recovered by the SVM and ANN classifiers. Recovered frame numbers are listed respectively.

(a) 29 (b) 80 (c) 142 (d) 226 (e) 389 (f) 429

Fig. 4. The first six segmentation points recovered by the KNN classifier. Recovered frame numbers listed below each image.

python library, which in this case, acts as a front end to
LIBSVM. Linear and polynomial kernels were tested, but
did not recover labels as well as the radial basis function
kernel with default paramers of C = 1 and gamma = 0.5.

The Artificial Neural Network implementation used
was the PyBrain[7] python library, a popular library for
neural networks. A three layer network with 2 input
nodes, 10 hidden nodes and 1 output node was used. The
network was trained with backpropagation until conver-
gence using 35% of training data for validation. Because
labels in the training data are sparsely distributed, frames
of the training set were reordered to be evenly distributed
to obtain a proper validation set.

Finally, the K-Nearest Neighbor implementation used
was also from the scikit-learn[6] package. All values of k
ranging from 2 to 50 were tested using both uniform and
distance based weights. A k of 4 with uniform weights
was found to have the highest classification rate.

2) Raw Classification Results: Figure 5 shows the
confusion matrix for each classifier when attempting to
predict labels for the test run. Each table shows the
number of properly recovered labels, and improperly
recovered labels. The main diagonal of each table shows
the true number of false and true labels.

The first thing to note, is that each classifier has
a much different ratio of true to false labels than the
ground truth set (0.27). The SVM has significantly more
true than false labels with a ratio of 1.87, the ANN has
slightly more true than false with a ratio of 1.08 and
the KNN has slightly less with a ratio of 0.79. While
none of these ratios are close to the ground truth, on

first impression the KNN labeling seems to most closely
match the ground truth labels.

However, it is important to additionally consider false
positives (true 0 labeled as 1) and false negatives (true
1 labeled as 0). Intuitively, a false positive will lead
to over segmentation by splitting a single motion into
multiple parts, while false negatives will lead to under
segmentation by considering two motions as one.

The SVM classifier has the lowest false negative rate
out of the group, but also has the highest number of false
positive. Alternatively, the KNN classifier has highest
false negative rate and the lowest false positive rate.
The ANN falls between the other two classifiers. As
a result, I would expect the SVM to properly recover
the true segments, with many additional segments overly
splitting each motion. Similarly, the KNN may provide
fewer segments than in the ground truth. Finally, the
ANN should perform closest to ground truth. These
assumptions are tested visually on the data in the next
section.

3) Visual Results: In order to test the recovered labels
visually, segments were recovered from labeled regions
as described in Section II-C4. These recovered segments
were used as pause points in a video playback of the
experiment. In addition to visualizing the segments re-
covered on the test run, I also had each classifier recover
segments from an unlabeled run in a different block.
Using a different test block shows the methods’s ability
to generalize to different participants.

Figures 3 and 4 show screen captures of the first six
segmentation points for each classifier on the unlabeled



Predicted
0 1 Total

True
0 1212 1553 2765
1 17 753 770
Total 1229 2306 3535

(a) SVM

Predicted
0 1 Total

True
0 1525 1240 2765
1 178 592 770
Total 1703 1832 3535

(b) ANN

Predicted
0 1 Total

True
0 1733 1032 2765
1 243 527 770
Total 1976 1559 3535

(c) KNN

Fig. 5. Confusion matrices for each of the classifiers.

(a) 2926 (b) 3021 (c) 3076

Fig. 6. SVM method segmenting test run at a replanning point

block. The SVM and ANN results share images because
they are within a few frames for each segment. All three
classifiers are able to properly segment each motion in
the unlabeled run and the test run. However, both the
SVM and KNN add additional segments.

In both the unlabeled run and the test run the KNN
over segments before the experiment has started (Fig-
ures 4(a) through 4(d)) and occationally segments upon
entering and exiting a goal region (4(e) and 4(f)).

In the unlabeled run, the SVM performs exactly
as the ANN and only recovers the true segmentation
points. In the test run, the SVM adds two additional
segments that may have been missed when originally
labeling the data where one participant has to avoid
the other participant’s arm in the workspace. Figure 6
shows the SVMs three segments that split one single
reaching motion into two parts at the replanning point.
These additional two segmentation points could explain
it’s high false positive rate found in the previous section.

E. Discussion & Future Work

While the numbers from the confusion tables in Sec-
tion II-D2 were useful in initially validating a classifiers
ability to recover true labels, they were unhelpful in
actually demonstrating the ability to successfully seg-
ment individual motions. From the visual results, we
can see that the ANN learning algorithm did best at
learning to reproduce the model described by the ground
truth labels; in both visual tests the ANN provided the
correct number of segments. The SVM provides a more
general model that can potentially be used for more fine

grained segmentation of motions as described in Section
I. Finally, the KNN can properly segment individual
motions, but may require significant post processing to
remove extra segments.

In future work, I would try to use a higher value of
k in the KNN algorithm. This may cause the recovered
labels to fit the overall dataset worse, but will hopefully
correct double segmenting goal regions. Additionally, I
would further investigate the SVMs ability to properly
segment at replanning points by using additional features,
or entirely new features in conjunction with the ANN
model that properly segments at goal regions. Finally, all
of these classifiers can be queried in real time, potentially
allowing online segmentation of motions.

F. Conclusion

I have shown that all three of the selected classifiers
can be used to segment human motions with varying
effects. Visual analysis of the three methods shows that
both the SVM and neural network perform better than
the k-nearest neighbor approach. The ANN can reliably
segment motions at the boundary of a task while the
SVM could potentially be used in continued work to
segment motions at human replanning points in addition
to task based replanning points.

III. MOTION PLANNING IN HUMAN PROXIMITY

A. Introduction & Background

The next subproblem of Human-Robot Collaboration
I tackled was that of manipulation planning for a robot in
close proximity to a human collaborator. I present a cost
to be used in a motion planner or trajectory optimizer
that attempts to aid human comfort in collaborative ma-
nipulation tasks. More specifically, this new cost function
attempts to embed an understanding of which areas of a
shared workspace a human is utilizing.

As mentioned in Section I, allowing a robot and hu-
man to perform manipulation tasks in a shared workspace



is a necessary step towards fully autonomous robotic
assembly. Because of this need for collaboration in ad-
vanced automation, planning for a robot while maintain-
ing human safety is an active research topic. Most safety
efforts in this area appear to fall into two categories based
on whether the robot is assumed to be functioning in an
active or passive role when interacting with a human.

In the case where a robot is assumed to be taking
an active role, the human is generally considered to take
the role of a more passive observer. Planned motions are
thusly made to be more understandable to the human.
For example, [8] aims to generate more human-like
motions by first generating a reachability map that is
used to choose an ergonomic and understandable goal
configuration. However, such a goal configuration in a
factory setting may further occlude a human’s workspace,
which is contrary to the goal of this work. Similarly,
[9] takes into account a human’s visibility, comfort and
reachability in the robot’s configuration space. While this
approach is useful when performing hand over tasks to
a human, it does not appear to be of much use when
performing separate pick-and-place tasks in a shared
workspace. Finally, [10] aims to convey manipulation
intent by purposefully bending a trajectory to better
communicate which goal is being reached for. Legible
motions are certainly important when collaborating with
a human and could be used in tandem with this work,
but the primary goal of this proposal is to minimize the
need for the human to understand a robotic collaborator’s
intent. Ultimately, work of this nature seems better
suited for a robot assistant than a collaborator in ones
workspace.

In pick-and-place manufacturing tasks, a human
should feel safe enough to work freely in a workspace;
giving minimal consideration to its robot counterpart.
In this scenario, to maintain safety the robot must take
an observational role of the ”active” human. As a re-
sult, research in this case generally aims to predict a
human’s future motion. In [1] Mainprice and Berenson
use a precomputed library of human motions to create
GMMs that are queried on-line to predict a human’s
future workspace occupancy while multiple trajectories
are planned simultaneously in parallel. The trajectory
with the least penetration of the predicted workspace
occupancy is chosen for execution. This work is closest
in nature to my proposal, in that it aims to avoid the
collaborating human’s workspace. However, it differs
in that the predicted occupancy is used largely for
task selection, not in motion generation. Finally, in

[11] Mainprice et al. use Inverse Optimal Control to
learn an assumed optimal cost function from human
demonstration. This cost function is used in iterative
replanning to predict human reaching motion. Continued
work in this topic used the recovered cost function to plan
human-like motion for a robot working collaboratively
with a human. Unfortunately these human-like robotic
trajectories caused the human subject to become visibly
uncomfortable.

B. Methods

In a perfect scenario, generating human-like motions
for a robot would most likely lead to the best possible
human-robot collaboration. Human collaborative motions
in a shared workspace are generally fluid, rarely col-
liding or stalling with minimal verbal communication.
Regrettably, as mentioned above, human-like robotic
motions do not maintain this grace in practice for a
number of reasons. Firstly, human motion generation
does not appear to globally resolve conflicts. When
working together two humans do not appear to minimize
conflicts by watching for legibility or even distance to
the other human. Motions move in a generally straight
path towards a goal where conflicts are quickly resolved
locally by replanning or stalling. Conflicts are minimized
in a global sense through task planning; humans choose
tasks that will cause the least need for local conflict
resolutions with their partner. Additionally, humans are
not comfortable performing this type of local conflict
resolution with a robotic collaborator, for fear of safety
or simply distrust due to minimal robotic exposure in
their lifetime.

Because of these observations, I worked on extending
existing motion planners that allow a human to work
naturally alongside a robot not through more human
or legible motions, but rather through avoidance of the
human’s intended workspace. The underlying idea of
my method is that humans will use the same area of a
workspace to perform a repetitive task if there is minimal
interference from a collaborator in a workspace. This is
a fair assumption to make as humans and robots both
attempt to take a straight line path to their task goal
if possible. I call these regions of the workspace that
a human traverses when performing a task ”workspace
lanes”. The goal of my proposed cost function is to model
the growth of these ”lanes” over time such that a robot
collaborator can minimize its lane penetration.

1) Generation of Costmap: To generate a workspace
lane cost, I discretize the shared workspace into a voxel



Fig. 7. Sampled Points of a PR2s Right Arm

Fig. 8. Generated Lane Costmap

grid with 1cm cells. Next, I take uniform samples of
both the human and robot’s arm. An example of these
samples can be seen in Figure 7. At each frame update
from Motion Capture data, I apply the transform of
the appropriate agent’s arm to these samples to align
them properly in the voxel grid. The transformed human
samples can then be used to increment the cost of each
corresponding voxel in the voxel grid. As the human
performs its given task in the workspace voxel costs
are incremented to generate a cost map (Figure 8) that
describes how often a given voxel in the workspace is
used by the human. In a similar fashion, the transformed
samples from the robots arm can be given to evaluate the
cost of a given configuration.

2) Planning with Lane Cost: In order to plan trajec-
tories while minimizing this workspace ”lane” cost, I
selected the TrajOpt [12] trajectory optimizer due to its
ability quickly generate feasible trajectories often in sub-
second planning time, and because the authors provide
a set of convenient python bindings that minimized
implementation time. Planning to minimize lane cost
with TrajOpt is accomplished in two stages. In the

(a) (b) (c)

Fig. 9. First three planned goal configurations

first stage, a stochastic approach is used to select a
goal configuration of minimal cost. In traditional motion
planning, a single goal configuration is used as the goal
for a planned trajectory. However, finding a feasible goal
configuration with minimal cost is non trivial. To find
these optimal goal configurations I randomly initialize
the PR2s arm and construct a request to optimize lane
penetration cost with an xyz pose constraint. This optimal
goal configuration is then used in the second phase
which attempts to plan an optimal trajectory. A second
optimization request is now made with a straight line
trajectory from the start configuration to the newly found
goal configuration. Because TrajOpt is a sequential con-
vex optimizer it can often converge to a local minimum
that is an infeasible trajectory. In this case subsequent
optimization requests are made with the addition of a
random workspace waypoint included in the mid-point
of the trajectory. Finally, if a feasible trajectory can not
be found after exhausting all waypoints, a path is planned
using a Bidirectional RRT and is subsequently optimized
with TrajOpt.

3) Results: Unfortunately, I have not completed the
implementation described in Section III-B2 prior to the
deadline for this report. Because of this, I have no numer-
ical results that compare the cost of planned paths with
my method to a path planned not considering workspace
cost. However, by viewing screenshots of recovered goal
configurations, one can see that the recovered paths are
indeed avoiding this cost (Figure 9). Each grasp positions
the PR2s shoulder joint very high in the workspace to
avoid interfering with the human’s intended workspace
lanes. Figure 9(b) is the hardest goal region in the
entire task plan that the robot must complete. This is
because the goal region exists directly below the human’s
workspace. The planner correctly produces a grasp that
chooses the midpoint of a fork in the human’s lanes.
Unfortunately the PR2’s shoulder joint is incuring higher
cost than it should be (It should be raised higher to avoid
cost near the blue goal region). I believe this is because



trajopt converged to a suboptimal minimum because I
am computing a numerical gradient as opposed to the
proper analytical gradient.

4) Future Work: As briefly mentioned in the previous
section, I would like to implement an analytical gradient
for workspace lanes to improve TrajOpt’s convergence.
I hope to compare my planned paths that attempt to
minimize cost to a naively planned path to verify the
method is indeed working. Finally, I would like to
perform this experiment in the real world as opposed to
in simulation. While the underlying intuition in avoiding
workspace lanes appears solid, it may not make task
completion for the human any easier. I will have to define
a way to numerically analyze a humans comfort levels
when performing a task.

5) Conclusion: For my Major Qualifying Project I
have performed research in various aspects of Human
Robot Collaboration. I have produced an efficient su-
pervised learning technique for automatically segmenting
human grasping motions from larger recordings. I have
completed a basic implementation of a human-workspace
aware motion planner for a robotic collaborator. Finally,
I have outlined where I hope to continue this motion
planning research in the near future.
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[2] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura,
“Incremental learning of full body motion primitives and their
sequencing through human motion observation,” The Interna-
tional Journal of Robotics Research, pp. 330–345, 2011.

[3] J. Kohlmorgen and S. Lemm, “A dynamic hmm for on-
line segmentation of sequential data,” in Advances in Neural
Information Processing Systems 14, T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds., 2001, pp. 793–800.

[4] S. Niekum, S. Osentoski, C. Atkeson, and A. G. Barto,
“Champ: Changepoint detection using approximate model pa-
rameters,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-
RI-TR-14-10, June 2014.

[5] P. Fearnhead and Z. Liu, “On-line inference for multiple
changepoint problems,” Journal of the Royal Statistical Society,
vol. 69, no. 4, pp. 589–605, 2007.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[7] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “PyBrain,” Journal of Ma-
chine Learning Research, vol. 11, pp. 743–746, 2010.

[8] F. Zacharias, C. Schlette, F. Schmidt, C. Borst, J. Rossmann,
and G. Hirzinger, “Making planned paths look more human-
like in humanoid robot manipulation planning,” in ICRA, May
2011, pp. 1192–1198.

[9] J. Mainprice, E. Sisbot, L. Jaillet, J. Cortes, R. Alami, and
T. Simeon, “Planning human-aware motions using a sampling-
based costmap planner,” in ICRA, May 2011, pp. 5012–5017.

[10] A. Dragan and S. Srinivasa, “Generating legible motion,” in
Robotics: Science and Systems, June 2013.

[11] J. Mainprice, R. Hayne, and D. Berenson, “Predicting human
reaching motion in collaborative tasks using inverse optimal
control and iterative re-planning,” in ICRA, May 2015.

[12] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and
P. Abbeel, “Finding locally optimal, collision-free trajectories
with sequential convex optimization,” in Robotics: Science and
Systems, 2013.


	Worcester Polytechnic Institute
	Digital WPI
	April 2015

	Exploring Human-Robot interaction in Collaborative Tasks
	Rafi H. Hayne
	Repository Citation


	tmp.1535548689.pdf.XGcYT

