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Abstract 
The goal of this project was to design and implement software to allow humanoid robots to 

compete in the Standard Platform League of RoboCup, a robotic soccer competition. The various 

modules developed by the team addressed topics in computer vision, probabilistic localization, multi-

robot coordination, and off-robot visualization. By the time of the competition, the team significantly 

improved the robots' performance in the aforementioned topics. 
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Executive Summary 
RoboCup is an international scientific initiative with many objectives. The organization’s original 

and primary focus is on developing soccer-playing autonomous multi-robot systems. The organization 

includes many soccer leagues, including the Standard Platform League (SPL). This league has fixed 

hardware, so it relies solely on the competitors’ software to be successful. The Aldebaran Nao robots 

are currently used for the SPL competition. These humanoid robots are roughly 2 feet tall, with 21 

degrees of freedom with their electric motors, 2 cameras as a primary source of input, and an Intel 

ATOM 1.6 gHz CPU.  

The Worcester Polytechnic Institute SPL team began with the 2010 release of the University of 

New South Wales (rUNSWift) team’s code base. The structure of the existing code is separated into four 

main modules:  vision, localization, motion, behaviors. Each module communicates through a 

“blackboard” file. Modules can read from or write to the blackboard to share information with each 

other. The vision module takes in camera images and processes the frames to detect objects and 

provide robot-relative distances and headings. The localization module uses all of this robot-relative 

information to provide a global location for the robot and these objects. The behavior module does the 

decision making and controls what motions the robot runs. The motion module affects the motors to 

control the robot’s actual movement. The WPI team previously replaced rUNSWift’s localization and 

behaviors modules with their own code. Over the course of this project the team worked to rewrite the 

localization module, and to heavily modify the vision and behaviors modules, as well as develop an off-

robot visualization tool for debugging and testing purposes. 

The team originally intended to restructure the vision module, but given the complexity of the 

existing code and the time allocated to working on the vision module, the team worked more on 

increasing the performance of the existing module. Specifically, the accuracy of the distance and 

heading calculations of the various objects was targeted as an area for improvement. The team also 

worked to eliminate false reports of objects being detected, while still maintaining sufficient detection 

of objects that were present. 

To replace the existing localization module the team implemented two different algorithms and 

a method for swapping from one to the other. The primary algorithm was a Kalman filter, which read in 

odometry information and robot-relative vision information to maintain and update a single robot 

position, while taking into account the uncertainty of the odometry and vision measurements. The 

secondary algorithm was a particle filter, which keeps multiple locations in working memory, which 

converge over time around the robot’s correct position by removing low probability particles and 

repopulating around high probability particles. The two algorithms worked in tandem based on which 

algorithm was more needed—when no position estimate was given, the particle filter was in use; 

otherwise the Kalman filter was used to reduce impact on the processor. 

The behaviors code was analyzed for effectiveness from WPI’s previous competition code.  The 

team improved whatever algorithms needed improvement, including incorporating the new data 

coming from the localization module, adding new robot roles to account for more soccer player 

behavior types, and making use of shared data broadcast over Wi-Fi between the robots. 
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The visualization tool was written in javascript using webgl to graphically display the field and 

where the robot thought it was relative to other objects. This tool allows for 3D visualization and is 

accessible on any operating system that can run Google Chrome. 

About halfway through the competition, a major rule change occurred in the SPL competition.  

Originally, one soccer goal was colored yellow and the other goal was colored blue.  The rules for the 

2012 competition were changed so that both goals were yellow, effectively eliminating any unique field 

markers for determining which side of the field the team should be scoring on and which side of the 

field should be defended.  This particularly affected the localization module, so methods were 

implemented to handle this new game case. 

 After each module was implemented, the team carried out a number of tests to determine the 

effectiveness of each new module compared to the old modules.  For the vision module, the accuracy of 

post distance detection was significantly improved, and additional object filtering to remove objects 

seen at unlikely distances was added.  The localization module successfully implemented a Kalman filter, 

but due to hardware constraints the particle filter was not fully realized.  The Kalman filter, along with 

modifications to determine which goal was which based on goalie robot team detection, was sufficient 

to determine a global position for the robot and preventing the robot from scoring goals on its own side 

of the field.  The behavior module was improved for the striker and goalie role, again taking into account 

what would be most effective for the new same-color goal case.  Also implemented in the behavior 

module was a support role, with the purpose of spreading the robots out on the field more effectively, 

but the team was unable to fully test this behavior and the role switching it required before the 

competition occurred.  The visualization tool was completed to effectively show the positions of the 

robot, balls, and goals, but off-robot camera calibration was not achieved. 

 Overall, the new code changes were successful.  The robots could more accurately detect key 

objects, localize based on that information sufficiently well to prevent goals on the wrong team, and the 

behavior module used these changes to improve the decision making required to effectively play a game 

of soccer.  For future work on this project, the team recommends further restructuring of the vision 

module to incorporate a variety of object detection algorithms, extending the localization module to 

allow for localization based on the field lines as well as the goal posts and field edges, full 

implementation of role switching in the behaviors module, the addition of camera calibration to the 

visualization tool, and the development of a more effective walk engine and library of kicks in the as-yet-

untouched motion module.  
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1 Introduction 
Completion of tasks by autonomous robotics systems is a problem which presents itself in many 

forms. Robots that wish to complete any of a myriad of potential operations that an autonomous system 

may need to perform require systems to perceive the world around them, a way to perceive their place 

in that world, and a way to decide what actions to take. When the additional complication of 

coordinating with other autonomous units is introduced, the requirements for even a simple task 

become immense. 

 The Autonomous Multi-Robot Soccer team explored these issues through the design and 

implementation of a software system to compete in the RoboCup Standard Platform League, a robotic 

soccer competition involving multiple autonomous robots coordinating to play a game designed to 

emulate soccer on a smaller scale. The robot hardware used for this competition is standardized, which 

means the only difference between teams is the operation of the software they contain. This software 

consists of modules which allow the robot to move, process data from its cameras, use that data to 

determine where it is in the world, and determine what actions it should take. 

 The primary focus of this project was on the vision, localization, and behavior systems. Vision 

handles camera data, converting it into a more readily usable form for other subsystems. Localization 

determines where the robot is on the field. The behaviors system takes the vision and localization data 

and determines what the robot should do to best benefit the team, maximizing the score the team 

receives during a given match. 

2 Background and Literature Review 

2.1 RoboCup Background 
 RoboCup is a scientific initiative with participants from all over the world. RoboCup has four 

main interests: RoboCup Soccer, RoboCup Rescue, RoboCup @Home, and RoboCup Junior. RoboCup 

Soccer is the primary interest of the organization, and has 5 leagues: Humanoid, Middle Size, Simulation, 

Small Size, and Standard Platform (The Robocup Federation, 2012). The WPI Warriors team first 

competed in the Standard Platform League in 2011. This league has fixed hardware, so only the software 

can be changed. The league uses the Aldebaran Nao robots. Project Nao launched in 2004 and the Nao 

robots have been the robot of the SPL since 2010. The most recent release of the heads for the Nao 

robots is version 4, which features 2 high-definition cameras (1280x960), an Intel ATOM 1.6 ghz CPU, 

and wireless communications over WiFi. The body of the robots features 21 degrees of freedom 

(Aldebaran Robotics, 2012). 
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Figure 1: Diagram of Aldebaran Nao. 

From the Aldebaran Robotics website. Retrieved 2012 from http://www.aldebaran-

robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html 

The Standard Platform League has evolved its rules as the competitors have advanced their 

capabilities. The rules of SPL are pretty similar to the soccer game that human beings play. There are 

two goals at either end of a six meter long by four meter wide field. The goals are 1.4 meters wide, and 

are inside a 2.2 meter by 60 centimeter penalty area. There is a center circle with a diameter of 1.2 

meters, as well as two penalty marks which are 1.8 meters from the back of the field in the center of the 

field.  
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Figure 2: Standard Platform League Field Dimensions 

From the RoboCup Standard Platform League rules website. Retrieved 2012 from 

https://www.tzi.de/spl/pub/Main/WebHome/SPL_RuleDraft2012.pdf 

Each team consists of four robots, and is either on team red or team blue. The teams are established on 

the robots by a waistband that is blue for the blue team and pink for the red team. Each team may have 

one goalie. The only player on a given team allowed into their own penalty area is the goalie.  

 There are six states during the play of a game. The game starts in an initial state, where the 

robots are not allowed to move any motors, but must stand upright. The robot team can be changed by 

hitting the left foot bumper if the robots are not listening to the GameController. The game then moves 

to the ready state, where the robots move to their starting positions. The ready state lasts 45 seconds. 

The next state is the set state. During this state the robots must wait to play. Any robot in an illegal 

position will be manually moved to pre-determined positions. Teams can also declare to be placed 

manually. If a team requests this they have all of their robots placed in less advantageous locations than 

if they were to automatically place themselves. The following state is the Playing state. During this state 

the robots effectively play a game of soccer. Robots can be moved in and out of a penalized state during 

the playing state. The rules for being penalized are listed in the paragraph below. After a goal is scored 

the robots move back to the ready state, which will then move back to the set state and then the playing 
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state as stated previously. When a half ends the robots move to the finished state, after which the team 

can physically retrieve their robots. 

There are many penalties that a robot can be called for. Penalties last for 30 seconds, and when 

a robot is penalized it is removed from the field by a referee and must remain inactive while it is 

penalized. When a robot’s penalty is over it is placed back on the field where the cross would intersect 

with the boundary line on the half of the field farthest from the ball. A list of penalties follows. Any non-

goalie robot that steps into its own penalty area will be called for being an illegal defender. Any robot 

that holds the ball within their feet for more than 5 seconds will be called for ball holding. Any robot 

that is inactive for more than 20 seconds will be called for being inactive. Any robot that stays in a 

stance that is wider than the robot’s shoulder for more than 5 seconds will be called for illegal player 

stance. Player pushing is the last of the penalty calls. There are many types of penalty calls. If a robot 

supplies enough force to knock another robot over it is called for player pushing. A robot that walks into 

another robot for more than 3 seconds will be called for player pushing. A robot that walks front-to-back 

into another robot will be called for playing pushing. A robot that is walking into a robot that is trying to 

get up after falling will be called for playing pushing. A robot that is attempting to get up after falling 

that pushes another robot that has attempted to clear the fallen robot will be called for player pushing. 

There are 3 exceptions to these rules. A stationary robot will not be called for pushing. A robot 

attempting to kick the ball will not be called for pushing, given that the referee decides it is reasonable 

that the kick is performed. A goalie will not be called for pushing while in the penalty area.  

If a game is tied after the second half, and it is required that the game cannot end in a tie, the 

game will go into Penalty Kicks. There is a 5 minute break after the end of second half before the penalty 

kicks start. Teams can swap out to specific code for the penalty kicks. Each team gets five chances to 

score on the opposing team during the penalty Kicks. For penalty kicks the teams alternate between 

playing offense and defense. The offensive team gets one attacker and the defensive team gets one 

goalie. The goalie starts in the middle of the goal, and the attacking robot starts in the center of the 

field. The ball starts on the penalty mark. The robot has one minute to score. The goalie may not touch 

the ball outside of the penalty area, and the attacking robot may not touch the ball inside the penalty 

area. An attempt is considered a goal if the robot scores a goal on the defending team or the goalie 

touches the ball from outside the penalty area. An attempt is considered not a goal if the ball leaves the 

field, or if the attacking robot touches the ball within the penalty area, or the time expires before the 

ball enters the goal. 

There are four human referees per game. There is a head referee who calls every penalty, 

signals when each half of the game starts, when each half ends, signals when a goal has been scored. All 

decisions made by the head referee are final. There are also two assistant referees who are responsible 

for moving robots as robots are penalized and un-penalized. There is also one referee who operates the 

GameController. This person communicates to the referees when robots are un-penalized and controls 

the GameController which broadcasts to the robots when a robot is penalized.  A more comprehensive 

explanation of the rules can be found in the official RoboCup Standard Platform League Rule Draft 

(RoboCup Technical Committee, 2012). 
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2.2 Standard Platform League Rule Changes 
 Since one of the main goals of RoboCup is to advance the state of artificial intelligence through 

robot soccer, the rules are constantly being changed to increase the challenge of the game as 

competitors improve their strategies.  One of the biggest changes between the 2011 competition that 

WPI initially competed in and the 2012 competition that this project was working towards dealt with the 

goal colors.  Originally, goals were uniquely colored, with a blue goal on one side of the field and a 

yellow goal on the opposite side.  This was the only unique marker on the field to distinguish which side 

belonged to which team.  For the 2012 competition, both goals were made to be yellow, eliminating the 

only unique field markers.  This change occurred halfway through the work on this project, and 

significantly affected the goals of the project and the areas focused on, which will be discussed further in 

the methodology section. 

2.3 Vision 

There are many ways to translate the image that a robot sees into useful information. Similarly, 

there are many steps required to fully processing an image. The first step is to process the raw image 

into regions. The second step is to identify these regions as different objects. There are various ways of 

doing this for each type of object. After identifying the object, the information about the object has to 

be extracted. Information extraction about an object depends on what type of object is being analyzed. 

2.3.1 Preliminary Image Processing 

A useful first step in image processing is to alter the image to increase both the speed and 

accuracy of processing the image. The robot must be able to process the image in real time, but also 

must identify as much correct information as possible. In a game like RoboCup, finding the point where 

the robot will be able to extract data as accurately as possible within a short allotted time for 

calculations will allow optimal game-play. With the current size of the image, the time to process the 

image needs to be reduced to allow the processor to work on other aspects of deciding the robot’s 

actions (Barrett et al., 2010). 

After reducing the image down to a workable size, many algorithms can be used to determine 

what the robot is actually looking at.  One such algorithm is blob detection.  To carry this out, the robot 

must first identify what each pixel represents. This is done most easily by applying a saliency map that 

maps ranges of color values to the objects that they represent. 

With the salient image the robot can then identify the regions in that image. There are many 

forms of region detection. One form is identifying “runs” of colors that are identified by streaks of pixels 

of the same color. After identifying the runs along one axis (rows or columns), the runs are strung 

together in the other axis (columns or rows respectively). This allows any group of pixels that are the 

same color to be identified as a region, which can be analyzed into what type of object it is, allowing the 

object’s properties to be extracted (Ratter et al., 2010). 

2.3.2 Object Identification 

Once an image has been sufficiently processed, the next part of the vision process involves 

detecting and identifying objects in the image.   Many different algorithms could be used for object 
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identification.  As such, this section will begin by exploring what object identification algorithms could be 

applicable to the task of identifying balls, posts, robots or field lines. 

2.3.2.1 Edge detection 

Edge detection algorithms can be used to reduce an image to the important edges found in it, 

removing a large amount of extraneous data.   This algorithm is relevant to the problem of object 

identification because many of the objects on a soccer field are essentially lines.  For example, the 

representation of a field line could very well be reduced to a single line, rather than an elongated 

rectangle.  Reduction to lines would greatly simplify any further calculations that would have to be done 

to determine the distance to an object, and it could even simplify localization calculations that would 

use this data.  Some objects however, such as other robots or the game ball, would not benefit as much 

from this approach, as a line cannot easily represent them.  Another difficulty is that some lines, such as 

the circle found in the middle of the field, are curves, and need to be dealt with differently than the 

other lines found on the field.   Edge detection could also have other uses, such as delimiting the size of 

the field to reduce the area of the image that needs to be scanned to identify field lines or balls.  This 

was seen in team rUNSWift’s implementation of an edge detection algorithm using the RANSAC 

algorithm, which fits a line through points while ignoring outliers, to identify the edges of the game field 

(Ratter et al., 2010).  

 The problem of edge-detection is rather non-trivial, mainly due to the fact that declaring exactly 

where an edge is among a smooth transition in color can be difficult.  As such, there have been many 

offered solutions for this problem, including linear, non-linear, and best fit methods (Peli, 1982).  In this 

case however, the task has been greatly simplified by the fact that a saliency map is generated.  This 

saliency map means that there are only a very distinct number of colors that can actually represent 

relevant objects.   As such, the edges will always be precise and crisp.  For example, one pixel on the ball 

will be orange regardless of what part of the ball it is, and the neighboring one will be white if the ball 

lies on a field line.  The change will be immediate.  This means that for this situation, a version of the 

RANSAC algorithm will be the best solution to identify the edges found in the image.  

2.3.2.2 Region Detection 

 Many of the algorithms used by Robocup teams for object identification include some sort of 

region detection.  These algorithms usually work to try to identify specific regions in the image which 

may represent a ball, a robot, or part of a line.  The algorithms used to achieve this sort of object 

detection are quite varied.   Once again, the algorithms used for region detection can be simplified 

versions of commonly used region detection algorithms due to the fact that they would be used on a 

saliency map of the image instead of the actual image.  This so greatly reduces the number of colors 

found in the image that it completely removes the need for using gradients to decide which pixels are 

part of a region and which ones are not.  As such, the most relevant algorithms for this task are those 

already proposed by other teams, rather than more commonly discussed region detection algorithms.   

The rUNSWift team uses region detection to identify lines, posts, and robots.  The algorithm 

creates these regions by looking at each column in the image, and combining any pixels above and 

below of the same color into runs.  These vertical runs are then stringed together with any adjacent runs 
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of identical color.  These stringed runs are then said to be a region, and the colors of these regions are 

examined to identify what the region could represent (Ratter et al., 2010).  The university of Texas 

Austin Villa Team used a similar process called blob formation to create regions.  This team, however, 

generates the runs both vertically and horizontally.  These runs are then combined to form a blob, in the 

form of a line running through the middle of these runs.  These lines, or lineblobs, create a line which 

can then be used in the same way as the edges created through edge detection. 

2.3.3 Extraction of Object Information 

After the object has been identified, the robot can then determine relevant information about 

the object, e.g. distance and heading information that can be used for localization. Information about 

the ball can be determined by applying some geometry. An effective method to determine size of the 

ball is to select three points at random on the edge of the region of pixels identified as the ball. A line is 

drawn from the first point to the second point and then from the second point to the third point. The 

perpendicular bisectors are found to these lines. The intersection of these lines is the center of the ball. 

The radius of the ball can then be determined by measuring the distance from the center point to the 

edge of the region. This process is repeated multiple times to find the average value of the radius. The 

figure below illustrates the method. 

 

Figure 3: Ball Radius Measurement Algorithm (Ratter et al., 2010) 

The post should be handled differently than the ball. There are two possible posts of each color 

that can be seen. Posts also differ in that it is a lot more likely that the robot will only see a portion of a 

post, rather than the entire post object. In the case that the robot can see the left and right boundaries 

of the post, then it can deduce the post’s dimensions. If the robot can see the crossbar, then it can 

determine which post it is looking at. If the robot can see two goal posts, then it can figure out which is 

the left post and which is the right post (Ratter et al., 2010). 
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The robot also must identify the distance and heading to each object that it has identified. For 

the posts and the ball this is best accomplished using the kinematics chain. The kinematics chain is a 

method of predicting the distance of an object based on the size of a given object. The perceived size of 

an object can be compared to the expected size of an object. After finding the camera’s height, which 

can be found using the joint angles, and the ground plane, which can be found from the horizon, the 

robot can find the distance and heading of where the vector that points to that pixel intersects with the 

ground plane. For the ball, the radius of the ball is used as the size attribute that is measured against the 

real ball size. For the post the width of the post is used if it can see the leftmost and rightmost portions 

of the post. When it knows the width of the post it sees it can figure out how far the post is using the 

same kinematics chain process explained for the ball (Ratter et al., 2010). 

2.4 Localization 
Localization has always been an interesting problem to solve in the context of the RoboCup 

competition.  Many methods of robot localization exist, but finding the best methods to implement for 

individual robots with a limited field of view and limited processing capability can prove difficult.  Based 

on the reports of teams who have had past successes in this endeavor, two strategies are prominent: 

 Kalman filtering and particle filtering.  The Nao Devils, who came in second place in the 2011 RoboCup 

Standard Platform League competition, are currently using a variation of Kalman filtering that uses 

multiple Kalman filters (Czarnetzki et al., 2010).  Out of the American teams, Austin Villa uses Monte 

Carlo particle filtering and the UPennalizers use Kalman filtering (Barrett et al., 2010; Brindza et al., 

2010).  rUNSWift, the team whose code originally formed the basis of the project group’s code, uses a 

combination of the two (Ratter et al., 2010).  The following sections will describe the advantages and 

disadvantages of using a Kalman filter, a particle filter, and a combination of the two. 

2.4.1 Kalman Filter 

A Kalman filter is “a recursive data processing algorithm that estimates the state of a noisy linear 

dynamic system” (Negenborn, 2003).  The term state refers to some vector of variables that can 

describe a system.  In this case, the state of the robot would be described as the vector consisting of x 

location, y location, and theta orientation.  Kalman filters have proven effective for robot localization as 

they can estimate changes in a robot’s position and orientation while also including a measure of the 

uncertainty of its estimation.  This uncertainty takes into account error in both the kinematic model of 

the system and the sensors of the robot. 

The Kalman filter also operates under a few assumptions about the system it is implemented in. 

 These assumptions are that the measurement noise and the model noise are independent of each 

other, all noise in the system is white noise and can be modeled with a Gaussian distribution, and the 

system is both known and linear (Freeston, 2002).  Robot localization meets all of these assumptions, 

except that the system is often non-linear.  This problem can be solved by using a variation of the 

Kalman filter, called the Extended Kalman Filter, which replaces the assumed linear trajectory of the 

system with an estimated trajectory.  If updates to the Extended Kalman Filter are applied frequently, 

the trajectory can be assumed to be linear between each step (Negenborn, 2003).  It can also account 

for non-linear sensor measurement data by slightly adjusting the equations of the algorithm. 
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The algorithm itself can be broken down into two steps.  The first is the prediction step (or time 

update), where the state is updated to a predicted location based on a kinematic model of the system.  

In the case of a robot, this kinematic model is its odometry.  The second step is the correction step (or 

measurement update), where the state is updated to reflect data from sensor measurements.  In the 

case of a robot, this could be data from cameras, range-finding sensors, or a combination of the two 

(Ivanjko, Kitanov, & Petrovic, 2010).  Quite useful for RoboCup, this correction step can easily be 

modified to include localization based on geometric beacons, which in this case are analogous to goal 

posts (Leonard & Durrant-Whyte, 1991). 

The equations making up the algorithm are as follows, beginning with the time update 

equations: 
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Equation 1: Kalman Filter Time Update 

For these equations, X  represents the state vector, which in the robot’s case would be 

k

x
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.  The k  

represents the time step of the state, and is used in the above equations to denote the time of the 

estimates and measurements.  The vector ku  is the input vector, which in this case represents the 

odometry readings since the previous update, or 
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y
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.  A  and B  are matrices that relate the state 

and input vectors to the previous state variables; more specifically they transform both vectors to the 

global coordinate frame, since both X  and u  are measured with respect to the local coordinate frame 

of the robot.  Also, the “^” above X  denotes that X̂  is an estimation, rather than an exact 

measurement.  So, equation (1) calculates an estimate of the robot’s pose at time k  based on the pose 

from the previous time step ( 1k  ) and any odometry data received since the last update.  Calculated 

similarly to X̂ , the P  calculated in equation (2) represents the error covariance matrix, or the 

measurement of X̂ ’s error mentioned at the beginning of this section.  Q  represents the noise 

covariance matrix of the model, and is often determined experimentally.  The higher Q  is, the less 

trusted the measurements are; likewise a Q  close to zero means the expected noise of the model is 

low, and therefore the update is trusted to be accurate. 

 Once the time update is complete, if the robot has some measurement input at the current time 

step, the measurement update is performed using the following equations: 
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Equation 2: Kalman Filter Measurement Update 

These equations introduce some new variables.  Y  represents the measurement vector.  C  is a matrix 

relating the measurement vector to the state vector, similar in function to matrices A  and B  above.  

R  is similar to Q  except that instead of representing the noise of the kinematic model, it represents 

the noise covariance matrix for the measurement.  J  is the Kalman gain, used to determine to what 

extend the measurement update can be relied upon.  So, equation (3) calculates the Kalman gain, which 

depends on the error covariance matrix of the time update and the inverse of the measurement 

covariance matrix.  It is then used in the actual measurement update to the state performed in equation 

(4), where a higher or lower kJ  means the update will be scaled to have more or less importance 

depending on the confidence of the time update and the measurement accuracy.  Finally, equation (5) 

updates the error covariance matrix P  to account for any changes to the accuracy of the state vector 

brought about by the measurement update. 

The Extended Kalman Filter uses similar equations, with a few slight adjustments: 
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Equation 3: Extended Kalman Filter Time Update 

| 1
ˆ

1

| 1 | 1

| | 1 | 1

| | 1

(3)

( ) (4)

ˆ ˆ ˆ( ( )) (5)

( ) (6)

k k

k

X X

T T

k k k k k k k k

k k k k k k k k

k k k k k k

h
C

X

J P C C P C R

X X J Y h X

P I J C P





 

 







 

  

 

 

Equation 4: Extended Kalman Filter Measurement Update 

The time update is unchanged.  The measurement update, however, uses a varying C  (now denoted 

kC , to show that it varies with the time step).  kC  is determined by the function h , which describes the 

non-linearity of the sensor data used for the measurement update.  Non-linear trajectories are handled 

by making updates over short time steps, so that any changes to the robots position can be assumed to 

be linear.  Aside from these changes, the equations work the same way, and the Kalman filter is 

extended for use with non-linear data. 
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Kalman filtering has two large downsides, however.  Since the algorithm is based directly on the 

previous location information, it requires an accurate initialization.  Without knowing its initial position 

and orientation, a robot’s localization updates are essentially starting from a faulty guess of its pose. 

 This initial error can be difficult to recover from.  Similarly, as small errors propagate from one update 

to the next, the robot can eventually reach a state of high error; since each update is so dependent on 

the previous update, the robot may be unable to recover an accurate pose estimate (Ratter et al., 2010). 

2.4.2 Particle Filter 

Particle filtering is a process by which particles are spread over an environment which represent 

possible positions and headings for the robot. Each particle also contains a probability of how likely each 

pose is. The probabilities associated with each particle are adjusted according to observed features, and 

low probability particles are removed, while high probability particles are multiplied (Martinez-Gomez, 

Jimenez-Picazo, & Garcia-Varea, 2009). Particle filters are best applied where uncertainty should be 

preserved, as it is tracked by multiple groups of particles in the environment. 

An important assumption that must be met when using particle filters is that a model of the 

environment exists.  This model must be able to accurately determine the probability of the robot being 

at various locations based on sensor data. This leads to a secondary assumption that the entirety of the 

area in which the robot is operating can be represented in software, including major features which are 

used to determine position (Rekleitis, 2004). 

Particle filters operate by a principle of prediction and refinement. The algorithm starts by 

spreading particles across the environment with equal probabilities. It then processes sensor input and 

compares it to the known environment, using that data to adjust the probabilities of the particles. It 

then resamples the particles, eliminating low probability particles and multiplying high probability 

particles. Finally, the list of particles is further refined by repeating the sensor data processing and 

resampling steps (Rekleitis, 2004). 

Particle filters excel when used in known environments where major features may be used to 

determine position. Such systems do not need an initial position to base calculations off of, and are well 

suited for situations where the robot has just been introduced into the environment. 

A major downside to the particle filter approach is the inability to effectively determine 

positions in open environments. Open environments are extremely hard to convert into a virtual 

representation effectively. Other environments with an overabundance of features are also 

problematic—with too many matches for possible positions, the certainty of determining the actual 

position of the robot is much lower.  Another downside that is important to the RoboCup problem is 

that they are computationally intensive if a large number of particles are used.  To implement a particle 

filter on a Nao robot, simplifications would need to be made. 

2.4.3 Combined Kalman Filter and Particle Filter 

 Using a combination between Kalman filtering and particle filtering can eliminate many of the 

downsides from both algorithms (Ratter et al., 2010).  Beginning localization with a particle filter can 

quickly narrow a robot’s initial pose to a reasonable possibility.  Localization can then switch to using a 
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Kalman filter primarily.  This fixes the Kalman filter’s weakness of finding an initial position, while also 

using the particle filter as little as possible to reduce the performance impact on the system.  Similarly, 

when the Kalman filter’s error propagates to the point that the robot loses its position, the particle filter 

can be run for a short period of time to determine a more correct position to restart the Kalman filter 

on. 

3 Methodology 

3.1 System Overview 
 Since the team originally adopted the rUNSWift code as the basis for the project, the software 

architecture is similar to rUNSWift’s original software architecture.  An diagram of the software 

architecture is shown below. 

 

Figure 4: Software Architecture 

 The four primary modules that make up the software are Vision, Localization, Motion, and 

Behaviors.  Each module shares information with the other modules through the World Model, which is 

implemented using a “blackboard” analogy where relevant modules can either read from or write to 

different sections of the blackboard.   
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The rules of the competition state that one module may be left unchanged from another team’s 

code, an additional module may be kept if it is significantly modified, and all other modules must be 

completely rewritten.  The team chose to keep rUNSWift’s Motion module, modify the Vision module, 

and create original Localization and Behaviors modules.  Below is a description of the implementation of 

each module, as well as the development processes used. 

3.2 Vision 
The vision module was selected as the module that would only be altered instead of being fully 

replaced.  As such, it remains heavily based on the rUNSWift implementation.  The following process 

was used to modify the vision module.  The rUNSWift vision module was first tested to determine its 

accuracy in measuring both the angles and distances of goal posts and balls.  Next, the code was 

examined in detail to gain a better understanding of it, and the goal post and ball detection algorithms 

were improved wherever possible.  Finally, similar accuracy tests for the vision module were performed 

to measure improvements in accuracy.  Each step will be discussed below, beginning with an overview 

of how the rUNSWift team implemented their vision module. 

3.2.1 Implementation Overview 

The implementation of the vision module feeds the raw image from the raw camera into the 

Vision class, which runs that image through the vision pipeline.  The pipeline calls a series of other 

classes to process and analyze the frame to obtain information about different objects found in the 

frame, and to calculate their positions and orientations relative to the robot. 

For the first step in this task, the module first creates a saliency map of the raw image.  This map 

is a compressed version of the raw image with a calibration file applied to it, reducing it to a number of 

predetermined colors, such as goal-post yellow, goal-post and robot blue, robot red, field line and robot 

white, field green, ball orange, and background.  All other colors are removed from the image to make 

the process of analyzing the file easier. 

The Vision class then uses the fieldEdgeDetection class to determine the edges of the fields, and 

the regionBuilder class to group regions with similar colors into different regions, such as robot or post 

regions.  The regions are then analyzed depending on their type.  For example, ball regions are 

processed using the ballDetection class, robot regions by the robotDetection class, and goal regions by 

the goalDetection class.  Each of these classes is tasked with determining the position and orientation of 

an object relative to the robot. This includes calculating its distance and its angle from the information 

gathered on the region.  Then, this data is used to apply a series of sanity checks to ensure the results 

are actually plausible.  If they are, the position of each object, be it a ball, another robot, or a goal post, 

is written to the blackboard for use in the localization and behaviors modules.  

3.2.2 Testing  

The capabilities of the vision module were thoroughly tested prior to making any changes, to 

both determine what most needed improvement, and to be able to quantitatively measure the progress 

made in this project.  The testing was divided into two different sets of tests, one for post detection and 

the other for ball detection. 
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The first set of tests focused on goal post detection.  This was done by picking several different 

positions on the field, having the robot face the goal from these positions, and recording both the angle 

and the distance of any post the robot was able to see. The positions of the robot for these tests are 

shown below. 

 

Figure 5: Vision Test Positions 

The second set of tests determined the accuracy of distance measurements for the ball 

detection.  For this, a ball was placed at various distances away from the robot and the perceived 

distance was compared with the actual distance.  The distances used for this test were 500 mm, 1000 

mm, 1500 mm, 2000 mm, 3000 mm, and 4000 mm.  The results were then graphed and analyzed.  The 

results of this testing, as well as the goal post testing, can be found in the Section 4.1.1 of the Results 

section of this report. 

3.2.3 Improvements on Code 

After the testing phase, it was determined that additional improvements were required for both 

the goal detection and ball detection to increase their accuracy. 

For the goal detection, the first step was to modify the values for the expected height and width 

of the pole.  This was required because the poles used during testing are not quite equal to those used 

in competition, which can provide inaccurate measurements.  Furthermore, it was found that the 

program calculated the distance away from a post using only the post’s width.   For example, in the 

figure below, the light blue box marking a detected post region is drawn around the post, and the width 

of that rectangle is used to calculate the distance to the robot. 
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Figure 6: Example of Post Detection 

This had to be changed because the robot often gets faulty width readings depending on the 

blur caused by head motion during scans.  Since the post is a relatively thin object, this blur can greatly 

effect distance measurements.  As such, additional methods of measuring the distance to a post were 

implemented. 

The first one of these methods was to use the height of the post as a way of measuring the 

distance, in a similar fashion to using the width.  In theory, this measurement should be much more 

reliable, as the height is greater than the width, and as such it is less likely to be affected by the 

movement of the robot’s head.   However, this method requires the entire post to be in the image, 

making it only viable for images like the one shown in the figure below.  Even though this does not cover 

situations where the robot is close to the posts, it can be used in almost all situations when the robot is 

mid-field or further back, which originally had the greatest error when only width measurements were 

used. 

 

Figure 7: Image for Viable Height-Based Post Detection 
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A third method was implemented to derive the distance between the robot and a post when 

only the bottom of a post is seen.  The theory is that if the robot kinematics are known, then it is 

possible to map any pixel from a camera image to a distance, as long as that pixel marks a point on the 

floor. In the RoboCup soccer situation, a green pixel within the field lines is guaranteed to be a point on 

the floor.  As such, finding the distance to the pole is just a matter of looking for a field-green pixel right 

under a pole and using the robot kinematics to map that pixel to an actual distance.  These calculations 

are made easier by the fact that the rUNSWift code already had a method of handling the robot 

kinematics.  The only downside to this technique is that it must find green pixels right under a pole to be 

useful, so this method is highly dependent on a good calibration file.  The following figure demonstrates 

the kind of image where this method can be used. 

 

Figure 8: Image for Viable Robot Kinematic-Based Post Detection 

Most of the pole is not in the image, so the height measurement cannot be used.  However, the bottom 

of the pole has many green pixels right under it, making it very likely that using one of these to calculate 

the distance to the goal will be accurate.   

The two new methods are expected to be much more accurate than the width based calculation 

that was used before for the reasons described above.  As such, the height method was prioritized 

above the other two methods, with the kinematics methods prioritized over using the width.   

The same principle of using the robot kinematics and a field pixel at the bottom of a post can 

also be applied to ball detection.  The current ball detection algorithm is based on using the radius of the 

ball to estimate its distance.  This method was, like the goal post width, highly susceptible to error from 

camera blur caused by camera scanning movements and bad calibration files.  However, if green pixels 

can be found under the ball, the position of these pixels can be used in conjunction with the robot 

kinematics information to determine the distance to the ball. 

3.3 Localization 
 The localization module was completely rewritten from the module used during the 2011 

RoboCup competition.  The new module incorporates both particle and Kalman filtering to keep track of 
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the robot’s position, similar in purpose to the localization system used by the rUNSWift team.  However, 

both the particle filter and the Kalman filter required significant adjustment from the theoretical models 

discussed previously to work for this particular problem. 

 Both filters were implemented so that they could turn on and off at any time the robot chose 

too.  As such, they had to share a coordinate system.  The figure below shows the coordinate system 

that both filters use.  The coordinates are implemented relative to which team the robots are playing 

on.  This allows for faster to change and easier to understand code in the behavior module, which often 

undergoes last-minute adjustments during competition.  A robot’s position is defined as ( , , )x y  , 

where x  represents the position along the field width, y represents the location along the field length, 

and   represents the robot’s orientation with respect to the x-axis: 

 

Figure 9: Coordinate System 

 Each filter also includes a measurement of how accurate the robot believes its current position 

to be, which determines when the current filter in use should be switched out.  The Kalman filter uses a 

measurement of variance, and switches to the particle filter when the variance is high (i.e. when the 

robot is highly unsure of its position).  The particle filter uses a probabilistic measurement of how 

correct its position is, and will switch to the Kalman filter when the probability is high (i.e. when the 
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robot is more sure of its position).  This switching criteria allows the localization module to use the less 

resource-intensive Kalman filter whenever the robot is sure of its position, but will allow the use of the 

more resource-intensive particle filter in critical situations when the robot becomes lost. 

 Similar to the vision module development process, the localization module development 

incorporated many tests.  The module used by the WPI RoboCup team in 2011 was first tested to use as 

a basis of comparison to determine how well the new implementation worked.  This also provided a 

quantifiable way of measuring the progress of this project.  The results of the initial and final tests can 

be found in sections 4.1.3 and 4.2.3 of the Results and Discussion section of this paper. 

The following sections describe the implementation of the Kalman filter and the particle filter in 

more detail. 

3.3.1 Kalman Filter Implementation 

 The implementation of the Kalman filter follows the same algorithm as described earlier, but 

with some modifications and additions to work for the problem of robot localization on a soccer field.  

The algorithm begins with the Kalman filter time update. 

 The robot’s odometry is a decent, and constant, indication of the robot’s positional change over 

time, so the time update was modified to become an odometry update.  The basic equations remain in 

the form: 
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.  The matrix A  is replaced 

with the identity matrix, since the current location estimate does not need any matrix transformation to 

relate to the previous location estimate.  Since the change in odometry is measured in a coordinate 

frame relative to the robot, however, it needs to be transformed to the global coordinate frame, so the 

matrix B  is set to a transformation matrix for that purpose.  Covariance values for the matrix Q  were 

determined experimentally based on the accuracy of the odometry.  The final equations are as follows: 
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Equation 5: Odometry Update 

 Also, as a modification from the time update equations, the x and y values for the noise 

covariance matrix Q  are set to zero if there is no change in both the x and y odometry, and similarly the 

θ value is set to zero if there is no change in the θ odometry.  This way, the covariance increases linearly 

only when the robot is actually moving, rather than increasing constantly as time passes.  This 

represents the behavior of the odometry error, which increases additively as the robot continues 

moving for long periods, but does not change when the robot is standing still. 

 The second part of the Kalman filter algorithm is the measurement update.  The implementation 

of this part of the algorithm incorporates measurement updates only when one or more goal posts are 

seen by the robot.  Again, it follows the theoretical equations of the Kalman filter: 
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Here Y  represents the new position calculated from the vision information about the post(s) 

seen by the robot.  J  represents the Kalman gain, C  is a transformation matrix, and R  is a covariance 

matrix.  The other variables are the same as in the odometry update implementation. For the 

implementation of the measurement update, the equations can be simplified by replacing C  with the 

identity matrix.  As with matrix Q  in the odometry update, the error values of matrix R  were 

determined experimentally based on the accuracy of the vision module.  The final equations for the 

measurement update are as follows: 
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Equation 6: Measurement Update 

The biggest change to the measurement update equations is that the measurement error 

covariance matrix R  is set dynamically.  The values are set from a range depending on how accurate a 

position can be drawn from the vision information.  For example, if both posts are clearly seen, the error 

value is set to the low end of the range at .1.  In the worst case, if only one post is seen at a far distance, 

the error value is set to .5, the high end of the range. 

The above equations represent the majority of the Kalman filter implementation, but there are 

also a few additions to improve its operation.  One addition is bounds checking.  Since the field size is 

known, and since robots are penalized and removed from play if they step too far off the field, a reliable 

set of bounds can be defined to check the robot’s position against.  Between Kalman filter updates, the 

localization module checks to see whether the robot has moved outside of the bounds.  If so, the 

Kalman filter moves the estimated position onto the field boundary and increases the appropriate 

variances values in the matrix P .  

The other notable addition is in the Kalman filter initialization.  Whenever the localization 

module switches to using the Kalman filter, the variance values in P  are set to a medium value, even if 

the robot was very sure of its position from the particle filter.  This fixes an observed behavior of the 

robot where the localization updates too slowly, because the robot perceives its position as nearly 

perfect. 

3.3.2 Particle Filter Implementation 

The particle filter in this system was designed and implemented to fulfill the specific need for a 

method which performed well when there is no reliable data on the robot’s initial position. Its main 

strength is the lack of assumptions about previous position during calculation of the current position. 

This feature allows it a better chance of giving a correct position at the beginning of the game and when 

the robot has been penalized. The main weakness of a particle filter is that it is processor intensive, and 

easily affected by erroneous sensor data. For this reason, once a position for the robot has a certain 

probability, localization is passed off to the Kalman filter. 

3.3.2.1 Operation 

The particle filter operates by maintaining a list of particles, each particle consisting of an x 

coordinate, y coordinate, theta value, and probability. The system executes a set of code every program 

loop which evaluates sensor data and adjusts the probability of each particle accordingly. Afterwards, 

the points with the lowest probability are discarded, to be replaced by new particles. The new particles 

are in an area around the particles with the highest probability. 
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The first operation performed by the filter each iteration is to adjust all particles for odometry 

data. The odometry data is processed, and the data of each particle is updated to reflect the robot’s 

movement. This could be accomplished by allowing the probabilities of the previous particles to 

decrease, and new particles closer to the actual position to be generated. However, this requires more 

time and processing to accomplish, and updating each particle with movement data accomplishes the 

same goal in a more efficient manner. After these adjustments are made, the filter checks that all 

particles are still within the bounds of the workspace, and removes any particles which do not meet 

these criteria.  

Following adjustments for odometry, each particle’s probability is updated based on sensor 

data. The system calculates the expected distance and heading from each particle to the sighted goal 

posts, and compares it to the measured heading and distance provided by the vision system. In addition 

to the modifications by the sensor data, each particle’s probability is changed based on the direction its 

theta value indicates. Particles with a theta value facing the sighted goal posts have their probability 

increased, and particles with a theta value facing away from the sighted post have their probability 

decreased. The team association of the sighted goal posts is determined by the goalie sighted within the 

goal. 

The sensor data given to the particle filter had the potential to be erroneous in many ways. 

Testing indicated the possibility of invalid ranges, sighting only one post, and being unable to identify 

which team a goal belonged to. This was mitigated by reducing how much the probability of the 

particles was adjusted based on the given data when one of these conditions was detected. 

Following the evaluation of sensor data, the filter trims the lowest probability particles from the 

list. These particles are then replaced by new particles, whose x, y, and theta values are determined by 

the positions of the highest probability particles. Initially, there were problems with the filter “settling” 

on a few high probability particles, to such a degree that the newly introduced particles were always 

eliminated as the “lowest probability” in the set. This was mitigated by adjusting the probabilities of 

existing particles such that their average is equal to the probability assigned to new particles. As a 

further probability modification, the probabilities of all particles were rescaled each iteration to be in 

the expected range of zero to one. 

The bounds for creating new particles are calculated by recognizing groups of particles using a 

density based algorithm, which isolates clusters of high probability particles, allowing a more efficient 

placement of newly generated particles. 



22 
 

 

Figure 10: Particle Grouping 

 The figure above shows the grouping of particles (blue) into boundary sets (red). The filter 

generates several boundary sets, narrowing them down and combining them. If more than two sets 

remain after this process has been completed, the average probability of the set is used to determine 

which two sets are selected. The reason for using two sets lies with the rule change that caused both 

goals to be the same color; without seeing a goalie, the localization module should recognize that there 

are two possible positions for the robot on the field, in the same relative position to each goal. 
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Figure 11: Particle Filter Operation 

 The figure above illustrates a time lapse of particles (blue) coalescing around the actual robot 

position (red) using vision data giving distance and heading data to the goal posts (yellow). The particles 

start out spread across the field in the x, y, and theta dimensions, with an initial probability of fifty 

percent.  The particle filter’s operation results in the particles slowly grouping around the highest 

probability location for the robot, over a period of several localization routines.  
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3.3.2.2 Tuning  

Although the filter itself is robust, its internal constants must be tuned in order to operate at 

peak capacity. Several methods were used to determine the optimum value for each constant. The first 

was a rough adjustment and test procedure, which was extremely slow. Next, an automated simulation 

and testing setup was tried. This procedure measured distance error, theta error, number of loops to 

settle, and the maximum number of loops on a value besides the returned value. This data was recorded 

for 25 separate points, changing the value of the variable being tested each time. All variables which 

effect particle probability were tested in this manner. The error data of the points for each value of the 

variable was averaged and graphed, and these graphs were used to determine the value used for each 

variable. 

 

Figure 12: Data Regarding the Starting Probability Modifier's Effect on Distance Error 

3.3.3 Further Adjustments 

 Due to a change in the competition rules, the previously different goal colors were changed to 

be the same color, removing the only unique field objects.  This significantly affected localization, since 

the robots could no longer determine whether the goal posts seen by vision belonged to the enemy 

team or the friendly team. 

The Kalman filter, since it keeps track of a previous position, could handle this change without 

too much difficulty.  As long as odometry error propagation remained low enough that the robot did not 

become turned around by 180 degrees, the robot could determine which goal it was looking at for use in 

the Kalman filter measurement update.  The particle filter, on the other hand, could not determine 

which goal was which, and this resulted in the particle filter determining two positions of similar 

likelihood on opposite sides of the field. 

To fix this problem, the robot used robot detection in conjunction with vision information about 

the goal posts to determine whether there was a goalie in the goal.  If a goalie was detected, the goal 

type was determined based on the goalie’s team color.  If no goalie was detected, the localization 

module relied on past information to determine which goal was which as best as possible. 
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3.4 Motion 
 The motion module was left relatively untouched from rUNSWift’s original code.  A few small 

additions were added to improve the performance of the robots, however.  First, new motions were 

added for performing various kicks and for getting up after falling down.  These motions were 

implemented essentially as key-framed animations which can be run un-interrupted from the behaviors 

module.  The second addition was a simple adapter class for the odometry that allows linear 

adjustments including scaling and offsets to the odometry output, which were determined via odometry 

testing for each individual robot. 

3.5 Behaviors 
The Behavior module is implemented as a finite state machine, where each state has a behavior 

state associated with it. To give an idea of what a behavior state can be, some example states are “Walk 

to Ball”, “Find Ball”, and “Kick Ball”. The state machine also maintains a notion of roles. These roles are 

represented as clusters of states. The team currently uses three roles:  Striker, Goalie, and Support.  The 

striker role plays an offensive role, with the main objective of scoring a goal. The Goalie is responsible 

for defending the goal and preventing the enemy team from scoring. The Support role is responsible for 

either helping the striker score, or the Goalie prevent the other team from scoring, depending on the 

supporter’s field position. This state machine has states that correspond to these roles. Each role has a 

branched stack-like structure that dictates how the role should perform its task. The robots can be 

called upon to switch to another role if another robot has been removed from the field. Furthermore, 

the robots often switch between the striker and support roles depending on their respective distances 

to the ball. 

Below is an overview of the full state machine for the Behavior module.  

 

Figure 13: Behavior Finite State Machine 
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Each role will be discussed in detail in the following sections. 

3.5.1 Striker Role 

The striker has six states that it uses to score on the enemy goal: FindBall, GotoBall, AlignGoal, 

Dribble, AlignKick, and KickBall. The operation of each state and how each state can be reached is 

described below. 

The striker starts in the FindBall state. This state will conduct a head scan to find the ball, 

running two sweeps with the bottom camera (one with the head tilted forward, one with the head tilted 

backward) and two sweeps with the top camera. It will then rotate approximately ninety degrees either 

clockwise or counterclockwise, depending on information about the ball location transmitted by the 

goalie, and then repeat these head scans. If the robot detects the ball at any point in this state, it will 

push FindBall onto its behavior stack and go to the GotoBall state.  Furthermore, the robot will 

constantly perform a role check in this state to determine if it should switch to the support role, in the 

situation where another robot is preparing to kick the ball. 

In the GotoBall state, the robot will move towards the ball, while keeping the ball as close to the 

center of his vision as possible.  Ball-tracking head behavior is alternated with a localization checking 

behavior, in which the robot glances away from the ball to the position where it thinks a goal should be.  

This greatly aids the robot in verifying the accuracy of its localization. If the robot loses track of the ball 

for a long enough period of time, it will pop the GotoBall behavior off of the stack, which will put it back 

in the FindBall state. If the robot gets within a threshold distance of the ball, it will push GotoBall onto 

the striker stack and go to the AlignGoal State.  The GotoBall state also constantly performs a role check 

to determine if it should witch to the support role, in the situation where another robot is already closer 

to the ball. 

In the AlignGoal state, the robot will align its orientation such that it is facing a point between 

the two enemy goal posts.  It does this by verifying the enemy goal position with head scanning, and by 

turning in a circle around the ball until it detects that it is facing the approximate center of the goal.  The 

robot will then push AlignGoal onto its stack and go to AlignKick.  Alternatively, if the robot is very close 

to the enemy goal, it will immediately push to the Dribble state and forgo any alignment.  The Dribble 

state will simply cause the robot to dribble the ball forward for three seconds before popping back to 

the AlignGoal state.  The AlignGoal state also keeps track of the initial time it was activated, so that a 

timeout system could be used to determine if it should pop and return to the GotoBall state. 

The AlignKick state is relatively straightforward.  The robot simply moves itself to position its 

foot relative to the ball so that it can execute a kick effectively.  There are, however, multiple aligning 

states, depending on which kick is executed and which foot is used, so this is where the stack can branch 

to use different kicks. Once appropriately aligned for a kick, the robot will push the AlignKick state onto 

the behavior stack, and then go to the appropriate KickBall state, which simply executes a kick motion 

and pops. 
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3.5.2 Support Role 

The support role of the behavior system was designed to allow the robots to play cooperatively 

as a team, as opposed to individual agents trying individually to complete the same objective. There is 

an offensive supporter and defensive supporter. The defensive supporter moves towards its own goal 

area and tries to stop other robots from scoring. The offensive supporter moves towards the enemy goal 

and is positioned such that if its teammates shoot the ball down the field, it is ready to try to take the 

ball.  

The method for switching between the different roles is decided based upon the current state of 

the robots and their roles. The robots use wireless communication to transmit what role they are as well 

as their distance from the ball. If the robot does not receive any communication that indicates that 

there is an active striker, it will take on the role of a striker. If there are two non-goalie robots, 

depending on who is closer to the ball, the closer robot will take the role of striker and the farther robot 

will take on the offensive supporter role. If there are three non-goalie robots active, the closest to the 

ball will be the striker, the closest robot the enemy goal will take on the offensive supporter role, and 

the robot closer to its own goal will take on the role of the defensive supporter. 

3.5.3 Goalie Role 

 The goalie role is the simplest of the three roles in terms of what the robot actually does.  It was 

designed specifically to keep the goalie in the goal at all times, since due to the rules of the competition 

a goalie is virtually impossible to be penalized as long as it remains in the goalie box.  Keeping the goalie 

in the goal became even more important once the rules changed to make both goals the same color, 

since the goalie is now the best indicator of which goal belongs to which team. 

 The goalie state machine begins in the TrackBall state, where it spends most of its time.  As long 

as the ball is outside of clearing range for the goalie, the robot will simply scan with its head until it sees 

the ball, and it will then track the ball.  This also keeps one robot tracking the ball at all times, and since 

the goalie’s position is effectively constant, it can broadcast a reasonably accurate ball position to all of 

the other robots on the team.  The current Behavior module does not make use of this ball information, 

but given more time it is a subject that the team would like to explore using more in the future. 

 If the ball ever comes close enough to the goalie that the goalie can feasibly clear it out of the 

goalie box, the TrackBall state will be pushed onto the stack and the goalie will move into the AlignBall 

state.  In this state, the robot simply lines up its foot to execute a kick.  Once the foot is aligned, AlignBall 

is pushed onto the stack and the robot moves to the ClearBall state, where the robot executes a kick 

before popping back to the top of its behavior stack. 

1.6 Hardware Upgrades 

1.6.1 New Heads 

 One of the limiting factors in improving the robots is the limitation of the hardware, particularly 

the CPU and RAM.  Ideally, the robot’s software should be able to process the camera images at 30 

frames per second at full resolution (640x480).  This was not possible with the version 3 Nao robots due 
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to the processor speed.  It was decided that upgrading the Nao heads to the new version 4 hardware 

would enabled better vision calculations. 

 Below is a table highlighting the differences in the hardware between the version 3 and version 

4 Nao heads. 

Table 1: Hardware Differences Between Nao Version 3 and Version 4 

 Version 3 Version 4 

Camera Resolution 640 x 480 1280 x 960 

Processor 500 Mhz Geode 1.6 Ghz Atom 

RAM 256 kB 512 kB 

 

 While there was very little time to test the capabilities of the new hardware, the new hardware 

was able to compute the saliency scan at quadruple the old resolution while maintaining the required 30 

frames per second.  This would allow the vision calculations to be more precise at determining the size 

of small objects such as the soccer ball. 

1.6.2 Camera Drivers 

 The biggest change required to get the new hardware to work with the existing software was 

the camera drivers.  The development of a camera module was needed to interface with the 

ALVideoDeviceProxy to access the camera images on the new hardware.  This is in contrast to the old 

method which used Video4Linux to read the camera images directly from the camera.  While the 

Video4Linux method is the preferred method due to its speed, it was undocumented. 

 The new camera module was able to read 640 by 480 resolution camera images at 30 frames 

per second and store these in a shared memory buffer.  Initial attempts to read the full 1280 by 960 

camera images caused a reduction in frames per second.  Particularly, there were some bugs related to 

using memcpy on the raw camera data which caused the drastic drops in frame rate. 

 The other issue related to the moving to the new cameras is the camera settings.  The new 

camera had fewer settings than the old camera, which made it more difficult to calibrate the images.  

Particularly, the color red was not very vibrant which made detecting robots on the red team hard to 

detect. 

1.6.3 Build System 

 Due to the transition to Intel processors, the build system for the warrior software had to be 

redesigned.  The biggest change was to rewrite the ‘warriors’ script which provides syncing capability 

with the robots.  This was rewritten to address many of the short-comings that the original script 

contained.  The new ‘warriors’ script allows greater flexibility in specifying which portion of the software 

should be uploaded to the robot.   
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3.6 Visualization Tool 

 The visualization tool is a web application for Google’s Chrome Web Browser.  The 

application is programmed using JavaScript, HTML, and CSS.  It uses some of the latest web 

technologies such as Web Sockets and WebGL.  The features of the visualization tool include: 

 Parameterized 3D soccer field with 3D Nao robot models and soccer balls. 

 Real-time visualization of robot, ball and goal location. 

 WIP: Live feed of robot’s raw and calibrated camera images. 

 WIP: Supports multiple robots on the field. 

 

Figure 14: Visualization Tool Screenshot 

 The goal of the visualization tool is to allow the C++ Warriors application running on the robot to 

communicate with an external program.  The difficult part with this requirement is the fact that web 

applications cannot use raw TCP or UDP sockets.  Modern web standards only allow Web Sockets, which 

are a specialized protocol layered on top of HTTP.  Implementation of the web socket protocol in C++ 

would be extremely time consuming, so NodeJS was used to bridge the gap. 

 NodeJS is a server-side JavaScript runtime engine.  It has builtin support for TCP, UDP, and Web 

Socket protocols. This provides the ideal solution to providing communication between the web 

application and the robot. 
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The first iteration of the visualization’s architecture is shown in the figure below.  NodeJS was 

run on the robot to reduce the latency between the warrior application and NodeJS.  It utilized the file 

system to exchange data with NodeJS which would send the data to the web browser.  The advantage of 

this architecture is the low latency and simplicity.  The disadvantage is the need to use valuable 

processing power on the robot to run NodeJS.  While testing showed NodeJS used a small percentage of 

the CPU, it used a considerable amount of memory. 

 

Figure 15: First Architecture of Visualization 

 In order to stream more data and to reduce the load on the robot, the architecture was changed 

to remove the need to run NodeJS on the robot.  NodeJS can be run on any computer which connects to 

the robots via UDP sockets. In addition to using less resources on the robot, this architecture allows 

NodeJS to store lots of image data which is needed when streaming the robot’s camera feed. 

 

Figure 16: Final Architecture of Visualization 

 In order to incorporate visualization into the warrior application on the robot, an additional 

module was added to the perception thread.  After vision, localization, and behavior have executed, the 

visualization module will save all of the data and send out a UDP packet.  This is an improvement over 

the Off-Nao architecture which ran independently of the perception thread.  This new architecture 

guarantees the ability to debug each frame of the perception cycle. 
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Figure 17: Perception Execution Order 

4 Results and Discussion 

4.1 Initial Testing 
The initial testing consisted of gathering data on both the vision and localization modules, as well 

as determining the time the robots took to score on an empty field from various positions.  The purpose 

of the tests was to establish benchmarks to measure the improvement of each module and the overall 

system by the end of the project, and also to determine what parts of the system needed the most 

improvement. 

4.1.1 Vision 

The first module that needed testing was vision.  The methodology for the tests consisted of 

comparing the robot’s perceived distances and headings of various objects to the objects’ actual 

distances and headings. 

To test the goal posts the robot was placed in one of five different locations and the average 

reading of the distance and heading to each post was recorded. The placements of the robot are shown 

in the figure below. 
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Figure 18: The Five Trials for Robot Placement for Post Vision Testing 

The actual distances and headings were then measured to compare to the robot’s perceived 

measurements. The distance to the goal posts is shown in the bar graph below. 
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Figure 19: Comparisons of Distances from Posts across All Trials 

 The trial numbers correlate with the numbers shown on the previously shown field figure. For 

the trials at or beyond the half-field line, the robot perceived the posts at around twice the actual 

distance. For the two closer trials (4 and 5) the robot perceived the posts more accurately, in this case 

within 50% of the actual distances. Overall, the robot perceived the posts as being farther away than 

they actually were. The only two exceptions were trials 3 and 5. During trial 3 the robot incorrectly 

lengthened the right post because it saw a few blue pixels on the center circle, far below the actual post.  

This caused the identified post object to be almost twice as big as it actually was, so the robot 

determined that that particular post was quite close. Trial 5 was simply an outlier, and the project group 

is unsure as to why this behavior occurred. 

 The post heading was significantly more accurate than the post distance. Note that the headings 

were all quite small, since the robot was positioned facing the goal. The posts were relatively far from 

the robot, which also contributed to the small headings. The headings are shown in the figure below. 
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Figure 20: Comparisons of Headings from Posts across All Trials 

 The error in heading perception was consistent regardless of the distance to the posts. On 

average the error in heading perception was about 0.02 radians. Unlike with the distances, there is not 

much to improve on in determining the heading. 

 The ball distance showed a similar trend to the post distance, which was to be expected since 

similar algorithms calculated both distances.  The data is shown in the plot below. 
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Figure 21: Difference between Observed and Real Ball Distance 

The trials were conducted over a variety of distances:  500 mm, 1000 mm, 1500 mm, 2000 mm, 

3000 mm, and 4000 mm. For trial 6 the robot did not perceive the ball at all. The error in ball distance 

increased the further away the ball was. 

4.1.2 Odometry 

 The second module to test was the odometry.  The robot can move in three directions—directly 

forward and backward, strafing side to side, and turning about its center (denoted forward, left, and 

turn respectively)—and each motion has its own odometry function for computing the expected change 

in position and orientation.  The tests had two goals: to measure the overall error of the system for each 

motion and to determine how consistent that error was over many trials and different distances.  In 

theory the error should follow a linear function, because odometry updates occur over short periods of 

time, and the error should propagate depending on the duration of the tests.  Due to issues with the 

motor and the carpet, however, this was not always the case. 

 The forward tests were conducted by starting the robot at a specific starting point.  The robot 

then walked forward until the odometry calculated that it had reached its target, and this test was 

repeated over six trials.  The targets ranged from 250 mm to 1500 mm, increasing at increments of 250 

mm.  The actual distance travelled was recorded for each trial, and error was calculated by subtracting 

the expected measurement (the target odometry reading) from the actual distance.  The results are 

shown in the figure below. 
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Figure 22: Expected Forward Distance vs. Error 

 The overall error was quite consistent.  The forward odometry always underestimated the 

distance walked by the robot, and the underestimation closely followed a linear function.  The error was 

also consistent for each expected distance, with the largest difference in the data points being 

approximately 100 mm when the robot traveled 1250 mm.  This data shows that the forward walking 

motion is easily predictable, and therefore the forward odometry could be made more accurate with a 

simple software correction.  The correction itself would vary from robot to robot, but each adjustment 

could easily be calculated by repeating this experiment for each robot. 

 The left odometry tests were conducted in the same manner as the forward odometry tests, 

except that the robot was placed sideways on the field and strafed left until it reached its target.  Also, 

the targets in this case ranged from 150 mm to 900 mm over 150 mm increments, because the robots 

do not strafe nearly as far as they walk forward (with the exception of the goalie, who at most needs to 

cover the relatively small area in front of the goal posts).  Again, error was calculated by subtracting the 

expected distance from the actual distance travelled. 
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Figure 23: Expected Left Distance vs. Error 

 The results were much less consistent than the forward odometry results.  The data points were 

much more spread out as the distance traveled increased beyond 300 mm.  At its worst, the data varied 

by 225 mm at a distance of 900 mm traveled.  However, the error was actually quite low (within a few 

mm of the actual distance traveled) over short distances.  This behavior resulted in a cubic function 

fitting the data best, even though the data should have linearly added up as the error propagated over 

long distances.   This was probably due to the often observed fact that the left walking motion is prone 

to more interference from bumps in the field surface and leg motors overheating.  Also of note is that, 

unlike the forward odometry, the left odometry overestimates the distance traveled.  The robot’s actual 

distance traveled consistently failed to reach the target over longer distances. 

 To attempt a software correction for the left odometry, a linear fit is required.  The best linear 

fit of the data is shown in the figure below. 
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Figure 24: Linear Fit of Left Odometry Error 

While using this function as a software correction for the error could improve the odometry a bit, the 

data is too unpredictable for this to be a good solution.  These results suggest a more in-depth solution, 

such as improving the consistency of the strafing motion itself. 

 The turn odometry test used the same six trial method as the previous two tests.  The robot was 

started at an initial orientation and turned until it reached its target orientation, with targets ranging 

from 30 degrees to 180 degrees at 30 degree increments. 

 

Figure 25: Expected Turn Angle vs. Error 
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 This data was also best fit by a cubic function because again, it was very inconsistent.  The actual 

angle turned varied widely at any target angle.  Since the turning motion has similar problems with 

carpet interference as the strafing motion, similarly inconsistent odometry results were expected. 

As with the other tests, linear regression was applied to the data points to see if a software 

correction could minimize the odometry error. 

 

Figure 26: Linear Fit of Turn Odometry Error 

Again, this fit is not very good.  The linear function could be applied at each odometry step (probably 

with more success than for the left odometry, since the turn odometry is at least consistent in that it 

underestimates the data for all distances), but there is still too much spread in the error for this to be a 

good solution.  Improving the turning motion itself would be the best way to fix this error. 

 

4.1.3 Localization 

 The third module that needed testing was localization.  These tests incorporated both the vision 

and odometry data, so they were somewhat dependent on the accuracies of both, detailed in the 

preceding two sections. 

The robot’s localization module is based primarily on identifying goal post features from the 

vision data.  Failing that, the robot bases its localization on odometry data until another goal post comes 

into view.  In theory, the error for this absolute position should be dependent on field feature detection 

accuracy, as well as the odometry error.  Based on the accuracy of the vision data compared to the 

odometry data, there should be a dip in error once a feature is detected, and increases in error when 

the odometry is being used for long periods of time. 
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In order to properly test the interaction of these factors, the robots operated under normal 

game conditions for a period of time. The graphs consisted of actual positions and orientations of the 

robot versus the robot’s expected pose from the localization algorithms. This data consisted of the x 

position, y position, and the heading of the robot. The starting positions were randomized to account for 

different situations. The first trial was conducted with a sub-optimal calibration, to observe how well the 

robot localized based mostly on odometry.  The second trial represented a normal situation where the 

robot started looking away from major field features, such as the goals.  The third trial also represented 

a normal situation, except the robot started facing a goal.  The fourth and final trial simulated the 

situation where the robot is penalized, and therefore “kidnapped” from its original position. 

The first trial’s data is shown in Figure 6 below.  The graph on the left shows the trajectory of 

the robot, with the actual trajectory in red and the robot’s estimated trajectory (as calculated by the 

localization) in blue.  The graph on the right shows the overall error as a percentage of the maximum 

possible error for each variable. 

 

Figure 27: Trial 1 Trajectories and Error 

The robot believed it was in a completely different quadrant of the field for this trial. The 

distance traveled is relatively close; however the headings and positions were completely different. The 

theta error slowly improved, as did the x and y position data. Theta was the worst of the parameters—

this is likely due to the algorithm’s exclusive use of goals as reference points—if there is no goal, then 

erroneous odometry alone determines position. Data from trial 2 showed a similar trend in regards to 

theta error. 
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Figure 28: Trial 2 Trajectories and Error 

The trajectories were closer, possibly due to better calibration values being used. The errors 

show more clearly the effects of odometry error.  The largely incorrect theta value caused the robot to 

believe it was moving in a different direction.  However, the error improved toward the end of the trial 

as the robot faced one of the goals, correcting the odometry error. 
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Figure 29: Trial 3 Trajectories and Error 

The trajectories of the third trial started off with a relatively small error, but that error increased 

significantly as time passed. The theta error started off small, but increased over time—trial 3 is the only 

time where this is the case. This behavior was expected, since the robot started by facing a goal.  The 

initial reading was relatively accurate, but as soon as the robot chased after the ball, odometry took 

over and the error propagated. Additionally, while x error decreased over time, y error did not, instead 

spiking in the middle of the trial. This could be either because of odometry error or false landmarks. 

The last trial included a scenario where the robot was “kidnapped” (which occurred between 

the first and second data point), or repositioned as if it had a penalty. There is no odometry data 

available for such a scenario, as the robot is physically picked up from the field, and put down 

somewhere else. The expected result of this situation would be a sudden spike in error. 
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Figure 30: Trial 4 Trajectories and Error 

The error shows that the robot did suffer an increase in error due to the kidnapping—except in 

the case of x. This could be due to the robot seeing a feature whose position was much more accurately 

determined in the x direction, but this is unlikely because the theta error and the y error both increased.  

If a feature was seen, the y and theta error should have improved somewhat as well.  Another possible, 

and more likely, explanation is that the kidnapping improved the x value by pure luck. 

To determine overall pattern of x error across the four trials, a plot of all x errors is displayed 

below. 
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Figure 31: Overall X Error Data 

The x error was relatively consistent, staying below a meter until the last trial. The errors each 

follow a pattern of increasing over time, until a feature is spotted. The last trial was the trial where the 

robot was kidnapped, which would invalidate odometry until a feature was spotted, which would allow 

the robot to re-ascertain its position from a known point of reference. The best way to fix the consistent 

x error of about a meter would be to correct odometry errors. Correcting the vision would also improve 

the error, but less so than the odometry. 

On the surface, the y error appears to be different than the x error. However, the trend is 

actually quite similar to the x error.  The field is 50% longer in length than in width, and the average y 

error is about 50% greater than the x error, as shown in the plot below. 
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Figure 32: Overall Y Error Data 

 

The y error was more severe than the x error, running at about a meter and a half on average. 

When paired with the data regarding the x error, there is interesting behavior, in that they do not 

always parallel each other. This indicates that odometry has an axis-specific error, or that feature 

recognition is better for different axes based on the position and orientation of the robot. 

The final distinct variable observed was robot heading, recorded in the figure below. 

 

Figure 33: Overall Theta Error Data 
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The theta error showed rather consistent trends. In trial 3, the robot was started in front of a 

goal, while in all other trials, it was not. When started without an immediate feature reference such as 

the goal, the error steadily decreased, while in the opposite situation, the error started low and 

increased. The increase very clearly demonstrates the error in odometry—error increases due to the 

absence of known reference points, as the odometry error propagates. The decrease in error in other 

trials is likely due to the sighting of a goal, and the steady integration of that data as it is confirmed by 

multiple sightings. The best way to fix this error would be to improve the algorithms governing the 

calculation of initial position, and to correct the odometry errors. 

4.1.4 Time to Score 

 As a final benchmark test, the project group measured the amount of time it took a single robot 

to score a goal on an empty field.  The robot started in the middle of the center circle for each test, with 

the ball position varying for each test.  The ball was placed on the edge of the center circle, on the left 

side of the field between the “+” field marker and the sideline, on the left side of the field between the 

“+” field marker and the sideline, and centered on the goalie box.  These four positions were repeated 

on both sides of the field, for short- and long-distance testing.   

 

Figure 34: Robot Initial Position and Ball Positions for Time to Score Tests 

Each of the eight trials was run until the robot scored.  Some trials took multiple attempts, as the robot 

would either kick the ball into what the project group judged was a stuck position (e.g. the ball resting 

against the outside of a goal post), or a combination of motor overheating and carpet imperfection 

caused the robot to be unable to turn properly.  The robot would eventually score in many of these 
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cases, but the times would be misleadingly high, as this test was not a test of motor malfunctioning or 

terrain defects.  As a result, the times kept for each trial represent a “best” time to score, i.e. a time 

where the robot did not encounter an unexpected problem.  The times were as follows: 

Table 2: Time to Score from Varying Ball Positions 

Trial Best Time to Score 
min:sec 

1 0:40 

2 1:23 

3 2:02 

4 0:30 

5 2:07 

6 4:12 

7 2:44 

8 4:15 

  

As expected, all of the half-field trials (trials one through four) resulted in faster scoring times 

than the full field trials (trials five through 8), since the overall distances were shorter, and the robot did 

not have to turn around and walk away from the goal to get to the ball.  Both trials where the robot, the 

ball, and the goal were directly in line (trials one and four) took a relatively short amount of time for the 

robot to score.  If the ball was placed on the side of the field, however, the robot took significantly 

longer to succeed, since the robot had to make more turns and cover more distance to get to the ball 

and align itself with the goal.  Approaching the ball on the right side of the field was particularly difficult 

for the robot, as shown by trial three, because the scanning pattern for the ball involves the robot 

turning counter-clockwise, which has the robot scan the left side of the field before the right. 

All four of the full field trials took between two and five minutes to score.  These times are 

harder to draw any conclusions from, because over the much greater distances that the robot had to 

cover, more issues could occur between when the robot first reached the ball and when the robot finally 

scored. 

4.2 Final Testing and Individual Module Discussion 
 At the end of the project, the team revisited the initial tests to determine how much each 

module was improved.  Vision, odometry, localization, and time to score were each tested using the 

new software modules.  An analysis of the results of those tests is shown below. 

4.2.1 Vision 

 The team continued to perform testing on the vision module as the software and hardware 

changed.  The first of these tests measured goal post and ball distance accuracy with the modified 

software and the old hardware.  Another set of tests analyzed the effect of the new high-definition 

cameras on the accuracy of the vision module. 
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4.2.1: Final Post Distance Testing 

 The team performed the final testing of the vision module using the same method as that in the 

initial testing, as described in the Vision section of the Methodology.   

 

Figure 35: Comparisons of Distances from Posts at Various Positions After Software Changes 

 As can be observed from the graph above, the results from the distance measurements show 

great accuracy.  Every perceived post distance is close to its respective real post distance.  The results 

are much more accurate than those measured in the initial testing.  This increase in accuracy is most 

noticeable for farther distance measurements, where the error was particularly large in the initial test.     
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Figure 36: Comparisons of Distances from Posts at Various Positions after Hardware Changes 

 As opposed to increasing the accuracy of post distance measurements, the new hardware 

actually caused a slight increase in the error.  Furthermore, during the testing, some posts did not get 

seen at all, specifically during trial 2, where the posts were the furthest away from the robot.  Even with 

this decrease in accuracy, the results are still dramatically more accurate than the results acquired 

during the initial testing phase. 
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4.2.2: Final Ball Distance Testing: 

The team applied the same methodology for the ball distance calculations. 

 

Figure 37: Difference between Observed and Real Ball Distance after Software Changes 

 The error shown in the graph above is very similar to the error found in the initial test.  This is 

due to the fact that very little changes were implemented that affected the ball distance calculation 

algorithms.   
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Figure 38: Difference between Observed and Real Ball Distance after Hardware Changes 

 This graph demonstrates the ball distance error using the new hardware, which provides a 

higher resolution camera, as well as more processing power.  This power allows for the processing of 

larger images, which is particularly important for calculating the distances of small objects such as balls. 

 

Figure 39: Comparison of Differences between Observed Ball Distances for all Tests 
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 As the graph above demonstrates, the new hardware greatly decreased the error in calculating 

the ball distance.  The decrease in error is particularly noticeable at long distances, where the error with 

the new hardware was only a third as high as that with the old one.  

 

4.2.2 Odometry 

 After implementing a system to calibrate linear corrections for the robots’ odometry, the same 

odometry tests were run again to determine the level of improvement.  For this iteration of tests, only 

three data points were gathered at each target distance.  As the initial tests show, the distances that the 

robot moves have little spread, so it was not necessary to collect six data points at each distance. 

 

Figure 40: Expected Forward Distance vs. Error 

 The forward odometry data shows considerable improvement from the initial tests.  The error 

stays around 115 mm, where previously it averaged around 300 mm, peaking at 500 mm.  The linear 

correction significantly improved the robot’s forward odometry, reducing the error by 62%. 
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Figure 41: Expected Left Distance vs. Error 

 Similar results can be seen for the left odometry.  Initially, the error averaged around 200 mm, 

peaking at 350 mm.  With the linear odometry correction in place, the left error averaged around 125 

mm, peaking at 275 mm.  Left odometry error was reduced in this case by 38%. 

 

Figure 42: Expected Turn Angle vs. Error 

 The turn odometry results are about the same as in the initial odometry tests.  Both average 

around 35 degrees.  The data still loosely follows a linear trend, however, so with more calibration it is 

possible that this error could be reduced. 
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 Overall, the linear odometry corrections were successful.  Error was significantly reduced in 

almost all cases.  Furthermore, more time spent calibrating could lower the error even more.  Improving 

the correctness of the odometry can greatly improve the accuracy of the localization module, since 

odometry is one of the two major inputs to the module. 

4.2.3 Localization 

 Tests similar to the initial localization tests were carried out with the new localization module.  

The results are shown below, organized by which filter the localization module was running.  All final 

localization tests were run after the 2012 rule switch, which changed the two goal colors to a single 

color. 

4.2.3.1 Particle Filter 

 The particle filter system was completed as designed, but several unforeseen issues caused 

delays in its implementation and testing. Furthermore, hardware limitations prevented the traditionally 

use of a large number of particle – particle filters usually use particles on the order of hundreds or 

thousands, whereas our implementation used one hundred and twenty. Despite this, when provided 

with accurate sensor data, the particle filter was able to successfully determine the robot’s location on 

the field. 

The particle filter implementation for this project was determined to be too inaccurate for 

constant use during the Robocup competition. Though the filter operated as intended, sensor 

inaccuracies and limitations in processor power and available memory made reaping the benefits the 

particle filter method offers over the Kalman filter method extremely difficult. This determination was 

made based off tests conducted on a full field setup in the lab. 

The main hurdle to using the particle filter was the hardware available. A particle filter’s 

performance is largely based on the number of particles which it can track. Initially, the onboard 

memory could only support sixty particles, which was increased to one hundred twenty by redesigning 

the data structure which holds the particle data. Further increases in the number of particles were 

prevented due to the amount of time required to perform calculations on the entire set of particles, 

which increased by an exponential degree as the number of particles was increased.  

Another hurdle to the use of the particle filter was the variability and frequency of data 

provided. As goal posts were the primary landmark used to determine position, when the vision system 

did not detect a post, the particle filter was severely hampered in its ability to increase the accuracy of 

the robot’s position. Additionally, it was extremely difficult to detect robots on the field in certain 

lighting conditions, which eliminated the primary method for determining which end of the field is being 

viewed for a large percentage of the localization routine iterations. 

In addition to issues with the filter itself, there were issues with the ability to efficiently test 

potential solutions to software issues. The methods used to download code to the platform prevent use 

of traditional debuggers, and compiling and running tests on the platform is time consuming. 

Additionally, running tests directly on the platform can provide misleading results, as there are a 

multitude of other systems causing variability in the test environment, which is not desirable for an 
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initial test environment. These problems were addressed by creating a test setup with a simulated robot 

and program framework, allowing isolation and debugging of specific particle filter operations. 

Aside from this, the filter performed well, especially taking into account the limitations placed 

upon it. The filter could accurately determine the robot’s position given accurate sensor data in a short 

amount of time. It correctly eliminated and replaced low probability particles in a way which increased 

the overall accuracy of the predicted position over time. Further, the filter accounted for odometry data 

and was designed in a way to be extensible should other landmarks be made available from vision to 

localize off of.  

 There are several ways to improve the performance of the particle filter system from its current 

state. The highest positive impact on the filter’s performance would be gained by finding a way to 

significantly increase the number of particles used by the filter. This could be done by finding ways to 

perform operations on multiple array indices at once (technology which is already used in GPUs), and 

finding ways to reduce the number of times the array of particles is iterated over each localization 

routine iteration. 

 Another way to improve the performance of the filter would be to pre-process the provided 

data more extensively. One option for this is to check the variability of consecutive post distance and 

heading readings, and to evaluate how accurate the odometry readings are based on the particle filter’s 

position data, fusing those values using a weighting system. 

 Additionally, the algorithm to determine the boundaries within which new particles are 

generated could be improved. Currently, the algorithm evaluates the density of particles within an area 

and picks the highest value. Instead, each particle could be surrounded by a box of a standard size. 

Overlapping boxes could be combined, until all remaining boxes are completely separate. The two boxes 

whose contained particles had the highest average probability would be selected for use, and new 

particles would be generated within them. This algorithm is potentially more efficient and more 

accurate in determining particle regions, which would lead to better performance and better run times.  

4.2.3.2 Kalman Filter 

 Results of testing the Kalman Filter were generally favorable compared to the old localization 

module.  As with the previous tests, the robot ran its behavior code under game conditions while 

localization data was gathered.  Below is a comparison of the robot’s estimated trajectory and the 

robot’s actual trajectory. 
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Figure 43: Kalman Filter Trajectories and Error 

 The trajectories alone may initially seem to be quite erroneous, but when the error is taken into 

account it shows that the position is not as bad as it looks.  The jump to the right of the estimated 

trajectory is only a single jump in error, and the robot actually managed to correct this error as the test 

continued.  Looking at the graphs of error percentages, it remains low throughout most of the test for x, 

y, and theta.  The error propagated a bit as the test went on, but this is to be expected with a Kalman 

filter, and as the robot saw more goals, the error was corrected. 

 After the rule change made both team’s goals the same color, another test was devised for the 

localization module.  The robot was placed on the field with a goalie in each goal, and allowed to kick 

the ball around until it scored in one of the goals.  After performing this test multiple times, the robot 

consistently scored in the enemy goal.  There were situations where the robot would kick the ball 

towards its own goal, but once it got close, the localization module corrected its position and it returned 

to aiming at the enemy goal. 

 Between these two tests it is clear that the Kalman filter localization is a significant 

improvement on the original localization module.  Error was lower overall, and the robot was able to 

recover from error given enough time.  More importantly, the new localization was sufficient to prevent 

the robot from scoring on its own goal, whereas the original localization was not consistent enough to 

handle the same color goal case. 

 The biggest issue with the Kalman filter is that it does not handle the case of penalization when 

a robot is “kidnapped.”  Since it requires an accurate previous position to run effectively, being picked 

up and moved messes up the calculations significantly.  The robot can eventually re-localize, but it takes 

some time due to the smoothing effects of the Kalman filter algorithm.  This could be improved 

somewhat by using communication with other robots to determine which side of the field the robot is 

entering after penalization.  Further improvements to the general algorithm could be made by localizing 
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based off of the white field lines on the soccer field instead of using only the goal posts and the field 

edges. 

4.2.3.3 Complete Localization System 

The original plan for the localization system was to switch between the Kalman and particle 

filters. However, this proved to be untenable, as the particle filter was unable to perform to the required 

level on the hardware available. The particle filter ran slowly due to the number of particles it has to 

maintain, and its accuracy and speed of improvement were limited due to the issues with the number of 

particles that could be tracked at one time. The final setup of the system was to use the Kalman filter 

with a relatively accurate estimated initial position. This took some burden off the processors, and was 

accurate enough for the purposes of the project. 

The problems of the Kalman filter, specifically the inability to localize quickly after penalization, 

did become more apparent once the particle filter was dropped.  The particle filter was specifically 

implemented to handle this case, so as only the Kalman filter was used, the localization system as a 

whole was not optimal.  The biggest improvement to the localization module as a whole would be 

realizing the successful implementation of particle and Kalman filter switching. 

4.2.4 Time to Score 

 Repeating the time to score tests with the new code proved difficult.  With the change in the 

game rules resulting in two goals of the same color, comparisons to the old time to score tests do not 

necessarily make sense.  Furthermore, due to bugs introduced by the new robot heads, the results were 

highly inconsistent. 

 Running the half-field time to score tests produced equivalent times for the robot to score 

provided that the ball was directly in line with the goal.  However, whenever the ball was placed on the 

sides of the field, unsolved vision bugs caused by the new heads prevented the robot from scoring in a 

reasonable time frame. 

Theoretically, the times should have been improved, and the original bias for scoring on the left 

side of the field faster than the right should have been eliminated.  This is because the new behavior 

code, in conjunction with the new localization code, was specifically written to allow the robot to turn in 

the optimal direction at any point on the field.  Subjective evaluation of a robot’s turn direction 

decisions showed that the robot turned in the correct direction most of the time, from many different 

locations on the field.  Due to the bugs with the new heads, a more objective evaluation of 

improvements on the robot’s time to score was unable to be conducted. 

4.3 Discussion of the System Performance as a Whole 
 The entire system ran effectively enough to keep the WPI team competitive with the other US 

teams.  Out of the eight teams that registered for the SPL US Open competition, two teams dropped out 

to continue developing their code for next year’s competition.  Of the remaining six teams, WPI placed 

in fourth. 
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 Improvements to each individual module worked well in conjunction with the other modules.  

The distance improvements to the vision module and the linear corrections to the odometry data 

allowed the localization module to determine a more accurate position.  The improved localization 

module, with the addition of goalie detection, allowed the behavior module to make more informed 

decisions.  These localization-based decisions allowed the robot to improve the overall soccer strategies 

used in a game situation, significantly improving the team’s performance. 

5 Conclusion and Recommendations 
This project successfully met almost all of its initial goals. The vision system was significantly 

improved, providing more accurate range and heading data to the goal posts, and eliminating a large 

number of false positives.  This made the information gathered in the vision module significantly more 

useful to the localization module. 

The localization system was able to determine the robot’s position based on sighted goal posts. 

The particle filter was not optimized enough to be practically used, however it was still successful in 

determining the robot’s position when tested. Its speed and efficiency could be improved by finding 

ways to increase the number of particles which can be tracked by the filter, and optimizing the filter 

further for a low memory and processor speed environment. Additional improvements to the 

localization system as a whole could include the use of field lines for localization, as well as 

implementing sanity checks by using the relative position of the ball from the goalie compared to the 

perceived ball position of the player running the algorithm. 

Behaviors were improved from the previous year’s competition code.  The robot could more 

effectively use localization information in deciding what actions to take, such as which direction would 

be faster to turn, and when the robot should clear the ball in a general forward direction rather than aim 

directly at the goal.  Role switching with a support role was not fully tested, and future work in role 

switching is recommended, as this is often the difference between the best teams and the middle-of-

the-pack teams. 

The motion module was more or less untouched for this project, aside from implementing a 

linear correction for the robot’s odometry data.  The code base could be significantly improved by 

developing a better humanoid walk engine, as well as a library of kicks for different situations.  This is a 

huge endeavor, however, and was outside of the scope of this project. 

 Despite plans at the beginning of the year to develop a replacement for rUNSWift’s visualization 

tool OffNao, the web visualization tool cannot replace OffNao.  The visualization tool was a step in the 

right direction in terms of a creating a new tool that will eventually act as cross-platform tool for 

developing and testing the robots.  Future work on the visualization tool would include allowing users to 

calibrate the robots directly from the web.  Additionally, more work could be done to allow better 

gathering and logging of data from the robot.  Particularly, it would be useful to provide some control to 

the user via the interface for moving the robot’s head during calibration.  
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 Overall, the project was successful.  With the current state of the code, the robots could 

effectively play a game of soccer.  The WPI team came in fourth place out of the eight teams initially 

registered for the RoboCup US Open competition.  With a bit more work, the WPI Warrior’s standing 

among the US Standard Platform League teams could certainly improve.   
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Appendix A: RoboCup Standard Platform League Qualification Report 
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WPI Warriors 

Team Description, Standard Platform League 2012 

 

Irena Cich, Frederik Clinckemaillie, Runzi Gao, David Kent, Benjamin Leone, Miaobo Li, Derek 

MacNeil-Blackmer, William Mulligan, Ryan O’Meara, Quinten Palmer, Alexander Ryan, and 

Sonia Chernova 

Worcester Polytechnic Institute 

100 Institute Rd. 

Worcester, MA 01609 USA 

 

Abstract. This paper outlines the organization and architecture of the 

WPI Warrior’s 2012 robotic soccer team developed at Worcester 

Polytechnic Institute. The team is made up of undergraduates and 

graduates ranging from freshman level to first year graduates. The team 

software architecture is based on the rUNSWift 2010 open source code 

release from the University of New South Wales. This paper reports on 

the current state of the software development and documents the 

modifications made to the rUNSWift software architecture. 

1 Introduction and Statement of Commitment 
 The WPI Warriors first competed in the RoboCup Standard Platform League last year.  

Upon qualification, the team plans to compete in the RoboCup Standard Platform League 2012 

competition.  The team consists of undergraduate and first-year graduate students, led by 

Professor Sonia Chernova.  This document outlines our current software, as well as our planned 

research for the upcoming competition. 

2 Software Architecture Overview 
Our software architecture is based off of the software architecture of the rUNSWift team 

[2]. We are replacing and modifying modules as we develop. We have developed our own 

localization and behavior modules. We have modified the vision module and intend to modify 

the motion engine. We intend to add more to the world model as we add new features, but the 

main focus of our work this year has been to replace as much of rUNSWift’s code with our own 

code as possible. We have modified rUNSWift's tools for syncing code and are using their 

OffNao GUI only for calibration, and we have developed our own tools for visualization and 

compilation.  Below is a representation of our software architecture. 
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Figure 44. Software Architecture Overview 

3 Vision 
The vision module has been modified to increase performance in detecting and analyzing 

objects. The low level calculations and calibration have remained unmodified, and are based on 

the rUNSWift architecture [2]. The main priorities in changing the vision module were in the 

goal detection and analysis. The localization module relies heavily on goal posts, and as such we 

have worked on optimizing the correct identification of goal posts (i.e. reducing false positives 

and negatives) and increasing the accuracy of goal post analysis (i.e. correct distance and 

heading, especially at greater distances). 

 We plan to add more to the vision module in the future. Our next priority is to implement 

line detection. This addition would give another input to the localization module. Currently the 

localization module is heavily reliant on goal post information determined by the vision module, 

but there are many cases in a game situation where a robot will not see any goal posts. Adding 

accurate line detection would allow the robot to localize more effectively during these situations. 
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4 Localization 
 The localization module has been significantly improved upon from the localization 

module used by the team at the RoboCup 2011 Standard Platform League competition.  

Previously, the robot performed basic localization based on odometry information and goal post 

readings.  During fall and winter of 2011, the team rewrote the localization module to utilize a 

particle filter to determine a robot’s initial position on the field.  Once this initial position is 

determined, the localization module switches to use Kalman filtering to smooth any positional 

changes.  If the robot loses confidence in its position, the localization module will switch back to 

the more computationally intensive particle filter to re-establish an initial position for the 

Kalman filter. 

Currently, odometry and goal posts are the only inputs to the localization module.  In the 

coming months, we plan to add rudimentary field line localization to the particle and Kalman 

filters using the center circle and field line corners. 

5 Motion 
 The majority of our motion code utilizes the rUNSWift motion architecture [2].  Our 

code currently uses a walk generated from rUNSWift’s code and a static forward kick that can be 

mirrored onto either the left or right foot.  We plan to improve both the walk engine and our 

library of kicks before the upcoming competition.  Projected improvements to the walk engine 

include optimizing the motion for use on carpet to prevent overheating of the robot’s hip and 

knee joints, and improving the overall stability of the robot.  The team is also developing static 

sideways and backwards kicks, as well as short-range kicks with low execution times.  Goalie 

blocking motions are also under development. 

 Another improvement we plan to make for the motion module deals with the current 

odometry code.  The current software uses the same odometry calculation for each robot, despite 

the fact that all four of our robots have slight differences in their physical motion.  To counteract 

this problem, we plan to implement an odometry configuration file that will correct odometry 

readings.  This would allow each robot to have individual odometry calibration before each 

game. 

6 Behavior 
The behavior module is the highest-level module in our software architecture.  To allow 

for quick editing, we implement behaviors in Python (rather than the C++ used for all of the 

lower-level modules).  Behaviors are broken down into individual skills, such as scanning with 

the head, tracking a ball, or aligning on a goal, and behaviors, which implement one or more 

skills to accomplish a task, such as walking to the ball. 
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The module uses a finite state machine to determine which behaviors to use in what 

order.  Depending on certain conditions, when a behavior is determined to be finished, it will 

push itself onto a stack and activate the next appropriate behavior.  Each robot role (e.g. striker, 

goalie, supporter, defender) is defined by a different branching behavior stack.  An example 

stack for a Striker is shown below, where a down arrow represents pushing the current state onto 

the stack and activating the state below it, and an up arrow represents popping the above state off 

of the stack. 

 

Figure 45. Striker Behavior Stack Example 

 Based on certain conditions, the currently used behavior stack can be switched to the 

stack of another robot role.  For example, if two strikers detect the ball at the same time, the 

striker that is farther from the ball will switch to the supporter role, leaving the closer striker to 

get to the ball. 
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7 World Model 
The World Model is where all of the shared information is stored. Vision, Localization, 

Motion, Behaviors, Game Controller, Receiver, and Trasmitter are the main modules that write 

to and read from the world model. This module is used to allow each of the modules to 

communicate with each other, and to maintain an overall representation of the state of the game. 
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