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Abstract 

 Scout was a 13 foot long boat designed by myself and several of my friends to navigate 

without a crew on a 3,500 mile journey from Rhode Island to Spain using only solar power and 

onboard processors to complete the crossing; the boat was not to receive any input from us 

once it left the shore. The project received significant media attention and was closely followed 

by tens of thousands of curious onlookers. Although Scout was built by a group of young college 

students solely for fun, execution of the project led us to begin investigation of ways that 

autonomous boats could be used in marine research applications. The purpose of this project is 

to study the entirety of the Scout project, examine potential uses of products similar to Scout, 

and present recommendations for future autonomous surface vessel development. 
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Executive Summary 

 The Scout project was an endeavor undertaken by a group of young college students 

which began in 2010. The goal of the project was to build a solar powered boat capable of 

navigating its way from Rhode Island to Spain, all with no interaction between the boat and 

shore. Although the Scout project was designed just to be a fun way to inspire an audience with 

creative engineering, a number of individuals have approached the Scout team with queries 

concerning Scout’s ability to complete a number of missions with real-world applicability. This 

report examines some of the potential uses for a platform like Scout and studies the potential 

implications of adopting autonomous boats as tools for research. 

 As autonomous boats can be designed to require no crew or fuel, they are ideal for long 

distance missions, missions that require data collection in dangerous environments, or 

repetitive missions that would otherwise have to be completed by expensive manned vessels. 

Although the technology necessary for autonomous surface vehicles to be developed exists, 

few of these vessels have been developed and brought to the commercial market. This report 

closely studies the Scout project and uses lessons from the project to develop 

recommendations for future development of autonomous vehicles designed for marine data 

collection and task based mission performance. These recommendations are then put into 

context of a next generation Scout vessel which is being designed and built by Scout 

Technologies Incorporated, the company started by the original Scout team to further research 

and develop commercially feasible autonomous products.
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1: Introduction: The Backstory 

During one of the dark nights of the winter of 2010, Dylan Rodriguez and Max Kramers, 

two young college students whom had been friends since kindergarten, were working on 

experimental rocket-launched airplanes in Max’s garage. Max had returned to Rhode Island 

from his internship in Spain for Christmas vacation, and the two had a conversation about their 

plans for the coming months and the fact that they wanted to communicate more. As a joke, 

Dylan suggested fitting Max’s A-Class catamaran with computers and motors so that it could 

sail itself across the Atlantic Ocean and deliver bottled messages to Max. Although the boys 

settled on using Skype to communicate with each other, both continued to consider building an 

autonomous boat to send across the Atlantic. 

By early spring of 2011, Max and Dylan had built an early prototype of a small solar 

powered boat that could navigate around a local pond. They realized, however, that a boat 

capable of crossing the Atlantic would require a sturdier hull, more capable electronics, and 

highly refined programming that could function for thousands of miles while traversing rough 

Atlantic seas. As hurdles were identified, additional students and friends joined the team to 

expand on the skills and resources of the initial team members. The final team was comprised 

of Dylan Rodriguez, a Management Engineering student at WPI, Max Kramers, a Mechanical 

Engineering student at URI, Dan Flanigan, a Civil Engineering student at Bucknell University and 

Naval Architecture student at Southampton University, Brendan Prior, a liberal studies student 

at Endicott College, and Michael Flanigan, an Aerospace Engineering student at the University 

of Notre Dame. Sponsorship for composites and other construction materials was secured 

through Jamestown Distributors, a marine supply distributor based in Bristol, Rhode Island. The 
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partnership with Jamestown Distributors allowed Scout to be built with carbon fiber; this meant 

that Scout was stronger and about fifteen pounds lighter than it would have been if the team 

used fiberglass, a less expensive alternative to carbon fiber, for construction. The cost of 

electronics and the remaining expenses were covered by money raised from a fundraising drive 

and from the team members themselves. Figure 1 shows the final product of the Scout project. 

 

Figure 1: The product of the Scout project (Rodriguez, 2013). 

In August of 2013 the team launched Scout, the most current iteration of the project. 

Scout is a thirteen foot long boat which closely resembles an aircraft carrier in its design. Solar 

panels on the deck drive an electronic motor below the waterline to propel the vessel, and 

onboard batteries store charge to allow the vessel to run overnight and in inclement weather. 

Scout carries a number of scientific sensors aboard, and transmits position and sensor data to a 

database via the Iridium satellite constellation as it completes the crossing. 
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The remainder of this paper will discuss how the Scout project was developed into my 

Major Qualifying Project. I will then discuss the importance of this topic, a background on 

autonomous surface vehicles, and an overview of current market leading products and systems 

that could be complemented or replaced by autonomous surface vehicles in the future. I will 

review how Scout was built, the goals and design of her mission, the story of her launch, and 

data collected by the platform. I will conclude with a review and analysis of the results of 

Scout’s mission and will offer closing recommendations for the future development of related 

technologies. 

As this project was completed by a group of students from different colleges across the 

country, in this paper, the word “team” refers to those students introduced in the backstory. 

Except for the limited contributions made to the communication system software by Ryan 

Muller, I am the only student from WPI who functioned as a team member on this project, and 

did so between when we started the project in my freshman year at WPI and when we 

launched it in the summer of my senior year. 

1.2: How Did This Become My MQP? 

While watching coverage of Hurricane Sandy during the fall of 2012, I was intrigued by a 

statement made by CNN’s senior meteorologist, Chad Myers. Myers was projecting the path of 

the hurricane, and voiced, “the computers are not perfect because there’s not much data in the 

ocean. There’s no one in the ocean putting up weather balloons for us to know which way 

weather is blowing *….+ we need more data out there. We don't have it.” (CNN, 2012). It was at 

this point that I realized the potential value of an autonomous sensor platform that could be 

deployed to study developing weather systems and other subjects of scientific interest alike, 
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although the team had discussed potential uses of autonomous platforms like Scout loosely in 

earlier conversations. After additional research and further discussions with scientists and 

experts in fields that have in the past used water-based platforms to collect data, we found a 

significant and valuable market in marine data collection that was not being satisfied with 

existing technologies (M. Kaltofen, personal communication, October 5, 2012)1. For this reason, 

the team decided that the potential uses for autonomous surface vessels warranted further 

investigation. 

1.3: Why is This Topic Important? 

Current marine data collection systems include manned research ships, satellite 

constellations, floating and submerged buoys, and other well developed tools that supply the 

world’s scientists with a tremendous amount of data every day. However, for many marine 

research projects these sensor systems are inadequate for collecting the types of data required 

for appropriate synthesis by environmental scientists (K. Pryor, personal communication, 

October 13, 2012). Some of the limitations of these data collection systems are technical 

constraints which often can be solved only by further research and development of enabling 

technologies. Other limitations, which can be more easily rectified, are difficulty of access to 

certain areas of the world’s oceans, high transportation and equipment costs, and commercial 

viability of developing solutions designed to rectify these issues (Pawlak et al., 2011) 

                                                      
1 Marco Kaltofen is a researcher at Boston Chemical Data Corporation and a research fellow at 
Worcester Polytechnic Institute. He has worked with autonomous boats for mission-oriented 
projects in the past, including oil mapping and pollution indexing. His field of work involves data 
collection from a variety of platforms, and he has identified a number of strengths and 
weaknesses of a number of land and water based systems. 
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The aforementioned issues can reduce the amount of data that can be collected from 

our oceans with traditional data collection methods and can lead scientists to use other 

technologies that are more readily available but may be less suited to a particular task. 

Governments and environmental organizations have recognized these issues and are 

continuously funding new efforts designed to collect more data that can be shared between 

organizations (Le Traon, 2011). Many fields of science rely on accurate and current 

environmental measurements to make accurate predictions, assessments, and plans, some of 

which have impact on international trade, aviation, weather forecasting, and the global 

environmental future. New data collection products designed to collect information from the 

oceans are needed in order to ensure that forecasts, projections, and records dependent on 

this data can be supplied with the most appropriate data possible (Grosky, Kansal, Nath, Jie, & 

Feng, 2007). 

While many marine data collection systems can be improved upon, an entirely new 

system that has potential to solve many problems presented by the other technologies might 

be the best channel to investigate. One such system involves the use of autonomous boats 

equipped with sensors designed to collect and transmit data to ground based platforms. These 

oceangoing vessels can be built to endure months on the open ocean while navigating complex 

preprogrammed routes and collecting data from integrated sensors along the way (Fahimi, 

2009). Although a few autonomous data collection vessels have surfaced over the last several 

years, they are limited in their efficacy as their low speeds, poor modularity, high cost, and 

lacking user interfaces serve as a barrier to their effective and widespread use. A new 

generation of leading edge autonomous vessels has the potential to redefine many current 
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scientific processes, including the methods with which storms are tracked, oil spills are mapped, 

wave height and length are indexed, and pollution is measured on a global scale. Unlike 

traditional manned boats, autonomous boats can be deployed quickly with sensors and 

equipment designed specifically for a particular mission, and they can stay offshore for months 

at a time while transmitting the data they collect back to shore (Manley & Willcox, 2010). 
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2: Background 

 To understand how an autonomous surface vehicle (ASV) can impact the marine data 

collection environment, we first must gain an understanding of current data collection 

purposes, technologies and methods. We must also study the types of data that are collected 

by current methods in order to understand how this data is used and why it is useful to 

scientists and the general public. Although many different systems are used to collect different 

types of data for many purposes, there are a few missions that ASVs are particularly well suited 

for; those will also be investigated here.  

 The existing field of marine data collection devices can be categorized as units designed 

to measure scientific water properties, units designed to measure biological information about 

organisms living in the water, and units designed to collect environmental measurements.  

2.1: What Data is Collected, Why is That Data Useful? 

A number of data types are common to many oceanic data collection projects. While 

some of these projects span a number of months, years, or decades, such as global 

temperature recording, others situations in which oceanic data is sought are more time 

sensitive, and include potentially toxic algal blooms, hurricanes and other weather events, and 

oil spill mapping. This variety of data types collected by various oceanic sensing devices makes 

the sensor platform market very broad, and different data capture mediums often have 

extensive strengths and weaknesses. 
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2.1.1: Water Property Measurements 

 Water property measurements include scientific measurements of indexes such as 

salinity, fluorometry, dissolved oxygen, hydrogen sulphide, thiosolphate and sulphur, pH, total 

alkalinity, total dissolved organic inorganic carbon, and carbon dioxide partial pressure. 

Although most of these measurements require different sampling methods and sensors, many 

are commonly collected (Grasshoff, Kremling, & Ehrhardt, 2009). While these measurements 

are often collected by manned vessels due to the complexity of ensuring ideal water samples, 

buoys have become much more popular vehicles of scientific sensor instrumentation. Satellite 

platforms are largely incapable of collecting these types of data (Staff, 2007b).  

 Water property measurements can be used for a large number of research and 

environmental projects. For example, oxygen levels, salinity levels, and pH levels are common 

metrics used to identify the suitability of water to support life. A number of other sensor types 

are used to identify particular components of water composition specific to a particular issue 

under study and can be mapped to better indicate causes or effects of particular metrics. 

2.1.2: Biological Data 

 Biological data measurements include the assessment of nutrients, levels of 

phytoplankton, and the use of fluorometric sensors to determine levels of Phycoerythrin 

(marine cyanobacteria) (Staff, 2007a). This data is used to predict oceanic biological activity and 

is typically collected by in situ sensors attached to buoys or by analyzing water samples taken 

from manned ships (Kampel et al., 2009). Data collected by biological sensors, especially data 

concerning nutrient concentrations and phytoplankton, is important because as phytoplankton 

feed from nutrient rich water, their population can grow out of control and produce harmful 
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algal blooms that produce toxic compounds, putting sea life and humans at risk. Early warning 

of harmful algal bloom formation allows scientists to predict where those blooms will form, 

where they will move to, and how they will affect those areas. Advanced notice enables coastal 

decision makers additional time to stage resources, warn at risk populations, and respond to 

the events (Anderson, Glibert, & Burkholder, 2002). 

2.1.3: Environmental Data 

 Environmental data consists of measurements of the environment surrounding the 

platform that do not fall into the other categories. These measurements include air 

temperature, barometric pressure, wave height, wind speed and direction, photographic 

observation, radiation measurement, turbidity, and air quality indexing ("NDBC- Moored Buoy 

Program," 2013). As there are a number of types of environmental data that can be collected, 

this data can be used in many different ways. Environmental data can be especially useful for 

weather forecasting as the range of RADAR can be a limitation when forecasting the formation 

and movement of offshore weather systems. Temperature, wave, radiation, and wind data 

each have particular uses. These metrics are often collected and processed by multiple 

platforms and offered in its raw form, as data collected from different platforms can be afflicted 

by various nuances. For example, data collected from satellites is limited by a number of 

factors, including issues such as sample depth (satellites are unable to sample the temperature 

of water five or more meters below the surface), time of day restrictions (visible spectrum 

imagery is only available during daylight hours) and atmospheric variables beyond the scope of 

the satellite payload’s corrective capacity (Lu, Ramsey, Rangoonwala, Suzuoki, & Werle, 2012). 

Satellite data is often calibrated with data collected by in situ sensors to remove biases 
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introduced by the atmosphere above the subject. If the in situ platform reports measurements 

regularly, the biases of the satellite platform can be corrected in real time with the most recent 

data (Venkatesan, Shamji, Latha, & Mathew, 2013). 

2.2: How is Oceanic Data Collected? 

In pursuit of collecting data from the ocean, scientists and researchers deploy different 

resources configured with sensors specific to the particular mission. Obvious considerations 

involve the cost of the resource, the efficacy of the system, its timeliness in delivering results, 

and accessibility of the environment where the samples must be taken.  

2.2.1: Water Property Data Collection Platforms 

 Water property data collection platforms typically consist of buoys and research ships. 

As many elements of this category are particular compositional characteristics indistinguishable 

from space, contact based measurement techniques, such as manual sampling and the use of 

buoys, is the most effective means of collecting the data. If automated sampling platforms are 

used, solid state sensors are fitted to the unit to allow for nearly instantaneous reading and 

storage of sensor data. 

2.2.2: Biological Data Collection Platforms 

Sensors are readily available to measure a number of biological metrics. The type of 

data collection platform depends on the type of data that will be collected, although satellite 

based platforms have been proven to be often ineffective tools for many biological 

measurements (Kampel, Gaeta, Lorenzzetti, & Pompeu, 2007). For oceanic research, laboratory 

analysis of water samples or contact based “in situ” measurements are usually preferred by the 
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scientific community, depending on the purpose of the sample collection and the constraints 

that dictate the sample’s study. For example, in situ measurements can be taken and 

transmitted in less than a minute, while laboratory analysis requires a physical sample of the 

water and requires an appropriate amount of time to transport and process the sample. For 

this reason, in situ measurements are most commonly used to collect data from remote or 

difficult to access platforms, from areas where the variable under study changes rapidly, or 

from a number of locations that would be too numerous to sample regularly. Laboratory 

analysis is often used in cases where precision and accuracy is particularly important, such as 

when measurements of a sample are used in court or when particularly small variations in 

derived measurements are significant. 

2.2.3: Environmental Data Collection Platforms 

 Oceanic environmental data is primarily collected by buoys and satellite based 

platforms. Each platform has a number of strengths and limitations. For example, although 

satellite based imagery platforms can allow for wind speed and direction to be mapped, they 

rely on a “tracer” to be present, often in the form of a cloud or water vapor mass which is 

tracked between image frames taken over time ("Derived Motion Winds," 2013). These systems 

work well to establish a projection of the movement of large scale weather systems, but have a 

difficult time mapping information regarding the winds in narrow altitude bands (the GOES 

system categorizes winds in three ranges: 0-10,000 feet, 10,000 to 23,000 feet, and 23,000 to 

50,000 feet ("Toggle Overlays Explained," 2013). In addition, and visible in Figure 2, wind 

direction and speed data derived from these satellite images can be sparse, especially in areas 
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with little cloud cover or heavy high altitude clouds that obscure traceable cloud formations 

underneath them. 

 

Figure 2: Wind speeds and directions calculated from GOES visible imagery (HDW-mid displayed) (National Weather Service, 
2013) 

2.3: Autonomous Surface Vehicles and Data Collection 

Autonomous surface vehicles (ASVs) are boats designed to travel without a crew. 

Because autonomous surface vehicles operate on the surface of the water, they are best suited 

for certain types of measurements and data collection methods. Scientists are turning to 

developing technologies to lower costs and collect otherwise inaccessible data, and 

autonomous watercraft are being included in this shift to increasingly advanced and hands-off 
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data collection equipment (Marzuola, 2002). These platforms can be designed to collect a large 

amount of data from a number of sensors that interact with the environments above and below 

the waterline. It can then be hypothesized that ASVs may make good data collection platforms, 

especially if a particular unit can be outfitted with in situ sensors that can function without 

maintenance and provide accurate data for the duration of the platform’s mission. As most 

common data types are separated into water property measurements, biological 

measurements, and environmental measurements, an autonomous surface vehicle would only 

prove to be an effective platform for collecting data if it could prove more effective than 

current collection means. 

2.3.1: Water Property Measurements 

ASVs have an advantage in regards to their capacity to collect water property 

measurements because these metrics change often and an ASV could be configured to repeat a 

particular mission in order to maintain the usefulness of the most recent set of data. Unlike 

moored buoys, ASVs often have shallow drafts, meaning that sensors cannot usually be located 

at a depth of more than about twenty feet due to the structure of the unit. The advantage that 

ASVs have compared to buoys, however, is their capacity for modularity and on-the-job 

repurposing. One ASV could potentially be outfitted with a battery of solid state in situ sensors 

and undertake a week long, 500 mile mission; those same sensors would only collect data from 

one static location if they were mounted on a buoy during that time. As ASVs are modular, the 

unit could serve different purposes seasonally, or be pulled from low priority missions when a 

more time sensitive survey must be taken. This modularity could also lend ASVs to be borrowed 

and loaned between organizations to support high priority missions. 
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2.3.2: Biological Measurements 

 A number of biological activity indicators can be easily measured by an ASV. Some 

simple metrics include chlorophyll counts and fluorometry data, both of which can be used to 

assess the concentration of suspended phytoplankton in the water. ASV data collection in the 

biological measurement field is particularly interesting because ASVs could be used to further 

investigate potential algal blooms with higher data point resolution. As some biological 

measurements can only be conducted in a laboratory, the ideal ASV may have a water sample 

collection system or other means of taking and storing water samples that would be 

transported to a lab for further analysis. With this method, a number of issues plaguing 

traditional water sample practices could be avoided, especially in regards to the cost, 

complexity, and number of man hours involved with collecting ideal water samples (Grasshoff 

et al., 2009).  

2.3.3: Environmental Sensors 

 As an autonomous surface vehicle travels on the surface of the water, it is useful not 

only for measurements underwater, but for measurements above water as well. Above-water 

measurements that can be taken with simple solid-state equipment include air temperature, 

barometric pressure, wave height, wind speed and direction, photographic observation, 

radiation measurement, turbidity, and air quality indexing. As a modular ASV can accommodate 

a number of sensors and configurations, one platform could potentially collect a large and 

varied amount of data on a mission hundreds or thousands of miles long. As discussed earlier, 

some types of data, such as wind speed and direction, cannot be collected via satellite as 

accurately as they could be collected by an ASV or weather buoy. As weather buoys do not 
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cover the ocean with significant resolution, it is possible that the potential of ASVs to provide 

calibration data to satellite platforms studying otherwise uncorrelated parts of the ocean could 

increase the accuracy of particular datasets collected by satellite, as well as yield discrete 

measurements that could be used independently to examine the environment studied by the 

ASV. 

2.3.4: Additional Sensors 

 Because of the modular nature of a properly constructed ASV, additional sensors 

specific to a particular research field or application could be installed on the platform with little 

effort. This capacity for expansion means that autonomous surface vessels have a tremendous 

breadth of applicability, allowing the end user to customize the product to their specifications 

and specific sensor payload. For example, scientists looking to measure water salinity to 

investigate its effects on shellfish could fit the unit only with the salinity and other water 

property sensors that would be useful in their investigation. 

2.4: Existing Autonomous Vehicles Used for Data Collection 

A small number of autonomous surface vehicles designed for use as autonomous data 

collection platforms exist today; some are available on the commercial market, while others are 

still in development. Several autonomous surface vehicles have been launched by hobbyists. As 

the objectives of ASV platforms are often similar (collect sensor data and transmit it back to 

shore,) the differences between the platforms, and their current positions in the commercial 

market, are what differentiate the products to potential clients and create value for particular 
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missions. Not discussed here are Autonomous Underwater Vehicles, which resemble small 

submarines or torpedoes and are being used for numerous research projects today. 

2.4.1: Wave Glider- Liquid Robotics 

 

Figure 3: The Liquid Robotics Wave Glider: computer rendering (Robotics) 

Wave Glider is a platform developed by Liquid Robotics, a company operating out of 

Sunnyvale, California, which has been funded by a number of rounds of venture capital 

investment totaling more than $81,000,000 ("Crunchbase: Liquid Robotics," 2013). The 

company’s first product, the Wave Glider (pictured above in Figure 3) is a semi-autonomous 

platform that is propelled by wave power and can be outfitted with a number of sensors and 

payloads, often designed for scientific data collection purposes. While the Wave Glider has a 

virtually unlimited source of propulsion and can travel 24 hours a day, its maximum speed is 

reported by Justin Manley and Scott Willcox, two company employees, to be 2.25 nautical miles 

per hour in ideal sea conditions. Manley and Willcox state that the expected “long mission 
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average” speed of the platform is about 1.5 knots (1.73 mph) which excludes it from a number 

of missions that require autonomous platforms with higher, more predictable speeds. Liquid 

Robotics allows customers to either buy “time” on a Wave Glider at a rate of between $1,000 

and $3,000 per day, or purchase a Wave Glider outright, with a purchase price starting at 

$300,000. 

The Wave Glider platform has had some success in the commercial market and has 

Liquid Robotics has deployed approximately 130 units as of August of 2012. Liquid Robotics has 

not made detailed information about their customers public, but plans to use its military and 

security strategic advisory board to expand into the security market ("Liquid Robotics: About 

Us," 2013). 

2.4.2: Roboat 

 

Figure 4: Roboat under sail (“Roboat: Home,” 2013) 

Roboat is an autonomous sailboat built by a research team from Austria that has had great 

success in international ASV competitions, particularly in the World Robotic Sailing 
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Championships, where the team has won four times. Although the 3.75 meter boat is not 

currently designed for commercial applications, the large size of the vessel enable it to handle 

missions that smaller platforms, such as the Wave Glider, could not accomplish due to its lack 

of buoyancy and cargo space. The Roboat website lists a number of potential applications that 

its creators believe to be feasible uses for the platform, including CO2 neutral cargo transport, 

data collection, and even advanced autopilot solutions for exhausted or otherwise 

incapacitated skippers ("Roboat: Home," 2013). As the Roboat project is not yet a commercial 

venture, its marketability may be difficult to determine, but its ability to carry payloads of 

significant weight and bulk, as well as the plentiful solar power available to the onboard 

systems, makes Roboat an interesting and potentially valuable platform in the developing ASV 

market. 

2.4.3: Saildrone 

 

Figure 5: A prototype Saildrone on a test mission ("Saildrone," 2013) 

Saildrone is an ASV designed by a team of engineers that have had intentions of 

commercializing the project since its inception. The unit’s sole source of propulsion is its 
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wingsail, and production models will be 19 feet long with a mast height of 20 feet. Saildrone LLC 

claims that the platform can attain a maximum speed of 14 knots (16 miles per hour) and an 

average speed of 4 knots (4.6 miles per hour.) Like the Wave Glider, Saildrone is designed to 

carry customizable payloads and sensors as dictated by customers, and data can be collected 

onboard and transmitted back to shore. The higher average speed of the Saildrone, however, 

means that the product can complete a mission more than twice as fast as the Wave Glider, 

which could be a significant selling point as many missions, such as monitoring specific weather 

events, are time sensitive.  

 So far, Saildrone LLC has only built prototype units which are not available for purchase 

today. The company has not published an estimated market date for the product, but does plan 

to use the units in a number of experimental studies in 2014. These trial missions include shark 

tracking off of the coast of California, buoy replacement in cooperation with NOAA, and an 

ocean acidification study ("Saildrone," 2013). Although the Saildrone does have certain 

advantages over Waveglider and buoys, those advantages need to be weighed against its large 

size. As the price of this product has not been released it is difficult to compare the cost benefit 

ratio of the unit to another product, such as the Wave Glider.
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3: Methodology 

 As the Scout project was an experimental venture undertaken by a team of college 

students with limited resources, it was constrained in several ways and presented a number of 

challenges unique to the project. As Scout moved from the design phase to the various stages 

of construction, features were added and removed, structure designs were modified and 

reworked, electronic system designs revised, and thousands of lines of code were written. 

While Scout was designed primarily for the task of traveling from Rhode Island to the shores of 

Spain, it was also fitted with environmental sensors designed to take readings along the way 

and transmit them back to shore based systems. 

3.1: Goals of the Scout Project 

 The Scout project was designed to produce an autonomous electric motorboat that will 

navigate under its own power from the coast of Rhode Island to Sanlucar de Barrameda, Spain. 

Sensor systems fitted to the platform were designed to record data which was then sent along 

with diagnostic information to shore every twenty minutes. The platform was also designed to 

record video clips that are stored onboard for later retrieval. A backup tracker mounted to the 

deck was able to be remotely activated in the case of primary system failure. 

3.2: Design 

Scout was designed to be as inexpensive, light, and seaworthy as possible with the 

resources that were available to us. As Max had considerable marine design experience, he 

designed the boat to be built from carbon fiber and Divinycell marine grade foam in a thirteen 
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foot long hull resembling the form factor of an aircraft carrier. Max’s design was dependent on 

the configuration of the solar panels, the amount of power that would be available to the 

motor, the weight of the systems that would be onboard, and a number of other factors not 

directly related to the platform’s performance in the water (for example, Scout needed to be 

easily transportable by car). Sponsorship by Jamestown Distributors allowed Max to use 

materials and construction techniques that may otherwise have been prohibitively expensive.  

The design of Scout’s electronic systems was complicated by the fact that Scout would 

be powered solely with solar power and would need to function independently for months. I 

designed the electrical systems using as many “off the shelf” components as possible in hopes 

of simplifying the system and reducing the number of potential points of failure. An example of 

this was the solar charge controllers- the devices designed to manage the charging of the 

batteries. Instead of designing and building these complex units from scratch, we bought the 

controllers online and integrated them into our systems. 

Although we tried to use as many off the shelf products as possible, I still had to design 

and build some electronic components to connect systems and enable the functionality that we 

were expecting from Scout. Figure 6 shows an early version of the motherboard designed to 

facilitate the connection of various subsystems to Scout’s central processor. While we had 

previously created a ratsnest of terminals and wires in the electronics box on Scout, this board 

allowed us to use standardized connectors to simplify the integration of subsystems which 

increased the ease with which the system could be inspected and gave us more confidence that 
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it wouldn’t fail prematurely. Circuit boards and electronic components were usually purchased 

with cost being the primary deciding factor in the purchase decision.  

 

Figure 6: Scout printed circuit board (Rodriguez) 

Scout’s software was written in the Arduino integrated development environment and 

was designed to be simple, reliable, and predictable. Because Scout would be spending months 

at sea, we knew that it would have to be completely independent of us as the platform would 

be inaccessible; we would not be able to fish it from the sea for repairs if it failed in the middle 

of the Atlantic. We eliminated many features that would have been nice to have but could 

potentially interfere with the main functionality of the unit, and designed the remaining 

systems to be as simple (and as easy to debug) as possible.  
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3.3: Strategy 

 As Scout is comprised of a number of subsystems, we found it easiest to build many of 

the systems in parallel and combine them as we moved forward. For example, work on the 

software and electronic systems took place in tandem with the physical construction of the 

boat. As most of the team did not have significant electronic or software experience, the 

priority of those team members was to support the team members doing that work. This focus 

of the team significantly increased the number of hours that the resident and visiting team 

members working on software and electronic hardware could spend contributing to those 

components of the project and improved the efficiency of those team members when they 

were working, which was a critical component of the strategy of the team. These support roles 

ranged from making lunch to covering a team member who sometimes worked on Scout 

instead of going to his real job. 

 In addition to supporting the critical components of the project, the strategy 

implemented by the Scout team focused on maximizing the use of the resources available to it. 

In many cases, this meant identifying potential issues early on and consulting friends or other 

acquaintances to identify ways to move forward. If a particular issue became obstructive to the 

completion of other parts of the project, the team would whiteboard a series of potential 

solutions to the problem and attempt these solutions, in order, until the issue was fixed. For 

example, an issue with the battery charging system was solved early in the process, but had the 

initial potential solutions not worked, we would have ended up replacing the LiFePO4 batteries 

with heavier, less efficient sealed lead acid batteries to mitigate the issue.  
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3.3.1: Social Media and Connecting to our Audience 

One goal that the Scout team members had concerned our parents and neighbors; 

namely the fact that sometimes all of the Scout team members would disappear from the 

neighborhood community for days at a time while working on Scout. At the beginning of the 

project, the Scout website was a simple static page that was updated once or twice a month. 

When the team started to put more hours into the project, we similarly put more time into 

maintaining our public appearance, both online and with traditional news media sources. 

Figure 7 shows an example of a post that I published on the Scout Facebook page in order to 

share an unsolicited analysis presented by Scout follower Jörg Dietrich, a research scientist at 

the University Observatory Munich. 

 

Figure 7: The “will it crash?” post on the Scout Facebook page 

 In the last months of the project, the Scout team maintained a website, a blog, a Twitter 

page, and a Facebook page. As I had the most experience with website development, I ended 

up managing the website and the rest of the project’s online presence. Parents were emailed 
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instructions on how to receive the latest messages posted to Twitter as text messages to their 

phones so that they would have some idea of what their kids were up to. By the end of the 

project, Scout’s Twitter page had 300 followers, the email list had 325 email addresses in it, and 

the Facebook page had over 2,200 subscribers. The team’s intent was to use these 

communication channels to keep the parents and the public up to date on the project. These 

updates were particularly useful for events, such as long distance testing. For example, Figure 8 

shows a series of tweets posted to update the project’s Twitter followers during the failure of 

one of Scout’s navigation lights that were fitted for the duration of a long distance test 

occurring at night. 

 

Figure 8: A series of updates on the Scout Twitter page, posted during an offshore test. 
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3.4: Data Collection 

Scout was fitted with several sensors designed to collect data as she crossed the 

Atlantic. These sensors include sensors used for navigation, a barometer, a voltmeter attached 

to the motor battery, a dissolved oxygen sensor, a salinity sensor, a pH sensor, and three 

temperature sensors (water, air, and internal.) As the team didn’t have the resources to buy 

and install expensive sensors, the sensors chosen were the most economical units available on 

the market. The data from these sensors is transmitted every twenty minutes by Scout and 

stored in a database onshore. While more accurate, feature rich sensors could be fitted to a 

Scout platform in the future, these were chosen as a proof of concept to illustrate the value of 

an autonomous platform in regards to data collection over long distances in the Atlantic. 

3.5: Analysis 

 While the Scout project carried sensors onboard only as a proof of concept, a number of 

analyses can be performed on the data received from the platform. There are a number of 

additional results of the project that can also be studied. 

3.6: Specific Applied Efforts 

As the Scout project was a collective effort undertaken by friends, it presented its own 

challenges, both technical and managerial. Unlike in a commercial environment, there were no 

set hours, no job titles, no compensation, and no money available to hire consultants. I found 

that this created two areas of concern: managerial challenges and technical challenges. 
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3.6.1: Managerial Challenges 

The average age of the five Scout team members at the beginning of the project was 

18.2 years old, with the youngest member being fifteen and the eldest being twenty years of 

age. Focusing a team of teenagers to achieve a project of considerable technical difficulty 

requires an understanding of the group’s relationships with each other and with the project 

itself. As the project developed over the next two and a half years, although the abilities and 

responsibilities of each team member changed, the momentum of the team and the project 

grew to an incredible level, creating a work environment that was truly remarkable. In the 

summer of 2012, for example, all Scout team members had full time (40 hours/week) jobs, yet 

the average time commitment to the Scout project, per team member, was 82 hours per week.  

Although the team never sat down to discuss the establishment of individual focuses or 

responsibilities, team members rose to fill whatever positions they believed they were best 

suited for. For example, the fact that none of the other team members had any electronic 

design or software experience meant that I was best suited for tasks related to those 

components of the project. It also meant that if I wasn’t able to complete a task in this field, I 

would find someone who knew how to do it and find a way to compel them to do so. Most of 

us had some experience working with composites, but Max was by far the most knowledgeable 

in that field, and so the design of the structures and laminate schedule were handled by Max. 

Dan, Mike, and Brendan also had particular strengths gained from past experience that helped 

identify where they could contribute the most value to the team. 
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The concept of leadership in this project was fascinating because of the fact that the 

project required knowledge and resources beyond our means, thousands of man hours of work 

during weekends and summers, and financial investment by all of the team members. As I fell 

into a leadership role for the project, I understood that the motivation of the team members 

would play a huge part in the success or failure of the project. My focus was to give Scout the 

best chance at success on her mission as possible, and oftentimes that meant sleeping for four 

hours a night or forgoing sleep to help another teammate with a particular task. This team was 

incredibly self-motivating and self-sufficient, and each team member made their own sacrifices 

to spend the amount of time working on Scout that they did. My greatest contribution in 

regards to my leadership of the project was most likely the fact that although everyone else did 

take time off from the project for sailing races, travel, or other engagements at one point or 

another during the summer, I was always there, working with whoever was left. Because the 

team was so close knit, I had unnecessarily worried that the loss of one of the team members 

for even a week could demotivate the remainder of the team.  

3.6.2: Technical Challenges 

 As the Scout project is a technical project that involves microcontrollers, long distance 

navigation, motors, solar power, and communication over a satellite network, it presented a 

number of technical challenges. Most physical challenges, such as hull construction, solar panel 

mounting, or composite component manufacture, could be overcome simply by applying more 

time to that task. Many software and electronic system challenges, however, could not be 

solved solely by committing additional time to that issue. For example, as the satellite 

communication unit that we chose for Scout was designed to be integrated into systems by 
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professionals, I experienced tremendous difficulty in integrating the unit into Scout’s onboard 

computer system. At the time, there was no better product available on the market that was 

suitable for the purpose, so the only option that we did have was to continue trying to integrate 

this product. I contacted a friend, Ryan Muller, who then commuted during the weekends in a 

series of 240 mile round trips to the garage in order to help overcome some of the more 

complex software issues that we were facing with that integration issue. Access to Ryan 

became a key resource for the success of the project. 

 A technical challenge in the electronic development aspect of Scout that was 

particularly daunting was the isolation of electrical noise created by the motor controller from 

the rest of the system. During testing, we found that electrical noise was generated on the 

power bus when Scout’s drive motor was propelling Scout through the water. These spurious 

signals interfered with the rest of Scout’s systems, particularly the servo motor used to control 

the rudder. In-house debugging determined the source and means by which the interference 

was affecting the rudder control system, but a quick consult from Dr. Greg Jones2, a 

neighborhood friend and Scout supporter, produced a solution that was implemented and 

determined to be effective. 

 Another technical challenge encountered by the team was developing a bilge pump 

activation system to sense water in the boat and trigger the bilge pump. The initial plan was to 

use a commercially available bilge pump float switch, but after testing a standard unit from 

Jamestown Distributors, the team wasn’t pleased with its performance; it took two or three 

                                                      
2
 Dr. Greg Jones: A neighbor and electrical engineer who is a professor at the University of Rhode Island and works 

at the Naval Undersea Warfare Center in Newport, Rhode Island. 
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inches of water in the bottom of the hull for the switch to activate. While such a switch may be 

adequate for large boats where a few inches of water are inconsequential, Scout is sensitive to 

such amounts of water in her hull. Team members examined other products carried by 

Jamestown Distributors, but found that no float switch carried by the company would activate 

the bilge system with less than two inches of water in the hull. Two of my other team members, 

Mike and Brendan, had led the switch search, and decided that if an ideal bilge pump switch 

could not be found, they would make one. The system that they developed was not a 

traditional float switch; it instead used carbon rods which would trigger a relay when they were 

bridged by water. Although it took two team members an afternoon to design, build, and install 

the system, this solution significantly reduced the amount of water in her bilges that Scout 

would transport across the Atlantic. 

 A number of interesting innovations were developed to solve problems that were 

difficult to simulate and test. One significant example concerns the possibility of a memory leak 

on the navigation processor. Such an issue could, over a period of weeks or months, slowly fill 

the memory available to the unit until it crashes, reducing Scout to a floating message in a 

bottle. We knew, however, that if we reset the unit automatically each day a memory leak 

would never crash the processor, and if it did, the problem would be fixed on the next reset of 

the system. We designed an automatic reset system into the electronics and software and it 

visibly and successfully rebooted the unit a number of times in the transatlantic attempt; 

without this system, Scout’s navigation system would have failed as early as five days into the 

journey. 
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 Other challenges that we encountered while designing Scout’s systems included 

mechanical issues, such as the potential for Scout to encounter seaweed, plastic bags, or other 

sea debris that would get wrapped around the keel or propeller and impede Scout’s travel 

through the water. Upon consideration and simulation of the issue, we found that 

programming Scout to motor backwards for a minute every few hours would free most debris 

from the keel and propeller. 

3.7: Methodology Analysis 

Scout sent 2,285 transmissions from its launch on August 23, 2013 to its disappearance 

76 days later on November 6, 2013. During the mission, some values transmitted from Scout 

appeared to be errant, and suspected onboard software issues would occasionally stop the 

reporting altogether. Because of timeline restrictions, several diagnostic data fields that were 

planned to be implemented in the system were stripped from the final code because they 

hadn’t been fully tested before launch; this data could have been useful in understanding the 

failures of the onboard systems.  

Although some of the data received from Scout was corrupted or otherwise unusable, 

we did collect a significant amount of data that can be studied to learn more about what Scout 

experienced on her trip. Analysis of this data can certainly help improve the design of future 

Scout platforms and provide a basis for future research. 

3.7.1: Voltage 

 Scout was fitted with a voltage sensor connected to the motor battery. The power 

distribution system was designed to charge this battery to a maximum of 13.8VDC and allow it 
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to discharge to around 10 volts at night, at which time the system would shut down the motor 

until the battery could be recharged the next day. As Scout’s hull is a displacement hull, it takes 

an exponentially higher amount of power for it to move faster; slower speeds are significantly 

more efficient. An optimal speed would be one that would keep Scout moving forward around 

the clock. 

 As there were no electrical current sensors in the system, we can study the voltage of 

Scout’s motor power bus to gain a basic understanding of how Scout was handling power.  

 
Figure 9: Selected Scout voltage changes 

Figure 9 depicts the change of the voltage of the main power bus on Scout. Change on 

the Y axis indicates a rise or fall in motor system voltage over a 20 minute period. Figure 6 

shows that in this case, the battery was discharged during the night (gray: packet 1-30) and 

started to charge around packet 30 (yellow: 9:13am EST.) The voltage then increased rapidly 
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from packets 31 to 35, and leveled off over the afternoon. We can see that at a certain point in 

the afternoon (around packet 52) the power coming in from the solar panels wasn’t enough to 

maintain the bus voltage so it began to slowly dip, and at packet 64 (7pm) the solar panels 

weren’t providing any power which is indicated by a significant dip in the system voltage. This 

graph can be thought of as motor use trying to push down and the solar power pushing up; at 

night the motor will win and deplete the power reserves, and during the day the values will 

move above the X axis as power is stored in the system. 

 Because Scout’s batteries had a very flat charge/discharge curve, and because the 

voltage measured on the bus isn’t an accurate battery status indicator, voltage data is limited in 

its usefulness. An ideal power management system would include current sensors to measure 

electrical current as it flows in and out of various system components. In this way, a more 

accurate map of power flow could be generated and studied. Figure 10 shows a colorized 

representation of Scout’s system voltage over the first two days of its mission; green means 

that the battery was full or that the system was charging, yellow indicates that the system was 

discharging the battery, and orange indicates a low voltage situation. 



 
 

36 
 

 
Figure 10: Colorized representation of system voltage 

3.7.2: Scout’s Speed 

Scout was designed to travel for approximately 20 hours a day at around 2.5 nautical 

miles per hour (4.6 km/h). Scout’s speed was measured by using the speed over ground as 

reported by the GPS, but this measurement style would often provide values that varied 

significantly between transmissions. For example, Scout’s speed while surfing down a wave 

could be reported as 7 km/h, while the next measurement may be taken while Scout is climbing 

a wave at .5 km/h. Averages taken over longer periods of time smooth out these variations. 

While we did build a function into Scout’s code to mitigate this issue by taking a speed 

measurement every minute, averaging twenty minutes’ worth of measurements onboard, and 
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sending the averaged speed back to shore, a programming error precluded this function from 

returning useful data. 

To get a better idea of Scout’s average speed, we can simply find the distance that Scout 

travels in a 60 minute period and map those values (distance/time.) If we average Scout’s speed 

in this manner over the duration of the mission, we find that Scout averaged about 3.2 km/h. A 

visual representation of these different speed calculation methods is presented in figure 11. 

 
Figure 11: Scout's speed calculated by GPS and distance/time. Readings from the GPS vary more significantly than D/T 

measurements, probably due to the way GPS calculates speed. 

To increase Scout’s average speed in the future, considerations such as additional solar 

panels, a more efficient propeller, and better power handling systems may provide significant 

speed gains. Additionally, careful consideration of the normal running speed of Scout can make 

a significant difference in its overall average; displacement hulls are more efficient at slower 

speeds, so power is conserved if Scout runs at lower speeds for longer amounts of time. 
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Analysis of the data shows that Scout was “sleeping” for about 23 percent of the time that she 

was in the water; reducing her speed would also reduce the platform’s time in standby mode, 

which would increase the distance that she could have traveled with the same amount of 

power. 
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4: Results 

The Scout Transatlantic attempt generated significant quantities of data that can be 

analyzed to better understand her performance. Significant amounts of unquantifiable data 

were also generated, as this was the first time that an autonomous boat had traveled more 

than sixty miles offshore. This information included the public’s perception of autonomous long 

distance vessels, best practices for system design, project management strategy, and ideas for 

future development.  

4.1: Launches 

 The Scout Transatlantic team launched Scout three times; the first two attempts ended 

in the near-shore retrieval of Scout, while the third attempt ended when the vessel’s tracking 

units failed. The list of waypoints did not change between attempts. 
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4.1.1: The First Launch 

 

Figure 12: Scout's first launch track 

 Scout was first launched from Fogland Beach, Tiverton RI on June 29, 2013 at 9:20AM. 

Scout had been scheduled to be staged at the beach at 6AM that day, but the team was not 

prepared to launch at that time despite many team members having worked on the vessel for 

the 24 hours leading up to the event. This launch was designed to be attended by all Scout 

team members and publicized in advance to encourage media representatives and Scout 

supporters to attend. Figure 12 shows the actual track of Scout on this first mission. 

 The launch day events were streamed live to viewers via the Scout website and started 

with the sealing of Scout’s forward hatch, which was the access point for the battery charging 

system. This took place while breakfast was being grilled and boats were being staged off the 

shore of the beach. Other final preparations, such as group photographs and extending the 
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opportunity for supporters to use markers to sign the hull, took about an hour. Once the vessel 

was ready to go, the five Scout Transatlantic team members walked the boat into the water 

where it was followed south by a small motorboat. When Scout reached the middle of the 

Sakonnet River, the small motorboat tasked with tracking Scout docked with a larger sailboat, 

Astraea, which took over tracking Scout. Astraea was to follow Scout about twenty nautical 

miles offshore to ensure her safe passage, but was forced to turn back shortly after nightfall 

after losing visual contact with the boat.  

 Due to significant fog and a poor forecast for the rest of the week, the Scout team 

recovered the boat after her second day at sea. Scout had run out of battery power and was 

floating in the direction of an uninhabited island; rather than risk the loss of the boat on the 

shores of the island, she was retrieved and brought back to the garage. 
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4.1.2: The Second Launch 

 

Figure 13: Scout's second launch track 

 After cleaning and recharging Scout, Max, Dylan, and Tom brought her to Sakonnet 

Point, Little Compton RI for the second launch on July 4, 2013 at 2:12AM. While the first launch 

had taken place during the day in order to allow for spectator and media attendance (and the 

specific date being chosen not by analysis of a weather window but by the availability of all 5 

team members) a daytime launch was less efficient in regards to the optimization of the 

platform’s power budget, and the particular day of Scout’s first launch happened to be fraught 

with terrible weather. A midnight launch would allow Scout to use the power stored in her 

batteries for the first leg of her journey and start the morning with a nearly discharged battery 

pack. As Scout’s solar panels generated more power than the motor used, this additional power 

would then be put back into the battery pack. If Scout had been launched during the morning 
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with a full battery, the solar panels would generate more power than Scout could consume, and 

that extra power would be burned off as heat. Figure 13 shows Scout’s actual track on this 

second launch attempt. 

 In stark contrast to the previous launch, the only attendees at this attempt were the 

three teammates. Max and Tom paddled Scout past the rocks that peppered the shoreline and 

returned with news that Scout had vanished into the night. After a short celebration, the first 

data packet came through the tracking system and showed Scout to be making excellent 

progress on the first leg of her journey. All three team members spent the night napping in 

twenty minute intervals, as a transmission was received from Scout three times per hour. 

 

Figure 14: Map showing Scout waypoints 

Scout experienced excellent weather during the first launch, and had no trouble hitting 

the first ten waypoints. Figure 14 shows the arrangement of the waypoints near Rhode Island 

and those near Spain. After satisfying the tenth waypoint, Scout started behaving erratically 

and reported in each data transmission that it was pointing in seemingly random directions. Her 
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speed had slowed considerably, and although her voltage reports indicated that she was 

burning power, the lack of forward progress indicated to the Scout team that the boat was 

probably spinning in circles, either due to rudder failure or something getting wrapped around 

the keel. Max, Dylan, and several parents and neighbors mounted a second rescue mission, 

which was enabled by one generous Scout supporter who volunteered his motorboat for the 

rescue mission.  

 When Scout was retrieved from the second launch attempt, she was found with her 

rudder hard over, motoring in tight circles. The boat was pulled out of the water and 

transported back to the garage, where the rear compartment housing the rudder steering 

system was cut open. Upon inspection it was discovered that components in the rudder servo 

motor had overheated, either due to random failure or from the forces on the servo being too 

large. 
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4.1.3: Third Launch 

 

Figure 15: Scout's third launch track 

After the failure of the second launch, the Scout team spent a month and a half testing 

servo motors and considering new designs for the steering system. A significant number of 

redesign options were discussed and considered, and the team decided to install a better 

quality servo of the same size and torque into the rudder control system. Optimal changes to 

the rudder system would have involved a complete redesign built around a worm gear drive 

system, but such an alteration would have required significant mechanical and software 

changes that the team didn’t believe could be completed in time for another launch attempt 

that summer. The third launch took place at Sakonnet Point, which was the same site used for 

the second launch. On August 23, 2013 at 11:52PM, a crowd of supporters watched Max and 
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Tom swim Scout off the beach and into the night. The beginning of Scout’s track for the third 

launch is displayed above in Figure 15. 

 Scout quickly surpassed her previous records, and due to an excellent weather window 

that the launch was planned around, she deviated from her intended path very little. The 

excellent progress would not last, however; on August 25 at 4:21PM Scout spun off to the east 

much more dramatically than had been planned. This change of course was the result of a bug 

in Scout’s software that was designed to make sure that the boat would never try to navigate to 

a waypoint that was west of her position; this error meant that instead of taking a southerly 

route in the middle of the Gulf Stream current, she would navigate in a straight line between 

waypoint 11 and waypoint 37, the latter of which was about 2800 nautical miles away. This new 

course is displayed in figure 16. 

 

Figure 16: Scout's planned route (red) and the new route calculated by Scout's computer (gray). 
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As Scout didn’t transmit the waypoint it was seeking, at first it was anyone’s guess 

where Scout’s new course would take her. The software bug caused Scout’s computer to skip a 

number of waypoints, but it wasn’t possible to figure out how many were skipped by just 

reviewing the code. Transmissions from Scout, however, reported the bearing to the next 

waypoint. By loading Scout’s code on a spare microcontroller and asking Scout what course she 

would set if she was at a particular position, I was able to triangulate the unknown waypoint. A 

visual representation of the math performed to identify the new target waypoint is shown in 

figure 17. Figure 18 shows the output of the microcontroller which identified the target 

waypoint. 

 

 

Figure 17: With some manipulation, Scout’s software returned what Scout's course would be from a number of different 
points on her track. 

Scout’s course change occurred only two days after the third launch in a series of 

unsuccessful transatlantic attempts; it was widely believed by the public that Scout was 
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disabled or spinning in circles once again, and many thought that this launch would end in yet 

another rescue attempt. By calculating the waypoint that Scout was headed towards, we were 

able to confirm to Scout followers that the boat wasn’t motoring in a random direction, that it 

wasn’t damaged in any way, and that although the project had shaken free of our grasp, we still 

understood what it was doing and why it was behaving so. 

 
Figure 18: X0 through X5 are GPS coordinates selected from Scout's track; the software runs each set of coordinates through 

the navigation algorithms as if Scout is navigating to that waypoint. 



 
 

49 
 

Managing the project’s public side would become a significant endeavor; once followers 

began to accumulate, the team found that it took significantly more time to update the 

website, Twitter account, and Facebook group than it had imagined. In cases like the skipping of 

the waypoints, quickly updating followers became an important part of following Scout’s 

travels. As seen in figure 19, most updates directly addressed the project’s audience and were 

designed to be understood by the average curious onlooker. 

 

Figure 19: The Facebook post informing followers of Scout's unplanned course alteration 

 After Scout’s course change, she traveled about 850 nautical miles without significant 

incident. On September 28, however, Scout stopped sending transmissions from her primary 

satellite transceiver. The backup tracker, activated three days later, indicated that Scout was no 

longer navigating under her own power and was instead simply floating in the ocean. Although 

Scout made about 250 nautical miles of progress towards Spain during this period of floating, 

this progress was simply because of favorable winds and currents. Thirty nine days after the 

primary tracker went offline, the secondary tracker followed, and Scout was lost at sea. 
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4.1.4: After Scout Disappeared 

 By the time that Scout’s backup tracker went offline, the tracking website had been 

loaded 760,000 times by 61,000 unique visitors, and the average visit duration was more than 

fifty minutes. Thousands of people had followed the project from start to finish, and thousands 

more were referred by friends or news media. As can be seen in figure 20, even after the boat 

was lost the team continued to respond to inquiries by news organizations and well-wishing 

followers. 

 

While many of these messages were from curious recreational followers from around 

the world, the team received several notes from people intrigued by the potential uses of a 

product like Scout. These suggestions ranged from shipping goods across oceans to 

environmental applications and transporting food and supplies to areas affected by natural 

disasters. While we had only considered the use of a Scout-like platform for environmental 

research, it was intriguing to see the variety of potential uses for vessels like Scout that our 

audience came up with. 

Figure 20: Messages from Scout followers 
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4.2: Analysis of Scout’s Transatlantic Attempt 

 As Scout’s navigation relied only on preprogrammed commands and information that it 

could gather from its sensors, the systems that we developed and implemented on the 

platform had direct and measurable effects on Scout’s progress. Metrics that we can use to 

determine the successes and failures of particular systems include cross track error (XTE), 

deviation from Scout’s target speed, and navigation system inaccuracies.  

4.2.1: Cross Track Error 

 Cross track error, often abbreviated as XTE, is the distance of a vessel from the shortest 

path between two points. In Scout’s case, XTE represents the distance of Scout from the 

invisible line connecting the waypoint most recently satisfied by Scout and the next waypoint 

that Scout wants to satisfy. In marine navigation, cross track error is used as a metric of 

deviation from the mathematically ideal path that the vessel should take. Minimizing XTE was 

not a specific focus of the Scout project, as reducing XTE has the consequence of increasing the 

power consumed per mile traveled (if Scout was programmed to try to stay as close to the 

imaginary line connecting two waypoints as possible, it would consume a significant amount of 

power in its efforts to counteract intermittent forces acting upon it, such as wind and current.) 

As Scout’s mission was to cross the Atlantic, we programmed Scout to have a high tolerance for 

XTE while keeping potential obstacles in mind (our intention was to keep Scout clear of all 

landmasses while allowing her to drift north and south with the tides and wind; in this way, as 

much of Scout’s scarce power resources as possible would be committed to moving her east. By 

programming Scout to increase the magnitude of her rudder correction based on Scout’s 

deviation from her ideal course, we attempted to control the cross track error. This software 
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module went largely untested, as even in our supervised 45 mile test mission there was not 

enough distance between waypoints to properly simulate Scout’s tolerance for XTE. 

4.2.1.1: Cross Track Error: What Actually Happened 

 As Scout’s XTE allowance was designed to depend solely on the distance between the 

waypoint previously satisfied and the next waypoint to be satisfied, waypoint distances were 

the primary means of varying the XTE allowance along Scout’s mission. Scout’s XTE between 

each of the first ten waypoints satisfied was minimal; Scout was often less than one nautical 

mile away from her ideal course. As the first eleven waypoints were close to shore (less than 40 

nautical miles away) the waypoints were plotted less than ten nautical miles apart from each 

other. Once Scout left the US economic exclusive zone (territory extending 200 miles from 

shore) the navigational waypoints were positioned about 200 nautical miles apart, in order to 

allow for a significant north/south drift. The effects of these more widely spaced waypoints, 

however, were unable to be assessed due to the waypoint bypass error described earlier, as 

Scout only navigated to waypoint 11 before bypassing more than 20 mid-ocean waypoints and 

setting a course for waypoint 37, which was less than one hundred miles from Spain. 

 Because waypoint 37 was more than two thousand miles away, the Scout Transatlantic 

team immediately became concerned that Scout would calculate a high tolerance for cross 

track error and allow a collision with the Canadian coast. Another effect of the waypoint bypass 

error was the potential for collision with Portugal, as the calculated course to waypoint 37 cut 

through the middle of the country. Jörg Dietrich, a research scientist at University Observatory 

Munich and enthusiastic Scout supporter, created and published an auto-updating image 
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(included here as figure 19) on his website that indicated Scout’s cross track error in respect to 

the straight-line course between waypoint 11 and waypoint 37. 

 

Figure 21: Scout's cross track error distance. XTE = 0 plotted in gray, current bearing plotted in red (Dietrich.) 

 As indicated by Dietrich’s image, Scout maintained a cross track error of around 50 

nautical miles or less for the duration of its powered travel. An interesting side effect of Scout’s 

navigation system going offline is an opportunity to see what type of XTE could have been 

expected from Scout if it disregarded XTE control completely. In the figure above, the segment 

of Scout’s mission traveled under power is indicated by a solid line; the dotted path that begins 

at -50 degrees of longitude shows Scout as she drifts at the mercy of the wind, waves, and 

currents. It is obvious that Scout’s track deviation was much higher in her unpowered state 

than it was during the powered component of her journey; the maximum XTE while Scout was 

navigating under power was about 300 nautical miles less than its maximum XTE when it was 

floating. Based on this data, we can assume that, had Scout’s navigation system remained 
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online and barring any other influences, Scout would have maintained a cross track error of 

sixty miles or less for the duration of its trip to Spain. 

 In the graphic above, the gray and red lines are set to converge on waypoint 44, which 

was the waypoint that the Scout team initially stated was Scout’s target following the auto 

incrementation software error. After the aforementioned calculations were performed, 

waypoint 37 was confirmed to be Scout’s target and is indicated in Dietrich’s graphic as a gray 

dashed line. It is likely that, if the graphic were corrected with this new data, the calculated XTE 

would be smaller than reported in the graphic’s current state. 

4.2.2: Speed and Efficiency 

 All displacement hulls have a “hull speed” which is a mathematically calculable speed, 

which is the approximate speed at which the hull can travel before becoming trapped in the 

trough behind the wave created in front of the boat as it moves through the water. For Scout, 

Max calculated the hull speed to be approximately 4.8 nautical miles per hour. This speed, 

however, does not represent the most efficient speed for Scout to travel at, which is an 

important consideration for a mission as long as Scout’s transatlantic attempt. 
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Figure 22: A graph demonstrating the relationship between speed of a hull and the resistance on that hull (Watkins). 

 Figure 18 demonstrates the relationship between speed and resistance; although this 

graph was not designed for the Scout project, the values are likely similar (Scout was 13 feet in 

length, while this graph reflects values for a 9 foot long hull.) As travel at high speeds requires a 

significantly higher power expenditure to speed ratio, Max selected a relatively low cruising 

speed of approximately 2.5 knots for Scout to maintain during her attempt. This figure was 

supported by the power budget calculations that I performed, which involved estimations of 

daily power intake, standard conversion and battery charging related losses, and power output 

to speed ratios supplied by Max. While relatively simple, these calculations were time 
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consuming as extensive testing (particularly concerning the power losses experienced between 

the panels, batteries, and motor) was performed to minimize the errors in the calculations.  

While performing these calculations, we found that a cruising speed of 2.5 knots was 

slightly higher than what Scout’s system could sustain, but the relatively small amount of 

onboard power storage (constrained by our budget) meant that on particularly sunny days, if 

Scout was traveling at speeds below 2.5 knots, more power would be collected than would be 

consumed by the boat’s systems. In this case, once the batteries were fully charged, any 

additional power would be burned off as heat and wasted. In order to use all of the power that 

Scout would collect even on long, particularly sunny days, we set Scout’s cruising speed to a 

speed that was greater than the system could support on an average day. 

4.2.3: Navigation System Inaccuracies 

 As Scout made all course calculations on an onboard ATmega2560 processor, and 

because the navigation system did not have to produce extremely accurate or precise courses, 

a number of assumptions were made in the construction of the navigation functions used to set 

Scout’s course.  

4.2.3.1: Hardware Constraints 

 The ATmega2560 processor used by Scout had 256KB of flash memory, 8KB of SRAM, 

and operated at 16MHz. As this processor was in charge of collecting GPS, compass, and 

environmental sensor data, controlling motor speed and rudder angle, and determining what 

course Scout should follow, the team sought to minimize the processing requirements of each 

module. The GPS position data, for example, was only checked once every few minutes, as 
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there was no need for Scout to receive exceedingly frequent position updates. Environmental 

sensor polling was offloaded to a secondary processor that handled the collection and 

packetization of that data, and functions developed specifically for use during the testing 

phases of the project were removed altogether. 

4.2.3.2: Software Constraints 

 Because Scout’s course to the next waypoint was recalculated several times per minute, 

integer math (faster than the more accurate floating point math) was used wherever possible. 

In addition, we used a spherical model of Earth, instead of the more accurate but processor 

intensive ellipsoid model, as the additional accuracy of the ellipsoid model wouldn’t contribute 

to improving Scout’s navigational performance (Scout’s compass is only accurate to several 

degrees, so there is no need for any function to return navigation data more precise than one 

or two degrees.) 

4.2.4: Navigation and Communication System Failure: Public Management 

 After Scout’s backup tracking system failed on November 6th, the Scout team decided to 

wait for a week before updating Scout’s website with a message stating that Scout was lost at 

sea. The full update is attached as appendix i. Although the termination of the project was 

announced on November 14th, the Scout team committed to paying for another three months 

of data service for both tracking units in case either unit came back online. 

4.3: The Media: Publicity for Scout 

 When the Scout project began in 2010, it was supposed to be a simple venture that 

would take three or so weeks to build and launch. As the project progressed, numerous 
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prototypes and rounds of testing consumed thousands of man hours of labor. While interaction 

with the media was rare in the early stages of the project, by early summer of 2013 the media 

coverage of the Scout project began to accelerate at a dramatic pace. While the first news 

articles appeared strictly in local newspapers that had known of the project for years, it was 

those articles that prompted larger publications to look into the Scout project and contact the 

team. As the project gained momentum in the press, Scout team members would periodically 

leave work or take days off to interview with newspapers, online news sources, and television 

stations, often taking reporters on boat rides during testing or on tours of the Scout garage 

workshop. Over the duration of the Scout project, GoTransat.com was loaded more than 

750,000 times. The following are some examples of some of the publicity the project received 

during the third launch. Links to all media pieces are in appendix II. 

4.3.1: NPR: A Day in the life of Scout 

One reporter, named Dave Schneider, drove from New York to Tiverton, Rhode Island to 

spend two days covering the final preparations leading up to the final launch at the end of 

August. Dave had an extensive background in technology and was reporting for both IEEE 

Spectrum magazine and National Public Radio, so the Scout team tremendously enjoyed Dave’s 

continued presence in the workshop as he was able to get a better understanding of the team’s 

work processes than other reporters that had spent shorter amounts of time in the project 

environment. The unique component of the Scout project that Dave focused on was the nature 

of the Scout team and the story of how five college students were able to work together to 

produce an autonomous surface vessel that could have far reaching applications if developed 

further in the future. Dave not only saw programming, composite work, and troubleshooting, 



 
 

59 
 

but was also able to witness underlying components of the project missed by other reporters, 

including rapid prototyping, whiteboarding sessions, meal preparation, last-minute software 

modifications, and driveway repair, all of which contributed to his familiarity with the team and 

his understanding of team roles and relationships. Included in Dave’s interviews was a member 

of the “Girl Scouts,” an anti-Scout group comprised of girlfriends, sisters, and neighborhood 

friends who lovingly opposed the project due to the amount of time that the Scout team spent 

isolated in the garage. Dave seemed to particularly enjoy the Girl Scouts’ point of view, 

especially the humorous website that reflected the group’s opinion of the project. By spending 

such a long time with the Scout crew, by understanding the motivations and culture of the 

team, and by attending a launch event in person, Dave was able to produce the most 

comprehensive radio segment and print article that covered the project to date.  

4.3.2: WPI: The Daily Herd 

Upon return to WPI, I was contacted by Jim Wolken, who oversees the production of 

WPI’s Daily Herd. Jim thought that fellow students, staff, and faculty might enjoy an article 

published on the Daily Herd website, which is a page maintained by WPI as a news and 

informational resource for its community members. Jim and I met to discuss the project, and he 

published an article titled “World Record Set!” on September 5th at which point Scout was 300 

miles out to sea. Jim had planned to run subsequent stories as Scout made its way further 

across the ocean, but Scout failed before the next article was penned. The Daily Herd article is 

available in Appendix ii: Media Links. 

 



 
 

60 
 

4.3.3: MAKE Magazine 

 MAKE Magazine is a favorite of hobbyists, DIY geeks, and engineers worldwide. Andrew 

Terranova, a writer for MAKE, contacted the Scout crew in late August to interview some of the 

team members for an article that he was writing for MAKE. Andrew’s article, titled 

“Transatlantic Drone Takes to the Sea”, was an excellent recap of the project from start to 

finish and covered many components of the project in great detail. The article was viewed by a 

large audience on MAKE’s website, and drove more than 7,000 visitors to the Scout tracking 

page. 

 After Scout’s failure, Andrew contacted us again to discuss what had happened to the 

boat and how we were feeling about the project at that point in time. This second article, titled 

“Scout Transatlantic: When is a Failure not a Failure?” was an excellent reflection of the team’s 

attitude towards the failure of the project, and offered followers great insight in regards to the 

team’s future plans and ambitions. Perhaps most importantly, when Andrew and I were talking 

on the phone, he asked me why we built Scout. My immediate answer was “we found through 

this project that we love capturing peoples’ imaginations with creative engineering”, and 

although it did take years of work, the Scout project showed us that creative engineering can 

certainly capture peoples’ imaginations. Both MAKE Magazine articles are available in Appendix 

ii: Media Links. 
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5: Discussion, Recommendations, and Implications 

The Scout project served its intended purpose as a fun way to inspire people through 

creative engineering. Along the way, all team members learned a tremendous amount about 

engineering, teamwork, friendship, and project management. The media identified this as well; 

MAKE Magazine published an article in the months that followed Scout's disappearance and 

titled it “Scout Transatlantic: When is a Failure not a Failure?” A consistent theme in articles 

published after Scout’s failure was the fact that although Scout was gone, the failure of the 

project opened more doors than it closed. 

In regards to the impact of the Scout project on other ASV development, the Scout team 

continues to receive inquiries about the project via email, telephone, and Facebook. In some 

cases, the person sending the message is a middle school student, a fellow college student, or 

an older fellow who is simply curious about some of the particulars of the Scout project. Others 

get in touch to ask technical questions in hopes of building their own autonomous boat for fun, 

and the occasional message will be some type of request for custom ASV development. While 

none of those encounters have yet produced a marketable product, the market for 

autonomous surface vessels is growing, and the fact that engineers with decades of experience 

in their field will get in touch with some college kids, hoping that they can offer him assistance 

with his or her project, serves to illustrate the unique nature and infancy of the ASV market. 

5.1: Recommendations 

Although the Scout project was designed to be a fun venture with limited practical 

potential, a significant amount of knowledge regarding the construction of autonomous surface 
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vessels was realized over the duration of the Scout project. Especially exciting are the potential 

contributions that the Scout project can make to the development and implementation of 

autonomous surface vehicles in marine research applications.  

Members of the Scout team have already begun designing a next generation platform 

designed to collect research data autonomously. Although still under development, this 

platform would address a number of weaknesses and potential areas of improvement identified 

by the Scout project. These areas of improvement are outlined below in the form of a next 

generation platform based on the Scout project. This Scout Recon platform is just one 

hypothetical implementation of some lessons learned from the Scout project. Figure 21 shows 

the Scout Recon form factor, which includes additional solar panels, navigation lights, a mast 

for radio, satellite, and sensors, and a new two-hull design. 

 

 

Figure 23- A theoretical next generation Scout Recon platform 
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5.1.1: Power Management 

Scout’s systems were not designed to change the speed of the motors based on the 

amount of power available to the boat. This is an important improvement that would be easy to 

add in a next generation platform. By identifying the amount of charge that is in the batteries, 

the amount of current that is coming from the solar panels, and the current speed of the 

platform, a next generation ASV could more use power more efficiently and travel further per 

unit of absorbed power. Predictive power systems could go even further and anticipate future 

power inflows, adjusting motor speed accordingly. Efficiency gained by improved power 

handling systems would only increase as more solar panels are added to the system (the above 

Scout Recon platform is one meter shorter than the unit used for the transatlantic attempt and 

carries twice as many solar panels. Max’s calculations, using the same course and sunlight data 

from the Scout Transatlantic attempt, approximate Scout Recon’s average speed at 7.7 km/hr, 

compared to Scout Transatlantic’s average speed of 3.1 km/hr. Some of these gains are a result 

of the higher efficiencies produced by an improved power control system.) 

As the Scout project focused on crossing the Atlantic at a low financial cost, we sought 

to simplify the power control systems as much as possible, even though we sacrificed some 

functionality to do so. We also did not transmit detailed power flow information to shore. With 

further development, reliable power control systems could easily be implemented, and two 

way communications between shore and the platform would optimally allow for archived 

power flow data to be transmitted to the shore station on request. 
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For the Scout project, we selected LiFePO4 batteries to store power collected by the 

solar panels. Although LiFePO4 batteries are durable, do not easily burst into flame like their 

lithium ion counterparts, and work with standard lead acid battery chargers, these batteries 

have a very flat voltage discharge curve. This curve means that even if a voltage sensor is 

connected to the battery, it is difficult to gauge the battery status from that voltage data. As 

identifying the charge status of the battery would be necessary for advanced power system 

control, a battery with a steeper discharge curve would be a necessary component of the next 

generation power system. 

Other improvements to the power handling systems would include optimized solar 

charge controllers, current sensors on all relevant buses, and programming designed to 

maintain the most efficient speed of travel while considering battery status, time of day, 

predicted power capture for the rest of the day, and overall navigation status.  

5.1.2: Tracking and Communications 

A system to display and receive data from an ASV is one of the more visible and 

important components of the project. The specifics of an ASV tracking system depend on the 

particular mission and platform at hand. 

The Scout tracking system was programmed by Ryan Muller and Tom Schindler, with a 

significant amount of it completed in a heroic 24 hour push made the day of the first launch. 

While the Scout tracker was a great success, having been loaded over 700,000 times across all 

three launches, improvements were constantly being made over the course of the project. For 

example, weather layers were added to the map, the color of data points was changed to 
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reflect the power state of Scout at that point, and the total number of points visible to viewers 

was reduced once page load times began to increase.  

In an improved tracking system, additional layers such as ocean currents, cloud cover, 

and wind speed and direction would be available, regardless of the ASV's purpose. More 

specific improvements, such as power profile graphs, waypoint alteration functionality, or two 

way communication support, would depend on the specific ASV.  

A related area for potential improvement is the transmissions sent by Scout to shore. 

Scout's data packets were cost constrained; the team designed the data transmission packets 

to be heavily compressed and carry as few fields as possible. A production unit should be 

designed to efficiently package and transmit all of the relevant collected data to the client. 

Because two-way communication wasn’t permitted on the Scout Transatlantic attempt (if the 

team contacted Scout from shore, the platform would no longer be fully autonomous) a 

number of useful functions were not built into the software. A Scout Recon vessel wouldn’t be 

constrained by the requirement to be fully autonomous, so with this platform waypoints could 

be changed while the mission is underway, transmission intervals could be altered, sensors 

could be enabled or disabled, onboard settings could be changed, or the unit could be called 

home prematurely. With proper development and testing, such functions could create 

significant value to potential clients. 

5.1.3: Construction  

The physical construction of a Scout Recon unit would be different from the Scout 

Transatlantic construction in that fiberglass would be used instead of carbon fiber, molds would 
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be constructed in order to simplify and accelerate the process of building the hulls, and the 

overall form factor would be a catamaran instead of a monohull.  

Although carbon fiber is the best material available for construction of this type of 

vessel due to its strength and lightness, it is expensive and can be easily replaced with 

fiberglass, which is cheaper, weaker, and heavier. The difference between carbon and fiberglass 

construction of a Scout Recon vessel would be about eight pounds. Although eight pounds is a 

relatively large percentage of the 150lb estimated weight of the vessel, it is not much in regards 

to absolute weight, and can be offset by using carbon fiber in areas where the additional 

strength it provides outweighs the cost difference. 

A Scout Recon platform would be built using machined hull molds. These molds would 

allow the rapid production of a number of identical hulls, and would considerably cut down on 

the amount of labor that would need to be invested in each hull. This type of production also 

allows complex features to be built right into the mold, instead of having to be crafted and 

integrated at a later point in time. Construction using molds also reduces the amount of 

fiberglass and epoxy resin that need to be used in construction, which reduces weight and 

construction cost. 

The Scout Transatlantic craft was designed to be a monohull, as the Atlantic is home to 

huge seas, wild storms, and other conditions that could cause the boat to capsize. A lead bulb 

mounted on a solid carbon keel was designed to right the boat if it flipped over. Although a 

catamaran doesn’t have this self-righting capability, Scout Recon units are designed for use in 

regions with relatively calm seas. The significant advantage to the catamaran form factor is that 
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overall length can be reduced by one meter while solar panel surface area can be doubled. 

These advantages made a catamaran the right choice for near-shore operations; offshore 

operations taking place in particularly windy or wavy seas would be best performed by an ASV 

with a self-righting mechanism, such as the Scout Transatlantic vessel. 

5.1.4: Implications for Researchers 

Autonomous surface vehicles have tremendous potential as tools for research. While 

different research projects may require ASVs with different capabilities, a standardized vessel 

designed with modularity in mind may be able to be of use to researchers who could benefit 

from data that the platform can collect. The Scout project is one of the first publically visible 

projects that made data collected from an ASV available to the public. Of course, none of the 

data collected by Scout was of particular value to any scientist or researcher, but the user-

friendly graphical interface of the tracking system, the level of participation that the public had 

in the project, and potential for future generations of similar ASVs may be encouraging to those 

hoping to pursue researchers and scientists as potential data-by-ASV clients. 

5.1.5: Implications for Practitioners 

Although a detailed study of ASV applicability in practical applications is beyond the 

scope of this evaluation, improvements to the capabilities of ASVs in general could 

revolutionize the marketability and adoption rate of those platforms. The development and 

release of ASV navigation standards by the US Coast Guard and other agencies that regulate US 

waterways would serve to assure developers and manufacturers of ASVs that their platforms 

wouldn't be put on the market only to be deemed illegal by legislation that is enacted months 

later. Development of industry standards could help ASV developers build systems that are 
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compatible with each other, which could allow for ASVs to be loaned between organizations, 

rented, or easily expanded while growing the market for ASV parts and modules. Basic 

improvements, such as standardization of modules and connectors, could reduce the 

proprietarity of the market today, as there are no ASV industry standards that can be 

referenced and considered by manufacturers. 

 

ASV Application 
Example Recommendations 

Mission Specific Radio repeater 
Buoy substitute 
Oil boom towing 
Defense 
 

-Design specific to the task 
(could include modularity 
requirements, large batteries 
or onboard generator for 
applications that require large 
amounts of power, cameras, 
specialty radio gear, etc.) 
 
-Custom programming/ 
database to enable desired 
functionality 
 

Data Collection Oil spill mapping 
pH 
Salinity 
Environmental data 
etc. 

-Capacity for long distance 
missions 
-Flexibility for different sensor 
modules 
-Onboard data storage 
-Possible water sample 
collection apparatus 
-Database designed to receive 
and store large amounts of 
data 
-Other recommendations 
depending on type of data 
collected 

Table 1: Recommendation matrix for mission specific and data collecting ASV platforms 
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5.2: Conclusion 

The Scout project was designed to inspire an audience through creative engineering. 

The fact that the project was conceived and executed by a group of college students during 

weekends and vacations only served to add to the media's interest in Scout's story, which 

brought the attempt to the attention of tens of thousands of people around the world. 

Although in many ways Scout satisfied the team's goals and objectives, the project failed to 

complete its original mission of being the first autonomous surface vessel to cross the Atlantic 

autonomously. The Scout team, however, believes that the potentially revolutionary future of 

autonomous surface vessels will benefit from all attempts to further the industry, and for that 

reason we are proud to put their names on the most visible ASV failure in history.



 
 

70 
 

Appendix 
 

Appendix i: A Message to Scout Followers 

The following message was posted on Scout’s Facebook page updating followers of the backup 

tracking system failure. 

Posted on October 2, 2013 at 

https://www.facebook.com/ScoutTransatlantic/posts/586824671382096 

Hello all- 

We'd like to update everyone about where Scout is today. The truth of the matter is that we've 

lost her a few days ago, and we don't think that we'll hear from her again. 

Scout was launched from Sakonnet Point, Rhode Island on August 23, 2013 at some ridiculously 

early time of the morning (at Scout headquarters, we referred to these hours as "business 

hours.") Scout set off into the night like an invisible rocket that traveled at around 2 knots, 

transmitting her position and other data back to us every 20 minutes. We all have fond 

memories of waking up in the middle of the night to see what Scout was up to. 

The last time we heard from this main tracking system was on September 28th. After that 

system went offline, we had some drinks because it was the weekend and the tracking service 

provider wouldn't pick up the phone until Monday, sent them Dan's credit card number, and 

had the service activated by Tuesday to find Scout 95 miles to the south. Thus began a series of 

loopy tracks ("Go home Scout, you're drunk" commented one Scout follower) totaling about a 

thousand miles that lasted a month and a half. 
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On Wednesday, November 06, 2013, at 4:01:27 PM, we received the last transmission from 

Scout. The backup tracker, a completely independent unit operating on the Globalstar satellite 

network, quietly failed before the next scheduled (4:01AM) message was transmitted. It has 

been exactly eight days since she vanished, and we think that this is as good of a time as any to 

put Scout to rest. 

Although the chances are that we will never hear from Scout again, our database is ready to 

accept an incoming message, the satellites watching over Scout will send us an email if they 

spot her (while Dan's credit card lasts), and you can all be assured that we'll all get tattoos of 

Scout's position if she ever does transmit to us again. But as much as we have been captivated 

by Scout, this is probably the right time to let her go. We all have a number of projects to catch 

up on, and we're always looking for the next one. 

The real benefit of setting today as an end date is that you'll be able to pencil it in on your Scout 

Supporter plaques! If you haven't received yours yet and you were a $30+ Kickstarter 

supporter, it should be on its way soon. http://www.gotransat.com/images/scoutplaque.jpg 

A massive thanks to all for making this project possible and for helping us keep an eye on Scout 

over the last few months. We hope that you've had a good bit of fun watching this tiny boat try 

to take on the Atlantic; we certainly had fun building her. 

Cheers! 

The Scout Crew 
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Appendix ii: Media Links 

 A number of articles, videos, posts, and broadcasts covered the Scout project. The list 

below links the media that is available online. 

Source Title Date 
Make Magazine When is Failure not a Failure? 01/28/2014 

 Transatlantic Drone Takes to the Sea 08/27/2013 

IEEE Spectrum Robotic Boat Hits 1000 Mile Mark in Transatlantic Crossing 
 

09/27/2013 

Here and Now 

(WBUR) 

Solar Powered Boat Makes Unmanned Transatlantic Journey 9/25/2013 

Technophiles 

Podcast 

Scout Transatlantic 9/13/2013 

Interesting Cool The Second Scout Hangout! 
 

10/09/2013 

Habrahbr.ru 

(Russian) 

Морской робот Scout проплыл самостоятельно более 
1600 километров 

10/03/2013 

BBC Radio: http://downloads.bbc.co.uk/podcasts/fivelive/pods/pods_2
0130903-0402a.mp3  

 

WPI Daily Herd: World Record Set! 09/05/2013 

Sakonnet Times From Tiverton- A Slow Boat to Spain 06/04/2013 

 Scout Sets Distance Record, Copes with Atlantic Storm 08/28/2013 

 Confused Scout Gets Early Rescue 07/01/2013 

 Tiny Scout Setting Off for Spain Saturday- Follow Along 06/24/2013 

Providence 

Journal 

RI Sailing Buddies Build Solar Powered Robot Boat for Trip 
to Spain 

06/02/2013 

 Unmanned, Solar Powered Boat Faltering in 2nd Bit to Cross 
Atlantic from RI 

07/09/2013 

 Autonomous Vessel Scout on its Way to Spain Again 07/05/2013 

http://makezine.com/2014/01/28/scout-transatlantic-when-is-a-failure-not-a-failure/
http://makezine.com/magazine/transatlantic-drone-takes-to-the-sea/
http://spectrum.ieee.org/automaton/robotics/diy/robotic-boat-hits-1000-mile-makr-in-transatlantic-crossing
http://hereandnow.wbur.org/2013/09/25/solar-boat-atlantic
http://www.technophilespodcast.com/141-scout-transatlantic/
http://interestingcool.com/?p=94
http://habrahabr.ru/post/196222/
http://habrahabr.ru/post/196222/
http://downloads.bbc.co.uk/podcasts/fivelive/pods/pods_20130903-0402a.mp3
http://downloads.bbc.co.uk/podcasts/fivelive/pods/pods_20130903-0402a.mp3
http://wp.wpi.edu/dailyherd/2013/09/05/world-record-set/
http://www.eastbayri.com/news/slow-boat-to-spain/
http://www.eastbayri.com/news/scout-sets-distance-record-copes-with-atlantic-storm/
http://www.eastbayri.com/news/confused-scout-gets-early-rescue/
http://www.eastbayri.com/news/tiny-scout-setting-off-for-spain-saturday-follow-along/
http://www.providencejournal.com/business/content/20130602-r.i.-sailing-buddies-build-solar-powered-robot-boat-for-trip-to-spain.ece
http://www.providencejournal.com/business/content/20130602-r.i.-sailing-buddies-build-solar-powered-robot-boat-for-trip-to-spain.ece
http://www.providencejournal.com/breaking-news/content/20130709-unmanned-solar-powered-boat-faltering-in-2nd-bid-to-cross-atlantic-from-ri.ece
http://www.providencejournal.com/breaking-news/content/20130709-unmanned-solar-powered-boat-faltering-in-2nd-bid-to-cross-atlantic-from-ri.ece
http://www.providencejournal.com/breaking-news/content/20130705-autonomous-vessel-scout-on-its-way-to-spain-again1.ece
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 Lack of Sun Prompts Retrieval of Solar Powered Vessel 
Launched from Portsmouth 

07/03/2013 

 Solar Powered Boat, Scout, on its way to Spain 06/09/2013 

 Solar Powered, GPS Guided Vessel Departs for Spain - Again 07/06/2013 

Hackaday An Autonomous Boat Across the Atlantic 08/03/2013 

FastCoLabs A Student Built Autonomous Drone Boat is Crossing the 
Atlantic Right Now, and You Can Track it Online 

08/03/2013 

New England 

Boating 

Mini Solar Powered Boat Sets Distance Record 08/31/2013 

Toshiba News: Students' Robotic Solar Boat on Transatlantic Trek 07/06/2013 

Solar Power 

Today 

Solar Powered Boat Aims for First Autonomous 
Transatlantic Surface Voyage 

06/04/2013 

Entertainment. 

Verizon.com 

Students' Robotic Solar Boat on Transatlantic Trek 07/06/2013 

Huffington Post Scout, Robotic Solar Boat, on Transatlantic Voyage Thanks 
to Group of College Students 

07/10/2013 

Earth Techling Students' Robotic Solar Boat on Transatlantic Trek 07/06/2013 

SolarNavigator Transatlantic Scout 
 

 

Tiverton Patch Robotic, Unmanned Boat Now 240 Miles from Home 09/04/2013 

 Autonomous Boat Returns to RI After Unsuccessful Voyage 07/10/2013 

 Support Grows for Scout, the Autonomous Transatlantic 
Robot 

07/11/2013 

 Tiverton's Unmanned Robotic Boat Remains Lost at Sea 12/06/2013 

ProBoat Radio Scout- the Autonomous Transatlantic Robotic Boat 09/11/2012 

BlogTalk Radio Scout- The Autonomous Transatlantic Boat 09/11/2012 

Now.msn.com After 2500 Miles Atlantic Scout Ocean Drone Missing Sea  

Bluebird-Electric Scout Transatlantic @ 30 Days  

 

http://www.providencejournal.com/breaking-news/content/20130703-lack-of-sun-prompts-retrieval-of-solar-powered-vessel-launched-from-portsmouth.ece
http://www.providencejournal.com/breaking-news/content/20130703-lack-of-sun-prompts-retrieval-of-solar-powered-vessel-launched-from-portsmouth.ece
http://www.providencejournal.com/topics/photos/photo-story/20130629-solar-powered-boat-scout-on-its-way-to-spain.ece%23slcgm_comments_anchor
http://www.providencejournal.com/breaking-news/content/20130706-solar-powered-gps-guided-vessel-departs-for-spain--again.ece
http://hackaday.com/2013/07/08/an-autonomous-boat-across-the-atlantic/
http://www.fastcolabs.com/3016592/a-student-built-autonomous-drone-boat-is-crossing-the-atlantic-right-now-and-you-can-track-i
http://www.fastcolabs.com/3016592/a-student-built-autonomous-drone-boat-is-crossing-the-atlantic-right-now-and-you-can-track-i
http://newenglandboating.com/news/mini-solar-powered-boat-sets-distance-record.html
http://start.toshiba.com/news/read/category/Technology/article/earth_tech-students_robotic_solar_boat_on_transatla-ncrd
http://www.solarpowertoday.com.au/blog/solar-powered-boat-aims-for-first-autonomous-transatlantic-surface-voyage/
http://www.solarpowertoday.com.au/blog/solar-powered-boat-aims-for-first-autonomous-transatlantic-surface-voyage/
http://entertainment.verizon.com/news/read/category/Technology/article/earth_tech-students_robotic_solar_boat_on_transatla-ncrd
http://www.huffingtonpost.com/2013/07/10/scout-robotic-solar-boat_n_3575669.html
http://www.huffingtonpost.com/2013/07/10/scout-robotic-solar-boat_n_3575669.html
http://www.earthtechling.com/2013/07/students-robotic-solar-boat-on-transatlantic-trek/
http://www.solarnavigator.net/world_solar_challenge/autonomous_vessels/scout_transatlantic_autonomous_robot_solar_boat.htm
http://tiverton.patch.com/groups/journeys/p/robotic-unmanned-boat-now-240-miles-from-home
http://tiverton.patch.com/groups/around-town/p/autonomous-boat-returns-to-ri-after-unsuccessful-voyage
http://tiverton.patch.com/groups/around-town/p/support-grows-for-scout-the-autonomous-transatlantic-robot
http://tiverton.patch.com/groups/around-town/p/support-grows-for-scout-the-autonomous-transatlantic-robot
http://tiverton.patch.com/groups/around-town/p/tivertons-unmanned-robotic-boat-remains-lost-at-sea
http://proboatradio.com/2012/09/06/scout-the-robotic-boat/
http://www.blogtalkradio.com/proboatradio/2012/09/11/scout-the-autonomous-transatlantic-boat
http://www.nbcnews.com/technology/after-2-500-miles-atlantic-scout-ocean-drone-missing-sea-2D11603748
http://www.bluebird-electric.net/artificial_intelligence_autonomous_robotics/transatlantic_autonomous_challenge/scout_autonomous_transatlantic_robot_30_days.htm
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Appendix iii: Project Websites 

Scout Transatlantic Facebook page (facebook.com/ScoutTransatlantic) 

The Scout Facebook page was used to keep Scout followers up to date on the project. 

This page was particularly active during the final launch. Followers frequently sent us private 

messages regarding specific topics and often posted comments, links to articles, and other 

content on the public page. 

 

 

file:///C:/Users/Dylan/AppData/Local/Temp/facebook.com/ScoutTransatlantic
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Scout Transatlantic Twitter page (Twitter.com/ScoutTransat) 

The Scout Twitter page was used to host content in a less formal format than the 

Facebook page. Tweets were often written on location, unlike Facebook posts or email updates, 

which were more carefully put together. The Twitter page was of particular use during Scout 

testing, as it provided a good medium for near-live updates of that particular test. 

 

 

file:///C:/Users/Dylan/AppData/Local/Temp/Twitter.com/ScoutTransat
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Scout Transatlantic YouTube page (YouTube.com/user/transatscout) 

The Scout YouTube page had the least activity compared to the project’s other social 

media outlets, but provided a good space to post videos related to the project. 

 

 

file:///C:/Users/Dylan/AppData/Local/Temp/YouTube.com/user/transatscout
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The GirlScouts (http://gotranscat.webs.com/) 

The GirlScouts was an anti-Scout group consisting of sisters, girlfriends, and 

neighborhood friends. The group maintained a website documenting why they disliked the 

project and often frequented events attended by the media in order to spread their anti-Scout 

views. After the failure of Scout’s secondary tracking system, the GirlScouts issued a press 

release stating in part “we wish we could take credit for Scout’s disappearance, but we didn’t 

even bother sabotaging the boat because we knew that since Dylan and his friends built it, it 

wouldn’t last long anyways.”  

 

http://gotranscat.webs.com/
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