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Abstract 

In this project we designed and developed improvements for the random search 

algorithm UCT with a focus on improving performance with directed acyclic graphs and 

groupings. We then performed experiments in order to quantify performance gains with 

both artificial game trees and computer Go. Finally, we analyzed the outcome of the 

experiments and presented our findings. Overall, this project represents original work in 

the area of random search algorithms on directed acyclic graphs and provides several 

opportunities for further research. 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 
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Chapter 1: Background 

In the past, Chess has served as one of the most popular games for which automated 

opponents have been created, climaxing in the defeat of the famed Russian chess 

grandmaster Garry Kasparov in 1997 by the purpose-built system Deep Blue. Since then, 

interests in human versus computer chess competitions have waned. The last high-profile 

human vs. computer match ended in grandmaster Vladimir Kramnik’s 2006 loss to a 

system comparable to a modern tower PC, despite the fact that he had received a copy to 

practice against [12]. Speaking in relation to computerized chess’ success, McGill University 

computer science professor Monty Newborn (who arranged the Kasparov vs. Deep Blue 

matchup) said, “I don’t know what one could get out of it at this point. The science is done” 

[12]. The East Asian board game Go, on the other hand, is coming to be of interest now that 

chess is “solved” and a new computational challenge is desired. 

Chess-playing algorithms generally rely on an alpha-beta search to offer 

improvements over traditional min-max searches, which typically struggle with play trees 

that have a high branching factor. To quickly compare the challenge of solving chess versus 

Go, consider the boards. In Chess, there are, on average, about 35 moves to inspect for any 

given position. With a typical game of Go on a 9x9 board (the smallest typical play format) 

there are 40. The “large” size boards used by human professionals are 19x19, with an 

average branching factor of about 200.  

With such a high branching factor compared to chess and the nature of play, Go is a 

significantly harder game to “solve” algorithmically, to the point that up until recently 

computers struggled to defeat human players even on a small 9x9 board (even if they have 
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had as little as one year of practice). There are simply too many possible options, at every 

stage of the game; the branching factor is far too high, compared to chess or other 

applications, to manage easily. More recently the use of a random search algorithm, named 

UCT, has proven successful in improving the performance of computers as applied to Go. 

Originally proposed by Levente Kocsis and Csaba Szepesvari [11], its use in Go was 

publicized in the Economist [1] and Reuters [9]. Thus, in recent years, experimentation 

with playing Go has gained interest, especially given that the study of computerized chess 

is now essentially complete. In this project we developed and tested two new modifications 

to the base UCT algorithm to increase its accuracy, both discussed later in detail, resulting 

in the algorithm known as UCT-DAG. 

1.1 Search Algorithms 

In artificial intelligence or decision-making adversarial searching (a search where 

there is another person trying to “win” the selections), representing the possible positions 

with a tree is a common method. This generally works well when there are fixed rules and 

small state descriptions, such as what is encountered with a board game (such as chess or 

Go). Nodes of the tree typically represent the board positions. The game tree is the set of 

possible future board positions, where each node is a description of the board 

configuration. Each link in the tree represents a move by one of the players down to the 

next level and each alternating level represents the other player’s possible situations. An 

exhaustive search is often impossible, even on powerful machines.  

Chess, the classic example, has 10120 possible branches in its game tree [17 p. 118], 

which would be impractical to search through completely (and as stated earlier, this pales 
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in comparison to Go). Instead, a look-ahead procedure that will evaluate upcoming moves 

is needed. This requires the identification of all possible legal moves, perhaps some filter to 

sort out patently wrong moves that can be immediately identified, a function to evaluate 

the outcome, and a way to prune bad moves. Legal moves may be selected using some kind 

of random procedure, or biased in terms of some metric/rule or predefined knowledge (for 

example, a rule such as “always move a pawn first”). 

One evaluation procedure, known as minimax, focuses on a manner of position 

evaluation where one player has a better position through some kind of a heuristic. The 

goal is minimizing the opponent’s score while maintaining as high a score as possible. The 

metrics involved can be weighted to consider the differences between move freedom and 

piece count, for example. This method assumes players will select the best option available. 

It functions by checking the bottom of the tree and performing evaluation, then going back 

up to select paths that will prevent or avoid the best moves for the opponent. Because tree 

searches alternate layers of players’ moves, the minimax search alternates between 

minimizing levels (minimizing opponent scoring) and maximizing layers of the tree 

(maximizing the player’s own scoring). 

By reverse-engineering the moves that led to the enemy’s worst follow-up in this 

manner—and allowed for the player’s best advantage—a successful path is deduced and 

the appropriate move for the level is made. Large trees make this process computationally 

expensive, so the storage of calculated data is often used, and pre-generated tables for 

opening and end-game moves may be implemented (this is especially the case in chess). 

Data calculated mid-game is often stored in a “transposition table,” which maps a hash of 

board data to the parameters which are of interest for the search (such as player scoring). 
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Alpha-Beta is used in conjunction with minimax procedures to reduce its main fault, the 

excessive workload. Alpha-Beta procedures are able to prune the tree by avoiding 

expansion of nodes that will be unable to yield a higher score than the present, which will 

result in computational savings that can then be reallocated towards a deeper search in 

other parts of the tree. These are used in chess programs often. To give an example of 

Alpha-Beta pruning circumstance and rationale: once one side of a tree is found to be the 

certain worst choice, there is no need to determine how much worse it was; the algorithm 

will prune the tree at that point [17 p. 123]. However, in a worst-case tree arrangement, 

Alpha-Beta will yield no savings (luckily not the case for most large trees), and the 

arrangement of the tree will impact how much pruning takes place. 

Other pruning methods, such as heuristic ones, offer performance advantages and 

additional “insight” but may unintentionally prune winning moves. An example of this 

over-pruning could come up when a sequence of moves would require a temporary set of 

sacrifices or piece-trades to lead to a checkmate in chess. Should the heuristic function be 

over-eager in determining branches to prune (seeing three lost pieces in a row, for 

example) it may halt exploration of a winning path early and discard that route, never 

realizing the victory potential. These heuristic methods may involve purposely expending 

additional processing time to investigate further down a promising branch, though, to 

ensure that the path does not result in a loss anyways. Sometimes, it is desirable to ensure 

that the final position at the end of the partial search will not present any capture potential 

or additional game-specific opportunity (such as checks in chess) to the opponent, 

simplifying what you know about the tree from the computational horizon (end of search 
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depth) onward. By doing so, it is possible to minimize surprising turns of events beyond 

the explored region of the search tree. 

Another technique, called progressive deepening, searches in iterations allowing for 

the implementation of “anytime” algorithms. This kind of algorithm may be essential if the 

relative time to compute a given position varies greatly, if the tree to search would take 

very long to fully explore, or if some event (such as exceeding the allowed time) occurs. By 

searching one level at a time, the program can be designed to support stopping at any point 

in computation without being stuck traversing the entire tree (and hopefully get a useful 

result anyways). Searching level-at-a-time may also benefit from running on multiple 

machines at once.  

In addition, the ability to parallelize the search processes themselves will help yield 

greater benefits when run on multi-core machines, clusters, or in some other distributed 

fashion, as it is not always practical to get a powerful single-core CPU. The extra processing 

power may be required in order to keep up to pace with a human professional player, who 

has seen and studied winning maneuvers for years and who has a strong theoretical 

understanding of every piece and formation. Deep Blue, the machine that beat Kasparov, 

required an incredibly-parallel Alpha-Beta search with tables of opening moves, full 

solutions for all end-games that had five pieces or less, a finely tuned positional evaluation 

function, the ability to look ahead 12 board positions, and the total capacity to inspect 200 

million board positions per second [3]. 

Sometimes, despite pruning and extensive computational resources, there is such a 

large field of possible moves that it is impractical to simply begin at the first potential move 
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and continue onward. When such an exhaustive search is impractical, the addition of 

randomness to the search algorithm has been used. Rather than attempting to find the best 

path through the game tree (like minimax search), multiple random Monte Carlo 

simulations are performed. This kind of simulation is well suited for computerized 

calculation, and can be a useful solution in circumstances where it is generally infeasible to 

develop a deterministic algorithm for the problem at hand. These Monte-Carlo methods 

rely on three stages: identifying a range of potential input values, applying deterministic 

operations upon each input, and then analyzing the results to form a conclusion about the 

overall situation.  

A very good example of Monte-Carlo methodology used by humans is the game of 

battleship [13]. A random shot is made, and then practical judgments and facts (these 

would be represented as algorithms programmatically) are used to analyze the results. If a 

shot scores a hit, an attempt is made to then make less-random shots to feel out the 

location of an enemy piece based on what is known about the nature of the ships, and then 

to destroy it. Otherwise, another random shot is then made. Monte-Carlo methods require a 

good random distribution and large number of simulations to remain effective, thus suiting 

computerization. Additionally, they are easy to implement and improve, execute quickly, 

and yield surprisingly good results for the time invested [8 p. 12]. 

Another type of game for which Monte-Carlo simulations have been used is the 

Multi-Armed Bandit problem. In this problem there is some number of machines (i.e. slot 

machines) each with some unknown probability of providing a win. The goal of the game is 

to develop an algorithm to iteratively select the next machine to play in such a way as to 

maximize the number of wins. Ultimately this comes down to attempting to determine 
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those machines for which the win probability is highest. This presents similar problems as 

with minimax search in game trees in that each turn you can either chose to play a machine 

for which you have some idea of the probability (since you have previously played it), or a 

machine for which you have no, or little, information and which may be better or worse 

than the machines for which you have more information. One algorithm which has been 

shown to minimize the total regret (total number of non-optimal selections), is called UCB. 

UCB specifies a policy (general rule set) for selecting the next machine to play; specifically, 

it maximizes the upper confidence bound (UCB) of a machine given:  

𝑋  (the calculated value of the current machine) 

𝑛 (the number of plays of the current machine) 

𝑛𝑝  (the total number of plays to the parent) 

𝐶 (an exploration coefficient usually between 1.0 and 2.0).  

The final upper confidence bound calculation is given below as Equation 1.1.  

 

Equation 1.1 – UCB1 Node Selection Formula [2] 

UCB provides the basis of the random tree search algorithm examined in this paper 

(UCT). With appropriate exploration coefficients it has been shown to converge to the 

correct answer while minimizing the total regret. Used in combination with Monte-Carlo 

simulations, it provides a way to confidently determine the next best moves to explore 

while minimizing the total error. 
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1.2 The Rules of Go 

In order to understand the applications of random search algorithms to Go, it is first 

important to understand the basic rules of the game. In Go, unlike chess, players begin with 

no pieces on the board. Players alternate placing stones on the playing field as they 

compete to secure territories by encircling areas by generally forming “chains” of pieces, 

often capturing enemy pieces in the process. Pieces are fully captured and removed from 

the board when the amount of liberties the piece has is reduced to zero; a liberty is the 

number of free spaces present both to the piece in question, and to all friendly pieces that 

make up the chain that piece belongs to. The rules and manner of playing pieces lead to the 

possibility of arriving at certain board positions several times in several different ways, 

which requires special consideration.  

Victory does not require total board domination or focus on preparation for a 

certain move that triggers game conclusion, but rather requires a player to go through 

series of moves and counter-moves that are “good enough” at earning points for the 

current play-through. A win by 0.5 positions, therefore, is just as valued a final goal as a win 

by 87.5 (total domination on a 9x9 board). Identifying positions and strategies that are 

useful, and those that should be abandoned or overlooked, is important. Essentially, Go is 

well suited to human players who can easily handle the decisions required to a significant 

depth while easily (and often passively) determining what possibilities or choices are 

insignificant; computers are disadvantaged when it comes to these calculations. In 

particular it is especially difficult for computers accurately disregard bad moves without 

first devoting a certain amount of computational resources to determining if they are bad. 

Humans, on the other hand, tend to be good at more quickly disregarding bad moves and 
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focusing in on a subset of the moves that are more likely to be successful. In a game of Go, 

there is additionally the potential for moves to result in piece recaptures and extended 

loops, both of which are restricted by the infinite-game avoiding rules of ko and superko, 

respectively. Typically these moves are disallowed in most rule sets, although some rule 

sets instead allow the move or consider it a forced loss for the player that makes the move. 

Also unlike chess, the end of a match is not a certain, predictable event to be planned 

for easily. The game generally concludes when both players opt to pass consecutively, each 

believing to have either won decisively or believing that making a move would threaten 

their strategy. A player who believes a win is impossible, even considering potential enemy 

mistakes, may also opt to resign instead of just passing; this results in an automatic loss. 

1.3 Algorithms for Go 

Originally, Go was approached on smaller scales than what humans typically find 

particularly challenging, namely on 9x9 boards. As with chess, programmers attempted to 

use traditional min-max tree searching to evaluate moves, or attempted to use some table 

of expert-based knowledge that would be processed. But with a typical branching factor of 

about 200 compared to chess’ branching factor of 40, playing on a larger board would be 

quite strenuous to the computer player, and require some new procedures. Interest in 

developing better algorithms and tuning existing methods began around 1984, when 

USENIX hosted the first computer Go competitions [6]. While the USENIX competition 

ended in 1988, there have been competitions every year since, and there has been 

continual development of computerized Go players. 
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A variety of different attempts have been made to compute a solution for Go, 

through the use of traditional AI techniques that worked for chess, and search algorithms 

such as minimax and Alpha-Beta. Due to the high branching factor of Go, as suggested 

above, this is not particularly effective and has significant drawbacks as the board size 

increases. The opening move selection, in particular, is a main source of challenge to Go-

playing programs. There also do not exist detailed opening-game and end-game tables for 

Go as there do for chess, although a few programs do use some due to the difficulty of 

establishing certain good opening moves via heuristics (it is much easier to have a list of 

known strong openings and attempt to emulate them). GnuGo uses a variety of heuristics 

designed to either strengthen or weaken other stones and determine the strategic value of 

a play or portion of the board, in addition to determining the pure territorial value of the 

board, for making generalizations about potential moves. 

The use of hand-crafted “expert knowledge” systems has often been attempted 

using pattern matching and rule-based systems. However, managing this kind of 

information manually became increasingly difficult. Often, even good algorithms required a 

certain degree of modification and tuning to get all the parameters for their search, move 

comparison, and play selection algorithms operating efficiently. Partly because of this, 

attempts were made to create programs that used artificial neural networks to learn, such 

as NeuroGo [5] or Jellyfish. These still only competed on a typical “medium” level compared 

to the other programs. Naturally, the various techniques developed have been mixed 

together as well in an attempt to make up for the weaknesses of any particular method. 

Beyond the algorithms that rely on known strategies, movement rules, and pattern 

matching, however, there are also algorithms that rely on intentionally random 
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computation methods. In order to address the branching possibilities represented by every 

round of Go, which are most often represented internally and conceptually as a tree, 

Monte-Carlo randomized simulation came into use (although some programs rely more 

heavily on pre-computed opening move tables for early-game simulation) in the early 90s; 

due to their useful attributes, they are still used in current Go programs. Typically, these 

Monte-Carlo simulations are used in a straightforward way when it comes to Go board 

evaluation: first, random board positions (representing possible plays) are selected, and 

then a series of sub-games branch off from there. The result is that many thousands of 

these simulations are run to evaluate the probable outcome for the move, although the 

selected play positions evaluated are not always optimal. The better the program is at 

anticipating its own best moves (and what the resulting best moves for the opponent 

should be), the more accurate the analysis of that particular board position. Naturally, the 

more potential positions there are, the longer this analysis will take to compute. Most Go 

programs, especially in tournament settings, are limited to the number of simulated sub-

games they can accomplish in a set period of time. Thus, more time dedicated to each 

simulation will reduce the relative depth of the search possible. The standard method was 

to uniformly sample actions, or attempt to heuristically bias the samplings (without 

guaranteed results or appropriateness of those heuristics). 

A method to selectively bias the Monte-Carlo simulations, for optimal evaluation and 

use of processing, is required for the sensible selection of near-optimal moves. Due to the 

large number of potential moves at every step of the game, a failure to optimize in this 

fashion could result in searches that are too shallow to be conclusive; achieving 

computational savings are important to accurate results. The use of bandit search 
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algorithms and methods for focusing the search would yield benefits by focusing on sets of 

moves that are most promising.  

Applying the multi-armed bandit algorithm, UCB, to trees yields the new algorithm 

UCT (upper confidence bounding for trees), developed by Levente Kocsis and Csaba 

Szepesvari of SZTAKI [11].  

The basic UCT algorithm uses UCB to descend through the game tree and select the 

next node to run a simulation on and then uses the value returned to update all of the 

nodes on the path. Figure 1.1 shows one implementation of the algorithm: 

Generate Move
Go To Node with 

Best UCB
Is Leaf? 

No

Perform Monte 
Carlo Simulation

Yes

Update Node Values 
on Path

Repeat until limit

No

Is Mature?

Expand Node

Yes

 

Figure 1.1 - UCT Algorithm 

As seen in the diagram, UCT operates in a loop until a limit (often iterations or 

processing time) is reached. Each iteration, the algorithm descends into the tree using UCB 

until it reaches a leaf node (a node with no children). Then, if the node is mature, (has been 

visited a certain number of times already), it is expanded. Otherwise a single Monte-Carlo 

Simulation is performed and the values in the nodes along the traveled path are updated. In 

the end the UCT algorithm returns the move with the best calculated value.  
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UCT-based algorithms allow the Monte Carlo simulations to be focused on particular 

areas of interest, where confidence in the moves is highest and the potential payoff for 

investigation is optimal. This allows better use of Monte-Carlo simulation, as opposed to 

simple, uniformly applied random sampling. UCT is able to analyze the likelihood of a 

particular position being useful, and will only expand search tree nodes that reach a certain 

threshold of examination during play-through. This generally limits the amount of 

processing time wasted exploring unproductive moves. Compared to Alpha-Beta searching 

as used in chess, UCT is much more efficient. It still produces good results even if stopped 

early.  

UCT also scales much better than other algorithms, requiring smaller sample sizes 

to achieve the same rate of error. In experiments by Levente Kocsis and Csaba Szepesvari, 

UCT was shown to perform well in simple Markovian games modeled as trees [11]. These 

artificial game trees provided a basis for running UCT where it is possible to calculate the 

exact answer ahead of time and thereby calculate the exact amount of error. This is unlike 

simulations using Go, where it is impossible to calculate the exact best move in a timely 

manner. The behavior of UCT on such artificial trees can provide some idea as to its 

behavior on much larger game trees. Following, in Figure 1.2, are the results of simulations 

on an 8x8 artificial game tree. 
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Figure 1.2 - UCT Experiment on Artificial Game Tree   

Shown above is a logarithmic plot of the average error of selected moves versus the 

number of iterations performed for both UCT and Alpha-Beta search. As seen above UCT 

begins to approach zero error after less than 10,000 iterations. Alpha-Beta searching 

results remain consistently poor until a sizable number of iterations have been performed, 

after which it approaches zero error; unfortunately, however, it remains unusable for the 

smaller series of iterations, and ends up converging to zero only past 10,000 iterations. 

UCT’s ability to produce usable results so quickly makes it the obvious best choice of the 

group. 

Since UCT converges to the correct answer much sooner than Alpha-Beta, for the 

same size tree, it can be applied to much larger-scale applications. This makes it useful in 

Go, especially on the 13x13 and 19x19 boards where previous algorithms perform poorly. 

In these situations it is important to sample the tree in such a way to balance the need to 

explore new areas of the tree with the current best moves. This exploration-exploitation 

problem is handled through the use of the UCB calculation with UCT. Often, there is not a 

large amount of time provided to complete a detailed calculation of each outcome possible. 
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UCT, due to the lower number of samples required, can also be stopped sooner than other 

algorithms while still giving useful results. 

1.4 Investigations into UCT Enhancements 

While UCT is capable of outperforming many prior algorithms that have been 

developed, there is still much room for improvement. Only very recently has the computer-

go champion program MoGo been able to defeat a skilled player on a 9x9 board [10]. Two 

main areas of investigation are modifications to UCB/UCT itself, and the introduction of 

grouping nodes to the tree. 

1.4.1 UCB Modifications 

UCB itself has been experimented with in a variety of ways. Auer et al investigated 

the behavior of several tweaks including UCB1-Tuned, UCB2, and GREEDY [2]. The first 

variant, known as UCB1-Tuned, is identical aside from a modified upper confidence bound. 

It performs better, compared to the original, when dealing with varied and non-optimal 

scenarios. UCB2, another version, performs as a degraded UCB1-tuned, although it operates 

relatively insensitively to the alpha-value of the UCB algorithm as long as it is kept small (to 

the order of 0.001). Another variant similar to UCB1-Tuned, known as GREEDY, explores 

uniformly but requires tuning for each application in order to perform well. Another 

modification for UCB was examined in BAST, the Bandit Algorithm for Smooth Trees, also 

introduces the concept of tree smoothness [4]. Coquelin and Munos showed a particular 

case where UCT performed poorly and suggested the addition of a smoothness constant 

which would alter UCT’s behavior to be more pessimistic in the exploration of tree.   
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1.4.2 MOGO 

The current champion Go program, MoGo became the first Go program to use UCT, 

in July 2006, very shortly after UCT’s publication. It was developed as a closed-source 

project at the Laboratoire de Recherche en Informatique in France, but after the original 

author completed his studies other students took over MoGo development (its source code 

is still not publicly available, however). Since its first KGS international Go tournament win 

(9x9 and 13x3) in August of 2006, it has been awarded much recognition for its 

performance, including several computer-go championship wins [7]. UCT, in MoGo, has 

been augmented and adjusted in a number of different ways to improve its performance. 

For example, it combines the implementation of UCT with a database of opening moves, as 

the openings are the hardest part of the game for a computerized player to analyze. This 

gives it an edge during the early game and provides several different strategies to choose 

from, while still allowing for UCT to augment its move selection in the later game to ensure 

victory. It also compensates for the tendency of Monte-Carlo simulation to be relatively 

inaccurate for early board positions or situations where the game would go on for a very 

long [8 p. 11]. Mogo has also worked to improve the simulation portion of UCT where 

rather than using completely random simulations, a more realistic, heuristic based, 

simulation is used. This serves to provide more accurate results from the Monte-Carlo 

simulations and has been seen to provide significant improvements over purely random 

simulations. 

In addition, several groups, including the one behind MoGo, have experimented with 

parallelization of the UCT process [8 p. 53]. The result is more simulations per second and 

thus greater accuracy for the simulation process. Potential options include optimizations 
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for shared-memory multi-processor computation on a single machine, and changes that 

will better support distributed computing operation on a cluster. Currently, Windows ports 

of MoGo may perform more slowly than other versions as they do not support multi-

processor systems. Unfortunately, however, initial investigations have shown that the 

potential for speedups under a cluster situation is not as good as the speedups found on a 

single machine with multiple processors. In fact, it may even perform worse in some 

circumstances without nontrivial modification [15 p. 2]. 

1.4.3 Directed Acyclic Graphs 

Current Go algorithms that use UCT generally operate on the game as if it were a 

tree. However, as mentioned previously, in the game of Go, and many other similar games, 

it is quite possible to reach the same board position with several different move orderings. 

Thus while the tree representation will be accurate, some sections of the tree will be 

duplicates. In fact for any one duplicated board position all subsequent board positions in 

the tree will be duplicated as well. Thus a duplicate position close to the top of the tree will 

result in a significant number of extra nodes to be searched by UCT. Due to the rules of Go 

preventing cycles, directed acyclic graphs can be used to fix this inefficiency. Directed 

acyclic graphs are essentially trees except instead of each node having a single parent, 

nodes may have multiple parents. However, there may not be any cycles in the graph; an 

example follows in Figure 1.3. 
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Figure 1.3 - Example Directed Acyclic Graph 

 In particular, this project aimed to develop and test a new version of UCT designed 

to search directed acyclic graphs, UCT-DAG. 

1.4.4 Grouping 

Another optimization that has been looked into is the addition of a grouping 

algorithm to UCT that classifies moves into several categories, such as “near the last move,” 

“at the edge of the board” and “somewhere else” [14]. By doing so, UCT gains additional 

“focus” by increasing the amount of the search period that goes to this smaller subgroup of 

the total set. If the moves in the groups selected are more likely to lead to a positive 

outcome, there would be a great benefit to the additional search time dedicated. 

Saito, et al, have already performed experiments testing various groupings, 

including the three mentioned above, however, they only performed limited experiments 

within the game of go. In addition to the development of UCT-DAG, this project aimed to 

provide evaluation of grouping usage, including potential groupings and experiments with 

various groupings on artificial game trees and in Go games. The use in artificial game trees 

validates the use of groupings outside of Go-related search procedures, and confirm the 



19 

 

benefit of implementing them within an environment more controlled and faster to process 

than a game of Go. 

The introduction of grouping into UCT has the potential to increase the number of 

moves which can be visited from alternate paths. While Saito et al. looked at independent 

groups (each move could be a member of only one group) [14], it is quite plausible that 

groupings could be overlapping. In this case the game representation becomes much more 

like a directed acyclic graph than a tree and the advantages of using an algorithm for 

directed acyclic graphs may become more pronounced. 

1.5 Conclusion 

Since UCT was first published in 2006, [11], several groups have implemented and 

improved upon the initial algorithm. With MoGo’s improvements this algorithm is now able 

to be competitive with human experts on a 9x9 board. However, more work still needs to 

be done in order to compete on larger boards. The fundamental issue that must be dealt 

with on larger boards is an increased branching factor. By investigating the use of directed 

acyclic graphs and grouping, this project aims to improve UCT’s performance on larger 

boards. The primary focus of this project is in simulation and experimentation with the 

proposed improvements. In order to show quantifiable results while remaining relevant to 

the application of Go, simulations were performed both with games of Go using GnuGo, a 

freely available opponent, and as an extension to the simulations on artificial game trees 

originally used by our local coordinator Levente Kocsis at SZTAKI. The design and 

development of these modifications are explored in the next chapter. 
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Chapter 2:  Development 

In order to test the effect of directed acyclic graphs and grouping on UCT, it was first 

necessary to design and add this functionality to existing codebases that implemented UCT 

on trees without grouping. We used two packages; first, the artificial game trees 

experiment that Kocsis used in his initial papers (PGame) was used as a basis for 

experiments on artificial game trees. Second, a publicly available package, LibEGO1 (Library 

for Effective Go Routines), was also updated. In this chapter, implementation details of the 

pre-existing codebases, the high level designs of these two features, and the details of 

implementation within both codebases are explored. 

2.1 Details of Existing Codebases 

In the process of designing and developing the improvements for PGame and 

LibEGO, it was necessary to understand the existing codebases. In this manner we could 

thus determine the best course for implementing our changes. In the following two sections 

some of the more important design details of PGame and LibEGO are presented in order to 

illuminate some of the design decisions we made for our improvements. 

2.1.1 PGame 

PGame was originally written by Levente Kocsis as part of his initial paper on UCT. 

It was designed to run UCT as well as Alpha Beta search and a simplistic Monte Carlo 

Search on artificial game trees and then compile the results and compute some statistics on 

the results. In order to implement our changes to PGame we primarily needed to modify 

                                                        
1 In its original form at http://www.mimuw.edu.pl/~lew/hg/libego/?shortlog 



21 

 

the structure of the game tree to become a DAG with grouping. Thus it was important to 

understand the initial structure of the game trees before designing our own 

implementation. 

The PGame artificial game trees represent a very simple game. Both players start 

with a score of 0. In turn they both select a move which awards them a certain number of 

points. This move moves to the next point in the tree where the next player can then select 

from the available moves at that point. At the end the player with the most points wins the 

game. Thus the goal of each player is to find the move that maximizes their score while 

minimizing the score for their opponent. This simple tree structure presents some 

challenges when attempting to convert it to a DAG. Primarily it is important to ensure that 

the aggregate scores of the players are the same no matter which path is followed towards 

a node. In order to ensure that this is the case, additional precautions must be taken in the 

DAG generation algorithm. 

In addition to the tree generation design, it is also important to understand the UCT 

implementation itself. In PGame, UCT is implemented in a very simple manner. In each 

iteration the algorithm selects the next node in the tree to move to. If no information exists 

for the nodes, a random node is selected2. Otherwise the node with the highest UCB is 

visited. Then, when the bottom of the tree is reached, all of the nodes along the tree path 

are updated with the result (win/loss). This causes the Monte-Carlo simulations and UCB 

descent to be integrated together rather than being separated in two phases. However, this 

                                                        
2 Note: Experiments have been performed (specifically with MoGo) in improving UCT’s performance 

by improving the Monte-Carlo simulations with a heuristic based search. This has proven successful, however 
as it is already well known we did not re-implement such improvements in this project. 
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fact does not materially affect the implementation of the grouping or UCT-DAG algorithms 

as they focus primarily on differences in the tree generation algorithm. 

2.1.2 LibEGO 

Unlike the PGame experiments, much of the design and development work with 

LibEGO focused on the UCT algorithm itself as the game generation was set by the rules of 

Go. One important difference in the LibEGO implementation of UCT is that the Monte-Carlo 

simulations were separated from the UCB descent. This was necessary due to the fact that 

storing each move for all of the many play outs would require an unmanageable amount of 

memory. In order to solve this problem, LibEGO introduced the concept of node maturity 

where a node in the UCT tree would not be expanded until a certain number of Monte-Carlo 

simulations had been performed. After each simulation, the moves selected would be 

discarded and the UCT tree would be updated with the result. In this way the size of the 

tree is limited. 

LibEGO also used many very compact and complex data structures in an effort to 

increase performance and decrease memory usage. Thus it provided somewhat of a 

challenge to implement our features within the existing data structures while minimizing 

the changes in memory usage and performance. The tree structure had to be modified in 

order to support DAG’s, especially with regards to memory management. We had to 

implement reference counting on tree nodes so that they would be deleted when they are 

no longer referenced, not when one of their parents are deleted as was the case with the 

initial implementation. In the next sections we describe the actual design and 

implementation of our features within both PGame and LibEGO. 
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2.2 UCT on Directed Acyclic Graphs 

As discussed in section 1.4.3, directed acyclic graphs (DAGs) can be used as a means 

for reducing the size of the search space. However, in order to use UCT on DAGs, an 

algorithm designed for use on trees, some modifications must be made. The original UCT 

algorithm works on the basis of storing a value and count for each node in the game tree. 

For example, following in Figure 2.1, there is a single node E, which has been duplicated in 

order to treat the game as a tree. The numbers of visits to D, E1, E2, and F have been noted.  

A

B C

D E1 F

`

Visits: 3 Visits: 2 Visits: 2

E2

Visits: 3  

Figure 2.1 - UCT on a Game Tree 

As can be seen, the total number of visits to game state E is 5, however UCT is 

treating the game state as two different nodes and thus keeps the visit counts separate. 

Unfortunately this also means that the value of the nodes, or the simulated probability of a 

win, is less accurate then it could be. While there have been 5 equivalent Monte Carlo 

simulations coming from game state E, the results of those simulations are divided amongst 

the two nodes. As the accuracy of the node values depends directly upon the number of 

Monte Carlo simulations this is less than ideal. 

So, the next logical step is to change UCT so that it treats the game as a DAG. Then 

nodes E1 and E2 would be combined into a single node and the accuracy of the node value 

would be increased. This situation is shown in the following: Figure 2.2. 
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A

B C

D E F

`

Visits: 3 Visits: 5 Visits: 2  

Figure 2.2 - UCT treating Game as a DAG 

In this case, UCT as designed to run on trees combines both the node values, and the 

visit counts on node E. However this leads to inconsistencies in the model. Whereas 

previously the visit counts on nodes B and C would match the sum of the visit counts of 

their children, this is now no longer true. Since the UCB calculation (Equation 1.1) depends 

directly on the visit count of the parent this means the calculation is no longer as accurate 

as before. In order to fix this, the final solution must keep track of the node visit count for 

each parent, thus restoring accuracy to the UCB calculation. This final solution is shown in 

the following:  

A

B C

D E F

`

Visits: 3 Visits: B->2, C->3 Visits: 2  

Figure 2.3 - UCT-DAG on DAG 

As seen above, the node visit counts for node E is stored relative to each parent. 

Thus when calculating the UCB for node E, it will depend on the current parent. As will be 

shown in section 2.2.1, this solution has the nice property that the node values of the tree 

are calculated in an equivalent manner to that of UCT running on a tree, with the exception 

that more accurate values are used for nodes visited from more than one parent. Thus this 
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change serves only to increase the accuracy of node values without jeopardizing the 

accuracy of UCB calculations or changing the exploration and exploitation properties of 

UCT which make it so successful. 

We also considered additional methods for updating UCT to perform well on DAGs. 

One immediate thought is to somehow update nodes on paths other than the path taken to 

a node with the latest value after a single iteration. For instance, if UCT was run for a single 

additional iteration on the DAG in Figure 2.3, it might take the path A->B->E, it would then 

perform a Monte-Carlo simulation and update the values on nodes E,B and A. However, this 

simulation should also be valid for node C. Thus it would be interesting to consider how to 

update C in such a way as to maintain the accuracy of the values on all the nodes. 

Unfortunately this is not entirely obvious and is complicated in cases where there are 

multiple paths back to a single parent. It is also important to consider the performance 

implications of such updating. Depending on the complexity of the DAG, it is possible that 

the number of ancestors to be updated could be very large, potentially exponential. Due to 

these complexities and the time constraints of this project, we were unable to satisfactorily 

investigate this possibility. Instead we focused on UCT-DAG, which provides a small change 

that is relatively straightforward to implement and has minimal performance impact. 

2.2.1 Behavior of UCT-DAG 

One of the primary goals in adapting UCT to directed acyclic graphs was to ensure 

that the algorithm continued to behave in the way described in its original form. In Kocsis’s 

original paper on the topic, he showed that UCT converges to the correct answer and that 

the expected error rate decreases as the number of iterations increases [11]. A core part of 
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this proof is the statistical behavior of the upper confidence bound. As the number of 

samples (Monte Carlo Simulations) increases, so does the accuracy of the calculated value, 

thus the confidence interval (within which the actual value lies with specified probability), 

becomes smaller. The primary aim of UCT-DAG is to improve the accuracy of the calculated 

values by sharing the results of Monte Carlo Simulations between identical nodes, while 

retaining the statistical validity of the upper confidence bound.  

To demonstrate this behavior it is helpful to consider the example given in Figure 

2.1. Then we can describe the calculated value of node E to be the mean of all of the 

simulated values from the 5 visits: 

𝛼 𝐸 =
1

𝑛
 𝛼𝑖

𝑛

𝑖=1

 

Whereas the calculated value for the disparate nodes E1 and E2 is the weighted 

average of the simulations when visiting through that node: 

𝛼 𝐸1 =
1

𝑛𝐸1 
 𝛼𝑖

𝑛𝐸1

𝑖=1

, 𝛼 𝐸2 =
1

𝑛𝐸2 
 𝛼𝑖

𝑛𝐸2

𝑖=1

 

However, since 𝑛 = 𝑛𝐸1 + 𝑛𝐸2 → 𝑛 ≥ 𝑛𝐸1 , 𝑛 ≥ 𝑛𝐸2, the accuracy of 𝛼 𝐸1 and 𝛼 𝐸2  is 

less than that of  𝛼 . More formally, given a desired error: 𝛿 

𝑃 |𝛼 𝐸1 − 𝛼𝐸 > 𝛿 > 𝑃  𝛼 𝐸 − 𝛼𝐸 > 𝛿 [3] 

This is a direct result of the law of large numbers [16]. This states that as the 

number of samples goes to infinity, the probability that the difference between the sample 

mean and the expected value is greater than some error goes to zero: 

                                                        
3 Note that since E and E1 are equivalent board states 𝛼𝐸 = E(Α𝐸1) = 𝐸(Α𝐸) 
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lim
𝑛→∞

𝑃  𝑋 𝑛 − 𝐸 𝑋  > 𝛿 = 0 

Next one must consider how sharing the values between E1 and E2 will affect the 

values and accuracy of the parent calculations. With UCT the values of the parent nodes and 

the counts of the parent nodes could be calculated as a weighted average of the child values 

and counts. So in the case of node B: 

𝑛𝑏 = 𝑛𝑑 +  𝑛𝐸1, 𝛼 𝐵 =
1

𝑛𝑏
⋅  𝑛𝑑 ⋅ 𝛼 𝐷 + 𝑛𝐸1 ⋅  𝛼 𝐸1  

With the proposed UCT-DAG modification this changes very slightly to become: 

𝑛𝑏 = 𝑛𝑑 +  𝑛𝐸1 , 𝛼 𝐵(𝐷𝐴𝐺) =
1

𝑛𝑏
⋅  𝑛𝑑 ⋅ 𝛼 𝐷 + 𝑛𝐸1 ⋅  𝛼 𝐸  

Thus the only difference is to use a more accurate estimation of value for node E. 

Thus the accuracy of the modified 𝛼 𝐵  is better than the accuracy of the original estimate 

and: 

𝑃 |𝛼 𝐵 − 𝛼𝐵 > 𝛿 > 𝑃(|𝛼 𝐵(𝐷𝐴𝐺) − 𝛼𝐵| > 𝛿) 

It should be noted that since the counts are kept per parent rather than per node, 

the UCB calculations when descending the tree will actually be more pessimistic than they 

actually must be. In the previous example, for instance, node B would calculate the upper 

confidence bound of node E using the visit count of 3, which would result in a higher upper 

confidence bound than if it used the actual visit count of 5. However due to the 

inconsistencies noted above regarding the use of aggregate counts for nodes rather than 

counts per parent, it is not trivial exactly how to deal with this pessimism. It is important to 

note that even with this additional pessimism, UCT-DAG is operating with more accurate 
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information than is available in plain UCT. Thus its results will only be improved. It is 

possible, however, that additional modifications could be made to further improve UCT-

DAG taking into account the aggregate counts at nodes. This, however, is left to future 

research.  

2.2.2 Transposition Table 

One component of developing UCT-DAG involved the use of a transposition table to 

store information by game state without regard to turn number or the path leading to the 

state. Transposition tables are hash tables, which index some information by game state. 

After performing the Monte Carlo simulations for a leaf, the node count instead of value 

would be kept for the current path, with the value of the current board position instead 

updated in the transposition table. This use of transposition tables with UCT-DAG is quite 

convenient as it allows an existing tree representation to remain in place while still sharing 

information between duplicate nodes. In addition it is possible to save the transposition 

table between moves further improving the accuracy of UCT as existing simulation results 

may be reused in the next search. 

2.3 UCT-DAG Implementation 

The implementation of UCT-DAG both on Artificial Game Trees as well as in LibEGO 

required specific modifications in order to work within the pre-existing codebase. Details 

of these modifications are given in the following sections. 
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2.3.1 PGame 

Implementing UCT-DAG on artificial game trees required two steps. First the game 

generation procedure had to be modified to generate a DAG rather than a Tree. Next the 

UCT algorithm had to be updated to store node visit counts separately for each parent as 

discussed in section 2.2. 

In order to add support for DAGs to PGame the data structures had to be modified. 

The tree implementation used a simple array to store tree nodes and links between nodes 

were implicitly defined by the branching factor and depth of the tree. In this structure, the 

root is stored in the first position of the array; the children at the next level are stored in 

the next positions, and so on.  To support a DAG, this structure had to be modified such that 

each node also stored links to its children. This was necessary as in a DAG, there are not a 

fixed number of nodes at any level and thus it is impossible to directly compute the indices 

of a node’s children given the depth and breadth of the DAG. In addition each node now 

needed to store the values of a move to each of its children. The move value was previously 

stored in the node itself (since it had only one parent), but now, this information needed to 

be stored in the parent node. 

In addition, the generation procedure itself needed to be modified. In the previous 

version the only generation step was to generate random move values for each node in the 

tree. Generating a DAG, however required a multi-step process shown in pseudo-code 

below: 
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1 given depth, breadth, combination_threshold 

2 generate root node 

3 parents <- root 
 

4 for d = 1 to depth 

5   generate (parents.size * breadth) child nodes 

6   generate combinations based on combination_threshold   

7   add remaining children to next_parents 

8   link all the parents to the new children 

9   parents <- next_parents 

10 end 

 

It was necessary to separate the steps in lines 6-8 in order to ensure that chains of 

combinations (i.e. node 1 combined to node 3, node 3 combined to node 6) would correctly 

combine nodes 1, 3 and 6 together rather than assigning node 3 to node 1 and then 

combining node 3 and 6. Unfortunately, due to the inner loop required for this step tree 

generation becomes a 𝑂(𝑛2) operation rather than 𝑂(𝑛) where n is the size of the tree to be 

generated. This means that the experiments on large directed acyclic graphs become 

significantly more time consuming. However, for the purposes of this project, it was fast 

enough to complete within the available time. 

Another modification required for UCT-DAG in PGame was to modify the UCT 

algorithm as specified in section 2.2. The provided implementation of UCT in PGame 

already used a transposition table to store node values and counts based on the node index. 

This conveniently meant that the only necessary modification was to store the node visit 

counts in the parent node entries (keeping track of the counts for each of its children) 

rather than in the node entries themselves. This modification was fairly straight forward 

and had little impact on the running time of the algorithm. However, due to the fact that 
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PGame’s UCT used a transposition table to store node values and counts, it exhibited 

behavior similar to the second example given in section 2.2, where UCT was running on a 

DAG (sharing node counts and values between nodes). Thus a final modification was 

necessary where functionality was added to convert a DAG into a tree (duplicating nodes), 

in order to test UCT running on a tree, but with duplicate nodes.  

With support for UCT-DAG completed, the next step was to run experiments 

comparing its performance with UCT. With a parameter to control the number of nodes 

with multiple parents, the performance could be compared with different levels of overlap.  

2.3.2 LibEGO 

In order to support UCT-DAG in LibEGO, some major changes needed to be made in 

terms of the way node values and counts were stored in memory. In order to keep the 

changes minimal, the in memory model of the UCT game was kept as a tree instead of  as a 

DAG, but duplicate nodes kept references into a transposition table in order to share the 

node value. Node counts were kept in the nodes themselves. 
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Generate Move
Go To Node with 

Best UCB
Is Leaf? 

No

Perform Monte 
Carlo Simulation

Yes

Update Node Count 
on Path

Repeat until limit

Transposition 
Table

Retrieve Board Position Value

Update Board Position Value, Count

No

Is Mature?

Expand Node

Yes

 

Figure 2.4 - UCT with Transposition Table 

The transposition table is implemented through the use of the standard map 

functionality, representing it in memory as a hash table. As the computation is bound by 

the Monte-Carlo simulation and not the node updates, there is no significant slowdown 

caused as a result of its incorporation, however it is possible that a customized memory 

management system could be used. The keys into the hash table are fairly simple 64-bit 

hashes of the board position. This can potentially lead to collisions when saving the board 

value. However, this has not been an issue during testing procedures as the size of the 

transposition tables have been well below the number of available keys.  

When initialized, the transposition table is given an easily configurable maximum 

storage size. Initial experiments conducted used maximum sizes ranging from 5,000 to 

50,000 storable positions, which if saved between turns could generally be filled rather 
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quickly, often within the first three moves. The transposition table size worked comfortably 

with up to 500,000 entries, although it could potentially go larger.  

As the transposition table fills, data is stored in a first-come, first served manner. 

During the opening moves of a typical game of Go, the average node parents that attempted 

to inspect the same position appeared to typically stay around 1.85, or just under two. In 

order to compensate for the table filling quickly with meaningless data, a system to “age” 

the stored board positions was implemented, although it proved to be a source for error 

more than a source for improved performance. When storing positional data between 

moves, however, it was important to maintain only relevant data while pruning less-

frequently accessed information. Storing positional data between moves allows the useful 

work that had been done during the last turn to be re-used, to allow for greater accuracy; 

but it also fills up the transposition table faster, as each turn begins with a partially full 

table instead of a blank one. 

In order to prune the transposition table, a minimum threshold for position data 

access was implemented, initialized to two (although easily configurable) based on early 

observations. This meant that if less than two attempts were made to reference the 

positional data, the data would be discarded instead of passed on during the next turn. 

During the turn, the transposition table could potentially exceed the maximum storage size. 

If this becomes the case, the minimum threshold is incremented, resulting in only the most 

useful of the stored data being passed on. After the next turn, the increased threshold will 

ensure that the transposition table is kept below its intended maximum size. 
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2.4 Grouping 

The second improvement to UCT that we examined was grouping. The concept of 

grouping in UCT, as discussed previously, had not been extensively explored. In addition, 

the use of many groups adds significant overhead by increasing the number of nodes and 

the depth of the search tree. Grouping introduces a new level of nodes in the graph, group 

nodes, which evenly4 divide UCT-DAG’s attention into several sub-trees. In our 

implementation, group overlap is allowed to occur, which will take advantage of the 

transposition table. In fact, a default group that is provided when grouping is enabled 

contains every node for consideration; thus, using any groups implies overlap in at least 

one category automatically. 

The alleged benefit of grouping is that large subsets of the node pool can be classed 

into different categories, which can then be evaluated both on the node level and group 

level. This allows entire groups to be considered potentially winning/beneficial, or 

losing/undesirable. Because of this, purposely selecting only groups that are expected to be 

consistently successful is not required; however, groups must generally correlate with 

either winning or losing moves.  

A

Group 1 Ungrouped

B (Win) C (Lose) D (Lose) E (Lose)
 

Figure 2.5 - Grouping using Group Nodes 

                                                        
4 UCT, with no information will randomly select from the available nodes until more information is 

obtained. Thus, in the beginning of any search values will be evenly distributed amongst the group nodes. 
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In the above example, node A (with children B, C, D, E) was the start of the search 

tree. During evaluation of its children, it was found that node B (the start of a series of 

moves leading to a win) belonged to Group 1. Also during this process all nodes were found 

to be members of the all-encompassing group. If there were no groups at work at all, until 

enough simulations were calculated, each child would be given 25% of the time available. 

As a result of the groups, UCT will spreading time first evenly among group nodes, the two 

group nodes would receive 50% of the available processing. This leads to node B receiving 

50% through being the only Group 1 node, and leads to nodes B, C, D and E receiving 

another quarter each of the remaining 50%. In addition, after a number of simulations have 

been performed, UCT will determine that Group 1 is the most likely winning group and will 

devote even more time to exploring B and its children. 

2.5 Grouping Implementation 

In order to add grouping to both PGame and LibEGO, the games’ models needed to 

be modified such that nodes could exist that represented groups rather than moves. 

Additionally, the order of play had to be modified such that a player would choose a group 

and a move each turn rather than just a move. This led to varying degrees of complication 

with each implementation and was handled differently in both cases. Regardless, while the 

overall goals were the same, in PGame it was necessary to invent an artificial grouping with 

variable correlation to winning or losing moves, whereas with LibEGO it was necessary to 

build a framework that allowed different grouping to be experimented with and specified 

at runtime. The details of these modifications and the challenges presented by each are 

detailed in the following sections. 
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2.5.1 PGame 

In order to support grouping within PGame, several modifications were necessary. 

Similar to the implementation of the DAG, both the game generation and the UCT algorithm 

were updated to support grouping. 

Adding support for groups to the game generation was fairly straightforward. In the 

case of PGame several parameters were added to allow the specification of different 

groupings. First, num_groups indicated the number of groups (in addition to the base catch-

all group). Next, group_bias specified the correlation that the group should have with either 

winning or losing moves. In particular high values (close to 1) specified that the group 

should correlate with winning moves, and low values (close to 0) specified that the group 

should correlate with losing moves. Finally, group_size specified the overall size of the 

group. Lower values reduced the probability that nodes would be added to a group, higher 

values increased the probability. In addition due to the fact that the system measured the 

error based on the move index returned from the algorithm, it was necessary to only add 

groupings after the first move. Thus from the root node to its children, no groups were 

added. The process for adding groupings is outlined in pseudo code below: 
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1 generate game 

2 for each node in the game (DAG or Tree) 

3   select groups to add node to 

4 end 
 

5 for each child of the game root 

6   recursively add group nodes 

7 end 
 

This modification is reasonably efficient and does not increase the big-O runtime of 

the game generation procedure. However, in order to search the modified game it was 

necessary to also modify UCT-DAG to correctly identify the player for each node. With the 

addition of grouping, players each made two moves the first being to select the group, and 

the second being to select the node. The previous Monte Carlo search did not query the 

game to see whose turn it was. This was modified so that it could be generalized to 

alternate game types where players did not simply alternate turns. 

With these modifications finished, it was then possible to run a variety of 

experiments varying the number, size, and accuracy of groups. 

2.5.2 LibEGO 

The implementation of groupings in LibEGO required a more extensible approach in 

order to allow experimentation with different group types. Since it is not feasible to 

compute whether moves in Go are winning moves (or else UCT would not be needed), it is 

necessary to select various heuristic methods to specify groupings which may or may not 

correlate with winning moves. Thus for LibEGO we developed an extensible model for 

groupings with two levels. A diagram of these modifications follows in Figure 2.5. 
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Figure 2.6 – UCT with Transposition Table and Grouping 

Shown above are the modifications (shaded) to UCT, to support DAG with 

transposition table and grouping. Instead of directly expanding a node when maturity is 

reached, there is an extra step to create the groups. Several group managers may be 

instantiated to handle the creation of group nodes for both singleton groups and 

dynamically allocated groups. Singleton groups have only one implementation group, 

whereas dynamic group types are able to create sets of groups that behave in a similar 

fashion. Nodes that are members of a particular group are placed as children of the node 

responsible for that group, as the algorithm iterates through the potential groupings to test 

against. After that point, expansion and the following steps continue as before. 
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In the implementation, two main manager classes control the allocation of singleton 

and dynamic groups. Singleton groups are instantiated once if needed, and will contain all 

positions that would fall into that group. One dynamic group was explored, the chain group 

type, which is controlled by the chain group manager. Chains are sets of connected pieces 

wherein all the pieces are adjacent to each other, or to other members of the chain; long 

“snakes” and solid block formations are examples of chains. When a new chain is 

encountered that meets the criteria for inclusion (defined by a minimum member count 

and maximum liberty count), a new instance of a chain group is instantiated to collect its 

members if one does not already exist. 

Each group tends to have a set of adjustable values. For example, the group that 

contains positions with a large number of liberties allows adjustment of how many liberties 

are required for inclusion, and the groups that inspect positions in proximity to recent 

moves allows adjustment of how many spaces is considered close enough. The list of 

implemented groupings and a short summary of each is given below.  

Group Name Description 

Else Group Default grouping, of which all positions are a member. 

Border Group Proposed by Saito et al., contains all positions which are on the edge of the board. Is 
not particularly interesting, and could be distracting on larger boards. 

Manhattan Distance 
( Enemy) 

Proposed by Saito et al., contains all positions within configurable “Manhattan 
Distance” from the last move made, which is the opponent’s last move; in our 
implementation, the last move made on a blank board is not the center. 

Manhattan Distance 
(Friendly) 

Similar to the above, this group contains all positions within the Manhattan Distance 
from the player’s own last move. 

Manhattan Distance 
( Total) 

This grouping is effectively a combination of the above two, and represents all 
positions within the Manhattan Distance of either player’s last move, which is likely 
of interest. 

Friendly Saves Friendly Saves considers all the player’s pieces which are under threat of capture, 
which could then be spared if a particular move was made. 
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Table 2.1 – Implemented Groupings 

With so many groups implemented, it was necessary to perform preliminary 

experiments to eliminate those which performed poorly (did not correlate with winning / 

losing moves). Multiple experiments were performed with mixed results. These were taken 

into account when designing the final experiment due to the limited availability of 

computing resources and time. 

2.6 Conclusion 

While a significant portion of this project was spent on algorithm design and 

development, the main goal was the simulation and analysis of the improvements. During 

the entire implementation of UCT-DAG and grouping, preliminary experiments were 

conducted. These experiments not only helped to expose problems in the code, but also to 

guide our development efforts, especially with respect to the groupings selected for 

LibEGO. In addition these experiments provided valuable data that could be used to select 

the appropriate simulations to run for the final experiments. This was especially important 

Enemy Kills Counterpart of the above, this group spots the opponent’s positions that are under 
threat of capture and which could be taken with one move. 

Enemy Group, 
Friendly Group, 
Enemy Threat, 
Friendly Threat 

This set of groups represent pieces placed directly adjacent to enemy/friendly 
pieces, and positions that are “under threat” and adjacent to that position’s 
opponent’s piece. They were not intended for practical use on their own. 

Many Liberties Positions that would have many liberties (associated free spaces) are in this group. 

Chain Group 
Manager 

This group dynamically allocates new chain groups when they are needed. Each set 
of positions for which a particular chain group is applicable are set into a new chain 
group. 

Chain Group Represents a group that constitutes members of a particular chain. Not intended for 
practical use by itself. 

Friendly 
Chainmaker 

These positions will allow the formation of a chain to occur, possibly by joining 
together two other smaller chains or single pieces 

Enemy Chainmaker These are the positions which would allow the opponent to form a chain. 
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given the finite computing resources and time available for running the experiments. The 

specific experiments that were conducted and the data resulting from those experiments 

are presented in the next chapter. 
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Chapter 3: Experiments 

After designing and developing UCT-DAG with grouping in both PGame and LibEGO, 

we designed several experiments in order to test the effects of these changes on the 

performance of UCT. For both PGame and LibEGO, we ran a number of tests and compared 

the performance versus the unchanged UCT. 

In order to determine if the results were statistically significant we needed to first 

determine a valid probability distribution for our experiments. Since the outcome of each 

individual trial in the experiments was either win or loss (1,0), each of these experiments 

could be modeled as a Bernoulli trial. Thus the total number of wins or losses could be 

modeled as a random variable with a binomial distribution. With enough trials (games), the 

outcome of the experiment could be approximated with a normal distribution, by the 

central limit theorem [16]. Given the number of games, n, and a win rate, p, this normal 

distribution has a mean of 𝑛𝑝 and a standard deviation of: 

𝜎 =  𝑛𝑝 1 − 𝑝  

Equation 3.1 – Standard Deviation of Normal Approximation to Binomial Distribution 

Since this is a normal distribution, the 95% confidence interval is 𝑛𝑝 ±  2𝜎. For all of 

our experiments, we calculated this confidence interval to determine if any differences in 

performance were statistically significant.  

In this chapter we present the parameters used for experiments on both artificial 

game trees (using PGame) and with computer Go (work with modified LibEGO). In 

addition, we present some of the results of the experiments and discuss their significance. 
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3.1 Artificial Game Trees 

In order to quantify the effect of the improvements we made to UCT, we designed 

two experiments to test the average error versus a number of new parameters that could 

be adjusted to observe changes in algorithm behavior. Discussed in the previous chapter, 

these parameters included: 

 DAG Combination Threshold (percentage of nodes to combine together to make a 
DAG) 

 UCT Mode (UCT on Tree, UCT-DAG) toggle 
 Number of groups to use 
 Group Bias (relative amount of correlation between groups and either winning or 

losing moves) 
o Ranges from 0 to 1, with 0 indicating that the group should be composed of 

0% of the winning moves and 100% of the losing moves, and 1 indicating 
that the group should be composed of 100% of the winning moves and 0% of 
the losing moves. 

 Group Size (relative size of individual groups) 
 Group Overlap (whether or not the group representing ungrouped nodes should 

contain all the nodes or just the nodes not in any other group) toggle 

In addition there were few parameters available from the original PGame 

experiment: 

 Breadth (the number of children nodes per parent) 
 Depth (the number of levels in the game tree / DAG) 
 Number of Games (the total number of games to perform) 
 Number of Iterations (the number of iterations to run UCT for) 
 Number of Repetitions (the number of times to repeat UCT on the same game) 

In the first set of experiments, we focused primarily on testing the effect of the DAG 

combination threshold on the performance of the three modes of UCT. These were tested 

on several tree sizes. For all of the experiments we ran 200 games each, with 200 

repetitions and 10,000 iterations. 
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In the second set of experiments, we focused on the effect of grouping nodes on the 

performance of UCT-DAG. We first tested the effect of group bias and group overlap each 

using a single, complete group, to form a relative benchmark and confirm the grouping 

code was both functional and performed as expected. Next, we tested the effect of the 

parameters that controlled the group bias, group size, and the number of groups; for each 

of these sets of experiments, the option to allow group overlap was set to true. 

For each experiment we generated two plots. First, the average error (or loss rate) 

was plotted versus the number of iterations for which each algorithm was run. These plots 

are similar to those presented by Levente Kocsis in the original UCT paper and seen in 

Figure 1.2 [11]. Next, we plotted the base average error divided by the average error for the 

result. This plot shows the relative improvement of each experiment over the base 

experiment, and allows an easier comparison between the two different algorithms. Any 

changes that were damaging to performance could be just as easily spotted. 

One important note with regards to the results in this section is the fact that the 

95% confidence interval about the average error, for any given value, generally included 

the 0% error case. Thus, in the plots for these experiments we show only the upper half of 

the confidence interval. In order to determine if a result is significantly better than a base 

result, we look for the upper confidence interval to be less than the mean of the base result. 

In essence we examine results for which it can be stated with certain confidence that the 

actual mean of the result is less than the sample mean of the base result. 
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The exact parameters used in all of the experiments are available in Appendix A, in 

addition, all of the data are available in plots in Appendix C. We present selected plots and 

observations in the following two sections. 

3.1.1 UCT on Directed Acyclic Graphs 

The first set of artificial game tree experiments investigated the effect of the DAG 

Combination on the performance of UCT vs. UCT-DAG. We ran experiments using four 

different tree breadths and depths, all with approximately one to two million individual 

nodes. The DAG Combination threshold was also varied from 0% (equivalent to a tree) to 

30% (where 30% of the nodes are combined with other nodes). It is important to note that 

this structure is not an arbitrary DAG, but a DAG where all paths to some node are of the 

same length. This is most interesting because of its relevance to the game of Go. In Go the 

most likely node combinations are results of different move ordering rather than where the 

players place the same pieces in the same positions on the board but in a different order. It 

is possible to reach the same board position but through a different set of nodes in Go 

(primarily through the possibility of node captures), however this is much less likely than 

the former. 

In the following figure we show the average error for UCT-DAG versus the number 

of iterations for all of the DAG combination values on a tree with breadth 2 and depth 20. 
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Figure 3.1 - Average Error vs. UCT-DAG with varying DAG Combination on 2x20 Tree 

In the logarithmic plot above, there do not appear to be any significant differences 

between the various levels of DAG combination. However, this changes when the results 

are shown relative to the simpler base UCT running on the respective trees. Seen in the 

following figure is the performance of UCT with varying DAG combinations: 

 

Figure 3.2 - Average Error vs. UCT (Base) with varying DAG Combination on 2x20 Tree 



47 

 

 

Here the results are similarly muddled and a bit difficult to clearly discern. However, 

the plot shows an opposite trend to the one for UCT-DAG. In general, the higher the DAG 

combination threshold, the worse base UCT performs. Thus, it is helpful to compare the 

relative performances for each DAG combination, namely the base average error (Base 

UCT) divided by the average error (UCT-DAG). This figure is shown below: 

 

Figure 3.3 – Base Average Error / Average Error for UCT with Varying DAG Combination on 2x20 Tree 

Here, the trend is quite clear. The higher the DAG combination, the more 

performance gained through the use of UCT-DAG. As evident in the plot above, with 20% or 

higher DAG combination rate, there is a statistically significant improvement. Conversely, 

with a rate of 10% or less, the difference is negligible. A similar trend is seen with trees 

with larger breadth, although the effect seems to diminish as the breadth increases. Shown 

below is the relative performance of UCT-DAG vs. UCT on a 10x6 tree: 
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Figure 3.4 - Base Average Error / Average Error for UCT with Varying DAG Combination on 10x6 Tree 

As seen above, while 20% and 30% DAG Combination still seems to benefit UCT-

DAG, the effect is less pronounced and occurs later in the iterations. It is possible that this 

trend is due to the increased breadth, reduced depth or a combination of the two. 

Unfortunately, due to computing resource limitations it was impractical to perform 

experiments with wide, deep trees; this remains an avenue for future research. 

Overall, the data from the experiments with UCT-DAG indicated that in the worst 

case there was no difference between the performance of UCT and UCT-DAG, and given 

enough duplicate nodes, UCT-DAG was an improvement over UCT. As a result of this 

observation, UCT-DAG was used exclusively in the grouping experiments. 

3.1.2 UCT-DAG on Grouped Trees 

In the first set of grouping experiments we tested the effect of group bias and group 

overlap on the performance of UCT-DAG. As discussed in the previous chapter, we expected 

that given some correlation between the groupings and the winning or losing moves, the 
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performance of UCT should improve, as it will tend to find the winning moves more 

quickly. However, the addition of grouping also increases the size and depth of the DAG, so 

each iteration takes longer to complete. To effectively summarize the results of these 

experiments we plotted both the average error (fraction of games where UCT chooses the 

incorrect move), versus the number of iterations. Similar to the plots in Figure 1.2 [11], 

these can help illuminate the relative performance of UCT with the different grouping 

parameters. 

Initial experiments with grouping showed that on the tree sizes that were practical 

to test, group biases less than 0.70 and greater than 0.30 tended to perform the same or 

worse than UCT with no grouping. Thus, in the interest of conserving limited 

computational resources, we only performed experiments with group biases less than 0.30 

and greater than 0.70. 

The next two plots show the effect of group bias on UCT performance with no group 

overlapping (group overlap disabled). The first shows the results with a tree with a breadth 

of 10 and a depth of 6. The group bias for each line is shown in the legend, and the base 

UCT running on the tree with no groups is named ‘Base’ 
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Figure 3.5– Average Error vs. Group Bias on 10x6 Tree 

As can be clearly seen in the above plot, as the group bias gets further from 50% 

(0.50), where there is effectively no correlation between the group and the winning or 

losing moves, the number of iterations required to reach a certain level of error decreases 

in a relative manner. Also shown on the plot are error bars, indicating the upper bound of a 

95% confidence interval for the average error.   

When the group bias is set to either 100% or 0%, UCT is clearly outperforming the 

base UCT after only 300 iterations. By around 600 iterations it has approached zero, while 

base UCT requires close to 10,000. Even with only 30% (0.30) or 70% (0.70) group bias, 

the grouped UCT outperforms the base after about 3000 iterations.  

To show the relative improvement over base UCT, we again plotted the base average 

error divided by the average error. Error bars are shown using the 95% upper confidence 

bound for average error. This plot for the 10x6 tree is shown below: 
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Figure 3.6 – Base Average Error / Average Error vs. Group Bias on 10x6 Tree 

Once again, similar trends can be seen. The most accurate groups provide the most 

improvements the earliest, while as the group accuracy decreases (becomes closer to 

50%), the relative improvement lessens. One important fact that these plots demonstrate is 

the equivalence of 0%/100%, 10%/90% etc. group biases. With only a single group and no 

overlap, the behavior of the grouping algorithm is such that a single group of all the 

winning nodes is equivalent to a single group of all the losing nodes, as the ungrouped 

nodes will take on the value of the other.  This situation changes, however when group 

overlapping is enabled. In this case, all of the nodes will be members of the second (catch-

all) group. Thus in the case of the 0% group, the winning nodes are not separated from the 

losing moves in the second group. This is seen very clearly in the following plot of average 

error vs. group bias with group overlapping enabled. Here, on the same size tree, the 

relative performance of UCT with different group biases is markedly different: 
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Figure 3.7– Average Error vs. Group Bias on 10x6 Tree with Group Overlap 

In this experiment, the performance of UCT is actually impaired as a result of using 

groups with only losing moves. However, given groups that correctly identify winning 

moves, UCT performs significantly better with less iterations required. With a group bias of 

100%, it is performing significantly better after less than 100 iterations as opposed to 300 

without group overlap. This can be attributed to the fact that winning moves are now 

present in all of the groups (both the biased group and the catch-all group). Thus with 

group overlap enabled, the winning moves are sampled an even higher percentage of the 

time early on in the search. 

Another parameter that we varied with respect to group bias was the size of the 

tree. One particularly interesting case is the effect of a low branching factor on the grouping 

in both the overlapped and non-overlapped case. With a branching factor of 2, and no 

group overlap, grouping does not help UCT at all. Shown below is the plot of base average 

error / average error for a 2x20 tree: 
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Figure 3.8– Base Average Error / Average Error vs. Group Bias on 2x20 Tree 

In this case, the net improvement of the grouped versions of UCT over the base UCT 

are negligible with a large amount of noise as the number of iterations increases. In fact, as 

the error bars indicate, none of the results are significantly improved over the base. On the 

other hand, with group overlap enabled there is a dramatically different result. Even with a 

low branching factor significant improvement is seen early on with groups that accurately 

identify winning moves. Seen below is a plot of base average error / average error with 

group overlap enabled: 
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Figure 3.9– Base Average Error / Average Error vs. Group Bias on 2x20 Tree with Group Overlap 

As can be seen, with sufficiently accurate groups, group overlap improves UCT 

performance even with a small branching factor. This is a stark contrast to the results with 

group overlap disabled. 

In order to test the effect of multiple groups on the performance of UCT, we also 

tested UCT with 1, 2, or 3 groups of varying accuracies and sizes. In all of these 

experiments, group overlap was enabled. Below is a plot showing the effect of the number 

of groups and their accuracy on the performance of UCT.  Lines of the same color indicate 

the same number of groups, while lines of the same style (dotted / dashed) indicate the 

same level of group accuracy. Group counts from 1-3 are each shown with 70%, 75%, and 

100% accuracy settings. 
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Figure 3.10 - Base Average Error / Average Error vs. Number of Groups and Group Accuracy with 
Group Size 100% 

 

In this experiment we see that with large groups, additional groups improve 

performance. In fact there is an almost exact correlation between the number of groups 

and the performance of UCT given specified group accuracy. In the case of 70% group 

accuracy, the results are not correlated as well. However, the results for these experiments 

show little, if any, significant improvement over the base UCT. With the most accurate 

groups, the correlation is very good and in fact the confidence intervals show significant 

differences between 1, 2 and 3 groups after only 30 iterations. 

In reality, groupings, especially in Go, are unlikely to contain all of the winning 

moves (as is the case with the 100% accurate groups above. Thus we also ran experiments 

with multiple groupings but each group holding a smaller portion of the winning moves, 

while keeping the same ratios between winning and losing moves (defined by group 

accuracy).  
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Figure 3.11 - Base Average Error / Average Error vs. Number of Groups and Group Accuracy, with 
Group Size 25% 

In this case the results are not nearly as well defined. As before, with only 70% 

group accuracy, all of the groupings fail to improve over base UCT. However, with at least 3 

small groups, both 85% and 100% accurate groups are able to improve over base UCT. 

With only 1 or 2 small groups 100% accurate groups are required in order to see an 

improvement. Thus it appears that with many small groups that are at least well correlated 

with winning moves, UCT performance can still be improved.  

3.1.3 Conclusion 

Overall, the experiments with UCT-DAG and Grouping on artificial game trees 

showed modest to significant improvements over base UCT. The next step in our 

experiments was to look at the effect of UCT-DAG and Grouping as applied to computer Go. 

In the following sections we present the design of these experiments as well as some of the 

results. Our overarching findings and conclusions are presented in the final chapter. 
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3.2 Computerized Go 

Performing experiments with Computer Go presented several challenges to 

overcome. The fundamental issue was the fact that games, especially on large boards 

and/or large play times, took a long time to complete. In addition, in order to achieve 

statistically significant results (and in order to make the normal approximation valid), 

many games needed to be run for each parameter configuration. Thus our experiments 

attempted to focus primarily on just a few of the groupings and transposition table sizes so 

that the work for each experiment could be spread across multiple computers. In the end, 

we selected six experiments each running on five different board and playtime 

configurations for one thousand games.  Thus, we started a total of 30,000 computer Go 

games against our opponent, GnuGo5. Due to time constraints we were only able to 

complete ~25,000 games due to the fact that the games with longer play times take 

significantly more time to complete. The six LibEGO configurations we used in our 

experiments are shown in the following table: 

Name Parameters 
Base Original LibEGO algorithm 

NoGroup Added 500,000 entry transposition table saved between moves 

ManGroup NoGroup with Manhattan Enemy and Friendly Groupings 
ManGroupSmall ManGroup except only 50,000 entries in the transposition table 

JamesGroup NoGroup with Manhattan Total Group, Enemy Captures Group, 
Friendly Saves Group and Many Liberties Group 

JamesGroupNoMan James Group without Manhattan Group. 

Table 3.1 - LibEGO Configurations for Computer Go Experiments 

For all of these experiments, GnuGo was run with the default settings and set to use 

the Chinese rule set. LibEGO and GnuGo alternated players (black / white) between games 

                                                        
5 Download links to source and binaries at http://www.gnu.org/software/gnugo/gnugo.html 
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and the results plus play outs of each game were recorded. We then compiled the results 

from the various experiments we conducted. Next, we calculated the win-rate, standard 

deviation and the 95% confidence interval for the data. In the next sections, we present 

some of the results of these experiments, along with discussion of their statistical 

significance and meaning.  

3.2.1 Go on a 9x9 Board 

The first set of results that completed were those on a 9x9 board. These games were 

much shorter due to the fact that the games generally took fewer moves to complete and 

each move used less time. Shown in the following figure is the win-rate of different LibEGO 

configurations vs. GnuGo along with the 95% confidence interval on a 9x9 board with 20 

second move times. 

 

Figure 3.12 - Results of Go Experiment on 9x9 board with 20 second moves 

As can be seen above ManGrouSmall shows a statistically significant although small 

(about 10%) improvement over base on the 9x9 board with 20 second moves. While 
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ManGroupSmall seems to be somewhat improved over base, the difference is not very 

large. Based on these results it seems that on a 9x9 board the improvements offered by 

grouping are modest and only slightly compensate for the extra computation required. 

With a shorter move time (10 seconds), the differences between the LibEGO configurations 

were even smaller. Another difference that is statistically significant, however, is the 

difference between JamesGroupNoMan and all of the other configurations. In this case it 

seems that the groupings in JamesGroupNoMan were so detrimental as to actually detract 

from the performance of Base enough that we can say with confidence that all other 

configurations perform better than JamesGroupNoMan.  

The fact that JamesGroupNoMan does poorly here does not necessarily mean that 

the groups involved are flawed or should be conceptually abandoned. Rather, it could 

indicate the need for proper adjustment of the parameters for each grouping. The 

Manhattan groupings themselves could possibly be adjusted for additional gains. As this 

sort of adjustment was not performed to an appreciable extent due to time constraints, it is 

recommended as further research and discussed in Section 4.2.3.  

3.2.2 Go on a 13x13 Board 

On a 13x13 board, the results are more significant. While each of these experiments 

took much longer (many days split across 5 machines), the results help to confirm the fact 

that grouping may be helpful in applying UCT to problems with larger branching factors. In 

the following figure we show the win-rate of LibEGO vs GnuGo with a 13x13 board and 40 

second play times: 
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Figure 3.13- Results of Go Experiment on 13x13 board with 40 second moves 

Most significantly, in this figure ManGroup comes out ahead of NoGroup with a high 

degree of confidence. Since the 95% confidence intervals for the expected win-rate of 

NoGroup and ManGroup do not overlap we can say that ManGroup is in fact likely an 

improvement over NoGroup. However, the 95% confidence intervals for ManGroup and 

Base (NoGroup without the transposition table) do overlap. This means that there is a 

greater than 5% chance that these two versions are not different. This is interesting and 

points to the fact that there may be some performance optimizations necessary when 

enabling the transposition table. Since LibEGO was run for a fixed amount of time per 

move, performance overheads in the grouping or transposition table could hurt 

performance vs. Base.  However we can also plot the results with a 90% confidence 

interval. 
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Figure 3.14 – Results of Go Experiment on 13x13 board with 40 second moves 
 (90% confidence intervals) 

With 90% confidence intervals shown, ManGroup and Base no longer overlap. Thus 

we can say that the probability that ManGroup does not outperform Base is greater than 

5% but less than 10%. In addition, it is helpful to note the amount of improvement, 

whereas with the 9x9 board, ManGroupSmall showed a 10% improvement over Base, here 

we see a 25% improvement. What is also interesting is the role reversal between 

ManGroupSmall and ManGroup. In this case the larger transposition table has an advantage 

over the small transposition table. While this is not a large enough difference to be 

statistically significant, it does show a general reversal of the trend seen on the 9x9 board, 

where the small transposition table won out. Once again JamesGroupNoMan performs 

badly implying that the groupings used in this configuration do not accurately identify 

winning moves. 

We also completed experiments with even longer playtimes. However due to the 

long times for individual games with these playtimes we were not able to complete enough 

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

22.00%

W
in

 R
a

te
 v

s.
 G

n
u

G
o

LibEGO Configuration



62 

 

games to achieve statistically significant results. However the same general trends were 

visible though the differences between Base and ManGroup were smaller. This may imply 

that grouping tends to help improve results more early in the search and given more time 

Base tends to catch up in terms of accuracy. Plots of these results are shown in Appendix D. 

3.2.3 Conclusion 

Overall the experiments with computer Go show some interesting trends and some 

statistically significant results. Due to the amount of time required for even one game of go, 

especially on larger boards, statistically significant results are particularly hard to produce. 

However, even with these limitations, we did note some evident improvement through the 

use of a large transposition table and the two Manhattan groupings on a 13x13 board. In 

the end, however, more experiments would be helpful in order to solidify the current 

results and observations. 
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Chapter 4: Conclusion 

In this project, the overarching goal was to investigate the performance of UCT as 

applied to directed acyclic graphs, as well as to quantify the effect of grouping on UCT 

performance. In the following sections we not only summarize our findings with respect to 

these two goals, but also present several areas for future research where we saw potential 

for additional development and/or experimentation due to the time and computing 

constraints of this project.   

4.1 Findings 

Based on our analysis of the data from experiments performed on both artificial 

game trees and computer go simulations, we developed several findings. These findings are 

presented in the following sections. For each we refer to the data upon which the finding is 

based. 

4.1.1 UCT-DAG can improve performance of UCT on complex DAGs and performs equally to 
UCT on simple DAGs. 

In Section 3.1.1, we presented the results of multiple experiments performed 

comparing UCT-DAG vs. UCT on DAGs with varying complexity. When looking at the 

relative performance of UCT-DAG vs. UCT (see Figure 3.3), with high DAG combination 

thresholds (>10%), UCT-DAG showed statistically significant performance games and 

generally converged to the correct answer more quickly than plain UCT. In addition, with 

lower DAG combination thresholds (0%-10%), UCT-DAG performed equally to UCT. Due to 

the simple nature of the UCT-DAG modification (storing node visit counts per parent vs. 
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once per node) as discussed in Section 2.2, performance gains are realized in situations 

where DAGs are complex while performance is not harmed in all other cases. 

It should be noted, however, that different tree sizes do seem to have an effect on 

the relative performance of UCT-DAG; its performance between different board sizes is a 

potential area for future experimentation. Regardless, the key fact is that in no case does 

UCT-DAG significantly deteriorate performance and thus it is reasonable to implement this 

algorithm for any case where a game or simulation representation may be more DAG-like 

than tree-like. 

4.1.2 Highly correlated, complete groupings dramatically improve performance of UCT on 
trees with high branching factors. 

In Section 3.1.2, we presented the results from experiments with groupings. When 

group overlap was disabled (the catch-all group held only nodes that were otherwise 

ungrouped), highly correlated groups (either containing mostly winning or losing nodes), 

that were complete (held most of the either winning or losing nodes) resulted in 

dramatically improved performance over base UCT given a sufficient branching factor (>2). 

It is especially important to note the importance of completeness in this result. For 

example, given groupings that were completely correlated (either all losing moves or all 

winning moves), the grouping bias of 0% or 100% produce essentially equivalent tree 

structure. In the case of 0% bias, the group will contain all of the losing moves and due to 

the non-overlapped nature of the catch-all group, it will contain all of the winning moves. In 

the case of 100% bias, the roles of the group and catch-all group are reversed. If these 

groups were not complete (contained less than 100% of the winning or losing moves), this 

would not be the case and we would not see such similar results as shown in Figure 3.6.  
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Due to these caveats, this case is in fact not particularly applicable to real world 

situations like Go. In Go it is not possible to calculate if any move during all points in the 

game is a winning move or a losing move (or else there would be no reason to bother with 

a random algorithm to attempt to determine this). So while this finding is interesting, it is 

not directly applicable to computer Go as it stands. 

4.1.3 Highly accurate, complete groupings with group overlap dramatically improve 
performance of UCT on any tree. 

Our next experiments with grouping involved the effect of enabling group overlap 

(where the catch-all group now contains all of the possible nodes, rather than just those 

that are not in another group). In this case—as discussed previously—group accuracy 

becomes important, with low accuracy (low group bias) reducing performance and high 

accuracy (high group bias) increasing performance.  

What is perhaps even more interesting is the behavior that arises with group 

overlap enabled: highly accurate groups perform even better than before. In addition, 

performance is even significantly improved on trees with low branching factors (see Figure 

3.9). With group overlap enabled, there are even more paths to the grouped nodes (not 

only through the group but also through the catch-all group). Thus, grouped nodes are 

explored even more in the beginning of the UCT process. However, once again this 

experiment was performed using complete groups and similar to the previous finding is 

therefore not directly applicable to the game of Go.  

4.1.4 Multiple less-accurate groups, with group overlap, perform similarly to a single more-
accurate group. 

Our final experiments with grouping tested the effect of group size and the number 

of groups on UCT-DAG performance. As seen in Figure 3.11, multiple less-accurate groups 
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can actually perform similarly to a single more accurate group. When groups are 

incomplete, and/or less accurate, multiple groupings can actually improve performance. 

This result is actually the most promising with regards to computer Go. In this case, any 

heuristic groupings that are developed will likely only be somewhat accurate and represent 

a small subset of the total number of winning moves available at any point. However, since 

it seems that combining several less-accurate groups together can achieve the same 

performance gains as a single more-accurate group6, performance gains can still be seen in 

computer Go even with smaller, less-accurate groupings (as long as there are a sufficient 

number of them). 

4.1.5 Accurate groupings in conjunction with UCT-DAG improve the performance of LibEGO 
vs GnuGo on larger boards. 

As discussed in Sections 3.2.1 and 3.2.2, with small boards, grouping, while it 

seemed to show some performance gains, the differences between the original UCT and 

grouped UCT statistically significant but not very large (10%). On the other hand, with a 

13x13 board and a large enough transposition table (500,000 entries), the Manhattan 

grouping showed significant improvements over base UCT with a 25% improvement. This 

result correlates nicely with the results on artificial game trees, as discussed in Section 

3.1.2, where with trees with larger branching factors, accurate groupings improved 

performance more quickly and by larger margins on trees with small branching factors. 

Thus, grouping (with accurate groups), appears to improve UCT’s performance on larger 

                                                        
6 Intuitively this may not be completely obvious. However, by, for instance, combining 3 groups with 

size 0.25 and accuracy 0.70, a total of 0.525 of the winning nodes will be grouped, while 0.225 of the losing 
nodes will be grouped. On the other hand with a single group of the same size but with accuracy 0.85, only 
0.213 of the winning moves will be grouped and 0.038 of the losing moves will be grouped. So while the ratio 
between winning moves and losing moves in the prior case is worse, the total number of grouped winning 
nodes in absolute terms is larger. 
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boards and could be used in order to help it to scale up to 19x19 boards. Overall the results 

show promise; however, additional experiments with grouping should be performed in 

order to gain a better understanding on how groups could be applied. Some possible 

avenues for future research in this area are discussed later in this chapter. 

4.1.6 The size of the UCT-DAG transposition table may be sensitive to branching factor. 

Another trend we saw with our results from the computer Go experiments was that 

the transposition table size seems to affect the performance differently given different 

board sizes. While the differences were not large enough to be statistically significant, there 

was a distinct difference between ManGroup and ManGroupSmall on a 9x9 board which 

was reversed on a 13x13 board. This result suggests that the optimal transposition table 

size may be different depending on the size of the board. Unfortunately, due to time 

limitations, we did not have the opportunity to run additional experiments in order to 

verify this result. While it is not certain that transposition table size has an effect on the 

performance given different board sizes, this preliminary result warrants further 

investigation. 

4.2 Future Research 

Over the course of our project there were several related areas of research that 

became apparent but were outside of the scope of the project due to time or computational 

constraints. Ranging from the further improvement of UCT-DAG, to applications of Machine 

Learning to Grouping and use of the GRID, there are many interesting opportunities for 

further research. While not intending to be an exhaustive list, some possible avenues for 
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future research that were not necessarily mentioned elsewhere in the paper are explored 

in the following sections. 

4.2.1 UCT-DAG with Multi-Path Update 

One major avenue for future research is further updates to UCT-DAG in order to 

provide more complete, multi-path updates for each Monte-Carlo simulation. As discussed 

in Section 2.2, the current version of UCT-DAG only updates the nodes along the path which 

was explored. Since there can be multiple paths to any node in a DAG, it is possible that 

UCT accuracy could be improved by updating all the nodes on any path to the node. 

However, it is still not clear exactly how this can be accomplished while maintaining the 

existing behavior of UCT. In addition, the performance impacts of such multi-path updates 

must be taken into account as significant computation could be required in order to 

perform such updates. We have provided a general framework for such multi-path updates 

with an initial simple implementation. However this implementation does not preserve the 

convergence behavior of UCT. By performing further research in this area it is possible that 

additional significant gains could be made to further improve UCT’s performance on DAGs. 

4.2.2 Transposition Table 

Another line of experimentation that was looked into, although not to great enough 

an extent to be statistically significant, are the advantages that could be gained by saving 

some transposition table data between games, not just between moves. It would be similar 

to the use of an opening position library, but it could be computed strictly through the 

application itself. However, it would not necessarily show the “right” move to make; just 

give more information about the possible moves. Although it would not provide a list of the 
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best moves to make, by integrating the values that were already calculated for certain 

moves it would result in a more accurate analysis of the current board position. 

In this way, the algorithm is more likely to select a correct move based on the extra-

reliable data. As with storing transposition table data between moves, some effective and 

thoughtful algorithm would be desired to prune the table and select which moves should 

be kept and for what portion of the game; for example, you would not necessarily want the 

transposition table to only store the last 10 moves of a game, which might be relatively 

uninteresting territory-filling behavior as is currently expressed by our modified LibEGO.  

4.2.3 Online or Offline Determination of Group Biases & Parameter Tuning 

In the course of our experimentation, we observed that some groups behaved well 

in conjunction with each other (for example, the so-called James Group and its array of 

active groupings) but actually caused less accuracy when used alone. While the Manhattan 

groupings were able to show success both individually and paired with other groupings, it 

appears that most of the other groupings by themselves are contributing rarely enough on 

their own that they serve as nothing more than a distraction and create an unnecessary 

overhead. We conjectured that this could be compensated for if the amount of 

consideration for groups could be biased somehow. 

The first idea to test this would involve simply making “dummy” groups that 

automatically succeed in grouping, to observe how a group behaves when it is in with a set 

of meaningless groups. Taking the idea further and avoiding the extra clutter, we added a 

biasing factor to our already-modified LibEGO implementation in order to have greater 

control over the group biasing. There was insufficient time to conduct meaningful 

experimentation using this group biasing, but it inspired us to consider the implications of 
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online learning of the proper group biases. Given enough time and relatively 

straightforward modifications, it would be possible to have the modified UCT-DAG 

algorithm learn how useful groups are over time, and thus adjust this biasing factor. For 

example, the border group is often not interesting at the start of each game, as these are 

typically undesirable moves to make and should be “ignored” early on. 

By adjusting this biasing factor on the fly, it would be easy to allow the program to 

adjust to changing circumstances and would minimize the amount of pre-calculated data is 

required at the start. Additionally, should it be of interest to use biases calculated 

beforehand, the online determination of group biases could be used over several games to 

determine a suitable bias for each group in an automatable way, rather than checking 

various grouping biases by hand. With a suitable bias applied to it, groups that perform 

poorly when implemented singly (or in small counts of active groups) could potentially see 

improvement and no longer lower the accuracy of UCT-DAG. 

Every group was made with a variety of adjustable parameters, controlling factors 

such as the range to search around the last moves, or the length of a chain to be potentially 

built or harassed by the player. Due to the time constraints, these parameters were not 

fully evaluated to determine the optimal tuned value. Only minimal hand adjustment was 

possible, and statistically significant experimentation with each adjustment was not 

possible due to limited computational resources which were dedicated to testing the core 

experiments. 

Because of this, it is possible that additional performance gains can be achieved 

through the use of online learning and genetic algorithms to slowly hone in on optimal 
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values for these variables. Future research could include determining the best possible 

starting values for these parameters, as well as perhaps modifying the main algorithm to 

adjust them in real time, similar to how the transposition table will begin implementing 

harsher pruning over time. For example, at some point in the game, or for larger boards in 

general, it may be beneficial to adjust the Manhattan distance control to allow a larger 

region to enter the group. On a larger board, the thresholds for creating and attacking 

chains might be interesting to change up, although board size here is partially accounted 

for in the current implementation. The overall development and evaluation of entirely new 

groupings, with experimental/automated assistance, may also be a desirable topic to 

research. The current groupings were made without extensive knowledge of the mechanics 

of Go and could benefit from further evaluation. 

4.2.4 Using the GRID as a mechanism for Machine Learning with UCT / Grouping 

One limitation present throughout our experimentation was the number of 

computers we could run tests on. A number of experiments took far too long to easily 

repeat enough times to receive data we could be sufficiently confident about. These 

limitations meant that we were unable to adequately test larger board sizes, and 

conducting tests with 19x19 boards is definitely something that should be done in the 

future, to measure the impact of the UCT-DAG modifications and grouping over base UCT 

algorithms. According to experiments we performed UCT-DAG shows great gains when the 

branching factor is large, which should manifest itself on a 19x19 board. 

The GRID at SZTAKI could be put to use as a test bed for experiments, if LibEGO was 

given the necessary modifications and properly submitted. The amount of concurrent 

experiments that could be run would be much higher, although there is the potential issue 
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of waiting in the queue for access to the computational cluster. The extra processing power 

would make research into machine learning much more feasible, especially considering 

that a lot of repetition would be required for some of it. If LibEGO was properly parallelized 

(the changes required are beyond the scope of this paper), more Monte-Carlo simulations 

could be completed in less time as well, yielding more accurate results in a timelier fashion.  

4.2.5 UCT/Monte-Carlo Simulation Split: LibEGO & PGame 

In LibEGO, Monte Carlo simulations are handled separately from the UCT game tree 

itself, as discussed in section 2.1.2; this is due to the large size of a Go play tree and number 

of simulations. PGame, on the other hand, maintain the two together (section 2.1.1). It 

would be interesting to implement the separation that LibEGO does with the PGame, and 

conduct experimentation in that context. LibEGO has a concept of a “maturity level” for 

node expansion that requires a certain number of simulations to be performed on any node 

before it is expanded for exploration and further consideration. 

Modification of this maturity level was not included in the main research performed; 

however, it may warrant investigation. Determining which nodes to expand and when 

could have a large performance and accuracy impact, and adjust the overall size of the 

representative data structure (tree/graph). Additional investigation of maturity levels in 

the realm of artificial game trees would also be practical, serving to model the effects of the 

changes and provide a more controlled environment for experimentation. 

4.3 Summary 

While chess has been solved, to the point that computers can consistently win 

versus the best human opponents, and is no longer an interesting field of study, being able 
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to defeat humans at Go is a new goal for search algorithm development. The immense 

branching factor and nature of the game make it inherently suited to analysis by human 

players, and act as obstacles to computerized opponents. A promising new tree-search 

algorithm, UCT, promises to give computers the advantage they need; but there are many 

aspects of UCT that could be improved. 

LibEGO, a basic open-source implementation of UCT that separates its Monte-Carlo 

simulation from its tree, is a good starting point for development. We were able to modify 

UCT into a new algorithm, UCT-DAG, that managed the Go game as a directed acyclic graph. 

This data type is far more suitable in terms of a practical representation of Go, but also had 

the potential for performance gains. Storing information that may be useful in the future, 

instead of discarding it, also was a new feature that could help boost accuracy and 

minimize wasted processor time. By experimenting with grouping behavior and 

investigating promising group formation rules, we found methods to optimize how UCT-

DAG would select its moves by allowing it to generalize about sets. 

By modifying Levente Kocsis’ PGame program (designed to work on artificial game 

trees) to instead have a similar adaptation to directed acyclic graphs, we were able to 

validate the modifications to UCT by showing that they worked in a general case—not just 

in terms of Go. Experimentations with adjusting game tree breadth/depth and group 

membership confirmed the kinds of improvements that we hoped to develop for Go. The 

PGame experiments served as an ideal model for the LibEGO modifications in a generalized 

form and supported the theoretical aspect of the changes we implemented in UCT: the DAG 

was a successful representation of what was once a tree, the groupings worked and showed 
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the potential to improve accurate move selection, and only through very inaccurate and 

distracting groupings would performance ever be questionable. 

Our practical computerized-Go matches between the modified LibEGO and GnuGo 

opponent confirmed what the PGame experiments suggested. The UCT-DAG was able to 

boost performance, and generally speaking as a worst-case “only” performed equivalently 

to base UCT. In many cases, the modified version was able to converge to the right answer 

far sooner than base UCT, which was the best algorithm prior to UCT-DAG and is presently 

used in champion computer-Go programs. Transposition tables showed great promise by 

allowing data to be saved between moves, or potentially even games. The extra information 

that is no longer discarded can be used to form more accurate move selection. Groupings, 

while some are weak alone, stand to boost performance greatly, especially on larger 

boards. We confirmed that the groupings used need not be complicated theoretically or 

practically, or even particularly accurate at spotting favorable moves, and yet they still can 

show performance boosts. These relatively straightforward modifications could be 

implemented in the UCT-based computer Go champions to give them a boost. 

However, there is a need for further investigation as computational resources did 

not allow for all the experimentation we would have liked to do. UCT-DAG, bolstered with a 

multi-path update, and further work with the transposition table being saved between 

games could stand to produce more accurate results, but were not tested much. Modifying 

the groupings to properly use online (or offline) learning to bias selection and 

consideration is another functionality that, while the groundwork to support it was coded, 

was not thoroughly investigated. Research into how LibEGO and PGame respectively split 

and do not split the Monte Carlo simulation from the main game is another topic that could 
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be looked into. And while the UCT algorithm could lend itself to use on multi-processor 

machines, it would need some work to properly work on a cluster such as the GRID, 

allowing for desirable parallelization of operation. Once explored, these areas of research 

could combine with the existing modifications to allow computerized Go to pose a 

challenge to human players on larger boards, where previously failure was the norm except 

on the smallest standard size. 

In summary, through this project we developed and tested two major improvements 

for UCT. These improvements (UCT-DAG and grouping) represent both original work in the 

area of random search algorithms, and extensions of previous work in the area. They 

venture to help extend the success of UCT (through Mogo) beyond 9x9 Go boards. Through 

experiments on both artificial game trees and with computer go we showed statistically 

significant improvements in performance using both UCT-DAG and grouping. In addition 

we have identified several areas of future research which, combined with our work will 

help to achieve the goal of competitive computer Go on large boards. 
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Appendix A Artificial Game Tree Experiment Plan 

  

 

 

 

 

DAG Experiments Grouping: Bias & Overlapping Grouping: Number vs Size 

Parameter Value Parameter Value Parameter Value 

Games 200 Games 200 Games 200 

Repetitions 200 Repetitions 200 Repetitions 200 

Iterations 10,000 Iterations 10,000 Iterations 10,000 

Breadth x 
Depth 

2x20 
4x10 
6x8 
10x6 

Breadth x 
Depth 

2x20 
6x8 
10x6 

Breadth x 
Depth 

10x6 

DAG 
Combintion 

0.00 
0.01 
0.05 
0.10 
0.20 
0.30 

Group Bias 1.0 
0.9 
0.8 
0.7 
0.3 
0.2 
0.1 
0.0 

Num. Of 
Groups 

0 
1 
2 
3 

Group Size 1.00 
0.50 
0.25 

Use DAG True 
False 

Use 
Overlapping 

True 
False 

Group Bias 1.00 
0.85 
0.70 

Table A.1 - Artificial Game Tree Experimental Parameters 
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Appendix B Computer Go Experiment Plan 

 

 

Base LibEGO UCT No Grouping ManGroupSmall 

Parameter Value Parameter Value Parameter Value 

Games 1000 Games 1000 Games 1000 

Save Table 
Between Moves 

False Save Table 
Between Moves 

True Save Table 
Between Moves 

True 

Transposition 
Size 

Disabled Transposition 
Size 

500,000 Transposition 
Size 

50,000 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

Groupings Disabled Groupings Disabled Groupings 
Manhattan Friendly Group 
Manhattan Enemy Group 

 

ManGroup JamesGroup JamesGroupNoMan 

Parameter Value Parameter Value Parameter Value 

Games 1000 Games 1000 Games 1000 

Save Table 
Between Moves 

True Save Table 
Between Moves 

True Save Table 
Between Moves 

True 

Transposition 
Size 

500,000 Transposition 
Size 

500,000 Transposition 
Size 

50,000 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

9x9 Board 
Playtime 

10 seconds 
20 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

13x13 Board 
Playtime 

40 seconds 
80 seconds 
160 seconds 

Groupings 
Manhattan Friendly Group 
Manhattan Enemy Group 

Groupings 
Manhattan Total Group 
Enemy Captures Group 
Friendly Saves Group 
Many Liberties Group 

Groupings 
Enemy Captures Group 
Friendly Saves Group 
Many Liberties Group 

Table B.1 GnuGo Experiment Parameters 
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Appendix C Artificial Game Trees Experiment Results 

 

Figure C.1 - Base Average Error / Average Error for UCT with Varying DAG Combination on 4x10 Tree 

 

Figure C.2 - Base Average Error / Average Error for UCT with Varying DAG Combination on 4x10 Tree 
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Figure C.3 – Average Error vs. Group Bias on 6x8 Tree 

 

Figure C.4 - Base Average Error / Average Error vs. Group Bias on 6x8 Tree 
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Figure C.5 - Average Error vs. Group Bias on 10x6 Tree with Group Overlap 

 

Figure C.6 - Base Average Error / Average Error vs. Group Bias on 6x8 Tree 
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Figure C.7 - Base Average Error / Average Error vs. Group Bias on 10x6 Tree 

 

Figure C.8 - Base Average Error / Average Error vs. Number of Groups and Group Accuracy with Group 
Size 50% 
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Appendix D Computer Go Experiment Results 

 

Figure  D.1 - Results of Go Experiment on 9x9 board with 10 second moves 

 

Figure D.2 - Results of Go Experiment on 13x13 board with 80 second moves 
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Figure D.3 - Results of Go Experiment on 13x13 board with 160 second moves 
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Appendix E Developer Comments 

The source code for the modified version of LibEGO is available on our read-only 
SVN server at http://svn.bchilds.com/mqp/trunk/ and the source code for the modified 
PGame program (known as ggame) is available at 
http://svn.bchilds.com/mqp/branches/ggame/. 

To compile LibEGO for general use, rely on the makefile or compile the Visual Studio 
project for Release. Compiling it for Test will result in a series of grouping tests to be run, 
on pre-generated test boards (along with audio output if compiling for Win32). 

When LibEGO is run, it will execute the automagic.gtp file, which will run a 
benchmark function on 100,000 Monte-Carlo plays. On an Intel Core2Duo T7300 at 
2.00ghz, we averaged about 40kpps (kilo-plays per second). The file can be deleted to skip 
this step, and benchmarking can be manually run by  using the command benchmark 
<number>  to set the number of plays. genmove b and genmove w are used to compute a 
black and white move, respectively. Type quit to exit the program. 

The graphs generated for this project were made using Matplotlib/Pylab,  an 
excellent two-dimensional plotting library using Python. It is available at 
http://matplotlib.sourceforge.net/ and we highly recommend it for data graphing; it is far 
easier to use and customize than other graphing tools (such as those that come with Excel), 
with many output options. 

To visualize games, load/save board states, and generate screenshots, as well as 
acting as a graphical user interface for watching computer vs. computer games, we used 
GoGui. GoGui supports the GTP (go text protocol) and is available at 
http://gogui.sourceforge.net/. Our computer opponent was GnuGo 3.6 for Windows, 
available at http://www.gnu.org/software/gnugo/gnugo.html. A tougher opponent, MoGo 
release 3 for Windows, is also available at http://www.lri.fr/~gelly/MoGo_Download.htm. 
To preserve the testing state of each program that was used for our Windows based 
experimentation, compiled and configured versions of each of these are available on our 
SVN server at http://svn.bchilds.com/mqp/trunk/gogui/.  

To use GoGui, execute the Java archive gogui.jar; gogui-twogtp.jar contains the 
adapter for allowing two Go programs to compete using GoGui. The command “verbose” 
will enable all cerr (standard error) output from Go programs to be visible in the GoGui 
shell display window. Any output you wish to see, such as tree structure drawing, should 
therefore be output to cerr; output to cout (standard out) will be seen by twogtp as Go 
commands. 

To add a twogtp-moderated competition, in GoGui select Program, New Program, 
configure twogtp’s command line, set the working directory to wherever the Go programs 
reside, and then once ready select the option to Attach Program. Select the one you set up. 
Under Game, be sure to set the proper board size, and set the proper board size for each 
program you want to use in its command line! Then, set the Computer Player (also under 
Game) to “both.” To halt the action, set Computer Player to “none” and it will suspend the 
computer play after the current move is computed. 

http://svn.bchilds.com/mqp/trunk/
http://svn.bchilds.com/mqp/branches/ggame/
http://matplotlib.sourceforge.net/
http://gogui.sourceforge.net/
http://www.gnu.org/software/gnugo/gnugo.html
http://svn.bchilds.com/mqp/trunk/gogui/
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An example twogtp command line setup, that we used during testing, is: 

java -jar gogui-twogtp.jar -verbose -black  "../Release/libego.exe 10" 
-white "gnugo-mingw-36.exe --mode gtp" -size 9 

This will run LibEGO as the black player with 10 seconds per move, GnuGo as the 
white player, and set the board dimensions to 9x9. You must set GoGui to use a 9x9 board 
as well.  Select Tools, then GTP Shell (or press F9) to display program text output. Our 
modified LibEGO, in verbose mode, will display results from its tree and its odds of winning 
per move; a positive value indicates black is winning, negative indicates white is winning 
(regardless of LibEGO’s color). 
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