
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

January 2017

A Multi-Purpose Aerial Software Defined Radio
Platform
Jonas Rogers
Worcester Polytechnic Institute

Kyle D. Piette
Worcester Polytechnic Institute

Max Hongming Li
Worcester Polytechnic Institute

Narut Akadejdechapanich
Worcester Polytechnic Institute

Scott W. Iwanicki
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Rogers, J., Piette, K. D., Li, M. H., Akadejdechapanich, N., & Iwanicki, S. W. (2017). A Multi-Purpose Aerial Software Defined Radio
Platform. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3488

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3488?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3488&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


Aerial Software Defined Radio
MQP #: MQP-AWI-ASDR

by

Narut Akadejdechapanich
Scott Iwanicki

Max Li
Kyle Piette

Jonas Rogers

A Major Qualifying Project
Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Bachelor of Science

in
Electrical and Computer Engineering

December 2016
APPROVED:

Professor Alex Wyglinski

Project Advisor

This report represents work of WPI undergraduate students submitted to the
faculty as evidence of a degree requirement. WPI routinely publishes these reports
on its web site without editorial or peer review. For more information about the

projects program at WPI, see http://www.wpi.edu/Academics/Projects.



Abstract

This project focuses on incorporating two new technologies, drones and software

defined radios, to detect and localize relevant wireless signals with increased ma-

neuverability. The objective lies in building a platform for wireless signal mapping

for search and rescue purposes. The platform prototype will be a baseline for future

development through the recommendations provided in this report.
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Executive Summary

Multirotor drones are cheap, small, quick, and agile, enabling innovation across

many industries in the past decade. In a similar manner, Software Defined Radios

are bringing cheap, reconfigurable radios to market. The combination of the highly

maneuverable drone with the software defined radio allows for a unique style of

triangulation. Instead of taking samples in parallel from multiple devices, samples

are taken at multiple points sequentially from one device. This is only possible

with a quickly moving device like a drone and targets that move slowly, such as a

stationary Wi-Fi access point or lost hiker in the woods.

By researching prior art, it was determined that similar projects have been con-

ducted on these individual technologies, but none with them combined. Examples

of prior art are [13] and [14]. The former project elaborated on the use of a UAV

to perform multi-agent path planning, image processing and communication to con-

duct search and rescue operations. The latter project implemented a localization

system using a Software Defined Radio based upon an IEEE 802.11b communica-

tions platform. Consequently, the research conducted in this project will be the

foundation of future development.

The implementation of this system can be separated into the following blocks:

coding framework, drone control, spectrum sensing, spectrum localization, and

transmission to ground. These blocks are described in Figure 2. Due to the mod-

xvi



ular platform’s independence from the drone, the coding framework describes the

actions of the system dependent on the state of the drone. These actions are con-

densed into the states of sensing, rotation, on-board computing, and transmission to

ground. The states are processed by the Single Board Computer (SBC) component

of the system. Most commercial drones operate at 2.4 GHz, the targeted sensing

spectrum for this project. This poses an issue because of the possibility of drone

control signals interfering with the signals that the SDR is receiving. To address

this, the wireless cards were replaced so that these drones can operate at 5 GHz, a

different frequency to the targeted spectrum. To conduct this spectrum sensing, the

SBC had to be interfaced with the Universal Software Radio Peripheral hardware

driver (UHD) to the Ettus board. This required knowledge of how these libraries

worked and how information is parsed in order to perform matched filtering. The

board also was interfaced with a Global Positioning System (GPS) that determines

the device’s location. This provides the necessary base coordinates for localization.

To improve accuracy, the GPS was passed through a Kalman Filter to smooth the

location information. GNU Radio was used to transmit this information and receive

at a ground station over 900MHz.

Figure 2: Block diagram of system operation. Split into drone control and SBC
coding framework.

The outcome of this project was a 3DR Solo drone capable of carrying the

xvii



platform to detect nearby wireless signals. The prototype is shown in Figure 3

below. The received data corresponds well with the tests conducted. However, the

Figure 3: The complete system mounted on the drone. In flight testing was done
with this setup.

obtained GPS values are not reliable enough to accurately localize the signal, despite

the modeling of the Kalman Filter. Once the GPS values are reliable enough, the

Python script coded will be able to map and determine the most likely point of

origin of the signal. The transmission to ground is viable in lab scenarios but has

not been fully integrated into the system when flown due to a malfunctioning device.

xviii



Chapter 1

Introduction

1.1 Motivation

Wireless signal localization can be used in many areas, from surveillance to search

and rescue [15]. In the past, these efforts have been focused largely on visual in-

spection. Increasingly, research has turned to using wireless signal localization to

provide non line-of-sight solutions [15]. There are two major areas of research: the

use of mass communication to inform people, and the use of new technologies to

physically find people. This project focuses on the latter. There are new technolo-

gies emerging that are opening up new avenues for the location of people, namely

low-cost, easy to use, highly maneuverable drones and cheap, powerful software

defined radios (SDRs).

Drones and SDRs have very similar advantages in their respective industries:

high flexibility and maneuverability at low costs. The motivation for this project

is to integrate these technologies together to further enhance the state of the art in

search, especially in areas with low visibility. Enabling a search of wireless signals

opens the opportunity to locate sources otherwise impossible to locate. One such
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scenario would be a hiker lost in the Sierra Nevada forest with a cell phone, but no

cell signal. Such a hiker would be nearly impossible to find visibly from a helicopter

over the forest, but a drone with an SDR would be able to listen to beacons from

their cell phone and calculate an approximation of their location as is depicted in

Figure 1.1.

Figure 1.1: Search and Rescue Drone flying above forest canopy to locate lost hiker
via cell phone beacon signals. Wireless cell phone beacons penetrate the canopy
while visual inspection is blocked.

Another example scenario is the issue of locating the controller of a non-cooperative

drone. Visually, this would be very difficult, but being able to sense the controlling

signal and locate the controller would be possible through the use of an SDR. A

diagram of this scenario is included in Figure 1.2.

1.2 Current State of the Art

The advent of small, highly maneuverable drones has allowed the expansion of search

capabilities to a finer scale with the use of mounted cameras. Low cost drones are

also beginning to replace helicopters for traditional search and rescue missions [16].
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Figure 1.2: Drone Controller Localization. Someone in a crowd is controlling an
uncooperative drone that shouldn’t be flying. The signal interceptor drone uses the
control signals to locate where in the crowd the individual controlling the drone is.

The increased maneuverability and decreased cost is driving the movement toward

drones.

Another quickly growing technology is the Software Defined Radio (SDR), which

is easy to reconfigure [4]. This allows an SDR to receive and transmit a wide range

of waveforms. Using SDRs, its possible to create an intelligent radio that can modify

its own parameters to best match its environment [4]. SDRs have also been used in

a passive listening configuration to create a radar receiver [17]. The flexibility these

radios provide over traditional hardware radios is perfect for any application that

benefits from tuning to different frequencies, bandwidths, and modulation schemes.

Research in locating wireless emissions has produced some novel ideas using

these new technologies. In a paper published in 2010, researchers note that more

and more people have their cell phone on their person at all times. They investi-

gate the detection of these phones by their wireless transmissions [18]. In another

research paper, the use of SDR hardware as a radar was investigated. Through the

programmability of the SDR, the researcher was able to transmit and receive radar

pulses with proper time and phase coherence, properties necessary to function as
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a radar receiver [19]. There is no mention in the published literature, however, of

combining SDR technology with drone technology.

1.3 Proposed Design and Contributions

The goal of this project is to assess and demonstrate the utility of an aerially ma-

neuverable SDR by integrating a commercially available SDR with a low cost aerial

drone. By taking advantage of a drone’s maneuverability, a multitude of new sam-

pling positions are reachable, resulting in higher accuracy for locating signal sources.

The design consists of a lightweight SDR connected to a directional multi-

frequency antenna. The directionality of the antenna provides the opportunity for

more accurate measurements: instead of simply measuring the signal strength at

multiple points to triangulate, the platform is able to identify the strength and ori-

gin direction, reducing the number of points needed for the localization of a signal

source, speeding up the process. Managing the SDR and sample processing is a

single board computer (SBC), chosen for its balance between low weight, low power

consumption, and ample processing power. In order to allow compatability with

different drone platforms, the prototype will not explicitly communicate with its

carrier drone, and will therefore include its own GPS receiver and other orientation

sensors. This platform will henceforth be referred to as the Modular Aerial Soft-

ware Defined Radio (MASDR) platform. This project adds to the state of the art

by performing research into the combination of these two newly developed technolo-

gies. The findings from this project will provide new knowledge on the ability to

localize wireless signals using an aerially mounted software defined radio. Creating

this MASDR platform will open the door to many more discoveries and products

through further more research and development. With more time to spend on soft-
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ware development, the MASDR platform would become much more capable in all

aspects.

In addition to adding to the state of the art, this project seeks to develop a

multipurpose platform which can be used for further research into the wireless spec-

trum from any location in the airspace. This could be used for channel modeling,

heat mapping of wireless signals, and many more experiments into the behavior of

various wireless signals in various environments.

1.4 Report Organization

This report is organized into seven chapters, the Introduction, Background, Pro-

posed Approach, Methodology, Implementation, Results, and Conclusions. The

Introduction presents the motivation for the project and the current state of the art

to provide context for how this project relates to other prior and ongoing research.

The Background chapter provides information on technologies and techniques used

to make decisions and complete this project. In the Proposed Approach chapter,

the report outlines the decision-making thought process for technical planning of

the project. The Methodology chapter lays out the detailed plans of the project,

its components, and the tests to verify functionality. The Methodology is followed

by the Implementation chapter, which describes the implementation of the project

in terms of hardware, software, and communications. In the Results chapter, the

findings are presented organized by the test each finding came from. Finally, the

Conclusions chapter summarizes the findings and provides recommendations for fu-

ture work in the area.
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Chapter 2

Digital Communications and

Spectrum Sensing Overview

This chapter will introduce various fundamental topics that were taken into consid-

eration in the design of the aerial software defined radio platform developed in this

MQP. The topics proposed include spectrum allocation, energy detection, wireless

transmitter localization, software defined radios, and aerial flight platforms.

2.1 Spectrum

Wireless communications are transmitted through the use of the electromagnetic

spectrum. The spectrum consists of a multitude of frequency bands that have been

allocated for specific uses. This section will explain how the spectrum is allocated,

as well as details about the uses that are more relevant to this project.
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2.1.1 Spectrum Usage

The spectrum of radio frequencies used for wireless communications is managed

by the government to promote efficient use and net social benefit. In the United

States, the National Telecommunications and Information Administration (NTIA)

and the Federal Communications Commission (FCC) regulate the allocation of these

frequencies as shown in Figure 2.1 [1]. As seen from Figure 2.1, the spectrum is

Figure 2.1: United States Frequency Allocation Chart [1].

divided into smaller chunks where only specified entities can utilize legally. The

usage of each chunk is determined by whether the NTIA and FCC require a license

to use the band or not. Only government licensed operators can communicate

in the licensed bands, including AM broadcasting, FM broadcasting, and cellular

communication. However, the NTIA and FCC also have allocated unlicensed bands

that are open to any entity that wants to use them, provided that they still follow

certain guidelines for usage. Communication technologies that use frequencies in

unlicensed bands include bluetooth and WiFi. Microwaves also use frequencies in

unlicensed bands some of which were allocated for general purpose use in 1947 in

response to the rise in microwave cooking technology [20]. These frequency bands,
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which includes frequencies around 2.4 GHz, were called the industrial, scientific, and

medical (ISM) radio bands. The FCC chose these frequencies because microwaves

are able to better transmit heat for various foods at that frequency band than at

any any other. Therefore, the FCC opened up the frequency ranges as unlicensed

bands so that users could operate microwaves within their household hassle-free.

2.1.2 WiFi

Building upon this unlicensed spectrum, commercial wireless data access first came

about in 1985. In the early 1990s, the Institute of Electrical and Electronics Engi-

neers (IEEE) realized that wireless communications needed to be standardized. A

committee was formed that focused on providing a reliable, fast, and robust wireless

solution that would scale for years to come. To do this, the IEEE made an addition

to its 802 standard that is used for local area networks, and thus the 802.11 stan-

dard was created. Since then, there have been multiple iterations of the standard,

with five sub-standards established for wireless communications: 802.11a, 802.11b,

802.11g, 802.11n, and 802.11ac [21].

The first standard, 802.11, was originally created in 1997. The data rate was

capped at 2 Mbps, and transmitters broadcasted on a frequency from 2.4 to 2.483

GHz. These transmitters used time-division duplexing (TDD) which allows them

to send uplink and downlink wireless traffic on the same RF channel. The trans-

mitters also use interference mitigation techniques such as Direct Sequence Spread

Spectrum (DSSS) [21] and Frequency Hopping Spread Spectrum (FHSS) [21], which

are protocols that switch wireless channels when there is other wireless interference

present on that channel.

All the wireless standards use a media access layer, also known as the MAC

layer [21]. This layer is used to assist the transmission by providing frame synchro-
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nization and encryption. 802.11 uses encryption via the Wired Equivalent Privacy

(WEP) standard [21]. WEP consists of a 40 bit key that is used in order to access

communication with a Wi-Fi transceiver.

WEP encryption, dynamic frequency selection, and an OFDM preamble have all

been carried from one standard to the next. However, WiFi traffic can be transmit-

ted using a variety of bandwidths dependent on their respective 802.11 standard.

Wi-Fi traffic can be transmitted using a 20 MHz, 40 MHz or 80 MHz bandwidth

dependent on their 802.11 standard. This is described in Table 2.1.

Table 2.1: This table outlines the bandwidth, frequency spectrum and modulation
type of each corresponding 802.11 interface, from oldest protocol to newest [12].
As the wifi protocols become newer, the protocols utilize wider bandwidths for
communication, and offer a range of operating frequencies. MIMO-OFDM was also
developed for later 802.11 protocols such as 802.11n and 802.11ac in order to support
multipath communication.

Interface Bandwidth (MHz) Frequency Spectrum
(GHz)

Modulation Max Data Rate
(Mbps)

802.11a 20 5 OFDM 52
802.11b 20 2.4 DSSS 11
802.11g 20 2.4 OFDM 54
802.11n 20, 40 2.4 / 5 MIMO-OFDM 600
802.11ac 20, 40, 80 5 MIMO-OFDM 1300

The information contained in a frame can vary depending on the standard being

used. However, each standard has the same preamble that signifies the start of a

transmission, and what center frequency the transmission is being brodcast on. For

802.11, a wifi transmission is concentrated in one or more 20 MHz wide wifi channels.

At the 2.4 GHz band, Wi-Fi is allocated throughput 11 wireless channels ranging

from 1 to 11. However, only 3 of these channels (1, 6, and 11) are used, due to

each channel only being 5 MHz wide. Since transmissions on the 2.4 GHz band are

20 MHz wide, the utilized channels are spaced to mitigate co-channel interference.

This is shown in Figure 2.2.
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Figure 2.2: This image shows the allocation for 802.11 channels in the 2.4 GHz
band [2]. Each channel is 20 MHz wide and also has 10 MHz allocated as a guard
channel. Channels 2-5 and 7-10 are not used as a wireless channel since it would be
overlapping in 2 primary wifi channels.

For the protocols 802.11a, 802.11n and 802.11 ac, the 5 GHz frequency band is

also used, which contains a range of 45 channels from 36 to 165 spanning spectrally

from 5180 MHz to 5825 MHz. This is shown in Figure 2.3. The detection of

Figure 2.3: The 5GHz band allocates channels for higher bandwidth transmissions.
Wi-Fi channels at 5GHz cater to transmitting information at either 20, 40 or 80
MHz. Each wifi transmission on a specified channel will adapt to a higher or lower
bandwidth setting based on the corresponding signal strength and interference be-
tween a transmitter and receiver [2].

the OFDM PLCP preamble signifies a transmission, as well as which channel the

information is being transmitted on. In addition to the preamble, you could also

decode the information from the Data fields, however, all of that data is usually

encrypted so that it prevents any unauthorized user from accessing it [12].
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MAVLink

The Micro Aerial Vehicle Link (MAVLink) protocol is a free open source wireless

communication protocol for controlling small unmanned aerial vehicles. This pro-

tocol first came about in 2009 by Lorenz Meier under the LGPL license [22]. It was

designed to be a lightweight, header-only message marshaling library. MAVLink was

first most commonly used with autopiloting software, but is becoming the worldwide

standard in drone communication. It consists of communication between a slave

drone and a master ground controller. MAVLink controllers most commonly trans-

mit data on the 2.4 GHz band along-side 802.11 wireless communications. Therefore,

an airborne receiver must be able to classify what type of signal it has received. Clas-

sifying a MAVLink transmission can be done by demodulating MAVLink’s GFSK

modulated data, and decoding its data frame.

Figure 2.4: MAVLink Transmission Frame [3]. The red STX frame signifies the
start of a transmission. This frame will always be an 8 bit code of 0xFE, and is used
for start of frame detection. The following parameters give information about the
payload such as it’s size and it’s intended recipient. The payload category contains
a library-based command for the drone to perform.

As opposed to WiFi signals, MAVLink transmissions are all non-encrypted, mak-

ing it more vulnerable to threats such as network attacks or an unauthorized user

operating the drone. Any user can send signals to a drone using a GFSK transmitter

and the drone has no knowledge on who the correct user is [23].
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Table 2.2: This table shows the contents of a MAVLink packet. All of this informa-
tion is transmitted from a base station controller to a drone that a user is operating
upon. This data is not encrypted and can be sniffed by anyone who is using a
MAVLink decoder.

Byte Index Content Value Purpose
0 Packet start sign 0xFE Indicates start of a new packet
1 Payload length 0 - 255 Indicates length of the following pay-

load
2 Packet Sequence 0 - 255 Enables packet loss detection
3 System ID 1 - 225 Identifies the sending system
4 Component ID 0 - 255 Identifies the sending component
5 Message ID 0 - 255 Identifies the message being sent
6 - n+6 Data 0 - 255 Data of the message depends on mes-

sage ID
n+7-n+8 Checksum ITU hash of bytes

2.1.3 GPS

Global Positioning System, or GPS, provides highly accurate location information

to a user with a receiver module. This technology was developed during the height

of the Cold War in the 1960s [24]. GPS works by using a network of 24 satellites

that are transmitting on 1575.42Mhz using a division coding scheme. The individual

satellites send out information such as the current system time, and their locations.

Given the locations of the satellites, as well as the calculated time of travel from

the satellites to the receiver, the GPS receiver then performs localization based on

this received information. The accurate time stamping required to perform this

localization is only possible because each GPS satellite is capable of maintaining

a highly accurate clock, and each receiver determines its current time through the

interpretation of satellite data. This accurate clock information is used for the

synchronization of clocks across cellular telephone systems, and other time critical

applications [25].
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2.2 Spectrum Sensing

The electromagnetic radio spectrum is becoming increasingly crowded, with this

issue accelerating as the Internet of Things becomes more widespread [26]. With

the conventional approach of spectrum management, users are assigned a specific

frequency band. This method becomes less sustainable with the increasing number

of users, especially in unlicensed frequency bands. In order to combat this, Cognitive

Radio (or CR) was created to utilize spectrum more efficiently [27]. Cognitive radios

are designed to provide a highly reliable connections for all users of the network,

by sensing what frequencies are being used at any given moment, and utilizing the

unused parts of the spectrum. Cognitive radios will be discussed in more detail in

Section 2.5. The types of signals to be sensed are divided into two different groups:

uncooperative users and cooperative users [28].

The process of spectrum sensing is made more complicated by uncertainties in the

received data, including channel uncertainty and noise uncertainty. With channel

uncertainty, the received signal strength can fluctuate based on characteristics of the

channel, such as channel fading or shadowing. Noise uncertainty refers to the fact

that the power of the noise is unknown to the receiver, making it difficult to achieve

a specific sensitivity [28]. In order to have a functioning CR, both uncertainties

need to be addressed.

As the types of signals to be sensed are split into non-cooperative and cooperative

systems, so too are the methods of sensing. The present MQP involves passive

sensing of the spectrum, so only the methods concerning non-cooperative systems

will be discussed.

The simplest method of non-cooperative sensing is energy detection. In this

approach, the power spectral density (PSD) of the received signal is taken [29]. The
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PSD represents the measure of a signals intensity in the frequency domain computed

with the fast fourier transform of a signal. This is then bandpass filtered to contain

only the frequency bands being watched. These frequency bands are integrated, to

determine how much energy is present in the band. If this passes a certain threshold,

the frequency band is marked as occupied. A MATLAB example of energy detection

is provided in Appendix D.1, and a flow diagram of energy detection is shown in

Figure 2.5.

Figure 2.5: Flow diagram of energy detection. The input signal is bandpass filtered,
and then summed. The signal is considered as present if the sum passes a threshold
value.

This method of detection is the simplest, as it only uses the presence of the

signal, ignoring key aspects of signals such as modulation method and pulse shaping.

Because of this, it is the simplest detection method to implement. However, an

assumption that is made while using energy detection is that the signals being

searched for have significantly more power than the noise and interference of the

channel. This does not always prove to be true. In addition to this, energy detection

cannot be used to distinguish signals using the frequencies measured, as no pulse

shape information is determined.

Another approach to spectrum sensing is through the use of matched filters.

Matched filters are designed to maximize the signal to noise ratio (SNR) given an

input signal, which will be called sin [29]. To sense signals through matched filtering,

prior knowledge of the reference signal (sref ) to be detected must be known. sin will

then be correlated with sref . This produces a value m, that will be compared to
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a threshold value. This process is described in Equation (2.1) below and in Figure

2.6. N represents the length of the reference signal, in samples.

m =
N∑
k=0

sin[t− k]sref [N − k] (2.1)

Figure 2.6: Flow diagram of matched filter. The input signal is bandpass filtered.
The resulting signal is then correlated with the expected signal. If the output of
this correlation passes a threshold, the signal is considered as present.

Matched filters rely on prior knowledge of the characteristics of signals to be de-

tected, otherwise this method will not be accurate. The prior knowledge constraint

limits the use of signal detection when unexpected signals are involved. Furthermore,

matched filter detection is optimal with stationary Gaussian noise to hinder distor-

tion. This will limit the real world applications for signal detection with matched

filtering as most channels are time-varying and non-gaussian [30]. A MATLAB

example of a matched filter is provided in Appendix D.2.

Cyclostationary Feature Detection (or CFD) is a method of spectrum sensing

that depends on the fact that all communication schemes have some sort of signal

repetition as a core aspect. A signal with this kind of repetition is called a Cyclo-

stationary Process [31]. As a result of this property, when you correlate the signal

with itself (or autocorrelation), there will be repeated peaks. The periodic nature of

the signal also means that the autocorrelation will be periodic as well. This allows

it to be expressed as a Fourier Series, called the Cyclic Autocorrelation Function

(CAF) and denoted by Rα
x(τ) [32].
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Rα(τ)
x = lim(t− >∞)

1

T

∫ T/2

−T/2
Rx(t, τ)exp(−j2πα(t)dt) (2.2)

Rx(t, τ) is the autocorrelation function of x at t with x at τ . This function

gives us an understanding of the times when the signal repeats, but is missing vital

information about the repeated frequencies. By taking the fourier transform of

Rα
x(τ), one can get a better understanding of the frequencies in the Cyclostationary

Process. This is denoted as Sαx (f), and is equal to Equation (2.3):

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)exp(−j2πfτdτ) (2.3)

This is called the Spectral Correlation Function (SCF). When it is normalized,

it becomes the Spectral Coherence Function (SOF):

Cα
x (f) =

Sαx (f)

(Sαx (f + α/2)Sαx (f − α/2))1/2
(2.4)

The values of the SOF ranges between 0 and 1, and represents the strength of

the periodicity at that point. By plotting this value, the unique response of the

Cyclostationary Process can be found, allowing for it to be categorized.

One of the major benefits of cyclostationary feature detection is that it is not

nearly as affected by noise. Under the generally held assumption that the noise is

white and Gaussian, there is no periodic response, and as such noise is not factored

into CFD. Example plots from an implementation of CFD are shown in Figure 2.7,

Figure 2.8, and Figure 2.9.

The primary downside to Cyclostationary Feature Detection is the complexity
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Figure 2.7: The SCF of a simple unmodulated signal. There is one peak around 0
Hz, with noise everywhere else.

Figure 2.8: The SCF of a simple
signal, modulated with BPSK.
There is a unique response in ad-
dition to the peak at 0 Hz.

Figure 2.9: The SCF of a simple
signal, modulated with QPSK.
There is a response that is unique
from the BPSK result.

and time required to properly utilize it. The complexity lies in the number of

integrals and correlations that need to be computed in order to implement cyclo-

stationary feature detection. In addition, the system needs to listen for signal long

enough for the Cyclostationary Process to repeat. As a result of these downsides, it

is not common to be used on embedded systems [33].
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2.3 Radio Localization

Once a signal has been identified on a measured frequency, the next step is local-

ization. Localization refers to the act of determining the location of a transmitted

signal [34]. There are many different methods to do this. However, many of them

become impractical for mobile passive sensing. In this section, a variety of localiza-

tion techniques will be discussed, as well as the practicality of implementing each of

them.

For each of the techniques discussed below, the same basic concept is used. Three

different receivers are placed around the transmitter being localized, as shown in Fig-

ure 2.10. They will be called stationary nodes and the unknown node, respectively.

Each stationary node gets information about its location relative to the unknown

node simultaneously. For Time Difference of Arrival (TDoA), Time of Arrival (ToA),

and Received Signal Strength (RSS) Localization, each stationary node calculates

the distance to the unknown node [34]. This information is used with the known

locations of the stationary nodes to localize the unknown node. Angle of Arrival

(AoA) [35] functions differently and will be described in a separate section.

Table 2.3 shows the most important details of the localization techniques that

will be described.

Table 2.3: A table describing localization techniques. Compares how a location is
determined and if the unknown node needs to cooperate.

Localization Method Mathematical Technique Needs Unknown Node Participation?
TDoA Distance Yes
ToA Distance Yes
RSS Distance No
AoA Angle No

In the distance-based localization techniques, each stationary node knows the

unknown node is a certain distance away [34], allowing for it to be anywhere along a
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Figure 2.10: Node Localization based on three stationary nodes to detect the loca-
tion of the unknown node.

circle, with the stationary node in the center. By finding out where all three circles

intersect, the unknown node can be located. The distance of the unknown node

from any of the stationary nodes is calculated using the following equation:

Di =
√

(X − xi)2 + (Y − yi)2 (2.5)

By plugging in the locations and calculating the distance for each stationary

node, a system of equations is created, making it possible to solve for the location

of the unknown node.

One method of localization is Timed Difference of Arrival (TDoA) [34]. In this

method, the unknown node transmits a signal over radio frequencies. Using the

difference in the timestamp and the actual time of receiving the signal, the stationary

nodes can calculate the distance between each stationary node and the unknown

19



node, using Equation (2.6), where c represents the speed of light.

d = c ∗ (tactual − texpected) (2.6)

This method of localization is dependent on three things: the synchronization

of the nodes involved, the participation of the unknown node, and the existence of

three or more stationary nodes. In the use case presented by this MQP, the most

difficult part about this implementation is the participation of the unknown node.

Since the aerial platform has no communication with the object being localized, this

method is impractical.

Using the Time of Arrival (or ToA) approach is similar to TDoA in concept [34].

Each of the stationary nodes sends a signal at a specific time, known to the unknown

node, t0. Using the difference in t0 and the time that the base receives the signal,

or t1, the unknown node calculates the time the signal was in the air, and uses the

speed of an electromagnetic wave to determine the distance to the stationary node,

as described above. With three of these calculations, the location of the unknown

node can be triangulated.

Like TDoA, ToA requires the synchronization of the nodes involved [34]. In

most implementations, this is done using digital timestamps. It also requires the

participation of the unknown node. Similar to TDoA, these requirements make ToA

an impractical fit for this MQP.

Unlike the previous two methods, which depend on knowing the time a signal

was sent, received signal strength (RSS) localization uses the strength of a received

signal to localize the unknown node [34]. Each of the stationary nodes receives

the signal being output by the unknown node. Using Equation (2.7) and Equation

(2.8), the stationary nodes can calculate the distance to the unknown node [36].
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From this, they can triangulate the location as described before.

RSSI = 10αlog(d) (2.7)

d = 10(RSSI−RSSIcalibration)(−10α) + dcalibration (2.8)

Since RSS localization depends on the measurement of the signal strength, it

is adversely affected by sources of noise and interference, such as channel fading

and multipath interference [34], resulting in lower accuracy. The effects of noise and

shifting channels can be somewhat mitigated by averaging the RSS data. Unlike the

previously described methods, some localization techniques use the angle that the

signal arrives at relative to a reference direction, or the Angle of Arrival (AoA) [35].

To use this method, antenna arrays or directional antennas are used to determine

the angle at which the signal arrived at. Similar to TDoA, the stationary nodes wait

for a signal from the unknown node. Using the directional antenna or the antenna

array, the AoA is calculated at each stationary node. From each of these nodes, a

ray can be drawn originating from the node that follows the angle of arrival. The

unknown node is located based on where the rays intersect.

Figure 2.11: Angle of arrival diagram. A ray is drawn from each stationary node
towards the unknown node, based on the signal sent out by the unknown node. The
intersection of these rays is where the unknown node is located

AoA localization consists of similar issues as other techniques. Noise and channel

issues still come into effect. Additional issues occur if these unknowns cannot be
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dealt with. Another constraint is the requirement for highly directional sensing,

which complicates the sensing of a signal before localizing it. This can either be

done with many antennas or a very directional antenna, but it adds complexity.

2.4 Kalman Filtering

In the previous section, the localization techniques discussed focused on the merits of

the technique itself, assuming that the numbers used in the techniques are as good as

they can be. Usually, this isn’t the case [37]. Changing environment conditions and

noisy sensors introduce errors that are hard to predict, and thus hard to mitigate.

This is one of the motivations of Kalman filters, as well as the field of error estimation

in general [37]. In addition, Kalman Filters are frequently used as a way to control

a system, using the estimate as feedback. Any applications relevant to this project

are solely estimation-based, so the rest of this section will focus on this aspect of

Kalman filters.

In most situations, the known information of a system is a combination of sensor

values and a model of what the sensor values should be. The sensor values are

imperfect, and have some amount of noise [38]. The model, based on some funda-

mental assumptions, is too imprecise to perfectly apply to the situation. By choosing

some middle value in between the measurement and the prediction, a more accurate

value can be produced. The Kalman filter is one way to decide which middle value

to use [39]. It applies only to linear systems. Non-linear systems can be linearized

and used as an input to a Kalman filter, in which case it is called an Extended

Kalman filter. The math for Extended Kalman filters is fairly complicated, so the

focus of this section will be standard Kalman filters.

The equations used in a Kalman filter are shown below:
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Predict:

~x = F~x+ H~u (2.9)

P = FPFT + Q (2.10)

Update:

~y = ~M −H~x (2.11)

S = HPHT + RS (2.12)

K = PHTS−1K (2.13)

~x = ~x+ K~y (2.14)

P = (I−KH)P (2.15)

The first set of equations predicts the current state given the last state. Equation

(5.1) updates the state based on the current state and current input. The vector ~x

is the state of the Kalman filter. This has the values being filtered. ~u is the value

of the controls being used to alter the state. In our application, this is 0. F is the

state transition matrix, which determines how the different states interact with each

other. H is the control matrix. Equation (2.10) updates the covariance matrix of

the state, which is P. Q is the covariance of the noise of the environment.

The second set of equations updates the Kalman filter to take into account

the most recent measurement. ~y, sometimes called the innovation, is the difference

between the measurement received and the last state prediction. S is an intermediate

matrix, used so that the calculation of the Kalman gain K is not too complicated in

one step. The calculated Kalman gains are then used to update the state and state
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covariance to take into account the updated model and input.

2.5 Software Defined Radio

Due to the rapidly increasing number of users dependent on efficient spectrum allo-

cation for communication, the use of reprogrammable radios has become an integral

part of designing communication systems. Radios exist in a wide range of devices,

such as cell phones, cars, televisions, garage door openers, and computers. A radio

is any device that transmits or receives wireless signals that are within the radio

frequency band of the electromagnetic spectrum. A software defined radio (SDR) is

defined as a radio in which some or all of the physical layer functions are software

defined [40]. Traditional hardware based radios are nearly impossible to modify

post-production, and have limited ways to be repurposed. SDRs, on the other

hand, are comparatively inexpensive, highly reusable, and are easily configurable to

support multiple waveform standards.

There are multiple different families of SDRs, two of which are RTL and Uni-

versal Software Radio Peripheral (USRP). An RTL is a low cost SDR that uses a

DVB-T TV tuner dongle based on the RTL2832U chipset [41]. The DVB-T TV

tuner was converted to be used as a wideband SDR using a new software driver.

The RTL-SDR can be used for many applications including listening to aircraft

traffic control, decoding ham radio packets, and sniffing GSM signals. The USRP

is a flexible transceiver developed by Ettus Research that is able to use a standard

PC to prototype wireless systems. USRPs are able to prototype a wide range of

single-channel and multi-input multi output (MIMO) wireless communication sys-

tems [42]. USRPs can be programmed using software frameworks including GNU

Radio, MATLAB, Simulink, LabVIEW, and C++.
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SDRs can be implemented on field programmable gate arrays (FPGA), digi-

tal signal processors (DSP), programmed System on Chips (SoC), general purpose

processors (GPP), personal computers (PC), or other reprogrammable application

specific integrated circuits (ASICs). The use of these reprogrammable technologies

allows for the possibility of constant updates or dynamic radio systems without

the need to add additional hardware. The primary goal of designing an SDR is to

implement as much of the radio in the digital space, minimizing the use of analog

components. The digital portion of an SDR performs the data compression, encod-

ing, modulation, demodulation, decoding, and decompression in software. The only

analog components are a digital to analog converter (DAC), an analog to digital

converter (ADC), and a RF circuit. The RF circuitry on the transmitter consists

of a smoothing filter to reduce the hard edges of the baseband signal that the DAC

outputs as well as circuitry to upconvert the baseband signal. The RF circuitry on

the receiver side consists of a downconverter to move the signal to the baseband

as well as filters to remove noise from the signal. The DAC and ADC serve as the

bridge between the analog and digital realms enabling the software defined signal

to be converted to an analog one to transmit and receive, then converted back to

digital on the receiving end shown below in Figure 2.12.

Figure 2.12: Flow diagram of an SDR with the distinction between the digital and
analog components.
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A typical transmitter passes a modulated signal to the DAC which takes the

digital input and outputs a baseband analog signal. The analog signal is upconverted

to the carrier frequency in a single step or multiple steps. The receiver then takes

the received analog signal and downconverts it. It then passes the baseband analog

signal to the ADC to convert the signal back into digital for the SDR to process.

The capabilities of the ADC and DAC, such as the bandwidth and noise tolerance of

these two components, will dictate the complexity of the RF circuitry that is needed

to satisfy these requirements.

A software defined radio, such as an adaptive radio [43], has the capability to be

much more sophisticated than its analog counterpart. Adaptive radios are able to

monitor their own performance and adjust their parameters to ensure the highest

quality of service [43]. A more advanced type of adaptive radio is the cognitive

radio [43], mentioned in Section 2.2, which is able to monitor, sense, and detect con-

ditions of their operating environment and adjust its characteristics to match those

conditions. This allows the radio to provide improved performance and quality of

service. These radios are able to find and transmit on open gaps of radio spectrum.

This allows for minimal interference from other sources. Cognitive radios use the

trends of the channel to determine whether to switch to low occupied channels or

continue using the current channel. The most advanced type of adaptive radio is

the intelligent radio. These radios are capable of machine learning, enabling it to

improve its algorithm for adjusting the radio’s parameters based on previous expe-

rience when changes to performance or the environment occur [4]. The relationship

between these types of radios is shown below in Figure 2.13.

There are three major groups of algorithms that intelligent radios are based

on: machine learning, genetic algorithms, and fuzzy control [44]. Neural networks

are a type of machine learning that use large group of nodes to solve problems
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Figure 2.13: The relationship between SDR, adaptive radio, cognitive radio, and
intelligent radio [4].

similarly to how the human brain operates. When new information is acquired, it is

incorporated into the algorithm to improve the output [45]. This technique is used to

estimate the performances of WiFi networks and respond to changes in the network.

Fuzzy logic is usually combined with neural networks that adapt to the environment

during the operation of an intelligent radio. A fuzzy logic control system is used

to find the solution to a problem given imperfect information [44]. There are three

main components in a fuzzy logic controller: fuzzifier, fuzzy logic processor, and

defuzzifier. The fuzzifier maps the inputs into fuzzy sets, the fuzzy logic processor

determines a fuzzy output based on a set of rules, and the defuzzifier transforms the

fuzzy output into a crisp output. One of the main advantages to fuzzy logic is its

low complexity, which is extremely useful in real-time radio applications. Another

example of an algorithm used in intelligent SDRs is the wireless system genetic

algorithm (WSGA). This algorithm is a multi-objective genetic algorithm (MOGA)
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designed for the control of a radio by modeling the physical radio system as a

biological organism and optimizing its performance through genetic and evolutionary

processes [46]. Each aspect of the radio, including payload size, coding, encryption,

and spreading, can be considered genes that can be modified through these processes.

These genes are combined into a chromosome that is used to evolve the system. The

algorithm analyzes the effectiveness of the chromosome through weighted fitness

functions defined by performance evaluations of the current radio channel [46].

SDRs are used in a variety of different applications and are becoming more

sophisticated. They are more modular than the analog equivalent and are capable

of adapting to their environment. They are also very easily updated and modified

as opposed to using an analog circuit. The SDR is widely used because of these

benefits over the analog design.

2.5.1 Interfacing with SDRs

One development framework used was a free software called GNU Radio. GNU

Radio was first released in 2001 by Eric Blossom, and is is a software defined radio

framework where users continue to aid in its development, in addition to using it [47].

GNU Radio users throughout the years have created a number of different module

blocks that are used in signal processing and programming the software defined

radio. All of GNU Radios tools are used to make a GNU Radio application called

a flowgraph. GNU Radios software base is written in C++, however, users have

the option to create their own modules called out-of-tree modules in Python. GNU

Radio makes use of a graphical interface which they call GNU Radio Companion.

In GNU Radio companion you can manually connect each type of block and add

or delete modules use a drag and drop type of feature. In GNU Radio each input

or output has its own respective data type which are denoted by colors at their

28



respective input and output ports.

Although GNU Radio is appealing to users for it’s power and ease of use, it

can use up a substantial amount of processing power and memory due to all of

the overhead the entire software has. Therefore, in order to reduce this amount of

overhead, people use a more basic development environment called UHD.

UHD (or USRP Hardware Driver) is a set of C++ libraries created by Ettus

Research to allow for control of their USRP SDR platform within C++ programs

[48]. It provides a thorough set of commands with which different aspects of the

SDR can be used, including synchronization, transmission, and receiving. GNU

Radio, with its pre-built blocks, is built on top of UHD, using the UHD commands

for lower level operation. By using the lower-level environment, there is less latency.

Unlike GNU Radio, there are not very many pre-built blocks, instead focusing on

having the programmer implement these details. In some cases, this is good. With

many of the GNU Radio blocks, there are many sub-blocks built in, making it more

difficult to understand its performance. With UHD, it is very clear what each block

does, as it has to be programmed. However, this makes the development time of

any system much higher. This is the main trade off between the two platforms.

2.6 Aerial Platforms

The inspiration behind this MQP was to discover how much information could be

gathered from the wireless spectrum when observed from the air. Aerial platforms

have been used in the past for surveying tasks such as geographical mapping [49].

These systems generally use a camera to capture visual images from above. To

facilitate flying our sensory system, three main mobile methods of elevating the

sensory unit were considered: kites, fixed-wing aircraft, and multicopters, each of
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which will be described in detail below.

2.6.1 Kites

A kite is a passive structure tethered to the ground that stays airborne by catching

the wind [50]. There are many different styles of kite, including parafoil, rokkaku,

delta, and sled, but they all rely on the same principle to fly [50] [51]. Kites have

nearly unlimited flight time and high payload capacity when operated in favorable

conditions, but in exchange they sacrifice control, reliability, and maneuverability.

Since kites are powered by the natural phenomenon of the wind in the atmo-

sphere, they do not require any power to stay aloft. However, depending on the style

of kite, they do require specific conditions to fly. Almost all kites need at least 2-3

mph of wind to get up into the air, and delta and rokkaku are limited to a maximum

of 12-16 mph [51]. Parafoils can fly in wind up to 20 mph, but can be unstable.

The only control a user has over a kite in flight is changing its height by letting

out or reeling in more of the tether cord. Different styles of kite have different flying

angles, which impacts the amount of weight they can carry. Some kites, such as the

rokkaku and delta (example in Figure 2.14) styles, can be modified during assembly

to change their angle of flight, where higher angles produce more lift. While parafoils

can inherently carry more weight, they also have a low flying angle, which can be

problematic in some scenarios. The preparation for flight involves assembling the

kite, normally by inserting cross-bars, and unreeling the tether in an open space

that allows the kite to take off.

Kites are, by necessity, constructed of very light materials and cannot support

much extra weight in light wind situations. Again, the style of kite affects the

carrying capacity: deltas can carry a moderate amount of weight, but need higher

winds to stay aloft. Parafoil and rokkaku kites can carry more weight, with 10 lbs
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Figure 2.14: A delta style kite. Delta style kites can be configured to fly at high
angles, allowing them to be flown in laterally constrained locations [5].

being on the low end.

One application of kites that concerns the carrying capacity is kite aerial pho-

tography, which consists of a camera mounted to a kite as a low-cost way to take

aerial pictures [51]. Varying flying conditions force photographers to mount cam-

eras to many different types of kites with differing angles of flight, payload capacity,

and stability. Advanced photographers also utilize mounting rigs to stabilize and

sometimes rotate the cameras in flight [51].

The pros and cons of a kite as a platform for the SDR system are enumerated

in Table 2.4.

Table 2.4: Kite Pros and Cons. Using a kite as the aerial platform would enable a
long flight time with a heavy sampling system. However, the time required to deploy
the system would be high, and the maneuverability would be extremely minimal.

Pros Cons
cost maneuverability
flight time deployment time
payload capacity
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2.6.2 Fixed-wing Aircraft

A fixed-wing aircraft is a rigid structure with one or more rotors oriented forward

that gains lift from the flow of air over its wings [52]. A diagram showing this lift

mechanism can be found in Figure 2.15. This section will focus on radio controlled

(RC) aircraft since they are the type that was considered for use in this MQP. An

RC aircrafts movement is typically controlled by servos onboard that move flaps

to change the surface of the aircraft, in turn changing the dynamics of flight and

causing the plane to respond. RC aircraft are very efficient in terms of flight time to

power used because the lift comes from the shape of the wings, not the speed of the

motor [53]. Since the lift comes from the wings, fixed-wing aircraft have a moderate

flying time and can carry a moderate amount of weight, but the planes motion is

very linear so its maneuverability is limited.

Figure 2.15: Airfoil lift generation. As air flows past the airfoil, it is forced down-
ward, in return forcing the aircraft upward [6].

The flight time of most battery powered RC fixed-wing aircraft is around half

an hour, assuming some aerial manuvering [52]. In a surveying role, with the plane

flying low circles, the flight time would likely increase slightly. There are also gasoline

powered aircraft with small engines onboard to power the main propeller. Gasoline

32



has a very high energy density, so its possible to fly for multiple hours with a gasoline

powered aircraft.

Fixed-wing aircraft have a fairly lenient payload capacity. One thing to consider

about adding payloads to fixed-wing aircraft is that since the aircrafts flight is so

heavily impacted by the body shape, any payload will need to be incorporated into

the body of the aircraft to minimize airflow disturbance. To get more lift, and thus

carry more weight, the plane simply needs to fly faster to force more air over the

wings. However, this has drawbacks, as spinning the propeller faster will drain the

power source faster and decrease maneuverability.

Fixed-wing RC aircraft have been used in the past for similar tasks. In one

example, a group of students at WPI developed a search and rescue platform using

a fixed-wing RC aircraft [7]. An example of a fixed-wing RC aircraft is shown in

Figure 2.16.

Figure 2.16: A fixed-wing RC aircraft. This is a flying wing style craft with a rear
propeller. Its flight would be greatly hindered by any protrusion of the mounting
system [7].

A fixed-wing aircraft is able to cover large distances flying laterally, but it is not

able to stop mid-flight and hover in place [52]. Its turning radius is often quite large,

and it must not drop below a certain speed to remain airborne. While fixed-wing
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aircraft are mobile, they are not very agile. Most fixed-wing aircraft require a long

flat runway to takeoff and land on, limiting the number of locations in which they

could reasonably launch. In addition, fixed-wing aircraft are much larger and are

commonly disassembled for transport.

The pros and cons of a fixed-wing aircraft as a platform for the SDR system are

enumerated in Table 2.5.

Table 2.5: Fixed-Wing Aircraft Pros and Cons. Using a fixed-wing aircraft as the
aerial platform would enable a long flight time, a high payload capacity, and more
maneuverability than a kite. However, it would be more expensive.

Pros Cons
flight time maneuverability
payload capacity cost

deployment time

2.6.3 Multicopters

A multicopter, sometimes also called a drone, is a flying device with two or more

upward oriented rotors. A typical multicopter structure will have an even number of

fixed-pitch propellers (often 4, 6, or 8), powered by electric motors placed equidis-

tant from the center of mass [54]. To have full control over the movement of the

quadcopter, at least 3 rotors are needed [55]. The least mechanically complex of the

three devices investigated here, multicopters rely solely on software control of the

rotors for lift and control. A diagram of the forces acting upon the multicopter can

be found in Figure 2.17, and an example picture of a multicopter with 6 rotors is

included in Figure 2.18.

Multicopters use fixed-pitch propellers to correlate rotor speed with force pro-

duced. Lift can be controlled by uniformly increasing or decreasing rotor speed

across all rotors. To effect a roll or pitch, one side’s rotors are spun up and the
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Figure 2.17: Quadcopter force diagram. Motors and propellers alternate in direction
of rotation so that the drone is stable around the vertical axis. The torque generated
by each propeller is canceled by the propeller opposite it [8].

other side’s are spun down so that the net lift remains the same but the craft tilts

to the side with less thrust. Multicopters also have the unique ability to yaw in

place by spinning alternating rotors faster and slower. Since the rotors alternate in

direction of rotation, spinning one set faster creates an imbalance of torque, which

makes the whole platform rotate in place [55].

Multicopters are thus highly maneuverable, but at the cost of flight time and

payload capacity. The primary concern when using a multicopter is the flight time.

Most commercial multirotors quote flight times in the 10-20 minute range with the

best performing drones topping out around 30 minutes [56]. This is because the

power required to spin the electric motors fast enough to get lift can be immense,

drawing up to 60 amps on takeoff [57]. Ascending from a stationary position draws

much more energy than hovering or lateral flying, so multiple takeoffs and landings
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Figure 2.18: A multicopter with 6 rotors. The brushless DC motors allow for very
high speeds and a high degree of control [9].

in one flight will hamper the battery even more. The high current draw of the

electric motors necessitates the use of Lithium Polymer (LiPo) batteries that can

discharge large amounts of power very quickly. LiPo batteries have another benefit

for use in multicopters and that is their low weight.

Weight is a very important factor in the operation of a multicopter because the

amount of weight to be lifted directly corresponds to the speed the motors must

be driven at to achieve lift. Multicopters in general have low payload capacities

because any extra weight equates to more power that must be provided by the

rotors. In effect, the more weight the drone is carrying, the less flight time it will

have. This correlation forces a choice to be made over whether to prioritize flight

time or amount of payload supported.

The most advantageous aspect of multicopters is their maneuverability. The

nature of their control means it is possible to stop and start, hover in place, rotate

in place, and quickly change directions and altitudes. In particular, the ability to
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stop at a point and rotate at a fixed rate is especially unique. Deployment of a

multicopter is very fast as well: there is nothing that needs assembly prior to flight,

and there is no need to find a long open space to takeoff. All that is required

procedurally is powering on the device and setting it on the ground, as multicopters

are capable of vertical takeoff and landing (VTOL). The high maneuverability and

ease of deployment make for an easy user experience, since control of a drone (with

good software) is simple and very responsive. The multicopter is a platform that

has very good maneuverability, but must sacrifice payload capacity and flight time.

Table 2.6: Multicopter Pros and Cons. Using a multicopter as the aerial platform
enables a high degree of maneuverability and very quick deployment. However,
multicopters have much lower flight time and payload capacity.

Pros Cons
maneuverability flight time
deployment time cost

payload capacity

2.7 Chapter Summary

In this chapter, background information was provided on a range of topics relevant

to the undertaken project. The wireless spectrum, divided up into chunks by use,

will be the medium for the analysis carried out in this project. Spectrum sensing

and localization will be key to achieving the goals of the project. Software Defined

Radios are useful for their flexibility around sample processing. Finally, of the flight

platforms discussed, multicopters are the only ones with high maneuverability, al-

though they sacrifice flight time and payload capacity to achieve it. This information

will allow the informed discussion of implementation of the system for this project.
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Chapter 3

Proposed Approach

This chapter will outline the approaches considered to accomplish this project. The

goal of this project was to develop a modular platform for sensing the wireless

spectrum through the use of a software defined radio (SDR) from an aerial platform.

The aerial platform chosen is the multicopter drone due to its controllability and

maneuverability.

The fixed aspects are as follows: the target spectrum for the project was 2.4

GHz, the software defined radio was the USRP B-200 Mini, and the antenna was

the Alfa APA-M25. The software defined radio and antenna were donated to the

project by Gryphon Sensors. The B-200 Mini has a small form factor or 83.3 x

50.8 x 8.4 mm, has a frequency range of 70MHz to 6GHz, is powered by USB (5V),

and has an extensive set of libraries. It is an excellent choice for the spectrum

sensing platform primarily due to its frequency range and small form factor. The

antenna is designed to be used at 2.4 and and 5GHz, which are the two frequencies

WiFi is transmitted at. The antenna is directional with a 16 degree vertical angle

and a 66 degree horizontal angle. The directionality will allow for more accurate

determination of the source of the WiFi signal.
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3.1 Prototype Systems

A multicopter was chosen to be the aerial platform due to the increased maneu-

verability provided. Theismaneuverability will allow the platform to perform well

in any target environment chosen for spectrum sensing. However, with the drones

maneuverability, it sacrifices vital airtime and payload capacity, creating design

constraints that will be considered for each of the following approaches. The brain-

storming process led to four distinct design concepts that utilized a multicopter for

spectrum sensing.

It should be noted that these four designs incorporate similar devices for the

single board computer, storage, battery and GPS. Regardless of which drone ap-

proach was taken, an onboard processor and storage device had to be chosen for the

processing and storage of IQ data. The single board was selected from five options

which are shown in Appendix A.1. The final decision was to use the UP board. The

decision was primarily between the UP board and the ODROID-XU4. Both of these

boards have a similar form factor, but the UP board draws 1A less current. This

reduces the power consumption of the board considerably and negates the lower

weight of the XU4. An additional reason for choosing the UP board was the ship-

ping location. The UP board was shipped from Europe, while the XU4 was shipped

from Korea. Therefore, the lead time for the UP board would be shorter and doc-

umentation more accessible. As for storage, the selected device was a 32GB USB

flash drive, which is capable of storing all the data gathered in one flight simulation

of 20 minutes.

The external GPS and the battery were chosen for their small form factor. The

GPS chosen was the GlobalSat ND-105C micro USB GPS receiver which has a

form factor of 30.4mm x 15.4mm x 4.5mm. The battery chosen was the 11.1 Volt
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Lumenier 800mAh 3s 20c LiPo battery which had a form factor of 55mm x 31mm

x 20mm. This battery, when stepped down to the voltage used by the UPboard,

provides enough power for the computer to run 20 minutes at maximum power draw,

the same amount of time as the drone can fly.

The first approach concept is based upon having an individual wireless com-

munications frequency for each task. Initially this design was centered around the

Autel X-Star that was controlled at 5.7 GHz band. However, upon learning that

the 3DR Solo was configurable to operate at 5.7 GHz, and based on how well the

3DR Solo is documented, the approach was modified to center around the 3DR Solo.

The 3DR Solo is a drone designed as a consumer drone used for aerial photography.

The camera and gimbal were replaced with the modular spectrum sensing system to

better utilize the limited payload capacity of this drone. This drone has a payload

capacity of 700 grams, which allows for a substantial payload. While the drone has

a large payload capacity, the design will attempt to minimize the payload weight

and enable the platform to be used on a larger number of drones. Furthermore, this

drone can be configured to operate with the controller at 5.7 GHz that does not

interfere with spectrum sensing at the 2.4 GHz wireless band. The transmissions

back to the user would be on a frequency of 900 Mhz if real time response is re-

quired [58]. More detailed design configurations on the first approach can be found

in Appendix A.2.

The second approach concept is focused on assuring that this project is feasible.

This assurance is from the fact that the DJI S1000 octocopter was designed to carry

heavier payloads. The DJI S1000 was designed for professional photography and

cinematography, where stabilization and high payload is essential. As a result of

these qualities, as well as the more premium target market, this drone is priced

higher than many consumer-level drones. This drone is able to carry payloads of up
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to 2 kilograms, providing large flexibility in terms of design constraints. However,

because of the flexibility this high payload offers, the resulting design may not

be able to be used on consumer drones with a lower payload capacity. Another

advantage this drone presents is that the communication between the controller and

the drone is operated at 900 MHz, which will leave the detection of the 2.4 GHz

wireless band unimpaired. This approach serves better as a backup plan in case the

modular system can not be lifted with the commercial drones used in testing. More

detailed design configurations on the second approach can be found in Appendix

A.3.

The third approach is based on using an autonomous navigation approach that

was considered with the 3DR Solo drone. One of the features that was provided

with the drone is autonomous flight planning, where the user can set way points

for the drone to fly. This feature will allow simplistic controls, however, general

drones do not have this feature implemented. Furthermore, the 3DR Solo drones

ability to be customized is valued, as the initial controller-to-drone transmission

frequency is in the target sensing frequency of 2.4 GHz. The autonomy of this

design eliminates the need for constant communications with the drone while flying,

preventing the control signals from interfering with the spectrum. More detailed

design configurations on the third approach can be found in Appendix A.4.

The fourth approach is focused on shielding the drones control antenna from

the spectrum sensing antenna. This configuration was created to ensure that the

wireless control signals received on the drone and the wireless spectrum being de-

tected would not interfere with each other, since they are on the same frequency.

Therefore, a drone carrying 2 antenna configurations would be needed- one that

would communicate with the ground, and the other that would perform spectrum

sensing. The antennas would need to be isolated from each other in order to ensure
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the 2 antenna configuration works. This approach would help add resilience in the

drone platform and would allow for flexibility on communication protocols from the

ground to the drone. The primary disadvantage to this approach is the additional

weight that the shielding would add to the design. More detailed design configu-

rations on the fourth approach can be found in Appendix A.5. The table below

compares and contrasts the four approaches.

Table 3.1: Pros and cons of the four approaches.

Approach Pros Cons
1 No interference Minimal payload capacity
2 Great payload capacity & No in-

terference
Not a commercial drone

3 Does not require communication
signals

Flight path has to be predeter-
mined

4 N/A Increased payload for sheilding

3.2 Project Planning

Microsoft Project was used to plan out objectives throughout the project. The

Gantt chart in Figure 3.1 shows the project objectives. The planning came in

three parts: implementation, testing and writing the report. In the initial stages

of implementation, each individual part was done first. When each part worked

separately, the blocks were then integrated to make sure that the system functions

as planned. From then on, the project development moved to the testing stage,

where the system was tested in three scenarios. These scenarios allowed ease of

debugging if the testing does not go according to plan. The SDR was tested to

determine whether it can locate a WiFi signal without any movement. Then, before

mounting the system on the drone, the system was moved around to check whether

the data correlates to a specific direction of a transmitter when the system is mobile.
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Finally, when both tests worked properly, the system was mounted on the drone and

tested while flying. During the process of implementation and testing, the report

was be written based on the work done in the implementation and testing stages.

Figure 3.1: Project planning gantt chart. This chart was used to display deadlines
and ensure that tasks were being completed. Team members were assigned tasks
and were held accountable for those tasks.
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Chapter 4

Implementation

This chapter details the implementation of the MASDR platform. The description

has been divided into software and hardware for clarity.

4.1 Software Implementation

The software for the MASDR system was written in C++ and can be found in Ap-

pendix B.2. Documentation was done with doxygen, allowing for dynamic updates

to the docs whenever changes were made. Additionally, some scripts were written

to assist in other aspects of the project.

During the design phase, there was discussion over whether to use GNU radio

or C++ for the MASDR application. GNU radio would allow for more complex

signal processing patterns to be constructed more easily in comparison to C++,

but would increase the overhead on development and potentially at runtime as

well. Using C++, the application would have to be coded entirely from scratch,

interfacing with the USRP Hardware Driver (UHD) libraries, but would have much

lower overhead. Based on the skills of the team members, as well as the desire for

the application to be as low power and simple as possible, C++ was chosen for the
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application.

The MASDR Application is structured as a central C++ class with a few ad-

ditional utility functions external to the class. The class contains methods for ini-

tialization, sampling, processing, and transmission among others. Certain services,

notably updating the GPS and taking in samples, are performed in separate threads

to allow for the parallelization of tasks. In the applications main loop, an instance

of the MASDR class updates its status and begins or changes its task based on

the new status. Status is composed of both physical status, namely location, and

software status, representing the current processing state. The physical status struc-

ture includes a member variable for heading, although this is unused in the current

version of the platform. The processing state is an enumerated type with values

PROCESS, TRANSMIT, and IDLE. The state of the device determines what the

processor will be doing. During operation, the application will flow from state to

state as described in the state transition diagram in Figure 4.1.

Figure 4.1: MASDR State Diagram. Software states change according to the graph
described in the image.
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The onboard software is the majority of the project, however there are other

essential pieces. On the ground station side, a GNU radio receiver intercepts and

decodes all transmissions from the aerial platform. Additionally, a mapping tool

was created to calculate the approximate distance to signals and draw circles on a

map to visually locate signals. The mapping tool consists of a Python script that

performs the distance calculations and populates a Javascript list of GPS locations

and distances. The Javascript calls into the Google Maps API to display the distance

rings on a map. Finally, a Python script was written to command the drone to

autonomously spin 360 degrees.

While the original plan was for the sampling routine to be driven by the motion

of the platform, a lack of precision and accuracy in the GPS readings rendered this

nearly impossible. Therefore, the SDR was configured to constantly take samples,

with control originating from a separate processing thread from the main thread.

The use of threads allows for shared data throughout the program, which is used to

share the buffer of samples with the main thread.

In order to avoid any shared data bugs, the sampling routine fills a buffer of

blocks one at a time, eventually overwriting the oldest block to record each new

block. At the beginning of the processing routine, a copy of the most recent half

of the sample blocks is made. This makes it impossible for the sampling thread to

overwrite a block of samples that the processing thread is using.

There is a defined motion pattern that the quadcopter should follow in order

achieve correct results. At a constant altitude, the quadcopter should travel to a

series of points, stopping and rotating 360 degrees at each point. The constant

altitude will allow for more accurate localization of signals based on RSSI distance.

The samples taken by the SDR are then processed to extract useful information.

Given that the MASDR system is designed to be low power, a delineation between
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onboard processing and processing at the ground station was created. The UP

boards processor is fairly capable, allowing the initial steps of the signal processing

to be done onboard. A more indepth description of the processing done onboard

the MASDR platform can be found in Section 5.1. The information is processed as

much as possible onboard to reduce the size and duration of the transmissions to

the ground station. The initial samples are also stored on a flash drive onboard so

that post processing can be done on the raw data.

To detect the existence of a signal, an OFDM receiver in the MASDR application

looks for beacon signals in the sampled data, block by block. The RSS of a beacon

signal is recorded with its corresponding location, the location the drone was at

when the block of samples were taken. This mapping is then transmitted down

to the ground station for further processing. The MASDR platform is designed

to transmit data between processing blocks of samples. The transmission protocol

consists of two types of messages: a header packet, and a data packet. The header

packet is the first packet sent after processing the data; it contains a transmission ID,

the location of the sampling block, and the number of following data transmissions.

The data packet consists of a transmission ID which corresponds to its header packet,

a heading, and a signal strength for beacon signals. Again, the heading is unused in

the current version of the platform, but a future version could make use of the field.

4.2 Hardware Implementation

The hardware for the MASDR system consists of the components used and the

mounting system employed to attach it to the drone. Using the 3DR Solos de-

velopment guide as a reference, the mounting system was designed to hold all the

components securely to the drone. By using the official mounting points on the
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drone, the hardware was made as robust and efficient as possible. In order for the

hardware to be mounted properly, the MASDR system was mounted onto the drone

platform by using the 3DR Solos preexisting hardware mount. To do this, the 3DR

Solo developer’s guide was used to determine the dimensions of the mounting screws

so that the mounting platform was able to be easily screwed onto the 3DR Solo [59].

The mounting system connects to the bottom of the 3DR Solo with four M2 screws

that are spaced in a 63mm x 41mm rectangular pattern as seen in Figure 4.2.

Figure 4.2: 3DR Solo Mounting Points used for attaching the modular system.

The mounting system consisted of two pieces of wood laser cut with and mount-

ing pattern, with unneeded wood removed to reduce weight. The pieces were at-
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tached with 3 inch standoffs, allowing room for the UP board, B-200 mini, tran-

former, and battery to be mounted and connected together. A picture of the assem-

bled mounting system can be seen in Figure 6.2 and Figure 6.4.

In order to ensure that the MASDR platform is powered for the entire flight, a

battery was needed that could hold as much energy as possible while not adding

too much weight to the drones payload. In addition to this, the battery needed be

able to supply as much current as the hardware could draw. This became an issue

for finding a suitable 5V battery that would support a maximum current draw of

4 Amps. Instead of a 5 volt battery, a 12 volt battery was used, and a DC-DC

converter was used to match the 5V 4A requirement. The chosen battery was an

11.1 volt lithium-polymer battery weighing 66 grams. It was then connected to a

DROK DC voltage converter that both transformed and regulated the voltage to

5V. By downconverting the voltage from the battery, the system is able to draw

more current from the battery than what is usually supported by a 5 volt battery.

The 3DR Solos default wireless card communicates to the controller using the

2.4 GHz band. This interferes with sensing and locating signals on the 2.4 GHz

band. In order to avoid this issue, the 2.4 GHz network card of the 3DR Solo was

replaced with a dual band 2.4 GHz and 5 GHz network card. Unfortunately, even

with the new wireless card, the controller and drone were unable to communicate

on the 5 GHz band. It is suspected that this is due to incompatible antennas or

configuration scripts on the controller.

4.3 Implementation Summary

In this chapter, the implementation of of the MASDR system was detailed from

both the software and hardware points of view. The software description covered
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the application structure, sampling procedures, onboard processing strategy, and

data transmission protocol. The hardware section described the mounting system,

power conversion, and networking card replacements.The implementation of the

system went through multiple iterations during development, and further tweaking

and additions to the implementation of the platform are encouraged as needed for

any work done using the platform in the future.
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Chapter 5

Methodology

5.1 Spectrum Sensing

The main goal of this system is to be able to detect wireless signals. This is done

in with a combination of energy detection, for determining if there is any signal in

the channel, and a matched filter in the frequency domain, to determine if there is

a WiFi signal present. Each will be described in the following section.

The system detects transmissions based off of energy detection. This type of

detection is done by measuring our received signals strength along a desired central

frequency, and comparing it to an ideal threshold. In order to determine the energy

of the received signal, the following equation was used:

E =

∫ ∞
−∞
|x(t)|2dt

x(t) is the received signal, bandpass filtered to only use the bandwidth of WiFi.

This energy measurement is then compared to a threshold energy of -85 dBm. This

threshold was chosen due to it being high enough to ensure a low chance of false

alarm while still sensing signals from a significant distance, which is necessary since
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the drone was high in the air.

In order to categorize WiFi signals at the 2.4GHz band, an OFDM detector

was implemented. In order to detect OFDM, the receiver will detect beacon frames

by correlating upon the WiFis L-STF structure. The L-STF structure is a specific

spacing and timing of transmissions over various subcarriers. This structure is also

used for calculating the coarse frequency offset. The subcarriers and transmissions

used in L-STF are shown in Figure 5.1.

Figure 5.1: This photo gives an example of what OFDM subcarriers look like when
displayed upon an FFT. Each subcarrier is shown as its own respective pulse and
the subbcarier frequency offset is denoted by ∆ f.

The multiple subcarriers are represented by the various waveform colors in Figure

5.1. The spacing of each frequency is denoted by f . This series of waveforms are

transmitted from the OFDM transmitter over a fixed amount of time. The spacing

and frequency behavior of the L-STF field has characteristics defined in Table 5.1:

Once a beacon transmission is detected using the above techniques, the L-SIG

field must be decoded. The rate field gives us information such as the modulation,

coding rate, and data rate by relating the rate to its respective binary value. This

field is described in the table below.

By the rate information, the received packet’s 802.11 frame can be further an-

alyzed to find the broadcast SSID of our received transmission frame. The SSID
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Table 5.1: This table gives an outline on the L-STF Characteristics for an OFDM
transmission. Due to our Wi-Fi signals being in the 20, 40, and 80 MHz range,
the OFDM match filter will use the values in the first row in order to perform
spectrum sensing. The match filter will filter upon a subcarrier spacing of 312.5
kHz by noticing a change in the center frequency of a transmission.

Channel Bandwidth
(MHz)

Subcarrier Frequency
Spacing, ∆F (kHz)

Fast Fourier Trans-
form Period
(TFFT = 1/∆F )

L-STF duration
(TSHORT = 10 ∗ TFFT/4)

20,40,80,160 312.5 3.2µs 8 µs
10 156.25 6.4µs 16 µs
5 78.125 12.8µs 32 µs

Table 5.2: This table gives the corresponding modulation, coding rate, and data
rate based on the received binary information from the L-STG field. These fields
can then be used to further demodulate the received signal.

Rate(bits 0-3) Modulation Coding Rate (R) 20 MHz data rate (Mb/s)
1101 BPSK 1/2 6
1111 BPSK 3/4 9
0101 QPSK 1/2 12
0111 QPSK 3/4 18
1001 16-QAM 1/2 24
1011 16-QAM 3/4 36
0001 64-QAM 2/3 48
0011 64-QAM 3/4 54

field which starts at the 36th byte of the beacon frame header is the only desired

information here as it allows the identification of separate access points.

By converting these bits to ASCII, the SSID of the received transmission can be

obtained.

Using a combination of energy detection and match filtering on OFDM beacon

frames, the MASDR system was able to identify the desired signals with a high

probability of detection and a low probability of false alarm. Additionally, this

makes accurate determination of the received SSID possible.
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Figure 5.2: MAC level structure of beacon frames [10].

5.2 Fusion and Localization

In order to draw meaning from the spectrum being measured, two types of data

need to be analyzed: received signal strength (RSS) and location. Both of these

measurements have noise to some extent. In this section, the combination of these

measurements and the mitigation of sensor noise was discussed.

After identifying a signal, the next step is to locate the signal source. Out of

the methods described in the background, most are ruled out based on the non-

cooperative nature of the sensing, leaving only Angle of Arrival (AoA) and RSS

localization. Of those two methods, Angle of Arrival is the significantly more com-

plex method to implement, requiring either a strongly directional antenna or an

array of antennas [35]. As such, RSS localization was the method implemented.

This method requires three stationary observation points, as opposed to the single

moving observation point contained on the aerial platform. To get around this re-

quirement, it is assumed that the device broadcasting the WiFi is stationary [36].
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This assumption is valid because most access points are indeed stationary and the

drone moves quickly enough that even a slowly moving signal would likely be able

to be roughly located. This scenario is illustrated in Figure 5.3.

Figure 5.3: Diagram of triangulation with drone movement. In a traditional tri-
angulation scheme, samples are taken at all three locations simultaneously. In the
situation described here, since the Wi-Fi access point is unmoving, the drone is able
to move between sampling points and take samples sequentially instead of simulta-
neously.

Occasionally while sampling, the drone will rotate continuously in a process

described in Section 4.1. This presents a complication to the processing of the

signal: only one sample is recorded at a given angle. Since the samples must be

processed in blocks, each block will represent samples from a range of angles. Since

the heading measurement is not implemented in the current version of the system,

this is of little concern, but for future use, the scenario has been analyzed.

The angles included in a block are determined by the amount the drone rotates

between the first sample and the last sample of the block. In a small enough block,

the error generated by the difference in direction is minimal. However, a smaller

block represents a smaller amount of time, in which the signal is more prone to being

affected by noise. One solution is to slow down the angular velocity of the drone.

While this can be done, the resulting design would be less modular, depending

more heavily on the programmability of the drone in use. The other solution is to
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increase the block size, increasing the amount of time measured, but introducing

the problem of deciding what direction should correspond with the resulting signal

measurement. Regardless of how this is chosen, the larger block size increases the

error in the localization measurement.

In a magnetometer-enabled version of the system, a block size of 131,072 should

be chosen. The 3DR Solo rotates at around 2 seconds per rotation. This means

that it takes roughly 0.0222 seconds to rotate 4 degrees. At a sample rate of 5

MSPS, this is 111,111 samples. In order to input the signal into the FFT, the block

size has to be a power of 2. The nearest power of 2 is 217, which is 131072. Each

block consists of the second half of the previous block and the next half block of

samples. The first block has no previous block, so is just the first 16384 samples. The

processed measurement is associated with the direction in the middle of the angle

sweep covered by the block. This method introduces a maximum of one degree

of error, which is on the same order of magnitude as the error in the HMC5883L

magnetometer, a common chip [60].

The shifting nature of wireless channels introduces a difficult to predict noise into

the measurements taken. In order to mitigate this, the drone can rotate multiple

times. The resulting received signal strength measurements can then be averaged

with the readings from each rotation. This averaging reduces the chance that a

random shift in the channel will negatively impact the direction readings.

The MASDR system uses GPS readings for location. The distance of the beacon

from the drone at multiple points is then used to get an estimated location of the

beacon. Within a GPS receiver, signal correction is often carried out. This results

in a cleaner and usually more accurate measurement. However, the GPS receiver

that is used in this project provides very noisy results, providing at best 25 meter

accuracy when tested in one location. A contributing factor to this is that the
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receiver used is both small and cheap. Consequently, the values that it reads are

frequently very scattered, with a high variance. In order to mitigate this, a four-

state Kalman Filter was designed and simulated in MATLAB. The Kalman Filter

equations presented in the Chapter 2 are reproduced below [37]:

Predict:

~x = F~x+ H~u (5.1)

P = FPFT + Q (5.2)

Update:

~y = ~M −H~x (5.3)

S = HPHT + RS (5.4)

K = PHTS−1K (5.5)

~x = ~x+ K~y (5.6)

P = (I−KH)P (5.7)

The state ~x holds the x position, y position, x velocity and y velocity.

~x =



dx

dy

vx

vy


(5.8)

Since we are just estimating the GPS measurement, there is no input that adjusts
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the values, so ~u = 0. The state transition matrix F is based on how elements of the

states interact with each other. In order to ensure that the filter isn’t too complex,

a constant velocity model is used [37]. With a small enough dt, this is a valid

assumption. Because velocity is the derivative of position, F is defined as follows:

F =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


(5.9)

P is the variance matrix for the state, and is initialized as a diagonal matrix

with the variance of each individual element. While the assumption that position

and velocity are independent is oversimplified and näıve. However, since P gets

updated, this assumption is acceptable. ~y is the difference between the most recent

measured value ~M and H~x. H is set as an identity matrix, so ~y ends up being

the difference between a measurement and its prediction. Both Q and R are noise

covariance matrices; Q is the environment noise covariance, and R is the model

noise covariance. In order to avoid complications, both of these are assumed to be

piecewise white noise. this produces the matrix:

V arv ∗



dt4

4
0 dt3

2
0

0 dt4

4
0 dt3

2

dt3

2
0 dt2 0

0 dt3

2
0 dt2


(5.10)

The variance is chosen to best fit the data.
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K is the Kalman gain of the system. With a constant noise and variance, this

matrix is constant. This is beneficial, as the matrix inverse (or pseudo inverse) that

is needed to compute K. In this implementation, the MATLAB simulation will

approximate K, and the resulting values was used.

Equations (5.6) and (5.7) are used to update the state and state covariance with

the most recent measurement.

Both of the two measured values play a role in the localization of a beacon. The

GPS location provides a base location from which to reason about the location of

the beacon. This location is produced from a Kalman filter, reducing the variance

of the measurements. Then, using the RSS measurement of the signal, a ring of

possible locations is found around the GPS location. Eventually, measurements

from multiple points are used together to get an accurate location of the beacon.

Both of these values also have some noise inherent to the process that they are

measuring. By taking multiple measurements and calculating the intersections of

the rings to signals, the accuracy of the localization is improved.

5.3 Drone Control and Communications

When dealing with multiple frequencies, interference is an issue that must be con-

sidered. Interference in the scope of this project may lead to interruptions to drone

control, faulty measurement of data, and faulty transmission of data. To help solve

these issues, the following steps were taken in drone control and drone communica-

tions.

With the choice of using remote controlled drones to sense WiFi signals comes

the problem of interference between the control signal and the WiFi being searched

for. This problem is relevant with the use of the 3DR Solo, as the chosen WiFi
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detection frequency is 2.4 GHz and the 3DR Solos operating frequency is also at

2.4 GHz. To alleviate the possible skew of data that the control signal may cause,

the 2.4 GHz wireless card of the drone and the controller was changed to a dual

band card that supports the 5.7 GHz band. Real time data transmission from the

aerial platform to the ground station uses the 900 MHz band. Between the two

additional bands used, the 5.7 GHz band was chosen to be the control frequency

because of its shorter range due to higher frequencies losing energy faster. The

logic behind the decision is that if the drone cannot be controlled properly, then the

data obtained from the transmission would not be of significance. Furthermore if

the control frequency was 900 MHz, then the drone would be controllable farther

away than it would be able to transmit data back to the user, which is not a useful

feature.

With the popularity of the 3DR Solo and its ability to be customized, an online

discussion board was created for 3DR Solo users to share their experiences with

other fellow users [61]. This discussion board provides relevant information on the

capabilities and drivers of this commercial drone and customizations that different

users have tried. In one thread, a user significantly improved the controls communi-

cation range of the drone by swapping the 2.4 GHz wireless card to a higher powered

one. This example was the basis of changing the wireless card from 2.4 GHz to 5.7

GHz.

The wireless cards used on the 3DR Solo are mini PCIe and are based on the

Atheros AR9382 chip [62]. Both the controller and the 3DR Solo have these cards for

transmission and receiving. The 3DR Solo also uses the ath9k driver that works with

a range of Atheros based cards. Based off these requirements, the possible wireless

cards that were suitable for replacing the ones on the 3DR Solo were limited. The

decision was made to use the MikroTik R11e-5HnD card because it uses the Atheros
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AR9382 chip that is compatible with the 3DR Solo. As complications arose, detailed

in Section 6.2, the SparkLAN WPEA-121N MiniPCI-E Half-Size wireless card was

used instead. When physically replacing the wireless card, a YouTube tutorial was

used for guidance [63].

For the drone to send data back to the user, the wireless carrier of 900 MHz

was used so that it would not interfere with either the control frequency or the

detection frequency. The data packet starts off with multiple consecutive start bits,

signaling to the user the beginning of the data transmission. Following the start

bits is the data packet itself, of which there are multiple different types, described

in Section 4.1. The data inside the packet is interleaved 5 times, meaning that

the data will recur at least 5 times to ensure that the data received at the receiver

side is consistent. The modulation scheme is DBPSK to increase the quality of the

received signal. Furthermore, to avoid corruption of the data packet, a checksum is

calculated and appended at the end of the packet. The transmission is concluded

by a stream of zeros. Additionally, to make it easier to decode the signal, the signal

is modulated with a root raised cosine (RRC) filter.

5.4 Testing

For this project, two main categories of test environments were selected for testing

the aerial software defined radio: rural and urban areas. The initial testing was

in the rural areas, where there are limited interfering wireless signals. The testing

was done in a forested backyard so that the SDR was isolated from any interfering

communications, providing a good model of using the drone for search and rescue

tasks. The path of a signal is shown below in Figure 5.5

When testing in urban areas, the drone was used to collect IQ data to map
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Figure 5.4: A state diagram summarizing how the drone communicates.

Figure 5.5: The possible paths of a signal through vegetation [11].

hotspots and eventually locate a specific wireless signal. However, testing in urban

areas will require more planning due to air restrictions in cities as the drone can be

an issue regarding privacy and possible physical collision. Urban areas are also more
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likely to have conflicting signals using the 2.4 GHz frequency band. The team will

collaborate with Worcester Polytechnic Institute (WPI) to use their parking area in

the city, shown below in Figure 5.6 to test out the full system.

Figure 5.6: Location of the Gateway Parking Garage where the urban test was
conducted.

The first test was to ensure that the SDR is functioning properly. In this test,

simple transmitter and receiver code was loaded onto the board. The SDR will then

transmit a signal which was acknowledged and logged by a receiver. The receiver

will then send out a signal that the SDR will receive and log. The logged signals

was observed and compared to the expected result. The test plan is shown below:

1. Turn on receiver

2. Turn on SDR

3. SDR transmits signal to receiver

4. Receiver sends acknowledgement to SDR
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5. SDR logs acknowledgement

The following tests waere conducted using the SDR and a controller as a WiFi

transmitter in a parking lot, in a wooded area, and an urban area. The parking lot

provided an environment that has a large open space to ensure that the SDR and

the WiFi transmitter maintain an unobstructed line of sight. A parking lot with

minimal WiFi interference was used to allow for near ideal conditions for preliminary

testing. The rural environment provided no interference from other WiFi sources,

but provided obstructions in the form of foliage. The urban area provided an en-

vironment with both obstructions and non-line-of-sight. This environment was the

most challenging to locate the WiFi transmitter in. The following tests were con-

ducted in each of these areas with the SDR not attached to the drone and attached

to the drone. When the SDR is attached to the drone, the tests were repeated at

different heights, increasing by 30 feet with the maximum height being 150 feet.

The first test will consisted of the SDR being stationary and the WiFi transmitter

moving. The test began with the transmitter being placed directly in front of the

SDR. The transmitter was moved in a direction, first straight out from the antenna,

then to the side of the antenna, and final to the back of the antenna. This was done

at a constant speed and the received signal strength was measured over a period of

30 seconds.

The next test was to move the SDR with a stationary transmitter within the line

of sight of the SDR. The SDR was moved to different points around the transmitter

while measuring the received signal strength. At each point, the SDR stopped and

rotated 360 degrees at a steady pace with the rotation lasting approximately two

and a half seconds. In the urban and rural environments, this test was also run with

the transmitter out of the line of sight of the SDR. In the rural area, this was behind

a tree and for the urban area behind a car or building. These tests was performed
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multiple times and the data was analyzed to determine whether the drone was able

to locate the transmitter. The test steps are shown below:

1. Position transmitter in a known location (in or out of LOS)

2. Turn on drone and controller

3. Fly drone to the testing altitutde

4. Fly drone in a grid pattern

5. Approximately every 20 feet rotate the drone 360 degrees at a constant speed

for 2.5 seconds

6. Repeat step 5 until grid pattern is complete

These tests verified that the system is working correctly. Each test increases in

complexity and exercised the system to observe its performance in different environ-

ments. The first test is simple to verify that the components are working correctly.

The second test is done to measure the signal strength at different distances and

angles relative to the antenna to be able to evaluate the range at which a transmitter

can be detected. The final tests was to localize the signals and distinguish between

multiple transmitters.

5.5 Chapter Summary

In this chapter, details about the methods used in this project are discussed in

detail. Energy detection and matched filtering are used for identifying if there is

WiFi within the area. Once confirmed that there is a WiFi transmission within

the vicinity, localization occurs using the RSS method which is based upon the
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drone’s GPS location. As a trade-off for the small size and cost-effectiveness of the

GPS chosen, a Kalman filter was designed to increase accuracy of the measurements

to project a better localization map of the area. Another major consideration was

determined as the communicating control messages to the drone and the information

messages to the ground as these two must not interfere with the WiFi sensing. In

addition, the different test protocols for the two different target regions were detailed

to determine the feasibility of the modular platform.
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Chapter 6

Experimental Results

In this chapter, the results of the project will be discussed. This chapter is split up

into System Integration, Drone Control, Spectrum Sensing, Spectrum Localization,

and GPS sections.

6.1 System Integration

This section details the physical system and the integration of the hardware. This

includes power consumption, system layout, and component failures or difficulties.

The system diagram shown in Figure 6.1 will be explained in detail in this section.

The encasing for the system was designed in SOLIDWORKS. It was fabricated

using wood panels and a laser cutter. The encasing was designed to be as minimal

as possible to reduce the weight of the system. This was done by cutting holes in

the panels to remove as much material as possible and using metal supports instead

of wooden walls. The metal supports were used in each of the corners to connect

the two wooden panels as seen in Figure 6.3.

The two wooden panels were created identically to reduce design time and fab-

rication time. Screw holes were precut into the wood to ensure mounting the com-
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Figure 6.1: MASDR system diagram detailing the connections between each com-
ponent.

Figure 6.2: Overhead view of the encasing of the MASDR system.

ponents wouldn’t split the wood. This enclosure was mounted to the bottom of the

drone using the hardware mount on the drone detailed in Section 4.2.

To power the system, an 11V LiPo battery was used in combination with a 5V

transformer to step down the voltage for use by the UP Board. The battery and
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converter were connected using connectors seen in Figure 6.3, so that the battery

could be disconnected when not in use. To prevent any mishandling of plugging the

battery in backwards, a male molex connector was soldered to the transformer and

a female molex connector was soldered to the battery.

Figure 6.3: Connectors for the battery. The male molex connector (left) is connected
to the transformer and the female molex connector (right) is connected to the LiPo
battery.

There were two transformers that were purchased, the Nextrox converter was

the one that directly converted 12V down to 5V at 3A, and the DROK converter

was the other which was an adjustable knob that ranged from 8V-35V to 1.5V-

24V at 5A. Unfortunately, the first transformer only worked for the first few trials

and the second outright did not work out of the box. The first transformer that

was used in the system failed because it became disconnected from the UP Board

while power was applied. This transformer was a buck converter which can fail

when an output isn’t connected due of the failure of a MOSFET or diode [64]. The

second transformer’s adjustable knob did not change the ratio at which the voltage

was being output despite multiple attempts and methods. A new transformer was
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purchased to replace the malfunctioning transformers.

The UP Board is connected to the 5V transformer using a barrel jack. The

male connector was soldered onto the output of the transformer. The UP Board is

the main system with everything else connected to it through USB or I2C. It was

mounted upside down on the top panel as shown in Figure 6.4.

Figure 6.4: Angled side view of the encasing with the UP Board connected to the
top panel with the GPS and USB cable to the B200-Mini. The golden transformer
and the battery are positioned directly under the UP Board on the bottom panel.
The B200-Mini is connected to the bottom panel and is the closest board to the
camera.

The GPS is connected to the UP Board using an micro USB to USB adapter.

Integration and operation of the GPS proved to be a challenge. The GPSD library

that was used to interface with the GPS had permission issues that caused the GPS

data to not be read by a C++ program. After the permissions were set correctly,

the MASDR program was able to correctly read the GPS data.

The magnetometer was to be connected to the UP Board using the I2C pins.

Communication between the UP Board and the magnetometer was never established
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after multiple attempts. The UP Board would send a signal to the magnetometer,

but never received a response. This could be due to a lack of a Linux driver or a faulty

board. A Linux driver for the magnetometer wasn’t provided by the manufacturer

and the timeline of the project made it unfeasible to write a driver by hand.

The B-200 mini was attached to the bottom panel of the casing. It communicated

to the UP Board through a wired USB connection. The 900MHz and 2.4GHz

antennas were connected to the SMA connectors on the mini. The 2.4GHz antenna

required an adapter because the connector on the board was not compatible with the

one on the antenna. During testing, it was realized that the transmission from the

board was not working. Upon further inspection it was noticed that a component

had broken off the board. Another board was borrowed from a lab to verify that

the original board was faulty. The transmission test ran successfully on the board

from the lab. A working board and the broken board are shown in the Figure 6.5

and Figure 6.6 respectively.

Figure 6.5: The functional B200-mini. Figure 6.6: The nonfunctional B200-mini.
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This component may have broken off during transport to and from meetings or

because of vibrations during in flight testing.

The complete system mounted on the drone is shown in Figure 6.7.

Figure 6.7: The complete system mounted on the drone. In flight testing was done
with this setup.

6.2 Drone Control

To reduce interference when sensing signals, the WiFi cards on the controller and

drone had to be replaced because the communication frequency and the sensing

frequency were the same value. In order to replace these WiFi cards, research

had to be done to determine which driver was used on the drone. This ended up

being the ath9k driver, which was compatible with a wide range of Atheros based

cards. Despite the guarantee of compatibility, the first purchase of the R11e-5HnD

MikroTik MiniPCI-E wireless card ended up unused, due to it having a large heat

sink that could not fit conveniently into both the controller and drone. Furthermore,
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the connectors would also require adapters to connect to the antennas. This led to

the second purchase of the SparkLAN WPEA-121N MiniPCI-E Half-Size wireless

card, which required a bracket to be mounted. The replacement of the WiFi cards

in the controller was done first, because the controller acts as a WiFi base station.

This makes it easier to test 5 GHz functionality. The replacement went smoothly.

However, the controller was still communicating at 2.4 GHz. Upon checking the

software, it detected that the WiFi card installed was capable of communicating at

5 GHz. Because of this, the controller’s networking scheme was modified such that it

would persistently communicate at a specific channel (5GHz). After these changes,

there was trouble using SSH to access the controller. One possible explanation is

that the antennas are incapable of transmitting at 5 GHz. Limited with time and

the scope of the project, it was not possible to obtain antennas to replace on the

controller and drone. Due to this reason, the drone’s WiFi card was not replaced,

and both the controller and drone were factory reset to operate at 2.4GHz.

A Python script was written to briefly take control of the drone and rotate

while holding a constant position and altitude. The script used the Dronekit API

provided by 3DR. The script was packed up with all necessary libraries and sent to

the drone awaiting execution. When the command is given by a computer connected

to the controller’s WiFi network, the script runs, taking over control of the drone

and rotating it. The API did not provide a way to set a constant rate of rotation,

so instead a nonblocking call to rotate a certain amount was used in conjunction

with timed sleeps to achieve a continuous rotation of 360 degrees. Attempts to map

the script to a button on the controller were unsuccessful. The 3DR developers

guide notes a future API called S̈mart Shotsẗhat allows commands to be mapped

to buttons on the controller, but it was not available at the time of this project.
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6.3 Spectrum Sensing

In order to monitor the signal strength of our received data, the RSSI localization

technique was used. RSSI was measured by taking the average signal power across

a 20 MHz 802.11 wifi channel. This measurement was taken by using the USRP

B200 Minis get rx sensor command. This command returns the corresponding RSSI

value as a double in dBm format. Since a WiFi transmitter is not transmitting all of

the time, there are sharp changes in RSSI measurements, as the USRP is receiving

both when there is a signal and when there is none.

Figure 6.8: This graph shows how the RSSI of our received signal can dramatically
change. These sharp transitions in RSSI values are due to the transmitter not always
continually transmitting.

In order to have an accurate measurement, RSSI reports that are under the

noise floor must be filtered out. A detection threshold of -85 dBm was selected, as

it is above the noise floor. The output RSSI measurements only record noticeable

signals.

Corresponding RSSI values were used to estimate the distance of the transmission
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that was sensed. The localization algorithm depended upon this calculation in order

to accurately locate a signal source. the distance equation used was:

RSSI = 10αlog(d) (6.1)

d = 10(RSSI−RSSIcalibration)(−10α) + dcalibration (6.2)

These equations were mentioned previously in Section 2.3. Based on some field

testing, this equation has been fairly accurate.

Table 6.1: The RSSI to distance calculation reasonably relates received signal
strength to how far away a transmitter is located.

RSSI (dBm) Observed Distance (Meters) Theoretical Distance (Meters)
-50 3 3.2
-60 9 10
-70 26 31.62

When the drone was tested, received signal strengths were between -65 to -80

dBm. These values fall within the expected power range of desired signals, as the

sensing platform was 100 ft or 30 meters away from the transmitter.

In addition to calculating RSSI values, a C++ program separate from the code

framework was written. This program, called iq to file, was created as a foundation

with which to work with. It became the testbed for specific elements of MASDR,

since it was already capable of logging. The code for this section is in Appendix

B.1. This program is built on the rx samples to file example that Ettus Research

provides with the UHD. This program already had the desired base functionality, so

it proved to be a good starting point. The program was then stripped of unnecessary

functionality, including the command-line interface.
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With the extraneous functionality removed, components of the MASDR frame-

work were added, in order to test them separately. The matched filter, RSS mea-

surements, and GPS modules were the sections added. This allowed for post-process

localization. In order to save these values properly, they were packed into the com-

plex type that was being used to save IQ samples. In order to make it possible to

pull these values out in post-processing, they were given an unrealistic imaginary

value. with each different module getting a different imaginary value. The matched

filter outputs got a flag of 1000. GPS X, Y and Z coordinates were given flags of

2000, 3000, and 4000, respectively. RSS values got a flag of 5000. These values were

written with each buffer of samples received. This makes it easier to align results

when processing.

Once a data file was recorded, it was processed using a MATLAB script. This

script is in Appendix D.4. This script reads in the .dat file produced by iq to file, as

floats. It then separates the data into in-phase and quadrature components. Then,

after pre-allocating buffers, the script pulls out the non-IQ samples. The matched

filter values and the RSS measurements are then plotted. The script used to plot the

received signal, but with longer record times, this becomes impractical or impossible.

6.4 Spectrum Localization

The GPS was to be used to gather location data to allow for post processing. Un-

fortunately the GPS was non-functional during the test due to it being unable to

locate satellites during the tests. Therefore, in order to use the data gathered in

the tests conducted on December 11 and 16, 2016, GPS data was pulled from the

drone. This was done using a command-line interface that 3DR provided online [59].

Unlike the other logs that were pulled using this method, the GPS information was
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logged in a Dataflash log. This format saves the information in MAVlink packets,

making it easier to transmit to a base station but harder to post-process. To deal

with this, the Ardupilot Mission Planner software was installed [65]. This software

is capable of taking the dataflash logs generated by the 3DR Solo and converting

them into a format that’s easier to process. Using this software, the logs for the

flights on December 11 and 16, 2016 were converted to MATLAB data files. The

relevant GPS information was then pulled from the larger data set.

As a result of the complications with the GPS measurements, the 4-state Kalman

filter was modeled in MATLAB. The script can be found in D.3. The script initializes

the matrices as described in Section 5.2. A noisy input with a constant x velocity 1

and y velocity 1 is initialized. Arbitrary variance values are used in P and for the

noise covariance matrices Q and R. Plots of the resulting predictions are shown in

Figure 6.11 and Figure 6.12.

Figure 6.9: X position predictions from
Kalman filter simulation.

Figure 6.10: Y position predictions from
Kalman filter simulation.

Since the test scenario of the Kalman Filter is a constant-velocity model, the

expected positions should increase in a linear manner. The resulting predictions

that come from the Kalman Filter are decent, but not too much of an improvement.

This is due to a number of factors. The first factor is the fact that there are no
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Figure 6.11: X velocity predictions from
Kalman filter simulation.

Figure 6.12: Y velocity predictions from
Kalman filter simulation.

direct measurements of velocity. Because of this, the resulting velocity measure-

ments already introduce some error. Another factor is the choosing of the various

parameters. This was done in a fairly arbitrary manner, due to time constraints.

The script used to display the measured signal strengths was designed for post-

proccesing use, taking in a text file of locations and their corresponding RSS values.

The processing portion of the script is written in python, and can be found in

Appendix C.1. Equation (6.2) is used to calculate the raw distance to the signal.

The Pythagorean Theorem is then used to eliminate the altitude component of the

distance as can be seen in Figure 6.13. The latitude, longitude, and land-based

distance are then formatted into a template string for each point at which a signal

was detected.

The formatted strings are inserted into a template html file, primarily composed

of a Javascript block that calls into the Google Maps API. Using the drawing tools

in the API, rings are drawn on the map corresponding to the calculated distance.

An example output screenshot of a generated map has been included in Figure 6.14.

The actual output is a webpage with a Google Maps instance running in it, so the

map is fully interactive, with the ability to zoom in and scroll around as well.
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Figure 6.13: Diagram showing right triangle used to calculate land-based distance
from the calculated distance and a known altitude.

Figure 6.14: Map-based localization example. The rings drawn are calculated from
RSS values based on samples taken at the centers of each ring.

6.5 Transmit To Ground

In order to reduce the amount of processing done onboard the drone, a ground re-

ceiver was created. It receives important information such as the location, power

79



level, and frequency in which a signal was detected at. This information is trans-

mitted from the MASDR platform to a ground-based RTL-SDR.

Differential binary phase shift keying or DBPSK modulation was used as the

communication protocol for transmission to the ground receiver. This ensures a

reduced bit error rate. A DBPSK receiver and transmitter was implemented us-

ing GNURadio. The receiver side of the system used the flowgraph shown on the

next page. This flowgraph was created in GNU Radio to receive and demodulate

the received DBPSK waveform. This is done by using the QT GUI development

environment in GNU Radio.
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This program receives a binary file source which is an array of the data to be

sent. This passes through a packet encoder, which encapsulates all of the data

from the binary file into a packet with a preamble and an access code, ensuring

that the receiver will sync correctly to decode the transmitted data. After this, it

goes through a constellation modulator that modulates the binary information into

a corresponding analog waveform. It is then transmitted using the USRP with a

central frequency of 905 MHz. Before using the receiver, a spectrum monitoring tool

for the RTL-SDR called SDR# is used to confirm that the USRP is transmitting

on this frequency.

Figure 6.15: An FFT with a center frequency of 905 MHz. This waveform was
created by using SDR# on an RTL-SDR.

This signal is then received by the RTL-SDR. However, significant handling of

the signal must be taken care of before the correct information can be demodulated.

A Frequency Translating FIR Filter was used as a bandpass filter, removing extra

signals that might be around that band. After this, a series of three more functions

were used. First, a polyphase clock sync is used to perform timing synchronization

with the transmitter. This is done by using two filter banks that use a matched filter

on a signals pulse shape. A root raised cosine filter is used for our pulse shape since

our transmitter is using a root raised cosine filter. The synchronized signal is then
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sent through a CMA Equalizer which equalizes modulated baseband signals. Then,

a Costas Loop is used in order to provide adequate phase correction so that the

received signal’s constellation is locked in phase for the entirety of the transmission.

The results after all of this signal processing are as expected with the received BPSK

signal.

Figure 6.16: A received constellation when the reciever is finished performing the
timing offset and phase correction on the transmitted signal. This constellation is
taken when the signal strength was at -55 dBm which is the expected signal strength
when the drone is receiving signals in the air.

This constellation is sent through a differential decoder and a packet decoder,

to extract the payload out of the packetized binary information. This data is then

uploaded to results file on the ground receivers main computer.

6.6 Platform Deployment

The platform on the 3DR Solo was tested in the two most applicable scenarios, the

rural environment and the urban environment. The tests were conducted in secluded

areas to prioritize privacy and safety concerns. The tests consisted of mounting the

platform onto the 3DR Solo, flying the drone in a procedural flight path as seen

in Figure 6.17 to collect IQ data, and processing the data for the mapping and
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the localization of signals around that area. The signals in our case, would be the

controller access point.

Figure 6.17: 3x3 diagram of test flight plan. The red circle represents where the
controller was placed, and the blue circle represents where the drone was started.

The simulation of the rural environment was organized at Professor Wyglinski’s

property on December 11th, 2016. In order to get the least interfering wifi signals,

he turned off his WiFi, and he authorized the flight of the drone on his property.

The testing environment consisted of high rise trees that surrounded the area and

grew up to an average of 80ft. The resulting mapping and localization of the area

is provided in Figure 6.18.

The simulation of the urban environment was organized at the Gateway Park

garage on campus, on December 16th, 2016, after having gotten permission for the

test from campus police. This WiFi of this area was uncontrolled, with various public

and private access points active. This better simulated an urban environment. There

were not many tall buildings around, limiting the applicability of the test on denser

urban areas. As can be seen in Figure 6.19, the flight kept the platform relatively

close to the controller, meaning that the strongest signal in the area would always

be the controller. Even so, some of the points further from the controller read

higher powers than would be expected from solely the controller, so it’s likely that
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Figure 6.18: The result of the test flight in a rural environment. The red dot shows
where the actual access point was located. The black dots represent the GPS lo-
cations of where the drone traveled, and the their shades illustrate the length of
time the drone was at that location. The black hollow circle depicts the localiza-
tion of where the drone thinks the access point may be based on GPS and RSSI
measurements. The larger hollow circle represents a measurement close to the noise
floor.

external Wi-Fi signals influenced the receptions, as was expected. This means that

to effectively locate a transmitter in an urban environment, the platform must be

closer to that transmitter than any other.

6.7 Chapter Summary

In this chapter, the experimental results achieved in this MQP were discussed. This

focused primarily on the design and implementation of the system, as well as the

processing of the data collected. Overall, the team was able to create a good foun-

dation on which aerial sensing methods can be applied.
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Figure 6.19: The result of the test flight in an urban environment. The red dot
shows where the actual access point was located. The black dots represent the GPS
locations of where the drone traveled, and the their shades illustrate the length of
time the drone was at that location. The black hollow circle depicts the localiza-
tion of where the drone thinks the access point may be based on GPS and RSSI
measurements.
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Chapter 7

Conclusions

In this project, drone and SDR technologies were combined, resulting in a versatile

platform. By doing so, the team achieved the following:

• Constructed hardware platform: Constructed a self-contained SDR signal

processing unit, able to operate separate from the drone used.

• Created software platform: Created the MASDR software design platform,

written to be flexible and easy to modify.

• Collected data: Gathered assorted information from the air, including IQ

samples, matched filter-processed samples, RSS values, and GPS locations.

• Communication to ground tested: Created and tested a DBPSK trans-

mitter and receiver, including Root Raised Cosine Filter and channel equal-

ization.

• Kalman Filter modeled in MATLAB: Modelled a four-state tracking

Kalman Filter in MATLAB, using a constant-velocity model.

While designing MASDR, a number of problems were encountered. The team

came to the following conclusions:
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• Transmission and Receiving should both be done with either UHD

or GNURadio. GNURadio provides a lot of useful blocks that make de-

signing a receiver easier than in UHD, where every block has to be written.

However, this means that a lot of the behind-the-scenes work in GNURadio

isn’t obvious, and has to be deeply investigated. Either use the premade blocks

in GNURadio or design the whole system with UHD.

• GPS is only good for coarse localization. GPS has a low refresh rate

in comparison to the sample rate of the USRP B200 mini. In addition, it

only has an precision of a few meters. In order to get a more precise location

and estimate, other sensors, like inertial measurement units (IMU), need to

be used. This introduces a whole new layer of data fusion.

• A smarter WiFi Channel decision is needed. In the MASDR implemen-

tation, the SDR only looks at one WiFi channel, in order to allow for accurate

RSS measurements. This channel is hard coded into the system. In order

to have a more encompassing WiFi sensing and localizing solution, a smarter

way to sense WiFi channels is necessary.

7.1 Future Work

The primary focus of this MQP was to create an aerial SDR testbed, on which more

specialized projects can be completed. This is the primary area where future work

could be based. One possibility is to investigate the localization of the controller of a

drone. This involves locating a communication signal from a drone, determining its

SSID, finding another transmitter with the same SSID, and localizing it. Another

possibility is to use two aerial SDR platforms to empirically model a channel. One

platform would act as the transmitter, the other as the receiver. These are two
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of many possibilities. With the growth of Cognitive Radio and quadcopters, the

number of possible applications will only increase.

One of the secondary purposes of this MQP was to implement WiFi localization

on the platform. There are many different ways to do this, covered in the back-

ground. This project focused primarily on using a matched filter in the frequency

domain to match an OFDM header used by most WiFi communications, but WiFi

is only one of many signals to be identified. In looking at other signals, other energy

detection techniques may be warranted. In addition, the platform can be modified

to classify the signals it receives.

The Kalman filter used in this project was designed for GPS values, and had

a few shortcomings. The first shortcoming was that it was only implemented in

MATLAB, using a very basic test signal and simplistic model. There is C++ code

that was written, but never tested. The first step would be to use the Kalman filter

in the existing code. Beyond this, the model used to generate the Kalman gains

can be improved, which would result in better predictions. In addition, a Kalman

filter could be applied to other aspects of the system, such as the RSS sensing value,

and the distance calculation that uses it. This is non-trivial, because the equation

for getting distance from RSS is non-linear, so an Extended Kalman filter would be

necessary.
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Appendix A

Design Configurations
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A.1 SBC Selection

Table A.1: SBC Selection

ODROID-XU4 UP Board Inforce 6540 EPIA-P90 Jetway NP93 Jetson TK-1
Size 82 x 58 mm 86 x 57 mm 100 x 72 mm 100 x 72 mm
Weight 38 grams 88 grams
Power Usage 1-4A 3A 3A
Power Voltage 5V, 4A 5V, 3A 12V, 3A 12V
CPU Exynos5422 Intel x5-Z8350 Snapdragon 805 VIA Eden Intel N2930 NVIDIA Quad Core
RAM 2GB 4GB 2GB Up to 8GB 2GB 2GB x 16
USB 3.0 Yes Yes Yes Yes Yes Yes
OS Linux Windows/Linux Windows/Linux Windows/Linux
Price $74 $130 $240 $359 $200 $19291



A.2 Approach One

Table A.2: Approach One Design Configuration

Hardware Design Description
Drone 3DR Solo
SDR B-200 Mini
Antenna Alfa APA-M25
Flight Time 25 min
Flight Speed 5-10 mph
SBC (Computer) Up Board
Compute Battery 12V 800mAh stepped down to 5V
Payload 700 grams
Storage 32 GB flash drive
Antenna Configuration Antenna pointed down
Communications Design Description
Drone operation Human Controlled
Environment to Drone Frequency 2.4 GHz
Controller to Drone TX Frequency 5.7 GHz
Controller to Drone TX Period Instantaneous (Drone dependent)
Controller to Drone TX Content Control
Drone to Base TX Frequency 900 MHz
Drone to Base TX Period 2 Hz (Every time drone stops)
Drone to Base TX Content Location and power level if detected
Signal Processing Design Description
Onboard Computer Processing Sensing
Offboard Computer Processing Localization
SDR FPGA Processing Available if needed
Real Time Localization No
Sampling Technique User controlled, record bursts of data
Sampling Space Distance User Controlled
Number of Samples per Location Bursts every half second
Localization Method RSS Triangulation (Average RSS over time)
Energy Sensing Technique Filter and energy detection
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A.3 Approach Two

Table A.3: Approach Two Design Configuration

Hardware Design Description
Drone DJI S1000
SDR B-200 Mini
Antenna Alfa APA-M25
Flight Time 25 min
Flight Speed 5-10 mph
SBC (Computer) Up Board
Compute Battery 12V 800mAh stepped down to 5V
Payload 2000 grams
Storage 32 GB flash drive
Antenna Configuration Antenna pointed down
Communications Design Description
Drone operation Human Controlled
Environment to Drone Frequency 2.4 GHz
Controller to Drone TX Frequency 900 MHz
Controller to Drone TX Period Instantaneous (Drone dependent)
Controller to Drone TX Content Control
Drone to Base TX Frequency 5.7 GHz
Drone to Base TX Period 2 Hz (Every time drone stops)
Drone to Base TX Content Location and power level if detected
Signal Processing Design Description
Onboard Computer Processing Sensing
Offboard Computer Processing Localization
SDR FPGA Processing Available if needed
Real Time Localization No
Sampling Technique User controlled, record bursts of data
Sampling Space Distance User Controlled
Number of Samples per Location Bursts every half second
Localization Method RSS Triangulation (Average RSS over time)
Energy Sensing Technique Filter and energy detection
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A.4 Approach Three

Table A.4: Approach Three Design Configuration

Hardware Design Description
Drone 3DR Solo
SDR B-200 Mini
Antenna Alfa APA-M25
Flight Time 25 min
Flight Speed 5-10 mph
SBC (Computer) Up Board
Compute Battery 12V 800mAh stepped down to 5V
Payload 700 grams
Storage 32 GB flash drive
Antenna Configuration Antenna pointed down
Communications Design Description
Drone operation Human Controlled
Environment to Drone Frequency 2.4 GHz
Controller to Drone TX Frequency N/A
Controller to Drone TX Period N/A
Controller to Drone TX Content Kill/Return home signal
Drone to Base TX Frequency 900 MHz
Drone to Base TX Period 2 Hz (Every time drone stops)
Drone to Base TX Content Location and power level if detected
Signal Processing Design Description
Onboard Computer Processing Sensing, localization, drone control
Offboard Computer Processing None
SDR FPGA Processing Available if needed
Real Time Localization Yes
Sampling Technique Sample at one spot, move to next spot
Sampling Space Distance User Controlled
Number of Samples per Location Bursts every half second
Localization Method RSS Triangulation (Average RSS over time)
Energy Sensing Technique Filter and energy detection
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A.5 Approach Four

Table A.5: Approach Four Design Configuration

Hardware Design Description
Drone 3DR Solo
SDR B-200 Mini
Antenna Alfa APA-M25
Flight Time 25 min
Flight Speed 5-10 mph
SBC (Computer) Up Board
Compute Battery 12V 800mAh stepped down to 5V
Payload 700 grams
Storage 32 GB flash drive
Antenna Configuration Sheilding around sensing antenna
Communications Design Description
Drone operation Human Controlled
Environment to Drone Frequency 2.4 GHz
Controller to Drone TX Frequency 2.4 GHz
Controller to Drone TX Period Instantaneous (Drone dependent)
Controller to Drone TX Content Control
Drone to Base TX Frequency 900 MHz
Drone to Base TX Period 2 Hz (Every time drone stops)
Drone to Base TX Content Location and power level if detected
Signal Processing Design Description
Onboard Computer Processing Sensing
Offboard Computer Processing Localization
SDR FPGA Processing Available if needed
Real Time Localization No
Sampling Technique User controlled, record bursts of data
Sampling Space Distance User Controlled
Number of Samples per Location Bursts every half second
Localization Method RSS Triangulation (Average RSS over time)
Energy Sensing Technique Filter and energy detection
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Appendix B

C++ Code

B.1 iq to file Source Code

1 //

2 // Copyright 2010−2011 ,2014 Ettus Research LLC

3 // Modified , 2016 by Narut Akadejdechapanich , Scott Iwanicki , Max Li , Kyle Piette ,

4 // Jonas Rogers

5 //

6 // This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify

7 // i t under the terms o f the GNU General Publ ic L icense as publ i shed by

8 // the Free Software Foundation , e i t h e r ve r s i on 3 o f the License , or

9 // ( at your opt ion ) any l a t e r ve r s i on .

10 //

11 // This program i s d i s t r i bu t ed in the hope that i t w i l l be use fu l ,

12 // but WITHOUT ANY WARRANTY; without even the impl ied warranty o f

13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 // GNU General Publ ic L icense f o r more d e t a i l s .

15 //

16 // You should have r e c e i v ed a copy o f the GNU General Publ ic L icense

17 // along with t h i s program . I f not , s ee <http ://www. gnu . org / l i c e n s e s />.

18 //

19

20 #inc lude <uhd/ types / tune r eque s t . hpp>

21 #inc lude <uhd/ u t i l s / t h r e a d p r i o r i t y . hpp>

22 #inc lude <uhd/ u t i l s / sa fe main . hpp>

23 #inc lude <uhd/usrp /mul t i us rp . hpp>

24 #inc lude <uhd/ except ion . hpp>

25 #inc lude <boost / program options . hpp>

26 #inc lude <boost / format . hpp>

27 #inc lude <boost / thread . hpp>

28 #inc lude <iostream>

29 #inc lude <fstream>

30 #inc lude <c s i gna l>
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31 #inc lude <complex>

32 #inc lude <f f tw3 . h>

33 #inc lude <pthread . h>

34 #inc lude <gps . h>

35 #inc lude <uni s td . h>

36 #inc lude <math . h>

37

38 #de f i n e N FFT 1024

39 #de f i n e GPS BUF SIZE 60 // Hold the past 6 seconds o f samples

40

41 namespace po = boost : : program options ;

42

43 ///FFT handles , a r rays

44 f f tw complex ∗ f f t i n , ∗ f f t o u t ; ///< Buf f e r s f o r FFT.

45 f f tw p l an f f t p ;

46 f f tw complex ofdm head [N FFT ] ; //< Expected OFDM Header .

47

48 /// In t e r rupt Handlers

49 s t a t i c bool s t o p s i g n a l c a l l e d = f a l s e ;

50 void s i g i n t h a nd l e r ( i n t ){ s t o p s i g n a l c a l l e d = true ;}

51

52

53

54 //GPS va lues

55 pthread t gps thread ;

56 i n t gps running = 1 ; // f l a g to s t a r t / stop gps p o l l i n g

57 // need to r e c a l l p o l l g p s a f t e r s e t t i n g f l a g back to 1

58 double gp s bu f f [ GPS BUF SIZE ] [ 3 ] ; //GPS data bu f f e r .

59 //0 i s l a t i t u d e

60 //1 i s l ong i tude

61 //2 i s timestamp

62 v o l a t i l e i n t gps buf head = 0 ; // cur rent gps bu f f e r head

63 s t r u c t gps da ta t gp s da ta ; //GPS s t ru c t

64 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

65 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗GPS FUNCTIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

66 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

67 in t i n i t g p s ( ) {

68 in t rc , x ;

69 gps running =1;

70 i f ( ( rc = gps open ( ” l o c a l h o s t ” , ”2947” , &gps da ta ) ) == −1) {

71 p r i n t f ( ” code : %d , reason : %s\n” , rc , g p s e r r s t r ( rc ) ) ;

72 gps running = 0 ;

73 return 0 ;

74 }

75

76 // s e t gps stream to watch JSON

77 gps stream(&gps data , WATCHENABLE | WATCH JSON, NULL) ;

78

79 // i n i t i a l i z e gps bu f f e r to 0 s

80 f o r ( rc =0; rc<GPS BUF SIZE ; rc++){

81 f o r (x=0; x<3; x++){

82 gp s bu f f [ rc ] [ x ] = 0 ;

83 }
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84 }

85 return 1 ;

86 }

87

88

89 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

90 void ∗ po l l g p s ( void ∗unused ){

91 in t rc ;

92 whi le ( gps running ) {

93 // wait f o r 2 seconds to r e c e i v e data

94 i f ( gps wa i t ing (&gps data , 2000000) ) {

95 /∗ read data ∗/

96 i f ( ( rc = gps read(&gps da ta ) ) == −1) {

97 p r i n t f ( ” e r r o r occured read ing gps data . code : %d , reason : %s\n” ,

98 rc , g p s e r r s t r ( rc ) ) ;

99 } e l s e {

100

101 // Write data from the GPS r e c e i v e r

102 i f ( ( gp s da ta . s t a tu s == STATUS FIX) &&

103 ( gp s da ta . f i x .mode == MODE 2D | | gps da ta . f i x .mode == MODE 3D) &&

104 ! i snan ( gp s da ta . f i x . l a t i t u d e ) && ! isnan ( gp s da ta . f i x . l ong i tude ) ) {

105

106 gp s bu f f [ gps buf head ] [ 0 ] = gps da ta . f i x . l a t i t u d e ;

107 gp s bu f f [ gps buf head ] [ 1 ] = gps da ta . f i x . l ong i tude ;

108 gp s bu f f [ gps buf head ] [ 2 ] = gps da ta . f i x . time ;

109 //Loop bu f f e r

110 gps buf head = ( gps buf head + 1) % GPS BUF SIZE ;

111

112 } e l s e {

113 p r i n t f ( ”no GPS data av a i l a b l e \n” ) ;

114 }

115 }

116 }

117 }

118 pth r ead ex i t (NULL) ;

119 }

120

121 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

122

123 void ge t gps data ( double ∗ l a t i t ude , double ∗ l ong i tude , double ∗ time ){

124 in t pos = ( gps buf head − 1) % GPS BUF SIZE ;

125 ∗ l a t i t u d e = gps bu f f [ pos ] [ 0 ] ;

126 ∗ l ong i tude = gps bu f f [ pos ] [ 1 ] ;

127 ∗ time = gps bu f f [ pos ] [ 2 ] ;

128 return ;

129 }

130

131

132 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

133

134 void rem gps ( ) {

135 gps running = 0 ;

136 gps stream(&gps data , WATCH DISABLE, NULL) ;
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137 gp s c l o s e (&gps da ta ) ;

138 }

139

140 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

141 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗RECV, FS WRITING FUNCTIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

142 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

143 template<typename samp type> void r e c v t o f i l e (

144 uhd : : usrp : : mul t i u s rp : : sp t r usrp ,

145 const std : : s t r i n g &cpu format ,

146 const std : : s t r i n g &wire format ,

147 const std : : s t r i n g &f i l e ,

148 s i z e t samps per buf f ,

149 unsigned long long num requested samples ,

150 double t ime reques ted = 0 .0 ,

151 bool nu l l = f a l s e ,

152 bool cont inue on bad packet = f a l s e

153 ){

154 in t i ;

155 unsigned long long num total samps = 0 ;

156 double l a t i n , l ong in , t ime in ;

157 f l o a t match val [ 2 ] = {0 ,0} , re , im ;

158 std : : complex<samp type> match mag , l a t v a l , l ong va l , t ime val , r s s i v a l ;

159 double r s s i = 0 ;

160 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : seconds (2) ) ; // a l low f o r some setup time

161 // c r ea t e a r e c e i v e streamer

162 uhd : : s t r e am arg s t s t ream args ( cpu format , wi re format ) ;

163 uhd : : rx s t reamer : : sp t r rx stream = usrp−>ge t rx s t r eam ( st ream args ) ;

164 uhd : : rx metadata t md;

165

166 // extra s i z e f o r match f i l t value , l a t i tude , long i tude , time

167 std : : complex<samp type> bu f f [ samps per bu f f + 5 ] ;

168

169 // F i l e handle

170 std : : o fstream o u t f i l e ;

171 i f ( not nu l l )

172 o u t f i l e . open ( f i l e . c s t r ( ) , std : : o f stream : : binary ) ;

173 bool over f low message = true ;

174

175 // setup streaming

176 uhd : : stream cmd t stream cmd ( ( num requested samples == 0) ?

177 uhd : : stream cmd t : : STREAM MODE START CONTINUOUS:

178 uhd : : stream cmd t : : STREAM MODE NUM SAMPS AND DONE

179 ) ;

180 stream cmd . num samps = s i z e t ( num requested samples ) ;

181 stream cmd . stream now = true ;

182 stream cmd . t ime spec = uhd : : t ime spe c t ( ) ;

183 rx stream−>i s sue stream cmd ( stream cmd ) ;

184

185 boost : : system time s t a r t = boost : : ge t sys tem t ime ( ) ;

186 unsigned long long t i c k s r e qu e s t e d = ( long ) ( t ime reques ted ∗ ( double ) boost : : pos ix t ime : :

t ime durat ion : : t i c k s p e r s e c ond ( ) ) ;

187 boost : : pos ix t ime : : t ime durat ion t i c k s d i f f ;

188 boost : : system time l a s t upda t e = s t a r t ;
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189 unsigned long long las t update samps = 0 ;

190

191 typede f std : : map<s i z e t , s i z e t > SizeMap ;

192 SizeMap mapSizes ;

193 std : : cout<< ” ente r whi le loop ”<<std : : endl ;

194 whi le ( not s t o p s i g n a l c a l l e d and ( num requested samples != num total samps or

num requested samples == 0) ) {

195 boost : : system time now = boost : : ge t sys tem t ime ( ) ;

196

197 s i z e t num rx samps = rx stream−>recv ( buf f , samps per buf f , md, 3 . 0 , 0) ;

198

199 i f (md. e r r o r c ode == uhd : : rx metadata t : :ERROR CODE TIMEOUT) {

200 std : : cout << boost : : format ( ”Timeout whi le streaming ” ) << std : : endl ;

201 break ;

202 }

203 i f (md. e r r o r c ode == uhd : : rx metadata t : :ERRORCODEOVERFLOW){

204 i f ( over f low message ) {

205 over f low message = f a l s e ;

206 std : : c e r r << boost : : format (

207 ”Got an over f low i nd i c a t i o n . Please cons ide r the f o l l ow ing :\n”

208 ” Your wr i t e medium must su s t a i n a ra t e o f %fMB/ s .\n”

209 ” Dropped samples w i l l not be wr i t t en to the f i l e .\n”

210 ” Please modify t h i s example f o r your purposes .\n”

211 ” This message w i l l not appear again .\n”

212 ) % ( usrp−>g e t r x r a t e ( ) ∗ s i z e o f ( std : : complex<samp type>)/1 e6 ) ;

213 }

214 cont inue ;

215 }

216 i f (md. e r r o r c ode != uhd : : rx metadata t : :ERROR CODE NONE){

217 std : : s t r i n g e r r o r = s t r ( boost : : format ( ”Rece iver e r r o r : %s ” ) % md. s t r e r r o r ( ) ) ;

218 i f ( cont inue on bad packet ){

219 std : : c e r r << e r r o r << std : : endl ;

220 cont inue ;

221 }

222 e l s e

223 throw std : : runt ime e r ro r ( e r r o r ) ;

224 }

225

226 num total samps += num rx samps ;

227

228 //Copy bu f f . f r on t ( ) in to an FFT

229 f o r ( i = 0 ; i < N FFT; i++){

230 f f t i n [ i ] [ 0 ] = bu f f [ i ] . r e a l ( ) ;

231 f f t i n [ i ] [ 0 ] = bu f f [ i ] . imag ( ) ;

232 }

233

234 //Execute FFT

235 f f tw exe cu t e ( f f t p ) ;

236

237 //Matched f i l t e r .

238 f o r ( i = 0 ; i < N FFT; i++) {

239 re = f f t o u t [ i ] [ 0 ] ∗ ofdm head [ i ] [ 0 ] − f f t o u t [ i ] [ 1 ] ∗ ofdm head [ i ] [ 1 ] ;

240 im = f f t o u t [ i ] [ 0 ] ∗ ofdm head [ i ] [ 1 ] + f f t o u t [ i ] [ 1 ] ∗ ofdm head [ i ] [ 0 ] ;
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241 match val [ 0 ] += re ;

242 match val [ 1 ] += im ;

243 }

244 //Read RSS value .

245 r s s i = usrp−>g e t r x s e n s o r ( ” r s s i ” ,0 ) . t o r e a l ( ) ;

246

247 //Use imaginary va lues in complex data type to f l a g non−sample va lues .

248 ge t gps data (& l a t i n ,& long in ,& t ime in ) ;

249 match mag = std : : complex<samp type>( sq r t ( match val [ 0 ] ∗ match val [ 0 ] + \

250 match val [ 1 ] ∗ match val [ 1 ] ) ,1000) ;

251 l a t v a l = std : : complex<samp type >(( samp type ) l a t i n , 2000) ;

252 l ong va l = std : : complex<samp type >(( samp type ) long in ,3000) ;

253 t ime va l = std : : complex<samp type >(( samp type ) t ime in ,4000) ;

254 r s s i v a l = std : : complex<samp type >(( samp type ) r s s i , 5000) ;

255

256 //Add r e s u l t s to wr i t e bu f f e r

257 bu f f [ samps per bu f f ] = match mag ;

258 bu f f [ samps per bu f f +1] = l a t v a l ;

259 bu f f [ samps per bu f f +2] = l ong va l ;

260 bu f f [ samps per bu f f +3] = t ime va l ;

261 bu f f [ samps per bu f f +4] = r s s i v a l ;

262

263 //Write to bu f f e r .

264 i f ( o u t f i l e . i s open ( ) )

265 o u t f i l e . wr i t e ( ( const char ∗) buf f , ( num rx samps+5)∗ s i z e o f ( std : : complex<samp type>)) ;

266

267 t i c k s d i f f = now − s t a r t ;

268 i f ( t i c k s r e qu e s t e d > 0){

269 i f ( ( unsigned long long ) t i c k s d i f f . t i c k s ( ) > t i c k s r e qu e s t e d )

270 break ;

271 }

272 }

273

274 stream cmd . stream mode = uhd : : stream cmd t : : STREAM MODE STOP CONTINUOUS;

275 rx stream−>i s sue stream cmd ( stream cmd ) ;

276

277 i f ( o u t f i l e . i s open ( ) )

278 o u t f i l e . c l o s e ( ) ;

279 }

280

281 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

282 typede f boost : : funct ion<uhd : : s e n s o r v a l u e t ( const std : : s t r i n g&)> g e t s e n s o r f n t ;

283

284 bool ch e ck l o ck ed s en so r ( std : : vector<std : : s t r i ng> sensor names , const char∗ sensor name ,

g e t s e n s o r f n t g e t s en s o r f n , double setup t ime ){

285 i f ( std : : f i nd ( sensor names . begin ( ) , sensor names . end ( ) , sensor name ) == sensor names . end ( ) )

286 return f a l s e ;

287

288 boost : : system time s t a r t = boost : : ge t sys tem t ime ( ) ;

289 boost : : system time f i r s t l o c k t im e ;

290

291 std : : cout << boost : : format ( ”Waiting f o r \”%s \” : ” ) % sensor name ;

292 std : : cout . f l u s h ( ) ;
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293

294 whi le ( t rue ) {

295 i f ( ( not f i r s t l o c k t im e . i s n o t a d a t e t ime ( ) ) and

296 ( boost : : ge t sys tem t ime ( ) > ( f i r s t l o c k t im e + boost : : pos ix t ime : : seconds (

setup t ime ) ) ) )

297 {

298 std : : cout << ” locked . ” << std : : endl ;

299 break ;

300 }

301 i f ( g e t s e n s o r f n ( sensor name ) . t o boo l ( ) ){

302 i f ( f i r s t l o c k t im e . i s n o t a d a t e t ime ( ) )

303 f i r s t l o c k t im e = boost : : ge t sys tem t ime ( ) ;

304 std : : cout << ”+” ;

305 std : : cout . f l u s h ( ) ;

306 }

307 e l s e {

308 f i r s t l o c k t im e = boost : : system time ( ) ; // r e s e t to ’ not a date time ’

309

310 i f ( boost : : ge t sys tem t ime ( ) > ( s t a r t + boost : : pos ix t ime : : seconds ( setup t ime ) ) ){

311 std : : cout << std : : endl ;

312 throw std : : runt ime e r ro r ( s t r ( boost : : format ( ” timed out wait ing f o r consecut ive

l o ck s on sensor \”%s \”” ) % sensor name ) ) ;

313 }

314 std : : cout << ” ” ;

315 std : : cout . f l u s h ( ) ;

316 }

317 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : m i l l i s e c ond s (100) ) ;

318 }

319 std : : cout << std : : endl ;

320 return true ;

321 }

322

323 in t UHD SAFE MAIN( in t argc , char ∗argv [ ] ) {

324 uhd : : s e t t h r e a d p r i o r i t y s a f e ( ) ;

325

326

327

328 // I n i t i a l i z e OFDM head

329 in t i ;

330 f o r ( i =0; i<N FFT; i++){

331 in t r a t i o = N FFT/64 ; //Number o f f f t b ins in an OFDM bin .

332

333 //Account f o r the f a c t that only middle 52 OFDM bins are used .

334 i f ( i < 6 ∗ r a t i o | | i > 58 ∗ r a t i o ){

335 ofdm head [ i ] [ 0 ] = 0 ;

336 ofdm head [ i ] [ 1 ] = 0 ;

337 }

338 e l s e i f ( i >= (6+6) ∗ r a t i o && i < (6+7) ∗ r a t i o ){

339 ofdm head [ i ] [ 0 ] = 1 ;

340 ofdm head [ i ] [ 1 ] = 1 ;

341 }

342 e l s e i f ( i >= (12+14) ∗ r a t i o && i < (12+15) ∗ r a t i o ) {

343 ofdm head [ i ] [ 0 ] = 1 ;
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344 ofdm head [ i ] [ 1 ] = 1 ;

345 }

346 e l s e i f ( i >= (26+14) ∗ r a t i o && i < (26+15) ∗ r a t i o ) {

347 ofdm head [ i ] [ 0 ] = 1 ;

348 ofdm head [ i ] [ 1 ] = 1 ;

349 }

350 e l s e i f ( i >= (40+14) ∗ r a t i o && i < (40 + 15) ∗ r a t i o ){

351 ofdm head [ i ] [ 0 ] = 1 ;

352 ofdm head [ i ] [ 1 ] = 1 ;

353 }

354 e l s e {

355 ofdm head [ i ] [ 0 ] = 0 ;

356 ofdm head [ i ] [ 1 ] = 0 ;

357 }

358 }

359 // I n i t i a l i z e FFT.

360 f f t i n = ( f f tw complex ∗) f f tw ma l l o c ( s i z e o f ( f f tw complex ) ∗ N FFT) ;

361 f f t o u t = ( f f tw complex ∗) f f tw ma l l o c ( s i z e o f ( f f tw complex ) ∗ N FFT) ;

362 f f t p = f f tw p l an d f t 1 d (N FFT, f f t i n , f f t o u t , FFTWFORWARD, FFTWMEASURE) ;

363

364 // I n i t i a l i z e USRP

365 std : : s t r i n g f i l e = ” usrp samples . dat” , \

366 type = ” f l o a t ” , \

367 ant = ”RX2” , \

368 r e f = ” i n t e r n a l ” , \

369 wirefmt = ” sc16 ” , \

370 args ;

371

372 shor t total num samps = 0 , \

373 t o t a l t ime = 0 , \

374 spb=N FFT, \

375 setup t ime=1, \

376 gain=40;

377

378 double ra t e = 1e6 , \

379 f r e q =2.4 e9 ;

380

381 bool nu l l = 0 , \

382 cont inue on bad packet = 0 ;

383

384

385 // c r ea t e a usrp dev i ce

386 uhd : : usrp : : mul t i u s rp : : sp t r usrp = uhd : : usrp : : mul t i u s rp : : make( args ) ;

387

388 //Lock mboard c l o ck s

389 usrp−>s e t c l o c k s o u r c e ( r e f ) ;

390

391 // s e t the sample ra t e

392 usrp−>s e t r x r a t e ( ra t e ) ;

393

394 uhd : : t un e r equ e s t t tune r eque s t ( f r e q ) ;

395 usrp−>s e t r x f r e q ( tune r eque s t ) ;

396
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397 usrp−>s e t r x g a i n ( gain ) ;

398

399 // s e t the antenna

400 usrp−>s e t rx antenna ( ant ) ;

401 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : seconds ( setup t ime ) ) ; // a l low f o r some setup

time

402

403 // check Ref and LO Lock detec t

404

405 che ck l o ck ed s en so r ( usrp−>ge t rx s enso r names (0) , ” l o l o c k ed ” , boost : : bind(&uhd : : usrp : :

mul t i u s rp : : g e t r x s en so r , usrp , 1 , 0) , se tup t ime ) ;

406

407

408 i f ( total num samps == 0){

409 std : : s i g n a l (SIGINT , &s i g i n t h a nd l e r ) ;

410 std : : cout << ”Press Ctr l + C to stop streaming . . . ” << std : : endl ;

411 }

412

413 std : : cout<<” I n i t GPS”<<std : : endl ;

414

415 in t rc ;

416 void ∗ temp ;

417 i n i t g p s ( ) ;

418 rc = pthread c r ea t e (&gps thread , NULL, po l l gp s , temp) ;

419

420 i f ( rc ){

421 std : : cout << ”Error : unable to c r ea t e thread , ” << rc << std : : endl ;

422 }

423 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : seconds (2) ) ; // a l low f o r some setup time

424 std : : cout<< ”Ready ! ” <<std : : endl ;

425 #de f i n e r e c v t o f i l e a r g s ( format ) \

426 ( usrp , format , wirefmt , f i l e , spb , total num samps , t o ta l t ime , nul l , cont inue on bad packet

)

427 // recv to f i l e

428 i f ( type == ”double ” ) r e c v t o f i l e <double > r e c v t o f i l e a r g s ( ” f c64 ” ) ;

429 e l s e i f ( type == ” f l o a t ” ) r e c v t o f i l e <f l o a t>r e c v t o f i l e a r g s ( ” f c32 ” ) ;

430 e l s e i f ( type == ” short ” ) r e c v t o f i l e <short>r e c v t o f i l e a r g s ( ” sc16 ” ) ;

431 e l s e throw std : : runt ime e r ro r ( ”Unknown type ” + type ) ;

432

433 // f i n i s h e d

434 std : : cout << std : : endl << ”Done ! ” << std : : endl << std : : endl ;

435

436 return EXIT SUCCESS ;

437 }
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B.2 MASDR Code

B.2.1 utils.h

1 // F i l e : u t i l s . h

2 //

3 // MASDR Pro jec t 2016

4 // WPI MQP E−Pro jec t number :

5 // Members : Jonas Rogers

6 // Kyle P i e t t e

7 // Max Li

8 // Narut Akadejdechapanich

9 // Scott Iwan ick i

10 // Advisor : P ro f e s s o r Alex Wyglinski

11 // Sponsor : Gryphon Sensors

12

13 #i f n d e f u t i l s h

14 #de f i n e u t i l s h

15

16 // Standard L i b r a r i e s

17 #inc lude <iostream>

18 #inc lude <s t d i o . h>

19 #inc lude <errno . h>

20 #inc lude <s t r i n g . h>

21 // UHD L ib r a r i e s

22 #inc lude <uhd/usrp /mul t i us rp . hpp>

23 // Boost L i b r a r i e s

24 #inc lude <boost / format . hpp>

25 #inc lude <boost / thread . hpp>

26 // GPS l i b r a r i e s

27 #inc lude <gps . h>

28 #inc lude <uni s td . h>

29 #inc lude <math . h>

30 #inc lude <pthread . h> //Using pthread f o r GPS

31

32 // SDR bu f f e r s i z e s

33 #de f i n e RBUF SIZE 16384

34 #de f i n e TBUF SIZE 162 // 11/6/16 NARUT: dependent

35 //on our packet s i z e 5 f l o a t s (32∗3) + (33∗2) s t a r t /end

36 #de f i n e SPS 4 //4 samples per symbol .

37

38 //GPS constants

39 #de f i n e GPS BUF SIZE 60 // Hold the past 6 seconds o f samples

40

41 // Energy de t e c t i on constants

42 #de f i n e THRESH E 0.1 // /11/14/16 MHLI: Picked based on r e c e i v ed in format ion .

43 #de f i n e THRESHMATCH 0 // 11/14/16 MHLI: 20 ,25 would work probably , e s p e c i a l l y in

44

45 // Standard d e f i n e s

46 #de f i n e PI 3.14159265359

47 #de f i n e BIT0 0x00000001

48 #de f i n e BIT1 0x00000002
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49 #de f i n e BIT2 0x00000004

50 #de f i n e BIT3 0x00000008

51 #de f i n e BIT4 0x00000010

52 #de f i n e BIT5 0x00000020

53 #de f i n e BIT6 0x00000040

54 #de f i n e BIT7 0x00000080

55 #de f i n e BIT8 0x00000100

56 #de f i n e BIT9 0x00000200

57 #de f i n e BIT10 0x00000400

58 #de f i n e BIT11 0x00000800

59 #de f i n e BIT12 0x00001000

60 #de f i n e BIT13 0x00002000

61 #de f i n e BIT14 0x00004000

62 #de f i n e BIT15 0x00008000

63 #de f i n e BIT16 0x00010000

64 #de f i n e BIT17 0x00020000

65 #de f i n e BIT18 0x00040000

66 #de f i n e BIT19 0x00080000

67 #de f i n e BIT20 0x00100000

68 #de f i n e BIT21 0x00200000

69 #de f i n e BIT22 0x00400000

70 #de f i n e BIT23 0x00800000

71 #de f i n e BIT24 0x01000000

72 #de f i n e BIT25 0x02000000

73 #de f i n e BIT26 0x04000000

74 #de f i n e BIT27 0x08000000

75 #de f i n e BIT28 0x10000000

76 #de f i n e BIT29 0x20000000

77 #de f i n e BIT30 0x40000000

78 #de f i n e BIT31 0x80000000

79

80 /∗∗

81 ∗ Structure f o r r e c e i v ed sample bu f f e r and heading .

82 ∗/

83 typede f s t r u c t samp block {

84 f l o a t heading ; ///< Heading in degree s from north , accord ing to magnetometer

85 std : : complex<f l o a t> samples [ RBUF SIZE ] ; ///< USRP samples

86 } Sampblock ;

87

88 /∗∗

89 ∗ Structure f o r GPS Pos i t i on

90 ∗/

91 typede f s t r u c t gps dat {

92 f l o a t x ;

93 f l o a t y ;

94 f l o a t v x ;

95 f l o a t v y ;

96 f l o a t e x ;

97 f l o a t e y ;

98 } GPSData ;

99

100 /∗∗

101 ∗ Linked l i s t node s t ru c tu r e o f data to be packaged then transmitted .
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102 ∗/

103 typede f s t r u c t transnode {

104 f l o a t heading ; ///< Heading in degree s from north , accord ing to magnetometer

105 f l o a t gps [ 3 ] ; ///< The GPS l o c a t i on f o r t h i s data

106 f l o a t data ; ///< The data that we want to transmit

107 s t r u c t transnode∗ next ; ///< Next recorded block , e i t h e r a po in t e r or NULL

108

109 /∗∗

110 ∗ @brie f Delete the next item in the l i s t .

111 ∗

112 ∗ This w i l l c a l l r e c u r s i v e l y un t i l everyth ing a f t e r the element i t was

113 ∗ i n i t i a l l y c a l l e d on i s de l e t ed .

114 ∗/

115 ˜ transnode ( ) {

116 d e l e t e next ;

117 }

118 } TransNode ;

119

120 /∗∗

121 ∗ Status o f the so f tware on the SBC.

122 ∗/

123 typede f enum {

124 SAMPLE,

125 PROCESS,

126 TRANSMIT,

127 IDLE ,

128 } So f tS ta tus ;

129

130 /∗∗

131 ∗ Phys i ca l s t a tu s o f the plat form .

132 ∗

133 ∗ Inc lude s l o ca t i on , heading , and s t a t i o n a r i t y .

134 ∗/

135 typede f s t r u c t {

136 double l o c a t i on [ 3 ] ; ///< Locat ion as an array o f la t , long , and he ight .

137 double heading ; ///< Heading in degree s from north .

138 bool i s s t a t a n d r o t ; ///< Current ly s t a t i ona ry and ro t a t i ng .

139 } PhyStatus ;

140

141 /∗∗

142 ∗ Structure f o r header message be f o r e data t ransmi s s i on .

143 ∗

144 ∗ Inc lude s sampling l o c a t i on and number o f h i t s , i n d i c a t i n g how many TxHit

145 ∗ messages w i l l be f o l l ow ing .

146 ∗/

147 typede f s t r u c t {

148 unsigned in t t x i d ; ///< Transmiss ion ID number to l i n k with data packets .

149 double l o c a t i on [ 3 ] ; ///< Locat ion o f t h i s sampling s e s s i o n .

150 i n t num hits ; ///< Number o f s i g n a l s detected . (Need to d i s cu s s and c l a r i f y )

151 } TxHeader ;

152

153 /∗∗

154 ∗ Structure f o r t ransmi s s i on o f data concern ing a s i n g l e detected s i g n a l .
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155 ∗/

156 typede f s t r u c t {

157 unsigned in t t x i d ; ///< Transmiss ion ID number to l i n k with header packet .

158 double heading ; ///< Heading in degree s from North o f detected s i g n a l .

159 double s t r ength ; ///< Strength o f detected s i g n a l .

160 } TxHit ;

161

162 /∗∗

163 ∗ @brie f Handle a SIGINT n i c e l y .

164 ∗/

165 void h and l e s i g i n t ( i n t ) ;

166

167 /∗∗

168 ∗ @brie f Test FFT f un c t i o n a l i t y .

169 ∗/

170 void f f t t e s t ( ) ;

171

172 /∗∗

173 ∗ type provided by UHD, f i nd documentation at http :// f i l e s . e t tu s . com/manual/

174 ∗/

175 typede f boost : : funct ion<uhd : : s e n s o r v a l u e t ( const std : : s t r i n g&)>

176 g e t s e n s o r f n t ;

177

178 /∗∗

179 ∗ Function provided by UHD.

180 ∗

181 ∗ Documentation at http :// f i l e s . e t tu s . com/manual/

182 ∗/

183 bool ch e ck l o ck ed s en so r ( std : : vector<std : : s t r i ng> sensor names ,

184 const char∗ sensor name ,

185 g e t s e n s o r f n t g e t s en s o r f n ,

186 double setup t ime ) ;

187

188 /∗∗

189 ∗ I n i t i a l i z e USB GPS

190 ∗/

191 in t i n i t g p s ( ) ;

192

193 /∗∗

194 ∗ Reads l a t i tude , long i tude , and time from GPS and puts i t in FIFO

195 ∗/

196 void ∗ po l l g p s ( ) ;

197

198 /∗∗

199 ∗ Read data from GPS FIFO

200 ∗/

201 void ge t gps data ( double ∗ l a t i t ude , double ∗ l ong i tude , double ∗ time ) ;

202

203 /∗∗

204 ∗ Shuts down GPS

205 ∗/

206 void rem gps ( ) ;

207

108



208 #end i f // u t i l s h

B.2.2 utils.cpp

1 // F i l e : u t i l s . cpp

2 //

3 // MASDR Pro jec t 2016

4 // WPI MQP E−Pro jec t number :

5 // Members : Jonas Rogers

6 // Kyle P i e t t e

7 // Max Li

8 // Narut Akadejdechapanich

9 // Scott Iwan ick i

10 // Advisor : P ro f e s s o r Alex Wyglinski

11 // Sponsor : Gryphon Sensors

12

13 #inc lude ” u t i l s . h”

14 s t a t i c bool s t o p s i g n a l c a l l e d=f a l s e ; ///< Global f o r keyboard i n t e r r up t s

15

16 in t gps running = 1 ; // f l a g to s t a r t / stop gps p o l l i n g

17 // need to r e c a l l p o l l g p s a f t e r s e t t i n g f l a g back to 1

18 double gp s bu f f [ GPS BUF SIZE ] [ 3 ] ; //GPS data bu f f e r .

19 //0 i s l a t i t u d e

20 //1 i s l ong i tude

21 //2 i s timestamp

22 v o l a t i l e i n t gps buf head = 0 ; // cur rent gps bu f f e r head

23 s t r u c t gps da ta t gp s da ta ; //GPS s t ru c t

24

25

26 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

27 bool che ck l o ck ed s en so r ( std : : vector<std : : s t r i ng> sensor names ,

28 const char∗ sensor name ,

29 g e t s e n s o r f n t g e t s en s o r f n ,

30 double setup t ime ){

31 i f ( std : : f i nd ( sensor names . begin ( ) ,

32 sensor names . end ( ) ,

33 sensor name ) == sensor names . end ( ) ) {

34 return f a l s e ;

35 }

36

37 boost : : system time s t a r t = boost : : ge t sys tem t ime ( ) ;

38 boost : : system time f i r s t l o c k t im e ;

39

40 std : : cout << boost : : format ( ”Waiting f o r \”%s \” : ” ) % sensor name ;

41 std : : cout . f l u s h ( ) ;

42

43 whi le (1 ) {

44 i f ( ! f i r s t l o c k t im e . i s n o t a d a t e t ime ( )

45 && ( boost : : ge t sys tem t ime ( )

46 > ( f i r s t l o c k t im e + boost : : pos ix t ime : : seconds ( setup t ime ) ) ) ) {

47 std : : cout << ” locked . ” << std : : endl ;

48 break ;
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49 }

50 i f ( g e t s e n s o r f n ( sensor name ) . t o boo l ( ) ) {

51 i f ( f i r s t l o c k t im e . i s n o t a d a t e t ime ( ) ) {

52 f i r s t l o c k t im e = boost : : ge t sys tem t ime ( ) ;

53 }

54 std : : cout << ”+” << std : : f l u s h ;

55 }

56 e l s e {

57 f i r s t l o c k t im e = boost : : system time ( ) ; // r e s e t to ’ not a date time ’

58

59 i f ( boost : : ge t sys tem t ime ( )

60 > ( s t a r t + boost : : pos ix t ime : : seconds ( setup t ime ) ) ) {

61 std : : cout << std : : endl ;

62 throw std : : runt ime e r ro r ( s t r ( boost : : format (

63 ”Timed out wait ing f o r consecut ive l o ck s on sensor \”%s \””

64 ) % sensor name ) ) ;

65 }

66 std : : cout << ” ” << std : : f l u s h ;

67 }

68 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : m i l l i s e c ond s (100) ) ;

69 }

70 std : : cout << std : : endl ;

71 return true ;

72 }

73

74 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

75 void h and l e s i g i n t ( i n t ) {

76 s t o p s i g n a l c a l l e d = true ;

77 rem gps ( ) ;

78 e x i t (0 ) ;

79 }

80

81 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

82 in t i n i t g p s ( ) {

83 in t rc , x ;

84 gps running =1;

85 i f ( ( rc = gps open ( ” l o c a l h o s t ” , ”2947” , &gps da ta ) ) == −1) {

86 p r i n t f ( ” code : %d , reason : %s\n” , rc , g p s e r r s t r ( rc ) ) ;

87 gps running = 0 ;

88 return 0 ;

89 }

90

91 // s e t gps stream to watch JSON

92 gps stream(&gps data , WATCHENABLE | WATCH JSON, NULL) ;

93

94 // i n i t i a l i z e gps bu f f e r to 0 s

95 f o r ( rc =0; rc<GPS BUF SIZE ; rc++){

96 f o r (x=0; x<3; x++){

97 gp s bu f f [ rc ] [ x ] = 0 ;

98 }

99 }

100 return 1 ;

101 }
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102

103

104 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

105 void ∗ po l l g p s ( void ∗unused ){

106 in t rc ;

107 whi le ( gps running ) {

108 // wait f o r 2 seconds to r e c e i v e data

109 i f ( gps wa i t ing (&gps data , 2000000) ) {

110 /∗ read data ∗/

111 i f ( ( rc = gps read(&gps da ta ) ) == −1) {

112 p r i n t f ( ” e r r o r occured read ing gps data . code : %d , reason : %s\n” ,

113 rc , g p s e r r s t r ( rc ) ) ;

114 } e l s e {

115

116 // Write data from the GPS r e c e i v e r

117 i f ( ( gp s da ta . s t a tu s == STATUS FIX) &&

118 ( gp s da ta . f i x .mode == MODE 2D | | gps da ta . f i x .mode == MODE 3D) &&

119 ! i snan ( gp s da ta . f i x . l a t i t u d e ) && ! isnan ( gp s da ta . f i x . l ong i tude ) ) {

120

121 gp s bu f f [ gps buf head ] [ 0 ] = gps da ta . f i x . l a t i t u d e ;

122 gp s bu f f [ gps buf head ] [ 1 ] = gps da ta . f i x . l ong i tude ;

123 gp s bu f f [ gps buf head ] [ 2 ] = gps da ta . f i x . time ;

124

125 //Loop bu f f e r

126 gps buf head = ( gps buf head + 1) % GPS BUF SIZE ;

127

128 } e l s e {

129 p r i n t f ( ”no GPS data av a i l a b l e \n” ) ;

130 }

131 }

132 }

133 }

134 pth r ead ex i t (NULL) ;

135 }

136

137 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

138

139 void ge t gps data ( double ∗ l a t i t ude , double ∗ l ong i tude , double ∗ time ){

140 in t pos = ( gps buf head − 1) % GPS BUF SIZE ;

141 ∗ l a t i t u d e = gps bu f f [ pos ] [ 0 ] ;

142 ∗ l ong i tude = gps bu f f [ pos ] [ 1 ] ;

143 ∗ time = gps bu f f [ pos ] [ 2 ] ;

144 return ;

145 }

146

147

148 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

149

150 void rem gps ( ) {

151 gps running = 0 ;

152 gps stream(&gps data , WATCH DISABLE, NULL) ;

153 gp s c l o s e (&gps da ta ) ;

154 }
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B.2.3 masdr.h

1 // F i l e : masdr . h

2 //

3 // MASDR Pro jec t 2016

4 // WPI MQP E−Pro jec t number :

5 // Members : Jonas Rogers

6 // Kyle P i e t t e

7 // Max Li

8 // Narut Akadejdechapanich

9 // Scott Iwan ick i

10 // Advisor : P ro f e s s o r Alex Wyglinski

11 // Sponsor : Gryphon Sensors

12

13 #i f n d e f masdr h

14 #de f i n e masdr h

15

16 // Standard L i b r a r i e s

17 #inc lude <iostream>

18 #inc lude <c s i gna l>

19 #inc lude <complex>

20 #inc lude <cmath>

21 // UHD L ib r a r i e s

22 #inc lude <uhd/ types / tune r eque s t . hpp>

23 #inc lude <uhd/ u t i l s / t h r e a d p r i o r i t y . hpp>

24 #inc lude <uhd/ u t i l s / sa fe main . hpp>

25 #inc lude <uhd/usrp /mul t i us rp . hpp>

26 #inc lude <uhd/ except ion . hpp>

27 // FFT Library

28 #inc lude <f f tw3 . h>

29 // Other i n c l ude s

30 #inc lude ” u t i l s . h”

31

32 #de f i n e G DEBUG 0

33 #i f G DEBUG

34 #de f i n e DEBUG THRESH 0

35 #de f i n e DEBUG TX 0

36 #de f i n e DEBUGMATCH 0

37 #de f i n e DEBUG TX DATA 1

38 #de f i n e SCALE ACC 0

39 #e l s e

40 #de f i n e DEBUG THRESH 0

41 #de f i n e DEBUGMATCH 0

42 #de f i n e DEBUG TX 0

43 #de f i n e DEBUG TX DATA 0

44 #de f i n e SCALE ACC 0

45 #end i f

46

47

48 #de f i n e N FFT 1024

49 #de f i n e N RRC 1024

50

51 #de f i n e RBUF BLOCKS 16 /// Num blocks in r o l l i n g bu f f e r . MUST BE POWER OF 2 .
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52 #de f i n e WRAPRBUF(x ) (x & (RBUF BLOCKS − 1) ) /// Wrap bu f f e r around

53

54 /∗∗

55 ∗ @brie f MASDR Appl i cat ion Class

56 ∗

57 ∗ This i s the c l a s s f o r the MASDR Appl i cat ion . I t conta in s a l l o f the

58 ∗ f u n c i t o n a l i t y that the plat form w i l l have . The plat form c on s i s t s o f an SBC

59 ∗ connected to a USRP SDR with an antenna .

60 ∗/

61 c l a s s Masdr {

62 pub l i c :

63 /∗∗

64 ∗ @brie f I n i t i a l i z e a Masdr ob j e c t .

65 ∗/

66 Masdr ( ) ;

67

68 /∗∗

69 ∗ @brie f Stop a l l f u n c t i o n a l i t y and dest roy Masdr ob j e c t .

70 ∗/

71 ˜Masdr ( ) ;

72

73 /∗∗

74 ∗ @brie f Update plat form s ta tu s

75 ∗

76 ∗ Updates the l oca t i on , heading , and s t a t i o n a r i t y .

77 ∗/

78 void update s ta tus ( ) ;

79

80 /∗∗

81 ∗ @brie f Handle so f tware s t a t e t r a n s i t i o n s based on the cur rent s t a tu s .

82 ∗

83 ∗ I f the system i s not cu r r en t l y id l e , do not i n t e r rup t the cur rent

84 ∗ proce s s . ( This may need to change , but I don ’ t see i t being nece s sa ry )

85 ∗/

86 void s t a t e t r a n s i t i o n ( ) ;

87

88 /∗∗

89 ∗ @brie f Do any r e p e t i t i v e ac t i on a s s o c i a t ed with the cur rent s t a t e .

90 ∗

91 ∗ Gets c a l l e d every loop and perfoms an ac t i on based on the cur rent value

92 ∗ o f s o f t s t a t u s . In sample mode , t h i s means s t a r t i n g a new recv bu f f e r .

93 ∗/

94 void r ep ea t a c t i on ( ) ;

95

96 /∗∗

97 ∗ @brie f Test the r e c e i v e f u n c t i o n a l i t y .

98 ∗

99 ∗ Test the f u n c t i o n a l i t y o f the rx c a l l i n g with in the program .

100 ∗/

101 void r x t e s t ( ) ;

102

103 /∗∗

104 ∗ @brie f Test the transmit f u n c t i o n a l i t y .
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105 ∗

106 ∗ Test the f u n c t i o n a l i t y o f the tx c a l l i n g with in the program .

107 ∗/

108 void t x t e s t ( ) ;

109

110 /∗∗

111 ∗ @brie f Test the match f i l t e r amount .

112 ∗/

113 void match test ( ) ;

114

115 /∗∗

116 ∗ @brie f Test the transmit data .

117 ∗/

118 void t r an sm i t da t a t e s t ( ) ;

119

120

121 pr i va t e :

122 /∗∗

123 ∗ @brie f I n i t i a l i z e any p e r i ph e r a l s being used

124 ∗

125 ∗ This w i l l be the GPS r e c e i v e r and maybe an ex t e rna l memory dev i ce .

126 ∗/

127 void i n i t i a l i z e p e r i p h e r a l s ( ) ;

128

129 /∗∗

130 ∗ @brie f I n i t i a l i z e the UHD i n t e r f a c e to the SDR

131 ∗

132 ∗ I n i t i a l i z e a l l components nece s sa ry f o r the i n t e r f a c e to the USRP SDR

133 ∗ us ing the UHD l i b r a r y .

134 ∗/

135 void i n i t i a l i z e u h d ( ) ;

136

137 /∗∗

138 ∗ @brie f Create a new thread to do the sampling .

139 ∗/

140 void sample ( ) ;

141

142 /∗∗

143 ∗ @brie f Detect i f the re ’ s any energy detected on the bandwidth being measured .

144 ∗

145 ∗ @param s i g i n ///THIS IS NEEDED

146 ∗ @param s i z e ///THIS IS NEEDED

147 ∗

148 ∗ @return ///THIS IS NEEDED

149 ∗/

150 f l o a t ene rgy de t e c t i on ( std : : complex<f l o a t> ∗ s i g i n , i n t s i z e ) ;

151

152 /∗∗

153 ∗ @brie f Trans fer bu f f e r to f f t i n , and run FFT.

154 ∗

155 ∗ @param ///THIS IS NEEDED

156 ∗/

157 void r u n f f t ( std : : complex<f l o a t> ∗) ;
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158

159 /∗∗

160 ∗ @brie f Look f o r OFDM header .

161 ∗/

162 f l o a t ma t ch f i l t ( ) ;

163

164 /∗∗

165 ∗ @brie f Command the SDR to stop tak ing samples .

166 ∗/

167 void stop sampl ing ( ) ;

168

169 /∗∗

170 ∗ @brie f Star t p ro c e s s i ng the c o l l e c t e d samples .

171 ∗/

172 void beg i n p ro c e s s i ng ( ) ;

173

174 /∗∗

175 ∗ @brie f General t ransmi s s i on method .

176 ∗

177 ∗ @param msg Pointer to packet to send .

178 ∗ @param len S i z e o f packet to be sent .

179 ∗/

180 void transmit ( std : : complex<f l o a t> ∗msg , i n t l en ) ;

181

182 /∗∗

183 ∗ @brie f Transmit data to ground s t a t i on

184 ∗

185 ∗ Transmit sampling l o c a t i o n and d i r e c t i o n s f o r s i g n a l s to ground s t a t i on .

186 ∗/

187 void t ransmit data ( ) ;

188

189 uhd : : usrp : : mul t i u s rp : : sp t r usrp ;

190 std : : complex<f l o a t> t e s tbu f [ RBUF SIZE ] ; ///< Test ing i f s t r u c tu r e i s too big .

191 f l o a t rrcBuf [N RRC ] ; ///< 4 samples per symbol .

192 uhd : : rx s t reamer : : sp t r rx stream ; ///< The UHD rx streamer

193 uhd : : tx s t reamer : : sp t r tx stream ; ///< The UHD tx streamer

194 uhd : : rx metadata t md; ///< UHD Metadata

195 PhyStatus phy status ; ///< Phys i ca l s t a tu s o f the plat form

196 So f tSta tus s o f t s t a t u s ; ///< The current s tage o f the so f tware on the SBC

197 samp block r e cv bu f [RBUF BLOCKS ] ; ///< Rol l i ng bu f f e r o f rcvd sample b locks

198 i n t rb index ; ///< Index o f next i n s e r t i o n in to r e c v bu f f .

199 TransNode∗ t rans head ; ///< Head node in l i nked l i s t bu f f e r f o r t ransmi t t ing

200 TransNode∗ cu r r t r an s bu f ; ///< Last item in l i nked l i s t .

201 f f tw p l an f f t p ; ///< FFTW Plan

202 f f tw complex ofdm head [N FFT ] ; //< Expected OFDM Header .

203 f f tw complex ∗ f f t i n , ∗ f f t o u t ; ///< Buf f e r s f o r FFT.

204 bool proces s done ; ///< Set when data p roc e s s i ng has completed

205 bool transmit done ; ///< Set when data t ransmi s s i on has completed

206 bool do sample ; ///< Disab le to g r a c e f u l l y shutdown sampling .

207 } ;

208

209 #end i f // masdr h
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B.2.4 masdr.cpp

1 // F i l e : masdr . cpp

2 //

3 // MASDR Pro jec t 2016

4 // WPI MQP E−Pro jec t number :

5 // Members : Jonas Rogers

6 // Kyle P i e t t e

7 // Max Li

8 // Narut Akadejdechapanich

9 // Scott Iwan ick i

10 // Advisor : P ro f e s s o r Alex Wyglinski

11 // Sponsor : Gryphon Sensors

12

13 #inc lude ”masdr . h”

14 #inc lude ” u t i l s . h”

15 #inc lude ” ka lman f i l t . h”

16 #inc lude <iostream>

17 #inc lude <fstream>

18 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

19 Masdr : : Masdr ( ) {

20 // I n i t i a l i z e so f tware s t a tu s

21 proces s done = f a l s e ;

22 transmit done = f a l s e ;

23 s o f t s t a t u s = IDLE ;

24

25 // I n i t i a l i z e r e c e i v ed sample bu f f e r

26 rb index = 0 ;

27

28 // I n i t i a l i z e FFTW

29 f f t i n = ( f f tw complex ∗) f f tw ma l l o c ( s i z e o f ( f f tw complex ) ∗ N FFT) ;

30 f f t o u t = ( f f tw complex ∗) f f tw ma l l o c ( s i z e o f ( f f tw complex ) ∗ N FFT) ;

31 f f t p = f f tw p l an d f t 1 d (N FFT, f f t i n , f f t o u t ,

32 FFTWFORWARD, FFTWMEASURE) ;

33

34 // I n t i a l i z e OFDM Match F i l t e r head

35 //OFDM HEAD DETAILS :

36 // Ignore f i r s t and l a s t 174 buckets .

37 //Each OFDM bucket i s 16 f f t buckets .

38 //They are l o ca t ed at 254−270 , 480−415 , 640−615 ,864−880

39 in t i ;

40 f o r ( i = 0 ; i < N FFT; ++i ) {

41 in t r a t i o = N FFT/64 ; // Number o f f f t b ins in an OFDM bin .

42

43 // Account f o r the f a c t that only middle 52 OFDM bins are used .

44 i f ( i < 6 ∗ r a t i o | | i > 58 ∗ r a t i o ) {

45 ofdm head [ i ] [ 0 ] = 0 ;

46 ofdm head [ i ] [ 1 ] = 0 ;

47 }

48 e l s e i f ( i >= (6+6) ∗ r a t i o && i < (6+7) ∗ r a t i o ) {

49 ofdm head [ i ] [ 0 ] = 1 ;

50 ofdm head [ i ] [ 1 ] = 1 ;

51 }
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52 e l s e i f ( i >= (12+14) ∗ r a t i o && i < (12+15) ∗ r a t i o ) {

53 ofdm head [ i ] [ 0 ] = 1 ;

54 ofdm head [ i ] [ 1 ] = 1 ;

55 }

56 e l s e i f ( i >= (26+14) ∗ r a t i o && i < (26+15) ∗ r a t i o ) {

57 ofdm head [ i ] [ 0 ] = 1 ;

58 ofdm head [ i ] [ 1 ] = 1 ;

59 }

60 e l s e i f ( i >= (40+14) ∗ r a t i o && i < (40 + 15) ∗ r a t i o ) {

61 ofdm head [ i ] [ 0 ] = 1 ;

62 ofdm head [ i ] [ 1 ] = 1 ;

63 }

64 e l s e {

65 ofdm head [ i ] [ 0 ] = 0 ;

66 ofdm head [ i ] [ 1 ] = 0 ;

67 }

68 }

69

70 f l o a t time ;

71 // Maybe i n t e r n a l f r e q should be 905e6 , idk

72 in t f r e q = 1e6/SPS ; // Current ly 1/2 symbol ra t e

73 f l o a t exce s s =0.2;

74 f l o a t Ts = 1/ f r e q ;

75 // f l o a t omega=2∗PI∗ f r e q t x ; //2 p i f

76

77 f o r ( i = 0 ; i < N RRC; i++) {

78 i f ( i == N RRC/2)

79 rrcBuf [ i ] = 1 ;

80 e l s e {

81 time = ( i − N RRC/2)∗Ts ;

82 rrcBuf [ i ] = ( s i n (PI∗ time/Ts∗(1− exce s s ) )+4∗ exce s s ∗ time/Ts∗ cos (PI∗ time/Ts∗(1+ exce s s ) ) )

83 /(PI∗ time/Ts∗(1−(4∗ exce s s ∗ time/Ts) ∗(4∗ exce s s ∗ time/Ts) ) ) ;

84

85 }

86 }

87

88 i n i t i a l i z e p e r i p h e r a l s ( ) ;

89 i n i t i a l i z e u h d ( ) ;

90 update s ta tus ( ) ;

91 do sample = true ;

92

93 boost : : thread∗ s t h r = new boost : : thread ( boost : : bind(&Masdr : : sample , t h i s ) ) ;

94 }

95

96 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

97 Masdr : : ˜ Masdr ( ) {

98 do sample = f a l s e ;

99 f f tw de s t r oy p l an ( f f t p ) ;

100 f f t w f r e e ( f f t i n ) ;

101 f f t w f r e e ( f f t o u t ) ;

102 d e l e t e t rans head ;

103 }

104
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105 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

106 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗INITIALIZATIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

107 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

108 void Masdr : : i n i t i a l i z e p e r i p h e r a l s ( ) {

109

110 }

111

112 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

113 void Masdr : : i n i t i a l i z e u h d ( ) {

114 uhd : : s e t t h r e a d p r i o r i t y s a f e ( ) ;

115

116 in t r x r a t e = 42 e6 ; //To dea l with the 20MHz bandwidth we have .

117 i n t t x r a t e = 1e6 ; //4 samples per symbol at 700kHz

118 in t maste r ra te = 42 e6 ;

119 f l o a t f r e q r x = 2.462 e9 ; // Set rx f requency to 2 .4 GHz // Set to 2 .412 f o r channel 1

120

121 f l o a t f r e q t x = 905 e6 ; // s e t tx f requency

122 in t gain = 50 ; // Defau l t : 8dB

123 std : : s t r i n g rx ant = ”RX2” ; // ant can be ”TX/RX” or ”RX2”

124 std : : s t r i n g tx ant = ”TX/RX” ; // ant can be ”TX/RX” or ”RX2”

125 std : : s t r i n g wirefmt = ” sc16 ” ; // or sc8

126 in t setup t ime = 1 . 0 ; // sec setup

127

128 in t rx bw = 20 e6 ; // 11/16/16 MHLI: Should t h i s be 10 e6 and w i l l i t do ha l f above ha l f below?

129 in t tx bw = 300 e3 ;

130

131 //Create USRP ob j e c t

132 usrp = uhd : : usrp : : mul t i u s rp : : make ( ( std : : s t r i n g ) ”” ) ;

133 //Lock mboard c l o ck s

134 usrp−>s e t c l o c k s o u r c e ( ” i n t e r n a l ” ) ; // in t e rna l , externa l , mimo

135 usrp−>s e t ma s t e r c l o c k r a t e ( maste r ra te ) ;

136 // s e t r a t e s .

137 usrp−>s e t r x r a t e ( r x r a t e ) ;

138 usrp−>s e t t x r a t e ( t x r a t e ) ;

139

140 // Set f r e qu en c i e s .

141 uhd : : t un e r equ e s t t tune r eque s t r x ( f r e q r x ) ;

142 usrp−>s e t r x f r e q ( tune r eque s t r x ) ;

143 uhd : : t un e r equ e s t t tune r eque s t t x ( f r e q t x ) ;

144 usrp−>s e t t x f r e q ( tune r eque s t t x ) ;

145 // Set gain

146 usrp−>s e t r x g a i n ( gain ) ;

147 usrp−>s e t t x g a i n ( gain ) ;

148 // Set BW

149 usrp−>set rx bandwidth ( rx bw ) ;

150 usrp−>set tx bandwidth ( tx bw ) ;

151 // s e t the antennas

152 usrp−>s e t rx antenna ( rx ant ) ;

153 usrp−>s e t tx antenna ( tx ant ) ;

154

155 // a l low f o r some setup time

156 boost : : t h i s t h r e ad : : s l e ep ( boost : : pos ix t ime : : seconds ( setup t ime ) ) ;

157 // check Ref and LO Lock detec t
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158 che ck l o ck ed s en so r ( usrp−>ge t rx s enso r names (0) ,

159 ” l o l o c k ed ” ,

160 boost : : bind(&uhd : : usrp : : mul t i u s rp : : g e t r x s en so r ,

161 usrp , 1 , 0) ,

162 setup t ime ) ;

163

164 // c r ea t e st reamers

165 // I n i t i a l i z e the format o f memory (CPU format , wire format )

166 uhd : : s t r e am arg s t s t ream args ( ” f c32 ” , ” sc16 ” ) ;

167 rx stream = usrp−>ge t rx s t r eam ( st ream args ) ; //Can only be c a l l e d once .

168 tx stream = usrp−>ge t tx s t r eam ( st ream args ) ; //Can only be c a l l e d once .

169 }

170

171 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

172 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗STATE TRANSITIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

173 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

174 void Masdr : : update s ta tus ( ) {

175 phy status . heading = 0 ;

176 phy status . i s s t a t a n d r o t = f a l s e ;

177 phy status . l o c a t i o n [ 0 ] = 0 ;

178 phy status . l o c a t i o n [ 1 ] = 0 ;

179 phy status . l o c a t i o n [ 2 ] = 0 ;

180 }

181

182 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

183 void Masdr : : s t a t e t r a n s i t i o n ( ) {

184 i f ( s o f t s t a t u s == IDLE) {

185 s o f t s t a t u s = PROCESS;

186 beg i n p ro c e s s i ng ( ) ;

187

188 } e l s e i f ( s o f t s t a t u s == PROCESS && proces s done ) {

189 s o f t s t a t u s = TRANSMIT;

190 proces s done = f a l s e ;

191 t ransmit data ( ) ;

192

193 } e l s e i f ( s o f t s t a t u s == TRANSMIT && transmit done ) {

194 s o f t s t a t u s = IDLE ;

195 transmit done = f a l s e ;

196 }

197 }

198

199 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

200 void Masdr : : r e p ea t a c t i on ( ) {

201 i f ( s o f t s t a t u s == SAMPLE) {

202 ;

203

204 } e l s e i f ( s o f t s t a t u s == PROCESS) {

205 ;

206

207 } e l s e i f ( s o f t s t a t u s == TRANSMIT) {

208 ;

209

210 } e l s e i f ( s o f t s t a t u s == IDLE) {
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211 ;

212 }

213 }

214

215 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

216 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗SAMPLE∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

217 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

218

219 void Masdr : : sample ( ) {

220 // Create new sampling stream

221 uhd : : stream cmd t start strm cmd (

222 uhd : : stream cmd t : : STREAM MODE START CONTINUOUS) ;

223 start strm cmd . num samps = s i z e t (0 ) ;

224 start strm cmd . stream now = true ;

225 start strm cmd . t ime spec = uhd : : t ime spe c t ( ) ; // Holds the time .

226 rx stream−>i s sue stream cmd ( start strm cmd ) ; // I n i t i a l i z e the stream

227 whi le ( do sample ) {

228 rb index = WRAPRBUF( rb index + 1) ;

229 r e cv bu f [ rb index ] . heading = phy status . heading ;

230 rx stream−>recv ( r e cv bu f [ rb index ] . samples ,

231 RBUF SIZE , md, 3 . 0 , f a l s e ) ;

232 boost : : t h i s t h r e ad : : i n t e r r up t i o n po i n t ( ) ;

233 }

234 // I s su e command to c l o s e stream

235 uhd : : stream cmd t stop strm cmd (

236 uhd : : stream cmd t : : STREAM MODE STOP CONTINUOUS) ;

237 rx stream−>i s sue stream cmd ( stop strm cmd ) ;

238 }

239

240 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

241 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗PROCESSING∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

242 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

243 void Masdr : : b e g i n p ro c e s s i ng ( ) {

244 in t i ;

245 samp block proc buf [RBUF BLOCKS/ 2 ] ;

246 f l o a t energy = 0 ;

247

248 f o r ( i = 0 ; i < RBUF BLOCKS/2 ; ++i ) {

249 proc buf [ i ] = recv bu f [WRAPRBUF( rb index − RBUF BLOCKS/2 + i ) ] ;

250 }

251 f o r ( i = 0 ; i < RBUF BLOCKS/2 ; ++i ) {

252 energy += ene rgy de t e c t i on ( proc buf [ i ] . samples , RBUF SIZE) ;

253 }

254 i f ( energy > THRESH E) {

255 f o r ( i = 0 ; i < RBUF BLOCKS/2 ; ++i ) {

256 r u n f f t ( proc buf [ rb index ] . samples ) ;

257 f l o a t h a s w i f i = ma t ch f i l t ( ) ;

258 i f ( h a s w i f i != −1)

259 usrp−>g e t r x s e n s o r ( ” r s s i ” ,0 ) . t o r e a l ( ) ; ///Not s to red to anything rn

260 }

261 }

262 }

263
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264 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

265 f l o a t Masdr : : en e rgy de t e c t i on ( std : : complex<f l o a t> ∗ s i g i n , i n t s i z e ) {

266 in t i ;

267 f l o a t acc = 0 ;

268 f l o a t max = 0 ;

269 f l o a t mag ;

270

271 f o r ( i = 0 ; i < s i z e ; i++) {

272 mag = sqr t ( s i g i n [ i ] . r e a l ( ) ∗ s i g i n [ i ] . r e a l ( )

273 + s i g i n [ i ] . imag ( ) ∗ s i g i n [ i ] . imag ( ) ) ;

274 acc += mag ;

275 i f (mag > max)

276 max = mag ;

277 }

278

279 i f (DEBUG THRESH) {

280 std : : cout << max ;

281 f o r ( i = 0 ; i < ( i n t ) (mag∗1000) ; i++){

282 std : : cout << ”#” ;

283 }

284 std : : cout << std : : endl ;

285 }

286

287 return max ;

288 }

289

290 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

291 void Masdr : : r u n f f t ( std : : complex<f l o a t> ∗ bu f f i n ) {

292 in t i ;

293 f o r ( i = 0 ; i < N FFT; ++i ){

294 f f t i n [ i ] [ 0 ] = bu f f i n [ i ] . r e a l ( ) ;

295 f f t i n [ i ] [ 1 ] = bu f f i n [ i ] . imag ( ) ;

296 }

297 f f tw exe cu t e ( f f t p ) ;

298 }

299

300 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

301 f l o a t Masdr : : ma t ch f i l t ( ) {

302 in t i ;

303 i n t j ;

304 f l o a t match val [ 2 ] = {0 ,0} ;

305 f l o a t match mag ;

306 f l o a t re ;

307 f l o a t im ;

308

309 f o r ( i = 0 ; i < N FFT; i++) {

310 re = f f t o u t [ i ] [ 0 ] ∗ ofdm head [ i ] [ 0 ] − f f t o u t [ i ] [ 1 ] ∗ ofdm head [ i ] [ 1 ] ;

311 im = f f t o u t [ i ] [ 0 ] ∗ ofdm head [ i ] [ 1 ] + f f t o u t [ i ] [ 1 ] ∗ ofdm head [ i ] [ 0 ] ;

312 match val [ 0 ] += re ;

313 match val [ 1 ] += im ;

314 }

315 match mag = sqr t ( match val [ 0 ] ∗ match val [ 0 ]

316 + match val [ 1 ] ∗ match val [ 1 ] ) ;
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317 i f (match mag > THRESHMATCH)

318 return match mag ;

319 e l s e

320 return 0 ;

321 }

322

323 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

324 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗TRANSMISSION∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

325 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

326 void Masdr : : t ransmit data ( ) {

327

328 i f ( t rans head == NULL) {

329 std : : cout << ”No va lues to transmit ” << std : : endl ;

330 return ;

331 }

332

333 in t i ; // loop ing

334 in t b ia s = 0 ; // compensating s h i f t f o r adding more data

335 TransNode∗ trans temp = trans head ;

336 std : : complex<f l o a t> t ransmi tBuf f e r [ TBUF SIZE ] ;

337

338 // used to perform binary ope ra t i on s on f l o a t s

339 union {

340 f l o a t input ;

341 in t output ;

342 } data ;

343

344

345 std : : cout << ” Sta r t i ng packaging ” << std : : endl ;

346 whi le ( trans temp != NULL) {

347 // packing 33 s t a r t b i t s

348 f o r ( i = 0 ; i < 33 ; i++) {

349 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(1 ,0) ;

350 }

351 b ia s += 33 ; // compensate f o r adding s t a r t b i t s

352

353 // packing gps data

354 data . input = trans temp−>gps [ 0 ] ;

355 f o r ( i = 0 ; i < 32 ; i++) {

356 i f ( ( data . output >> (31 − i ) ) & 1)

357 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(1 ,0) ;

358 e l s e

359 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(−1,0) ;

360 }

361 b ia s += 32 ; // compensate f o r adding gps data 0

362

363 data . input = trans temp−>gps [ 1 ] ;

364 f o r ( i = 0 ; i < 32 ; i++) {

365 i f ( ( data . output >> (31 − i ) ) & 1)

366 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(1 ,0) ;

367 e l s e

368 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(−1,0) ;

369 }
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370 b ia s += 32 ; // compensate f o r adding gps data 1

371

372 // packing data

373 data . input = trans temp−>data ;

374 f o r ( i = 0 ; i < 32 ; i++) {

375 i f ( ( data . output >> (31 − i ) ) & 1)

376 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(1 ,0) ;

377 e l s e

378 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(−1,0) ;

379 }

380 b ia s += 32 ; // compensate f o r adding data

381

382 // packing 33 end b i t s

383 f o r ( i = 0 ; i < 33 ; i++) {

384 t ransmi tBuf f e r [ i+b ia s ] = std : : complex<f l o a t >(−1,0) ;

385 }

386

387 std : : o fstream o f s ;

388 o f s . open ( ”/home/mqp/Resu l t s . bin ” , std : : o f stream : : out | std : : o fstream : : app ) ;

389

390 o f s << t ransmi tBuf f e r << std : : endl ;

391

392

393 o f s . c l o s e ( ) ;

394

395 // uhd : : tx metadata t md;

396 // md. s t a r t o f b u r s t = f a l s e ;

397 // md. end o f bu r s t = f a l s e ;

398

399 whi le (1 ) {

400 // tx stream−>send ( transmitBuf fe r , TBUF SIZE , md) ;

401

402 }

403 std : : cout << ”Done with transmit ” << std : : endl ;

404 }

405 }

406

407 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

408 void Masdr : : t ransmit ( std : : complex<f l o a t> ∗msg , i n t l en ) {

409 uhd : : tx metadata t md;

410 md. s t a r t o f b u r s t = f a l s e ;

411 md. end o f bu r s t = f a l s e ;

412 tx stream−>send (msg , l en , md) ;

413 }

414

415 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

416 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗TESTS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

417 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

418 void Masdr : : r x t e s t ( ) {

419 in t i = 0 ;

420 i n t j = 0 ;

421 i n t numLoops ; //Counter , to help

422 f l o a t accum ;
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423 f l o a t max inBuf = 0 ;

424 f l o a t max per iod ic = 0 ;

425 f l o a t max total = 0 ;

426 f l o a t mag squared ;

427 double r s s i ;

428 i n t TX Power = 0 ; //Transmit power o f a w i r e l e s s AP at 2 .4 GHz

429 double d i s t avg ;

430 double ca l c avg [ 1 0 2 4 ] ;

431

432 std : : complex<f l o a t> t e s tbu f [ RBUF SIZE ] ;

433

434 std : : cout << ”Entered r x t e s t ” << std : : endl ;

435 sample ( ) ;

436 std : : cout << ”Began sampling ” << std : : endl ;

437 rx stream−>recv ( te s tbu f , RBUF SIZE , md, 3 . 0 , f a l s e ) ;

438 std : : cout << ” F i r s t Buff done” << std : : endl ;

439

440 i f (DEBUG THRESH)

441 whi le (1 ) {// ( i < 5000) {

442 rx stream−>recv ( te s tbu f , RBUF SIZE , md, 3 . 0 , f a l s e ) ;

443 r s s i = usrp−>g e t r x s e n s o r ( ” r s s i ” ,0 ) . t o r e a l ( ) ;

444 i f ( r s s i > −78){

445 ca l c avg [ i++] = pow(10 , ( ( r s s i ) /−20) ) ;

446 }

447

448 i f ( i > 1023) {

449 f o r ( j = 0 ; j < 1024 ; j++) {

450 d i s t avg += ca l c avg [ j ] ;

451 }

452 std : : cout << d i s t avg /1024 << std : : endl ;

453 d i s t avg = 0 ;

454 i = 0 ;

455 }

456

457 // std : : cout << ene rgy de t e c t i on ( te s tbu f , RBUF SIZE) << std : : endl ;

458 }

459 do sample = f a l s e ;

460 std : : cout << ”Stopped sampling ” << std : : endl ;

461 std : : cout << ”RX t e s t done . ” << std : : endl << std : : endl ;

462 }

463

464 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

465 void Masdr : : t x t e s t ( ) {

466 in t i ; //Counter , to help t e s t

467 std : : complex<f l o a t> t e s tbu f [ 1 0 0 ] ;

468

469 std : : cout << ”Entered t x t e s t ” << std : : endl ;

470 // I n i t i a l i z e t e s t bu f f e r .

471 f o r ( i = 0 ; i < 100 ; ++i ) {

472 t e s tbu f [ i ] = std : : complex<f l o a t> (1 , 0 ) ;

473 }

474

475 uhd : : tx metadata t md;
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476 md. s t a r t o f b u r s t = f a l s e ;

477 md. end o f bu r s t = f a l s e ;

478

479 std : : cout << ”Began transmit ” << std : : endl ;

480 tx stream−>send ( te s tbu f , 100 , md) ;

481 std : : cout << ” F i r s t Buff done” << std : : endl ;

482

483 i = 0 ;

484 whi le (1 ) {

485 tx stream−>send ( te s tbu f , 100 , md) ;

486 ++i ;

487 }

488

489 std : : cout << ”Stopped transmit ” << std : : endl ;

490 std : : cout << ”Tx t e s t done . ” <<std : : endl<<std : : endl ;

491 }

492

493 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

494 void Masdr : : match test ( ) {

495 //Test match f i l t s t u f f .

496 f l o a t t e s t v a l ;

497 i n t i ;

498

499 whi le (1 ) {

500 f o r ( i n t j = 0 ; j < RBUF BLOCKS/2 ; ++j ) {

501 r u n f f t ( r e cv bu f [WRAPRBUF( rb index − RBUF BLOCKS/2 + j ) ] . samples ) ;

502

503 t e s t v a l = ma t ch f i l t ( ) ;

504 // std : : cout << t e s t v a l ;

505 f o r ( i = 0 ; i < ( i n t ) t e s t v a l ∗5 ; ++i )

506 std : : cout << ’#’ ;

507 std : : cout << std : : endl ;

508 }

509 }

510

511 std : : cout << ”Match f i l t e r t e s t done . ” << std : : endl << std : : endl ;

512 }

513

514 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

515 void Masdr : : t r an sm i t da t a t e s t ( ) {

516 in t i ;

517 std : : cout << ” In tx data t e s t ” << std : : endl ;

518 t ransmit data ( ) ;

519 }

520

521 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

522 in t UHD SAFE MAIN( in t argc , char ∗argv [ ] ) {

523 std : : s i g n a l (SIGINT , h and l e s i g i n t ) ;

524 Masdr masdr ;

525

526 i f (G DEBUG) {

527 i f (DEBUG THRESH) masdr . r x t e s t ( ) ;

528 i f (DEBUG TX) masdr . t x t e s t ( ) ;
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529 i f (DEBUGMATCH) masdr . match test ( ) ;

530 i f (DEBUG TX DATA) masdr . t r an sm i t da t a t e s t ( ) ;

531 }

532

533 e l s e {

534 whi le (1 ) { // ! s t o p s i g n a l c a l l e d )

535 masdr . update s ta tus ( ) ;

536 masdr . s t a t e t r a n s i t i o n ( ) ;

537 masdr . r ep ea t a c t i on ( ) ;

538 }

539 }

540

541 return EXIT SUCCESS ;

542 }
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Appendix C

Python Code

C.1 Map Generation Code

1

2 from math import sq r t

3

4 # Read in measurements from f i l e

5 measurements = [ ]

6 with open ( ’ gps va l s u rban . txt ’ , ’ r ’ ) as gp s va l s :

7 gps = gps va l s . r e a d l i n e s ( )

8 with open ( ’ r s s v a l s u r ban . txt ’ , ’ r ’ ) as r s s v a l s :

9 r s s = r s s v a l s . r e a d l i n e s ( )

10 r s s s c a l e = len ( r s s ) / l en ( gps )

11 o f f s e t b = 900

12 o f f s e t e = 200

13 reduct ion = 90

14 f o r i in range ( ( l en ( gps ) − o f f s e t b − o f f s e t e ) / reduct ion ) :

15 measurements . append ( ( f l o a t ( s t r ( gps [ o f f s e t b+reduct ion ∗ i ] ) . s p l i t ( ) [ 0 ] ) ,

16 f l o a t ( s t r ( gps [ o f f s e t b+reduct ion ∗ i ] ) . s p l i t ( ) [ 1 ] ) ,

17 f l o a t ( r s s [ ( o f f s e t b+reduct ion ∗ i )∗ r s s s c a l e ] . s t r i p ( ’\n , ’ ) ) ) )

18

19 a l t i t u d e = 20 .0 # in meters

20 # (Lat , Long , RSSI value )

21 # measurements = [ ( 42 . 274744 , −71.8084369 , −84.3) ,

22 # (42 .275376 , −71.8085379 , −85.3) ,

23 # (42 .275342 , −71.8075235 , −85.9) ]

24

25 # Distance c a l c u l a t i o n

26 # Pythagorean theorem to e l im ina t e a l t i t u d e

27 r s s d i s t mea s = [ ( meas [ 0 ] , meas [ 1 ] ,

28 (10∗∗ ( (meas [2]/−20) ) /100) / 25)

29 f o r meas in measurements ]

30
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31 # Populate j s l i s t o f po in t s to p lo t

32 c i r c l e = ’ {point } : {{ cente r : {{ l a t : { l a t } , lng : { lng }}} , d i s t ance : { d i s t }}} ’

33 c i r c l e s = [ c i r c l e . format ( po int=index ,

34 l a t=r s s d i s t mea s [ index ] [ 0 ] ,

35 lng=r s s d i s t mea s [ index ] [ 1 ] ,

36 d i s t=r s s d i s t mea s [ index ] [ 2 ] , )

37 f o r index in xrange ( l en ( r s s d i s t mea s ) ) ]

38 mapjs = ’ ,\n ’ . j o i n ( c i r c l e s )

39

40 # F i l l in template with data

41 with open ( ’ map template . html ’ , ’ r ’ ) as temp :

42 html map = temp . read ( )

43 html map = html map . format ( po in t s=mapjs ,

44 c e n t e r l a t=r s s d i s t mea s [ 0 ] [ 0 ] ,

45 c en t e r l n g=r s s d i s t mea s [ 0 ] [ 1 ] )

46 with open ( ’ ma sd r l o c a l i z a t i o n . html ’ , ’w ’ ) as f :

47 f . wr i t e ( html map )
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Appendix D

MATLAB Code

D.1 Energy Detection Example

1 c l e a r a l l ;

2 c l o s e a l l ;

3 N = 10000; % N i s l ength o f S igna l

4 Nbins = 1024;

5 %Set Threshold to check i f s i g n a l i s there .

6 thresh = 200 ;

7

8 f = 500 e3 ;

9 Fs = 5e6 ;

10 t = ( 1 :N)∗ 1/Fs ;

11

12 no i s e = randn (1 ,N) ;

13 s i g = cos (2∗ pi ∗ f ∗ t ) ;

14

15 % Do FFT on time , no i s e .

16 f f t n o i s e = f f t ( no ise , Nbins ) ;

17 f f t s i g = f f t ( s ig , Nbins ) ;

18

19 mag noise = abs ( f f t n o i s e ) ;

20 mag sig = abs ( f f t s i g ) ;

21

22 % Plot FFT r e s u l t s

23 f i g u r e (1 ) ;

24 % Hist va lues in bins , randn .

25 p lo t (−(Nbins−1) /2 : ( Nbins−1)/2 , mag noise ,−(Nbins−1) /2 : ( Nbins−1)/2 , thresh ∗ones (1 , Nbins ) ) ;

26 t i t l e ( ’FFT Bin Values , Noise ’ ) ;

27 ax i s ([−512 512 0 250 ] ) ;

28

29 f i g u r e (2 ) ;

30 % Hist va lues in bins , cos .
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31 p lo t (−(Nbins−1) /2 : ( Nbins−1)/2 , mag sig ,−(Nbins−1) /2 : ( Nbins−1)/2 , thresh ∗ones (1 , Nbins ) ) ;

32 ax i s ([−512 512 0 250 ] ) ;

33 t i t l e ( ’FFT Bin Values , S i gna l ’ ) ;

34

35

36 % Determine i f e i t h e r value pas se s th re sho ld .

37 n o i s e p a s s e s t h r e s h = (max( mag noise )>thresh )

38 s i g p a s s e s t h r e s h = (max( mag sig )>thresh )
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D.2 Matched Filter Example

1 c l e a r a l l ;

2 c l o s e a l l ;

3

4 %Seed to generate expected value ( so thre sho ld i s always app l i c ab l e ) .

5 rng (500) ;

6 %S i ze o f random s igna l , r ep r e s en t i ng no i s e

7 N=400;

8 %pick thresh to separa te matched r e s u l t to unmatched r e s u l t .

9 thresh =20;

10

11 %Example packet to look f o r

12 toMatch = [1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 −1 1 1 1 −1 1 1 1 1 −1 −1 1 ] ;

13 %Reverse , so a f i l t e r operat ion w i l l i n s t ead c o r r e l a t e . Sh i f t ed back to

14 %po s i t i v e to be causa l .

15 reverseMatch = toMatch ( end :−1:1) ;

16

17 %Generate random s i g n a l .

18 no i s e = randn (1 ,N) ;

19 %make s i g n a l with no i s e and

20 n o i s e s i g n a l = no i s e ;

21

22 %Add expected packet to s i g n a l .

23 f o r i =50: l ength ( toMatch ) + 49

24 n o i s e s i g n a l ( i ) = no i s e ( i )+toMatch ( i −49) ;

25 end

26

27 f i g u r e (1 ) ;

28 p lo t ( n o i s e s i g n a l ) ;

29 t i t l e ( ’ Noisy S igna l With Match Header ’ ) ;

30

31 %f i l t e r n o i s e s i g n a l

32 f i l t s i g= f i l t e r ( reverseMatch , 1 , n o i s e s i g n a l ) ;

33 f i g u r e (2 ) ;

34 p lo t ( 1 : l ength ( f i l t s i g ) , f i l t s i g , 1 : l ength ( f i l t s i g ) , thresh ∗ones ( l ength ( f i l t s i g ) ) ) ;

35 t i t l e ( ’Match F i l t e r e d S igna l ’ ) ;
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D.3 GPS Kalman Filter Simulation

1 c l e a r a l l ;

2 c l o s e a l l ;

3

4 numTrials = 10000;

5 dt = 0 . 0 1 ;

6

7 %State t r a n s i t i o n Matrix

8 F = [1 0 dt 0 ; 0 1 0 dt ; 0 0 1 0 ; 0 0 0 1 ] ;

9 %I n i t i a l i z e s t a t e to 0 ;

10 x=ze ro s (4 , numTrials+1) ;

11 x ( : , 1 ) = [ 0 ; 0 ; 0 ; 0 ; ] ;

12

13 %I n i t i a l i z e s t a t e covar iance matrix

14 var dx = 2 ;

15 var dy = 2 ;

16 var vx = 4 ;

17 var vy = 4 ;

18 p= [ var dx 0 0 0 ; 0 var dy 0 0 ; 0 0 var vx 0 ; 0 0 0 var vy ] ;

19

20 %i n i t i a l i z e H

21 H = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 1 ] ;

22

23 %I n i t i a l i z e no i s e covar iance matr i ces

24 sd q = 0 . 9 ;

25 sd r = 0 . 5 ;

26 %Q i s p i e c ew i s e white no i s e .

27 Q = sd q ∗ [1/4∗ dt ˆ4 0 0.5∗ dt ˆ3 0 ; 0 1/4∗dt ˆ4 0 0.5∗ dt ˆ3 ; 0 .5∗ dt ˆ3 0 dt ˆ2 0 ; 0 0 .5∗ dt ˆ3 0 dt ˆ 2 ] ;

28 %R i s p i e cw i s e white no i s e

29 R = sd r ∗ [1/4∗ dt ˆ4 0 0.5∗ dt ˆ3 0 ; 0 1/4∗dt ˆ4 0 0.5∗ dt ˆ3 ; 0 .5∗ dt ˆ3 0 dt ˆ2 0 ; 0 0 .5∗ dt ˆ3 0 dt ˆ 2 ] ;

30

31 %I n i t i a l i z e input

32 M = zero s (4 , numTrials + 1) ;

33 f o r i = 1 : numTrials+1

34 xrand = rand ( ) /2 ;

35 yrand = rand ( ) /2 ;

36 i f i == 1

37 M( : , i ) = [ i+xrand i+yrand 1 1 ] ;

38 e l s e

39 M( : , i ) = [ i+xrand i+yrand 0 0 ] ;

40 M(3 , i ) = M(1 , i )−M(1 , i −1) ; %Ve loc i ty isn ’ t d i r e c t l y measured .

41 M(4 , i ) = M(2 , i )−M(1 , i −1) ;

42 end

43 end

44

45 f o r i = 1 : numTrials

46 %pred i c t Step

47 x ( : , i ) = F∗x ( : , i ) ;

48 p = F∗p∗F. ’+ Q;

49 %co r r e c t s tep

50 K = p∗H. ’\ (H∗p∗H. ’ + R) ;

51 x ( : , i +1) = x ( : , i ) + K∗(M( : , i )−H∗x ( : , i ) ) ;
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52 p = ( eye (4)−K∗H)∗p ;

53 end

54 x ( : , numTrials )

55

56 f i g u r e (1 ) ;

57 p lo t ( 0 : numTrials , x ( 1 , : ) , 1 : numTrials+1,M( 1 , : ) ) ;

58 ax i s ( [ 0 numTrials −1 numTrials ] ) ;

59 t i t l e ( ’X Pos i t i on Pred i c t i on Over Time ’ ) ;

60 f i g u r e (2 ) ;

61 p lo t ( 0 : numTrials , x ( 2 , : ) , 1 : numTrials+1,M( 2 , : ) ) ;

62 ax i s ( [ 0 numTrials −1 numTrials ] ) ;

63 t i t l e ( ’Y Pos i t i on Pred i c t i on Over Time ’ ) ;

64 f i g u r e (3 ) ;

65 p lo t ( 0 : numTrials , x ( 3 , : ) , 1 : numTrials+1,M( 3 , : ) ) ;

66 ax i s ( [ 0 numTrials −2 2 ] ) ;

67 t i t l e ( ’X Ve loc i ty Pred i c t i on Over Time ’ ) ; f i g u r e (1 ) ;

68 f i g u r e (4 ) ;

69 p lo t ( 0 : numTrials , x ( 4 , : ) , 1 : numTrials+1,M( 4 , : ) ) ;

70 ax i s ( [ 0 numTrials −2 2 ] ) ;

71 t i t l e ( ’Y Ve loc i ty Pred i c t i on Over Time ’ ) ;

72

73 %f i g u r e (2) ;
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D.4 Post-Processing Script

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % data manip masdr .m: by Max Li , 2016

3 % Reads d i r e c t data r e c e i v ed from USRP

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5 c l e a r a l l ;

6 c l o s e a l l ;

7

8 Ts = 1 ;

9 %Ts=42e6 ;

10 %Read in samples from f i l e

11 fname = ’ test wyg data 12 −11. dat ’ ;

12 f i d = fopen ( fname , ’ rb ’ ) ;

13 tmp = fread ( f id , ’ f l o a t ’ ) ;

14 samples = ze ro s ( l ength (tmp) /2 ,2) ;

15 samples ( : , 1 ) = tmp ( 1 : 2 : end ) ;

16 samples ( : , 2 ) = tmp ( 2 : 2 : end ) ;

17 length temp = length (tmp) ;

18 c l e a r tmp ;

19

20 % I n i t i a l i z e counters

21 coun t s i g = 1 ;

22 count match = 1 ;

23 count gps x = 1 ;

24 count gps y = 1 ;

25 count gps z = 1 ;

26 coun t r s s = 1 ;

27 count samp = 1 ;

28

29 % I n i t i a l i z e bu f f e r s s t o r i n g var ious in format ion saved

30 match s ig = ze ro s ( nnz ( samples ( : , 2 ) ==1000) ,1) ;

31 gps x = ze ro s ( nnz ( samples ( : , 2 ) ==2000) ,1) ;

32 gps y = ze ro s ( nnz ( samples ( : , 2 ) ==3000) ,1) ;

33 gps z = ze ro s ( nnz ( samples ( : , 2 ) ==4000) ,1) ;

34 r s s v a l = ze ro s ( nnz ( samples ( : , 2 ) ==5000) ,1 ) ;

35 samp act = ze ro s ( length temp /2 − nnz ( samples ( : , 2 ) ==4000) . . .

36 − nnz ( samples ( : , 2 ) ==3000) − nnz ( samples ( : , 2 ) ==2000) . . .

37 − nnz ( samples ( : , 2 ) ==1000) ,2) ;

38

39 % Separate Match values , gps va lues from sampled s i g n a l s .

40 f o r i = 1 : l ength ( samples )

41 i f samples ( i , 2 ) == 1000

42 match s ig ( count match ) = samples ( i , 1 ) ;

43 count match = count match + 1 ;

44 e l s e i f samples ( i , 2 ) == 2000

45 gps x ( count gps x ) = samples ( i , 1 ) ;

46 count gps x = count gps x + 1 ;

47 e l s e i f samples ( i , 2 ) == 3000

48 gps y ( count gps y ) = samples ( i , 1 ) ;

49 count gps y = count gps y + 1 ;

50 e l s e i f samples ( i , 2 ) == 4000

51 gps z ( count gps z ) = samples ( i , 1 ) ;
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52 count gps z = count gps z + 1 ;

53 e l s e i f samples ( i , 2 ) == 5000

54 r s s v a l ( c oun t r s s ) = samples ( i , 1 ) ;

55 coun t r s s = count r s s + 1 ;

56 e l s e

57 samp act ( i ) = samples ( i ) ;

58 count samp = count samp + 1 ;

59 end

60 end

61 end

62 end

63 end

64 end

65 c l e a r samples ;

66 % mean( samples ( : , 1 ) ) ;

67 % mean( samp act ( : , 1 ) ) ;

68 %

69 % f i g u r e (1 ) ;

70 % plo t ( 1 : Ts : ( l ength ( samp act ) ) /Ts , samp act ( : , 1 ) ) ;

71 % t i t l e ( ’ Sampled Data ’ ) ;

72

73 f i g u r e (2 ) ;

74 p lo t ( 1 : Ts : ( count match−1)/Ts , match s ig ) ;

75 t i t l e ( ’Matched F i l t e r Values ’ ) ;

76

77 f i g u r e (3 ) ;

78 p lo t ( 1 : Ts : ( count r s s −1)/Ts , r s s v a l ) ;

79 t i t l e ( ’RSS Values ’ ) ;

80 %

81 % %f s = 640000;
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