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Abstract
 
 Darmok 2 is a Case-Based Reasoning AI designed to learn from demonstration. Using the Brood 
War API and the Java Native Interface, we adapted Darmok 2 to work with the Real-Time Strategy 
game StarCraft: Brood War. Adapting Darmok 2 to a robust competitive strategy game allowed us to 
demonstrate its learning capabilities, assess its performance and limitations, and suggest improvements 
to its architecture.

 



 
 

I. Introduction

 

Learning from demonstration is the process of a student learning by watching a task be 

performed. It is a common method used by teachers to help their students understand a task. In 

artificial intelligence and robotics it is a method used to train an artificial agent in a task without 

directly coding instructions for that task. This can be useful both for teaching agents tasks quickly, as 

well as for agents that will be required to learn a variety of tasks specific to their area of deployment. 

Examples of this include things as varied as a social robot that will be marketed across multiple 

cultures, to artificial intelligence in games. As a popular area of research, it is important to assess the 

usefulness of this method in an environment not intended for research if in the future it is to be used for 

regular interaction with artificial agents.

Darmok 2 (D2) is an open source system developed by Georgia Tech to assemble real-time case 

based reasoning artificial intelligence modules from xml recordings of games. D2 converts an XML 

representation of a game, called a trace, into a knowledge base that the system uses to select actions in 

a chosen environment (Ontanon et al.). Building plans from these traces is a method of learning from 

demonstration. At the start of this project, the only games that D2 had been tested on were created 

specifically for use with D2, although they were designed based on popular games. This limited the 

conclusions that could be derived from tests in this environment.

D2 is an expansion of a prior project called Darmok that formed the basis of D2's planning 

structure. D2 added automatic goal inferences while observing traces and simulation of plans for 

performance assessment into the older system, which required the player to annotate each trace of 

gameplay. The D2 system addresses the difficulty of case based reasoning in a real time environment. 

Case based reasoning is difficult in such an environment because in the time that passes while 

developing a plan, the plan may become invalid. D2 is able to adapt its plans in real time to account for 

 



 
 

portions of its plan becoming invalid using an online case based planning cycle, a standard case based 

reasoning  cycle with an execution step that checks the world state before executing a portion of a plan.

StarCraft: Brood War is a popular real-time strategy game published in 1998 that has become a 

well-known competitive measure of real-time strategy skills of both human players (Cohen) and 

artificial intelligence (Expressive Intelligence Studio). In spite of the release of a newer iteration of the 

game, StarCraft II, StarCraft: Brood War remains one of the best supported environments for artificial 

intelligence research, with A.I. hook-ins for both external and internal A.I. Control, and a wide variety 

of existing A.I.s of varying tiers of capability.

We have adapted D2 to generate A.I.'s for StarCraft Brood War to take advantage of D2's 

ability learn from any XML documented environment.  In addition, we have evaluated its capabilities 

with respect to accuracy of style emulation when learning from both human and non-human players, 

appropriateness of plan choice and execution, and performance against human players and other A.I.s. 

D2 was selected for this project because it is an open source system designed to be used in a wide 

variety of environments. By adapting D2 to a more competitive, publicly known and expansive 

environment we will better be able to measure its capabilities, assess weaknesses, and understand ways 

in which it may be improved.

In Chapter 2, we outline the basics of case-based reasoning, as well as background info about 

the Darmok engines and StarCraft: Brood War.  In Chapter 3 we describe how we went about the 

process of adapting Darmok 2 to StarCraft.  In Chapter 4, we discuss the results of testing the Darmok 

2 engine with the new environment.  In Chapter 5, we describe ways that the engine could be used or 

expanded beyond the scope of this project.  In Chapter 6, we discuss and explain our conclusions from 

this project.

 



 
 

II. Background

 

1. Case-Based Reasoning and Case-Based Planning

 

Case-Based Reasoning (CBR) is a method of problem solving in which stored solutions to 

remembered problems are retrieved and reused for current problems(Bartsch-Sporl).  Unlike generative 

problem solving algorithms which attempt to systematically solve a problem by exploring solution 

space starting with a clean slate, CBR algorithms start from a concrete solution to a similar problem 

and search from there. CBR has attracted interest due to its similarity to human problem solving using 

likeness between two situations, and by extension, human capability to develop a formal framework in 

domains which lack such a framework (L. Spalazzi).

Image from Bartsch-Sporl et al, Case-Based Reasoning - Survey and Future Directions 

 



 
 

Case-Based Planning is an application of CBR in which each case stores a sequence of actions 

or plan for an domain with an existing framework for actions, preconditions, and postconditions. True 

case-based planning records both failed and successful plans. Since learning can be viewed as a 

problem with actions, preconditions, and postconditions, this makes CBP useful for learning 

applications. Results conflict regarding the efficiency of case-based planners vs. generative planners 

(L. Spalazzi).

 

2. Darmok and Darmok II

 

Darmok was a case-based planner that worked with a java version of Warcraft II 

called “Wargus” (Ontañon et al). Darmok learned from recordings of Wargus being played. Darmok's 

recordings, called “traces”, consisted of actions, timestamps, and the game state when that action was 

performed. The entity generating the trace would then need to manually indicate what the goals of 

those actions were. While assessed as no better at winning a match than the game's built in AI, AIs 

generated by Darmok performed very differently showing good long-term strategy, but poor short 

term. The built in AI did the reverse.

Darmok II was an improvement over Darmok in that it similarly learns from traces, but can 

infer goals, making generation less time consuming and also allowing it to generate traces from entities 

that are incapable of annotating a trace, such as another AI (Ontañon et al). D2 is a general system that 

is designed to be adapted to a wide variety of tasks. In order for D2 to be able to generate an AI for a 

given environment, the actions and objects that exist in the game must be described in an XML 

document (referred to as a “domain”), and the static environment must consist of a cell-based grid, also 

documented in XML. Tests which operate on game data (called “Sensors”) must be made to analyze 

the world-state during both AI generation, and at run-time. The set of goals D2 can use for inference 

 



 
 

must be created as well, where each goal is a test which is true in some desired state.  One of these 

goals must be the victory condition for the game, and D2 must be able to generate a trace of the 

environment from the start of an episode until the end-goal is achieved.

When running an AI built from traces, D1 and D2 both use case-based planning to execute a 

plan. A plan is first selected, from the set created during training, based on which plan’s original 

environment is most similar to the current situation.  The AI then takes the series of actions in the plan, 

for each action adapting the action’s original parameters (what unit to use, where to perform the action, 

etc.) to the current game environment.  If the start conditions for an action is met the action is executed. 

The AI waits until either the success or failure conditions for the action have been met, at which point 

it evaluates the game state and decides on its next action.

 

3. Starcraft: Brood War and the Brood War API

 

We chose to use StarCraft Brood War for expanding Darmok 2 because of its reputation as a 

robust, competitive real-time strategy environment. In each game the player starts with 5 noncombat 

units for collecting resources and building structures. Once enough resources have been collected, the 

player may construct more workers, and also allocate workers to begin building other structures. Other 

structures can build combat units, research combat utilities or advantages, or participate in combat 

themselves. Which buildings are constructed, the order they are constructed in, and the timing can all 

vary greatly, though the early portions of the game are often very similar due to the standard starting 

state. Adding to the desirable traits of the environment is diversity of viable strategies. When properly 

executed, both short-term rush tactics and long-term plans can win. Lastly, adaptation of strategies can 

also play a major role. While early game it is important to have a strong force, late game it becomes 

important to be able to rapidly change army composition and strategy to counter or outmaneuver an 

 



 
 

opponent.

The main strategy we focused on for this project centered around the Zerg race which has a 

very strong early game setup called the “Zerg Rush”. The Zerg race is able to produce a lot of weak 

units called “zerglings” cheaply making for a fast attack. Properly executed,  the zerglings will arrive 

and destroy any buildings before the opponent has adequate defenses. There are viable defenses against 

this strategy, but at low skill levels, it is both easy to execute and hard to defend against.

As an externally developed program, we needed a method to retrieve the game state from 

StarCraft: Brood War. To do this we used Brood War API (BWAPI), a C++ Library of hook-ins 

to StarCraft.  The Brood War API is a 3rd party module which has been developed for allowing an 

external AI to interact with StarCraft: Brood War(Bwapi - An API).  The API creates a number of 

functions which make developing an external AI for Brood War possible.  The API exposes these 

functions to C++ code, but D2 was constructed in Java. To connect D2 to BWAPI we used an existing 

Java interface for the Brood War API, called JNIBWAPI, which uses the Java Native Interface to 

expose the majority of BWAPI functions to Java code (JNI Interface for BWAPI).  We used both of 

these to allow our project to communicate and interact with StarCraft: Brood War.

 



 
 

III. Methodology

 

1. Engine Overview

 

The D2 Engine itself has three major preexisting parts: a domain generator which creates Java 

code based on a given XML domain, an AI trainer which creates a plan based on given traces, and an 

AI executor which runs the plan during the game by looking at the current game-state and outputting 

actions which the AI player should take.

The D2 engine must be added to in four major areas to be adapted to a new domain: Java code 

which converts the game state into D2’s data format, Java code which converts D2’s output when the 

AI is running into in-game commands, the tracer client which retrieves the game state from the game 

and records it in an XML file, and the AI client which takes the compiled traces and actually runs 

planning algorithms on them. Because the tracer client already retrieves the game state, we used the 

tracer code to provide game state to the AI client.

 



 
 

Figure 1. Flowchart for creating and running an AI using Darmok 2

 

A number of steps are required to build and run an AI using Darmok 2.  First, we needed to 

write the XML domain, which describes all of the entities, actions, sensors and goals the AI will need 

to know about.  This is passed to the Domain Generator, which generates Java code that represents all 

the data in the domain and loads it into Java objects when the program starts.  The Java Domain code is 

used by all the other parts of the Darmok 2 system to understand the environment it is operating with.  

After generating the Java Domain, we wrote the Java required to convert the StarCraft game 

state into the data format described in the Java Domain, and implemented our tracer client.  Using the 

tracer client, we generated a number of XML traces by having a simple Java AI run our training 

strategy. These traces were passed to the AI Trainer, which created a set of plans based on the traces, 

and recorded them in an XML document, called a planbase. 

 



 
 

We next wrote the Java code to take D2’s output, interpret it, and send the desired actions to in-

game units through the Brood War API.  Using this code, we wrote our AI client, which loaded the 

previously generated XML planbase into a D2 AI. The AI client was able to play through a game by 

continuously feeding the AI the current StarCraft game state, and taking the actions indicated by the AI.

 

2. XML Domain

 

The XML domain contains static representations of all the pieces of Brood War that Darmok 

2 can make use of, and also contains the sensors that are built into each AI plan base by D2.  Darmok 

2 has four main types of XML constructs. Actions, Entities, Sensors, and Goals.  Creating the XML 

domain was one of the most time consuming aspects of this project, and it went through numerous 

revisions as our understanding of the Darmok system evolved.

 

2.1. Actions

 

The first section of the XML domain documents Actions (Fig. 2).  Actions are tasks that entities 

in-game can perform. While the actions are assigned by the player or AI, in StarCraft the actions are 

actually performed by the units. Each action contains a set of requirements that must be met to perform 

that action, and takes the parameters needed to give the command associated with the action through 

BWAPI.

 



 
 

Figure 2. Example XML for the “Attack Unit” action

 

Each action has a number of conditions that the AI uses to determine information about 

the state of the action. The various conditions consist of logical tests or simple operations, which can 

make use of sensors defined in the domain (or the basic sensors defined in the engine). An action’s 

ValidCondition is used to check whether the given parameters are valid for the entity trying to perform 

the action when D2 is adapting parameters.  The action’s PreCondition is checked after parameter 

adaptation to determine whether the action can currently be performed.  If the AI is waiting for 

PreConditions to be met, the PreFailureCondition is checked to determine if the AI should stop trying 

to perform the action.  The OnPreFailureCondition segment is code that is run the first time the 

PreFailureCondition is checked (in this case it sets the duration of a timer which tells the AI to stop 

trying to do the action). Once the action has been started, the AI repeatedly checks the 

 



 
 

SuccessCondition and FailureCondition to determine if the action has succeeded or failed.  Much like 

the OnPreFailureCondition, the OnFailureCondition code segment is run the first time the 

FailureCondition is checked.  

Writing the XML for actions was one of the first things we did when creating the domain, and 

was difficult in part because some in game commands were different depending on the parameters 

given, requiring multiple D2 actions to represent fully.  Other times, multiple commands could be 

represented by a single D2 action, such as the commands to cancel different types of actions.  Because 

there was not always a one-to-one correspondence of BWAPI commands to D2 actions, we had to be 

careful to design our domain code to adequately cover the different cases that could arise.  In addition, 

we had to make changes to the different conditions for some actions later in the project, when we 

achieved a better awareness of how they are used by D2 during execution.

 

2.2. Entities

 

Another section of the domain describes the entities Darmok needs to interact with during game 

play (Fig. 3). Entities are divided into physical entities and nonphysical entities, with physical entities 

representing in-game units, and nonphysical entities representing players. Each entity has a set of 

features, which contains information about a unit or type of unit, and a list of actions that they are able 

to perform.

 



 
 

Figure 3. Example XML for the “Terran Refinery” Entity 

 

Units are representations of in-game units. We created further subcategories to represent special 

properties of ground, air, and building units of each race. Regardless of subcategory, all unit entities 

have a unit size, hit points, build time, gas cost, mineral cost, and supply cost. When recording data 

from traces and during gameplay, the entity data is used to determine walkablility, current hit points, 

and other features. Most important to D2 are the build time and resource costs. These costs form 

preconditions for building the units when an AI is being run.

The process of writing the XML for entities was one of larger initial time investments we had to 

make. StarCraft is well documented, so once we decided on a format for the different entity types the 

 



 
 

data to fill the entities in was easily available.  However, StarCraft is a very large and complex game, 

featuring over 100 types of unit encountered in general play.  As a result, it took a significant amount 

of time just to go through and translate each unit type into the appropriate XML.

 

2.3. Sensors

 

Sensors are functions that operate on data when D2 is analyzing game state (Fig. 4).  They can 

use basic logical operations, or other sensors defined either in the domain or the D2 engine itself, and 

can return any basic data type usable in D2’s logic.  Sensors directly used in conditions usually return a 

Boolean value, based on some data in the game state or the results of calling some other sensor.

Figure 4. Example XML for the “Supply” Sensor

 

D2 uses the sensors we built to check the game state during planning and adaptation to 

determine if pre- and post- conditions for an action are met. This can be done to check if an action or 

goal is able to be completed from the current state or if an action or goal has been completed.

We decided on the sensors that would be required for StarCraft’s domain while writing the 

action XML, and wrote dummy code for different sensors based on what information we would need 

to test different action conditions. Writing the sensor code also proved to be somewhat of a challenge, 

as D2 uses an engine specific syntax for performing operations or comparisons with sensors, which 

has some quirks although it does mostly follow general programming syntax convention.  In addition 

to D2’s syntax, it is also possible to have a sensor directly insert Java code as its evaluation function 

 



 
 

when generating the Java Domain, which makes it possible to write more complex sensors than would 

otherwise be feasible.  Of significant note is a discovery we made later in the project when training the 

AI, which is that sensors may need to be evaluated when training an AI, and can therefore be based 

only on the data available to D2 through the trace provided.  Prior to finding this out, we had some 

sensors directly use Java code to easily access information available through BWAPI, which caused 

problems when initial training attempts started.  This meant that we had to spend a non-trivial amount 

of time rewriting the sensors to only use trace data.

 

2.4. Goals

 

The last part of the XML domain consists of goals (Fig. 5).  Most goals function like sensors, 

checking portions of the game-state to determine if the goal has been completed.  D2 uses goals as a 

part of its planning structure, to infer what the player intended when performing various actions based 

on when different goals were met. The only goal that is actually required for D2 to function is the win-

goal, which indicates to D2 when a desired end state of the game has been reached.

Figure 5.  Example XML for the “Have Terran Marine” Goal 

 

For our purposes, we wrote a set of goals which were based on having different types of units.  

The set of goals was relatively simple, but allowed D2 to infer enough information to determine what 

was required to produce different types of units and develop the requisite base infrastructure.

 

3. Tracer Client

 



 
 

 

The tracer client is an executable program which runs in the background while another source, 

either a human player or another AI, sends input to StarCraft. The purpose of the tracer client is to 

record both the game state and actions the player takes throughout the game, then save that information 

so that it can later be used by Darmok to train an AI. Accomplishing this required us to connect D2 

with the Brood War API and JNIBWAPI.

Darmok contains built in trace output code which can save a record of what happens during a 

game as an XML trace.  However, this code requires that the data be in a format usable by Darmok, the 

Java code for which is created during domain generation. Because of this, we first needed to write code 

that could retrieve the game state using BWAPI, and store it in the data structures of the Java Domain. 

Once the data was converted into a format usable by Darmok, we were able to output it as an XML 

trace by using D2’s built in tracer code.  To make the process easier, we created a wrapper class which 

encapsulated the process of converting the game state and sending to the tracer when required. At that 

point, we were able to write AI client using BWAPI, which allowed for external input and did nothing 

but make the appropriate calls in order to record gameplay traces.

When the tracer client starts, it connects to StarCraft via BWAPI, and then starts D2’s trace 

output code. Once the game begins, our converter code retrieves the info Darmok initially needs to start 

a trace.  It builds a representation of the map by encoding each map tile as a different character based 

on which type of map tile it is. Stored with each map are the names of the players and the name of the 

map. Once the trace has been started, the client uses a function which is called by BWAPI each time 

the game updates to record game information as necessary. At set intervals and whenever a player 

takes an action, the game state and any actions taken are converted and recorded into the XML trace. 

To reduce the size of the trace, Darmok only actually records changes in game state. This is determined 

using a difference function between the previously recorded game state and the state about to be 

 



 
 

recorded. Once the game is over, the winner of the game is recorded, and the trace is complete.

The most difficult and time consuming part of building the tracer client was creating the code to 

store the game state in D2’s data format, which required understanding the way Darmok represents 

game data. We had to reconcile numerous differences between how D2 and the Brood War API store 

information, such as naming convention of unit types and the fact that StarCraft locations are pixel 

based, whereas D2 uses a tile based coordinate system.  Another significant obstacle was learning how 

to use D2’s built in tracer code, which was poorly documented.  Once the back end code was complete, 

we programmed the client using BWAPI hooks to call the appropriate functions.  The client did require 

tuning after completion, as we found that recording the game state too often could slow down the game.

 

4. AI Client

 

In addition to the tracer client, we also created an AI client which D2 uses to play the game.  D2 

needs access to the game state to make decisions at run time, so we based the AI client off of our tracer 

client, which already had the functionality for converting the game state and storing it in D2’s data 

format. We added functionality to our tracer wrapper code to allow us to retrieve the game state once it 

had been converted. However, our client had to be able to use the output from D2 as well as provide 

input. D2 gives output as a list of actions that should be executed, in its own data format.  To handle 

this, we added conversion code, which could take the action data and send a command through BWAPI 

based on each action object.  The code looks at the action objects, and depending on the action’s type 

extracts the parameters necessary for the appropriate command from the action’s data.  The code then 

sends the command that corresponds to the action via BWAPI, using the parameters retrieved.  From 

there, we modified our client to make use of D2’s execution code.

When the AI client starts, it has D2 load a planbase (generated based on previous traces) from a 

 



 
 

file.  At each update, the AI client retrieves the game state with the same functionality used by the 

tracer client, and then pulls the game state from the tracer and sends it as input to D2.  The client then 

receives a list of any actions D2 wishes to perform, and uses the conversion code to send the actions to 

StarCraft via Brood War API.  For testing purposes, we had D2 pause the game when it was 

processing, allowing us to see how long it took, and letting us compare its performance to that of 

StarCraft’s built in AI without time constraints.  We also tried running the AI in multi-threaded mode 

to allow the game to continue while it worked, but did not pursue this very far because of D2’s 

performance issues (discussed in section IV).

Overall, the work done on the AI client consisted largely of expanding the functionality of the 

tracer client and conversion code.  A significant amount of time was also spent developing an 

understanding of how D2’s execution code functioned, as the code often required extensive analysis in 

order to be used properly.  Over the course of developing and debugging the AI client, we also made 

modifications to previous work on the XML domain and converter code as our understanding of D2’s 

operation improved.

 

5. Training and Testing D2

 

In order to train D2, we incorporated our tracer client into an existing AI module, which used 

the “zerg rush” strategy on the map “Astral Balance”(Fig. 6), and recorded each match using the tracer 

module. We collected several trace batches. One batch ran using a single starting location on the map, 

and another ran using several starting locations. After running the example module a number of times, 

we compiled the traces into a planbase using the D2 Trainer module. 

 

 



 
 

Figure 6. Astral Balance Game Map. Starting locations in upper right and lower left

 

Observing the D2 client play, there were significant pauses in activity, which we measured 

using time measurements taken manually while observing gameplay. During execution, we looked 

specifically for the order of actions issued to units, where the units executed the actions, and which 

units executed actions to determine accuracy of the plan D2 built. 

 



 
 

IV. Results

 

Our tests on the completed system showed that it will successfully emulate the trace examples 

given when training the AI.  In early tests this was made quite apparent when our traces were made 

only at one base on the map, and the resulting AI would almost always try to use that base, even when 

spawning at the other end of the map.  Further tests that had examples from both map locations would 

usually mine from local mine locations, build when the appropriate resources were gathered, train the 

same units as in the trace case, and attack with them as demonstrated.  However, D2’s action 

adaptation is not perfect, and the AI would occasionally give commands that were not appropriate for 

the current context, even when provided with a variety of training examples. Overall, we found that D2 

was generally capable of learning a course of action from the examples given, and carrying it out the 

plans it developed.

One major failing of the D2 engine that we have found is in its parameter adaptation for actions. 

The D2 engine can look at the parameters for an action (what unit did the action, where it was done, 

etc.), and tries to find the closest valid parameters in the current game.  However, when adapting 

coordinates, the engine delays 10 to 105 seconds if the coordinate system is at the resolution of 

walkability data, which is needed to accurately assess where units can travel and requires 4 times as 

many map locations as data for where buildings can be built.  The slowdown is likely because even the 

smallest StarCraft maps have dimensions of 512 by 384 when using walk coordinates, in contrast the  

low-resolution (in terms of map segments, not graphically) maps used by Darmok’s test games, which 

had a maximum size of 128 by 128.  Fixing this would likely require implementing domain-specific 

parameter adaptation, which is a non-trivial task, although the engine does allow for domain specific 

extension of its adaptation code.  The time D2 requires when adapting actions made it ultimately 

unable to compete against the built in AI when time was a factor.  When processing time was 

 



 
 

unrestricted, it performed competitively against the built in AI and was able to sometimes win, 

depending on the strategy taken by its opponent.  Whether or not the AI was able to defeat its opponent 

seemed to depend largely on whether the opponent was able to train combat units before the initial 

attack reached their base.  If the opponent was able to create a meaningful defense, the initial attack 

would often fail and the D2 AI would eventually lose.  It should be noted that because D2 tends to plan 

actions in series rather than in parallel, it was usually slower to build up and launch its attack than the 

AI we trained it with, leading to a lower probability of winning.

D2’s focus on overall plan goals and order of action execution also caused issues with unit 

commands. While a command would always be issued to a unit if a valid unit to execute the command 

existed, it did not adequately distinguish between units that were already performing a task, such as 

gathering resources, and units that were not performing a task. While D2 can track which units are 

currently busy, the planning and execution mechanisms currently used by D2 don’t seem to make much 

use of this, often preferring to have a sequence of actions that are performed to completion rather than 

performing multiple actions in parallel, some of which (such as resource gathering) may go on 

indefinitely. D2 also demonstrated a poor ability to micromanage its units, having problems adapting 

very specific combat actions to a new situation.

 



 
 

V. Future Work

 

The biggest initial challenge in this project was adapting the different components to work 

together. Each component (BWAPI, JNIBWAPI, and D2) had its own set of documentation, and there 

were numerous differences in naming convention and functionality between the different components. 

For example, BWAPI measures time differently than D2, requiring us to track game time in our Java 

code.  Recording the traces too frequently also creates issues as rapid traces can slow down the game 

significantly due to the costs of converting the entire game state to D2’s data format and recoding it to 

XML files.

From our experience running the AI, we see a few ways in which it can be improved. When 

searching through the map for build or movement coordinates, such as when ordering a unit to a 

specific location, or finding valid locations to build, the map is searched square by square. These 

squares come in three resolutions: individual pixels, walk tiles(8x8 pixels), and build tiles(32X32 

pixels). Smaller resolutions are needed for finer unit control, which is key for more advanced 

strategies. D2 uses a search algorithm that checks all of the cells in the map to determine walkability 

before determining a destination. If the smaller resolutions are used, the game must pause for a rather 

large amount of time in order to execute essential and common commands. To improve this, we 

recommend using a localized, search starting from the unit the command is being issued to and 

extending outward. We attempted to reduce the area checked during coordinate adaptation, however 

we found that this method was often unable to find a result suitable for the current game environment.  

Incorporating a less expensive means of adapting coordinates without an unacceptable drop in the 

quality of the results would require significant effort, and was not among the tasks we could 

accomplish due to the time constraints of this project. 

While the delays that occurred when we ran D2 were large enough that human error was not a 

 



 
 

factor when measuring processing time, for improvements in measurement accuracy we recommend 

the use of timers embedded in D2.  Embedding timers in the various planning and adaptation functions 

used by D2 could allow a better analysis of exactly which operations are most problematic, and could 

be useful in later efforts to optimize D2.

Due to the methods D2 uses to issue commands, checking which units are busy and making 

effective use of the information would require changes to D2’s execution structure. Since commands 

are issued based on similarity to a plan, D2 cannot effectively distinguish between owned units with 

the same properties with efficient processing time. While D2 can track which units are currently 

performing a task, we found that because D2 prefers to perform actions in series, it was not possible 

to have D2 permanently set aside a unit assigned to some task of indefinite duration while still 

having it continue its plan. One possible solution for solving both problems with unit allocation and 

micromanagement would be to have another, lower level, domain specific AI. This AI would be used 

to specify which units should receive commands, and handle the details of situational combat actions.

  

 



 
 

VI. Conclusions

 

Learning from demonstration is an important problem to solve both for making AI and robots 

that can be taught without direct knowledge of coding systems and design, and also for understanding 

how humans learn from demonstration. To assess the current performance of research oriented learning 

from demonstration programs in games we used the Georgia Tech Darmok 2 and selected an 

independent test environment, StarCraft: Brood War. Adapting D2 to StarCraft required constructing a 

representation of the StarCraft environment in XML, and using two APIs, BWAPI and JNIBWAPI, to 

provide data which D2 could use to assess the current game state, and issue commands to the game. 

We constructed a Tracer Client to record demonstration games from StarCraft, and an AI Client to run 

D2’s compiled AIs in StarCraft.  All of these pieces working together allowed us to run demonstrations 

of a simple strategy, compile the traces of those demonstrations into an AI, and run the AI in an actual 

game of StarCraft against a computer opponent.

We determined from these results that D2 is not competitive in StarCraft: Brood War given its 

current state. The delays from D2 examining the game state at run-time are too large for it to be 

effective in the chosen environment.  However, with optimization of D2’s coordinate and entity 

adaptation mechanisms, we believe these delays can be significantly reduced.  Finally, the actions 

taken in the plans executed by D2 reflected the proper order and general positioning necessary for 

successful game play. This shows that transition to an independent environment did not compromise 

the viability of the learning process, only the execution. As better methods of plan storage and access 

are implemented, this method of learning from demonstration will become more viable outside of 

research domains.
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