
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

October 2012

Post Developmental Applications of Analog-to-
Digital Converters
Dale L. Spencer
Worcester Polytechnic Institute

Gabriel Genannt McCormick
Worcester Polytechnic Institute

Sean Patrick Gray
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Spencer, D. L., McCormick, G. G., & Gray, S. P. (2012). Post Developmental Applications of Analog-to-Digital Converters. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2211

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2211?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Post Developmental Applications of

Analog-to-Digital Converters

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Electrical and Computer Engineering

by

Sean Gray

Gabriel G. McCormick

Dale L. Spencer Jr.

MQP-AW1-IRL9

10/23/2012

Sponsoring Organization:

Analog Devices

Project Advisor:

Professor Alexander Wyglinski

i

Abstract

The goal of this project is to improve upon the post-development applications for analog-

to-digital converters (ADC). Specifically, three tasks were pursued throughout the duration of

this project: The first focused on the development of an improved, low jitter evaluation board for

the AD7626 ADC. The second task focused on the generation of a process by which Analog

Devices can create in-house input/output buffer information specification (IBIS) models. Finally,

the third task involved assessing the feasibility of integrating Analog Devices’ products with

third party microcontrollers.

ii

Acknowledgements

Without the help from certain individuals and groups, the completion of this project

would not have been possible.

First, we would like to thank Worcester Polytechnic Institute and the Interdisciplinary

and Global Studies Division for making the necessary arrangements for us to go to Limerick,

Ireland.

We would like to thank Analog Devices, for providing us with a place to work and the

necessary equipment needed to complete our project.

We would like to extend a special thanks to Claire Leahy, and Claire Croke for

overseeing our project at Analog Devices.

Most of all we would like to thank Professor Alexander Wyglinski for advising our

project.

Finally, we would like to thank Charlotte Tuohy, our local coordinator for the project

center, for arranging and managing our housing, as well as assisting many times us during our

time in Limerick, Ireland.

iii

Executive Summary

In order to satisfy its customers, Analog Devices needs to provide post development

support for its products. The support required is unique to both the product and the customer and

can range in applications such as developing evaluation boards that showcase a device’s

capabilities, developing software that enhances a product’s functionality, and improving on a

product’s ease of use. Specifically, our group tackled tasks that involved developing an improved

evaluation board for and Analog Devices analog-to-digital converter (ADC), generating a

process by which Analog Devices can create in house input/output buffer information

specification (IBIS) models, and tested the feasibility of integrating Analog Devices products

with third party microcontrollers.

IBIS

I/O Buffer Information Specification (IBIS) is a standard by which the electrical

characteristics of the pins of a digital integrated circuit (IC) are represented. An IBIS model

contains the I/O buffers and other characteristics of the circuit without revealing the circuit’s

structure or process information. Presently, the work of creating the IBIS model for Analog

Devices parts is contracted out to a third part. Analog Devices wants to avoid further contracting,

and would like to move the creation of IBIS models in-house. Therefore, our task in developing

this procedure should outline how to create a model that takes simulated current versus voltage

(I/V) and voltage versus time (V/T) data and converts it into an IBIS model. To develop this

procedure, we will create an IBIS model by converting bench measurement data personally taken

using the AD7091R analog-to-digital converter (ADC), into the IBIS format. The data, along

with the IBIS model itself, will be compared and versified against a model made for the same

device by a third party company.

iv

Figure 1: These are the steps required to produce a fully functional IBIS model. The primary goal of this project

was to show that it was possible for Analog Devices to perform the first two steps of this process, gathering the data and

creating the IBIS file, and to develop a procedure of how to do so [1].

In order to begin acquiring the bench measurement data we needed to create our IBIS

model a sweeping program needed to be developed to be used by the Keithley 2420 source

meter. This program was developed by altering an example LabView virtual instrument (VI) that

was offered in the Keithley drivers. The program allowed us to set up measurement options that

controlled voltage range, the number of samples to be taken, how long the sweep will take and

where the data would be saved to. We used a Tektronix DPO4054 oscilloscope to obtain the

ramp rate and Voltage versus Time (VT) data. A measurement was taken at 1.8 V, 2.5 V, 3.3 V,

and 5 V, with a 50 Ω resistor connected between the Serial Data Output (SDO) pin and the

VDRIVE pin. This setup allowed the oscilloscope to gather VDRIVE-relative timing data. In order to

obtain a measurement, the oscilloscope was connected to the SDO pin and Ground (GND) pin.

With this setup, when the System Demonstration Platform (SDP) supplied a signal to the

evaluation board, the signal was displayed on the oscilloscope, which can then be captured as a

single sample. In order to obtain the ground-relative waveforms a 50Ω resistor was connected

v

between the SDO pin and the GND pin and the process was repeated. To obtain data on the

rising and falling edge, we took advantage of the oscilloscope’s ability to focus onto critical

portions of the waveform. In order to obtain the ramp rate of the rising waveforms, one cursor on

the oscilloscope screen was placed at 20% of the maximum voltage and another was placed at

80% of the maximum voltage, thereby displaying the change in voltage levels between these two

points, as well as the time it took between changes.

The next step was to take all of the data we had acquired and write it in the IBIS format.

We decided to develop a method of accomplishing this task using a LabView Virtual Instrument

(VI). Since Analog Devices wanted the process of translating raw data into the IBIS format to be

as automated as possible, there were two specific goals that this program attempted to

accomplish. The first goal was to be able to use this program with a wide variety of devices,

meaning that it would need to be universal. The second goal was to have the program require as

little user input as possible. These goals contradict each other because by being universal, the

program will most likely need more user inputs. On the other hand, having the program be fully

automated would most likely limit the devices which the program could be used for, so we

would need to find a balance between these two qualities.

The results for the IBIS model project consisted of the numerous measurement files, the

LabView VI, and a step-by-step procedure for creating the IBIS model to be used by Analog

Devices. Once our measurement data was captured, it was saved into a spreadsheet. There were

forty of these spreadsheets in total. Secondly, our LabView VI prompts the user for all of the part

and manufacturer specific headings that exist in the IBIS format, as well as the paths to the many

data files that they must have to create for the model. When the program is run, it will create a

.txt file which can be renamed to an .ibs file to be used in Mentor Graphics’ HyperLynx program

vi

for analyzing IBIS models. The final product of this project was the step-by-step tutorial for

creating the IBIS model, which included a careful documentation all of the steps we took that led

to a successful model, as well as how to use the LabView VI that we created.

The IBIS model created in this project only had to contain enough data to show that it

was possible to gather all of the data necessary and output it in the IBIS format. The next steps

would involve additions to our guideline which would outline a procedure for producing a full

IBIS model. This would entail all of the steps necessary for gathering the Voltage versus Time

(VT) and Current versus Voltage (IV) characteristics of the device under its maximum and

minimum performance specifications, while we were only concerned with the data under typical

conditions.

Another simple improvement to the data collection process for the VT data would be to

change the parameters for measuring the rising and falling waveforms. We would have liked to

implement these conditions, but there was no longer time to do so. Additional future work to be

considered is improvements to the “Sweep_Measure_and_output_to_excel” Virtual Interface

(VI). At present the sweep takes a number of data points over set intervals, but it would be more

efficient to take data points at areas of greatest change. This would ensure that a large number of

data points are not wasted over a region where nothing of interest is happening, leaving fewer

data points for the regions that need them. Another possible quality of life improvement would

be to use a LabView VI to control the power supply. This would make taking the measurement

much more efficient as all four sweeps needed for each configuration could be taken at once

instead of needing to run the sweep four times, adjusting the voltage parameters between each

sweep.

vii

AD7626

Evaluation boards are an important part of the post-development applications at Analog

Devices. They provide the user with a method of testing and using analog-to-digital converters

(ADC), as well as giving the user knowledge of the real performance capabilities of the product.

The speeds of Analog Devices’ ADCs are part of what make them desirable. When building

evaluation boards for any product, one must take special care regarding how all of the different

components will be sensitive to high frequencies. Ideal models will begin to melt away to the

realities of engineering when very high speeds are applied. If an ADC cannot perform to its full

throughput because it is being limited by a different portion of the circuitry, then the ability to

operate at those higher frequencies is wasted. The final objective of the AD7626 Evaluation

Board project is to develop an improved evaluation board for the AD7626, an analog-to-digital

converter that connects to Analog Devices’ new System Demonstration Platform-H (SDP-H)

platform. The new board will allow for high frequency input tones to be applied to the AD7626,

while still maintaining the previous clock source as an alternative. It is also imperative that the

jitter on the Convert Start (CNV) provided to the AD7626 does not impede performance. This

means that a new clocking solution will need to be developed to provide a low jitter input to the

AD7626 as well as the FPGA on the motherboard.

In order to design a low jitter clocking solution, we first needed to research how jitter can

be reduced, and what kinds of devices exist to accomplish this task. Through research and

meetings with our supervisors, we decided to use a PLL centered clocking solution. Next, we

took advantage of video tutorials and applications notes provided on the Analog Devices

website, and decided to use the AD9513, based on three key factors. The first was if the PLL met

the required low jitter specifications. The data sheet for the AD7626 boasts a signal to noise ratio

viii

(SNR) of 91.5dB, while the datasheet of the AD9513 boasts a jitter performance of

approximately 300fs at 10 MHz. The relationship of a device’s SNR (dB) and its jitter is shown

in the equation below in Equation 1:

 () (

) Equation 1

Using this equation, we found that the maximum jitter time that a signal provided by the

PLL could provide without reducing the performance of the ADC is 423.4fs. Therefore, the

AD9513 meets the low jitter recommendations. We also know from our design approach that the

PLL would need at least three LVDS outputs. The AD9513 has six outputs which can be paired

and configured as three LVDS. Finally, we needed to see if a part existed that also satisfied these

two factors, but was a cheaper. We could not find such a product.

Since the AD7626 is very similar to the AD7960, we knew we would be able to leverage

much of the design from that evaluation board schematic. However, while being able to copy

parts from other schematic is very convenient, it does not mean that everything will work

together. In order to gain a greater knowledge in how the AD7960 schematic works, and how it

will need to be changed to function with the AD7626, we will need to seek the advice of one of

the head engineers of the AD7960 project. After the leveraged parts of the previous schematic

are modified to work with the AD7626, the new clocking solution needs to be created. While this

schematic sheet will require more design than the others, we can still take advantage of existing

schematics on the Analog Devices website that use the AD9513. Once we are satisfied with the

ix

design, the schematic will be submitted to the project adviser, along with a bill of materials for

all of the parts existing on the plan. After making the appropriate changes to gain the approval of

Analog Devices, the schematic will go through a final review before being sent to the layout

department for fabrication.

The evaluation board that we designed was completed at such a time during our project

that we would not receive the fabricated board because of the layover between submission and

layout and fabrication. During this time between design submission and receiving the board, we

would have worked on the code that governs the off board field-programmable gate array

(FPGA). Consequently, instead of having the code that governs the FPGA, test results of the

board, and schematics of the circuitry, the only result we have for the AD7626 project is the

schematic that was submitted and approved for layout and fabrication. The process for

submitting a schematic for layout and fabrication involved several meetings with applications

engineers, but it did not involve simulation. However, in these meetings, we went through our

schematic diligently. Since the majority of the schematics we submitted were based on previous

designs, most of the focus was aimed at how the previous circuitry was modified to fit the

differences in the specifications between the AD7626 and the AD7960. When we reviewed the

page that we had created, we were required to explain why every connection was made based

upon product datasheets and evaluation literature from the Analog Devices website.

AD7980 Interfacing to Microcontrollers

The advancement of the processing power of microcontrollers has made them more

appealing for interfacing with analog-to-digital converters (ADC). This is especially true

regarding ADCs that have had their performance limited by their controller in the past. This

limitation commonly lies in the maximum clock speed of the controller, as the minimum

x

conversion time of the ADC relies on the ability of the controller to read the n-bit digital output

within a certain maximum time. If the controller is unable to reach this clock speed, then the

ADC will operate at a reduced throughput. Analog Devices has recognized the consumer’s desire

to interface with microcontrollers by releasing a driver intended to simplify the interfacing of

microcontrollers to one of their ADCs, the AD7980. However, Analog Devices is unsure of the

performance implications on their ADC’s when interfacing to commonly used microcontrollers.

The first goal for the AD7980 Microcontroller project is to collect performance data of

the ADC. The bandwidth of the processor being used while interacting with the ADC is of

interest, as this is likely to impact the other devices the microcontroller is connected to. Ideally,

the microcontrollers would be able to operate the ADC at its maximum throughput. Finally, the

signal to noise ratio (SNR) of the conversion needs to be derived, which can be done over a large

number of conversions, and is expected to decrease as the throughput of the ADC increases, due

to jittery clocks, and the known performance degradation of Serial Peripheral Interface (SPI) at

speeds over 50 kHz. The second project goal for the AD7980 project is to determine the ease of

use of interfacing to these microcontrollers using the generic driver designed by Analog Devices.

The project will test the driver with three microcontrollers, from three different manufacturers, in

order to determine ease of use. If it is found that interfacing to these various devices is not

simple, then methods for improving the driver should be devised.

The project was to use two microcontrollers from different companies. One

microcontroller was required to be from the Texas Instruments MSP430 family, due to its

immense popularity. The other was left to the group’s discretion, but it was recommended that

the other microcontroller be selected from the offerings of STMicroelectronics. When it came to

selecting potential families, and then the individual microcontroller, there were two defining

xi

factors. First, the microcontroller needed to be able to utilize the Serial Peripheral Interface (SPI)

when communicating with external components. Second, in order to maintain the AD7980’s

maximum throughput, the microcontrollers needed a clock of at least 55.1725 MHz.

The purpose of the program designed for each microcontroller is exactly the same,

although the code for each microcontroller varies due to differences in how control registers are

accessed for each microcontroller. The objectives of the program were to establish the Serial

Peripheral Interface (SPI) with the AD7980 analog-to-digital converter (ADC), initiate the

conversion, and maintain conversions at the maximum rate provided for by the microcontroller.

A method for exporting the data out of the memory of each microcontroller was needed in order

to get the performance specifications. Once the program for each microcontroller was complete,

tests had to be run in order to derive the performance of the ADC with each microcontroller.

These tests included throughput of the ADC, signal to noise ratio of the conversion, and bit rate

of the microcontroller.

Figure 2: The AD7980 evaluation board that was used. The blue wire connects to the raised OVDD pin on one end, and to

VDRIVE on the other. The red wire allows connections to the SDI pin on the AD7980.

xii

In order to correctly test the AD7980 analog-to-digital converter (ADC) with the

microprocessor, an AD7980 evaluation board was used, in conjunction with a breakout board.

Finally, a signal generator was used to provide the positive and negative terminals of the input

signal. As stated above, the performance specifications that were of interest were the throughput

achieved with the ADC and microcontroller, and the signal to noise ratio (SNR) of the signal

after conversion. In order to derive the throughput of the ADC an oscilloscope was connected to

the 4 wires interfacing the AD7980 to the microcontroller. When a conversion is viewed on the

oscilloscope, the conversion time that has been elapsed can be seen, and can be used to find the

throughput. This is found by the equation in Equation 2.

 () () Equation 2

This result is the samples that the ADC is able to complete per second when interfacing

with the microprocessors. Computing the SNR requires a large number of conversions for

accuracy purposes. To calculate the SNR, the data from a large number of conversions is input

into a specially designed LabView Virtual Instrument (VI) for creating Fast-Fourier transform

(FFT) plots, and then the VI calculates the overall SNR of the system. Sixteen thousand

conversions are needed in order for the FFT to be accurate. Since the SNR is so heavily

dependent on frequency, the conversions will needed to be tested across a broad range, in order

to get the best possible picture of how the microcontroller and the SPI interface affect the

performance of the AD7980.

To generate the analog waveform used for testing, an Audio Precision SYS-2722 was

used. Running a single test required changing the SYS-2722 settings to reflect the frequency to

test at, as well as the peak-to-peak voltage. Each microcontroller was to be tested at ten different

xiii

frequencies, ranging from 1 kHz to 100 kHz. The peak-to-peak voltage would remain constant.

The voltage level was determined by testing the performance of the AD7980 when interfaced

with Analog Devices’ System Demonstration Platform (SDP), and determining a peak-to-peak

voltage that provided the SNR performance provided on the datasheet of the AD7980. The peak-

to-peak voltage used was 20 Vpp.

During testing, it was discovered that the MSP430F5528 had 8 kilobytes (kB) of random

access memory (RAM), which was nowhere near the 32 kB needed to hold an array of sixteen

thousand sixteen bit conversions. This caused the MSP430 to require additional code to write the

conversion to flash memory, which had enough space to hold all the conversions. Unfortunately,

this caused additional performance issues, so we made the decision to determine to performance

of a test run at 1 kHz, while writing 2,272 conversions in RAM. The STM32F207ZG was limited

by a 30 MHz SPI clock, but otherwise was able to be interfaced with the AD7980 without any

other modifications. Together, these performance specifications should give an accurate

representation of how well the microcontroller is able to interface with the AD7980 ADC. After

the data was compiled, a report was presented to Analog Devices that highlighted the results and

the ease of use of their generic microprocessor driver.

It was apparent from our results that it would be difficult to recommend interfacing the

AD7980 to these microcontrollers. Limitations on the SPI clocks immediately ruled out any

possibility of reaching the maximum throughput on the AD7980. In addition, data with glitches

from the MSP430 provided an SNR that was significantly less than desired. When the glitches

were removed manually, the SNR increased by a significant margin. Given more time, it is likely

that this SNR could have been improved even further, but it is unlikely that the SNR would get

to within 10 dB of the performance listed on the AD7980 datasheet. Unfortunately, SNR data

xiv

could not be collected for the STM32 due to time restrictions and malfunctioning AD7980

boards. The throughput of the STM32 was not able to reach the maximum throughput of the

AD7980, due to the limitation on the SPI clock. However, the throughput was significantly

improved over the MSP430, despite only a modest SPI clock increase. With more time, a third

microcontroller, the Freescale Kinetis K60, would be tested

xv

Table of Contents

1 INTRODUCTION ... 1

1.1 PROBLEM STATEMENT ... 5

1.2 PROJECT OBJECTIVES AND REPORT CONTRIBUTIONS .. 7

1.2.1 ADC IBIS Model Generation ... 8

1.2.2 AD7626 Evaluation Board ... 8

1.2.3 AD7980 Interfacing to Microcontrollers .. 8

1.2.4 Report Contributions ... 9

1.3 REPORT ORGANIZATION .. 10

2 FUNDAMENTALS OF ANALOG-TO-DIGITAL CONVERTERS AND THEIR APPLICATIONS 12

2.1 ANALOG-TO-DIGITAL CONVERTERS .. 12

2.1.1 Successive Approximation ADCs .. 17

2.2 IBIS .. 18

2.2.1 Three-State Output Buffer ... 20

2.2.2 Input Buffer ... 21

2.2.3 Versions of IBIS .. 22

2.3 SERIAL PERIPHERAL INTERFACE ... 23

2.5 CHAPTER SUMMARY ... 26

3 PROPOSED APPROACH .. 28

3.1 PROJECTS PLAN .. 28

3.1.2 GANTT CHART .. 29

3.2 IBIS ... 31

3.3 AD7626 .. 31

3.3.1 AD9522-4 .. 32

3.3.2 AD9515 .. 32

xvi

3.3.3 AD9513 .. 34

3.4 AD7980 .. 35

3.4.1 Project Objectives ... 36

3.4.2 Selecting a Texas Instruments MSP430 Microcontroller .. 37

3.4.3 Selecting a STMicroelectronics Microcontroller .. 39

3.5 CHAPTER SUMMARY ... 41

4 IMPLEMENTATION ... 42

4.1 ANALOG-TO-DIGITAL CONVERTER IBIS MODEL GENERATION ... 42

4.1.1 Writing a Project Plan ... 43

4.1.2 Setting up the Equipment for the AD7091R IBIS Model .. 47

4.1.3 Taking the Measurements for the AD7091R IBIS Model ... 48

4.2 DEVELOPING AN AD7626 EVALUATION BOARD METHODOLOGY... 52

4.2.1 Researching Clocking Solutions ... 53

4.2.2 Choosing the Best Part .. 54

4.2.3 Schematic Design .. 55

4.3 PERFORMANCE IMPLICATIONS OF INTERFACING THE AD7980 TO MICROCONTROLLERS 58

4.3.1 Selecting the Microcontrollers .. 58

4.3.2 Developing the Code for the MSP430 ... 60

4.3.3 Testing the Performance Specifications .. 62

4.4 CHAPTER SUMMARY ... 67

5 RESULTS ... 69

5.1 ANALOG-TO-DIGITAL CONVERTER IBIS MODEL GENERATION ... 69

5.2 DEVELOPING THE AD7626 EVALUATION BOARD RESULTS ... 73

5.3 PERFORMANCE IMPLICATIONS OF INTERFACING THE AD7980 TO MICROCONTROLLERS 76

5.4 CHAPTER SUMMARY ... 81

xvii

6 DISCUSSION ... 82

6.1 ANALOG-TO-DIGITAL CONVERTER IBIS MODEL GENERATION ... 82

6.2 DEVELOPING AN AD7626 SDP-H EVALUATION BOARD .. 82

6.3 INTERFACING THE AD7980 TO MICROCONTROLLERS AND THE GENERIC DRIVER ... 83

7 CONCLUSIONS AND FUTURE WORK ... 90

xviii

List of Figures

FIGURE 1: THESE ARE THE STEPS REQUIRED TO PRODUCE A FULLY FUNCTIONAL IBIS MODEL. THE PRIMARY GOAL OF THIS PROJECT WAS TO

SHOW THAT IT WAS POSSIBLE FOR ANALOG DEVICES TO PERFORM THE FIRST TWO STEPS OF THIS PROCESS, GATHERING THE DATA

AND CREATING THE IBIS FILE, AND TO DEVELOP A PROCEDURE OF HOW TO DO SO [1]. ... IV

FIGURE 2: THE AD7980 EVALUATION BOARD THAT WAS USED. THE BLUE WIRE CONNECTS TO THE RAISED OVDD PIN ON ONE END, AND TO

VDRIVE ON THE OTHER. THE RED WIRE ALLOWS CONNECTIONS TO THE SDI PIN ON THE AD7980. ... XI

FIGURE 3: A GRAPH DEPICTING THE EXPONENTIAL GROWTH OF THE NUMBER OF TRANSISTORS IN MICROPROCESSORS. THE TREND SHOWS

THAT THE NUMBER OF TRANSISTOR USED IN CPUS HAS APPROXIMATELY DOUBLED EVERY TWO YEARS [29]. 2

FIGURE 4: BLOCK DIAGRAM FOR ANALOG-TO-DIGITAL DATA FLOW. THIS ILLUSTRATION SHOWS THE DATA FLOW FOR HOW INFORMATION

IS RECORDED IN FROM AN ANALOG SIGNAL, CONVERTED INTO DIGITAL DATA FOR USE BY COMPUTING TECHNOLOGY, AND CONVERTED

BACK TO AN ANALOG SIGNAL WHICH WE CAN INTERACT WITH. .. 4

FIGURE 5: TWO AD7980S INTERFACED USING SPI 4-WIRE CS MODE WITHOUT BUSY TO A GENERIC DIGITAL HOST. FOR THIS PROJECT, THE

DIGITAL HOST IS REPRESENTATIVE OF A MICROCONTROLLER, AND ONLY ONE AD7980 WILL BE USED. ... 6

FIGURE 6: DISCREPANCIES FORMED WHEN SAMPLING AN ANALOG WAVEFORM. THIS ILLUSTRATION SHOWS HOW AN ANALOG WAVEFORM

IS DIGITIZED AS WELL AS HOW A LOW SAMPLING RATE CAN HINDER THE CONVERSION [30]. .. 14

FIGURE 7: THIS GRAPH SHOWS TWO IDENTICAL 1 HZ SINE WAVES. THE FIRST SINE WAVE IS SAMPLED EVERY 20 MS AT A 32 BIT

RESOLUTION. THE SECOND SINE WAVE IS SAMPLED EVERY 40 MS AT A 4 BIT RESOLUTION. THE LINES OF THE GRAPH ILLUSTRATE THE

DIGITIZATION OF THE FIRST SINE WAVE WILL BE MORE ACCURATE THAN THE SECOND [30].. 15

FIGURE 8: A 1 HZ SINE WAVE WITH SAMPLE POINTS TAKEN WITH RESPECT TO THE NYQUIST THEOREM. AS YOU CAN SEE, THIS GRAPH

SHOWS THAT USING THE NYQUIST RATE A MINIMUM AMOUNT OF SAMPLING POINTS, ALLOWS THE SAMPLER TO ACQUIRE EVERY PEAK

AND TROUGH OF THIS SINE WAVE. .. 16

FIGURE 9: BLOCK DIAGRAM OF A SUCCESSIVE APPROXIMATION REGISTER ADC. VIN IS THE SAMPLED VOLTAGE. THE CONTROL LOGIC IS

RESPONSIBLE FOR DETERMINING WHETHER THE CONVERSION IS COMPLETE, AND STORING THE CONVERTED BITS. [15] 18

FIGURE 10: A THREE-STATE OUTPUT BUFFER THAT REPRESENTS THE ELECTRICAL CHARACTERISTICS OF THE OUTPUTS OF THE DEVICE BEING

MODELED [1]. .. 20

FIGURE 11: THE INPUT BUFFER THAT REPRESENTS THE ELECTRICAL CHARACTERISTICS OF THE INPUTS OF THE DEVICE BEING MODELED [1].22

file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779092
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779092
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779093
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779093
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779093
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779095
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779095
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779096
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779096
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779096
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779097
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779097
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779097

xix

FIGURE 12: THE TIMING DIAGRAM FOR SPI 4-WIRE CS MODE WITHOUT BUSY [11]. ... 24

FIGURE 13: AD7980 CONNECTED IN 4-WIRE CS MODE, WITHOUT BUSY. THIS INTERFACE ALLOWS FOR MULTIPLE AD7980S TO BE

CONNECTED TO A SINGLE MASTER [11]. ... 26

FIGURE 14: GANTT CHART OF THE PROJECT PLAN. THIS CHART SHOWS THE PROGRESS OF OUR PROJECT THROUGHOUT OUR TEN WEEKS AT

ANALOG DEVICES. ... 30

FIGURE 15: BLOCK DIAGRAM OF THE AD9522-4 CENTERED CLOCKING SOLUTION. THIS BLOCK DIAGRAM DISPLAYS THE SIGNAL FLOW OF

THE PROPOSED CLOCKING SOLUTION WHICH WAS CENTERED ON THE USE OF THE AD9522-4 PLL. .. 32

FIGURE 16 : BLOCK DIAGRAM OF THE AD9515 CENTERED CLOCKING SOLUTION. THIS BLOCK DIAGRAM DISPLAYS THE SIGNAL FLOW OF THE

PROPOSED CLOCKING SOLUTION WHICH WAS CENTERED ON THE USE OF THE AD9515 PLL. ... 33

FIGURE 17: BLOCK DIAGRAM OF THE AD9513 CENTERED CLOCKING SOLUTION. THIS BLOCK DIAGRAM DISPLAYS THE SIGNAL FLOW OF THE

PROPOSED CLOCKING SOLUTION WHICH WAS CENTERED ON THE USE OF THE AD9513 PLL. ... 34

FIGURE 18: THE TEXAS INSTRUMENTS MSP430 PRODUCT LINE. ALL MICROCONTROLLERS IN THIS FAMILY HAVE CPU CLOCK SPEEDS BELOW

WHAT IS REQUIRED TO MAXIMIZE THE THROUGHPUT OF THE AD7980 [20]. ... 38

FIGURE 19: STMICROELECTRONICS STM32 PRODUCT LINE. THE F1, F2, AND F4 WERE ALL CONSIDERED AS POTENTIAL SERIES TO CHOOSE

FROM [21]. ... 40

FIGURE 20: THE KEITHLEY SOURCE METER. USING LABVIEW, THIS DEVICE WAS PROGRAMMED TO RUN A SWEEP ON THE EVAL-

AD7091RSDZ BOARD. ... 43

FIGURE 21: PROJECT PLAN- A SUMMARIZATION OF ALL OF THE DATA THAT WILL BE INCLUDED IN THE IBIS MODEL. THIS PLAN PROVIDES A

FRAMEWORK FROM WHICH TO START CREATING THE IBIS MODEL. ... 45

FIGURE 22: THE EVALUATION BOARD TO TEST THE AD7091R. THIS BOARD ALLOWED US TO CONTROL UNDER WHICH CONDITIONS THE

AD7091R WAS TESTED AND TO RECORD THE RESULTS. .. 49

FIGURE 23: THIS FIGURE DISPLAYS HOW THE KEITHLEY 2420 WAS CONNECTED TO THE EVAL-AD7091RSDZ. 50

FIGURE 24: THE AGILENT TRIPLE OUTPUT POWER SUPPLY. THIS IS AN ADJUSTABLE POWER SUPPLY THAT WAS USED TO TEST THE DEVICE

UNDER DIFFERENT VOLTAGE LEVELS AT VDRIVE. ... 51

FIGURE 25: THE DPO4054 OSCILLOSCOPE. THIS OSCILLOSCOPE WAS USED TO MEASURE AND RECORD THE VT DATA AS WELL AS THE RAMP

RATE OF THE DEVICE UNDER TESTING. .. 51

file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779103
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779103
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779106
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779106

xx

FIGURE 26: PREVIOUS EVALUATION BOARD FOR THE AD7626 (ADC). IT UTILIZES AN ALTERA FPGA TO SUPPLY THE CNV TO THE ADC,

BUT THIS METHOD RESULTED ON A SIGNAL WHICH WAS TOO NOISY TO ALLOW THE ADC TO FUNCTION PROPERLY. 53

FIGURE 27: LEVEL TRANSLATOR ON THE AD7960 INTERFACE SHEET. THIS IMAGE EXEMPLIFIES THE SLIGHT MODIFICATIONS THAT WILL

NEED TO BE MADE TO LEVERAGED SCHEMATIC PIECES. SPECIFICALLY, THIS PART WILL NEED A 2.5V INPUT INTO VCCA. ALSO,

BECAUSE THERE ARE TWO UNNECESSARY INPUTS AND OUTPUTS, WE WILL SEARCH FOR A SIMPLER PART WITH 2 INPUTS AND OUTPUTS

INSTEAD OF FOUR. IF THIS SEARCH DOES NOT YIELD SATISFACTORY RESULTS, WE WILL LEAVE THE UNNECESSARY PORTS

DISCONNECTED. .. 56

FIGURE 28: THE TIMING DIAGRAM FOR SPI 4-WIRE CS MODE WITHOUT BUSY. IN ORDER TO MAINTAIN MAXIMUM ADC THROUGHPUT,

TACQ MUST BE LESS THAN THE MINIMUM TCYC LESS THE MAXIMUM TCONV. [11] ... 59

FIGURE 29: THE AD7980 EVALUATION BOARD THAT WAS USED. THE BLUE WIRE CONNECTS TO THE RAISED OVDD PIN ON ONE END, AND

TO VDRIVE ON THE OTHER. THE RED WIRE ALLOWS CONNECTIONS TO THE SDI PIN ON THE AD7980... 63

FIGURE 30: OSCILLOSCOPE IMAGE OF AN AD7980 CONVERSION. C2 IS THE CONVERT START, C1 IS THE CHIP SELECT, C4 IS THE SPI CLOCK,

AND C3 IS THE DATA OUT. [25].. 64

FIGURE 31: THE SETUP USED IN THE LAB FOR COLLECTING DATA TO TEST THE SNR PERFORMANCE OF THE MICROCONTROLLERS. IN THIS

CASE, THE MSP430 IS BEING TESTED. ... 65

FIGURE 32: THE USER INTERFACE FOR THE SWEEP_MEASURE_AND_OUTPUT_TO_EXCEL VI. THIS INTERFACE ALLOWS THE USER TO

CONTROL ALL OF THE PARAMETERS NECESSARY TO GATHER THE IV DATA FOR THE IBIS MODEL. .. 70

FIGURE 33: THE FIRST PART OF THE CSV TO IBS VI. THIS PART CONTAINS THE DIFFERENT HEADERS NEEDED AT THE BEGINNING OF THE IBIS

MODEL. IT ALSO CONTAINS THE FILE PATHS FOR THE DIFFERENT MEASUREMENTS TAKEN FOR THE INPUT BEING MODELED. 71

FIGURE 34: THE SECOND PART OF THE CSV TO IBS VI. THIS SECTION CONTAINS THE VARIOUS HEADERS AND FILE PATHS NEEDED TO ENTER

THE DATA GATHERED AT THE OUTPUT AT 1.8V AND 2.5V INTO THE IBIS FILE. ... 72

FIGURE 35: THE THIRD PART OF THE CSV TO IBS VI. THIS SECTION CONTAINS THE VARIOUS HEADERS AND FILE PATHS NEEDED TO ENTER

THE DATA GATHERED AT THE OUTPUT AT 3.3V AND 5V INTO THE IBIS FILE. .. 72

FIGURE 36: CLOCKING SOLUTION PADS SHEET OF THE SCHEMATIC FOR THE AD7626 EVALUATION BOARD. THIS SCHEMATIC PAGE IS THE

ONE PAGE THAT TOOK THE MAJORITY OF THE WORK DESIGNING, AS IT WAS THE ONLY PAGE THAT WAS AN ORIGINAL DESIGN, AND

NOT LEVERAGED FROM PREVIOUS EVALUATION BOARD SCHEMATICS. ... 75

file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779125
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779125
file:///C:/Users/Captain/Documents/final%20report%20_%2020121022X.docx%23_Toc338779125

xxi

FIGURE 37: PICTURE OF A SINGLE CONVERSION ON THE AD7980 ANALOG-TO-DIGITAL CONVERTER, WHEN INTERFACED WITH THE

MSP430F5528 AND WRITING TO FLASH MEMORY. IN COMPARISON TO FIGURE 39, THERE IS A SIGNIFICANT DELAY BETWEEN A

FINISHED CONVERSION AND THE START OF THE NEXT CONVERSION... 76

FIGURE 38: SNR RESULTS FOR THE MSP430 INTERFACED WITH THE AD7980, WRITING THE RESULTS TO MEMORY. 77

FIGURE 39: PICTURE OF A SINGLE CONVERSION ON THE AD7980 ANALOG-TO-DIGITAL CONVERTER, WHEN INTERFACED WITH THE

MSP430F5528 AND WRITING TO RAM. THE FIRST BURST OF SPI CLOCK IS TO INITIATE THE CONVERSION (SEEN AS A LOW ON THE

SDI/CS LINE), AND THE SECOND AND THIRD BURSTS ARE RESPONSIBLE FOR TRANSFERRING THE CONVERSION DATA, EIGHT BITS AT A

TIME. .. 78

FIGURE 40: AN OSCILLOSCOPE CAPTURE OF TWO FULL CONVERSIONS OF THE STM32F207ZG. NOTE THAT THE STM32 IS ABLE TO

PERFORM FULL 16-BIT TRANSFERS. A SINGLE TRANSFER TAKES APPROXIMATELY 2.5 MICROSECONDS. 79

FIGURE 41: THE WAVEFORM PRODUCED BY A 1 KHZ TEST WITH THE MSP430, WRITING TO RAM. THIS WAS THE HIGHEST SNR RESULT OF

THE MSP430 TESTS, FALLING JUST SORT OF 25 DB. THE GLITCHES IN THE WAVEFORM CAN CLEARLY BE SEEN THROUGHOUT THE

WAVEFORM. .. 85

FIGURE 42: THE WAVEFORM THAT RESULTED FROM REMOVING THE GLITCHES PREVIOUSLY FOUND IN THE 1 KHZ MSP430, WRITING TO

RAM. THIS WAVEFORM PRODUCED AN SNR OF ABOUT 54 DB. ... 87

FIGURE 43: THE LABVIEW CODE FOR THE KEITHLEY SWEEP_MEASURE_AND_OUTPUT_TO_EXCEL VIRTUAL INTERFACE (VI). THE SETTINGS

ENTERED INTO THE VI ARE USED BY THIS PROGRAM TO HAVE THE KEITHLEY RUN THE DESIRED VOLTAGE SWEEP. 96

FIGURE 44: THE FIRST PART OF THE LABVIEW CODE FOR THE CSV TO IBS VI. THIS CODE CREATED THE HEADER OF THE IBIS MODEL THAT

SUMMARIZES THE BASIC INFORMATION OF THE DEVICE BEING MODELED. .. 97

FIGURE 45: THE SECOND PART OF THE LABVIEW CODE FOR THE CSV TO IBS VI. THIS CODE TOOK THE DATA STORED IN A .CSV FILE,

TRANSFERRED IT TO THE .IBS FILE AND APPENDING IT TO THE DATA ALREADY IN THE .IBS FILE. IT ALSO IDENTIFIES THE NEW DATA. THIS

CODE MUST BE REPEATED FOR EACH SWEEP BEING INPUT INTO THE IBIS MODEL. ... 98

xxii

List of Tables

TABLE 1: THE DIFFERENT VERSIONS OF IBIS. EACH VERSION CONTAINS MORE FEATURES THAN THE PREVIOUS ONE AND ARE DESIGNED TO BE

EXPANDED UPON. .. 23

TABLE 2: COMPARISON OF POSSIBLE TEXAS INSTRUMENTS MSP430 MICROCONTROLLERS FOR SELECTION. THE SELECTED PRODUCT LINE

WAS THE 5 SERIES.. 39

TABLE 3: SELECTING A STMICROELECTRONICS FAMILY. THE STM32 FAMILY WAS SELECTED. .. 40

TABLE 4: SELECTING A MICROCONTROLLER FROM THE STM32 FAMILY. THE F2 PRODUCT LINE WAS SELECTED. 41

TABLE 5: THE PINS TITLES AND OPERATION OF THE AD7091R. .. 49

xxiii

List of Acronyms

ADC: Analog-to-digital-converter

CS: Chip select

CSV: Comma separated value

CNV: Convert Start

ESD: Electrostatic Discharge

FFT: Fast Fourier Transform

FPGA: Field-programmable gate array

GND: Ground

GPIB: General Purpose Interface Bus

IBIS: Input/ Output Buffer Information Specification

IV: Current versus Voltage

LSB: Least significant bit

LVDS: Low-voltage differential signaling

MISO/SOMI: Master in/slave out

MOSI/SIMO: Master out/slave in

MSB: Most significant bit

MSPS: Million samples per second

NI-VISA: National Instrument Virtual Instrument Software Architecture

NMOS: Negative-Channel MOSFET

PMOS: Positive-Channel MOSFET

RAM: Random access memory

SDO: Serial Data Output

xxiv

SDP: System Demonstration Platform

SNR: Signal-to-noise ratio

SPI: Serial peripheral interface

SPS: Samples per second

USB: Universal Serial Bus

VI: Virtual Instrument

VT: Voltage versus Time

1

1 Introduction

Technology is advancing at an exponential rate. Just fifty years ago, the transistor radio

claimed the title of the most popular communication device in history [2]. This device utilized

only five transistors (and electronic on/off switch). Jumping forward to 2012, a top end video

card in a computer has 3.54 billion transistors [3]. Not only has the transistor count in products

increased, but the advancement of technology has led to the incorporation of transistor-based

electronics into almost every aspect of modern society, including work, leisure, travel, and

communication [4]. In fact, Intel has predicted that by 2015, there will be 1,200 quintillion

transistors in the world. If that number is divided by the projected population of 7.2 billion

people in 2015 it results in a relationship of over 165 trillion transistors to every one person on

the Earth [5]. To put it another perspective, the amount of transistors produced each year alone

outnumbers the worldwide ant population by 10 to 100 times [6]. In his 1965 paper, “Cramming

More Components onto Integrated Circuits”, co-founder of Intel, Gordon E. Moore stated that

the number of transistors in a central processing unit (CPU) will double approximately every two

years. This statement has appropriately been deemed, “Moore’s Law”, and it has proved to be

uncannily accurate, as seen in Figure 3.

The exponential growth of technology and its ever-increasing rate of integration into

society can be attributed to the digital revolution, which shifted the operating medium of our

electronics from analog to digital, giving them limitless potential [7]. We live in an analog world.

Everything human beings are able to interact with can be called analog. For example, sound is

transmitted thought the air in sound pressure waves [8].

2

Figure 3: A graph depicting the exponential growth of the number of transistors in microprocessors. The trend shows

that the number of transistor used in CPUs has approximately doubled every two years [29].

The first era of audio technology used an analog approach of capturing these sound pressure

waves via a microphone which continuously translated them into an electric signal, which was

recorded through minute vibrations of a needle onto a vinyl record [8]. This signal could then be

played back by reversing this process by having a needle read the indentations that are made on a

record and translating them back into sound waves [8]. On the other hand, digital technology

uses binary to represent signals by representing the data as a series of “1s” and “0s” which are

often referred to as on/off or true/false [9]. Using the example of sound recording again, a digital

3

system samples the input, converts it to binary, and transfers it to another device which takes the

binary number and reassembles it into an approximation of the original signal. Since the signal is

sampled, and not continually recorded like in an analog approach, the signal is actually a

combination of broken pieces of the source. This means that the resolution of the signal is only

as good as the amount of samples taken in a given amount of time. It would seem that this data

sampling would be detrimental to the signal, but in reality, a digital signal will be clearer than its

analog counterpart. This is because a digital signal knows what it should be when it reaches the

end of the transmission, meaning that it can correct any errors that may have occurred in the data

transfer [9].

The digital revolution is the shift from the analog technologies of old to the digital

technologies of the future. As stated above, a digital signal will be clearer than an analog signal.

Even though the sampling rate is not continuous, it is high enough for humans to perceive it as

such. Also, the nature of digital technology allows it to cram massive amounts of binary data into

a small amount of storage [9]. This allows for more efficient storage. One advantage of a digital

signal is the ability to make an infinite amount of exact copies of the data at the binary level [9].

Purely analog copies will never be exact replicas and will see deterioration as the degrees of

copies increase [9]. However, Digital technology is not without its own disadvantages. Currently,

digital technology is considerably more expensive. In addition, analog is still preferred over

digital in some applications. For example, the argument can be made that analog has the ability

to deliver richer sound quality [9].

The leading argument for using digital technology is that it is compatibility with

computers [10]. Since computers perform digital computations, they can only work with digital

media [10]. Therefore, all analog audio or video media must be converted to digital to work on a

4

computer. Once the information is digital, computers can be used to edit the data and create

effects that were never possible with analog media. A conceptual block diagram of this

relationship is shown below in Figure 4.

However, as we said before, we do live in an analog world. This means that in order to take

advantage of all the promises of digital technology we must first covert our data from its analog

origins to the binary of digital [7]. Therefore, digital technology is only as good as the ability of

the technologies that faithfully convert our analog world to the digital language of 1s and 0s and

then back into analog signals that can be heard, seen, felt, or perceived by human beings [7].

Improving upon analog to digital converter technologies and their applications will therefore

improve upon all digital data and signal processing, maintaining the exponential growth of

technology and improving our way of life.

Figure 4: Block Diagram for Analog-to-Digital Data Flow. This illustration shows the data flow for how information is

recorded in from an analog signal, converted into digital data for use by computing technology, and converted back to an

analog signal which we can interact with.

5

1.1 Problem Statement

In order to satisfy those users, Analog Devices needs to support the users of their analog-

to-digital converters (ADCs), post-development, This includes designing evaluation boards that

showcase a product’s capabilities, developing software that enhances a product’s functionality,

and improving how user friendly a product is.

Input/ Output Buffer Information Specification (IBIS) is a standard by which the

electrical characteristics of the pins of a digital integrated circuit are represented. An IBIS model

contains the Input/ Output buffers and other characteristics of the circuit without revealing the

circuit’s structure or process information. Providing IBIS models for Analog Devices’ ADCs

have become oft requested by the customers of Analog Devices. Presently, the work of creating

the IBIS model is contracted out to a third party company. Analog Devices wants to avoid

further contracting, and would like to move the creation of IBIS models in-house.

Evaluation boards are an important part of the post-development applications at Analog

Devices. They provide the user with a method of testing and using ADCs, as well as giving the

user a good idea of the performance capabilities of the product. The speeds of Analog Devices’

ADCs are part of what make them desirable. When building evaluation boards for any product,

one must take special care regarding how all of the different components will be sensitive to high

frequencies. Ideal models will begin to melt away to the realities of engineering when very high

speeds are applied. If an ADC cannot perform to its full throughput because it is being limited by

a different portion of the circuitry, then the ability to operate at those higher frequencies is

meaningless.

This is the case with Analog Devices’ AD7626. Currently, there exists an evaluation

board in which the convert start (CNV) is provided by a field programmable gate array (FPGA)

6

on the daughter board. Providing the CNV from the FPGA has an unfortunate side effect of

producing unmanageable amounts of jitter in the signal at high frequencies, which makes

sampling inaccurate. A new evaluation board needs to be developed in order to resolve this issue.

The advancement of microcontrollers has made them more appealing for interfacing with

analog-to-digital converters (ADC), as there have been significant improvements in raw

processing power, while the cost of these devices has been driven very low. This is especially

true regarding ADCs that have had their performance limited by their controller in the past. This

bottleneck lies in the maximum clock speed of the controller, as the minimum conversion time of

the ADC relies on the ability of the controller to read the n-bit digital output within a certain

maximum time. If the controller is unable to reach this clock speed, then the ADC will have to

operate at a reduced throughput.

Figure 5: Two AD7980s interfaced using SPI 4-wire CS mode without busy to a generic digital host. For this project, the

digital host is representative of a microcontroller, and only one AD7980 will be used.

Analog Devices has recognized the consumer’s desire to interface with microcontrollers

by releasing a driver that was intended to simplify the interfacing of microcontrollers to one of

their ADCs, the AD7980. This driver uses a 4-wire CS mode Serial Peripheral Interface (SPI),

7

one configuration of which is shown in Figure 5, without a busy signal, to communicate between

the devices [11]. Note that in the picture, multiple AD7980s can be4 used in this configuration,

as long as additional chip selects can be provided. However, in this project, there will only be a

single AD7980 connected to the microcontrollers. Previous research has shown that the

performance of ADCs degrades over SPI at speeds above 50 kHz.

Analog Devices is unsure of the performance implications on their ADC’s when

interfacing to commonly used microcontrollers. The project states that their customers are either

already using their ADCs with microcontrollers, or are looking to do so in the future. Therefore,

they need to ensure that the company’s products are easy to use with these microcontrollers or

they risk losing business.

1.2 Project Objectives and Report Contributions

The three tasks that comprise this project all deal with applications of analog-to-digital

converters (ADC) after they have been developed. The Input/ Output Buffer Information

Specification (IBIS) project entailed creating a procedure by which detailed models of existing

devices can be created. These models are used to show the capabilities of the device without

revealing proprietary information about the device. The AD7626 Evaluation Board project

required the development of an evaluation board for testing the AD7626. This board was meant

to connect with Analog Devices’ new System Demonstration Platform-H (SDP-H) without

impeding the performance of the device being tested. Interfacing the two microcontrollers to the

AD7980 required that performance data be recorded and evaluated. The goal of this project was

to determine if the microcontrollers could be used to run the ADC at maximum performance, as

well as to determine the ease of use of Analog Devices’ generic driver.

8

1.2.1 ADC IBIS Model Generation

For the I/O Buffer Information Specification (IBIS) model project, the end goal was to

develop a procedure that Analog Devices can use to create its own IBIS models. This procedure

should outline how to create a model that takes current versus voltage (IV) and voltage versus

time (VT) data and convert it into an IBIS model using the LabView virtual instruments (VI) that

we developed. To develop this procedure, an example IBIS model must be created using the

AD7091R, an Analog Devices ADC. The model created for the AD7091R will then be used to

develop the required procedure.

1.2.2 AD7626 Evaluation Board

The final objective of the AD7626 Evaluation Board project is to develop an evaluation

board for the AD7626, an analog-to-digital converter that connects to Analog Devices’ new

System Demonstration Platform-H (SDP-H) platform. The new board will allow for high

frequency input tones to be applied to the AD7626. It is also imperative that the jitter on the

Convert Start (CNV) provided to the AD7626 does not impede performance. This means that a

solution needs to be designed on the daughter board to replace the previous source for the

clocking signal which was provided by the jittery Xilinx field programmable gate array (FPGA)

on the daughter board. This new clocking solution will provide a low jitter input to the AD7626

as well as the FPGA on the motherboard, which Analog Devices wishes to use to control the

AD7626 from the SDP-H platform.

1.2.3 AD7980 Interfacing to Microcontrollers

The first goal for the AD7980 Microcontroller project is to collect performance data of

the ADC. Data is needed on the performance impact on ADCs when interfacing with

microcontrollers, especially when the ADCs are being operated at higher throughput (the number

9

of samples per second that the ADC is able to achieve). The bandwidth of the processor being

used while interacting with the ADC is of interest, as this is likely to impact the other devices the

microcontroller is also connected to. Ideally, the microcontrollers would be able to operate the

ADC at its maximum throughput. Finally, the signal to noise ratio (SNR) of the conversion needs

to be derived, which can be done over a large number of conversions. The SNR provides

feedback as to how accurate the conversion is. As mentioned above, this is expected to decrease

as the throughput of the ADC increases, due to jittery clocks, and the known performance

degradation of Serial Peripheral Interface (SPI) at speeds over 50 kHz.

The second project goal for the AD7980 project is to determine the ease of use of

interfacing to these microcontrollers using the generic driver designed by Analog Devices. The

project will test the driver with two microcontrollers, from different manufacturers, in order to

determine ease of use. These two microcontrollers should be high performance, as it is desired to

operate the ADC at maximum performance. If it is found that interfacing to these various devices

is not simple, then methods for improving the driver should be devised.

1.2.4 Report Contributions

 The IBIS model project served as a starting point for Analog Devices. They will use the

results of our project as the format for generating their own IBIS models. Specifically,

by starting the project, we were able to work out all of the necessary technical

specifications needed for taking the various measurements, such as needing to connect

two nodes with a resistor for one of the measurements, or needing to remove

components from the evaluation board to acquire the correct data. By being the first to

create a model from scratch we were able to allow Analog Devices to pick up our base

10

format and expand as they see fit, without needing to deal with the trials and errors that

were involved in learning the process.

 Creating the improved AD7626 evaluation board allows for Analog Devices to be able

to provide an example of how to supply a low-jitter convert signal to the AD7626, or

any analog-to-digital converter (ADC). One frequent issue that customers of Analog

Devices have is driving high frequency ADCs. While the evaluation board will be used

to evaluate the AD7626, it also serves as an example of how to overcome jitter

limitations when driving ADCs.

 Interfacing the AD7980 to various high end microcontrollers allows Analog Devices to

provide information to their customers as to how to best interface the AD7980 with a

controller. This would include the performance impact on the ADC and the

microcontroller. In addition, feedback on Analog Devices’ generic driver for

interfacing microcontrollers with the AD7980 is needed to gauge the usefulness and

effectiveness of the driver. With this information Analog Devices can better inform its

customers, and provide them with higher quality support.

1.3 Report Organization

The structure of the report is detailed in this section. Chapter 2 provides a literature

review of necessary background knowledge to build the desired modules for each technical

concept. This chapter gives a description of the analog-to-digital converters and their importance

in our lives. It then then defines the basics of what an input/output buffer information

specification (IBIS). Lastly, Chapter 2 outlines the serial peripheral interface (SDP). Chapter 3

states the specific design approaches we considered and illustrates the process by which we

decided upon the final designs. Chapter 4 provides the methods that we used to accomplish the

11

results that we discuss in Chapter 5. Chapter 6 delivers the conclusions and future

recommendations for improvement. Lastly, appendices are attached at the end of the report. They

document supplementary information that is too large to include in the main text.

12

2 Fundamentals of Analog-to-Digital Converters and

Their Applications

Analog-to-digital converters (ADC) are involved in each project, and thus play a very

important role. In the sections following, the basics of ADC operation is explored, as well as the

type of ADC involved in this MQP, successive approximation register (SAR). Details on the

Input/Output Buffer Information Specification (IBIS) are also provided. The contents of an IBIS

model are explained, as well as what they represent in the buffer. The different versions of IBIS

are briefly explained. Descriptions of the two buffer types used in this project are provided,

detailing what parameters are needed for each buffer and what those parameters refer to. Finally,

the operation of the serial peripheral interface (SPI), which is the interface used between the

microcontrollers and the AD7980, is expounded upon. The focus of this section is to explain the

type of SPI (4-wire CS mode, without busy) used between the microcontrollers and the AD7980.

2.1 Analog-to-Digital Converters

Analog quantities can be defined as continuous and infinitely variable [12]. Many

measurements are of an analog nature, such as the temperature of a furnace, the rate of fluid flow

through a pipe, and the pressure of a fluid. [12]. Importing these analog measurements with

computers allows for a level of data analysis that was unheard of just two decades ago. However,

in order to interface analog signals with the digital world of computers, the data must be

digitized into the binary language that computers work in. This is done using an analog-to-digital

converter.

An analog-to-digital converter (ADC) is an electronic circuit which receives an analog

signal input and generates a multi-bit binary (digital) output [12]. As previously stated, analog

signals are continuous, while digital signals are discrete. An ADC converts the continuous

13

analog signal by sampling the signal at predefined intervals [12]. At each interval, the input

signal gets held at its value at the time of the sample, and remains that value until the next

sample, at which time the input signal is updated and held again [12]. This means that an ADC

that samples a signal one hundred times a second will output a more accurate digital

representation than an ADC that only samples at ten times a second. The amount of samples per

second taken by an ADC is known as the clarity. The higher the number of samples per second

the ADC takes, the higher the sample rate of the outputted signal, and the more accurate the

digital representation of the original analog signal will be [12]. Figure 6 shows the digitization of

a 1 Hz sine wave sampled at 8 times per second, or once every 125 ms. As you can see from the

digital representation of the graph, the ADC samples the graph, waits 125 ms and samples again.

When all the samples are taken, the graph can be recreated by connection the data points.

In analog-to-digital conversion, the difference between the original analog signal and the

digitized waveform is known as the quantization error or quantization distortion [13]. This error

is due to rounding or truncation [13]. If you look to the lower graph in Figure 6, you can easily

see the difference between the original analog signal (dotted) and the digitized waveform (solid).

The difference between the two is the quantization error.

When examining a basic twelve bit analog-to-digital converter (ADC), the “twelve bit”

means its digital output ranges from binary 000000000000 to binary 111111111111 (0 to 4096 -

decimal) [12]. The key to relating any given digital number value to a voltage value is to

understand that the 12-bit resolution of this ADC means it has or 4096 discrete output states

[12]. Suppose this 12-bit ADC has an analog input voltage range of zero to ten volts.

14

 Equation 3

The input range of ten volts is divided by the number of output states minus one, which in this

case is or 4095 [12]. This can be more easily explained using Equation 3, where “n”

refers to the bit number of the ADC.

Figure 6: Discrepancies Formed when Sampling an Analog Waveform. This illustration shows how an analog waveform is

digitized as well as how a low sampling rate can hinder the conversion [30].

15

For a twelve bit ADC, the result of this equation shows that the analog resolution is 2.442

millivolts per bit [12]. Thus, for any analog signal between 0 mV and 2.442 mV, the ADC’s

output should be zero (binary 000000000000). Similarly, for any analog signal between 2.442

mV and 4.884 mV, the ADC’s output should be one (binary 000000000001), and so on. The

obvious setback of lower resolution ADCs is that any changes that occur in the analog signal that

are too small for the resolution to pick up will be lost [12]. For instance, the ADC that is shown

above will not pick up any input voltage until it reaches 2.442 millivolts [12]. This means that

any voltage higher than zero and lower than 2.442 millivolts will only read as zero. The

detriment of having a sampling rate that is too low as well as a resolution that is too low can be

seen in Figure 7.

Figure 7: This graph shows two identical 1 Hz sine waves. The first sine wave is sampled every 20 ms at a 32 bit resolution.

The second sine wave is sampled every 40 ms at a 4 bit resolution. The lines of the graph illustrate the digitization of the

first sine wave will be more accurate than the second [30].

16

It stands to reason that the sampling rate of any ADC must be at least as often as

significant changes are expected to take place in the analog measurement [12]. The Nyquist

Sampling Theorem states that a band limited analog signal can be perfectly reconstructed from

an infinite sequence of samples if the sampling rate exceeds 2B samples per second, where B is

the highest frequency of the original signal [12]. This means that the absolute minimum sample

rate necessary to adequately capture an analog waveform is twice the fundamental frequency of

the waveform [12]. In Figure 8, you can see a 1 Hz waveform. The Nyquist Theorem dictates

that the minimum required sampling rate is () As you can see, a sampling rate of 2 Hz is

sufficient to capture all of the peaks and troughs of this signal.

Figure 8: A 1 Hz Sine wave with Sample Points Taken with Respect to the Nyquist Theorem. As you can see, this graph

shows that using the nyquist rate a minimum amount of sampling points, allows the sampler to acquire every peak and

trough of this sine wave.

http://en.wikipedia.org/wiki/Bandlimited
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Frequency

17

In general, electronics manufacturers find the Nyquist rate to be adequate. However,

circuits will often use ADCs that sample at many times the Nyquist rate, which brings increased

clarity in the converted signal. This is the case in devices such as digital multimeters (DMMs)

and oscilloscopes, the sampling rates are in the billions per second to allow for the successful

digitization of radio-frequency analog signals.

2.1.1 Successive Approximation ADCs

A successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizes a

single comparator to convert the sample into binary [14]. In this way, the SAR addresses the

main faults of the flash ADC, at the expense of the sampling rate. An example of the successive-

approximation architecture can be seen in Figure 9. The single comparator compares the sample

over and over to a varying reference voltage, utilizing a binary search. Initially, the comparator

reference voltage is set to midscale (this would be the voltage represented by the most significant

bit (MSB) set to ‘1’ while all other bits are set to ‘0’). The sample voltage is then compared to

the input voltage. If the input voltage is higher than the reference voltage, then the comparator

outputs a logic ‘1’, and the MSB remains ‘1’ in the register. If this is not the case, then the MSB

is changed to a logic ‘0’. The next bit down is then set to ‘1’, and the process is repeated, until

the binary representation is complete.

SAR ADCs are very commonly used in applications where a sample rate below five

megasamples per second (MSPS) is acceptable, and usually have a resolution ranging from eight

to sixteen bits [14]. The successive approximation architecture allows for low power

consumption and a small form factor. However, the use of only one comparator in combination

with a binary search causes the sampling rate to be compromised.

18

Figure 9: Block diagram of a Successive Approximation Register ADC. Vin is the sampled voltage. The control logic is

responsible for determining whether the conversion is complete, and storing the converted bits. [15]

The final sampling rate is a fraction of the clock rate of the internal circuitry, as there is a certain

maximum time that a full binary search could take [16]. In addition, the settling time of the

digital to analog converter (DAC) has an impact on the maximum sampling rate, as it must

operate within the resolution of the ADC it is a part of. Despite the drawbacks, SAR ADCs

remain a very popular choice for a wide range of applications. The three the ADCs used in this

project use successive-approximation; the AD7980, AD7626, and the AD7091R [11].

2.2 IBIS

Saving time and reducing costs are key factors when designing systems [1]. Modeling

provides system designers the ability to simulate their designs before moving on to the

prototyping phase. Proper modeling is paramount in high speed systems, such as analog to digital

conversion, where simulations need to be performed to analyze the circuit behavior under

different conditions to ensure the integrity of the signal [1]. The modeling serves to detect typical

undesirable situations, such as overshoot, undershoot, and mismatched impedance, thereby

19

ensuring that preventable errors are not passed to the prototyping phase, where they are more

difficult and costly to fix [1].

Unfortunately, the availability of models for digital integrated circuits is very scarce [1].

Therefore, when semiconductor vendors are asked for their SPICE models (a general-purpose,

open source analog electronic circuit simulator) they are reluctant to provide them because these

models may contain sensitive intellectual property. This issue has been resolved with the

adoption of Input/Output Buffer Information Specification (IBIS) [1]. IBIS has become a new

standard for modeling among system designers.

 IBIS is a behavioral model that describes the electrical characteristics of the digital inputs

and outputs of a device through voltage versus current (IV) and voltage versus time (VT) data

without disclosing any proprietary information [1]. IBIS models protect intellectual property by

not corresponding to the conventional idea of a model that system designers are accustomed to.

This means that IBIS models do not display information using such tools as a schematic symbol

or polynomial expression [1]. Instead, an IBIS model consists of tabular data made up of current

and voltage values in the output and input pins, as well as the voltage and time relationship at the

output pins under rising or falling switching conditions [1]. An IBIS model maintains accuracy,

as it takes into account nonlinear aspects of the input/output structures, the electrostatic discharge

(ESD) structures (the sudden flow of electricity between two objects caused by contact

structures), and the package parasitics (any other characteristics of the analog to digital to

converter (ADC) package which change its functionality) [1]. The Input portion of an IBIS file

can be referred to as a single stated input buffer, as it only represents the power and ground

clamp measurements. However, the output portion is referred to as a three state output buffer

because it not only measures the power and ground clamps, but it also covers pull up and pull

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Analogue_electronics
http://en.wikipedia.org/wiki/Analogue_electronics

20

down data, as well as data regarding the switching characteristics which detail how the device

changed from high to low and vice versa. This data is summarized in the different buffers

presented in the IBIS model.

2.2.1 Three-State Output Buffer

At the heart of the Input/Output Buffer Information Specification (IBIS) are buffers,

which are models of the characteristics of the inputs and outputs on a specific package of a

device [17]. One of these buffer models is the three-state output buffer. The three-state output

consists of pull-up and pull-down switching characteristics, power and ground clamp curves, the

die capacitance, any parasitics due to the package, and the switching characteristics of the device

[17]. Each of these parameters represents a different aspect of a buffer. The three-state output

buffer can be seen in Figure 10.

Figure 10: A Three-State Output Buffer that represents the electrical characteristics of the outputs of the device

being modeled [1].

21

 Pull-up switching characteristics describes the current versus voltage behavior of the

device when the output state is high

 Pull-down switching characteristics describes the current versus voltage behavior of the

device when the output state is low.

 Power and ground clamp curves represent the electrical characteristics of the output when

the power and ground clamp diodes are on.

 Die capacitance is the capacitance referenced from the PAD back into the buffer.

 Package parasitics are any resistance, inductance, or capacitance values that are due to

the packaging of the device and not the device itself.

 The switching characteristics detail how the device changes from high to low and from

low to high. This includes the rise time, fall time, and ramp rate of the device.

2.2.2 Input Buffer

An input buffer in an Input/Output Buffer Information Specification (IBIS) model is

much simpler than the three state output buffer [17]. The three state buffer has many

characteristics that must be included in the model, whereas the input buffer only requires the

power and ground clamp curves, the die capacitance, and the package parasitics parameters [17].

These parameters represent the same characteristics for the input buffer as they do for the three

state output buffer. The input buffer can be seen in Figure 11.

22

Figure 11: The Input Buffer that represents the electrical characteristics of the inputs of the device being

modeled [1].

2.2.3 Versions of IBIS

There are several versions of Input/Output Buffer Information Specification (IBIS). Each

new version adds another level of complexity to the model [17]. This includes allowing the

system to hold more data points or adding another level of detail to the graphs of the electrical

characteristics, such as how the device acts under different temperatures [17]. The simplest

version of IBIS is Version 1.1 which can model a buffer with a low and high-state current versus

voltage (IV) table [17]. Version 1.1 also allows for a linear ramp that describes how fast the

buffer can switch from one state to another. Version 2.1 greatly increases the complexity of the

IBIS. For example, Version 2.1 allows for voltage versus time (VT) graphs and support for dual-

supply buffers [17]. Similarly, Version 3.2 improved upon previous models by allowing for the

simulation of multi-stage buffers as well as buffers that required multiple IV tables [17]. In

addition, Version 3.2 added support for an electrical board description format [17]. With version

4.0 came an increase in the maximum number of data points allowed in a VT table and the

23

addition of more parameters for expressing data criteria for evaluating buffer performance [17].

These versions can be seen in Table 1. However, it is important to note that an IBIS model

should only be as complex as it needs to be. If a buffer does not call for a VT table or any other

higher-level parameter, then the simplest version of IBIS, Version 1.1, should be used.

Table 1: The different versions of IBIS. Each version contains more features than the previous one and are

designed to be expanded upon.

Version I-V

Table

Linear

Ramp

V-T

Data

Multiple

Supply

Rails

Non-

Linear

Output

Switching

Waveform

Ground

Bounce

Electrical

Board

Description

Multi-

Stage

Buffers

Multiple

I-V

Tables

Independent

Validation

Data Tables

Maximum

Number of

V-T Table

Data

Points

1.1 X X 100

2.1 X X X X X X 100

3.2 X X X X X X X X X 100

4 X X X X X X X X X X 1000

2.3 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is being used as the communications interface

between the AD7980 analog-to-digital converter (ADC) and the microcontrollers in the project

in which the performance of these devices is being tested. SPI is a synchronous serial data link

standard that uses a master-slave configuration, in which there can be multiple slaves, selected

by individual chip selects. Serial communication provides a very important advantage over its

faster counterpart, parallel communications; required space. The real estate occupied by serial

communications is significantly less, as it is essentially a bitstream and, if it is synchronous, a

clock.

24

Figure 12: The timing diagram for SPI 4-wire CS mode without busy [11].

Originally named by Motorola, SPI is considered a four-wire serial interface, and

operates in full duplex [18]. Full duplex means that data communicated from the master to the

slave is transferred at the same time as the data communicated from the slave to the master. The

four wires of an SPI interface are the serial clock (SCLK), master output, slave input (MOSI),

master input, slave output (MISO), and slave select (SS) [18]. The SCLK is the clock at which

the data is transmitted, and since SPI is a synchronous interface, it is used in both master output

and slave output [18]. The SS selects the slave that is active, and is usually active low. MOSI is

the data line that is reserved for transfer of bits from the master to the slave, and MISO is the

data line reserved for transfer of bits in the opposite direction.

Before the transfer of data can occur, a number of different SPI settings have to be set up.

First, the clock should be configured. This is often in the low megahertz (MHz) range, although

clock requirements vary based on devices being used, as well as the application being configured

for [18]. Second, the clock polarity needs to be selected, which is the logic level that the clock is

idle at [18]. The clock is idle when there is no data communication. Finally, the clock phase

25

needs to be selected. The clock phase indicates which edge the data is captured on and which

edge the data propagates on (these always occur on opposite edges) [18]. A SPI transfer can be

seen in Figure 12 [11]. The transfer starts with the selection of a chip using the chip select wire,

which is usually active low. Once the clock cycles start, data transfer on the MOSI and the MISO

occurs simultaneously due to the full duplex nature of SPI. This is typically done using two shift

registers; one on the master side and one on the slave side [18]. The most significant bit is shifted

out, and the received bit is transferred into the least significant of the shift register (or the

opposite, if the transfer is least significant bit first). Once the transfer is complete, the master

puts the clock into idle state. Transfer sizes are only limited to the size of the shift registers in

use. It is important to note that data transfers do not have to be meaningful. For instance, sending

data to a device over SPI will trigger a return of data. The received data could be useless, and

just a byproduct of the transfer. On the same note, in order to receive data, data must be sent. If

there is no useful data to be sent, then dummy data is written to the shift register and clocked out,

which clocks the transfer in.

The AD7980 has four different SPI modes in which it can operate [11]. The scope of the

project only focuses on one mode; CS mode 4-wire, without busy. This mode is designed to

allow for multiple AD7980s to be connected to the same host. As can be seen in Figure 13, this

setup uses a conversion signal to initiate conversion [11]. This must be held high through the

conversion, and pulled low before going high for the next conversion.

26

Figure 13: AD7980 connected in 4-wire CS mode, without busy. This interface allows for multiple AD7980s to be

connected to a single master [11].

In addition, a CS pin is used on the host to communicate through the AD7980 SDI pin. This

controls whether the ADC is in acquisition mode, or in read mode. This pin must be held high

when the conversion is initiated, and must be held high until the data is to be read out [11]. The

host must provide a clock to the AD7980, which is the clock for the SPI transfers. Finally, the

SDO pin on the AD7980 is connected to an input on the host, which outputs the conversion data.

2.5 Chapter Summary

The projects contained in this MQP revolve around the usage of analog-to-digital

converters, which are used to convert analog signals to a binary representation. Our project uses

successive approximation register ADCs produced by Analog Devices. The Input/Output Buffer

Information Specification (IBIS) model is a file that provides descriptions of the performance

and reactions of a device’s pins, which are represented as buffers. In the case of this project, the

IBIS model was to be of an ADC, and two buffers were used. These are the input buffer, and the

three-state output buffer. The input buffer is used for input pins, and only requires data for power

and ground clamp curves, while the three-state output buffer requires data for pull-up and pull-

27

down switching characteristics, and power and ground clamp curves. The Serial Peripheral

Interface (SPI) is the interface used between the microprocessors and the AD7980. This is a bi-

directional synchronous interface that uses a master and slave configuration to share a transfer

and receive clock, as well as to select between multiple slaves.

28

3 Proposed Approach

An important aspect of Analog Devices’ Applications Department is ensuring that the

products perform as intended when used in various situations. This support comes in many

forms, including developing new equipment and running tests, in order to provide new

information on their products. For the Input/Output Buffer Information Specification (IBIS)

model project, the end goal was to develop a step-by-step procedure of how to create an IBIS

model. However, much of the approach to this project was already completed by Analog Devices

before we arrived. This was provided to us when we took over the project. The AD7626

evaluation board needed a low-jitter clocking solution that was low jitter, had three low-voltage

differential signaling (LVDS) outputs, and be cost efficient. In order to find a solution, a number

of different PLL parts were evaluated to see which would be the best fit for use in the evaluation

board. When interfacing microcontrollers to the AD7980, two microcontrollers had to be

selected from different manufacturers and product lines, and meet the system clock frequency

requirement, as well as offer serial peripheral interface (SPI) as a transmission option. In

addition, evaluation boards and development software had to be selected, with cost efficiency in

mind.

3.1 Projects Plan

When Analog Devices gave us the three projects, we basically had two choices as to how

to complete them. We could all work on the same project and when it was completed, move on

to the next, or we could split up and have someone work on each project. We decided on the

second choice, because the group decided that the projects would be completed more efficiently

this way. For instance, when we need to write code for the microcontrollers, only one person can

program at one time. By having each person in charge of a different project, it ensures that each

29

of us is always working, and responsible for a part of the project. The projects also play to our

different specialties within electrical and computer engineering. For example, since Gabriel is the

most proficient at coding with microcontrollers, he took charge of the project which assesses the

feasibility of using the Analog Devices driver with third party microcontrollers. Dale would be in

charge of designing the improved, low-jitter clocking solution for the AD7626 evaluation board,

and Sean would be in charge of creating an automated process for generating IBIS models. The

person in charge of each project would do the majority of the work on that project, be

responsible for deadlines and written portions of that project, and speak about the progress of the

project at weekly meetings with Analog Devices. However, each person will help in each

project, and in the end, all three projects are the result of the hard work of all three of the

members of the group. Having each person accountable for a part a project, while having the

help of the other two group members, will ensure that every member remains efficient in their

work. In order to complete our work on time, we followed a Gantt chart that can be seen in the

next section.

3.1.2 Gantt Chart

See Figure 14, on following page.

30

Figure 14: Gantt Chart of the Project Plan. This chart shows the progress of our project throughout our ten weeks

at Analog Devices.

31

3.2 IBIS

There was very little development that needed to be done for the Input/ Output Buffer

Information Specification (IBIS) model project. Analog Devices presented us with the

AD7091R, an analog to digital converter that they wanted modeled. We were also provided with

examples of what the final IBIS model should look like. The equipment necessary to take the

measurements needed for the model was limited to what Analog Devices had available. This was

because Analog Devices’ primary objective with the IBIS model project was to show that they

could produce an IBIS model in-house and to develop a procedure to do so. With Analog

Devices having decided how they wanted the IBIS model project done, all that needed to be

developed was the Virtual Instruments (VI) that were used to create the IBIS model. These

included a program to run the measurements sweeps and one to input all of the measurements

data into the IBIS file. As such, the IBIS model project consisted of creating an IBIS model with

Analog Devices equipment and documenting how it was done.

3.3 AD7626

The previous evaluation board for the AD7626 utilized an Altera field-programmable

gate array (FPGA) to provide the convert start signal (CNV) to the analog-to-digital converter

(ADC). This was not sufficient because the signal that the FPGA was too noisy at the required 10

MHz frequency. Therefore, a new clocking solution needed to be designed to provide a

sufficiently low-jitter, 10 MHz CNV. After meeting with the sponsors at Analog Devices, it was

determined that the new clocking solution would be centered on using a phase locked loop

(PLL). However, the functional block diagram of the clocking solution changed depending on

which PLL was chosen. Each of these solutions had pros and cons, and eventually, one was

chosen to be the best fit for our schematic.

32

3.3.1 AD9522-4

The AD9522-4 is a twelve low-voltage differential signaling (LVDS) output clock

generator with an integrated 1.6 GHz voltage controlled oscillator (VCO). The VCO in the

AD9522-4 would provide its own reference clock. it would output a 100 MHz clock to drive the

off board field-programmable gate array (FPGA), as well as output the 10 MHz convert start

signal (CNV) separately to both the AD7626 and the off board FPGA. A functional block

diagram of this clocking solution is shown below in Figure 15.

Figure 15: Block Diagram of the AD9522-4 Centered Clocking Solution. This block diagram displays the signal flow of

the proposed clocking solution which was centered on the use of the AD9522-4 PLL.

This clocking solution the used the AD9522-4 met all of the hardware requirements set

by Analog Devices. However, the device was unnecessarily complicated for the task at hand, and

this was reflected in the price. Cost is a large factor in the development of this evaluation board,

so we did not choose to use the AD9522-4 as our PLL device.

3.3.2 AD9515

The AD9515 is a 1.6GHz phase locked loop (PLL) clock distribution integrated circuit

with two outputs. The AD9515 is a much simpler chip when compared to the AD9522-4.

Therefore, unlike the AD9522-4, the AD9515 does not have an integrated voltage controlled

oscillator (VCO) that can utilize as its reference. Consequently, an external oscillator needed to

be integrated into the clocking solution. However, even with the need to purchase a second part,

33

the cost of using the AD9515 plus the oscillator was still cheaper than using the AD9522-4.

Additionally, the AD9515 met the jitter requirement of the AD7626 analog-to-digital converter

(ADC). Figure 16 illustrates the block diagram of the clocking solution centered on the use of the

AD9515.

Figure 16 : Block Diagram of the AD9515 Centered Clocking Solution. This block diagram displays the signal flow of the

proposed clocking solution which was centered on the use of the AD9515 PLL.

As stated above, the PLL (no matter which specific device is used) must output a 10MHz

CNV to both the AD7626 ADC and the off board field-programmable gate array (FPGA), as

well as a 100 MHz clock signal to the off board FPGA. Since the AD9515 only has two outputs,

we decided to simply split the CNV signal. However, upon further investigation into the signal

34

type of the CNV, it was found that a low-voltage differential signaling (LVDS) signal must be

terminated at the end of the line by shorting the complementary pair with a resistor. This means

that the CNV could not simply be split, because it cannot be terminated in two places. Therefore,

The AD9515 did not meet the requirements for our PLL.

3.3.3 AD9513

Finding the simplest possible device that would correctly output three separate low jitter

low voltage differential signaling (LVDS) signals was paramount. We found it appropriate to

look in the same family as the AD9515. Our research yielded the AD9513, which is so similar to

the AD9515, that ever the pin setup is exactly the same. However, just as we needed, it differed

from the AD9515 in the key area of output options. The AD9513 has the ability to output three

separate LVDS signals. Since very similar to the AD9515 means that the AD9513 will also need

to utilize an external oscillator as its clock input. However, even with this additional cost,

centering out clocking solution around the AD9513 still costs less than using the AD9522-4. The

block diagram of the clocking solution centered on the AD9513 is shown below in Figure 17.

Figure 17: Block Diagram of the AD9513 Centered Clocking Solution. This block diagram displays the signal flow of the

proposed clocking solution which was centered on the use of the AD9513 PLL.

35

Centering the clocking solution on the AD9513 best fits the three key factors of our

decision making process. First, the AD9513 is as simple of a part that could be found that still

adequately accomplished the task we needed it to. Appropriately, this also means that it is the

cheapest. Second, the AD9513 has the ability to provide three separate LVDS outputs. This is

essential as we need two LVDS signals sent to the off board field programmable gate array

(FPGA) and one LVDS signal sent to the AD7626 analog-to-digital converter (ADC). Third, and

most importantly, the three LVDS outputs of the AD9513 are sufficiently low jitter for the

requirements of the AD7626 ADC.

3.4 AD7980

The AD7980 analog-to-digital converter (ADC) has an evaluation board and a

development board, known as the System Development Platform (SDP), which provides an

interfacing option for consumers for the AD7980. The SDP and evaluation board provide a

method for testing and evaluating performance. However, it is understood that consumer

applications will often have the ADC interfacing with other devices. Microcontrollers are an

attractive option for this, as they provide interfacing options to many different peripherals, and as

such can satisfy many general purpose needs [19]. In addition, the processing power of

microcontrollers has improved, in order to satisfy higher end applications [19]. The current

support of interfacing microcontrollers to the AD7980 consists of a generic driver written in the

C programming language.

Analog Devices is unsure of how well the AD7980 will perform when interfaced with

current high-end microcontrollers. In addition, feedback is needed as to the ease of use of their

existing generic driver. Each microcontroller we used was required to interface with the AD7980

in a 4-wire CS mode, without a busy signal. Two microcontrollers from three different

36

companies were to be selected, and the microcontrollers needed to be high end and selected in

order to get the best performance possible out the AD7980. The first microcontroller had to be

selected from Texas Instruments’ MSP430 line, because its popularity with Analog Devices

customers. In conjunction with this thought process, the other microcontroller should be selected

from STMicroelectronics’ product lines. The goal of this project is to take the existing generic

driver supplied by Analog Devices and interface it with two different microcontrollers,

evaluating the performance of the AD7980 with each one, as well as gauging the ease of use of

the current generic driver.

3.4.1 Project Objectives

In order to accomplish all the goals of this project, there are a number of project

objectives that must be met, and technical challenges that must be overcome.

 A microcontroller needs to be selected from the product lineups specified. These

microcontrollers need to be selected to specification so that the performance of the

AD7980 should not be affected. Generally, this requires that the microcontrollers will

need to be selected from higher end product lines. Also required for each microcontroller

are a development board and a development environment for creating and loading

programs onto the microcontrollers. Finally, cost efficiency should be a factor when

selecting products.

 Communication between the AD7980 and the microcontrollers is key to the project. The

code responsible for interfacing to the AD7980 needs to be optimized as much as

possible, so as to impact the conversion time as little as possible. Analog Devices has

specified that the microcontroller must communicate with the AD7980 using a 4-wire CS

mode, without busy Serial Peripheral Interface (SPI).

37

 In order to produce a Fast Fourier Transform (FFT) for performance analysis, the

microcontroller needs to be able to store the results of sixteen thousand AD7980

conversions. Once the conversions are complete, the data then has to be communicated

over to a computer, where the data can be processed and the FFT can be produced, using

National Instruments LabView.

3.4.2 Selecting a Texas Instruments MSP430 Microcontroller

The Texas Instruments MSP430 family is a series of 16-bit microcontrollers, specializing

in low power applications. The family, seen in Figure 18, consists of over four hundred

microcontrollers offering a broad range of features [20]. The CPU speed of the MSP430 line

ranges from 8 MHz to 25 MHz. This will not be able to reach our target clock speed of just over

55 MHz. As to the other main factor, most of these microcontrollers support SPI. Based on clock

speed alone, all but the MSP430F5xx series and the MSP4306xx series were weeded out, as in

order to maximize the performance of the ADC, the maximum CPU clock speed offered by the

MSP430 line of 25 MHz would need to be used. At this point, most of the 25 MHz

microcontrollers in either family would have satisfied the requirements.

38

Figure 18: The Texas Instruments MSP430 product line. All microcontrollers in this family have CPU clock speeds below

what is required to maximize the throughput of the AD7980 [20].

However, the MSP430F6xx series came with a liquid crystal display (LCD), which was

unnecessary, and was otherwise identical to the MSP430F5xx series, so the selection was

narrowed down to a single series. In addition to purchasing a microcontroller, the

microcontroller also needed an evaluation board and software in order to program it. In this case,

that was the deciding factor. The 64-pin MSP430F5xx Target board (MSP-TS430RGC64USB)

was selected based on cost, and the recommended microcontroller, the MSP420F5528, to go

along with it. This combination offered a good balance between the hardware that was necessary,

with few frivolous features, while being available for purchase immediately. IAR Embedded

Workbench Kickstart was selected because of familiarity with the program and the program is

free to use.

39

Table 2: Comparison of possible Texas Instruments MSP430 microcontrollers for selection. The selected product line was

the 5 series.

MSP430
Product Line

SPI Maximum
System Clock

Advantages Disadvantages Lowest Total
Cost

1 Series yes 8 MHz Few extra
features

Low system
clock

$149.00

2 Series yes 16 MHz Few extra
features

Low system
clock

$149.00

Value Line yes 16 MHz Few extra
features

Low system
clock

$149.00

4 Series yes 16 MHz

Low system
clock
Includes LCD

$149.00

5 Series yes 25 MHz System Clock Feature-rich $149.00

6 Series yes 25 MHz System Clock LCD
Feature-rich

$148.00

3.4.3 Selecting a STMicroelectronics Microcontroller

STMicroelectronics makes a couple of different lines of microcontrollers. They have two

main lines; the STM8, which is a line of 8-bit microcontrollers designed for low power use, and

the STM32, which are 32-bit microcontrollers based on ARM Cortex. The STM8 line was

obviously not going to come close to the CPU clock speed requirement set out beforehand, so

that left the STM32 line. Within the STM32 line, seen in Figure 19, there are seven series [21].

Only two of those series were able to meet the CPU clock speed requirement, the STM32 F2 and

the STM32 F4. The STM32 F2 had a maximum CPU clock of 120 MHz, while the STM32 F4

had a CPU clock speed of 168 MHz. However, the STM32 F4 was also a digital signal processor

(DSP), which was an unnecessary feature. Both series offered SPI as an option for interfacing to

external devices. The STM32 F2 series was selected over the STM32 F4 because it offered

everything that was desired, at a lower price, and with fewer frivolous features.

40

Figure 19: STMicroelectronics STM32 product line. The F1, F2, and F4 were all considered as potential series to choose

from [21].

Selecting a microcontroller within this series was a matter of selecting an evaluation

board, as the microcontrollers come soldered onto the boards. The IAR Kickstart for STM32 F2

(STM3220-SK/IAR) was selected not only because it was the least expensive option, but also

because of its compatibility with the IAR Embedded Workbench Kickstart for ARM, a program

that our group was familiar with.

Table 3: Selecting a STMicroelectronics family. The STM32 family was selected.

ST Family SPI Maximum System Clock Advantages Disadvantages

STM8 yes 24 MHz Lower cost Low system clocks

STM32 yes 168 MHz Adequate System Clocks More Expensive

41

Table 4: Selecting a microcontroller from the STM32 family. The F2 product line was selected.

STM32
Product Lines

Maximum
System Clock

Advantages Disadvantages Total
Cost

F0 48 MHz

Low System Clock $199.00

F1 72 MHz Adequate System
Clock

$289.00

F2 120 MHz Good System
Clock

$299.00

F3 72 MHz Adequate System
Clock

Includes
unnecessary DSP

$249.00

F4 168 MHz Good System
Clock

Includes
unnecessary DSP

$299.00

3.5 Chapter Summary

The Input/Output Buffer Information Specification (IBIS) project had a proposed

approach before we were assigned to the project by Analog Devices. This meant that the

company had already outlined a procedure and a methodology that would be used to complete

that project. Instead, the work that had to be done was figuring out how to best follow through

with that procedure. With the three microcontrollers selected and purchased for the

microcontroller project, the project could then move into the programming phase, in which the

program that would run during testing was written. The low-jitter clocking solution selected for

the AD7626 evaluation board fit all the needs specified by Analog Devices. With a phase-locked

loop (PLL) selected, and the oscillator that would work with the PLL, design of the schematic of

the new evaluation board was initiated.

42

4 Implementation

This chapter details the necessary tasks present in this project as well as the steps taken to

complete them. The chapter is split into three sections, the analog-to-digital converter IBIS

model generation, developing an AD7626 evaluation board methodology, and performance

implications of interfacing the AD7980 to microcontrollers. Each section was then further

broken down into what steps were necessary to complete each task.

4.1 Analog-to-Digital Converter IBIS Model Generation

The first task for the analog to digital converter (ADC) I/O Buffer Information

Specification (IBIS) model generation project was to write a project plan that contained all of the

information necessary for generating the IBIS model of the AD7091R, an ADC. The project plan

provided a summary of what we had intended to do. This summary was checked by Analog

Devices to ensure that we covered all of the parameters that we needed to. Once the plan was

established, the sweeping program was developed. The sweeping program communicated

between the Keithley 2420 source meter and the computer via LabView to gather the data

required for the IBIS model. We then developed a Virtual Instrument (VI) that took the measured

data from an excel file and transferred it to a text file. This VI was used to create the IBIS model

for the AD7091R. The model was then tested to ensure that it was valid. By summarizing the

steps taken to create the IBIS model, a guideline to generating IBIS models for a variety of

devices was compiled.

43

Figure 20: The Keithley Source Meter. Using LabView, this device was programmed to run a sweep on the

EVAL-AD7091RSDZ board.

4.1.1 Writing a Project Plan

Our project plan consisted of an outline of all of the data necessary to generate an I/O

Buffer Information Specification (IBIS) model. Writing the project plan provided a starting point

for developing an IBIS model. The plan included all of the pins of interest to the model. This

means that out of the ten pins on the device, only the output and the three inputs were included in

the project plan. Each pin can be represented as a different kind of buffer and each kind of buffer

requires different parameters to be modeled. The parameters summarize the behavior of the

electrical characteristics of the device. These characteristics are the pull-up and pull-down

curves, power and ground clamp curves, ramp rate, rising and falling waveforms, C_Comp, and

package parameters [1]. Either the values of these characteristics or the range over which they

will be sampled should be indicated in the project plan. The model’s name, pin names, and the

conditions under which the device will be operating must also be mentioned. By looking at the

project plan in Figure 21 it can be seen that the three inputs are the same buffer type. This means

44

that only one of the three inputs needed to be modeled. The data gathered from the chosen input

was applicable to all of the inputs.

The drive strength of the device is described in an IBIS model by the pull-up and pull-

down curves [1]. The pull-up data describes the current versus voltage (IV) behavior of the

device when the positive-channel MOSFET (PMOS) transistor is on and the output is in the logic

high state [1]. The pull-down data describes the IV behavior when the negative-channel

MOSFET (NMOS) transistor is on and the output is in the logic low state [1]. This data is

acquired by sweeping the output from the maximum negative reflection (-VDRIVE) to the

maximum positive reflection (2*VDRIVE) where VDRIVE is a voltage that exceeds the maximum

output voltage. This ensures that the areas where undershoot, overshoot, and reflection can occur

are covered. The pull-up data is relative to VDRIVE while the pull-down data is relative to ground

[1]. This means that the output current of VDRIVE relative data is dependent on the voltage

between the output and VDRIVE pins. Due to this, the pull-up data needs to be entered into the

model using the following equation.

 Equation 4 [1]

The power clamp curve represents the electrical behavior of the output when the power

clamp diode is turned on while the ground clamp curve represents this behavior when the ground

clamp diode is turned on [1]. As the ground clamp diode is only active when the output voltage

is below ground, the ground clamp data must be taken over the range of –VDRIVE to VDRIVE [17].

The power clamp diode, however, is only active when output voltage is above VDRIVE [1].

45

Figure 21: Project Plan- A summarization of all of the data that will be included in the IBIS model. This plan provides a

framework from which to start creating the IBIS Model.

46

As such, the power clamp data must be taken over the range of VDRIVE to 2*VDRIVE and is

relative to VDRIVE.

The ramp rate describes the transition rate when there is a switch in the logic state on the

output [1]. It is measured from 20% to 80% of the maximum voltage level on the Voltage versus

Time (VT) graph, with an assumed resistive load of 50Ω [1]. This can generate four different

waveforms, two describing the rise time and two describing the fall time. For both the rising and

falling graphs, one should have the load connected to VDD and the other with the load connected

to ground.

C_Comp is the value of the silicon die capacitance [1]. It is the capacitance referenced from

the pad back into the buffer and has a different value for the minimum, typical, and maximum

conditions of the device [1]. The package parameters are the electrical characteristics of the

packaging of the device that have an effect on operation [1]. Pin resistance (R_Pin), pin

inductance (L_Pin), and pin capacitance (C_Pin) represent the electrical characteristics for each

pin-to-buffer connection [1]. Package resistance (R_Pkg), package inductance (L_Pkg), and

package capacitance (C_Pkg) represent the electrical characteristics for the overall package [1].

In regards to the AD7091R, there are four pins of interest. These pins are the Serial Data

Output (SDO), the Serial Clock (SCLK), the Chip Select (CS), and Convert Start (CONVST)

[22]. The SDO is an output while the SCLK, CS and CONVST are inputs. The SDO is modeled

by a three-state output buffer while the inputs are modeled by an input buffer. The three-state

output buffer required all of the previously stated parameters to be defined. However, the input

buffers only needed to define the power and ground clamp curves, C_Comp, and package

parameters. Since the SCLK, CS and CONVST were the same buffer under the same conditions,

47

only one needed to be modeled. This model could then be used for all three inputs. The three-

state output buffer is shown in Figure 10 and the input buffer is shown in Figure 11.

4.1.2 Setting up the Equipment for the AD7091R IBIS Model

Once the project plan had been completed, work on the I/O Buffer Information

Specification (IBIS) model began. This started with configuring the Keithley 2420, the source

meter selected for use in this project for its data collection capabilities, to communicate with a

computer using the General Purpose Interface Bus (GPIB) connection provided to us. We chose

to use the Keithley 2420 because it was recommended to us by Analog Devices as a readily

available device that met our needs for the project. This was accomplished by going into the

menu, selecting communications, and selecting GPIB. The desired address for the device then

needed to be selected, as multiple devices can be connected through one GPIB connection. The

GPIB cable connected to the USB port of the computer in use. The address identifies the device

to the GPIB controller. The next step was to download the Keithley 24xx drivers in National

Instruments LabView. These drivers allow the computer to recognize that there is a GPIB device

connected and to interface with it. The final step was to install the National Instrument Virtual

Instrument Software Architecture (NI-VISA) version 3.2 or later. This step may be unnecessary

if NI-VISA is already installed on the computer. NI-VISA provides the programming interface

between the hardware and LabView [23].

The second device that needed to be configured was the Digital Phosphor Oscilloscope

(DPO) 4054. The process for configuring the DPO was much simpler than the Keithley 2420.

The DPO comes equipped with a Universal Serial Bus (USB) port. Using a flash drive, all of the

pertinent data can be transferred to a computer.

48

4.1.3 Taking the Measurements for the AD7091R IBIS Model

In order to record the Current versus Voltage (IV) characteristics of the AD7091R, a

virtual instrument (VI) was designed in LabView. By altering one of the example LabView VIs

offered in the Keithley driver, we were able to develop a VI that allowed us to set up

measurement options that controlled voltage range, the number of samples to be taken, how long

the sweep will take and where the data would be saved to. This program was then used to record

the IV characteristics of the AD7091R inputs and output.

The Keithley 2420 was used to measure the voltage characteristics of the device. It was

connected to EVAL-AD7091RSDZ, the evaluation board in Figure 22, as shown below in Figure

23. The configuration shown is set up to measure electrical characteristics of the Serial Data

Output (SDO). Using the LabView VI the Keithley 2420 ran sweeps on the AD7091R to gather

the Current verses Voltage (IV) characteristics of the input and output pins needed to generate

the IBIS model.

A DPO4054 oscilloscope was used to obtain the ramp rate and Voltage versus Time (VT)

data. In order to obtain the VDRIVE-relative waveforms, the evaluation board for the analog-to-

Digital Converter (ADC) AD7091R was connected to the System Demonstration Platform

(SDP). The evaluation board was powered by an Agilent E3630A Triple Output DC Power

Supply. The DC power supply provided the evaluation board with 1.8V, 2.5V, 3.3V, and 5V. A

measurement was taken at each of these voltage levels with a 50Ω resistor connected between

the Serial Data Output (SDO) pin and the VDRIVE pin. This setup allowed the oscilloscope to

gather VDRIVE-relative timing data. In order to obtain a measurement, the oscilloscope was

connected to the SDO pin and Ground (GND) pin. With this setup, when the SDP supplied a

signal to the evaluation board the signal was displayed on the oscilloscope.

49

Figure 22: The evaluation board to test the AD7091R. This board allowed us to control under which conditions the

AD7091R was tested and to record the results.

Table 5: The pins titles and operation of the AD7091R.

Pin Number Pin Description Mnemonic

1 Power Supply Input VDD

2 Voltage Reference Input Output REFIN/REFOUT

3 Analog Input VIN

4 Decoupling Pin REGCAP

5 Analog Ground GND

6 Convert Start CONVST

7 Chip Select CS

8 Serial Clock SCLK

9 Serial Data Output SDO

10 Logic Power Supply Input VDRIVE

50

Figure 23: This Figure displays how the Keithley 2420 was connected to the EVAL-AD7091RSDZ.

The oscilloscope is then able to capture a single sample. In order to obtain the ground-relative

waveforms a 50Ω resistor was connected between the SDO pin and the GND pin and the process

was repeated.

To obtain data on the rising and falling edge, we took advantage of the oscilloscope’s

ability to focus onto critical portions of the waveform. In order to obtain the ramp rate of the

rising waveforms, one cursor on the oscilloscope screen was placed at 20% of the maximum

voltage and another was placed at 80% of the maximum voltage thereby displaying the change in

voltage levels between these two points as well as time it took between changes.

51

Figure 24: The Agilent Triple Output Power Supply. This is an adjustable power supply that was used to test the

device under different voltage levels at VDRIVE.

Figure 25: The DPO4054 Oscilloscope. This oscilloscope was used to measure and record the VT data as well as the ramp

rate of the device under testing.

52

The individual sweeps and measurements gathered by the Keithley 2420 source meter

and DPO4054 scope were saved as .csv file. This data needed to be transferred to the IBIS file

format. This was accomplished by developing a LabView virtual instrument (VI) that took the

data from a .csv and put it into a .ibs file. The program built the appropriate framework for the

IBIS model and then entered the measurement data where appropriate.

4.2 Developing an AD7626 Evaluation Board Methodology

With projects as large as developing an improved evaluation board for an analog-to-

digital converter (ADC), there needs to be a well-defined project plan. Each step taken in the

methodology must be planned out and documented. For the AD7626, one of the largest parts of

the project involved leveraging designs from the schematics of evaluation boards of similar

ADCs. Portions of the previous evaluation board for the AD7626 that were not the source for

errors at high speeds were repurposed and used in our new schematic. A new clock source to

supply the convert start signal (CNV) needed to be designed, programmed, and interfaced with

the previous hardware. However, the user still needed to have the ability to choose between

supplying the AD7626’s CNV from the new clocking solution and the off board field-

programmable gate array (FPGA).

The AD7626 evaluation board project exists because the previous evaluation board

(shown in Figure 26) was not able to provide a clear enough convert start signal (CNV) to the

AD7626 at the high frequencies that the analog-to-digital converter (ADC) is capable of.

Therefore the first goal was to decide upon a clocking solution that would be able to supply a

high frequency, low jitter CNV signal to the ADC.

53

Figure 26: Previous Evaluation Board for the AD7626 (ADC). It utilizes an Altera FPGA to supply the CNV to the ADC,

but this method resulted on a signal which was too noisy to allow the ADC to function properly.

4.2.1 Researching Clocking Solutions

Further researched was needed before a decision could be reached on how to develop the

clocking solution. A quick search for “Low Jitter Clocking Solutions” yielded many relevant

results. This led to the need to learn of the most popular approaches. These approaches included

phase locked loops (PLLs), delay locked loops (DLLs), and other jitter attenuation circuitry.

Once significant knowledge was gained about the pros and cons of these low jitter clocking

solutions, they were brought to the project advisors at Analog Devices. Through conversing both

through email and personal meetings, it was discovered that using a PLL was the assumed

solution to their clocking problem. We did not want the bias of Analog Devices to get in the way

of choosing the best clocking solution, but we ultimately found that using a PLL was, in fact, the

best choice.

54

4.2.2 Choosing the Best Part

Once the decision to use a phase locked loop PLL centered clocking solution was made,

our research could become more focused. A PLL had to be selected that would fit the needs of

the project. Since we are working for Analog Devices, there are obvious advantages of working

with Analog Devices parts. We searched the Analog Devices website for PLL parts, as well as

notes on their specific applications and uses. Taking advantage of video tutorials and

explanations of Analog Devices products, we decided to contact the lead speaker, an engineer at

the Greensboro, MA office. After explaining our project, he gave excellent insight as to many

PLL options. The final decision was to use the AD9513, based on three key factors. The first

deciding factor was if this PLL met the required low jitter specifications. The data sheet for the

AD7626 boasts a signal to noise ratio (SNR) of 91.5 dB, while the datasheet of the AD9513

boasts a jitter performance of approximately 300 fs at 10 MHz. The relationship of a device’s

SNR (dB) and its jitter is shown in Equation 5:

 () (

) Equation 5

Using this equation, we found that the maximum jitter time that a signal provided by the

PLL could provide without reducing the performance of the ADC is 423.4 fs. As said above, the

jitter performance of the AD9513 is approximately 300 fs at the desired frequency. Therefore,

the AD9513 meets the low jitter recommendations. We also know from out design approach that

the PLL would need at least three low-voltage differential signaling (LVDS) outputs. The

55

AD9513 has six outputs which can be paired and configured as three LVDS outputs. Finally,

research needed to be done as to whether a cheaper part existed that also satisfied these two

factors. This research did not yield any results, so the decision was made to work with the

AD9513.

Since the AD9513 does not have an internal oscillator, we needed to find a simple

external oscillator part to supply the clock input to the PLL. Finding an appropriate oscillator can

be very overwhelming, as there are a plethora of options from many manufacturers. We decided

the best strategy would be to consult some of the application engineers at Analog Devices as to

whether they have recently worked with oscillators in any of their projects, and if they would be

willing to make a recommendation, as well as provide a PADS schematic part. We were sent in

the direction of the Kyocera KC3225 family of oscillators. After a quick search from popular

distributors, we found a model in that family that will provide a 100MHz CMOS CLK signal to

the PLL. The AD9513 can then send this clock in the form of a low-voltage differential signaling

(LVDS) signal to the FPGA that it can use an alternative clock source, if the native clock is too

jittery.

4.2.3 Schematic Design

Once the PLL and oscillator were selected, the next step was to start designing the

schematic. Analog Devices, in Limerick, uses a schematic/layout program by Mentor Graphic

called PADS. Much of the new design will be able to be leveraged from the schematics of the

AD7960 evaluation board, as well as a proposed schematic for the AD7626, which never made it

to fabrication. The power supplies, interface, and external reference sheets will all be copied

from the AD7960 board, while the device and analog front end sheet will be copied from the

56

AD7626 schematic. However, while being able to copy parts from other schematics is very

convenient, it does not mean that everything will work together.

Regarding the AD7960, we will need to make sure the voltage levels and connections

line up to those of the AD7626. The AD7626 and the AD7960 are very similar, but they are not

the same. This can easily be seen in the logic levels of the two devices. The AD7960 runs at a

logic level of 1.8V, while the AD7626 runs at a logic level of 2.5V. One example of the small

modifications that will need to be made is shown in Figure 27. This image is of the level

translator on the interface sheet of the AD7960 schematic, as well as the changes that will need

to be made to make it work with the AD7626.

Figure 27: Level Translator on the AD7960 Interface Sheet. This Image exemplifies the slight modifications that will need

to be made to leveraged schematic pieces. Specifically, this part will need a 2.5V input into VCCA. Also, because there are

two unnecessary inputs and outputs, we will search for a simpler part with 2 inputs and outputs instead of four. If this

search does not yield satisfactory results, we will leave the unnecessary ports disconnected.

57

In order to gain a greater knowledge in how the AD7960 schematic works, and how it

will need to be changed to function with the AD7626, we will need to seek the advice of one of

the head engineers of the AD7960 project. After the leveraged parts of the previous schematic

are modified to work with the AD7626, the PADS sheet for the new clocking solution needs to

be created. One upside to working in PADS is that after someone at Analog Devices creates a

part to be used in the program, it can then be used by everyone else on the network, which saves

a lot of time. By going to Analog Devices applications engineers for an oscillator

recommendation, we not only get reliable part, but we can also expect that the part had already

been built in PADS. Unfortunately, this is not the case for the AD9513. Consequently, we will

need to create a new symbol for the device, as well as for some other integrated circuits that will

be utilized in the design.

The PADS software is very intuitive and user friendly when it comes to the basics, but to

be able to create a part from scratch, we will need to seek out the help of an applications engineer

that regularly works in the program. With his instruction we will be able to build the part into

PADS and the circuitry around it can be developed. While this schematic sheet will require more

design than the others, we can still take advantage of existing schematics on the Analog Devices

website that use the AD9513. Once we are satisfied with the design, the schematic will be

submitted to the project adviser, along with a bill of materials for all of the parts existing on the

plan. After making the appropriate changes to gain the approval of Analog Devices, the

schematic will go through a final review before being sent to the layout department for

fabrication.

58

4.3 Performance Implications of Interfacing the AD7980 to

Microcontrollers

The initial objective of the microcontroller project was to identify microcontroller

families that would make good candidates for interfacing with the AD7980 analog-to-digital

converter (ADC). Once families were selected, individual microcontrollers within those families

could be selected for a final review before purchasing. Analog Devices provides a generic device

driver for use on their website, but this driver needed to be developed further to interact with

each microcontroller. This is because each one has different registers, and different ways of

accessing these registers. In addition to editing the driver, a program for each microcontroller

needed to be developed that would be suitable for testing the performance of the ADC. Finally,

the ADC was tested and the performance was evaluated.

4.3.1 Selecting the Microcontrollers

Analog Devices specified that the project was to use three microcontrollers from three

different companies. One microcontroller was required to be from the Texas Instruments

MSP430 family, due to its immense popularity. The other two were left to the group’s discretion,

but it was recommended that the other two microcontrollers be selected from the offerings of

STMicroelectronics and Freescale. When it came to selecting potential families, and then the

individual microcontroller, there were two defining factors. First, the microcontroller needed to

be able to utilize the Serial Peripheral Interface (SPI) when communicating with external

components. Second, the microcontroller needed to have a high frequency system clock. The

group needed to find the minimum system clock speed in order to maintain the AD7980’s

maximum throughput of 1 mega samples per second (MSPS).

59

Figure 28: The timing diagram for SPI 4-wire CS mode without busy. In order to maintain maximum ADC throughput,

tACQ must be less than the minimum tCYC less the maximum tCONV. [11]

Figure 28 shows the timing diagram for a conversion on the AD7980 using SPI 4-wire

CS mode without a busy indicator [11]. This was the same mode that was used when interfacing

with the microcontrollers. The data sheet for the AD7980 lists the minimum amount of time that

the AD7980 needs from one conversion start to the next conversion start, tCYC, as a minimum of

1000 nanoseconds (ns) [11]. Therefore, in order for the ADC to reach maximum throughput of 1

MSPS, tCYC needs be at its minimum of 1000 ns. The maximum conversion time, tCONV, is 710 ns,

as listed on the data sheet [11]. Subtracting tCONV from tCYC, results in the minimum acquisition

time, tACQ, at 290 ns. This is the minimum amount of time that the microcontroller has to read out

the conversion, and needs to be minimized in order to maximize throughput. Since the AD7980

is a 16-bit ADC, in order to get the minimum period of the SCK, tACQ is divided by 16 bits,

resulting in a minimum of 18.125 ns/bit. This translates to a minimum clock of 55.1725 MHz. In

order to maintain the AD7980’s maximum throughput, the microcontrollers needed a clock of at

least 55.1725 MHz.

60

4.3.2 Developing the Code for the MSP430

The purpose of the program designed for each microcontroller is exactly the same,

although there are variations in the actual code due to differences in how the microcontrollers are

accessed. The objectives of the program were to establish the Serial Peripheral Interface (SPI)

with the AD7980 analog-to-digital converter (ADC), initiate the conversion, and maintain

conversions at the maximum rate provided for by the microcontroller. The program must use the

generic microcontroller driver, provided by Analog Devices, to assist with the interfacing

between the microcontroller and the AD7980. In addition, a method for exporting the data out of

the memory of each microcontroller was needed in order to get the performance specifications.

All of the programming was done in the C programming language. The completed programs for

each microcontroller can be seen in Appendix B.

In order to communicate effectively with the microcontrollers, the serial peripheral

interface (SPI) was used. The generic driver from Analog Devices takes this into account, and

provides an empty function declaration, SPI_Init, in the file communication.c for the user to

complete, as this initialization function will vary from microcontroller to microcontroller. The

function declaration provides for four input variables, representing the SPI clock to be used,

whether the data is transmitted most significant bit (MSB) or least significant bit (LSB) first, the

SPI clock polarity, and the SPI clock phase. The SPI clock just had to be above 55 MHz, in order

to minimize transfer time. In the case of the MSP430, where this was not possible, the maximum

clock of 25 MHz was used. MSB first was used in all microcontrollers, as that was the mode

used by the AD7980. The SPI clock polarity determines whether the data is transmitted on the

rising or falling edge of the clock. In this case, the rising edge of the clock was used. Finally, the

clock phase determines whether the data is sampled on the first or second clock edge (the data

must be made available a half clock cycle before the sample).

61

The next function that had to be developed for each microcontroller within the generic

driver was the SPI_Write function. This is a simple function that accepts an input of one byte of

data, writes the data to the register that holds the data to be shifted out on the Master Out/Slave

In (MOSI) line, and then waits for the transfer to complete before terminating. This function is

responsible for transmitting the signal to initiate a conversion, as the conversion starts when the

MOSI has a rising edge.

Implementing the read function was crucial to the project, as the data had to be recorded

in order to determine the performance of the ADC. SPI_Read is the function responsible for this,

and is very similar to SPI_Write, due to the full-duplex nature of SPI. SPI_Read accepts a pointer

to a variable that can contain a word of data. First, the function writes a dummy byte to the

transfer register. This dummy byte consists of all one is order to keep the MOSI high during the

conversion. Once the transfer is complete, the received register is read out and placed in the

location specified by the pointer passed to the function. If the microcontroller is capable of

sixteen bit transfer, then this is the end of the function and it terminates. However, the MSP430

is not capable of word transfer, and instead needs two eight bit transfers to acquire all of the data.

To do this, another dummy byte is written to the transfer register. When the transfer completes

for the second time, the data in the location determined by the pointer passed to the function is

shifted over a byte and ORed with the data in the received register. The function then terminated.

The functions provided in AD7980.c required only slight editing in order to ensure

compatibility. AD7980_Init simply calls SPI_Init, and returns whether the initialization was

successful. The inputs to SPI_Init simply needed to be altered to set up the SPI correctly for each

device. AD7980_Conversion is a function the controls the entire conversion process for the

AD7980. It has no inputs, and returns the conversion result. Slight changes needed to be made to

62

this function in order to ensure correct operation. The variable txData which contains FFFEh in

the generic driver needed to be changed to 7Fh for the MSP430 (because of single byte transfers)

and to 7FFFh for the other microcontrollers. This change needed to be made in order to reflect

the MSB first transfer of the AD7980, as 7FFFh would send a zero first, while FFFEh would

send a zero last. This just minimizes the time in between conversions by providing a rising edge

on the MOSI as soon as possible. Next, a software delay needed to be implemented after calling

SPI_Write and setting the CS low, as the microcontrollers were all able to transfer the data faster

that the AD7980 could complete a conversion (710 ns maximum). Finally, setting the CS low

and setting the CS high needed to be edited for each microcontroller, as the command and output

pins differed.

Once the program for each microcontroller was complete, tests had to be run in order to

derive the performance of the ADC with each microcontroller. These tests included throughput

of the ADC, signal to noise ratio of the conversion, and bit rate of the microcontroller.

4.3.3 Testing the Performance Specifications

In order to correctly test the AD7980 analog-to-digital converter (ADC) with the

microprocessor, a modified AD7980 evaluation board was used, in conjunction with a breakout

board. This allowed the microcontroller evaluation board to be connected and properly interfaced

to the AD7980. Finally, a signal generator was used to provide the positive and negative

terminals of the input signal. The performance specifications that were of interest were the

throughput achieved with the ADC and microcontroller, and the signal to noise ratio (SNR) of

the signal after conversion.

Before testing could begin, the AD7980 evaluation board needed to be modified, as the

SDP interface uses a three wire SPI, instead of the four wire SPI that will be used by the

63

microcontrollers. On the evaluation board, the SDI pin is tied to VDRIVE, along with OVDD [24].

In order to implement a four wire SPI, the SDI pin needed to be accessed. As a solution to this,

the OVDD pin was raised, and tied to VDRIVE elsewhere on the board. The resistor R26 and the

capacitor C42 were desoldered and removed from the board, and pads left open by the resistor

and the capacitor allowed a wire to be conne3cted to SDI. The modificat6ions made to the board

can be seen in Figure 29.

Figure 29: The AD7980 evaluation board that was used. The blue wire connects to the raised OVDD pin on one end, and

to VDRIVE on the other. The red wire allows connections to the SDI pin on the AD7980.

64

Figure 30: Oscilloscope image of an AD7980 conversion. C2 is the convert start, C1 is the chip select, C4 is the SPI clock,

and C3 is the data out. [25]

The throughput of an ADC is measured in samples per second. Deriving the throughput

of the ADC was a relatively simple task. An oscilloscope was connected to the 4 wires

interfacing the AD7980 to the microcontroller. C2 in Figure 30 is the convert start (CNV), and

signals the start of a conversion by switching high [25]. C1 in Figure 30 is the chip select (CS or

SDI on the AD7980), and allows the converted data to be transferred over the SPI. C4 in Figure

30 is the clock that the converted data is transferred out on (SCK). C3 in Figure 30 is the data

being transmitted out (SDO), least significant bit (LSB) first. When a conversion is viewed on

the oscilloscope, the conversion time that has been elapsed can be seen, and can be used to find

the throughput. This is found by the equation in Equation 6.

 () () Equation 6

65

This result is the samples that the ADC is able to complete per second when interfacing with the

microprocessors.

Finding the SNR was more complicated. Computing the SNR requires a large number of

conversions for accuracy purposes. To calculate the SNR, the data from a large number of

conversions is input into a specially designed LabView Virtual Instrument (VI) for creating Fast-

Fourier transform (FFT) plots, and then the VI calculates the overall SNR of the system. Sixteen

thousand conversions are needed in order for the FFT to be accurate. Because the SNR is so

heavily dependent on frequency, the conversions will needed to be tested across a broad range, in

order to get the best possible picture of how the microcontroller and the SPI interface affect the

performance of the AD7980.

Figure 31: The setup used in the lab for collecting data to test the SNR performance of the microcontrollers. In this case,

the MSP430 is being tested.

66

To generate the analog waveform used for testing, an Audio Precision SYS-2722 was

used. This signal generator is able to produce very accurate waveforms at various frequencies

and voltages. The SYS-2722 was controller via a computer it was connected on, where all the

output settings could be tweaked. The setup used for testing the MSP430 microcontroller can be

seen in Figure 31. Running a single test required changing the SYS-2722 settings to reflect the

frequency to test at, as well as the peak-to-peak voltage. Each microcontroller was to be tested at

ten different frequencies, ranging from 1 kHz to 100 kHz. The peak-to-peak voltage would

remain constant. The voltage level was determined by testing the performance of the AD7980

when interfaced with Analog Devices’ System Demonstration Platform (SDP), and determining

a peak-to-peak voltage that provided the SNR performance provided on the datasheet of the

AD7980. The peak-to-peak voltage used was 20 Vpp.

During testing, it was discovered that the MSP430F5528 had 8 kilobytes (kB) of random

access memory (RAM), which was nowhere near the 32 kB needed to hold an array of sixteen

thousand sixteen bit conversions. This caused the MSP430 to require additional code to write the

conversion to flash memory, which had enough space to hold all the conversions. Unfortunately,

this caused additional performance issues, so the group made the decision to determine to

performance of a test run at 1 kHz, while writing two thousand two hundred and seventy two

conversions in RAM

Once the data was collected from all the tests, the comma separated value (CSV) files

were then imported into the LabView program that was developed for reading the data and

generating an FFT. The development of the virtual instrument (VI) was a matter of adapting

existing Analog Devices’ VI’s to read in a CSV file, and extract the data to compute the FFT.

The VI reads the spreadsheet in as a 2-D array, converting from the hexadecimal values in the

67

spreadsheet to decimal values, which is then indexed into three separate data paths. The first is

the throughput that the AD7980 was operating at when the conversions where taken. This is the

first entry in the single column of data in the spreadsheet, and is of data type double. The second

data path is the resolution of the analog-to-digital converter, which in this case was sixteen. This

is the second entry in column of data. The third path consisted of the conversion results, and was

a 1-D array of doubles. Once the spreadsheet is selected, the results are displayed on the Front

Panel.

Together, these performance specifications should give an accurate representation of how

well the microcontroller is able to interface with the AD7980 ADC. After the data was compiled,

a report was presented to Analog Devices that highlighted the results and the ease of use of their

generic microprocessor driver.

4.4 Chapter Summary

Most of the work involved in the Input/Output Buffer Information Specification (IBIS)

project was in setting up take taking the measurements to acquire the data for the actual model.

In doing this, a LabView program needed to be designed to help take the data sweeps from the

Keithley and transfer them to the computer. Once all of the data was acquired, another LabView

Program needed to be designed which took all the data from the .csv files and put it into the IBIS

format.

Designing the improved low-jitter clocking solution for the AD7626 required that we first

research the best way to reduce jitter. After deciding on using a phase-locked loop (PLL) we

needed to search for the best part based on three factors: meeting jitter requirements, number of

low-voltage differential signaling (LVDS) outputs, and cost. Next, the schematic for the

68

evaluation board was designed in the PADS software. When Analog Devices approved the

schematic it was sent to fabrication.

The first thing that needed to be accomplished for the microcontroller project was to

select the three microcontrollers that we were going to work with. Analog Devices had said that

they would like one of them to be from Texas Instrument’s MSP430 line, and the other two were

left to the group’s discretion, but it was recommended that the other two microcontrollers be

selected from the offerings of STMicroelectronics and Freescale. There were two deciding

factors when it came to selecting potential families, and then the individual microcontroller.

First, the microcontroller needed to be able to utilize the Serial Peripheral Interface (SPI) when

communicating with external components. Second, the microcontroller needed to have a high

frequency system clock. The code for each microcontroller had the same purpose, although there

are variations in the actual code due to differences in how the microcontrollers are accessed. The

objectives of the program were to establish the SPI with the AD7980 analog-to-digital converter

(ADC), initiate the conversion, and maintain conversions at the maximum rate provided for by

the microcontroller. The program had to use the generic microcontroller driver, provided by

Analog Devices and a method for exporting the data out of the memory of each microcontroller

was needed in order to get the performance specifications. All of the programming was done in

the C programming language. In order to test the performance specifications of the ADC when

interfaced with each microcontroller, a signal generator was used to provide the positive and

negative terminals of the input signal.

69

5 Results

This chapter summarizes the results gathered from the development and testing

procedures described in the previous chapter. The chapter was split into the three tasks that

comprised the project.

5.1 Analog-to-Digital Converter IBIS Model Generation

The development of the Input/ Output Buffer Information Specification (IBIS) model

procedure led to the production of several LabView Virtual Interfaces (VI).These VIs were the

“Sweep_Measure_and_output_to_excel” and the “CSV to IBS” programs. The

“Sweep_Measure_and_output_to_excel” VI was programmed to run voltage sweeps on the

evaluation board and output the data gathered into an excel file. The “CSV to IBIS” VI took the

data gathered from the “Sweep_Measure_and_output_to_excel” VI as well as the Voltage versus

Time (VT) data that was gathered manually and input them into an IBIS file (.ibs) format. The

IBIS model procedure was the result of recording how these VIs were used, how the data was

gathered, and how the data was edited to be readable to the VIs.

The “Sweep_Measure_and_output_to_excel” VI provided a simple interface for setting

up and running voltage sweeps as shown in Figure 32. The address of the device being run, in

this case the Keithley 2420, was entered under the VISA resource name parameter. When the

program was run, the Keithley recorded the performance of the ADC being tested. The data

points that the Keithley gathered were separated by uniform intervals. These intervals were

controlled by the range of the sweep and by the number of data points being taken. The

minimum and maximum ranges of the sweeps were entered under the Minimum Amplitude and

Maximum Amplitude parameters. The number of data points taken during the sweep was

controlled by changing the Number of Points parameter. The larger the sweep range, the greater

70

the intervals between data points was. The recorded data was then saved. The Path parameter

was where the destination of the measurement data was entered. The Current versus Voltage (IV)

data was gathered by adjusting these parameters as needed for each sweep.

Figure 32: The user interface for the Sweep_Measure_and_output_to_excel VI. This interface allows the user to control

all of the parameters necessary to gather the IV data for the IBIS model.

The “CSV to IBS” VI took the measurements that had been saved as Comma Delimited

(.csv) files, converted them to text files, and appended them together one after the other. As can

be seen from Figure 33 through Figure 35, the “CSV to IBS” VI is much more complicated than

the “Sweep_Measure_and_output_to_excel” VI. Each header and file had to be entered into the

VI manually. The organization and complexity of this VI is due to the fact that this program

works by appending one object onto another, whether that object is a header string or an array of

71

data points. If the data were to be entered into the incorrect location, it would be added to the .ibs

file in the wrong order. This would lead to syntax issues in the IBIS model, causing it to fail. In

order for this VI to be able to convert the data file to a text file, all of the measurements needed

to be saved in a (.csv) format. To ensure that the data was saved in the proper format, the step-

by-step procedure goes into great detail as to how to save the recorded data. Once the data had

been transferred to the text file, the text file could be changed to an IBIS file by saving it as .ibs

instead of .txt.

Figure 33: The first part of the CSV to IBS VI. This part contains the different headers needed at the beginning of the

IBIS model. It also contains the file paths for the different measurements taken for the input being modeled.

72

Figure 34: The second part of the CSV to IBS VI. This section contains the various headers and file paths

needed to enter the data gathered at the output at 1.8V and 2.5V into the IBIS file.

Figure 35: The third part of the CSV to IBS VI. This section contains the various headers and file paths needed

to enter the data gathered at the output at 3.3V and 5V into the IBIS file.

73

The procedure to generate the IBIS model was a compilation of all of the steps that were

taken to gather, format, and enter the data into an IBIS model. As seen in Appendix E, the

procedure was split into six sections: Gathering the VT Data, Gathering the power and Ground

Clamp Data, Gathering the Pull Up and Pull Down Data, Obtaining the Die Capacitance,

Formatting the Data, and Entering the Data into IBIS. The Gathering the VT Data, Gathering the

power and Ground Clamp Data, and Gathering the Pull Up and Pull Down Data sections describe

how to gather the IV and VT data needed to create the IBIS model. These sections contain

detailed, step-by-step instructions on how to set up the necessary equipment and run the tests.

The Die Capacitance section describes how to obtain the die capacitance of the inputs and output

of the device. This task was its own section because the device had to be removed from the

evaluation board to obtain the die capacitance. Making this section the last section that gathered

performance data ensured that errors with the measurements due to damage to the evaluation

board from removing the device did not occur. The Formatting the Data section ensured that the

measured data was in a format that the “CSV to IBS” VI could read so that the Entering the Data

into the IBIS section could be completed.

5.2 Developing the AD7626 Evaluation Board Results

The evaluation board that we designed was completed at such a time during our project

that we would not receive the fabricated board because of the layover between submission and

layout and fabrication. During this time between design submission and receiving the board, we

would have worked on the code that governs the off board field-programmable gate array

(FPGA). Since we were not going to receive the board during our time in Ireland, the decision

was made to focus our attention on the two remaining projects. Consequently, instead of having

the code that governs the FPGA, test results of the board, and schematics of the circuitry, the

74

only result we have for the AD7626 project is the schematic that was submitted and approved for

layout and fabrication. The process for submitting a schematic for layout and fabrication

involved several meetings with applications engineers, but it did not involve simulation.

However, in these meetings, we went through our schematic diligently. Since the majority of the

schematics we submitted were based on previous designs, most of the focus was aimed at how

the previous circuitry was modified to fit the differences in the specifications between the

AD7626 and the AD7960. When we reviewed the page that we had created, we were required to

explain why every connection was made based upon product datasheets and evaluation literature

from the Analog Devices website.

 Figure 36 shows the sheet of the PADS schematic that holds the new clocking

solution that we designed. The three devices on the figure above are the AD9513, the oscillator,

and a signal translator which ensures that the data coming from the FPGA across the interface is

stable when it enters the AD9513. The rest of the schematic, most of which was leveraged from

previous designs, can be found in Appendix D.

75

Figure 36: Clocking Solution PADS sheet of the schematic for the AD7626 evaluation board. This schematic page is the

one page that took the majority of the work designing, as it was the only page that was an original design, and not

leveraged from previous evaluation board schematics.

76

5.3 Performance Implications of Interfacing the AD7980 to

Microcontrollers

The performance results from the tests are categorized by the throughput of the AD7980

analog-to-digital converter (ADC), as well as the signal-to-noise ratio (SNR) of the sixteen

thousand conversions, per frequency test. The throughput is a measure of how many conversions

the AD7980 is able to make per second. The SNR of a set of conversions represents the ratio

between the signal and the background noise.

In the methods, it was discussed that the MSP430F5528 would have two sets of

performance data; one that records only two thousand two hundred and seventy two conversions,

but stores them in RAM for better access time, and one that records the full sixteen thousand

conversions, storing them in flash memory.

Figure 37: Picture of a single conversion on the AD7980 analog-to-digital converter, when interfaced with the

MSP430F5528 and writing to flash memory. In comparison to Figure 39, there is a significant delay between a finished

conversion and the start of the next conversion.

77

When writing the conversion data to flash memory, the time between conversion starts is

approximately 75 microseconds, as seen in Figure 37. Since this is equivalent to the time that it

takes to complete a single conversion, the inversion of this time will result in the samples per

second of the AD7980. This results in 13,333 samples per second (SPS).

Figure 38: SNR results for the MSP430 interfaced with the AD7980, writing the results to memory.

The SNR results for the ten frequency tests show a maximum SNR of about 16 decibels

(dB), which occurs at 1 kHz. The minimum SNR occurs at 90 kHz, coming in a little below 4

dB. Due to the SNRs becoming varied at higher frequencies, a trend line has been fitted to the

graph of the SNR results. This is likely due to the inaccuracy of a lower throughput at the higher

frequencies, but the trend line shows a linear relationship between frequency and the SNR.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

SN
R

 (
d

B
)

Frequency (kHz)

78

Figure 39 shows a single conversion when the AD7980 is interfaced with the

MSP430F5528, when the data is being saved in RAM. As can be seen in Figure 39 the time in

between the start of two conversions is approximately 6.3 microseconds.

Figure 39: Picture of a single conversion on the AD7980 analog-to-digital converter, when interfaced with the

MSP430F5528 and writing to RAM. The first burst of SPI clock is to initiate the conversion (seen as a low on the SDI/CS

line), and the second and third bursts are responsible for transferring the conversion data, eight bits at a time.

This provides us with a throughput of about 158,000 SPS when interfacing with the MSP430

microcontroller and writing the conversions to RAM. The SNR performance of the AD7980

when writing to RAM at 1 kHz was 24.9381 dB.

A single conversion on the STM32F207ZG took approximately 2.5 microseconds, as can

be seen in Figure 40. When the AD7980 is interfaced with the STM32 microcontroller a

79

throughput of about 400,000 SPS is the result. The AD7980 operates at this throughput when the

SPI clock is 30 MHz, which is the maximum SPI clock the STM32 can provide. In addition, the

SPI is operating in sixteen bit transfer mode.

Figure 40: An oscilloscope capture of two full conversions of the STM32F207ZG. Note that the STM32 is able to perform

full 16-bit transfers. A single transfer takes approximately 2.5 microseconds.

The performance data was only a part of the final objective of the project. Analog

Devices also needed an evaluation of the ease of use of the generic driver that they supply for

programming microcontrollers to interface with the AD7980. Generally, the driver was simple to

use, and worked well for all the microcontrollers during programming. In fact, using the driver

definitely was a more efficient and appealing alternative to setting up a function to run a

80

conversion on the AD7980 from scratch. However, there were a couple of changes that could be

made to improve both performance and usability of the driver. First, the generic driver, when

downloaded and opened, passes FFFEh to SPI_Write within the AD7980_conversion function.

This is equal to the binary number 1111 1111 1111 1110. This transfer is to start a conversion on

the AD7980. A conversion will start when the AD7980 encounters a rising edge on the SDI,

which is provided for by sending the single zero. However, the AD7980 operates in most

significant bit (MSB) first mode, which means FFFEh would transmit a zero last. The behavior

of the SPI master out/slave in (MOSI) line is to hold the value of the last bit transferred, which in

this case, would be the voltage value of zero. This means that a rising edge would not be

encountered on the SDI input of the AD7980 until the next transfer of a value of one. This is

unnecessary. Instead, an initial transfer of 7FFFh, which would transfer a zero first, and provide

a rising edge to the AD7980 SDI as soon as possible on the conversion start.

The second issue that was encountered with the generic driver was a slightly wasteful use

of variables within AD7980_Conversion. Namely, the function runs SPI_Read sending it a

pointer to a local variable within AD7980_Conversion. But the function then returns that

variable, forcing the user to save it to another variable in memory. This is wasteful, and can be

solved by either using a global variable within AD7980_Conversion, or by passing a pointer to a

local variable in main. Passing a local variable would be the more elegant solution from a

programming standpoint, but both options are acceptable options in that memory space is not

being wasted. This will also reduce the amount of time in between conversions, because there

will only be a single write to memory, as opposed to two writes.

Lastly, the generic driver fails to reinforce or imply that there needs to be 710

nanoseconds in between the conversion start and the read period. In the generic driver, the code

81

flow calls SPI_Write, and then immediately pulls the chip select (CS) low to initiate the read

from the AD7980. Even when interfacing with the MSP430, which had a maximum clock of 25

MHz and was the slowest operating of the microcontroller we tested, there was a need for a delay

in between calling SPI_Write and pulling the CS low. Obviously, delay functions vary from

microcontroller to microcontroller, as well as compiler to compiler, but a comment here

highlighting the need to respect the timing needs of the AD7980 would go a low way in helping

the user successfully interface to the AD7980.

5.4 Chapter Summary

The result of the Input/Output Buffer Information Specification (IBIS) project was a

completed IBIS file containing all the measurements taken with the AD7091R, in addition to

information taken from the datasheet of the part. This IBIS file represents a complete IBIS model

for the AD7091R in typical conditions (room temperature). A report was also prepared for

analog devices that detailed the exact ste4ps taken to make the IBIS model, so that Analog

Devices could recreate IBIS models for other devices in the future. The AD7626 schematic

submitted to manufacturing represents the final result of the project associated with the ADC.

The re3sults of the microcontroller project showed performance of the interface was not meeting

maximum performance, with the STM32 reaching a maximum of 400,000 SPS, and the MSP430

reaching a maximum of only 158,000 SPS. In addition the SNR seen when the AD7980 is

interfaced with the MSP430 was much lower than expected, to the point where the signal is not

nearly accurate for applications.

82

6 Discussion

6.1 Analog-to-Digital Converter IBIS Model Generation

The main goals of the Input/ Output Buffer Information Specification (IBIS) model

project were to show that it was possible for Analog Devices to produce an IBIS model in-house

and to create a procedure of how to do so. Being able to produce the IBIS model in-house meant

that new equipment could not be ordered, we could only use equipment that Analog Devices

already had. Using the equipment available we gathered data on the Voltage versus Time (VT)

and Current versus Voltage (IV) characteristics of an analog-to-digital converter (ADC) provided

by Analog Devices, the AD7091R. The steps taken to gather these parameters were used to

create the step-by-step procedure of how to create an IBIS model.

As stated previously, one of the main goals of the IBIS model project was to show that it

was possible for Analog Devices to create an IBIS model. This meant that a full IBIS model was

not the end goal of this project: just enough of one to show that it was possible for Analog

Devices to produce one. The data present in the IBIS model created in this project only has data

recorded for the performance of the AD7091R at the typical temperature values. This IBIS

model lacks minimum and maximum data. However, with only the addition of a device that can

simulate the minimum and maximum conditions under which the ADC was designed to operate,

the process for gathering and formatting the necessary data for the IBIS model will remain the

same.

6.2 Developing an AD7626 SDP-H Evaluation Board

The original plan for developing the AD7626 was to design the board in software, have

design sent to fabrication, and test the board to ensure proper functionality. This meant that there

83

was going to be a lull between when the schematic was submitted and when we would have the

actually board to test with. We were originally told that the time of the layout and fabrication

process varies depending on a couple different factors, one of the being how many projects are in

queue before ours. Basically we were told that at best the board would be done within two

weeks, but it could take three. This meant that we had six weeks to create a satisfactory

schematic, thereby giving us one week to test the board. Unfortunately, we were not able to get a

schematic into layout until a point in which the board would not be finished until we were back

in the Unites States. After talking to our supervisors at Analog Devices it was decided that,

instead of coding the FPGA after the board was submitted (which was what we would have been

doing during the layout and fabrication process), we were to use this freedom to focus harder on

the other two projects.

6.3 Interfacing the AD7980 to Microcontrollers and the

Generic Driver

The results of interfacing the MSP430F5528 with the AD7980 analog-to-digital converter

(ADC) show a throughput that is a fraction of the maximum throughput that can be achieved

with the AD7980, as well abysmal signal-to-noise ratio (SNR) performance when compared with

the performance listed in the datasheet. The lower throughput can be attributed to a slow SPI

clock, as well as delays caused by the program. SNR performance issues are due to lower

throughput, as well as other unknown factors encountered when testing the device. No SNR data

was able to be obtained for the STM32F207ZG, due to time constraints and faulty hardware, but

the throughput data showed that the STM32 was a much more capable microcontroller than the

84

MSP430. Maximum throughput was still not reached, due to limitations on the SPI clock, but the

throughput of the STM32 was over twice as high as the MSP430.

The lower throughput seen on the MSP430F5528 when interfacing with the AD7980 was

to be expected. The MSP430 was unable to provide a clock matching the 55 MHz that would be

necessary to run the AD7980 at maximum throughput, 1 million samples per second (MSPS).

The maximum clock the MSP430 was able to provide for the SPI clock was 25 MHz, which will

provide less than half the throughput. Still, the maximum throughput seen with the MSP430 was

158,000 SPS, which is significantly less than half the maximum throughput. Other losses can be

found in the SPI functionality on the MSP430. With the MSP430, there is no option to transfer

sixteen bits of data in a single transfer. Instead, the data had to be transferred in two eight bit

transfers. This introduced a delay, which can be seen in Figure 39, which is roughly half a

microsecond. Finally, the largest delay was caused in writing the data. When the data is being

written to random access memory (RAM), there is about a three microsecond delay while the

data is being written to a variable, and then written to the array that is holding the values in

RAM.

This is one area in which the generic driver could be improved. There is a code delay

imposed on the conversion speed because the generic driver has the data being written to a

variable before that variable is returned through the function AD7980_Conversion, where the

data has to be written to another variable in memory. It would be better to either write to a global

variable, or pass a pointer in to the function. When the MSP430 writes the data to flash, the delay

imposed is significantly larger, about seventy microseconds. This is a testament to the amount of

code and resources that the MSP430 needs to dedicate to writing to flash, as opposed to keeping

the data in RAM. This delay could be optimized very little, and thus was a limitation directly on

85

the performance results of the AD7980, as it does not have enough RAM to hold the 32 kB of

data. In addition, these code-imposed delays were magnified by the slow system clock of the

MSP430, running at only 25 MHz. With a faster system clock, the code would execute faster,

and thus the delays would be less noticeable. The throughput of the AD7980 was much lower

than the maximum throughput of 1 MSPS, instead running at a maximum of 158,000 SPS, and

was unable to operate faster due in majority to limitation imposed by the microcontroller.

Figure 41: The waveform produced by a 1 kHz test with the MSP430, writing to RAM. This was the highest SNR result of

the MSP430 tests, falling just sort of 25 dB. The glitches in the waveform can clearly be seen throughout the waveform.

The extremely low SNRs seen throughout all the tests on the MSP430 were very

surprising. The SNR was expected to be lower than the 91 dB listed on the data sheet, but we

definitely did not expect a 75 dB difference. We had expected to see about a 10 dB drop, as the

throughput had dropped by about a factor of ten. It was soon realized that this was due to the

MSP430 having to write to flash memory after every conversion. The throughput of the AD7980

86

was 13,333 SPS instead of the expected 158,000 SPS. When the data was saved in RAM instead,

the SNR improved to almost 25 dB, but there was not an improvement to the point that we were

comfortable that this was the correct data. The waveform that was resultant of the 1 kHz test can

be seen in Figure 41. Although this waveform was significantly improved from previous tests, it

was apparent that there were glitches throughout the waveform, and that this was the source of

the low SNR. However, time limitations really prevented us from further troubleshooting. We

did come up with a hypothesis for the glitches in the waveform. The procedure of getting the

data off the microcontroller revolved around operating the microcontroller in debug mode. It was

hypothesized that operating in debug mode was causing errors in the data, as the MSP430 would

have to devote some amount of resources towards sending the debugger data.

 Although this was never further explored, some data manipulation was done on the 1

kHz data to see if a best case could be found. The data manipulation procedure was to search

through the spreadsheet of data and find all the glitches in the data. When a glitch was found, it

was replaced with the average of the data point before it, and the data point after it. In this way,

the glitches were systematically removed from the data, replaced by an approximation of the

“correct” data point. When the glitches were removed from the data, the SNR improved to 54

dB, which was a drastic improvement, but again, still was significantly off of what was expected.

Figure 42 shows the waveform sans glitches. The AD7980 is known to be working correctly, so

it is likely that the glitches seen in the data are resultant from either a bug in the program for the

MSP430, or the transferring method for the data. However, time restraints required that further

exploration into the issue be suspended.

87

Figure 42: The waveform that resulted from removing the glitches previously found in the 1 kHz MSP430, writing to

RAM. This waveform produced an SNR of about 54 dB.

The throughput on the AD7980 when interfacing with the STM32 was less than half the

maximum throughput at 400,000 SPS. This is due to the SPI clock limitation imposed by the

microcontroller architecture. The STM32F207ZG was selected because of its relatively high

maximum system clock, 120 MHz. The hope was that this system clock, which was well over the

theoretical clock needed to operate the AD7980 at maximum throughput. However, it was later

discovered that the clock controlling SPI1 (peripheral clock 1 or PCLK1), which was the only

SPI available for use on the evaluation board selected, is limited to 30 MHz. If the system clock

is 120 MHz, the PCLK1 is divided by four to get 30 MHz. Unlike the MSP430, the STM32 is

able to do full sixteen bit SPI transfers, which is best case. In addition, with the STM32 running

at system clock of 120 MHz, code inefficiencies are much less of a problem than on the

MSP430. This is because the much faster system clock is able to execute code much quicker.

The combination of the sixteen bit transfers and the faster system clock allow a throughput over

88

twice as fast as the MSP430, while only having a SPI clock speed increase of 20%. This

indicates that the STM32 is much more capable microcontroller when interfacing with the

AD7980 compared to the MSP430. However, due to the limitation on the SPI, it still is unable to

run the AD7980 at the desired speeds. Unfortunately, due to time restrictions and equipment

malfunctioning, SNR data could not be collected for the STM32F207ZG when i9nterfaced with

the AD7980. The STM32 was programmed with only two weeks left in the project. Testing

began with one week left, but could not be completed because three AD7980 boards broke

during testing. In addition,

Collecting data on the performance implications of interfacing the MSP430 to the

AD7980 was successful when taking throughput measurements, but unsuccessful for testing the

SNR. The throughput was calculated using an oscilloscope to measure the time in between

conversion starts. The maximum throughput that could be achieved with the MSP430 was found

to be 150,000 SPS. This is low in comparison to the maximum possible throughput with the

AD7980, mostly due to limitations imposed by the microcontroller, namely the 25 MHz system

clock and eight bit maximum transfer size across SPI. However, the SNR data that was collected

did not accurately reflect the AD7980’s capabilities, even when being run at a lower throughput.

In fact, even though the actual throughput was less than one tenth of the maximum throughput,

the SNR showed the data being more than one million times more inaccurate. Even when the

glitches were removed from the data, the SNR was still ten thousand times less accurate.

However, it should not be ignored that replacing the glitches provided a 29 dB jump in the SNR,

more than doubling the previous SNR. It is because of this that there is still potential when

interfacing the MSP430 with the AD7980. We hypothesized that the reason for the glitches that

caused the low SNR were due to using the debugger as a method of reading out the memory

89

contents on a PC. The idea is if the microcontroller is devoting resources to the debugger, then it

is possible that the diverted resources are causing a “glitch” to be written to memory. If we had

more time, we would have explored other data transfer options.

The Input/Output Buffer Information Specification (IBIS) model project was able to

create an IBIS model for the AD7091R ADC that was representative of the performance of the

AD7091R at typical conditions. A normal IBIS model would also need minimum and maximum

conditions, but this was beyond the proposed plan defined by Analog Devices. The AD7626

project, after some delays in the project, was deemed complete after the schematic designed was

sent to fabrication. This was due to the fabrications time exceeding the amount of time left in the

project. Finally, the microcontroller project was able to draw conclusions that the maximum

throughput would be difficult to achieve, even with high end microprocessors. If a

microprocessor that met all the specifications set out initially, and could provide a non-limited

SPI clock, it is possible that maximum throughput could be achieved. However, even with

maximum throughput, the signal-to-noise ratio seen when using SPI to interface between the

microcontrollers and the AD7980 was extremely low, and would be unacceptable for most

applications, as the signal is not being replicated correctly.

90

7 Conclusions and Future Work

The primary object of the Input/ Output Buffer Information Specification (IBIS) model

project was to develop a step-by-step procedure of how to generate an IBIS model. To that end,

we were given an Analog to Digital Converter (ADC) to model, the AD7091R. The step-by-step

procedure was created by documenting how we developed the model for the AD7091R. The

IBIS model produced served as a proof-of-concept, showing that the procedure that we

developed was valid and that it is possible for Analog Devices to produce an IBIS model in-

house.

The purpose of the Input/ Output Buffer Information Specification (IBIS) model was to

show that Analog Devices had the capability to produce an IBIS model. As such, the IBIS model

created in this project only had to contain enough data to show that it was possible to gather all

of the data necessary and was not a full IBIS model. Future work should endeavor to create a

procedure for producing a full IBIS model. This would entail determining what equipment and

procedures would be needed to find the Voltage versus Time (VT) and Current versus Voltage

(IV) characteristics of the device under its maximum and minimum performance specifications.

A simple change to the data collection process for the VT data that should be considered

during further work on this project would be to change the parameters for measuring the rising

and falling waveforms. This would entail increasing the number of data points that the

oscilloscope takes and focusing the recorded data to only the transition from high to low and

from low to high. Increasing the data points can be accomplished by changing the scale of the

horizontal axis of the oscilloscope. Focusing the recorded data to only the transitions can be

accomplished by setting the gating for saving the data the between cursors. You would then have

to potion the cursors before and after each transition. We would have implanted these conditions

91

if not for the fact that by the time we realized that we could use them there was no longer time to

do so.

Additional future work that should be considered is improvements to the

“Sweep_Measure_and_output_to_excel” Virtual Interface (VI). At present the sweep takes a

number of data points over set intervals. It is suggested that this program be altered to take data

points at areas of greatest change. This would ensure that a large number of data points are not

wasted over a region where nothing of interest is happening, leaving fewer data points for the

regions that need them. Another advancement that should be considered is using the LabView

program to control the power supply. With the power supply being controlled by the LabView

program, code could be written so that the voltage level at VDRIVE and the sweep ranges are

changed between sweeps. This means that all four sweeps needed for each configuration of the

evaluation board could be taken all at once instead of needing to run the sweep four times and

adjusting the voltage parameters between each sweep.

If the group had more time in Limerick, the net step to take would be to program the

field-programmable gate array (FPGA). This would be a simple enough task because we could

again leverage the code from the AD7960 board, changing it to work with the new AD9513

clocking solution. The process for testing the evaluation board involves using the Audio

Precision SYS-2722, which was also used for testing in the AD7980 microcontroller project. As

stated above, the reason we use this signal generator is because it is able to produce very accurate

waveforms at various frequencies and voltages. To test with the SYS-2722, it would be

controlled via a LabView program on a computer in which the input tones could be edited very

particularly. The data sheet for the AD7626 boasts a signal-to-noise-ratio (SNR) of 91B. The

first test that we would perform would be to verify that we receive this SNR performance for all

92

when the CNV signal comes from the new clocking solution centered on the AD9513. We would

then see what kind of SNR performance we would see when the CNV signal is provided from

the off board FPGA. We know that the FPGA will not be able to achieve the desired SNR

performance that the new clocking solution will be able to at the highest speeds that the AD7626

can achieve, but we are interested in the exact speed at which the SNR performance begins to

drop off when we use the FPGA to provide the CNV signal. We imagine that once Analog

Devices see successful results from these tests, the product will be prepared for marketing and

eventually released to the public.

The performance data collected from the two microcontrollers when interfaced with the

AD7980 shows that even high performance microcontrollers have difficulty running the AD7980

analog-to-digital converter at full performance. The MSP430F5528 did not have a clock that was

capable of running over 25 MHz, when at least 55 MHz was needed to achieve full performance.

In addition, the MSP430 could not transfer sixteen bits at a time, instead having to do two eight

bit transfers. These factors, combined with code inefficiencies, meant that the MSP430 was only

capable of running the AD7980 at 158,000 samples per second (SPS), when the maximum

performance would be 1 million SPS. In addition, glitches in the conversion data gathered by the

MSP430 led to very low SNR performance, about 25 dB. Removing these glitches led to a vast

increase in the SNR, bringing it up to 54 dB, and led us to believe that given more time SNR

performance could be brought closer to the target of 91 dB. The MSP430F5528 will never be

able to reach full performance because of its clock frequency and transfer limitations.

The STM32F207ZG had its own limitations as well. It has a system clock able to operate

up to 120 MHz, but the clock that controlled the only SPI that was available, SPI1, was limited

to 30 MHz. This was disappointing to find out while programming the STM32 microcontroller,

93

as it automatically ruled out the possibility of running the AD7980 from the STM32. The

STM3207ZG was able to run the AD7980 at a throughput of 400,000 SPS.

 A third microcontroller had been selected from the start, the Freescale Kinetis K60.

Programming and testing it was tabled when time was running out on the project, and it was

clear that we would not get to a third microcontroller. The K60 is an ARM based

microcontroller, and as such, is very similar to the STM32F207ZG. It has a 120 MHz system

clock, but again, the SPI clock is limited to 30 MHz. In addition, given more time, the MSP430

could be revisited, and a data transmission could be implemented so that the program could be

run outside the IAR debugger. We would likely use a UART to USB interface, using

HyperTerminal in LabView to retrieve the data from the virtual communications port. This

would be in an effort to remove the glitches in the data, as we hypothesized that the debugger

was causing these issues. With the glitches removed, hopefully we would see an SNR

representative of the throughput achieved with the MSP430.

94

References

[

1]

Mercedes Casamayor. (2004) A First Approach to IBIS Models: What They Are and How They Are Generated.

Online. [Online]. http://www.analog.com/static/imported-

files/application_notes/59359416714120559501529785432450718322963858076014419683496534930565361

26553742AN715_0.pdf

[

2]

Geoff Colvin. (2010, August) The staggering pace of technology. [Online].

http:money.cnn.com/2010/08/30/technology/transistors_technology.fortune/index.htm

[

3]

James Wang. (2012, March) Introducing The GeForce GTX 680 GPU. [Online].

http://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-680-gpu/

[

4]

Dave James. (2011, September) Intel predicts 1,200 quintillion transistors in the world by 2015. [Online].

http://www.techradar.com/news/computing-components/processors/intel-predicts-1200-quintillion-transistors-

in-the-world-by-2015-1025851

[

5]

Nation Master. [Online]. http://www.nationmaster.com/graph/peo_pop_in_201-people-population-in-2015

[

6]

Michael Kanellos. (2003, February) Moore's Law to roll on for another decade. [Online].

http://news.cnet.com/2100-1001-984051.html

[

7]

Analog Devices. It's an Analog World. [Online].

http://www.analog.com/en/content/cu_rr_its_an_analog_world/fca.html

[

8]

Susan A. Kitchens. (2006, April) First things first: Analog and Digital. [Online].

http://familyoralhistory.us/articles/view/first_things_first_analog_and_digital/

[

9]

Paul Wotel. Analog. Digital. What’s the Difference?. [Online].

http://telecom.hellodirect.com/docs/Tutorials/AnalogVsDigital.1.051501.asp

[

10]

PC.net. (2005, January) What is the difference between analog and digital technology?. [Online].

http://pc.net/helpcenter/answers/difference_between_analog_and_digital

[

11]

Analog Devices. (2009, June) "AD7980". [Online]. http://www.analog.com/static/imported-

files/data_sheets/AD7980.pdf

[

12]

iamechatronics. Digitization of Analog Quantities. [Online]. http://iamechatronics.com/notes/general-

engineering/279-digitization-of-analog-quantities

[

13]

James J. Colotti. (1990, November) Dynamic Evaluation of High Speed, High Resolution D/A Converters.

[Online]. http://www.ieee.li/pdf/essay/dynamic_evaluation_dac.pdf

[

14]

J.W. Bruce, "Nyquist-rate digital-to-analog converter architectures," Potentials, IEEE, vol. 20, no. 3, pp. 24-28,

Aug/Sept 2001.

[

15]

Jayantha Katupitiya and Kim Bentley, "Analog-to-Digital Conversion," in Interfacing with C++.: Springer

Berlin Heidelberg, 2006, pp. 331-362.

[

16]

Le Bin, T.W. Rondeau, J.H. Reed, and C.W. Bostian, "Analog-to-digital converters," Signal Processing

http://www.analog.com/static/imported-files/application_notes/5935941671412055950152978543245071832296385807601441968349653493056536126553742AN715_0.pdf
http://www.analog.com/static/imported-files/application_notes/5935941671412055950152978543245071832296385807601441968349653493056536126553742AN715_0.pdf
http://www.analog.com/static/imported-files/application_notes/5935941671412055950152978543245071832296385807601441968349653493056536126553742AN715_0.pdf
http://money.cnn.com/2010/08/30/technology/transistors_technology.fortune/index.htm
http://www.geforce.com/whats-new/articles/introducing-the-geforce-gtx-680-gpu/
http://www.techradar.com/news/computing-components/processors/intel-predicts-1200-quintillion-transistors-in-the-world-by-2015-1025851
http://www.techradar.com/news/computing-components/processors/intel-predicts-1200-quintillion-transistors-in-the-world-by-2015-1025851
http://www.nationmaster.com/graph/peo_pop_in_201-people-population-in-2015
http://news.cnet.com/2100-1001-984051.html
http://www.analog.com/en/content/cu_rr_its_an_analog_world/fca.html
http://familyoralhistory.us/articles/view/first_things_first_analog_and_digital/
http://telecom.hellodirect.com/docs/Tutorials/AnalogVsDigital.1.051501.asp
http://pc.net/helpcenter/answers/difference_between_analog_and_digital
http://www.analog.com/static/imported-files/data_sheets/AD7980.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7980.pdf
http://iamechatronics.com/notes/general-engineering/279-digitization-of-analog-quantities
http://iamechatronics.com/notes/general-engineering/279-digitization-of-analog-quantities
http://www.ieee.li/pdf/essay/dynamic_evaluation_dac.pdf

95

Magazine, IEEE, vol. 22, no. 6, pp. 69-77, November 2005.

[

17]

Stephen Peters. (2005, September) IBIS Modeling Cookbook For IBIS Version 4.0. Online. [Online].

www.eda.org/ibis/cookbook/cookbook-v4.pdf

[

18]

John H. Davies, "Serial Peripheral Interface," in MSP430 Microcontroller Basics.: Newnes, 2008, ch. 10.2, pp.

497-504.

[

19]

Chris Walsh and Saeid Nooshabadi, ""Everyday microcontrollers."," Electronics News, p. 14, September 2008.

[

20]

Texas Instruments. (2012) "MSP430 Ultra-Low-Power Microcontrollers. [Online].

http://www.ti.com/lit/sg/slab034v/slab034v.pdf

[

21]

STMicroelectronics. (2012) "ovprod_l2_stm32_map.jpg". in STM32 - 32-bit ARM Cortex MCUs Overview.

[Online]. http://www.st.com/internet/mcu/class/1734.jsp

[

22]

Analog Devices. (2012, Aug.) 1 MSPS, Ultralow Power, 12-Bit ADC in 10-Lead LFCSP and MSOP. Online.

[Online]. http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7091r/products/product.html

[

23]

National Instruments Corporation. (2012) National Instruments VISA. Online. [Online].

http://www.ni.com/visa/

[

24]

Analog Devices. (2012, May) Evaluation Board User Guide: UG-340. [Online].

http://www.analog.com/static/imported-files/user_guides/UG-340.pdf

[

25]

Analog Devices. (2012, March) "PMOD_AD4_SIGNALS.png". in AD7980 - MICROCONTORLLER NO-OS

DRIVER. [Online]. http://wiki.analog.com/resources/tools-software/uc-drivers/renesas/ad7980

[

26]

Freescale. (2012) "KINETIS_PORTFOLIO.jpg". in Kinetis K Series Portfolio. [Online].

http://www.freescale.com/webapp/sps/site/overview.jsp?code=KINETIS_K_SERIES

[

27]

Keithley Instruments, Inc. (2002, May) Keithley Model 2400 Series Source Meter User's Manual. Online.

[Online]. mm.ece.ubc.ca/mediawiki/images/2/26/K2400Manual.pdf

[

28]

Alex Doboli and Edward H. Currie, "ΔΣ Analog-to-Digital Converters," in Introduction to Mixed-Signal,

Embedded Design. New York: Springer, 2011, pp. 373 - 411.

[

29]

Gabriel Torres. (2006, April) How Analog-to-Digital Converter (ADC) Works. [Online].

http://www.hardwaresecrets.com/article/How-Analog-to-Digital-Converter-ADC-Works/317/2

[

30]

Dietrich Schlichthärle, "Oversampling and Noise Shaping," in Digital Filters.: Springer Berlin Heidelberg,

2011, pp. 469-491.

[

31]

W. G. Simon. (2011) File:Transistor Count and Moore's Law - 2011.svg.

[

32]

Illinois.edu. Introduction to Digital Audio. [Online].

[

33]

Bruno A. Olshausen. (2000) Aliasing. [Online].

www.eda.org/ibis/cookbook/cookbook-v4.pdf
http://www.ti.com/lit/sg/slab034v/slab034v.pdf
http://www.st.com/internet/mcu/class/1734.jsp
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7091r/products/product.html
http://www.ni.com/visa/
http://www.analog.com/static/imported-files/user_guides/UG-340.pdf
http://wiki.analog.com/resources/tools-software/uc-drivers/renesas/ad7980
http://www.freescale.com/webapp/sps/site/overview.jsp?code=KINETIS_K_SERIES
mm.ece.ubc.ca/mediawiki/images/2/26/K2400Manual.pdf
http://www.hardwaresecrets.com/article/How-Analog-to-Digital-Converter-ADC-Works/317/2

96

Appendix A – LabView Code

IBIS Code

Figure 43: The LabView code for the Keithley Sweep_Measure_and_output_to_excel Virtual Interface (VI). The settings

entered into the VI are used by this program to have the Keithley run the desired voltage sweep.

97

Figure 44: The first part of the LabView code for the CSV to IBS VI. This code created the header of the IBIS model that

summarizes the basic information of the device being modeled.

98

Figure 45: The second part of the LabView code for the CSV to IBS VI. This code took the data stored in a .csv file,

transferred it to the .ibs file and appending it to the data already in the .ibs file. It also identifies the new data. This code

must be repeated for each sweep being input into the IBIS Model.

99

Appendix B – Microprocessor Project Code

Generic ADC Driver

AD7980.h

/***//**
 * @file AD7980.h
 * @brief Header file of AD7980 Driver.
 * @author Bancisor Mihai
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/
#ifndef __AD7980_H__
#define __AD7980_H__

/**/
/* Functions Prototypes */
/**/

/* Initializes the communication peripheral. */

100

unsigned char AD7980_Init(void);

/* Initiates conversion and reads data. */
unsigned short AD7980_Conversion(void);

#endif // _AD7980_H_

AD7980.c

/***//**
 * @file AD7980.c
 * @brief Implementation of 7980 Driver.
 * @author Bancisor Mihai
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

/**/
/* Include Files */
/**/
#include "AD7980.h" // AD7980 definitions.

101

#include "Communication.h" // Communication definitions.

/***//**
 * @brief Initializes the communication peripheral.
 *
 * @return status - Initialization status.
 * Example: 0 - Initialization failed;
 * 1 - Initialization succeeded.
***/
unsigned char AD7980_Init(void)
{
 unsigned char status = 0;

 status = SPI_Init(0, 1000000, 1, 1);

 return(status);
}

/***//**
 * @brief Initiates conversion and reads data.
 *
 * @return receivedData - Data read from the ADC.
***/
unsigned short AD7980_Conversion(void)
{
 unsigned short receivedData = 0;
 unsigned short txData[1] = {0};
 unsigned short rxData[1] = {0};

 txData[0] = 0xFFFE;
 SPI_Write(txData);
 AD7980_CS_LOW;
 SPI_Read(rxData);
 AD7980_CS_HIGH;
 receivedData = rxData[0];

 return(receivedData);
}

Communications.h

/***//**
 * @file Communication.h
 * @brief Header file of Communication Driver for RENESAS RX62N Processor.
 * @author DBogdan (dragos.bogdan@analog.com)
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright

102

 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/
#ifndef _COMMUNICATION_H_
#define _COMMUNICATION_H_

/**/
/* GPIO Definitions */
/**/
#define AD7980_CS_PIN // Add your code here.
#define AD7980_CS_PIN_OUT // Add your code here.
#define AD7980_CS_LOW // Add your code here.
#define AD7980_CS_HIGH // Add your code here.

/**/
/* Functions Prototypes */
/**/
/* Initializes the SPI communication peripheral. */
unsigned char SPI_Init(unsigned char lsbFirst,
 unsigned long clockFreq,
 unsigned char clockPol,
 unsigned char clockPha);
/* Writes data to SPI. */
void SPI_Write(unsigned short* data);
/* Reads data from SPI. */
void SPI_Read(unsigned short* data);

#endif // _COMMUNICATION_H_

103

Communications.c

/***//**
 * @file Communication.c
 * @brief Implementation of Communication Driver for RENESAS RX62N
 * Processor.
 * @author DBogdan (dragos.bogdan@analog.com)
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

/**/
/* Include Files */
/**/
#include "Communication.h"

/***//**
 * @brief Initializes the SPI communication peripheral.
 *
 * @param lsbFirst - Transfer format (0 or 1).
 * Example: 0x0 - MSB first.
 * 0x1 - LSB first.
 * @param clockFreq - SPI clock frequency (Hz).
 * Example: 1000 - SPI clock frequency is 1 kHz.

104

 * @param clockPol - SPI clock polarity (0 or 1).
 * Example: 0x0 - idle state for SPI clock is low.
 * 0x1 - idle state for SPI clock is high.
 * @param clockPha - SPI clock phase (0 or 1).
 * Example: 0x0 - data is latched on the leading edge of SPI
 * clock and data changes on trailing edge.
 * 0x1 - data is latched on the trailing edge of SPI
 * clock and data changes on the leading edge.
 *
 * @return 0 - Initialization failed, 1 - Initialization succeeded.
***/
unsigned char SPI_Init(unsigned char lsbFirst,
 unsigned long clockFreq,
 unsigned char clockPol,
 unsigned char clockPha)
{
 // Add your code here.

 return(1);
}

/***//**
 * @brief Writes data to SPI.
 *
 * @param data - Write data buffer.
 *
 * @return None.
***/
void SPI_Write(unsigned short* data)
{
 // Add your code here.
}

/***//**
 * @brief Reads data from SPI.
 *
 * @param data - As an output parameter, data represents the read buffer.
 *
 * @return None.
***/
void SPI_Read(unsigned short* data)
{
 // Add your code here.
}

MSP430 Code

Main

/*
Written by: Gabirel McCormick
Company: Analog Devices
Date: August-September 2012
*/

105

/************* Include Headers ***********************/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "msp430.h"
#include "ad7980.h"
#include "communication.h"

#define FLASH_SIZE 256 // 512 bytes (256 short) per flash sector
#define FLASH_SECTORS 63 // number of flash sectors

/************* FUNCTION DECLARATIONS ****************/
void init_sys(void); //initializes msp430
void SetVcoreUp (unsigned int level); //set Vcore
void Init_Ports (void); //initialize all ports to output
void erase_Seg(void); //erases bank A of flash memory
void Erase_Flash_Segments(void);
void Flash_Erase(short* pStartAddr);

/********** Global variable declarations ************/
 unsigned short* data_ptr = (unsigned short*) 0x7000;
 unsigned short tempConv[2272] = {0};

/********************* MAIN FUNCTION *********************/
int main(void)
{
 unsigned int i = 0;
 //unsigned short tempConv;
 // Stop watchdog timer to prevent time out reset
 WDTCTL = WDTPW + WDTHOLD;

 Init_Ports();

 init_sys(); // initialize msp430

 //erase bank A of flash memory
 //Erase_Flash_Segments();

 AD7980_Init(); // initialize AD7980

 //Aquire data
 //while(1)
 for(i=0; i < 16000; i++)
 //for(i=0; i < 2272; i++)
 {
 // convert
 tempConv[i] = AD7980_Conversion();

 /*
 // or write conversion to flash
 FCTL3 = FWKEY; // Clear Lock bit
 FCTL1 = FWKEY+WRT; // Enable word write
 *data_ptr = AD7980_Conversion(); // Write word to Flash
 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY+LOCK; // Set LOCK bit
 data_ptr = data_ptr + 1; // increment

106

 */
 }

 while(1);

}
/********************* END OF MAIN ************************/

/******************** initSys() ***************************/
/** This function initializes the msp430 by stopping the watchdog
*** timer, and then setting the MCLK and SMCLK to 25MHz, set up
*** ports for I/O

*** Inputs: None
*** Returns: None
***/
void init_sys(void)
{
 // set P3.4, 3.3 and P2.7 to use UA0SOMI, UA0SIMO and UCA0CLK, respectively
 P3SEL |= (BIT4 + BIT3);
 P2SEL |= BIT7;

 //set P3.0 for general output
 P3SEL &= ~BIT0;
 P3DIR |= BIT0;

 // Increase Vcore setting to level3 to support fsystem=25MHz
 // NOTE: Change core voltage one level at a time..
 SetVcoreUp (0x01);
 SetVcoreUp (0x02);
 SetVcoreUp (0x03);

 UCSCTL3 = SELREF_2; // Set DCO FLL reference = REFO
 UCSCTL4 |= SELA_2; // Set ACLK = REFO

 __bis_SR_register(SCG0); // Disable the FLL control loop
 UCSCTL0 = 0x0000; // Set lowest possible DCOx, MODx
 UCSCTL1 = DCORSEL_7; // Select DCO range 50MHz operation
 UCSCTL2 = FLLD_1 + 762; // Set DCO Multiplier for 25MHz
 // (N + 1) * FLLRef = Fdco
 // (762 + 1) * 32768 = 25MHz
 // Set FLL Div = fDCOCLK/2
 __bic_SR_register(SCG0); // Enable the FLL control loop

 // Loop until XT1,XT2 & DCO stabilizes - In this case only DCO has to stabilize
 do
 {
 UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG);
 // Clear XT2,XT1,DCO fault flags
 SFRIFG1 &= ~OFIFG; // Clear fault flags
 }while (SFRIFG1 & OFIFG); // Test oscillator fault flag

}

/********* SetVcoreUp(unsigned int level) ********************/
/** This function increases or decreases the Vcore. NOTE: VOCRE
*** LEVEL SHOULD NEVER BE CHANGED IN EITHER DIRECTION BY MORE

107

*** THAN ONE INCREMENT

*** Inputs: Level - the vcore level to change to
*** Returns: None
***/
void SetVcoreUp (unsigned int level)
{
 // Open PMM registers for write
 PMMCTL0_H = PMMPW_H;
 // Set SVS/SVM high side new level
 SVSMHCTL = SVSHE + SVSHRVL0 * level + SVMHE + SVSMHRRL0 * level;
 // Set SVM low side to new level
 SVSMLCTL = SVSLE + SVMLE + SVSMLRRL0 * level;
 // Wait till SVM is settled
 while ((PMMIFG & SVSMLDLYIFG) == 0);
 // Clear already set flags
 PMMIFG &= ~(SVMLVLRIFG + SVMLIFG);
 // Set VCore to new level
 PMMCTL0_L = PMMCOREV0 * level;
 // Wait till new level reached
 if ((PMMIFG & SVMLIFG))
 while ((PMMIFG & SVMLVLRIFG) == 0);
 // Set SVS/SVM low side to new level
 SVSMLCTL = SVSLE + SVSLRVL0 * level + SVMLE + SVSMLRRL0 * level;
 // Lock PMM registers for write access
 PMMCTL0_H = 0x00;
}

/*
 * ======== Init_Ports ========
 */
void Init_Ports (void)
{
 //Initialization of ports (all unused pins as outputs with low-level
 P1OUT = 0x00;
 P1DIR = 0xFF;
 P2OUT = 0x00;
 P2DIR = 0xFF;
 P3OUT = 0x00;
 P3DIR = 0xFF;
 P4OUT = 0x00;
 P4DIR = 0xFF;
 P5OUT = 0x00;
 P5DIR = 0xFF;
 P6OUT = 0x00;
 P6DIR = 0xFF;
 #if defined (__MSP430F563x_F663x)
 P9OUT = 0x00;
 P9DIR = 0xFF;
 #endif
}

/************** Erase_Flash_Segments() *********************/
/** This function erases FLASH_SEECTORS segments with size of
*** FALSH_SIZE

*** Inputs: None
*** Returns: None

108

***/
void Erase_Flash_Segments(void)
{
 int i;

 for(i = 0; i < FLASH_SECTORS; i++)
 Flash_Erase(data_ptr + (short)(i * FLASH_SIZE));
}

/******************* Flash_Erase() ************************/
/** This function erases a single segment of flash memory, of
*** which pStartAddr is the address of start of the segement

*** Inputs: pStartAddr - A pointer to the start of the flash segment
*** Returns: None
***/
void Flash_Erase(short* pStartAddr)
{
 FCTL3 = FWKEY; //clear lock bit
 FCTL1 = FWKEY + ERASE; //set erase bit
 *pStartAddr = 0; //dummy write
 FCTL1 = FWKEY; //clear erase bit
 FCTL3 = FWKEY + LOCK; //set lock bit
}

AD7980.c

/***//**
 * @file AD7980.c
 * @brief Implementation of 7980 Driver.
 * @author Bancisor Mihai
 * Modified for use with the MSP430F5528 by Gabriel McCormick
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *

109

 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

/**/
/* Include Files */
/**/
#include "AD7980.h" // AD7980 definitions.
#include "Communication.h" // Communication definitions.
#include "msp430f5528.h"

/***//**
 * @brief Initializes the communication peripheral.
 *
 * @return status - Initialization status.
 * Example: 0 - Initialization failed;
 * 1 - Initialization succeeded.
***/
unsigned char AD7980_Init(void)
{
 unsigned char status = 0;

 status = SPI_Init(0, 0, 1);

 return(status);
}

/***//**
 * @brief Initiates conversion and reads data.
 *
 * @return receivedData - Data read from the ADC.
***/
unsigned short AD7980_Conversion(void)
{
 unsigned short receivedData = 0;
 unsigned short txData[1] = {0};
 unsigned short rxData[1] = {0};

 txData[0] = 0x7F;

 SPI_Write(txData);
 // delay 3 cycles before setting the CS low
 // This is based on a 25MHz clock, and should delay for 400 ns
 // this should bring the total time from setting the transfer buffer
 // to the CS being pulled low to a minimum of 720ns, enough time
 // for the conversion to complete.
 __delay_cycles(3);

110

 P3OUT &= 0xFE; // AD7980_CS_LOW
 SPI_Read(rxData);

 P3OUT |= 0x01; //AD7980_CS_HIGH;
 receivedData = rxData[0];

 return(receivedData);
}

Communication.c

/***//**
 * @file Communication.c
 * @brief Implementation of Communication Driver for RENESAS RX62N
 * Processor.
 * @author DBogdan (dragos.bogdan@analog.com)
 * Modified for use with the MSP4305528 by Gabriel McCormick
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

111

/**/
/* Include Files */
/**/
#include "Communication.h"
#include "msp430f5528.h"

/***//**
 * @brief Initializes the SPI communication peripheral.
 *
 * @param lsbFirst - Transfer format (0 or 1).
 * Example: 0x0 - MSB first.
 * 0x1 - LSB first.
 * @param clockFreq - SPI clock frequency (Hz).
 * Example: 1000 - SPI clock frequency is 1 kHz.
 * @param clockPol - SPI clock polarity (0 or 1).
 * Example: 0x0 - idle state for SPI clock is low.
 * 0x1 - idle state for SPI clock is high.
 * @param clockPha - SPI clock phase (0 or 1).
 * Example: 0x0 - data is latched on the leading edge of SPI
 * clock and data changes on trailing edge.
 * 0x1 - data is latched on the trailing edge of SPI
 * clock and data changes on the leading edge.
 *
 * @return 0 - Initialization failed, 1 - Initialization succeeded.
***/
unsigned char SPI_Init(unsigned char lsbFirst,
 unsigned char clockPol,
 unsigned char clockPha)
{
 UCA0CTL1 |= UCSWRST; // **Put state machine in reset**

 UCA0CTL0 |= UCMST+UCSYNC+UCMSB; // 3-pin, 8-bit SPI master
 // data captured on clock's falling edge
 // MSB first
 // Clock polarity low

 UCA0CTL1 |= UCSSEL_2; // select SMCLK for SPI clock
 UCA0BR0 = 0x01; // /1
 UCA0BR1 = 0; //
 UCA0MCTL = 0; // No modulation
 P3OUT |= BIT0; // set AD7980 CS HIGH (inactive)
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
 UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt

 return(1);
}

/***//**
 * @brief Writes data to SPI.
 *
 * @param data - Write data buffer.
 *
 * @return None.
***/
void SPI_Write(unsigned short* data)
{
 unsigned short txData[2] = {0,0};

112

 txData[0] = data[0]; // initiate byte

 // put initiate byte in tranfer buffer
 UCA0TXBUF = txData[0];
 while (!(UCA0IFG&UCTXIFG)); // wait for transfer to finish
}

/***//**
 * @brief Reads data from SPI.
 *
 * @param data - As an output parameter, data represents the read buffer.
 *
 * @return None.
***/
void SPI_Read(unsigned short* data)
{
 unsigned short txData[2] = {0,0};

 txData[0] = 0xFF; // first dummy byte
 txData[1] = 0xFF; // second dummy byte

 // set the transfer buffer to the first byte
 UCA0TXBUF = txData[0];
 while (!(UCA0IFG&UCTXIFG)); // wait for transfer
 // might be able to reverse the next two lines to speed up
 // read out most significant byte
 data[0] = UCA0RXBUF;

 // set the transfer buffer to the second byte
 UCA0TXBUF = txData[1];
 while (!(UCA0IFG&UCTXIFG)); // wait for transfer

 // shift over first byte and OR with second byte
 data[0] = (data[0] << 8) | UCA0RXBUF;
}

STMicroelectronics Code

Main

/*
Written by: Gabirel McCormick
Company: Analog Devices
Date: August-September 2012
*/

/************* Include Headers ***********************/
#include "includes.h"

/************* FUNCTION DECLARATIONS ****************/
void TimingDelay_Decrement(void);
void COM1_Init(void);
void COM1_Transfer(uint16_t data);

113

/********** Global variable declarations ************/
static volatile Int32U TimingDelay;
/*variable for clitical section entry control*/
Int32U CriticalSecCntr;
uint16_t tempConv[16000] = {0};

/**************** MAIN FUNCTION *********************/
int main()
{
 unsigned int i = 0;

 AD7980_Init();

 //while(1)
 for(i=0; i < 16000; i++)
 {
 // convert
 tempConv[i] = AD7980_Conversion();
 }

 COM1_Init(); // initialize COM1 port

 COM1_Transfer(0x5547); // start

 for(i=0; i < 16000; i++)
 COM1_Transfer(tempConv[i]); // transfer conversion data

 COM1_Transfer(0x4755); // end

 while(1);

}
/********************* END OF MAIN ************************/

/******************** COM1_Init() ***************************/
/** This function initializes the COM1 port to use USART
*** Baud Rate: 9600
*** Word Length: 8-bit
*** 1 Stop Bit
*** No parity
*** Transmit and Receive
*** No Hardware Flow Control

*** Inputs: None
*** Returns: None
***/
void COM1_Init(void)
{
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);

 USART_InitTypeDef USART_InitStructure;

 USART_InitStructure.USART_BaudRate = 9600;
 USART_InitStructure.USART_WordLength = USART_WordLength_8b;
 USART_InitStructure.USART_StopBits = USART_StopBits_1;
 USART_InitStructure.USART_Parity = USART_Parity_No;

114

 USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx;
 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;

 STM_EVAL_COMInit(COM1, &USART_InitStructure);

}

/************* COM1_Transfer(uint16_t data) ****************/
/** This function transfers 16-bits of data over USART6 using
*** two 8-bit data transfers. The upper byte is transmitted first,
*** followed by the lower byte.

*** Inputs: data - the 16 bits of data to be transmitted
*** Returns: None
***/
void COM1_Transfer(uint16_t data)
{
 uint8_t UpperByte;
 uint8_t LowerByte;

 UpperByte = (data >> 8);
 LowerByte = (data & (0x00FF));

 USART_SendData(USART6, UpperByte);
 while(USART_GetFlagStatus(USART6, USART_FLAG_TXE) == RESET);

 USART_SendData(USART6, LowerByte);
 while(USART_GetFlagStatus(USART6, USART_FLAG_TXE) == RESET);
}

/**
 * @brief Decrements the TimingDelay variable.
 * @param None
 * @retval None
 */
void TimingDelay_Decrement(void)
{
 if (TimingDelay != 0x00)
 {
 TimingDelay--;
 }
}

AD7980.c

/***//**
 * @file AD7980.c
 * @brief Implementation of 7980 Driver.
 * @author Bancisor Mihai
 * Modified for use with the STM32F207ZG by Gabriel McCormick
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without

115

 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

/**/
/* Include Files */
/**/
#include "AD7980.h" // AD7980 definitions.
#include "Communication.h" // Communication definitions.
#include "iar_stm32f207zg_sk.h"

/***//**
 * @brief Initializes the communication peripheral.
 *
 * @return status - Initialization status.
 * Example: 0 - Initialization failed;
 * 1 - Initialization succeeded.
***/
unsigned char AD7980_Init(void)
{
 unsigned char status = 0;
 RCC_PCLK1Config(RCC_HCLK_Div1);
 SPI_Setup(0, 0, 0, 1);

 return(status);
}

/***//**
 * @brief Initiates conversion and reads data.
 *

116

 * @return receivedData - Data read from the ADC.
***/
unsigned short AD7980_Conversion(void)
{
 unsigned short receivedData = 0;
 unsigned short rxData[1] = {0x0FFF};
 unsigned short txData[1] = {0x0FFF};

 SPI_Write(txData);
 GPIO_ResetBits(GPIOA, GPIO_Pin_4); //AD7980_CS_LOW;
 SPI_Read(rxData);
 GPIO_SetBits(GPIOA, GPIO_Pin_4); // AD7980_CS_HIGH;
 rxData[0] = receivedData;
 return(receivedData);
}

Communication.c

/***//**
 * @file Communication.c
 * @brief Implementation of Communication Driver for RENESAS RX62N
 * Processor.
 * @author DBogdan (dragos.bogdan@analog.com)
 * Modified for use with the STM32F207ZG by Gabriel McCormick
**
 * Copyright 2012(c) Analog Devices, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * - Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 * - Neither the name of Analog Devices, Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * - The use of this software may or may not infringe the patent rights
 * of one or more patent holders. This license does not release you
 * from the requirement that you obtain separate licenses from these
 * patent holders to use this software.
 * - Use of the software either in source or binary form, must be run
 * on or directly connected to an Analog Devices Inc. component.
 *
 * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT,
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

117

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
**
 * SVN Revision: 437
***/

/**/
/* Include Files */
/**/
#include "Communication.h"
#include "iar_stm32f207zg_sk.h"

/***//**
 * @brief Initializes the SPI communication peripheral.
 *
 * @param lsbFirst - Transfer format (0 or 1).
 * Example: 0x0 - MSB first.
 * 0x1 - LSB first.
 * @param clockFreq - SPI clock frequency (Hz).
 * Example: 1000 - SPI clock frequency is 1 kHz.
 * @param clockPol - SPI clock polarity (0 or 1).
 * Example: 0x0 - idle state for SPI clock is low.
 * 0x1 - idle state for SPI clock is high.
 * @param clockPha - SPI clock phase (0 or 1).
 * Example: 0x0 - data is latched on the leading edge of SPI
 * clock and data changes on trailing edge.
 * 0x1 - data is latched on the trailing edge of SPI
 * clock and data changes on the leading edge.
 *
 * @return 0 - Initialization failed, 1 - Initialization succeeded.
***/
unsigned char SPI_Setup (unsigned char lsbFirst,
 unsigned long clockFreq,
 unsigned char clockPol,
 unsigned char clockPha)
{
 GPIO_InitTypeDef SPI_GPIOA_config;
 GPIO_InitTypeDef SPI_GPIOB_config;
 GPIO_InitTypeDef SPI_GPIOA6_config;
 GPIO_InitTypeDef IO_config;
 SPI_InitTypeDef SPI_InitStructure;

 SPI_GPIOA_config.GPIO_Pin = GPIO_Pin_5; // GPIOA Pins 5
 SPI_GPIOA_config.GPIO_Mode = GPIO_Mode_AF; // Seelct fpor alternate
function
 SPI_GPIOA_config.GPIO_OType = GPIO_OType_PP; // pull up/pull down
 SPI_GPIOA_config.GPIO_PuPd = GPIO_PuPd_DOWN; // no pull up/pull down

 SPI_GPIOB_config.GPIO_Pin = GPIO_Pin_5; // GPIOB Pin 5
 SPI_GPIOB_config.GPIO_Mode = GPIO_Mode_AF; // select for alternate
function
 SPI_GPIOB_config.GPIO_OType = GPIO_OType_OD; // pull up/pull down

 IO_config.GPIO_Pin = GPIO_Pin_4; // GPIOA Pin 4
 IO_config.GPIO_Mode = GPIO_Mode_OUT; // Select for ouput
 IO_config.GPIO_OType = GPIO_OType_PP; // pull up/pull down
 IO_config.GPIO_PuPd = GPIO_PuPd_DOWN; // no pull up or pull down

118

 SPI_GPIOA6_config.GPIO_Pin = GPIO_Pin_6; // GPIOA Pins 6
 SPI_GPIOA6_config.GPIO_Mode = GPIO_Mode_AF; // Seelct fpor alternate
function
 SPI_GPIOA6_config.GPIO_OType = GPIO_OType_PP; // pull up/pull down
 SPI_GPIOA6_config.GPIO_PuPd = GPIO_PuPd_DOWN; // no pull up/pull down

 SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; // full duplex
trnsfer
 SPI_InitStructure.SPI_Mode = SPI_Mode_Master; // select master
mode
 SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; // 16-bit
transfer size
 SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; // clock polarity
is low
 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; // sample data on
the second edge
 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; // software NSS
(PA4)
 SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; // divide by
two.... i think?
 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; // transfer MSB
first
 SPI_InitStructure.SPI_CRCPolynomial = 7; // CRC polynomial
not used

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);

 GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
 GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);
 GPIO_PinAFConfig(GPIOB, GPIO_PinSource5, GPIO_AF_SPI1);

 GPIO_Init(GPIOA, &SPI_GPIOA_config);
 GPIO_Init(GPIOA, &SPI_GPIOA6_config);
 GPIO_Init(GPIOA, &IO_config);
 GPIO_Init(GPIOB, &SPI_GPIOB_config);

 SPI_Init(SPI1, &SPI_InitStructure);
 SPI_Cmd(SPI1, ENABLE);

 return(1);
}

/***//**
 * @brief Writes data to SPI.
 *
 * @param data - Write data buffer.
 *
 * @return None.
***/
void SPI_Write(unsigned short* data)
{
 unsigned short txData = data[0];

 SPI_I2S_SendData(SPI1, txData);
 /* Wait for SPI1 TX buffer empty */
 while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);

119

 SPI_I2S_ReceiveData(SPI1);
 return;
}

/***//**
 * @brief Reads data from SPI.
 *
 * @param data - As an output parameter, data represents the read buffer.
 *
 * @return None.
***/
void SPI_Read(unsigned short* data)
{
 unsigned short txData = 0xFFFF;

 //send dummy write
 SPI_I2S_SendData(SPI1, txData);
 /* Wait for SPI1 TX buffer empty */
 while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
 //read data
 data[0] = SPI_I2S_ReceiveData(SPI1);

 return;
}

Appendix C – IBIS Model

[IBIS Ver] 3.2

[File Name] ad7091rsdz.ibs

[File Rev]

[Source] Measured and Created by Analog Devices

[Date]

[Component] AD7091RSDz

[Manufacturer] Analog Devices

|

[Package]

|

|10 Lead MSOP

|

|Variable Typ

R_pkg 41.75m

L_pkg 0.9957nH

C_pkg 0.1886pF

|

|

[Pin] signal_name model_name R_pin L_pin

C_pin

1 VDD POWER

2 REFOUT term

3 AIN term

4 REGCAP term

5 GND GND

6 *CONVST input 41.75

7 *CS input 41.75m

8 SCLK input 41.75m

9 SDO sdo 41.75m

10 VDRIVE POWER

|

[Model Selector] input

in_1.8v digital ctrl input,vdrive=1.8v

in_2.5v digital ctrl input,vdrive=2.5v

in_3.3v digital ctrl input,vdrive=3.3v

in_5.0v digital ctrl input,vdrive=5.0v

|

[Model Selector] sdo

sdo_1.8v digital 3-state output,vdrive=1.8v

sdo_2.5v digital 3-state output,vdrive=2.5v

sdo_3.3v digital 3-state output,vdrive=3.3v

sdo_5.0v digital 3-state output,vdrive=5.0v

|

[Model] in_1.8V

Model_type Input

Vinl = 0.54

Vinh = 1.26

C_comp = 2.4pF

|

| variable typ

[Voltage Range] 1.8v

[Power Clamp Reference] 1.8v

[GND Clamp Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

|

-1.800000 -0.412173

2

-1.087309 -0.099999

-1.035578 -0.077339

-0.980950 -0.060525

-0.926672 -0.044462

-0.871713 -0.029360

-0.817102 -0.016842

-0.762703 -0.008326

-0.708350 -0.004291

-0.653711 -0.002233

-0.599501 -0.001018

-0.544992 -0.000341

-0.490517 -0.000080

-0.436116 -0.000014

-0.381550 -0.000002

-0.327252 -0.000000

-0.271996 -0.000000

-0.217752 -0.000000

-0.163182 0.000000

-0.108909 0.000000

-0.054336 0.000000

-0.000044 0.000000

0.054334 0.000000

0.108923 0.000000

0.163218 0.000000

0.217802 0.000000

0.272053 0.000000

0.327017 0.000000

0.381607 0.000000

0.435881 0.000000

0.490469 0.000000

0.544723 0.000000

0.599325 0.000000

0.653513 0.000000

0.708126 0.000000

0.762403 0.000000

0.816981 0.000000

0.871244 0.000000

0.926523 0.000000

0.980786 0.000000

1.035385 0.000000

1.089657 0.000000

1.144239 0.000000

1.198499 0.000000

1.253097 0.000000

1.307382 0.000000

1.362134 0.000000

1.416506 0.000000

1.471238 0.000000

1.526318 0.000000

1.580701 0.000000

1.635408 0.000000

1.689828 0.000000

1.744550 0.000000

1.798940 0.000000

|

[Power Clamp]

|

1.800000 0.000000

-0.053681 0.000000

-0.108404 0.000000

-0.162802 0.000000

-0.217443 0.000000

-0.271847 0.000000

-0.326919 0.000000

-0.381645 0.000002

-0.436029 0.000012

-0.490855 0.000062

-0.545166 0.000204

-0.599957 0.000488

-0.654422 0.000937

-0.708999 0.001599

-0.763406 0.002774

-0.818168 0.005537

-0.872498 0.010885

-0.927798 0.018474

-0.982094 0.024881

-1.800000 0.121385

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

|

[Model] in_2.5V

Model_type Input

Vinl = 0.75

Vinh = 1.75

C_comp = 2.4pF

|

| variable typ

[Voltage Range] 2.5v

[Power Clamp Reference] 2.5v

[GND Clamp Reference] 0.00v

[Temperature Range] 25

||

[GND Clamp]

|

-2.500000 -0.687080

-1.086757 -0.099999

-1.059582 -0.088710

-0.983968 -0.065623

-0.908034 -0.042771

-0.832781 -0.022659

-0.756725 -0.008681

-0.681377 -0.003397

-0.605515 -0.001238

-0.530001 -0.000277

-0.454112 -0.000031

-0.378561 -0.000002

3

-0.302621 -0.000000

-0.227067 -0.000000

-0.151201 0.000000

-0.075985 0.000000

0.000157 0.000000

0.076015 0.000000

0.151269 0.000000

0.227160 0.000000

0.302720 0.000000

0.378636 0.000000

0.453864 0.000000

0.529768 0.000000

0.605347 0.000000

0.681198 0.000000

0.756433 0.000000

0.832333 0.000000

0.907892 0.000000

0.983799 0.000000

1.059377 0.000000

1.135274 0.000000

1.210511 0.000000

1.286407 0.000000

1.362155 0.000000

1.438246 0.000000

1.513655 0.000000

1.589731 0.000000

1.665484 0.000000

1.741568 0.000000

1.817320 0.000000

1.893397 0.000000

1.968812 0.000000

2.044841 0.000000

2.120594 0.000000

2.196666 0.000000

2.272069 0.000000

2.348161 0.000000

2.423910 0.000000

2.499985 0.000000

|

[Power Clamp]

|

2.500000 0.000000 0.000000 0.000000 0.000000

-0.076065 0.000000 0.000000 0.000000 0.000000

-0.151475 0.000000 0.000000 0.000000 0.000000

-0.227794 0.000000 0.000000 0.000000 0.000000

-0.303066 0.000000 0.000000 0.000000 0.000000

-0.379014 0.000002 0.000000 0.000000 0.000000

-0.454594 0.000030 0.000000 0.000000 0.000000

-0.530505 0.000187 0.000000 0.000000 0.000000

-0.605831 0.000600 0.000000 0.000000 0.000000

-0.681640 0.001352 0.000000 0.000000 0.000000

-0.757263 0.002903 0.000000 0.000000 0.000000

-0.833256 0.007731 0.000000 0.000000 0.000000

-0.908347 0.017122 0.000000 0.000000 0.000000

-0.984276 0.025888 0.000000 0.000000 0.000000

-2.500000 0.200873 0.000000 0.000000 0.000000

[Model] in_3.3V

Model_type Input

Vinl = 0.99

Vinh = 2.31

C_comp = 2.4pF

|

| variable typ

[Voltage Range] 3.3v

[Power Clamp Reference] 3.3v

[GND Clamp Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-3.300000 -0.779640

-1.081361 -0.099999

-0.998971 -0.074760

-0.899065 -0.044010

-0.799145 -0.017811

-0.699375 -0.004636

-0.599531 -0.001246

-0.499355 -0.000151

-0.399622 -0.000006

-0.299627 -0.000000

-0.199777 -0.000000

-0.099943 0.000000

-0.000050 0.000000

0.099975 0.000000

0.199848 0.000000

0.299726 0.000000

0.399610 0.000000

0.499489 0.000000

0.599352 0.000000

0.699149 0.000000

0.799034 0.000000

0.898922 0.000000

0.998779 0.000000

1.098687 0.000000

1.198541 0.000000

1.298409 0.000000

1.398537 0.000000

1.498630 0.000000

1.598768 0.000000

1.698881 0.000000

1.798990 0.000000

1.899427 0.000000

1.999458 0.000000

2.099582 0.000000

2.199684 0.000000

2.299795 0.000000

2.399907 0.000000

2.499988 0.000000

2.600113 0.000000

2.700165 0.000000

2.800075 0.000000

2.899949 0.000000

2.999834 0.000000

3.099743 0.000000

3.199629 0.000000

3.299513 0.000000

4

[Power Clamp]

3.300000 0.000000

-0.099348 0.000000

-0.199239 0.000000

-0.299115 0.000000

-0.399422 0.000005

-0.499399 0.000090

-0.599208 0.000524

-0.699050 0.001539

-0.799142 0.004712

-0.899200 0.015355

-0.999362 0.026992

-3.300000 0.294284

[Model] in_5.0V

Model_type Input

Vinl = 1.5

Vinh = 3.5

C_comp = 2.4pF

|

| variable typ

[Voltage Range] 5.0v

[Power Clamp Reference] 5.0v

[GND Clamp Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-5.000000 -1.346910

-1.048651 -0.099999

-0.908065 -0.055634

-0.756557 -0.014242

-0.605504 -0.001657

-0.454194 -0.000063

-0.302619 -0.000000

-0.151182 0.000000

0.000170 0.000000

0.151273 0.000000

0.302731 0.000000

0.453871 0.000000

0.605363 0.000000

0.756446 0.000000

0.907905 0.000000

1.059389 0.000000

1.210527 0.000000

1.362162 0.000000

1.513673 0.000000

1.665500 0.000000

1.817327 0.000000

1.968837 0.000000

2.120618 0.000000

2.272084 0.000000

2.423933 0.000000

2.576083 0.000000

2.727820 0.000000

2.878995 0.000000

3.030482 0.000000

3.181641 0.000000

3.333145 0.000000

3.484260 0.000000

3.635756 0.000000

3.787268 0.000000

3.938430 0.000000

4.090073 0.000000

4.241573 0.000000

4.393424 0.000000

4.545266 0.000000

4.696763 0.000000

4.848552 0.000000

[Power Clamp]

5.000000 0.000000

-0.000044 0.000000

-0.151890 0.000000

-0.303393 0.000000

-0.455163 0.000028

-0.606700 0.000569

-0.757811 0.002790

-0.909282 0.016945

-1.060488 0.031322

-5.000000 0.405902

[Model] sdo_1.8v

Model_type 3-state

Vref=

Rref=

Cref=

Vmeas=

C_comp = 4.5pF

|

[Voltage Range] 1.8v

[Power Clamp Reference] 1.8v

[GND Clamp Reference] 0.00v

[Pullup Reference] 1.8v

[Pulldown Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-1.800000 -0.377970

-1.050005 -0.099999

-1.035376 -0.094577

-0.980760 -0.074073

-0.926477 -0.054366

-0.871518 -0.036208

-0.816909 -0.021510

-0.762334 -0.011743

-0.708190 -0.006404

-0.653568 -0.003425

-0.599364 -0.001562

-0.544864 -0.000516

5

-0.490209 -0.000118

-0.435969 -0.000020

-0.381425 -0.000003

-0.327131 -0.000000

-0.271865 -0.000000

-0.217634 -0.000000

-0.163068 0.000000

-0.108806 0.000000

-0.054242 0.000000

0.000024 0.000000

0.054133 0.000000

0.108715 0.000000

0.162993 0.000000

0.217577 0.000000

0.271823 0.000000

0.326772 0.000000

0.381362 0.000000

0.435621 0.000000

0.490208 0.000000

0.544462 0.000000

0.599046 0.000000

0.653233 0.000000

0.707829 0.000000

0.762095 0.000000

0.816668 0.000000

0.870925 0.000000

0.926205 0.000000

0.980450 0.000000

1.035047 0.000000

1.089318 0.000000

1.143888 0.000000

1.198131 0.000000

1.252720 0.000000

1.307015 0.000000

1.361770 0.000000

1.416160 0.000000

1.470889 0.000000

1.525978 0.000000

1.580370 0.000000

1.635102 0.000000

1.689520 0.000000

1.744252 0.000000

1.798645 0.000000

[Power Clamp]

1.800000 0.000000

-0.053388 0.000000

-0.108119 0.000000

-0.162526 0.000000

-0.217187 0.000000

-0.271593 0.000000

-0.326658 0.000000

-0.381421 0.000002

-0.435811 0.000015

-0.490683 0.000085

-0.544986 0.000314

-0.599816 0.000808

-0.654102 0.001608

-0.708842 0.002824

-0.763279 0.004852

-0.818077 0.009199

-0.872359 0.017125

-0.927651 0.024908

-1.800000 0.147705

[Pullup]

3.600000 -0.016653

2.236052 -0.015705

2.181481 -0.015667

2.127243 -0.015647

2.071970 -0.015627

2.017723 -0.015606

1.963162 -0.015584

1.908873 -0.015560

1.854321 -0.015535

1.800024 -0.015508

1.745648 -0.015479

1.691058 -0.015449

1.636780 -0.015416

1.582192 -0.015382

1.527940 -0.015346

1.472977 -0.015306

1.418386 -0.015265

1.364127 -0.015220

1.309519 -0.015173

1.255262 -0.015121

1.200667 -0.015065

1.146472 -0.015004

1.091861 -0.014935

1.037584 -0.014859

0.983014 -0.014772

0.928741 -0.014671

0.873460 -0.014549

0.819199 -0.014403

0.764592 -0.014218

0.710314 -0.013982

0.655744 -0.013675

0.601473 -0.013280

0.546877 -0.012776

0.492590 -0.012152

0.437843 -0.011390

0.383468 -0.010487

0.328871 -0.009406

0.273773 -0.008182

0.219367 -0.006821

0.164629 -0.005299

0.110175 -0.003635

0.055429 -0.001816

0.000977 0.000136

-0.053762 0.002243

-0.108517 0.004491

-0.162948 0.006854

-0.217639 0.009352

-0.271893 0.011925

6

-0.326973 0.014679

-0.381685 0.017527

-0.436085 0.020399

-1.800000 0.092408

[Pulldown]

-1.800000 -0.221640

-0.849927 -0.099999

-0.817103 -0.095797

-0.762519 -0.088924

-0.708254 -0.082165

-0.653655 -0.075412

-0.599481 -0.068752

-0.544905 -0.062085

-0.490308 -0.055465

-0.436040 -0.048936

-0.381462 -0.042426

-0.327215 -0.036028

-0.271923 -0.029599

-0.217687 -0.023396

-0.163106 -0.017283

-0.108831 -0.011353

-0.054366 -0.005563

-0.000018 0.000000

0.054222 0.005334

0.108891 0.010434

0.163019 0.015155

0.217601 0.019604

0.271863 0.023658

0.326811 0.027358

0.381410 0.030605

0.435673 0.033397

0.490270 0.035768

0.544527 0.037707

0.599113 0.039277

0.653298 0.040508

0.707903 0.041477

0.762177 0.042230

0.816741 0.042828

0.871010 0.043305

0.926291 0.043702

0.980535 0.044027

1.035140 0.044307

1.089393 0.044550

1.143972 0.044767

1.198238 0.044964

1.252827 0.045144

1.307115 0.045307

1.361864 0.045457

1.416251 0.045594

1.470991 0.045723

1.526059 0.045847

1.580460 0.045962

1.635187 0.046071

1.689612 0.046175

1.744341 0.046274

1.798736 0.046366

1.853464 0.046456

1.908193 0.046541

1.962607 0.046624

2.017273 0.046705

2.071672 0.046782

2.126743 0.046855

2.181464 0.046924

2.235867 0.047003

2.290610 0.047141

2.345010 0.047443

3.600000 0.047141

[Rising Waveform]

R_fixture = 50

V_fixture = 0

-0.000000 0.020000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 -0.040000

-0.000000 0.040000

-0.000000 0.040000

-0.000000 -0.020000

-0.000000 -0.020000

-0.000000 0.040000

-0.000000 0.020000

-0.000000 0.060000

-0.000000 0.020000

-0.000000 0.000000

-0.000000 0.020000

-0.000000 0.020000

-0.000000 0.000000

-0.000000 -0.020000

-0.000000 0.060000

-0.000000 0.220000

-0.000000 0.380000

-0.000000 0.580000

0.000000 0.720000

0.000000 0.880000

0.000000 0.960000

0.000000 1.020000

0.000000 1.040000

0.000000 1.060000

0.000000 1.040000

0.000000 0.940000

0.000000 0.920000

0.000000 0.880000

0.000000 0.900000

0.000000 0.820000

0.000000 0.760000

0.000000 0.820000

0.000000 0.760000

0.000000 0.780000

0.000000 0.760000

0.000000 0.740000

0.000000 0.740000

0.000000 0.760000

7

0.000000 0.760000

0.000000 0.780000

0.000000 0.760000

0.000000 0.800000

0.000000 0.780000

0.000000 0.800000

0.000000 0.720000

0.000000 0.680000

0.000000 0.700000

[Falling Waveform]

R_fixture = 50

V_fixture = 0

-0.000000 0.740000

-0.000000 0.780000

-0.000000 0.780000

-0.000000 0.800000

-0.000000 0.760000

-0.000000 0.760000

-0.000000 0.760000

-0.000000 0.760000

-0.000000 0.760000

-0.000000 0.760000

-0.000000 0.740000

-0.000000 0.720000

-0.000000 0.740000

-0.000000 0.720000

-0.000000 0.720000

-0.000000 0.760000

-0.000000 0.780000

-0.000000 0.760000

-0.000000 0.620000

-0.000000 0.440000

-0.000000 0.240000

-0.000000 0.160000

-0.000000 0.020000

-0.000000 -0.060000

-0.000000 -0.160000

-0.000000 -0.160000

-0.000000 -0.220000

-0.000000 -0.280000

-0.000000 -0.220000

-0.000000 -0.200000

-0.000000 -0.140000

-0.000000 -0.100000

-0.000000 -0.020000

-0.000000 0.000000

-0.000000 0.060000

-0.000000 0.060000

-0.000000 0.060000

-0.000000 0.020000

-0.000000 0.080000

-0.000000 0.040000

-0.000000 0.040000

-0.000000 -0.020000

-0.000000 0.040000

-0.000000 0.000000

-0.000000 -0.040000

-0.000000 0.000000

-0.000000 -0.020000

-0.000000 -0.020000

-0.000000 0.020000

-0.000000 0.040000

-0.000000 0.020000

[Rising Waveform]

R_fixture = 50

V_fixture = 1.8

-0.000000 0.360000

-0.000000 0.440000

-0.000000 0.480000

-0.000000 0.480000

-0.000000 0.360000

-0.000000 0.360000

-0.000000 0.400000

-0.000000 0.440000

-0.000000 0.400000

-0.000000 0.400000

-0.000000 0.360000

-0.000000 0.400000

-0.000000 0.440000

-0.000000 0.360000

-0.000000 0.400000

-0.000000 0.480000

-0.000000 0.360000

-0.000000 0.320000

-0.000000 0.280000

-0.000000 0.400000

-0.000000 0.320000

-0.000000 0.400000

-0.000000 0.360000

-0.000000 0.360000

-0.000000 0.320000

-0.000000 0.360000

-0.000000 0.720000

0.000000 1.320000

0.000000 1.560000

0.000000 1.800000

0.000000 2.120000

0.000000 2.160000

0.000000 2.240000

0.000000 2.320000

0.000000 2.440000

0.000000 2.440000

0.000000 2.560000

0.000000 2.400000

0.000000 2.160000

0.000000 2.120000

0.000000 2.040000

0.000000 1.840000

0.000000 1.920000

0.000000 1.800000

0.000000 1.880000

0.000000 1.920000

8

0.000000 1.880000

0.000000 1.920000

0.000000 1.920000

0.000000 1.920000

[Falling Waveform]

R_fixture = 50

V_fixture = 1.8

-0.000000 1.800000

-0.000000 1.880000

-0.000000 1.840000

-0.000000 1.760000

-0.000000 1.880000

-0.000000 1.920000

-0.000000 2.040000

-0.000000 1.880000

-0.000000 1.920000

-0.000000 1.800000

-0.000000 1.720000

-0.000000 1.720000

-0.000000 1.760000

-0.000000 1.800000

-0.000000 1.880000

-0.000000 1.840000

-0.000000 1.880000

-0.000000 1.920000

-0.000000 1.880000

-0.000000 1.840000

-0.000000 2.000000

-0.000000 1.960000

-0.000000 1.920000

-0.000000 1.920000

-0.000000 1.520000

-0.000000 1.280000

-0.000000 1.000000

-0.000000 0.640000

-0.000000 0.360000

-0.000000 0.280000

-0.000000 0.280000

-0.000000 0.040000

-0.000000 0.080000

-0.000000 0.000000

-0.000000 -0.080000

-0.000000 -0.080000

-0.000000 0.000000

-0.000000 0.080000

-0.000000 0.280000

-0.000000 0.320000

-0.000000 0.400000

-0.000000 0.560000

-0.000000 0.480000

-0.000000 0.480000

-0.000000 0.480000

-0.000000 0.480000

-0.000000 0.520000

-0.000000 0.440000

-0.000000 0.280000

-0.000000 0.320000

-0.000000 0.280000

[Ramp]

dV/dt_r 360mV/820ps

dV/dt_f 460mV/1.22ns

R_load = 50

|

[Model] sdo_2.5v

Model_type 3-state

Vref=

Rref=

Cref=

Vmeas=

C_comp = 4.5pF

|

[Voltage Range] 2.5v

[Power Clamp Reference] 2.5v

[GND Clamp Reference] 0.00v

[Pullup Reference] 2.5v

[Pulldown Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-2.500000 -0.665320

-1.031177 -0.099999

-0.984009 -0.081845

-0.908062 -0.053585

-0.832797 -0.029228

-0.756546 -0.012687

-0.681415 -0.005241

-0.605528 -0.001957

-0.530032 -0.000440

-0.454151 -0.000049

-0.378593 -0.000003

-0.302618 -0.000000

-0.227065 -0.000000

-0.151196 0.000000

-0.075971 0.000000

0.000151 0.000000

0.076019 0.000000

0.151253 0.000000

0.227142 0.000000

0.302724 0.000000

0.378637 0.000000

0.453861 0.000000

0.529766 0.000000

0.605345 0.000000

0.681186 0.000000

0.756437 0.000000

0.832334 0.000000

0.907893 0.000000

0.983789 0.000000

1.059381 0.000000

1.135260 0.000000

1.210500 0.000000

1.286413 0.000000

9

1.362157 0.000000

1.438237 0.000000

1.513660 0.000000

1.589732 0.000000

1.665483 0.000000

1.741566 0.000000

1.817311 0.000000

1.893398 0.000000

1.968811 0.000000

2.044848 0.000000

2.120593 0.000000

2.196659 0.000000

2.272064 0.000000

2.348157 0.000000

2.423919 0.000000

2.499983 0.000000

[Power Clamp]

2.500000 0.000000

-0.076075 0.000000

-0.151475 0.000000

-0.227794 0.000000

-0.303067 0.000000

-0.379060 0.000005

-0.454649 0.000058

-0.530522 0.000366

-0.605750 0.001171

-0.681668 0.002669

-0.757316 0.005726

-0.833164 0.014045

-0.908369 0.025522

-2.500000 0.268415

[Pullup]

5.000000 -0.039285

2.964075 -0.036750

2.898515 -0.036668

2.833304 -0.036649

2.767047 -0.036632

2.701818 -0.036613

2.636247 -0.036589

2.570363 -0.036562

2.505085 -0.036532

2.439704 -0.036498

2.373779 -0.036458

2.308168 -0.036416

2.242912 -0.036369

2.177323 -0.036317

2.111407 -0.036259

2.046167 -0.036195

1.980573 -0.036123

1.914649 -0.036044

1.849470 -0.035958

1.783878 -0.035861

1.717970 -0.035751

1.652710 -0.035628

1.587144 -0.035488

1.521217 -0.035325

1.455615 -0.035138

1.390362 -0.034918

1.324435 -0.034652

1.258865 -0.034331

1.193599 -0.033940

1.127844 -0.033456

1.061759 -0.032862

0.996383 -0.032150

0.930630 -0.031294

0.864564 -0.030273

0.799138 -0.029095

0.733397 -0.027734

0.667346 -0.026180

0.601598 -0.024445

0.536185 -0.022528

0.470179 -0.020401

0.404443 -0.018090

0.339036 -0.015602

0.272953 -0.012900

0.207224 -0.010031

0.141917 -0.006998

0.076116 -0.003770

0.010054 -0.000372

-0.055474 0.003168

-0.121252 0.006885

-0.187212 0.010728

-0.252832 0.014716

-0.318108 0.018813

-0.384051 0.021984

-2.500000 0.123748

[Pulldown]

-2.500000 -0.358270

-0.708423 -0.099999

-0.660865 -0.093143

-0.595693 -0.083767

-0.530103 -0.074352

-0.464199 -0.064899

-0.398629 -0.055515

-0.333388 -0.046205

-0.267135 -0.036803

-0.201881 -0.027621

-0.136293 -0.018494

-0.070597 -0.009483

-0.005259 -0.000654

0.060174 0.007930

0.125967 0.016301

0.191566 0.024368

0.256839 0.032049

0.322430 0.039379

0.388355 0.046305

0.453590 0.052689

0.519186 0.058594

0.585114 0.063983

10

0.650289 0.068750

0.715885 0.072978

0.781805 0.076653

0.847042 0.079741

0.912624 0.082329

0.978547 0.084455

1.044123 0.086153

1.109386 0.087493

1.175299 0.088556

1.240861 0.089382

1.306127 0.090027

1.371897 0.090542

1.437984 0.090954

1.503381 0.091280

1.569142 0.091543

1.635207 0.091759

1.700648 0.091931

1.766375 0.092072

1.832454 0.092186

1.898205 0.092276

1.963626 0.092344

2.029642 0.092397

2.095370 0.092432

2.160782 0.092454

2.226876 0.092468

2.292626 0.092469

2.358019 0.092459

2.423786 0.092440

2.489856 0.092414

2.555273 0.092380

2.621010 0.092340

2.687065 0.092294

2.752665 0.092242

2.817923 0.092185

2.883842 0.092129

2.949427 0.092098

3.014672 0.092202

3.080606 0.092624

3.146216 0.093506

5.000000 0.092624

[Rising Waveform]

R_fixture = 50

V_fixture = 0

0.000000 0.120000

0.000000 0.080000

0.000000 0.000000

0.000000 0.080000

0.000000 -0.040000

0.000000 -0.040000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 -0.040000

0.000000 0.000000

0.000000 0.080000

0.000000 0.040000

0.000000 0.000000

0.000000 0.160000

0.000000 0.560000

0.000000 1.080000

0.000000 1.360000

0.000000 1.600000

0.000000 1.800000

0.000000 2.000000

0.000000 2.120000

0.000000 2.000000

0.000000 1.920000

0.000000 2.000000

0.000000 1.920000

0.000000 1.920000

0.000000 1.880000

0.000000 1.760000

0.000000 1.800000

0.000000 1.560000

0.000000 1.520000

0.000000 1.560000

0.000000 1.520000

0.000000 1.480000

0.000000 1.400000

0.000000 1.640000

0.000000 1.640000

0.000000 1.640000

0.000000 1.600000

0.000000 1.560000

0.000000 1.640000

0.000000 1.600000

0.000000 1.520000

0.000000 1.520000

0.000000 1.480000

0.000000 1.600000

0.000000 1.520000

0.000000 1.440000

0.000000 1.400000

[Falling Waveform]

R_fixture = 50

V_fixture = 0

0.000000 1.520000

0.000000 1.680000

0.000000 1.600000

0.000000 1.600000

0.000000 1.640000

0.000000 1.680000

0.000000 1.600000

0.000000 1.640000

0.000000 1.640000

0.000000 1.640000

0.000000 1.560000

0.000000 1.600000

0.000000 1.520000

0.000000 1.520000

0.000000 1.640000

0.000000 1.680000

11

0.000000 1.560000

0.000000 1.560000

0.000000 1.680000

0.000000 1.640000

0.000000 1.480000

0.000000 1.480000

0.000000 1.560000

0.000000 1.560000

0.000000 1.640000

0.000000 1.400000

0.000000 1.120000

0.000000 0.760000

0.000000 0.480000

0.000000 0.120000

0.000000 0.040000

0.000000 -0.040000

0.000000 -0.320000

0.000000 -0.360000

0.000000 -0.440000

0.000000 -0.400000

0.000000 -0.480000

0.000000 -0.240000

0.000000 -0.120000

0.000000 -0.280000

0.000000 -0.240000

0.000000 -0.040000

0.000000 -0.040000

0.000000 0.080000

0.000000 0.160000

0.000000 0.080000

0.000000 0.120000

0.000000 0.000000

0.000000 -0.040000

0.000000 0.000000

[Rising Waveform]

R_fixture = 50

V_fixture = 1.8

-0.000000 0.320000

-0.000000 0.360000

-0.000000 0.400000

-0.000000 0.440000

-0.000000 0.320000

-0.000000 0.360000

-0.000000 0.360000

-0.000000 0.360000

-0.000000 0.440000

-0.000000 0.400000

-0.000000 0.360000

-0.000000 0.320000

-0.000000 0.400000

-0.000000 0.360000

-0.000000 0.320000

-0.000000 0.440000

-0.000000 0.600000

-0.000000 1.120000

-0.000000 1.760000

0.000000 2.360000

0.000000 2.680000

0.000000 2.920000

0.000000 3.040000

0.000000 3.080000

0.000000 3.240000

0.000000 3.320000

0.000000 3.240000

0.000000 3.320000

0.000000 3.200000

0.000000 3.040000

0.000000 2.880000

0.000000 2.520000

0.000000 2.480000

0.000000 2.440000

0.000000 2.440000

0.000000 2.400000

0.000000 2.520000

0.000000 2.520000

0.000000 2.440000

0.000000 2.440000

0.000000 2.520000

0.000000 2.520000

0.000000 2.640000

0.000000 2.600000

0.000000 2.520000

0.000000 2.520000

0.000000 2.400000

0.000000 2.280000

0.000000 2.520000

0.000000 2.560000

0.000000 2.520000

[Falling Waveform]

R_fixture = 50

V_fixture = 1.8

0.000000 2.480000

0.000000 2.560000

0.000000 2.560000

0.000000 2.560000

0.000000 2.520000

0.000000 2.560000

0.000000 2.520000

0.000000 2.480000

0.000000 2.560000

0.000000 2.560000

0.000000 2.520000

0.000000 2.560000

0.000000 2.600000

0.000000 2.640000

0.000000 2.640000

0.000000 2.640000

0.000000 2.600000

0.000000 2.280000

0.000000 1.640000

0.000000 1.160000

0.000000 0.760000

12

0.000000 0.400000

0.000000 0.200000

0.000000 -0.040000

0.000000 -0.240000

0.000000 -0.280000

0.000000 -0.440000

0.000000 -0.400000

0.000000 -0.360000

0.000000 -0.240000

0.000000 -0.040000

0.000000 0.080000

0.000000 0.400000

0.000000 0.520000

0.000000 0.560000

0.000000 0.640000

0.000000 0.600000

0.000000 0.480000

0.000000 0.520000

0.000000 0.440000

0.000000 0.440000

0.000000 0.400000

0.000000 0.320000

0.000000 0.280000

0.000000 0.320000

0.000000 0.480000

0.000000 0.440000

0.000000 0.400000

0.000000 0.520000

0.000000 0.560000

0.000000 0.480000

[Ramp]

dV/dt_r 920mV/740ps

dV/dt_f 920mV/1.24ns

R_load = 50

|

[Model] sdo_3.3v

Model_type 3-state

Vref=

Rref=

Cref=

Vmeas=

C_comp = 4.5pF

|

[Voltage Range] 3.3v

[Power Clamp Reference] 3.3v

[GND Clamp Reference] 0.00v

[Pullup Reference] 3.3v

[Pulldown Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-3.300000 -0.973220

-1.025145 -0.099999

-0.998980 -0.089955

-0.899068 -0.052176

-0.799144 -0.021580

-0.699404 -0.006605

-0.599529 -0.001850

-0.499361 -0.000213

-0.399675 -0.000008

-0.299624 -0.000000

-0.199771 -0.000000

-0.099937 0.000000

-0.000031 0.000000

0.099982 0.000000

0.199857 0.000000

0.299729 0.000000

0.399613 0.000000

0.499496 0.000000

0.599354 0.000000

3.300000 0.000000

[Power Clamp]

3.300000 -0.000000

-0.099236 0.000000

-0.199125 0.000000

-0.299001 0.000000

-0.399328 0.000006

-0.499130 0.000138

-0.599133 0.000916

-0.698929 0.002786

-0.799066 0.007741

-0.899072 0.022770

-3.300000 0.383572

[Pullup]

10.000000 -0.083978

3.794428 -0.064523

3.713550 -0.064269

3.633340 -0.064229

3.552128 -0.064205

3.471246 -0.064180

3.391039 -0.064152

3.310117 -0.064118

3.229705 -0.064081

3.148787 -0.064038

3.067910 -0.063990

2.987353 -0.063936

2.906441 -0.063874

2.826217 -0.063805

2.745307 -0.063726

2.664491 -0.063636

2.583908 -0.063533

2.503017 -0.063414

2.422112 -0.063278

2.341557 -0.063121

2.260642 -0.062937

2.180390 -0.062725

2.099515 -0.062473

2.018619 -0.062175

1.937877 -0.061820

13

1.856796 -0.061390

1.775698 -0.060869

1.695275 -0.060246

1.614185 -0.059492

1.533454 -0.058599

1.452366 -0.057537

1.371274 -0.056293

1.290583 -0.054858

1.209492 -0.053206

1.129083 -0.051346

1.047978 -0.049235

0.966886 -0.046881

0.886127 -0.044290

0.805042 -0.041436

0.723954 -0.038325

0.643532 -0.034987

0.562227 -0.031354

0.481978 -0.027519

0.401046 -0.023404

0.320119 -0.019044

0.239526 -0.014464

0.158750 -0.009644

0.078422 -0.004621

-0.002655 0.000658

-0.083501 0.006138

-0.164001 0.011763

-0.244908 0.017603

-0.325845 0.022328

-5.000000 0.295196

[Pulldown]

-3.300000 -0.503360

-0.998595 -0.146226

-0.907745 -0.132128

-0.816878 -0.119461

-0.726379 -0.106819

-0.635849 -0.095083

-0.545045 -0.081791

-0.454160 -0.068332

-0.363278 -0.054735

-0.272034 -0.040977

-0.181825 -0.027331

-0.090932 -0.013602

-0.000452 -0.000000

0.091017 0.013685

0.181927 0.027000

0.272161 0.039814

0.363104 0.052222

0.453971 0.064022

0.544900 0.075127

0.635715 0.085438

0.726648 0.094907

0.817201 0.103429

0.907764 0.111220

0.998646 0.117891

1.089551 0.123593

1.180448 0.128376

1.270984 0.132283

1.362031 0.135423

1.453139 0.137874

1.544229 0.139732

1.635315 0.141116

1.726432 0.142110

1.817199 0.142808

1.908308 0.143275

1.999331 0.143563

2.090434 0.143717

2.181526 0.143776

2.271962 0.143746

2.363063 0.143649

2.454188 0.143503

2.545270 0.143311

2.636370 0.143084

2.727693 0.142827

2.817946 0.142546

2.908833 0.142248

2.999729 0.141914

3.090647 0.141582

3.181535 0.141233

3.272113 0.140872

3.362948 0.140511

3.453866 0.140134

3.544751 0.139747

3.635660 0.139369

3.726559 0.139014

3.817156 0.138890

6.600000 0.139014

[Rising Waveform]

R_fixture = 50

V_fixture = 0

-0.000000 -0.040000

-0.000000 -0.040000

-0.000000 -0.040000

-0.000000 0.080000

-0.000000 0.080000

-0.000000 -0.040000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.080000

-0.000000 0.040000

-0.000000 0.040000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 -0.040000

-0.000000 0.000000

-0.000000 0.000000

-0.000000 0.400000

-0.000000 1.080000

-0.000000 1.600000

0.000000 2.000000

14

0.000000 2.280000

0.000000 2.720000

0.000000 3.000000

0.000000 3.120000

0.000000 3.160000

0.000000 3.120000

0.000000 3.040000

0.000000 2.920000

0.000000 2.800000

0.000000 2.760000

0.000000 2.760000

0.000000 2.560000

0.000000 2.440000

0.000000 2.440000

0.000000 2.400000

0.000000 2.400000

0.000000 2.400000

0.000000 2.400000

0.000000 2.520000

0.000000 2.560000

0.000000 2.360000

0.000000 2.320000

0.000000 2.320000

0.000000 2.360000

0.000000 2.280000

0.000000 2.400000

0.000000 2.440000

0.000000 2.400000

[Falling Waveform]

R_fixture = 50

V_fixture = 0

0.000000 2.400000

0.000000 2.440000

0.000000 2.400000

0.000000 2.440000

0.000000 2.400000

0.000000 2.440000

0.000000 2.280000

0.000000 2.320000

0.000000 2.440000

0.000000 2.400000

0.000000 2.400000

0.000000 2.400000

0.000000 2.360000

0.000000 2.320000

0.000000 2.400000

0.000000 2.520000

0.000000 2.360000

0.000000 2.280000

0.000000 2.360000

0.000000 2.400000

0.000000 2.440000

0.000000 2.400000

0.000000 2.040000

0.000000 1.520000

0.000000 0.680000

0.000000 0.400000

0.000000 0.240000

0.000000 -0.200000

0.000000 -0.520000

0.000000 -0.720000

0.000000 -0.800000

0.000000 -0.720000

0.000000 -0.680000

0.000000 -0.440000

0.000000 -0.360000

0.000000 -0.280000

0.000000 -0.160000

0.000000 -0.040000

0.000000 0.000000

0.000000 0.040000

0.000000 0.120000

0.000000 0.080000

0.000000 0.080000

0.000000 0.080000

0.000000 -0.040000

0.000000 -0.120000

0.000000 -0.120000

0.000000 -0.040000

0.000000 -0.040000

0.000000 -0.120000

0.000000 -0.120000

[Rising Waveform]

R_fixture = 50

V_fixture = 1.8

-0.000000 0.480000

-0.000000 0.480000

-0.000000 0.400000

-0.000000 0.480000

-0.000000 0.720000

-0.000000 0.320000

-0.000000 0.240000

-0.000000 0.480000

-0.000000 0.240000

-0.000000 0.240000

-0.000000 0.640000

-0.000000 0.640000

-0.000000 1.440000

0.000000 2.400000

0.000000 2.800000

0.000000 3.600000

0.000000 3.840000

0.000000 4.000000

0.000000 4.160000

0.000000 4.160000

0.000000 4.400000

0.000000 4.480000

0.000000 4.480000

0.000000 4.080000

0.000000 4.160000

0.000000 3.840000

0.000000 3.520000

15

0.000000 3.360000

0.000000 3.280000

0.000000 3.040000

0.000000 3.120000

0.000000 3.120000

0.000000 3.200000

0.000000 3.200000

0.000000 3.200000

0.000000 3.280000

0.000000 3.440000

0.000000 3.440000

0.000000 3.360000

0.000000 3.280000

0.000000 3.360000

0.000000 3.360000

0.000000 3.280000

0.000000 3.360000

0.000000 3.520000

0.000000 3.280000

0.000000 3.040000

0.000000 3.360000

0.000000 3.200000

0.000000 3.200000

[Falling Waveform]

R_fixture = 50

V_fixture = 1.8

0.000000 3.280000

0.000000 3.360000

0.000000 3.440000

0.000000 3.200000

0.000000 3.280000

0.000000 3.520000

0.000000 3.360000

0.000000 3.200000

0.000000 3.280000

0.000000 3.280000

0.000000 3.200000

0.000000 3.440000

0.000000 3.440000

0.000000 3.360000

0.000000 3.600000

0.000000 3.600000

0.000000 3.360000

0.000000 3.280000

0.000000 3.520000

0.000000 3.200000

0.000000 2.480000

0.000000 2.080000

0.000000 1.120000

0.000000 0.720000

0.000000 0.480000

0.000000 0.000000

0.000000 -0.400000

0.000000 -0.480000

0.000000 -0.480000

0.000000 -0.480000

0.000000 -0.640000

0.000000 -0.480000

0.000000 -0.080000

0.000000 0.080000

0.000000 0.160000

0.000000 0.320000

0.000000 0.480000

0.000000 0.640000

0.000000 0.960000

0.000000 0.960000

0.000000 0.640000

0.000000 0.480000

0.000000 0.560000

0.000000 0.480000

0.000000 0.240000

0.000000 0.480000

0.000000 0.240000

0.000000 0.240000

0.000000 0.480000

0.000000 0.320000

0.000000 0.560000

[Ramp]

dV/dt_r 1.60V/1.16ns

dV/dt_f 1.64V/1.36ns

R_load = 50

|

[Model] sdo_5.0v

Model_type 3-state

Vref=

Rref=

Cref=

Vmeas=

C_comp = 4.5pF

|

[Voltage Range] 5.0v

[Power Clamp Reference] 5.0v

[GND Clamp Reference] 0.00v

[Pullup Reference] 5.0v

[Pulldown Reference] 0.00v

[Temperature Range] 25

|

[GND Clamp]

-5.000000 -1.668720

-0.986377 -0.099998

-0.845157 -0.044803

-0.691805 -0.007749

-0.538137 -0.000854

-0.384200 -0.000011

-0.230731 -0.000000

-0.076994 -0.000000

0.077000 -0.000000

0.230788 -0.000000

0.383940 -0.000000

0.537742 -0.000000

0.691485 -0.000000

0.844961 -0.000000

16

0.998761 -0.000000

1.152570 -0.000000

1.306057 -0.000000

1.460241 -0.000000

1.614412 -0.000000

1.767918 -0.000000

1.922406 -0.000000

2.076511 -0.000000

2.230679 -0.000000

2.384187 -0.000000

2.538339 -0.000000

2.692473 -0.000000

2.845979 -0.000000

2.999805 -0.000000

3.153655 -0.000000

3.307152 -0.000000

3.460912 0.000000

3.614742 0.000000

3.768247 0.000000

3.922078 0.000000

4.076022 0.000000

4.230194 0.000000

4.383696 0.000000

4.537895 0.000000

4.692396 0.000000

4.845857 0.000000

5.000006 0.000000

[Power Clamp]

5.000000 0.000000

-0.000034 0.000000

-0.151886 0.000000

-0.303401 0.000001

-0.455232 0.000067

-0.606607 0.001120

-0.757848 0.005372

-0.909291 0.026691

-5.000000 0.602562

[Pullup]

10.000000 -0.108970

4.455656 -0.120417

4.364865 -0.120605

4.273969 -0.120768

4.183448 -0.120918

4.092561 -0.121032

4.001681 -0.121131

3.910783 -0.121202

3.819902 -0.121248

3.729370 -0.121264

3.638321 -0.121242

3.547197 -0.121177

3.456095 -0.121064

3.364979 -0.120901

3.273867 -0.120684

3.183097 -0.120400

3.091989 -0.120023

3.000937 -0.119546

2.909822 -0.118980

2.818733 -0.118314

2.728287 -0.117531

2.637182 -0.116619

2.546042 -0.115568

2.454948 -0.114388

2.363831 -0.113048

2.272517 -0.111546

2.182267 -0.109880

2.091397 -0.108025

2.000499 -0.105965

1.909601 -0.103647

1.818727 -0.101117

1.728227 -0.099391

1.637393 -0.096377

1.546484 -0.093198

1.455603 -0.089789

1.364693 -0.086133

1.273806 -0.082223

1.183208 -0.078069

1.092318 -0.073633

1.001425 -0.068925

0.910372 -0.063936

0.819244 -0.058667

0.728785 -0.053169

0.637665 -0.047355

0.546526 -0.041273

0.455072 -0.034903

0.363955 -0.028296

0.272902 -0.021448

0.182425 -0.014407

0.091423 -0.007128

0.000101 0.000436

-0.091080 0.008241

-0.182104 0.016218

-5.000000 0.438451

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

0.000000 0.000000

[Pulldown]

-5.000000 -0.792600

-0.907728 -0.153134

-0.816871 -0.138937

-0.726369 -0.124529

-0.635499 -0.109753

-0.545078 -0.095837

-0.454168 -0.080296

-0.363302 -0.064547

17

-0.272056 -0.048533

-0.181835 -0.032543

-0.090944 -0.016330

0.000236 -0.000011

0.091033 0.016308

0.181941 0.032522

0.272175 0.048411

0.363115 0.064126

0.454010 0.079454

0.544929 0.094317

0.635433 0.108838

0.726346 0.122560

0.816871 0.135492

0.907771 0.147727

0.998653 0.159166

1.089557 0.169772

1.180446 0.179526

1.270982 0.188374

1.362039 0.196425

1.453140 0.203626

1.544250 0.209995

1.635336 0.215580

1.726447 0.220405

1.817206 0.224497

1.908305 0.227954

1.999341 0.230815

2.090444 0.233127

2.181536 0.234947

2.271958 0.236291

2.363067 0.237269

2.454180 0.237884

2.545273 0.238194

2.636370 0.238244

2.727701 0.238079

2.817945 0.237714

2.908831 0.237214

2.999746 0.236580

3.090653 0.235838

3.181539 0.235005

3.272113 0.234100

3.362926 0.233135

3.453852 0.232142

3.544753 0.231104

3.635661 0.230031

3.726555 0.228926

10.000000 0.230031

[Rising Waveform]

R_fixture = 50

V_fixture = 0

0.000000 -0.160000

0.000000 -0.080000

0.000000 -0.080000

0.000000 0.000000

0.000000 0.240000

0.000000 0.240000

0.000000 0.000000

0.000000 -0.160000

0.000000 -0.080000

0.000000 0.000000

0.000000 0.000000

0.000000 -0.080000

0.000000 0.160000

0.000000 0.080000

0.000000 -0.080000

0.000000 -0.080000

0.000000 -0.080000

0.000000 0.160000

0.000000 1.040000

0.000000 2.160000

0.000000 3.040000

0.000000 3.600000

0.000000 3.840000

0.000000 4.640000

0.000000 5.120000

0.000000 5.360000

0.000000 5.360000

0.000000 5.280000

0.000000 5.120000

0.000000 4.880000

0.000000 4.800000

0.000000 4.560000

0.000000 4.720000

0.000000 4.400000

0.000000 3.840000

0.000000 3.840000

0.000000 3.840000

0.000000 3.840000

0.000000 3.680000

0.000000 3.680000

0.000000 3.920000

0.000000 3.840000

0.000000 3.760000

0.000000 3.920000

0.000000 4.080000

0.000000 4.000000

0.000000 4.080000

0.000000 4.000000

0.000000 4.000000

0.000000 3.840000

[Falling Waveform]

R_fixture = 50

V_fixture = 0

0.000000 4.000000

0.000000 4.000000

0.000000 4.000000

0.000000 3.840000

0.000000 3.840000

0.000000 4.000000

0.000000 3.920000

0.000000 3.920000

0.000000 3.920000

0.000000 3.920000

18

0.000000 4.000000

0.000000 4.000000

0.000000 3.840000

0.000000 4.000000

0.000000 4.080000

0.000000 3.920000

0.000000 3.920000

0.000000 4.000000

0.000000 3.840000

0.000000 3.840000

0.000000 3.040000

0.000000 1.520000

0.000000 0.640000

0.000000 0.480000

0.000000 -0.080000

0.000000 -0.400000

0.000000 -1.040000

0.000000 -1.440000

0.000000 -1.040000

0.000000 -0.720000

0.000000 -0.880000

0.000000 -0.560000

0.000000 -0.480000

0.000000 -0.800000

0.000000 -0.320000

0.000000 -0.160000

0.000000 0.000000

0.000000 0.000000

0.000000 -0.080000

0.000000 0.000000

0.000000 0.000000

0.000000 -0.160000

0.000000 -0.080000

0.000000 0.160000

0.000000 -0.080000

0.000000 0.000000

0.000000 0.160000

0.000000 -0.160000

0.000000 0.000000

0.000000 0.000000

[Rising Waveform]

R_fixture = 50

V_fixture = 1.8

-0.000000 0.640000

-0.000000 0.480000

-0.000000 0.560000

-0.000000 0.480000

-0.000000 0.880000

-0.000000 0.720000

-0.000000 0.480000

-0.000000 0.560000

-0.000000 0.560000

-0.000000 0.480000

-0.000000 0.320000

-0.000000 0.480000

-0.000000 0.720000

-0.000000 0.720000

-0.000000 0.560000

-0.000000 0.560000

-0.000000 0.640000

-0.000000 0.560000

-0.000000 0.400000

-0.000000 0.640000

-0.000000 1.200000

-0.000000 2.560000

-0.000000 4.000000

0.000000 4.880000

0.000000 5.600000

0.000000 6.080000

0.000000 6.240000

0.000000 6.400000

0.000000 6.560000

0.000000 6.640000

0.000000 6.880000

0.000000 6.800000

0.000000 6.240000

0.000000 5.520000

0.000000 5.440000

0.000000 5.280000

0.000000 4.880000

0.000000 4.800000

0.000000 4.720000

0.000000 4.800000

0.000000 4.720000

0.000000 4.960000

0.000000 4.880000

0.000000 5.120000

0.000000 5.120000

0.000000 4.960000

0.000000 5.120000

0.000000 5.120000

0.000000 4.880000

0.000000 5.120000

0.000000 5.120000

[Falling Waveform]

R_fixture = 50

V_fixture = 1.8

0.000000 5.120000

0.000000 5.280000

0.000000 5.120000

0.000000 5.040000

0.000000 4.800000

0.000000 4.880000

0.000000 4.800000

0.000000 4.880000

0.000000 4.880000

0.000000 4.960000

0.000000 5.040000

0.000000 5.040000

0.000000 5.040000

0.000000 5.040000

0.000000 4.880000

19

0.000000 4.880000

0.000000 5.200000

0.000000 5.120000

0.000000 4.880000

0.000000 4.000000

0.000000 2.720000

0.000000 1.680000

0.000000 0.880000

0.000000 0.160000

0.000000 -0.240000

0.000000 -0.560000

0.000000 -0.720000

0.000000 -0.960000

0.000000 -0.960000

0.000000 -1.200000

0.000000 -1.120000

0.000000 -0.560000

0.000000 -0.240000

0.000000 0.240000

0.000000 0.560000

0.000000 0.640000

0.000000 0.720000

0.000000 0.880000

0.000000 0.800000

0.000000 0.800000

0.000000 0.560000

0.000000 0.640000

0.000000 0.560000

0.000000 0.480000

0.000000 0.400000

0.000000 0.400000

0.000000 0.320000

0.000000 0.560000

0.000000 0.960000

0.000000 0.720000

[Ramp]

dV/dt_r 2.8V/1.58ns

dV/dt_f 2.4V/820ps

R_load = 50

|

[Model] term

|

Model_type Terminator

|

C_comp 0pF

|

| variable typ

[Voltage Range] 5V

[Temperature Range] 25

|

[End]

2

Appendix D – AD7626 Schematic

AD7626 Power Supply Sheet

3

AD7626 External Reference Sheet

4

AD7626 Analog Front End Sheet

5

AD7626 Analog-to-Digital Converter Sheet

6

AD7626 Clocking Sheet

7

AD7626 Interface Sheet

8

Appendix E – IBIS Model Procedure

These guidelines are a step-by-step instruction on how to create an IBIS model and are

meant to be used with any device. However, any specifics, such as how the device was set up,

will refer to the EVAL-AD7091RSDZ evaluation board. There are several pieces of equipment

that are necessary in order to generate an Input/ Output Buffer Information Specification (IBIS)

model for any device. These include the following:

 Keithley 2400 3A Source Meter

 Agilent Triple Output DC Power Supply- an adjustable power supply that allows the

voltage at VDRIVE to be changed as needed

 Tektronix DPO 4054 Digital Phosphor Oscilloscope

 Tektronix HFS 9003 Stimulus System- a multiple function generator

 Boonton 7200 Capacitance Meter

 Computer with LabView

 System Development Platform (SDP)

While all of this equipment will be used, not all of it is needed for each measurement.

The necessary equipment for each measurement and how to set it up will be noted at the

beginning of each section.

Gathering the VT Data

In order to gather the Voltage versus Time (VT) data the Agilent, oscilloscope, computer,

and System Development Platform (SDP) are needed. Before this equipment can be connected to

the evaluation board, the Serial Data Output (SDO) must be isolated from the SDP because when

the SDO and SDP are connected, the capacitance of the SDP can affect output voltage at the

9

SDO. Isolating the SDO from the SDP removes the capacitance of the SDP as a factor. In order

to run the SDP, the evaluation software is needed and is available on the Analog Devices website

at ftp://ftp.analog.com/pub/evalcd/AD7091RSDZ_v1.3/. Once these prerequisites have been

completed, the setup of the equipment can begin.

The evaluation board, the EVAL-AD7091RSDZ, requires two power supplies, one at

VDD and one at VDRIVE. VDD is provided by a 9V wall-outlet supply. VDRIVE is provided by the

Agilent Power Supply. A flathead screwdriver is needed to connect the Agilent’s power cables to

the evaluation board. The input signals needed to produce an output waveform are provided by a

laptop with the system development software installed via the System Development Platform

(SDP). The results of the tests are recorded by the oscilloscope.

1. The first step to gathering the VT data for the AD7091R is to connect the J4 connector on

the SDP to the J4 connector on the evaluation board. You can bolt the two boards

together for a more secure link, but this is not required. A USB cable must then be

connected between the J1 connector on the SDP and the computer with the evaluation

software installed.

2. Power on the Agilent source meter. Do not connect it to the evaluation board yet. Set the

Agilent to output 1.8V at the +6V supply. Now, power off the Agilent.

3. Connect a flash drive to the USB port on the control panel of the oscilloscope.

4. To configure the evaluation board for measurements relative to ground, connect a 50Ω

resistor between test point 9, SDO, and test point 5, Ground. Simply tying the wires onto

the test points should be sufficient for these measurements. If not, the oscilloscope probe

can be used to clip the wires to the test points.

ftp://ftp.analog.com/pub/evalcd/AD7091RSDZ_v1.3/

10

5. The Agilent will be connected to the evaluation board at connector J3. DO NOT POWER

ON THE AGILENT YET. To connect the power, a flathead screwdriver is used to open

the VDRIVE and DGND connectors. Wires are then placed in the DGND and VDRIVE

connectors. Use the flathead screwdriver to close the J3 connector and clamp the wires in

place. The other ends of the wires are then fitted into ban plug connectors and plugged

into the common ground and +6V supply of the Agilent. The Digital Ground (DGND) is

connected to the common ground of the Agilent, labelled COM on the control panel, and

VDRIVE is connected to the +6V supply.

6. Do a quick check of the LK5 Jumper to ensure that it is in position A. It being in position

A means that the board is taking power from the J3 connector, the Agilent, and not the J4

connector, the SDP.

7. To prepare power for VDRIVE, plug the 9V wall outlet into the wall socket. Keep the

other end at hand, but do not plug it in yet.

8. Do a quick check of the LK6 Jumper to ensure that it is in position A. This means that

the evaluation board is being power by the J1 connector, the 9V supply, and not the J2

connector.

9. Connect a low-capacitance probe to channel 1 of the oscilloscope. Connect the ground

clamp of the probe to test point 5 on the evaluation board and connect the probe clip to

test point 9. If you had trouble connecting the 50Ω resistor in step 4, you can use the

probe clip to hold it in place.

10. Open the evaluation software on the computer. Set the sample rate and the number of

samples to be taken.

11. Plug the 9V supply into VDD and power on the Agilent power supply.

11

12. Set the oscilloscope to the default setup. This will return the oscilloscope to its original

settings and will take care of any lingering changes from previous use.

13. Select “Continuous” in the evaluation software. This will cause the SDP to start sending

waveforms to the inputs of the device.

14. Set the oscilloscope to autoset. This will change the scale of the oscilloscope screen to

better fit the waveform being measured.

15. Set the oscilloscope to take a single sample. This will hold a single rendition of the

waveform output that can then be measured and recorded.

16. Stop the SDP evaluation software. The oscilloscope will hold the measured waveform

without a signal from the evaluation board.

17. Turn off the Agilent and disconnect the 9V VDD supply. Disconnect the Agilent form the

evaluation board by unplugging it from common ground and +6V supply.

18. Using the “Pan & Zoom” knob, focus in on a rising edge of the waveform to the highest

zoom that will still encompass the entire transition.

19. Once the waveform is situated as desired, press “Menu” under the Save/ Recall section of

the control panel.

20. Press “Save Waveform”.

21. Press “Destination” and select the flash drive connected to the oscilloscope.

22. Select “Gating” and set gating to the screen.

23. Select “File Details”.

24. Select where the data will be saved.

25. Select “Edit File Name”. Use the controls along the bottom of the screen to name the file.

The file must be saved as a .csv file. It is suggested that you follow the convention of

12

naming your file along the lines of”1.8V Rising GND”. This signifies that the data was

taken at 1.8V, is the rising edge of the waveform, and that the data is ground-relative.

26. Press “OK Accept” to save the data.

27. Turn on the cursors.

28. Use the “Multipurpose A” and “Multipurpose B” knobs to position the cursors at the 20%

level and 80% level of the transition.

29. Record the voltage change and time change between the two cursors displayed on the

screen. This data will be used in the equation

 to calculate the ramp rate.

30. Return to step 18 and repeat the procedure for the falling edge.

31. Return to step 4 and repeat the procedure for a 50Ω resistor connected between test point

9, SDO, and test point 10, VDrive.

32. Return to step 2 and repeat the procedure with the Agilent set to a voltage of 2.5V. Then

repeat with the Agilent set to 3.3V and then 5V.

Gathering the Power and Ground Clamp Data

The Agilent, Keithley, and computer are required to gather the power and ground clamp

curves data. The power and ground clamp curves describe the behavior of the clamp diodes when

the Serial Data Output (SDO) is in the high impedance state. In order to ensure that SDO is high,

solder a pull-up resistor between the VDRIVE power supply and Chip Select (CS). Another pull-up

resistor is required between VDRIVE and Convert Start (CONVST). This is necessary because a

problem without the System Development Platform (SDP) in place is that there are not any

signals on the input pins. This means that there is a chance that the Voltage Reference (Vref) will

enter the power down state.

13

Like the setup for gathering the Voltage versus Time (VT) data, the power and ground

clamp data requires two power supplies. Again, these will be provided by the 9V supply and the

Agilent. Unlike the VT measurements, the data will be recorded using the Keithley 2420 Source

Meter. In order to run the Keithley, the device drivers must be installed. Once they are installed

the LabView sweep program can be used to make the Keithley perform a voltage sweep on the

evaluation board

1. Using a General Purpose Interface Bus (GPIB), connect the Keithley to the computer

with the LabView sweep program.

2. Power on the Agilent source meter. Do not connect it to the evaluation board yet. Set the

Agilent to output 1.8V at the +6V supply. Now, power off the Agilent.

3. The Agilent will be connected to the evaluation board at connector J3. DO NOT POWER

ON THE AGILENT YET. To connect the power, a flathead screwdriver is used to open

the VDRIVE and DGND connectors. Wires are then placed in the DGND and VDRIVE

connectors. Use the flathead screwdriver to close the J3 connector and clamp the wires in

place. The other ends of the wires are then fitted into ban plug connectors and plugged

into the common ground and +6V supply of the Agilent. The Digital Ground (DGND) is

connected to the common ground of the Agilent, labelled COM on the control panel, and

VDRIVE is connected to the +6V supply.

4. Do a quick check of the LK5 Jumper to ensure that it is in position A.

5. To prepare power for VDRIVE, plug the 9V wall outlet into the wall socket. Keep the

other end at hand, but do not plug it in yet.

6. Do a quick check of the LK6 Jumper to ensure that it is in position A.

14

7. Connect the ground clip of the Keithley to test point 5, ground, on the evaluation board.

Connect the power clip of the Keithley to test point 9, SDO, on the evaluation board.

8. Open LabView and open the LabView sweep program.

9. In the “VISA Resource Name” drop down list select “GPIB: 24: INSTR”

10. In the “Path” entry enter the file that will be the destination of the data. This file must be

a .csv file. As for the name of the file, it is recommended that you follow the convention

of naming the file along the lines of “1.8V Power-Ground SDO.csv”. This means that the

data was taken from the output at 1.8V and contains the data points for the power and

ground clamp curves.

11. In “Minimum Amplitude” entry enter the lowest value that you wish for the sweep to go

to. In the “Maximum Amplitude” entry enter the highest value you wish for the sweep to

go to. Ideally this range would cover from –VDRIVE to 2*VDRIVE. This means that if the

Agilent is set to 1.8V, then the sweep range will be from -1.8V to 3.6V. However, this

range may not always be possible due to current limiting and other factors. It is possible

that the sweeps at the higher sampling voltages could damage the board. As such, it is

recommended that a smaller sweep range is used. The only limit on how small the sweep

range can get is that the data must include the curves for both the power and ground

clamp diodes.

12. In the “Number of Points” entry, set the number of data points taken to 100.

13. Plug the 9V supply into VDD and power on the Agilent power supply.

14. Click “Run” and wait for the sweep to complete.

15. Unplug the 9V supply from VDD and power off the Agilent power supply.

15

16. Disconnect the power output of the Keithley from test point 9 and reconnect it to one of

the test points 6, 7, or 8. These test points are the inputs of the device and only one of

them needs to be tested. It does not matter which as the measurements from one of the

inputs can be used to describe any of the others.

17. In the “Path” entry enter a new file name.

18. Plug the 9V supply into VDD and power on the Agilent power supply.

19. Click “Run” and wait for the sweep to complete.

20. Unplug the 9V supply from VDD and power off the Agilent power supply.

21. Turn off the Agilent and disconnect the 9V VDD supply. Disconnect the Agilent form the

evaluation board by unplugging it from common ground and +6V supply.

22. Return to step 2 and repeat the procedure with the Agilent set to a voltage of 2.5V. Then

repeat with the Agilent set to 3.3V and then 5V.

23. Remove the Pull-up resistors connected between VDRIVE and CS and VDRIVE and

CONVST

24. Separate the ground clamp data from the power clamp data. To do this, select all the data

points from VDRIVE to 2*VDRIVE. This means that if the data was taken with VDRIVE at

1.8V, select all of the data points between 1.8V and 3.6V. However, if you chose to

restrict the sweep range the data may not go all the way to 2*VDRIVE. If that is the case,

then select all of the data points from VDRIVE to the end of the file. Copy this data into

another .csv file. Delete the data from VDRIVE to 2*VDRIVE in the original file.

25. In the new .csv file, insert a column between columns A and B. In the new B1 enter the

following equation: =(VDRIVE of this sweep)-$A1. Copy and paste this equation into the

rest of column B.

16

26. Save the two resulting excel files. It is recommended that you save the first file along the

lines of “1.8V Ground SDO.csv”. This denotes that the data was taken from the output at

1.8V and contains the data points for the ground clamp curve. Then save the second excel

file along the lines of “1.8V Power SDO.csv”. This denotes that the data was taken from

the output at 1.8V and contains the data points for the power clamp curve. When saving

the data as .csv files a warning message will appear saying that the data may not be

consistent with the file type and asks if you still want to save the data as a .csv file. Select

“Yes”.

Gathering the Pull Up and Pull Down Data

The pull up and pull down data is obtained at the transitions of the device driving from high

to low and from low to high. To obtain these transitions on the output the inputs need to be

supplied signals. These signals will be generated by the Tektronix HFS 9003 Stimulus System, a

multiple function generator. The function generator must be set up to generate the following

waveforms. These waveforms are supplied to the inputs of the device via a breakout board.

Convert Start (CONVST) is connected to pin 73 of the SDP breakout board and is given a binary

signal of 100111111. Chip Select (CS) is connected to pin 89 and 90 of the SDP breakout board

and is given a binary signal of 111000000. Serial Clock (SCLK) is connected to pins 87 and 92

of the breakout board and is given a signal of 111101011.

17

 The setup for gathering the pull up and pull down data is more complicated than

for the Voltage versus Time (VT) or power and ground clamp data. The evaluation board still

requires two power supplies, one provided by the 9V supply and another provided by the

Agilent. Like the clamp curves, measurements will be taken using the Keithley. This means that

a computer with the sweep program and Keithley drivers is required as well. As mentioned

above, a function generator is needed to provide signals to the inputs. Finally, an oscilloscope is

needed so that the states of the inputs and output can be verified.

1. Connect J1 on the breakout board to J4 on the evaluation board. You can bolt the two

boards together for a more secure link, but this is not required.

2. Using the oscilloscope, verify that the signals from the function generator are being sent

to the evaluation board. To do this, attach the oscilloscope probe to ground and measure

the signal on the breakout board. Then measure the signal at the corresponding test point.

These measurements should be the same.

3. Connect the ground clip of the Keithley to test point 5, ground, on the evaluation board

and the power clip of the Keithley to test point 9, Serial Digital Output (SDO), on the

evaluation board.

4. Open LabView and open the LabView sweep program.

5. Connect the analog input (VIN), pin 3, to ground, test point 5. Use the oscilloscope to

verify that SDO is in the low state.

6. Power on the Agilent source meter. Do not connect it to the evaluation board yet. Set the

Agilent to output 1.8V at the +6V supply. Now, power off the Agilent.

7. In the “VISA Resource Name” drop down list select “GPIB: 24: INSTR”

18

8. In the “Path” entry enter the file that will be the destination of the data. This file must be

a .csv file. As for the name of the file, it is recommended that you follow the convention

of naming the file along the lines of “1.8V Pull Up.csv”. This means that the data was

taken at 1.8V and contains the data points for the pull up curves.

9. In “Minimum Amplitude” entry enter the lowest value that you wish for the sweep to go

to. In the “Maximum Amplitude” entry enter the highest value you wish for the sweep to

go to. Ideally this range would cover from –VDRIVE to 2*VDRIVE. This means that if the

Agilent is set to 1.8V, then the sweep range will be from -1.8V to 3.6V. However, this

range may not always be possible due to current limiting and other factors. It is possible

that the sweeps at the higher sampling voltages could damage the board. As such, it is

recommended that a smaller sweep range is used. The only limit on how small the sweep

range can get is that the data must include the curves for both the power and ground

clamp diodes.

10. In the “Number of Points” entry, set the number of data points taken to 100.

11. The Agilent will be connected to the evaluation board at connector J3. DO NOT POWER

ON THE AGILENT YET. To connect the power, a flathead screwdriver is used to open

the VDRIVE and DGND connectors. Wires are then placed in the DGND and VDRIVE

connectors. Use the flathead screwdriver to close the J3 connector and clamp the wires in

place. The other ends of the wires are then fitted into ban plug connectors and plugged

into the common ground and +6V supply of the Agilent. The Digital Ground (DGND) is

connected to the common ground of the Agilent, labelled COM on the control panel, and

VDRIVE is connected to the +6V supply.

12. Do a quick check of the LK5 Jumper to ensure that it is in position A.

19

13. To prepare power for VDRIVE, plug the 9V wall outlet into the wall socket. Keep the

other end at hand, but do not plug it in yet.

14. Do a quick check of the LK6 Jumper to ensure that it is in position A.

15. Plug the 9V supply into VDD and power on the Agilent power supply.

16. Click “Run” and wait for the sweep to complete.

17. Unplug the 9V supply from VDD and power off the Agilent power supply and unplug it

from the evaluation board.

18. Return to step 6 and repeat the procedure with the Agilent set to a voltage of 2.5V. Then

repeat with the Agilent set to 3.3V and then 5V.

19. Return to step 5 and repeat the procedure with VIN connected to test point 2, the Voltage

Reference (Vref). Use the oscilloscope to verify that SDO is in the high state.

20. In the pull up files, insert a column between columns A and B. In the new B1 enter the

following equation: =(VDRIVE of this sweep)-$A1. Copy and paste this equation into the

rest of column B.

Obtaining the Die Capacitance

 Obtaining the die capacitance is the last measurement to be taken as it requires

removing the device being modelled from the evaluation board. The only equipment required to

take this measurement is the capacitance meter. The board does not need to be powered to obtain

these measurements.

1. Connect the two ground wires of the low and high test connections of the capacitance

meter together.

2. Connect one of the power wires to the ground test point.

3. Turn on the meter and zero the capacitance measurement.

20

4. Connect the second power wire to the output test point. Record the capacitance displayed.

5. Disconnect the power wire on the output test point.

6. Zero the capacitance measurement again.

7. Connect the power wire to one of the input test points. Record the capacitance displayed.

8. Disconnect the capacitance wires from the evaluation board.

9. Remove the device from the evaluation board using a soldering iron or a hot air gun.

Once the chip is removed, return to step 2 and repeat the procedure.

10. Subtract the capacitance measurement taken without the device on the board from the one

with the device on the board to acquire the die capacitance.

Formatting the Data

In order for the measurement data to be entered into an Input/ Output Buffer Information

Specification (IBIS) file format the data must be in a format that is readable to the excel-to-IBIS

conversion program. This means that all pertinent data must be in columns A and B of the excel

file. As part of editing process for the VDRIVE relative data for the power clamp and pull-up

curves a third column was added to the data. This data must be edited so that it contains the

relevant information with only two columns. The data in these files must also cover the full

range that the sweep required. However, seeing as some of the sweeps may not have covered this

range the rest of the graph must be extrapolated from the data that is present.

1. By opening one of the voltage versus time (VT) data files you will see that all relevant

data is already in columns A and B. However, the Oscilloscope also saved information

that described the parameters that the oscilloscope was set to that must be removed.

2. Select the entries in columns A and B and rows 1 through 15. Press “delete”

21

3. Select the entirety of lines 1 through 15 by clicking on the number “1” of row 1. Hold

shift and click on the number “15” of row 15. Right click on the selected rows and select

“Delete” from the menu that appears.

4. Repeat steps 1 through 3 for all of the VT files.

5. Open a VDRIVE-relative measurement file for either the power clamp curves or the pull-up

curves. Open a blank excel file.

6. Copy columns B and C from the original file into columns A and B of the new file.

7. Close the original excel file and save the new file over it.

8. If the sweep contains meaningless data at the ends of the sweep, such as multiple data

points at the same point or a sudden spike after the measurements should have settled to a

particular level, delete these data points from the file. If the deleted data points were at

the beginning of the recorded points, delete the rows that the data was held in.

9. To compensate for the reduced sweeps and deleted data points, use the Formula in

Appendix A to calculate the endpoints. To calculate the left endpoint of a VDRIVE

relative graph copy and paste the last 2 data points into entries A10, B10, A11, and B11.

Change A12 to –VDRIVE of the relevant sweep. Add entries A12 and B12 to the end of the

data points.

10. To calculate the right endpoint of a VDRIVE relative graph copy and paste the first 2 data

points into entries A14, B14, A15, and B15. For a power clamp curve change A16 to

VDRIVE. For a pull-up curve change A16 to 2*VDRIVE. Insert a new row 1. Enter entries

A16 and B16 into the new A1 and B1.

11. Repeat steps 5 through 10 for all power clamp and pull-up curves.

22

12. Open a ground-relative measurement file for either the ground clamp curves or the pull-

down curves.

13. If the sweep contains meaningless data at the ends of the sweep, such as multiple data

points at the same point or a sudden spike after the measurements should have settled to a

particular level, delete these data points from the file. If the deleted data points were at

the beginning of the recorded points, delete the rows that data was held.

14. To compensate for the reduced sweeps and deleted data points, use the Formula in

Appendix A to calculate the endpoints. To calculate the left endpoint of a ground relative

graph copy and paste the first 2 data points into entries A2, B2, A3, and B3. Change A4

to –VDRIVE of the relevant sweep. Insert a new row 1. Enter entries A4 and B4 to the new

A1 and B1

15. To calculate the right endpoint of a ground relative graph copy and paste the last 2 data

points into entries A6, B6, A7, and B7. For a ground clamp curve change A8 to VDRIVE.

For a pull-down curve change A8 to 2*VDRIVE. Add entries A8 and B8 to the end of the

data points.

16. Repeat steps 12 through 15 for all ground clamp and pull-down curves.

Entering the Data into IBIS

Before entering the measurement data into the Input/ Output Buffer Information

Specification (IBIS) file format, make sure that you have completed the Formatting the Data

section. With all of the data in the correct format and saved as .csv files you can use the Virtual

Interface (VI) in Appendix A to generate the IBIS model.

1. Create a new file to which the IBIS model will be saved. This file should be saved as

“the_part_being_modeled”.ibs. As an example, if modeling the Analog to Digital

23

Converter (ADC) AD7091RSDZ, then the file should be named ad7091rsdz.ibs. In order

to comply with the IBIS model standard there can be no capitals in the file name.

2. Open the VI “CSV to IBIS.vi”.

3. In the VI are a number of specifications that must be changed to correspond with your

device. These specifications are the headers and keywords that make up the IBIS model

and allow it to be read by another program.

4. Once the headers have been set, the file names of the data must be entered. Below the

header entries the VI is sectioned off into the different voltage levels at which the device

was tested. The file names must be entered into their corresponding path.

5. Once all of the files and headers have been entered, click run.

6. When you are asked what to save the file as, navigate to the file created in step 1 and

double click it.

7. Open the file created in step 1 in order to verify that the IBIS model was created

successfully.

	Worcester Polytechnic Institute
	Digital WPI
	October 2012

	Post Developmental Applications of Analog-to-Digital Converters
	Dale L. Spencer
	Gabriel Genannt McCormick
	Sean Patrick Gray
	Repository Citation

	Post Developmental Applications of Analog-to-Digital Converters

